WorldWideScience

Sample records for rankl mrna levels

  1. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  2. Estrogens and androgens inhibit association of RANKL with the pre-osteoblast membrane through post-translational mechanisms.

    Science.gov (United States)

    Martin, Anthony; Yu, Jiali; Xiong, Jian; Khalid, Aysha B; Katzenellenbogen, Benita; Kim, Sung Hoon; Katzenellenbogen, John A; Malaivijitnond, Suchinda; Gabet, Yankel; Krum, Susan A; Frenkel, Baruch

    2017-12-01

    We have recently demonstrated that RUNX2 promoted, and 17β-Estradiol (E2) diminished, association of RANKL with the cell membrane in pre-osteoblast cultures. Here we show that, similar to E2, dihydrotestosterone (DHT) diminishes association of RANKL, and transiently transfected GFP-RANKL with the pre-osteoblast membrane without decreasing total RANKL mRNA or protein levels. Diminution of membrane-associated RANKL was accompanied with marked suppression of osteoclast differentiation from co-cultured pre-osteoclasts, even though DHT increased, not decreased, RANKL concentrations in pre-osteoblast conditioned media. A marked decrease in membrane-associated RANKL was observed after 30 min of either E2 or DHT treatment, and near-complete inhibition was observed by 1 hr, suggesting that the diminution of RANKL membrane association was mediated through non-genomic mechanisms. Further indicating dispensability of nuclear action of estrogen receptor, E2-mediated inhibition of RANKL membrane association was mimicked by an estrogen dendrimer conjugate (EDC) that cannot enter the cell nucleus. Finally, the inhibitory effect of E2 and DHT on RANKL membrane association was counteracted by the MMP inhibitor NNGH, and the effect of E2 (and not DHT) was antagonized by the Src inhibitor SU6656. Taken together, these results suggest that estrogens and androgens inhibit osteoblast-driven osteoclastogenesis through non-genomic mechanism(s) that entail, MMP-mediated RANKL dissociation from the cell membrane. © 2017 Wiley Periodicals, Inc.

  3. Perturbations of Circulating Levels of RANKL-Osteoprotegerin Axis in Relation to Lipids and Progression of Atherosclerosis in HIV-Infected and -Uninfected Adults: ACTG NWCS 332/A5078 Study

    Science.gov (United States)

    Kelesidis, Theodoros; Kendall, Michelle A.; Yang, Otto O.; Hodis, Howard

    2013-01-01

    Abstract The receptor activator of the NF-κB ligand (RANKL)-osteoprotegerin (OPG) axis has been shown to play a role in the inflammatory process of atherogenesis and may be regulated by changes in levels of cholesterol. However, the interplay between HIV-1 infection, lipids, the RANKL-OPG axis, and atherosclerosis is poorly defined. Serum RANKL, OPG, and RANKL/OPG ratio were retrospectively assessed for 91 subjects from a 3-year study of carotid artery intima-media thickness (CIMT), which enrolled triads of risk factor-matched persons that were HIV-1 uninfected (n=36) or HIV-1+ with (n=29) or without (n=26) continuous protease inhibitor (PI)-based therapy for ≥2 years. Associations of serum RANKL, OPG, and RANKL/OPG ratio to the primary outcomes of levels of circulating lipids and atherosclerosis progression were determined using multivariate regression models. Serum RANKL and RANKL/OPG ratio were significantly lower in HIV-infected versus HIV-uninfected subjects (p<0.01). Multivariate models for HIV-1+ subjects, but not in uninfected controls, demonstrated that perturbations in serum cholesterol levels were significantly associated (p<0.05) with perturbations in serum levels of RANKL and OPG, and their ratio (RANKL/OPG). There were no significant associations of serum RANKL, OPG, and RANKL/OPG with progression of atherosclerosis in HIV-1+ subjects. Our results suggest that HIV-1 infection is associated with reductions in both serum RANKL and the RANKL/OPG ratio, and perturbations in the circulating levels of RANKL and OPG are significantly associated with increases in cholesterol levels, but not with progression of atherosclerosis. PMID:23351153

  4. Effect of Bisphosphonates on the Levels of Rankl and Opg in Gingival Crevicular Fluid of Patients With Periodontal Disease and Post-menopausal Osteoporosis.

    Science.gov (United States)

    Verde, María E; Bermejo, Daniela; Gruppi, Adriana; Grenón, Miriam

    2015-12-01

    The Receptor activator of nuclear factor-kappa B ligand (RANKL)/RANK/Osteoprotegerine (OPG) system has been proposed as essential for osteoclast biology and identified as key part in regulating the physiology and pathology of the skeletal system. The study of the RANKL/RANK/OPG system has increased the understanding of the mechanisms involved in the bone remodeling process, especially in postmenopausal osteoporosis and periodontal disease. Bisphosphonates have become the mainstay of the treatment and prevention of post-menopausal osteoporosis. They inhibit the formation and dissolution of calcium phosphate crystals in bone and also osteoclasts, thus reducing bone turnover.Current investigations relate osteoporosis with the appearance and progression of periodontal disease. Although the etiology of both is different, the bone loss present in both shares several characteristics. Thus, therapy used for osteoporosis can be considered of value in the treatment of periodontal disease. The aim of this study was to evaluate the levels of RANKL, OPG and their relationship in gingival crevicular fluid (GCF) in patients with periodontal disease and postmenopausal osteoporosis/ osteopenia in relation to consumption of bisphosphonates. We studied 66 periodontal active sites obtained from 17 post- menopausal women patients aged between 45-70 years old with osteoporosis/osteopenia and periodontal disease. GCF samples were collected using sterile filter paper strips. To determine the concentration of RANKL and OPG, a commercial ELISA assay was used. The values of RANKL, OPG and their ratio (RANKL/ OPG) were compared with Mann-Whitney U Test. The values of RANKL, OPG and their ratio obtained in patients with osteoporosis/osteopenia and periodontal disease with or without bisphosphonates treatment showed no differences. Bisphosphonates do not alter the concentration of RANKL and OPG and their ratio in the GCF of patients with osteoporosis/ osteopenia and periodontal disease

  5. Effects of IL-10 and glucose on expression of OPG and RANKL in human periodontal ligament fibroblasts

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2016-01-01

    Full Text Available The effects of interleukin-10 (IL-10 and glucose on mRNA and protein expression of osteoprotegerin (OPG, and its ligand, receptor activator of nuclear factor-κB ligand (RANKL, were investigated in human periodontal ligament fibroblasts (HPDLFs. Primary HPDLFs were treated with different concentrations of IL-10 (0, 1, 10, 25, 50, and 100 ng/mL or glucose (0, 5.5, 10, 20, 30, and 40 mmol/L. Changes in mRNA and protein expression were examined using the reverse-transcription polymerase chain reaction (RT-PCR and Western blot analysis, respectively. After IL-10 treatment, mRNA and protein levels of OPG were increased, while mRNA and protein levels of RANKL were decreased (P<0.05, both in a concentration-dependent manner. Glucose stimulation had the opposite concentration-dependent effect to that of IL-10 on OPG and RANKL expression. IL-10 upregulated OPG expression and downregulated RANKL expression, whereas high glucose upregulated RANKL and downregulated OPG in HDPLFs. Abnormal levels of IL-10 and glucose may contribute to the pathogenesis of periodontal disease.

  6. cAMP/PKA regulates osteogenesis, adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin.

    Directory of Open Access Journals (Sweden)

    Der-Chih Yang

    Full Text Available BACKGROUND: Mesenchymal stem cells (MSCs are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown. METHODS AND FINDINGS: We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX and forskolin enhances adipogenesis, the gene expression of PPARgamma2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-kappaB Ligand to Osteoprotegerin (RANKL/OPG gene expression - the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish. CONCLUSIONS: Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression.

  7. Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis.

    Science.gov (United States)

    Remuzgo-Martínez, Sara; Genre, Fernanda; López-Mejías, Raquel; Ubilla, Begoña; Mijares, Verónica; Pina, Trinitario; Corrales, Alfonso; Blanco, Ricardo; Martín, Javier; Llorca, Javier; González-Gay, Miguel A

    2016-07-12

    Osteoprotegerin (OPG), receptor activator of nuclear factor-ΚB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been involved in rheumatoid arthritis (RA) pathophysiology. In this study, we assessed messenger RNA (mRNA) expression of these molecules by qPCR in peripheral blood from 26 patients with RA (12 of them with ischemic heart disease -IHD) and 10 healthy controls. Correlation coefficients between OPG, RANKL and TRAIL expression levels in RA patients and their clinical and demographic characteristics were also evaluated. Whereas OPG and OPG/TRAIL ratio expression were significantly increased in RA patients compared to controls (fold change = 1.79, p = 0.013 and 2.07, p = 0.030, respectively), RANKL/OPG ratio was significantly decreased (fold change = 0.50, p = 0.020). No significant differences were found between patients and controls in RANKL and TRAIL expression. Interestingly, TRAIL expression was significantly higher in RA patients with IHD compared to those without IHD (fold change = 1.46, p = 0.033). Moreover, biologic disease-modifying antirheumatic drugs (DMARDs) significantly decreased RANKL expression in RA patients (p = 0.016). Our study supports an important role of OPG and TRAIL in RA. Furthermore, it highlights an effect of biologic DMARDs in the modulation of RANKL.

  8. Interleukin-17, RANKL, and osteoprotegerin levels in gingival crevicular fluid from smoking and non-smoking patients with chronic periodontitis during initial periodontal treatment.

    Science.gov (United States)

    Buduneli, Nurcan; Buduneli, Eralp; Kütükçüler, Necil

    2009-08-01

    This study was performed to evaluate the effects of initial periodontal treatment on the gingival crevicular fluid (GCF) levels of interleukin (IL)-17, soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), and osteoprotegerin (OPG) in smoking and non-smoking patients with chronic periodontitis. At baseline, GCF samples were obtained from 10 smoking and 10 non-smoking systemically healthy patients with chronic periodontitis. Initial periodontal treatment, consisting of motivation and instruction for daily plaque control and scaling and root planing (SRP), was performed. GCF sampling and clinical periodontal measurements were repeated 4 weeks after completion of SRP. The data were tested statistically by the Student t and Wilcoxon matched-pairs test and Spearman correlation analysis. All clinical periodontal measurements had decreased significantly 4 weeks after SRP (P 0.05). Significant correlations were found between baseline IL-17 and receptor activator of nuclear factor-kappa B ligand (RANKL) levels and between baseline papilla bleeding index and OPG levels (P smoking nor periodontal inflammation seemed to influence GCF RANKL levels in systemically healthy patients with chronic periodontitis. Smoking and non-smoking patients with chronic periodontitis were not affected differently by the initial periodontal treatment with regard to GCF IL-17 and OPG concentrations.

  9. Assessment of OPG, RANKL, bone turnover markers serum levels and BMD after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis.

    Science.gov (United States)

    Stuss, Michał; Sewerynek, Ewa; Król, Iwona; Stępień-Kłos, Wioletta; Jędrzejczyk, Sławomir

    2016-01-01

    The aim of this study was to evaluate quantitative changes in OPG and RANKL proteins after treatment with strontium ranelate (SR) and ibandronate in patients with postmenopausal osteoporosis. A total of 89 women with postmenopausal osteoporosis (PO), aged 51-85 years, patients of the Outpatient Clinic of Osteoporosis of the Military Teaching Hospital in Lodz, were enrolled in the study. The patients were randomly assigned to different therapies: ibandronate and (SR). Patients of the control group received only calcium and vitamin D3 supplements. The patients' visits were repeated after three and six months. Measurements of beta-CTX (C-terminal Telopeptide of type 1 collagen), osteocalcin, RANKL, osteoprotegerin (OPG), alkaline phosphatase concentrations in serum, as well as of total 24-hour calcium and phosphate levels in serum and urine, were carried out in material collected at baseline and after three and six months of therapy. Left hip and lumbar spine densitometry was done twice (at baseline visit and after six months). In all three groups there were no significant differences noted in the concentrations of OPG and RANKL serum protein levels during the study period. Both negative and positive correlations or tendencies of correlations were found between OPG serum concentrations and BMD changes in the SR group. Both ibandronate and SR do not seem to cause any significant changes in OPG and RANKL protein serum levels during the first six months of treatment. OPG may play a role in osteoclast activity suppression in the course of treatment with ibandronate in patients with PO. OPG may play an important role in the mechanism of SR therapy and may be viewed as a potentially valuable parameter for monitoring and predicting the course of treatment with SR in PO.

  10. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis.

    Science.gov (United States)

    Stuss, Michal; Rieske, Piotr; Cegłowska, Agnieszka; Stêpień-Kłos, Wioletta; Liberski, Paweł P; Brzeziańska, Ewa; Sewerynek, Ewa

    2013-05-01

    Recent research results have confirmed the high significance of the OPG/RANK/RANKL system in the development of bone diseases. The aim of the reported study was to assess gene expression levels of the OPG/RANK/RANKL system in peripheral blood mononuclear cells (PBMCs) after strontium ranelate (SR) and ibandronate administered to patients with postmenopausal osteoporosis. A total of 89 postmenopausal women, aged 51 to 85 years, patients of the Outpatient Clinic of Osteoporosis of the Military Teaching Hospital in Lodz, were enrolled into the study. The patients were randomly assigned to different medical therapies: ibandronate and SR. Patients of the control group received only calcium and vitamin D₃ supplements. Patient visits were repeated after 3 and 6 months. Measurements of serum alkaline phosphatase concentrations and of RNA expression in PBMCs as well as of total serum calcium and phosphate levels and of their 24-hour urine excretion rates were carried out in material, collected at baseline and after 3 and 6 months of the therapy. Densitometry of the left hip and of the lumbar spine was done at the baseline visit and after 6 months. The differences in gene expressions of RANKL and RANK were not significant during the study period and did not differ between the groups in a statistically significant manner. No OPG gene expression was observed in PBMCs of patients in any of the studied groups and at any time point. The tendency of correlation (P = .07) was observed between decreasing RANK gene expression and increasing bone mineral density in the patients treated with SR. Both ibandronate and SR do not seem to cause any significant changes in gene expression levels of OPG/RANK/RANKL in PBMCs during the first 6 months of treatment.

  11. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Okito, Asuka [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Akiyama, Masako [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Ono, Takashi [Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-06

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. - Highlights: • RANKL expression was increased in osteoblasts under acidosis via cAMP/PKA pathway. • GRP4 knockdown resulted in decrease of RANKL expression. • GRP4 overexpression resulted in increase of RANKL expression. • Osteoblast mineralization was reduced under acidic condition.

  12. Azilsartan increases levels of IL-10, down-regulates MMP-2, MMP-9, RANKL/RANK, Cathepsin K and up-regulates OPG in an experimental periodontitis model.

    Directory of Open Access Journals (Sweden)

    Aurigena Antunes de Araújo

    Full Text Available AIMS: The aim of this study was to evaluate the effects of azilsartan (AZT on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs, receptor activator of nuclear factor κB ligand (RANKL, receptor activator of nuclear factor κB (RANK, osteoprotegerin (OPG, cyclooxygenase-2 (COX-2, and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. MATERIALS AND METHODS: Male Wistar albino rats were randomly divided into 5 groups of 10 rats each: (1 nonligated, water; (2 ligated, water; (3 ligated, 1 mg/kg AZT; (4 ligated, 5 mg/kg AZT; and (5 ligated, 10 mg/kg AZT. All groups were treated with saline or AZT for 10 days. Periodontal tissues were analyzed by histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1β, IL-10, TNF-α, myeloperoxidase (MPO, and glutathione (GSH were determined by ELISA. RESULTS: Treatment with 5 mg/kg AZT resulted in reduced MPO (p<0.05 and IL-1β (p<0.05, increased levels of IL-10 (p<0.05, and reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and increased expression of OPG. CONCLUSIONS: These findings reveal that AZT increases anti-inflammatory cytokines and GSH and decreases bone loss in ligature-induced periodontitis in rats.

  13. Relación entre los niveles de compuestos volátiles sulfurados con los niveles de RANKL y OPG en pacientes con periodontitis crónica moderada o severa: Estudio transversal Relationship between the levels of volatile sulfur compounds with the levels of RANKL and OPG in patients with moderate or severe periodontitis: A cross sectional study

    Directory of Open Access Journals (Sweden)

    D Prieto Damm

    2013-04-01

    Full Text Available Antecedentes: El efecto de los Compuestos Volátiles Sulfurados (CVS sobre los tejidos periodontales, específicamente a nivel del eje RANKL/OPG, no ha sido dilucidado y en la actualidad existe escasa literatura al respecto publicada. Objetivo: Evaluar si los CVS medidos en la cavidad oral de pacientes con periodontitis crónica moderada a severa se relacionan con la expresión de RANKL y OPG a nivel de fluido gingival crevicular (FGC. Método: Se realizó un estudio transversal con 71 pacientes derivados de la Unidad de Diagnóstico de la Clínica Odontológica Docente Asistencial de la Universidad de los Andes. Posterior a la realización de un examen periodontal completo se tomaron muestra de los niveles de CVS de la boca de los pacientes mediante un monitor de sulfuros y muestras de FGC para evaluar los niveles de RANKL y OPG mediante test de ELISA. Los datos obtenidos fueron analizados mediante test de correlación de Spearman. Resultados: Al evaluar la correlación de los niveles de CVS con los niveles de RANKL, OPG y la razón RANKL/OPG, se observó un R de 0.098 con un p value = 0.41; -0.084 con un p value= 0.48 y 0.067 con un p value = 0.57 respectivamente. Conclusiones: El presente estudio no pudo demostrar si existe una relación entre los niveles de CVS con la expresión de RANKL y OPG en el FGC de pacientes con periodontitis crónica.Background: The effect of the Volatile Sulfur Compounds (VSC on the periodontal tissues, specifically at the RANKL/OPG level has not been elucidate and there is little literature published on this subject. Aim: To explore if the VSC levels measured in the oral cavity of patients with moderate or severe chronic periodontitis are correlated with the expression of RANKL and OPG at the gingival fluid level (GF. Method: A cross-sectional study was conducted with 71 patients referred by the Universidad de los Andes’s dentistry diagnosis department. After undergoing full-mouth periodontal exam, levels of CVS

  14. Constitutive expression of TNF-related activation-induced cytokine (TRANCE/receptor activating NF-κB ligand (RANK-L by rat plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Thomas Anjubault

    Full Text Available Plasmacytoid dendritic cells (pDCs are a subset of DCs whose major function relies on their capacity to produce large amount of type I IFN upon stimulation via TLR 7 and 9. This function is evolutionary conserved and place pDC in critical position in the innate immune response to virus. Here we show that rat pDC constitutively express TNF-related activation-induced cytokine (TRANCE also known as Receptor-activating NF-κB ligand (RANKL. TRANCE/RANKL is a member of the TNF superfamily which plays a central role in osteoclastogenesis through its interaction with its receptor RANK. TRANCE/RANK interaction are also involved in lymphoid organogenesis as well as T cell/DC cross talk. Unlike conventional DC, rat CD4(high pDC were shown to constitutively express TRANCE/RANKL both at the mRNA and the surface protein level. TRANCE/RANKL was also induced on the CD4(low subsets of pDC following activation by CpG. The secreted form of TRANCE/RANKL was also produced by rat pDC. Of note, levels of mRNA, surface and secreted TRANCE/RANKL expression were similar to that observed for activated T cells. TRANCE/RANKL expression was found on pDC in all lymphoid organs as well blood and BM with a maximum expression in mesenteric lymph nodes. Despite this TRANCE/RANKL expression, we were unable to demonstrate in vitro osteoclastogenesis activity for rat pDC. Taken together, these data identifies pDC as novel source of TRANCE/RANKL in the immune system.

  15. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B

    2009-01-01

    . In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to beta-actin. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients. RESULTS: The alpha1(IV......). The level of alpha 6(IV) was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p alpha 6(IV) mRNA coincides...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6...

  16. Effect of ERK1/2 signal pathway on the expression of OPG/RANKL in cementoblasts under stress stimulation

    Directory of Open Access Journals (Sweden)

    Feng-xue YANG

    2015-01-01

    Full Text Available Objective To explore the effect of extracellular signal regulated kinase (ERK1/2 on the expression of osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL in cementoblasts under mechanical tensile stress stimulation. Methods Using Flexcell FX4000T tension loading system and the ERK1/2-specific inhibitor PD98059, cementoblasts OCCM30 were randomly divided into four groups: group A (without loading and inhibitor, group B (without loading but inhibitor, group C (loading but without inhibitor, and group D (with both loading and inhibitor. The phosphorylation level of ERK1/2 was measured by Western blotting after 5, 15, 30 and 60min loading. OPG and RANKL mRNA were analyzed with fluorescent quantitative RT-PCR after 12h loading. Results Mechanical tensile stress activated ERK1/2 signal pathway of group C rapidly, and the P-ERK1/2 levels were significantly higher in group C than in group A at 5, 15 and 30min (P<0.05, then the P-ERK1/2 level of group C resumed to similar level of group A at 60min. The P-ERK levels of group B and D were significantly reduced by inhibitor PD98059. Tension stress up-regulated the expression of RANKL mRNA, and down-regulated the expression of OPG mRNA in OCCM30, the RANKL/OPG ratio increased after tension loading. With PD98059, the expression of RANKL mRNA decreased, that of OPG mRNA increased, and the RANKL/OPG ratio decreased (P<0.05. Conclusion ERK1/2 may be a signal transduction pathway for the regulation of OPG and RANKL expression after tension stress loading, but it is not the only one of activation pathways, and there may be other common signal pathways involved in the regulation of OPG and RANKL expression. DOI: 10.11855/j.issn.0577-7402.2014.12.03

  17. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells.

    Science.gov (United States)

    Son, G Y; Yang, Y M; Park, W S; Chang, I; Shin, D M

    2015-03-01

    Bone remodeling occurs in response to various types of mechanical stress. The periodontal ligament (PDL) plays an important role in mechanical stress-mediated alveolar bone remodeling. However, the underlying mechanism at the cellular level has not been extensively studied. In this study, we investigated the effect of shear stress on the expression of bone remodeling factors, including receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and osteoprotegerin (OPG), as well as its upstream signaling pathway in primary human PDL cells. We applied hypotonic stress to reproduce shear stress to PDL cells. Hypotonic stress induced the messenger RNA (mRNA) and protein expression of RANKL but not OPG. It also increased intracellular Ca(2+) concentration ([Ca(2+)]i). Extracellular Ca(2+) depletion and nonspecific plasma membrane Ca(2+) channel blockers completely inhibited the increase in both [Ca(2+)]i and RANKL mRNA expression. We identified the expression and activation of transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) channels in PDL cells. Pregnenolone sulfate (PS) and 4α-phorbol 12, 13-didecanoate (4α-PDD), which are agonists of TRPM3 and TRPV4, augmented Ca(2+) influx and RANKL mRNA expression. Both pharmacological (2-aminoethoxydiphenyl borate [2-APB], ruthenium red [RR], ononetin [Ono], and HC 067047 [HC]) and genetic (small interfering RNA [siRNA]) inhibitors of TRPM3 and TRPV4 reduced the hypotonic stress-mediated increase in [Ca(2+)]i and RANKL mRNA expression. Our study shows that hypotonic stress induced RANKL mRNA expression via TRPM3- and TRPV4-mediated extracellular Ca(2+) influx and RANKL expression. This signaling pathway in PDL cells may play a critical role in mechanical stress-mediated alveolar bone remodeling. © International & American Associations for Dental Research 2015.

  18. Hfq affects mRNA levels independently of degradation

    Directory of Open Access Journals (Sweden)

    Hajnsdorf Eliane

    2010-02-01

    Full Text Available Abstract Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript

  19. IL-6 Enhances Osteocyte-Mediated Osteoclastogenesis by Promoting JAK2 and RANKL Activity In Vitro

    Directory of Open Access Journals (Sweden)

    Qing Wu

    2017-03-01

    Full Text Available Background/Aims: Evidence suggests that IL-6 affects bone mass by modulating osteocyte communication towards osteoclasts. However, the mechanism by which IL-6 enhances osteocyte-mediated osteoclastogenesis is unclear. We aimed to investigate the inflammatory factors in serum after orthodontic surgery and their relationship between osteocytes and osteoclasts. Methods: Serum was obtained from 10 orthognathic surgery patients, and inflammatory factors were detected by ELISA. We treated the osteocyte-like cell line MLO-Y4 with recombinant mouse IL-6 and IL-6 receptor (IL-6R, and used quantitative RT-PCR and Western blotting to explore Receptor activator of nuclear factor-κB ligand (RANKL expression at both the mRNA and protein level. MLO-Y4 cells were co-cultured with osteoclast precursor cells, and the formation of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP staining. To explore the role of JAK2 in the osteocyte-mediated osteoclastogenesis, AG490, a JAK2 inhibitor, was used to inhibit the JAK2-STAT3 pathway in osteocytes. Results: In our study, we found that IL-6 and RANKL were stimulated in serum 3-7 days after orthognathic surgery. Therefore, IL-6 and IL-6 receptor enhanced the expression of RANKL at both the mRNA and protein level in MLO-Y4. Furthermore, when MLO-Y4 cells were co-cultured with osteoclast precursor cells, it significantly stimulated osteoclastogenesis. Our study indicated that osteocytes could promote osteoclastic differentiation and the formation of TRAP-positive multinucleated cells after stimulation with IL-6 and IL-6R. Our results also indicated that treatment with IL-6 and IL-6R increased RANKL mRNA expression and the RANKL/OPG expression ratio. Meanwhile, the phosphorylation of Janus kinase 2 (JAK2 and Signal transducer and activator of transcription (STAT3 also correlated with RANKL levels. Furthermore, we investigated the effects of a specific JAK2 inhibitor, AG490, on the expression of RANKL in

  20. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis.

    Science.gov (United States)

    Tsentidis, C; Gourgiotis, D; Kossiva, L; Doulgeraki, A; Marmarinos, A; Galli-Tsinopoulou, A; Karavanaki, K

    2016-04-01

    Simultaneous lower bone mineral density, metabolic bone markers, parathyroid hormone (PTH), magnesium, insulin-like growth factor 1 (IGF1), and higher levels of total soluble receptor activator of nuclear factor-kappa B ligand (s-RANKL), osteoprotegerin (OPG), and alkaline phosphatase (ALP) are indicative of lower osteoblast and increased osteoclast signaling in children and adolescents with type 1 diabetes mellitus, predisposing to adult osteopenia and osteoporosis. Type 1 diabetes mellitus (T1DM) is a risk factor for reduced bone mass, disrupting several bone metabolic pathways. We aimed at identifying association patterns between bone metabolic markers, particularly OPG, s-RANKL, and bone mineral density (BMD) in T1DM children and adolescents, in order to study possible underlying pathophysiologic mechanisms of bone loss. We evaluated 40 children and adolescents with T1DM (mean ± SD age 13.04 ± 3.53 years, T1DM duration 5.15 ± 3.33 years) and 40 healthy age- and gender-matched controls (aged12.99 ± 3.3 years). OPG, s-RANKL, osteocalcin, C-telopeptide cross-links (CTX), IGF1, electrolytes, PTH, and total 25(OH)D were measured, and total body along with lumbar spine BMD were evaluated with dual energy X-ray absorptiometry (DXA). Multivariate regression and factor analysis were performed after classic inference. Patients had significantly lower BMD, with lower bone turnover markers, PTH, magnesium, and IGF1 than controls, indicating lower osteoblast signaling. Higher levels of total s-RANKL, OPG, and total ALP were observed in patients, with log(s-RANKL) and OPG correlation found only in controls, possibly indicating increased osteoclast signaling in patients. Coupling of bone resorption and formation was observed in both groups. Multivariate regression confirmed simultaneous lower bone turnover, IGF1, magnesium, and higher total s-RANKL, OPG, and ALP in patients, while factor analysis indicated possible activation of RANK/RANKL/OPG system in

  1. Integrin beta 4 MRNA expression levels in bronchial asthma patients ...

    African Journals Online (AJOL)

    Serum total IgE was measured by ELISA and mRNA expression of ITGβ4 was assessed by reverse transcriptase PCR (RT-PCR) using real time PCR.. ITGβ4 mRNA expression was significantly down regulated with increased serum total IgE in patients with asthma compared to controls. Moreover, ITGβ4 expression was ...

  2. Expression of RANKL/OPG during bone remodeling in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H., E-mail: tnk@ymghp.jp [Department of Orthopedic Surgery, Yamaguchi Grand Medical Center, 77 Ohsaki, Hofu, Yamaguchi 747-8511 (Japan); Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); Mine, T. [Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Ogasa, H. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Taguchi, T. [Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Liang, C.T. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); National Health Research Institutes, Taipei 115, Taiwan (China)

    2011-08-12

    Highlights: {yields} This is the first study to determine the relationship between osteogenic differentiation and RANKL/OPG expression during bone remodeling in vivo. {yields} The OPG expression peak occurred during the bone formation phase, whereas the marked elevation of RANKL expression was observed during the bone resorption phase. {yields} Histological analysis showed that RANKL/OPG immunoreactivity was predominantly associated with bone marrow cells in the marrow cavity. {yields} The present study confirmed that RANKL/OPG are key factors linking bone formation to resorption during the bone remodeling process. -- Abstract: The interaction between receptor activator of nuclear factor {kappa}B ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation. Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen {alpha}1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The

  3. Low-level lasers and mRNA levels of reference genes used in Escherichia coli

    Science.gov (United States)

    Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.

    2016-11-01

    Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.

  4. TS mRNA levels can predict pemetrexed and raltitrexed sensitivity in colorectal cancer.

    Science.gov (United States)

    Zhang, Qun; Shen, Jie; Wang, Hao; Hu, Jing; Yu, Lixia; Xie, Li; Wei, Jia; Liu, Baorui; Guan, Wenxian; Qian, Xiaoping

    2014-02-01

    The purpose of the study is to analyze the relationship between tumor thymidylate synthase (TS) mRNA expression levels and raltitrexed/pemetrexed/5-FU sensitivity. We collected freshly removed colorectal tumor specimens from 50 patients. Chemosensitivities to anticancer drugs were evaluated by histoculture drug response assay. We adopted quantitative reverse transcription polymerase chain reaction for TS mRNA detection and immunohistochemical staining for assessing TS expression in tumor tissues. There is a significant relationship between TS mRNA expression levels and in vitro chemosensitivity of freshly removed colorectal tumor specimens to pemetrexed (P TS mRNA expression levels can predict pemetrexed and raltitrexed sensitivity in colorectal cancer.

  5. OPG/RANKL/RANK cytokine system in renal osteodystrophy

    Directory of Open Access Journals (Sweden)

    Ivica Avberšek-Lužnik

    2007-11-01

    Full Text Available Background: Renal osteodystrophy is one of the most common complications affecting patients with endstage renal disease treated with hemodialysis (HD. The action of calciotropic hormones in renal osteodystrophy is regulated by the OPG/RANKL/RANK system. Its function is modulated by interleukines, calcitriol and parathyroid hormone (PTH.The aim of our study was to confirm that this system is involved in the pathogenesis of renal osteodystrophy and supports the mechanism of PTH action on bone.Methods: 106 HD patients (mean age 60 years and 50 healthy volunteers (mean age 64 years were enrolled in the study. In serum samples of patients and controls we determined concentrations of OPG, RANKL, tartarat resistant acid phosphatase 5b (TRAP 5b, serum Cterminal telopeptide cross-links of type I collagen (CTx, bone specific alkaline phosphatase (BALP, osteocalcin (OC and parathyroid hormone (PTH. We compared serum measurements of HD patients and controls and assessed the correlation of OPG and RANKL with bone markers. The most frequent OPG promotor gene polymorphisms were also determined. SPSS 12.1 for Windows was used for statistical analysis.Results: Median OPG concentrations were approximately three times higher in HD patients (0.804 µg/l than in healthy volunteers (0.272 µg/l. Mean serum RANKL concentrations were 1.66- fold higher in HD patients (1.36 pmol/l than in controls (0.82 pmol/l. Serum RANKL levels significantly differed between patients with and without calcitriol therapy (p = 0.001. After dividing HD patients into tertiles according to PTH, we observed significantly higher OPG values in the lower and RANKL in the upper tertile (p < 0.001. OPG did not correlate with bone resorption markers. Only weak correlation of bone formation markers with osteocalcin was noted. In contrast to OPG, RANKL correlated well with PTH, OC and CTX. OPG promoter gene polymorphisms (149 T → C, 163 A → G, 950 T → C do not influence OPG expression and

  6.  Dehydroepiandrosterone sulfate, osteoprotegerin and its soluble ligand sRANKL and bone metabolism in girls with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Zofia Ostrowska

    2012-09-01

    Full Text Available  Background:Only scarce data exist concerning the relationship between dehydroepiandrosterone (DHEA and/or its sulfate form DHEAS and bone status in adolescents with anorexia nervosa (AN.Aim:We investigated whether a relationship existed between DHEAS and bone metabolism (as assessed based on serum osteocalcin [OC], and collagen type I cross-linked carboxy-terminal telopeptide [CTx]. We also aimed to establish whether the above mentioned relationship might be affected by osteoprotegerin (OPG and its soluble ligand sRANKL.Material/Methods:Fifty-six female patients with AN and 21 healthy female subjects aged 13 to 16 years participated in the study. Serum DHEAS, OC, CTx, OPG and sRANKL were measured by ELISA.Results:Our female patients with AN demonstrated significant suppression of DHEAS and bone markers, an increase in OPG and sRANKL levels, and a reduction of the OPG/sRANKL ratio. DHEAS, CTx and the OPG/sRANKL ratio correlated positively with BMI. A significant positive correlation was also observed between DHEAS and the OPG/sRANKL ratio, OC and the OPG/sRANKL ratio, and CTx and sRANKL. The correlation was negative in the case of DHEAS and CTx, DHEAS and sRANKL, CTx and the OPG/sRANKL ratio, and sRANKL and the OPG/sRANKL ratio.Discussion/DHEAS suppression in girls with anorexia nervosa was associated with a decrease in the levels of bone markers, an increase in OPG and sRANKL concentrations and a significant decrease in the OPG/sRANKL ratio. DHEAS suppression in girls with anorexia nervosa might have a harmful effect on their bone tissue, probably via a shift in the OPG/RANKL ratio toward a functional excess of sRANKL.

  7. RANKL: A promising circulating marker for bone metastasis response

    Science.gov (United States)

    Ibrahim, Toni; Ricci, Marianna; Scarpi, Emanuela; Bongiovanni, Alberto; Ricci, Rossana; Riva, Nada; Liverani, Chiara; De Vita, Alessandro; La Manna, Federico; Oboldi, Devil; Serra, Patrizia; Foca, Flavia; Cecconetto, Lorenzo; Amadori, Dino; Mercatali, Laura

    2016-01-01

    Bone metastases are a frequent event in patients with solid tumors. Although great advances have been made in the treatment of these patients, the identification of novel, accurate indicators of bone response would greatly facilitate the clinical management of the disease. The receptor activator of nuclear factor-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signaling pathway is significantly involved in bone metastasis formation. The main aim of the present study was to evaluate the role of circulating RANK, RANKL and OPG levels in predicting bone response. Marker accuracy was also compared with that of the conventional tumor marker N-terminal telopeptide of type I collagen (NTX). A prospective study was performed on 49 patients with bone metastases from breast, lung and prostate cancer, who were undergoing treatment with zoledronic acid. Patients were monitored for 1 year with blood tests, clinical evaluation and instrumental exams according to the response evaluation criteria of the University of Texas M. D. Anderson Cancer Center (Houston, TX, USA) and the Positron Emission Tomography Response Criteria in Solid Tumors. Circulating RANK/RANKL/OPG transcripts and NTX levels were evaluated by reverse transcription-quantitative polymerase chain reaction and immune enzymatic assay, respectively. The baseline RANKL levels differed significantly between responders and non-responders, whereas no differences in NTX levels were observed between the two groups. Receiver operating characteristic curve evaluation for all markers revealed that RANKL was the most accurate marker, with an area under the curve of 0.74 (95% confidence interval, 0.54–0.93). In addition, RANKL, which is the target of the novel monoclonal antibody denosumab, was the most accurate predictor of bone response in the present series of patients with bone metastases. Thus, the use of RANKL as a marker could potentially improve clinical practice, as current bone response evaluation is still

  8. Skeletal changes in osteoprotegerin and receptor activator of nuclear factor-κb ligand mRNA levels in primary hyperparathyroidism

    DEFF Research Database (Denmark)

    Stilgren, L.S.; Rettmer, E.; Eriksen, E. F.

    2004-01-01

    The effect of parathyroid hormone (PTH) on the production of osteoprotegerin (OPG) and ligand of receptor activator of NF-kappaB (RANKL) in human bone is incompletely understood. Most in vitro studies indicate that PTH decreases OPG and increases RANKL production. In primary hyperparathyroidism....... In addition, locally produced RANKL appears to affect bone turnover in the hyperparathyroid state....

  9. Maternal mRNA expression levels of H19 are inversely associated with risk of macrosomia.

    Science.gov (United States)

    Jiang, Hua; Yu, Yang; Xun, Pengcheng; Zhang, Jun; Luo, Guanghua; Wang, Qiuwei

    2014-06-29

    To investigate the associations between the mRNA levels of H19 in term placenta and risk of macrosomia. Term placentas were collected from 37 macrosomia and 37 matched neonates with normal birth weight (controls) born in Changzhou Women and Children Health Hospital, Jiangsu province, P. R. China from March 1 to June 30, 2008. The mRNA levels of H19 in those placentas were measured by real-time polymerase chain reaction (PCR). Simple and multiple logistic regression models were used to explore the risk factors in the development of macrosomia. All analyses were performed using Stata 10.0 (StataCorp, College Station, Texas, USA). The average H19 mRNA level of the macrosomia group was 1.450 ±0.456 while in the control group it was 2.080 ±1.296. Based on the result of Student's t test, there was a significant difference in H19 mRNA level between the macrosomia group and the control group (p = 0.008). After controlling for potential confounders, the multivariable adjusted odds ratio (OR) of macrosomia for those in the highest tertile of H19 mRNA level was 0.12 (95% CI: 0.02-0.59) when compared to those in the lowest tertile (p for linear trend = 0.009). The term placental H19 mRNA levels were inversely related to the occurrence of macrosomia. Our findings suggest that the low expression of H19 mRNA may contribute to the development of macrosomia.

  10. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  11. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  12. Monosodium Urate in the Presence of RANKL Promotes Osteoclast Formation through Activation of c-Jun N-Terminal Kinase

    Directory of Open Access Journals (Sweden)

    Jung-Yoon Choe

    2015-01-01

    Full Text Available The aim of this study was to clarify the role of monosodium urate (MSU crystals in receptor activator of nuclear factor kB ligand- (RANKL- RANK-induced osteoclast formation. RAW 264.7 murine macrophage cells were incubated with MSU crystals or RANKL and differentiated into osteoclast-like cells as confirmed by staining for tartrate-resistant acid phosphatase (TRAP and actin ring, pit formation assay, and TRAP activity assay. MSU crystals in the presence of RANKL augmented osteoclast differentiation, with enhanced mRNA expression of NFATc1, cathepsin K, carbonic anhydrase II, and matrix metalloproteinase-9 (MMP-9, in comparison to RAW 264.7 macrophages incubated in the presence of RANKL alone. Treatment with both MSU crystals and RANKL induced osteoclast differentiation by activating downstream molecules in the RANKL-RANK pathway including tumor necrosis factor receptor-associated factor 6 (TRAF-6, JNK, c-Jun, and NFATc1. IL-1b produced in response to treatment with both MSU and RANKL is involved in osteoclast differentiation in part through the induction of TRAF-6 downstream of the IL-1b pathway. This study revealed that MSU crystals contribute to enhanced osteoclast formation through activation of RANKL-mediated pathways and recruitment of IL-1b. These findings suggest that MSU crystals might be a pathologic causative agent of bone destruction in gout.

  13. ErbB3 mRNA leukocyte levels as a biomarker for major depressive disorder

    Directory of Open Access Journals (Sweden)

    Milanesi Elena

    2012-09-01

    Full Text Available Abstract Background In recent years, the identification of peripheral biomarkers that are associated with psychiatric diseases, such as Major Depressive Disorder (MDD, has become relevant because these biomarkers may improve the efficiency of the differential diagnosis process and indicate targets for new antidepressant drugs. Two recent candidate genes, ErbB3 and Fgfr1, are growth factors whose mRNA levels have been found to be altered in the leukocytes of patients that are affected by bipolar disorder in a depressive state. On this basis, the aim of the study was to determine if ErbB3 and Fgfr1 mRNA levels could be a biomarkers of MDD. Methods We measured by Real Time PCR ErbB3 and Fgfr1 mRNA expression levels in leukocytes of MDD patients compared with controls. Successively, to assess whether ErbB3 mRNA levels were influenced by previous antidepressant treatment we stratified our patients sample in two cohorts, comparing drug-naive versus drug-free patients. Moreover, we evaluated the levels of the transcript in MDD patients after 12 weeks of antidepressant treatment, and in prefrontal cortex of rats stressed and treated with an antidepressant drug of the same class. Results These results showed that ErbB3 but not Fgfr1 mRNA levels were reduced in leukocytes of MDD patients compared to healthy subjects. Furthermore, ErbB3 levels were not affected by antidepressant treatment in either human or animal models Conclusions Our data suggest that ErbB3 might be considered as a biomarker for MDD and that its deficit may underlie the pathopsysiology of the disease and is not a consequence of treatment. Moreover the study supports the usefulness of leukocytes as a peripheral system for identifying biomarkers in psychiatric diseases.

  14. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi.

    Science.gov (United States)

    Tanaka, Mizuki; Tokuoka, Masafumi; Gomi, Katsuya

    2014-05-01

    Filamentous fungi, particularly Aspergillus species, have recently attracted attention as host organisms for recombinant protein production. Because the secretory yields of heterologous proteins are generally low compared with those of homologous proteins or proteins from closely related fungal species, several strategies to produce substantial amounts of recombinant proteins have been conducted. Codon optimization is a powerful tool for improving the production levels of heterologous proteins. Although codon optimization is generally believed to improve the translation efficiency of heterologous genes without affecting their mRNA levels, several studies have indicated that codon optimization causes an increase in the steady-state mRNA levels of heterologous genes in filamentous fungi. However, the mechanism that determines the low mRNA levels when native heterologous genes are expressed was poorly understood. We recently showed that the transcripts of heterologous genes are polyadenylated prematurely within the coding region and that the heterologous gene transcripts can be stabilized significantly by codon optimization, which is probably attributable to the prevention of premature polyadenylation in Aspergillus oryzae. In this review, we describe the detailed mechanism of premature polyadenylation and the rapid degradation of mRNA transcripts derived from heterologous genes in filamentous fungi.

  15. Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells

    Science.gov (United States)

    Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.

    2017-07-01

    Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.

  16. Circulating RANKL and RANKL/OPG and breast cancer risk by ER and PR subtype

    DEFF Research Database (Denmark)

    Sarink, Danja; Schock, Helena; Johnson, Theron

    2017-01-01

    Receptor activator of nuclear factor kappa-B (RANK)-RANK ligand (RANKL) signaling promotes mammary tumor development in experimental models. Circulating concentrations of soluble RANKL (sRANKL) may influence breast cancer risk via activation of RANK signaling; this may be modulated by osteoproteg...

  17. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle.

    Directory of Open Access Journals (Sweden)

    Johann Edge

    Full Text Available Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% VO2speak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID or calcium carbonate (PLA the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α, citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P0.05; the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08. Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle.

  18. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus

    Science.gov (United States)

    Luo, Wen; Zhao, Yunlong; Zhou, Zhongliang; An, Chuanguang; Ma, Qiang

    2008-02-01

    The digestive enzyme activity and mRNA level of trypsin during the embryonic development of Cherax quadricarinatus were analyzed using biochemical and Fluorogenic Quantitative PCR (FQ—PCR) methods. The results show that the activities of trypsin and chymotrypsin had two different change patterns. Trypsin specific activity increased rapidly in the early stages of development and still remained high in preparation for the hatch stage. However, chymotrypsin activity peaked in stage 4 of embryonic development and decreased significantly in the last stage. The mRNA level of trypsin was elevated in all stages and two peak values were observed in stages 2 and 5 respectively. The results indicate that trypsin is very important for the utilization of the yolk during embryonic development and for the assimilation of dietary protein for larvae. The gene of trypsin is probably regulated at transcriptional level. The mRNA levels of trypsin can reflect not only trypsin activity, but also the regulatory mechanism for expression of trypsin gene to a certain degree.

  19. Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

    DEFF Research Database (Denmark)

    Hansen, M.C.; Nielsen, A.K.; Molin, Søren

    2001-01-01

    Regulation of gene expression can be analyzed by a number of different techniques. Some techniques monitor the level of specific mRNA directly, and others monitor indirectly by determining the level of enzymes encoded by the mRNA. Each method has its own inherent way of normalization. When result...

  20. Carbon Monoxide Inhibits Receptor Activator of NF-κB (RANKL-Induced Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Feng-Jen Tseng

    2015-07-01

    Full Text Available Background: Low concentrations of carbon monoxide (CO have anti-inflammatory effects and can reduce bone erosion in a murine collagen-induced arthritis model. The objective of this study was to assess the effects of CO on receptor activator of NF-γB ligand (RANKL, one of the key stimulators of osteoclastogenesis. Methods: The in vivo effects of CO on RANKL expression were assessed in a collagen antibody-induced arthritis model in mice. Cell proliferation and apoptosis were assessed in the RAW246.7 cell line stimulated with RANKL and exposed to either air or CO. The number of tartrate resistant acid phosphatase (TRAP-positive RAW246.7 cells was also examined after treatment with RANKL and the peroxisome proliferator-activated receptor gamma (PPARγ agonist, Troglitazone. Results: CO reduced RANKL expression in the synovium of arthritic mice. Although CO slightly increased RAW246.7 cell proliferation, no differences in activated caspase 3 levels were detected. In addition, Troglitazone ameliorated the inhibitory effects of CO on RANKL-induced TRAP expression by RAW246.7 cells. Conclusions: CO suppresses osteoclast differentiation by inhibiting the RANKL-induced activation of PPAR-γ. Given the role of the PPAR-γ/cFos (AP-1 pathway in regulating the transcription factor, NFATc1, the master regulator of osteoclastogenesis, further studies are warranted to explore CO in treating inflammatory bone disorders.

  1. Effect of physical training on glucose transporter protein and mRNA levels in rat adipocytes

    DEFF Research Database (Denmark)

    Stallknecht, B; Andersen, P H; Vinten, J

    1993-01-01

    trained rats. Furthermore, the abundance of the mRNAs for these proteins and glucose transport was measured. Rats were swim-trained for 10 wk, and adipocytes were isolated from epididymal fat pads. The amount of GLUT-4/adipocyte volume unit was significantly higher in trained animals compared with both...... age- and cell size-matched animals. The amount of GLUT-4 mRNA was also increased by training and it decreased with increasing age. Furthermore, young age as well as training was accompanied by relatively low GLUT-4 protein/mRNA and relatively high overall GLUT-4 efficiency (recruitability and....../or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training....

  2. Serum from patients with ankylosing spondylitis can increase PPARD, fra-1, MMP7, OPG and RANKL expression in MG63 cells.

    Science.gov (United States)

    Hu, Zaiying; Lin, Dongfang; Qi, Jun; Qiu, Minli; Lv, Qing; Li, Qiuxia; Lin, Zhiming; Liao, Zetao; Pan, Yunfeng; Jin, Ou; Wu, Yuqiong; Gu, Jieruo

    2015-11-01

    To explore the effects of serum from patients with ankylosing spondylitis on the canonical Wnt/β-catenin pathway and to assess whether the serum has an osteogenic effect in MG63 cells. MG63 cells were cultured with serum from 45 ankylosing spondylitis patients, 30 healthy controls, or 45 rheumatoid arthritis patients. The relative PPARD, fra-1, MMP7, OPG and RANKL mRNA levels were measured using quantitative real-time polymerase chain reaction. Associations between gene expression and patient demographics and clinical assessments were then analyzed. MG63 cells treated with serum from ankylosing spondylitis patients had higher PPARD, fra-1, MMP7 and OPG gene expression than did cells treated with serum from controls or rheumatoid arthritis patients (all pankylosing spondylitis or rheumatoid arthritis than in those treated with serum from controls (both pankylosing spondylitis patients than in those treated with serum from controls (p0.05). Serum from ankylosing spondylitis patients increases PPARD, fra-1, MMP7, OPG and RANKL expression and the OPG/RANKL ratio in MG63 cells; these effects may be due to the stimulatory effect of the serum on the Wnt pathway.

  3. Halenaquinone inhibits RANKL-induced osteoclastogenesis.

    Science.gov (United States)

    Tsukamoto, Sachiko; Takeuchi, Tomoharu; Kawabata, Tetsuro; Kato, Hikaru; Yamakuma, Michiko; Matsuo, Kanae; El-Desoky, Ahmed H; Losung, Fitje; Mangindaan, Remy E P; de Voogd, Nicole J; Arata, Yoichiro; Yokosawa, Hideyoshi

    2014-11-15

    Halenaquinone was isolated from the marine sponge Petrosia alfiani as an inhibitor of osteoclastogenic differentiation of murine RAW264 cells. It inhibited the RANKL (receptor activator of nuclear factor-κB ligand)-induced upregulation of TRAP (tartrate-resistant acid phosphatase) activity as well as the formation of multinuclear osteoclasts. In addition, halenaquinone substantially suppressed RANKL-induced IκB degradation and Akt phosphorylation. Thus, these results suggest that halenaquinone inhibits RANKL-induced osteoclastogenesis at least by suppressing the NF-κB and Akt signaling pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Intestinal PTGS2 mRNA Levels, PTGS2 Gene Polymorphisms, and Colorectal Carcinogenesis

    DEFF Research Database (Denmark)

    Vogel, Lotte K.; Saebo, Mona; Hoyer, Helle

    2014-01-01

    Background & Aims: Inflammation is a major risk factor for development of colorectal cancer (CRC). Prostaglandin synthase cyclooxygenase-2 (COX-2) encoded by the PTGS2 gene is the rate limiting enzyme in prostaglandin synthesis and therefore plays a distinct role as regulator of inflammation....... Methods: PTGS2 mRNA levels were determined in intestinal tissues from 85 intestinal adenoma cases, 115 CRC cases, and 17 healthy controls. The functional PTGS2 polymorphisms A-1195G (rs689466), G-765C (rs20417), T8473C (rs5275) were assessed in 200 CRC cases, 991 adenoma cases and 399 controls from...

  5. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts

    DEFF Research Database (Denmark)

    Christiansen, M; Kveiborg, Marie; Kassem, M

    2000-01-01

    -transformed human lung fibroblast cell line MRC5V2 have 20 to 40% higher levels of CBFA1 mRNA. Similar levels of CBFA1 mRNA are detectable in normal human skin fibroblasts, and these cells also exhibit an age-related decline to the same extent. In addition, the expression of topoisomerase I is reduced by 40......% in senescent osteoblasts, and the mRNA levels are significantly higher (40-70%) in transformed osteoblasts and fibroblasts. These changes in gene expression may be among the causes of impaired osteoblast functions, resulting in reduced bone formation during aging....

  6. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    OpenAIRE

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also exami...

  7. Assessment of flhDC mRNA levels in Serratia liquefaciens swarm cells

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Christensen, Allan Beck; Holmstrøm, K.

    2000-01-01

    We reported previously that artificial overexpression of the flhDC operon in liquid-grown Serratia liquefaciens resulted in the formation of filamentous, multinucleated, and hyperflagellated cells that were indistinguishable from surface-induced swarm cells (L. Eberl, G. Christiansen, S. Molin, a......, vegetative cells. This suggests that surface-induced S. liquefaciens swarm cell differentiation, although dependent on flhDC gene expression, does not occur through elevated flhDC mRNA levels.......We reported previously that artificial overexpression of the flhDC operon in liquid-grown Serratia liquefaciens resulted in the formation of filamentous, multinucleated, and hyperflagellated cells that were indistinguishable from surface-induced swarm cells (L. Eberl, G. Christiansen, S. Molin......, and M. Givskov, J. Bacteriol. 178:554-559, 1996). In the present report we show by means of reporter gene measurements, Northern analysis, and in situ reverse transcription-PCR that the amount of flhDC mRNA in surface-grown swarm cells does not exceed the maximum level found in nondifferentiated...

  8. Changes in RANKL during the first two years after cART initiation in HIV-infected cART naïve adults

    DEFF Research Database (Denmark)

    Mathiesen, Inger Hee Mabuza; Salem, Mohammad; Gerstoft, Jan

    2017-01-01

    BACKGROUND: By assessing the changes in concentration of soluble receptor activator of nuclear factor κ B ligand (RANKL) and osteoprotegrin (OPG) after initiation of combination antiretroviral therapy (cART) in treatment-naïve HIV-infected patients we aimed to evaluate whether the initial...... accelerated bone loss could be mediated by increased soluble RANKL (sRANKL) levels associated with CD4+ T cell recovery. METHODS: We used multiplex immunoassays to determine sRANKL and OPG concentrations in plasma from 48 HIV patients at baseline and 12, 24, 48 and 96 weeks after cART initiation. RESULTS...... and changes in sRANKL. CONCLUSION: In this study there was no indication that the accelerated bone loss after cART initiation was mediated by early changes in sRANKL due to CD4+ T cell recovery. Future studies should focus on the initial weeks after initiation of cART. TRIAL REGISTRATION: Clinical...

  9. Osteoprotegerin/sRANKL Signaling System in Pulmonary Sarcoidosis: A Bronchoalveolar Lavage Study.

    Science.gov (United States)

    Naumnik, W; Naumnik, B; Niklińska, W; Ossolińska, M; Chyczewska, E

    2017-01-01

    Osteoprotegerin (OPG), a soluble tumor necrosis factor receptor family molecule, protects endothelial cells from apoptosis in vitro and promotes neovascularization in vivo. Angiogenesis may be crucial for the course and outcome of sarcoidosis. In this study, we evaluated the clinical usefulness of OPG and its ligand, a soluble receptor activator of nuclear factor-kappaB (sRANKL), in bronchoalveolar lavage fluid (BALF) in patients with sarcoidosis (BBS, Besniera-Boeck-Schaumann disease). We studied 22 BBS patients and 15 healthy volunteers as a control group. The levels of OPG, sRANKL, and interleukin-18 (IL-18) were measured by the Elisa method. The BALF levels of sRANKL and IL-18 were higher in the BBS patients compared with controls [sRANKL: 2.12 (0.82-10.23) vs. 1.12 (0.79-4.39) pmol/l, p = 0.03; IL-18: 34.29 (12.50-133.70) vs. 13.05 (12.43-25.88) pg/ml, p = 0.001]. There were no significant differences between the concentration of OPG in the BBS patients and healthy controls [0.22 (0.14-0.81) vs. 0.23 (0.14-0.75) pmol/l]. In the BBS patients we found correlations between sRANKL and IL-18 in BALF (r = 0.742, p = 0.0001) and between OPG and lung diffusing capacity for carbon monoxide (DLCO) (r = -0.528, p = 0.029). Receiver-operating characteristic (ROC) curve was applied to find the cut-off for the BALF level of sRANKL (BBS vs. healthy: 1.32 pmol/l). We conclude that OPG and sRANKL may have usefulness in clinical evaluation of BBS patients.

  10. TRAIL-deficiency accelerates vascular calcification in atherosclerosis via modulation of RANKL.

    Directory of Open Access Journals (Sweden)

    Belinda A Di Bartolo

    Full Text Available The osteoprotegerin (OPG and receptor activator of nuclear factor-κB ligand (RANKL cytokine system, not only controls bone homeostasis, but has been implicated in regulating vascular calcification. TNF-related apoptosis-inducing ligand (TRAIL is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is not yet established. This study aimed to investigate the role of TRAIL in vascular calcification in vitro using vascular smooth muscle cells (VSMCs isolated from TRAIL(-/- and wild-type mice, as well as in vivo, in advanced atherosclerotic lesions of TRAIL(-/-ApoE(-/- mice. The involvement of OPG and RANKL in this process was also examined. TRAIL dose-dependently inhibited calcium-induced calcification of human VSMCs, while TRAIL(-/- VSMCs demonstrated accelerated calcification induced by multiple concentrations of calcium compared to wild-type cells. Consistent with this, RANKL mRNA was significantly elevated with 24 h calcium treatment, while OPG and TRAIL expression in human VSMCs was inhibited. Brachiocephalic arteries from TRAIL(-/-ApoE(-/- and ApoE(-/- mice fed a high fat diet for 12 w demonstrated increased chondrocyte-like cells in atherosclerotic plaque, as well as increased aortic collagen II mRNA expression in TRAIL(-/-ApoE(-/- mice, with significant increases in calcification observed at 20 w. TRAIL(-/-ApoE(-/- aortas also had significantly elevated RANKL, BMP-2, IL-1β, and PPAR-γ expression at 12 w. Our data provides the first evidence that TRAIL deficiency results in accelerated cartilaginous metaplasia and calcification in atherosclerosis, and that TRAIL plays an important role in the regulation of RANKL and inflammatory markers mediating bone turn over in the vasculature.

  11. Variabilidad de la síntesis de RANKL por linfocitos T frente a distintos serotipos capsulares de Porphyromonas gingivalis Variability in the RANKL synthesis by T lymphocytes in response to different Porphyromonas gingivalis capsular serotypes

    Directory of Open Access Journals (Sweden)

    M Navarrete

    2010-04-01

    de P. gingivalis podrían asociarse a la destrucción del hueso alveolar y a la pérdida de los dientes durante la periodontitis.Aim: Periodontitis represents a heterogenic group of periodontal infections elicited by bacteria residing at the subgingival biofilm. Although this biofilm is constituted by a broad variety of bacterial species, only a limited number has been associated with the periodontitis aetiology, among them Porphyromonas gingivalis. P. gingivalis express a number of virulence factors that contribute to direct tissue damage; however, their pathogenicity relies mainly on the induction of a host immuno-inflammatory response. This leads to the release of a broad array of cytokines, chemokines and inflammatory mediators, which cause destruction of the tooth-supporting alveolar bone and ultimately tooth loss. Method: In the present investigation, in order to determine whether different P. gingivalis serotypes might lead to a differential RANKL synthesis, a key cytokine involved in alveolar bone resorption, the mRNA expression and secretion of RANKL and the expression of transcription factors T-bet, GATA-3, RORC2 and Foxp3, the master-switch genes controlling the Th1, Th2, Th17, and Treg cell differentiation, respectively, were analyzed on human T cells activated with different P. gingivalis capsular (K serotypes. Results: T lymphocytes responding to P. gingivalis serotypes K1 or K2, but not to the other serotypes, led to an increased expression and secretion of RANKL. In addition, these higher RANKL levels correlate with RORC2 expression upon activation with K1 or K2 serotypes. Conclusion: These data demonstrated that RANKL expression and secretion by T lymphocytes was restricted to particular P. gingivalis serotypes (namely K1 and K2, and allowed to suggest a link between these serotypes with alveolar bone destruction and teeth loosening during the periodontitis.

  12. Biology of RANK, RANKL, and osteoprotegerin

    Science.gov (United States)

    Boyce, Brendan F; Xing, Lianping

    2007-01-01

    The discovery of the receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin (OPG) system and its role in the regulation of bone resorption exemplifies how both serendipity and a logic-based approach can identify factors that regulate cell function. Before this discovery in the mid to late 1990s, it had long been recognized that osteoclast formation was regulated by factors expressed by osteoblast/stromal cells, but it had not been anticipated that members of the tumor necrosis factor superfamily of ligands and receptors would be involved or that the factors involved would have extensive functions beyond bone remodeling. RANKL/RANK signaling regulates the formation of multinucleated osteoclasts from their precursors as well as their activation and survival in normal bone remodeling and in a variety of pathologic conditions. OPG protects the skeleton from excessive bone resorption by binding to RANKL and preventing it from binding to its receptor, RANK. Thus, RANKL/OPG ratio is an important determinant of bone mass and skeletal integrity. Genetic studies in mice indicate that RANKL/RANK signaling is also required for lymph node formation and mammary gland lactational hyperplasia, and that OPG also protects arteries from medial calcification. Thus, these tumor necrosis factor superfamily members have important functions outside bone. Although our understanding of the mechanisms whereby they regulate osteoclast formation has advanced rapidly during the past 10 years, many questions remain about their roles in health and disease. Here we review our current understanding of the role of the RANKL/RANK/OPG system in bone and other tissues. PMID:17634140

  13. RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sandra Casimiro

    Full Text Available The osteolytic nature of bone metastasis results from a tumor-driven increased bone resorption. Bone remodeling is orchestrated by the molecular triad RANK-RANKL-OPG. This process is dysregulated in bone metastases, mostly via induction of RANKL by tumor-derived factors. These factors increase expression of RANKL, which induce osteoclast formation, function, and survival, thereby increasing bone resorption. RANK is unexpectedly expressed by cancer cells, and the activation of RANKL-RANK pathway correlates with an increased invasive phenotype. To investigate the interaction between RANK expression in human breast and prostate cancer cells and their pro-metastatic phenotype we analyzed the activation of RANKL-RANK pathway and its effects on cell migration, invasion, gene expression in vitro, and osteolysis-inducing ability in vivo. RANKL activates kinase signaling pathways, stimulates cell migration, increases cell invasion, and up-regulates MMP-1 expression. In vivo, MMP-1 knockdown resulted in smaller x-ray osteolytic lesions and osteoclastogenesis, and decreased tumor burden. Therefore, RANKL inhibition in bone metastatic disease may decrease the levels of the osteoclastogenesis inducer MMP-1, contributing to a better clinical outcome.

  14. Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain.

    Science.gov (United States)

    Albeck, D S; McKittrick, C R; Blanchard, D C; Blanchard, R J; Nikulina, J; McEwen, B S; Sakai, R R

    1997-06-15

    In the visible burrow system model of chronic social stress, male rats housed in mixed-sex groups quickly form a dominance hierarchy in which the subordinates appear to be severely stressed. A subgroup of subordinates have an impaired corticosterone response after presentation of a novel restraint stressor, leading to their designation as nonresponsive subordinates. To examine the mechanism underlying the blunted corticosterone response in these animals, in situ hybridization histochemistry was used to quantify corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) mRNA expression in the brain. In two separate visible burrow system experiments, the nonresponsive subordinates expressed a significantly lower average number of CRF mRNA grains per cell in the paraventricular hypothalamic nucleus compared with stress-responsive subordinates, dominants (DOM), or cage-housed control (CON) rats. The number of CRF mRNA labeled cells was also significantly lower in nonresponders than in responsive subordinates or DOM. In the central amygdala, CRF mRNA levels were increased in both groups of subordinates compared with CON rats, whereas responsive subordinates exhibited higher levels than the DOM rats as well. AVP mRNA levels did not vary with behavioral rank in any subdivision of the paraventricular hypothalamic nucleus. In the medial amygdala, the number of cells expressing AVP mRNA was significantly greater in CON rats compared with both groups of subordinates, although the average number of AVP mRNA grains per cell did not vary with rank. In addition, the number of AVP-positive cells significantly correlated with plasma testosterone level.

  15. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  16. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    Science.gov (United States)

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  17. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Hylenius, Sine; Rørbye, Christina

    2003-01-01

    HLA-G polymorphisms and the mRNA levels of the different alternatively spliced HLA-G isoforms in first trimester trophoblast cell populations is reported. Several alternatively spliced HLA-G mRNA isoforms, including a 14-bp polymorphism in the 3'UTR end (exon 8) of the HLA-G gene, are expressed......During pregnancy, the human extra-villous trophoblast in the contact zone between maternal and fetal tissue in the placenta does not express the classical MHC class I and II molecules. Instead, HLA-G and -C, and possibly HLA-E, are expressed. HLA-G may modulate the immunological relationship...... between mother and fetus in several ways. Finally, the expression of membrane-bound HLA-G and soluble HLA-G has been proposed to influence the outcome of pregnancy, and an aberrant HLA-G expression in pre-eclamptic placentas and spontaneous abortions has been reported. Here, an association between certain...

  18. Vaspin mRNA levels in the liver of morbidly obese women with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Waluga, Marek; Kukla, Michał; Żorniak, Michał; Grabiec, Marta; Kajor, Maciej; Dyaczyński, Michał; Kowalski, Grzegorz; Żądło, Dominika; Berdowska, Agnieszka; Kotulski, Rafał; Bułdak, Rafał J; Sawczyn, Tomasz; Waluga, Ewa; Olczyk, Paweł; Hartleb, Marek

    The aim of this study was to evaluate hepatic vaspin mRNA in morbidly obese women with nonalcoholic fatty liver disease (NAFLD) and to look for its relationships with metabolic and histopathological features. The study included 56 severely obese women who underwent intraoperative wedge liver biopsy during bariatric surgery. Hepatic vaspin mRNA was assessed by quantitative real-time PCR. Vaspin mRNA found in all included patients was markedly higher in patients with body mass index (BMI) ≥ 40 kg/m2 (4.59 ±3.09 vs. 0.44 ±0.33; p = 0.05). An evident but statistically insignificant difference in vaspin mRNA levels was observed between patients with and without hepatocyte ballooning (4.77 ±4.23 vs. 0.45 ±0.29, respectively), with and without steatosis (4.80 ±4.20 vs. 0.41 ±0.29, respectively), without and with fibrosis (0.25 ±0.80 vs. 6.23 ±7.2, respectively), and those without and with lobular inflammation (0.27 ±1.0 vs. 5.55 ±10.1, respectively). There was marked difference in vaspin mRNA between patients with simple steatosis/borderline nonalcoholic steatohepatitis (NASH) compared to those with definite NASH (0.24 ±0.96 vs. 10.5 ±10.4). Adiposity is an undoubted confounding factor influencing vaspin levels. Hepatic vaspin mRNA seems to be markedly elevated in morbidly obese patients with more advanced NAFLD and when hallmarks of NASH were observed. Pointing to non-linear mRNA levels within the NAFLD spectrum and an evident increase in patients with fibrosis and definite NASH, the detrimental action of vaspin cannot be excluded.

  19. Increased interferon alpha receptor 2 mRNA levels is associated with renal cell carcinoma metastasis

    Directory of Open Access Journals (Sweden)

    Yamanishi Tomonori

    2007-08-01

    Full Text Available Abstract Background Interferon-α (IFN-α is one of the central agents in immunotherapy for renal cell carcinoma (RCC and binds to the IFN-α receptor (IFNAR. We investigated the role of IFNAR in RCC. Methods We quantified IFNAR mRNA expression in paired tumor and non-tumor samples from the surgical specimens of 103 consecutive patients with RCC using a real-time reverse transcription polymerase chain reaction (RT-PCR, and IFNAR2 protein using Western blotting. Results The absolute level of IFNAR1 and IFNAR2 mRNAs in tumor and non-tumor tissues did not correlate with the malignant and metastatic profiles. The relative yields of the PCR product from the tumor tissue to that from the corresponding non-tumor tissue (T/N for the expression of IFNAR mRNAs were calculated. While the T/N ratio of IFNAR1 did not correlate with any factor, a high T/N ratio of IFNAR2 correlated with poor differentiation (P P P P P Conclusion IFNAR2 is associated with the progression of RCC.

  20. Circulating RANKL and RANKL/OPG and Breast Cancer Risk by ER and PR Subtype : Results from the EPIC Cohort

    NARCIS (Netherlands)

    Sarink, Danja; Schock, Helena; Johnson, Theron; Overvad, Kim; Holm, Marianne; Tjønneland, Anne; Boutron-Ruault, Marie Christine; His, Mathilde; Kvaskoff, Marina; Boeing, Heiner; Lagiou, Pagona; Papatesta, Eleni-Maria; Trichopoulou, Antonia; Palli, Domenico; Pala, Valeria; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Bueno-de-Mesquita, H B As; van Gils, Carla H|info:eu-repo/dai/nl/17443068X; Peeters, Petra H|info:eu-repo/dai/nl/074099655; Weiderpass, Elisabete; Agudo, Antonio; Sánchez, Maria-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Amiano, Pilar; Khaw, Kay Tee; Travis, Ruth C.; Dossus, Laure; Gunter, Mark; Rinaldi, Sabina; Merritt, Melissa A.; Riboli, Elio; Kaaks, Rudolf; Turzanski-Fortner, Renée

    Receptor activator of nuclear factor-kappa B (RANK)-RANK ligand (RANKL) signaling promotes mammary tumor development in experimental models. Circulating concentrations of soluble RANKL (sRANKL) may influence breast cancer risk via activation of RANK signaling; this may be modulated by

  1. Glechoma hederacea Suppresses RANKL-mediated Osteoclastogenesis.

    Science.gov (United States)

    Hwang, J K; Erkhembaatar, M; Gu, D R; Lee, S H; Lee, C H; Shin, D M; Lee, Y R; Kim, M S

    2014-07-01

    Glechoma hederacea (GH), commonly known as ground-ivy or gill-over-the-ground, has been extensively used in folk remedies for relieving symptoms of inflammatory disorders. However, the molecular mechanisms underlying the therapeutic action of GH are poorly understood. Here, we demonstrate that GH constituents inhibit osteoclastogenesis by abrogating receptor activator of nuclear κ-B ligand (RANKL)-induced free cytosolic Ca(2+) ([Ca(2+)]i) oscillations. To evaluate the effect of GH on osteoclastogenesis, we assessed the formation of multi-nucleated cells (MNCs), enzymatic activity of tartrate-resistant acidic phosphatase (TRAP), expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and [Ca(2+)]i alterations in response to treatment with GH ethanol extract (GHE) in primarily cultured bone marrow-derived macrophages (BMMs). Treatment of RANKL-stimulated or non-stimulated BMMs with GHE markedly suppressed MNC formation, TRAP activity, and NFATc1 expression in a dose-dependent manner. Additionally, GHE treatment induced a large transient elevation in [Ca(2+)]i while suppressing RANKL-induced [Ca(2+)]i oscillations, which are essential for NFATc1 activation. GHE-evoked increase in [Ca(2+)]i was dependent on extracellular Ca(2+) and was inhibited by 1,4-dihydropyridine (DHP), inhibitor of voltage-gated Ca(2+) channels (VGCCs), but was independent of store-operated Ca(2+) channels. Notably, after transient [Ca(2+)] elevation, treatment with GHE desensitized the VGCCs, resulting in an abrogation of RANKL-induced [Ca(2+)]i oscillations and MNC formation. These findings demonstrate that treatment of BMMs with GHE suppresses RANKL-mediated osteoclastogenesis by activating and then desensitizing DHP-sensitive VGCCs, suggesting potential applications of GH in the treatment of bone disorders, such as periodontitis, osteoporosis, and rheumatoid arthritis. © International & American Associations for Dental Research.

  2. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    Science.gov (United States)

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  3. Intrahepatic mRNA levels of type I interferon receptor and interferon-stimulated genes in genotype 1b chronic hepatitis C. Association between IFNAR1 mRNA level and sustained response to interferon therapy.

    Science.gov (United States)

    Taniguchi, Hideaki; Iwasaki, Yoshiaki; Takahashi, Akira; Shimomura, Hiroyuki; Moriya, Akio; Yu, Piao Cheng; Umeoka, Fumi; Fujioka, Shin-ichi; Koide, Norio; Shiratori, Yasushi

    2007-01-01

    The aim of this study was to determine the association between pretreatment intrahepatic mRNA levels of interferon receptor and interferon-stimulated genes and response to interferon therapy for genotype 1b chronic hepatitis C. Forty-four patients with genotype 1b chronic hepatitis C who underwent liver biopsy and then received interferon therapy participated in this study. Pretreatment intrahepatic mRNA levels of interferon receptor genes (IFNAR1, IFNAR2b, and IFNAR2c) and interferon-stimulated genes (OAS1 and PKR) were quantified by competitive polymerase chain reaction. In the genes examined, only IFNAR1 mRNA level was significantly higher in patients with sustained virological and biochemical response to interferon therapy versus those with nonsustained response (p IFNAR1 to IFNAR2 were also significantly higher in patients with sustained virological and biochemical response to IFN therapy (p IFNAR1 and mRNA ratio of IFNAR1 to IFNAR2 before treatment may be associated with a favorable response to interferon therapy. Copyright 2007 S. Karger AG, Basel.

  4. Higher LPA2 and LPA6 mRNA Levels in Hepatocellular Carcinoma Are Associated with Poorer Differentiation, Microvascular Invasion and Earlier Recurrence with Higher Serum Autotaxin Levels.

    Directory of Open Access Journals (Sweden)

    Kenichiro Enooku

    Full Text Available Hepatocellular carcinoma (HCC commonly develops in patients with liver fibrosis; in these patients, the blood levels of lysophosphatidic acid (LPA and its generating enzyme autotaxin (ATX increase with the liver fibrosis stage. We aimed to examine the potential relevance of ATX and LPA in HCC. Fifty-eight HCC patients who underwent surgical treatment were consecutively enrolled in the study. Among the LPA receptors in HCC, higher LPA2 mRNA levels correlated with poorer differentiation, and higher LPA6 mRNA levels correlated with microvascular invasion, which suggested a higher malignant potential of HCC with increased LPA2 and LPA6 expression. In patients with primary HCC, neither LPA2 nor LPA6 mRNA levels were associated with recurrence. However, when serum ATX levels were combined for analysis as a surrogate for plasma LPA levels, the cumulative intra-hepatic recurrence rate was higher in patients in whom both serum ATX levels and LPA2 or LPA6 mRNA levels were higher than the median. However, the mRNA level of phosphatidic acid-selective phospholipase A1ɑ, another LPA-generating enzyme, in HCC patients was not associated with pathological findings or recurrence, even in combination with the expression of LPA receptors. Higher LPA2 mRNA levels were associated with poorer differentiation, and higher LPA6 levels were associated with microvascular invasion in HCC; both became a risk factor for recurrence after surgical treatment when combined with increased serum ATX levels. ATX and LPA receptors merit consideration as therapeutic targets of HCC.

  5. Increased interferon alpha receptor 2 mRNA levels is associated with renal cell carcinoma metastasis.

    Science.gov (United States)

    Kamai, Takao; Yanai, Yoshiaki; Arai, Kyoko; Abe, Hideyuki; Yamanishi, Tomonori; Kurimoto, Masashi; Yoshida, Ken-Ichiro

    2007-08-15

    Interferon-alpha (IFN-alpha) is one of the central agents in immunotherapy for renal cell carcinoma (RCC) and binds to the IFN-alpha receptor (IFNAR). We investigated the role of IFNAR in RCC. We quantified IFNAR mRNA expression in paired tumor and non-tumor samples from the surgical specimens of 103 consecutive patients with RCC using a real-time reverse transcription polymerase chain reaction (RT-PCR), and IFNAR2 protein using Western blotting. The absolute level of IFNAR1 and IFNAR2 mRNAs in tumor and non-tumor tissues did not correlate with the malignant and metastatic profiles. The relative yields of the PCR product from the tumor tissue to that from the corresponding non-tumor tissue (T/N) for the expression of IFNAR mRNAs were calculated. While the T/N ratio of IFNAR1 did not correlate with any factor, a high T/N ratio of IFNAR2 correlated with poor differentiation (P < 0.05), local invasion (P < 0.001), and metastasis (P < 0.0001). By multivariate analysis, a high T/N ratio of IFNAR2 predicted a shortened overall survival in all cases (P < 0.05) and a shorter disease-free survival in those without metastasis (M0; 68 cases, P < 0.05). Impressively, patients with a poorer response to IFN-alpha treatment had a higher IFNAR2 T/N ratio than those who had a good response (P < 0.05). IFNAR2c protein expression was higher in the primary tumors in patients with metastases (M1; 35 cases) compared to those without ( P < 0.0001). IFNAR2 is associated with the progression of RCC.

  6. Validation of two reference genes for mRNA level studies of murine disease models in neurobiology

    DEFF Research Database (Denmark)

    Meldgaard, Michael; Fenger, Christina; Lambertsen, Kate Lykke

    2006-01-01

    Reverse transcription of extracted cellular RNA combined with real-time PCR is now an established method for sensitive detection and quantification of specific mRNA level changes in experimental models of neurological diseases. To neutralize the impact of experimental error and make quantificatio...

  7. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels

    DEFF Research Database (Denmark)

    Theander Grünfeld, Heidi; Bonefeld-Jørgensen, Eva Cecilie

    2004-01-01

    Nine widely distributed pesticides were recently demonstrated to posses potential estrogenic properties in oestrogen receptor (ER) transactivation and/or E-screen assays. We tested the effect of these nine pesticides on the human ERα and ERβ mRNA steady state levels in the mamma cancer fibroblast...

  8. High levels of DNA polymerase β mRNA corresponding with the high activity in Graves' thyroid tissue.

    Science.gov (United States)

    Hayakawa, N; Sato, Y; Nagasaka, A; Mano, Y; Nagasaka, T; Nakai, A; Iwase, K; Yoshida, S

    2017-04-01

    High DNA polymerase β activity has been observed in the thyroid tissue of patients with Graves' disease (Nagasaka et al. in Metabolism 37:1051-1054, 1988). This fact aroused our interest in whether the alteration of DNA polymerase β activity depends on DNA polymerase β (DNA poly β) mRNA levels, which may be modulated by thyroid-stimulating hormone (TSH) or thyroid-stimulating substances, i.e. TSH receptor antibody (TRAb). Addition of TSH or TRAb to primary cultures of Graves' disease thyroid cells for 4 h led to no increase in DNA poly β mRNA levels. In contrast, thyroid hormone synthesizing enzyme, peroxidase, mRNA levels increased fivefold after coculture with TSH and TRAb, even though DNA poly β activity and mRNA levels are already significantly higher in Graves' disease thyroid tissues, compared with normal thyroid tissue. These results indicate that DNA poly β expression in Graves' disease thyroid cells may be maximally activated or plateau in response to thyroid-stimulating immunoglobulins, or that the activation of to poly β expression may occur via pathways other than the G protein and cyclic AMP system.

  9. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    Science.gov (United States)

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  10. In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the Expression of RANKL in Rats

    Directory of Open Access Journals (Sweden)

    Daniel B Hoffmann

    2016-01-01

    Full Text Available Bone remodeling requires a precise balance between formation and resorption. This complex process involves numerous factors that orchestrate a multitude of biochemical events. Among these factors are hormones, growth factors, vitamins, cytokines, and, most notably, osteoprotegerin (OPG and the receptor activator for nuclear factor-kappaB ligand (RANKL. Inflammatory cytokines play a major role in shifting the RANKL/OPG balance toward excessive RANKL, resulting in osteoclastogenesis, which in turn initiates bone resorption, which is frequently associated with osteoporosis. Rebalancing RANKL/OPG levels may be achieved through either upregulation of OPG or through transient silencing of RANKL by means of RNA interference. Here, we describe the utilization of a viral capsid-based delivery system for in vivo and in vitro RNAi using synthetic small interfering RNA (siRNA molecules in rat osteoblasts. Polyoma JC virus-derived virus-like particles are capable of delivering siRNAs to target RANKL in osteoblast cells both in vitro and in a rat in vivo system. Expression levels were monitored using quantitative real-time polymerase reaction and enzyme-linked immunosorbent assay after single and repeated injections over a 14-day period. Our data indicate that this is an efficient and safe route for in vivo delivery of gene modulatory tools to study important molecular factors in a rat osteoporosis model.

  11. Elevated levels of transferrin receptor 2 mRNA, not transferrin receptor 1 mRNA, are associated with increased survival in acute myeloid leukaemia.

    Science.gov (United States)

    Nakamaki, Tsuyoshi; Kawabata, Hiroshi; Saito, Bungo; Matsunawa, Manabu; Suzuki, Junko; Adachi, Daisuke; Tomoyasu, Shigeru; Phillip Koeffler, H

    2004-04-01

    Transferrin receptor 1 (TfR1) is a type II membrane protein that mediates cellular iron uptake. Transferrin receptor 2(TfR2), another receptor for transferrin (Tf), has recently been cloned. We examined expression levels of TfR1, TfR2-alpha (membrane form) and TfR2-beta (non-membrane form) transcripts in cells from 67 patients with de novo acute myeloid leukaemia (AML) using reverse transcription-polymerase chain reaction (RT-PCR), and correlated the results with a variety of clinical features and disease outcomes of these patients. Significant correlations were noted between the levels of both TfR1 and TfR2-alpha (r = 0.771, P TfR2-beta (r = 0.534, P TfR2-alpha (r = -0.486, P TfR2-beta (r = -0.435, P = 0.0003). Only TfR2 expression was significantly associated with either serum iron (r = -0.270, P = 0.045) or serum ferritin (r = -0.364, P = 0.008). Multivariate analyses using Cox's proportional hazard model showed that elevated TfR2-alpha, but not TfR1 or TfR2-beta mRNA levels significantly contributed to a better prognosis for AML patients. Furthermore, a group with high expression levels of both TfR2-alpha and TfR2-beta survived significantly longer than a group without high expression of both of them (P TfR2 (especially the alpha form) is a novel prognostic factor for patients with AML.

  12. DETERMINATION OF LEVEL EXPRESSION OF mRNA SPLICING VARIANTS FOR DR3 IN BLOOD CELLS IN INFECTIOUS MONONUCLEOSIS

    Directory of Open Access Journals (Sweden)

    V. D. Cvetkova

    2016-01-01

    Full Text Available The DR3 «death receptor» plays an important role in the initiation of apoptosis, proliferation, or inflammation. This receptor is shown to be involved in various diseases, including infectious conditions. Different variants of mRNA DR3 are formed as a result of alternative splicing. These variant transcripts encode membrane and soluble forms of the receptor which have different functions. Features of their expression and contribution of individual DR3 variants to the immune pathogenesis of infectious mononucleosis (IM are poorely understood.The purpose of this work was to develop, validate and test the techniques of DR3 gene expression assays, as well as to evaluate the DR3 mRNA splice variants by means of real-time RT-PCR and RT-PCR in the IM patients.The original version of real-time RT-PCR allowed to determine relative amounts of DR3 mRNA, DR3 membrane variants (LARD1a + LARD8, and ratios of mRNAs encoding membrane and soluble forms of the receptor. The technique proved to be specific and sensitive (a semi-quantitative detection limit = 34-35 cycles when tested in healthy volunteers and patients with acute infectious mononucleosis (AIM. Lower expression levels were shown for two alternative membrane variants of DR3 mRNA (LARD1b and DR3beta thus regarding these isoforms as minor fractions. The relative levels of total DR3 mRNA expression were decreased in patients with AIM, as compared to healthy volunteers, whereas mRNA expression of membrane receptor variants did not differ between IM and controls.To determine a qualitative contribution of either LARD1a and LARD8 variants into the expression of membrane forms of DR3, a two-step «nested» version of RT-PCR has been developed. It was shown that, in majority of control and IM samples, both main LARD1a, and alternative LARD8 membrane forms are contributing to mRNA expression of membrane DR3 variants.The presented methods for evaluation of expression and occurrence of DR3 mRNA variants allow

  13. Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance.

    Science.gov (United States)

    Kelly, M P; Deadwyler, S A

    2002-01-01

    Arc (also termed activity-regulated cytoskeleton-associated protein or Arg3.1), is an effector immediate early gene whose upregulation has been demonstrated during events of synaptic plasticity. In the present study, the possibility that Arc would be specifically upregulated in rats during the acquisition of a quickly learned behavioral task but not in overtrained animals was investigated. Three groups of rats, pseudotrained, newly trained and overtrained, were examined with respect to Arc expression following training on a simple operant lever-pressing task. Newly trained animals were killed 30 min following the session in which they demonstrated acquisition of the task, and overtrained animals were trained on the same task for 13-14 days and then killed. Relative to base level measures taken 6 h following the session, all three groups demonstrated significant levels of induction of Arc mRNA; however, newly trained animals exhibited heightened induction of Arc mRNA relative to both pseudotrained and overtrained animals. The increased levels of Arc mRNA in newly trained animals were located in the CA1 and CA3 fields of hippocampus, the subiculum, and the anterior cingulate, piriform, infra/prelimbic, perirhinal and entorhinal cortical areas. Additionally, Arc mRNA was expressed differentially across the above anatomic structures in a relative pattern that was the same in all three groups. Finally, levels of Arc mRNA in specific brain regions of newly trained animals correlated negatively with the rate of task acquisition, such that slow learners exhibited higher levels of Arc mRNA than fast learners. From these results we suggest that Arc is upregulated in an experience-dependent manner, with higher levels of induction occurring during the initial stage of learning. Furthermore, the finding of increased Arc levels in slow versus fast learners indicates that Arc expression may be associated with the length of time required to: (1) form new associations or (2

  14. Effects of extremely low frequency electromagnetic field and cisplatin on mRNA levels of some DNA repair genes.

    Science.gov (United States)

    Sanie-Jahromi, Fatemeh; Saadat, Iraj; Saadat, Mostafa

    2016-12-01

    It has been shown that exposure to extremely-low frequency (˂300Hz) oscillating electromagnetic field (EMF) can affect gene expression. The effects of different exposure patterns of 50-Hz EMF and co-treatment of EMF plus cisplatin (CDDP) on mRNA levels of seven genes involved in DNA repair pathways (GADD45A, XRCC1, XRCC4, Ku70, Ku80, DNA-PKcs and LIG4) were evaluated. Two 50-Hz EMF intensities (0.25 and 0.50mT), three exposure patterns (5min field-on/5min field-off, 15min field-on/15min field-off, 30min field-on continuously) and two cell lines (MCF-7 and SH-SY5Y) were used. The mRNA levels were measured using quantitative real-time PCR. The examined genes had tendency to be down-regulated in MCF-7 cells treated with EMF. In the pattern of 15min field-on/15min field-off of the 0.50mT EMF, no increase in mRNA levels were observed, but the mRNA levels of GADD45A, XRCC1, XRCC4, Ku80, Ku70, and LIG4 were down-regulated. A significant elevation in IC50 of CDDP was observed when MCF-7 and SH-SY5Y cells were co-treated with CDDP+EMF in comparison with the cells treated with CDDP alone. GADD45A mRNA levels in MCF-7 and SH-SY5Y cells co-treated with CDDP+EMF were increased and at the same time the mRNA levels of XRCC4, Ku80, Ku70 and DNA-PKcs were down-regulated. Present study provides evidence that co-treatment of CDDP+EMF can enhance down-regulation of the genes involved in non-homologous end-joining pathway. It might be suggested that co-treatment of CDDP+EMF could be more promising for sensitizing cancer cells to DNA double strand breaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The participation of RANK, RANKL and OPG in tumor osteolysis

    Directory of Open Access Journals (Sweden)

    Marcin Stanisławowski

    2009-05-01

    Full Text Available It was recently shown that physiological bone remodeling depends on the dynamic balance of two cytokines that are predominantly secreted by osteoblasts. RANKL promotes the differentiation of osteoclastic precursors and the activation of osteoclasts, whereas osteoprotegerin (OPG inhibits RANKL action. During the development of many tumors, enhanced osteolysis results in pathological bone destruction. Tumor-associated osteolysis is characterized by the degradation and inhibition of osteoprotegerin (OPG and increased RANKL expression and secretion by tumor tissue. The resulting RANKL/OPG imbalance causes increased generation and activation of osteoclasts and, finally, a significant decrease in bone mass and pathological bone fractures. Tumor cells may also produce many other factors which affect the RANK/RANKL/OPG system and accelerate osteolysis, including IL-1, IL-6, TNF, and MIP-1α. The elucidation of the key mechanisms of tumor osteolysis has led to clinical trials of biological therapies based on the inhibition of RANKL and stimulation of OPG activity.

  16. Stimulation of glyceraldehyde-3-phosphate dehydrogenase mRNA levels by endogenous nitric oxide in cytokine-activated endothelium.

    Science.gov (United States)

    Bereta, J; Bereta, M

    1995-12-05

    Previous studies have shown that endogenous nitric oxide (NO) potentiates glycolysis in the cytokine-activated murine microvascular endothelial cells (MME). In the present study we investigate the influence of NO on the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme of the glycolytic pathway. Activation of MME with TNF-alpha and IFN-gamma resulted in a strong elevation of GAPDH mRNA levels. This effect was impaired in the presence of L-NMMA, the inhibitor of NO synthesis. We discuss the possibility that NO-mediated elevation of GAPDH mRNA levels may compensate for NO-mediated inhibition of GAPDH enzymatic activity, representing another adaptive mechanism which protects cells producing large amounts of NO against its cytotoxic effects.

  17. Circadian concentrations of free testosterone, selected markers of bone metabolism, osteoprotegerin and its ligand sRANKL in obese postmenopausal women

    Directory of Open Access Journals (Sweden)

    Zofia Ostrowska

    2011-10-01

    Full Text Available Background:It has been suggested that increased testosterone secretion in postmenopausal obese women might have some protective effect on bone tissue; the association might be significantly influenced by the RANKL/RANK/OPG system.Aim:The aim of the study was to determine whether postmenopausal obese women showed any relationship between the pattern of adipose tissue distribution, circadian free testosterone (FT concentrations and bone metabolism (as assessed based on circadian osteocalcin [OC] and C-terminal telopeptide [CTx] levels, and to establish whether osteoprotegerin (OPG and receptor activator of nuclear factor-κB ligand (RANKL might play a role in the relationship.Material/Methods:FT, OC, CTx, OPG and soluble RANKL (sRANKL levels were determined by ELISA in serum samples collected every three hours for 24 hours from 47 postmenopausal women (12 with gynoid obesity [GO], 17 with android obesity [AO], and 18 healthy individuals.Results:Obese women demonstrated an adipose tissue distribution-dependent increase in mean circadian FT levels and a decrease in mean circadian OC, CTx, OPG and sRANKL compared to control participants. In GO subjects, these changes were accompanied by smaller FT amplitudes, suppression of the circadian rhythms of bone markers and OPG, and a shift of sRANKL rhythm acrophase, whereas AO subjects showed a decrease in bone marker amplitudes and suppression of OPG and sRANKL rhythms. In comparison with the controls, significant adipose tissue distribution-dependent changes were found in the correlations between FT and bone markers, FT and OPG, OC and CTx, OPG and sRANKL, CTx and OPG, and CTx and sRANKL. Compared to GO participants, those with AO had higher coefficients of correlations between mean circadian FT and OC as well as between OC and CTx, and lower in the case of FT and sRANKL as well as CTx and OPG and CTx and sRANKL.Discussion/ConclusionsPostmenopausal obesity results in adipose tissue distribution

  18. ESTRADIOL IN FEMALES MAY NEGATE SKELETAL MUSCLE MYOSTATIN MRNA EXPRESSION AND SERUM MYOSTATIN PROPEPTIDE LEVELS AFTER ECCENTRIC MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2006-12-01

    Full Text Available Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2 may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle. Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p 0.05. Compared to pre-exercise, males had significant increases (p < 0.05 in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016 and 24 h post- exercise (r = -0.841, p = 0.009 in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036 and 24 h (r = 0.813, p = 0.014 post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047 and 24 h (r = 0.735, p = 0.038. In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2

  19. Trolox prevents osteoclastogenesis by suppressing RANKL expression and signaling.

    Science.gov (United States)

    Lee, Jong-Ho; Kim, Ha-Neui; Yang, Daum; Jung, Kyoungsuk; Kim, Hyun-Man; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2009-05-15

    Excessive receptor activator of NF-kappaB ligand (RANKL) signaling causes enhanced osteoclast formation and bone resorption. Thus, down-regulation of RANKL expression or its downstream signals may be a therapeutic approach to the treatment of pathological bone loss. In this study, we investigated the effects of Trolox, a water-soluble vitamin E analogue, on osteoclastogenesis and RANKL signaling. Trolox potently inhibited interleukin-1-induced osteoclast formation in bone marrow cell-osteoblast coculture by abrogating RANKL induction in osteoblasts. This RANKL reduction was attributed to the reduced production of prostaglandin E(2) via a down-regulation of cyclooxygenase-2 activity. We also found that Trolox inhibited osteoclast formation from bone marrow macrophages induced by macrophage colony-stimulating factor plus RANKL in a reversible manner. Trolox was effective only when present during the early stage of culture, which implies that it targets early osteoclast precursors. Pretreatment with Trolox did not affect RANKL-induced early signaling pathways, including MAPKs, NF-kappaB, and Akt. We found that Trolox down-regulated the induction by RANKL of c-Fos protein by suppressing its translation. Ectopic overexpression of c-Fos rescued the inhibition of osteoclastogenesis by Trolox in bone marrow macrophages. Trolox also suppressed interleukin-1-induced osteoclast formation and bone loss in mouse calvarial bone. Taken together, our findings indicate that Trolox prevents osteoclast formation and bone loss by inhibiting both RANKL induction in osteoblasts and c-Fos expression in osteoclast precursors.

  20. Size and Levels of mRNA for Acid Invertase in Ripe Tomato Fruit

    OpenAIRE

    Masakazu, Endo; Hiroki, Nakagawa; Nagao, OGURA; Takahide, Sato; Department of Agricultural Chemistry, Faculty of Horticulture, Chiba University

    1990-01-01

    Poly(A)^+RNA was isolated from ripe tomato fruit and translated in a wheat germ cell-free translation system. A 74-kDa polypeptide was detected as a putative precursor of acid invertase by immunoprecipitation with antiserum raised against SDS-treated acid invertase (denatured form) from tomato fruit. The molecular mass of the mRNA for acid invertase was estimated to be about 8 × 10^5 Da (2.4 k nucleotides) by sucrose density gradient centrifugation. Mature, green tomato fruit contained very l...

  1. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment.

    Science.gov (United States)

    Kamanga-Sollo, E; Pampusch, M S; Xi, G; White, M E; Hathaway, M R; Dayton, W R

    2004-11-01

    Androgenic and estrogenic steroids enhance muscle growth in a number of species; however, the mechanism by which anabolic steroids enhance muscle growth is not known. Castrated male cattle (steers) provide a particularly good model system in which to study the effects of anabolic steroids on muscle growth because they respond dramatically to treatment with both estrogens and androgens. The goal of this study was to determine if treatment of bovine satellite cell (BSC) cultures with 17beta-estradiol (E(2)) or trenbolone (a synthetic androgen) directly affects proliferation rate or level of mRNA for estrogen receptor (ER)-alpha, androgen receptor, and growth factors that have been shown to affect muscle growth (insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, and myostatin). BSC cultures were established from the semimembranosus muscles of steers and then treated for 48 h with various concentrations of E(2) or trenbolone ranging from 0.001 to 10 nM. IGF-I mRNA levels in proliferating BSC cultures were significantly increased at 0.01 (1.9-times control values, P steroids. Although, levels of IGF-I mRNA were 10-times greater (P steroids have direct anabolic effects on cells present in the BSC culture. Copyright 2004 Wiley-Liss, Inc.

  2. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  3. Ovarian carcinoma cells in serous effusions show altered MMP-2 and TIMP-2 mRNA levels.

    Science.gov (United States)

    Davidson, B; Reich, R; Berner, A; Givant-Horwitz, V; Goldberg, I; Risberg, B; Kristensen, G B; Trope, C G; Bryne, M; Kopolovic, J; Nesland, J M

    2001-11-01

    The expression of matrix metalloproteinases (MMP) and their inhibitor TIMP-2 in serous effusions from patients with ovarian carcinoma and its association with clinico-pathological parameters were analysed. The findings in carcinoma cells in effusions were compared with corresponding primary and metastatic lesions. Sixty-six effusions and 96 tissue sections were stained for MMP-1, MMP-2 and MMP-9 applying immunohistochemistry (IHC) and analysed for MMP-2, MMP-9 and TIMP-2 expression using mRNA in situ hybridisation (ISH). MMP-2 and MMP-9 mRNA levels in 30 effusions were subsequently analysed using reverse transcription- polymerase chain reaction (RT-PCR). MMP and TIMP expression was detected in both carcinoma and mesothelial cells in effusions. The levels were consistently higher in malignant cells, significantly so for MMP-1 (P=0.016) and MMP-2 (P=0.036) proteins, as well as for TIMP-2 mRNA (P=0.008). In tissue sections, MMP-1, MMP-2 and MMP-9 protein expression was mostly localised to tumour cells, while MMP-2, MMP-9 and TIMP-2 mRNA were predominantly detected in stromal cells. Adenocarcinoma cells in effusions showed a significant upregulation of MMP-2 expression compared with primary tumours, with a concomitant downregulation of TIMP-2. RT-PCR demonstrated the presence of MMP-2 and MMP-9 in 28/30 and 0/30 specimens, respectively. MMP and TIMP are thus mainly synthesised by cancer cells in effusions, while stromal cells have a similar role in solid tumours. MMP-1 and MMP-2 production predominates over that of MMP-9 in effusions. Increased MMP-2 and reduced TIMP-2 levels are seen in ovarian carcinoma cells in effusions, possibly marking the acquisition of a metastatic phenotype.

  4. Decreased Rhes mRNA levels in the brain of patients with Parkinson's disease and MPTP-treated macaques.

    Directory of Open Access Journals (Sweden)

    Francesco Napolitano

    Full Text Available In rodent and human brains, the small GTP-binding protein Rhes is highly expressed in virtually all dopaminoceptive striatal GABAergic medium spiny neurons, as well as in large aspiny cholinergic interneurons, where it is thought to modulate dopamine-dependent signaling. Consistent with this knowledge, and considering that dopaminergic neurotransmission is altered in neurological and psychiatric disorders, here we sought to investigate whether Rhes mRNA expression is altered in brain regions of patients with Parkinson's disease (PD, Schizophrenia (SCZ, and Bipolar Disorder (BD, when compared to healthy controls (about 200 post-mortem samples. Moreover, we performed the same analysis in the putamen of non-human primate Macaca Mulatta, lesioned with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Overall, our data indicated comparable Rhes mRNA levels in the brain of patients with SCZ and BD, and their respective healthy controls. In sharp contrast, the putamen of patients suffering from PD showed a significant 35% reduction of this transcript, compared to healthy subjects. Interestingly, in line with observations obtained in humans, we found 27% decrease in Rhes mRNA levels in the putamen of MPTP-treated primates. Based on the established inhibitory influence of Rhes on dopamine-related responses, we hypothesize that its striatal downregulation in PD patients and animal models of PD might represent an adaptive event of the dopaminergic system to functionally counteract the reduced nigrostriatal innervation.

  5. Adenosine methylation in Arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eBodi

    2012-03-01

    Full Text Available We previously showed that the N6-methyladenosine (m6A mRNA methylase is essential during Arabidopsis thaliana embryonic development. We also demonstrated that this modification is present at varying levels in all mature tissues. However, the requirement for the m6A in the mature plant was not tested. Here we show that a 95% reduction in m6A levels during later growth stages gives rise to plants with altered growth patterns and reduced apical dominance. The flowers of these plants commonly show defects in their floral organ number, size and identity. The global analysis of gene expression from reduced m6A plants show that a significant number of down regulated genes are involved in transport, or targeted transport, and most of the upregulated genes are involved in stress and stimulus response processes. An analysis of m6A distribution in fragmented mRNA suggests that the m6A is predominantly positioned towards the 3’ end of transcripts in a region 100-150 bp before the poly(A tail. In addition to the analysis of the phenotypic changes in the low methylation Arabidopsis plants we will review the latest advances in the field of mRNA internal methylation

  6. Periapical fluid RANKL and IL-8 are differentially regulated in pulpitis and apical periodontitis.

    Science.gov (United States)

    Rechenberg, Dan-K; Bostanci, Nagihan; Zehnder, Matthias; Belibasakis, Georgios N

    2014-09-01

    The dental pulp space can become infected due to a breach in the surrounding hard tissues. This leads to inflammation of the pulp (pulpitis), soft tissue breakdown, and finally to bone loss around the root apex (apical periodontitis). The succession of the molecular events leading to apical periodontitis is currently not known. The main inflammatory mediator associated with neutrophil chemotaxis is interleukin-8 (IL-8), and with bone resorption the dyad of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). The levels of RANKL, OPG and IL-8 were studied in periapical tissue fluid of human teeth (n = 48) diagnosed with symptomatic irreversible pulpitis (SIP) and asymptomatic apical periodontitis (AAP). SIP represents the starting point, and AAP an established steady state of the disease. Periapical tissue fluid samples were collected using paper points and then evaluated using enzyme-linked immunosorbent assays (ELISAs). Target protein levels per case were calibrated against the corresponding total protein content, as determined fluorometrically. RANKL was expressed at significantly higher levels in SIP compared to AAP (P < 0.05), whereas OPG was under the detection limit in most samples. In contrast, IL-8 levels were significantly lower in SIP compared to AAP (P < 0.05). Spearman's correlation analysis between RANKL and IL-8 revealed a significantly (P < 0.05) negative correlation between the two measures (rho = -.44). The results of this study suggest that, in the development of apical periodontitis, periapical bone resorption signaling, as determined by RANKL, occurs prior to inflammatory cell recruitment signaling, as determined by IL-8. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Association of a PIT1 gene polymorphism with growth hormone mRNA levels in pig pituitary glands

    Directory of Open Access Journals (Sweden)

    Maurício Machaim Franco

    2005-03-01

    Full Text Available Fourty-six non-castrated, halothane-free, male Landrace pigs were genotyped by PCR-RFLP for the Rsa I polymorphism in the PIT1 gene and classified into AA and AB genotypes. Total RNA was extracted from the pituitaries and the relative quantities of growth hormone (GH mRNA were determined by semi-quantitative RT-PCR. Pigs with the AB genotype had higher levels of GH mRNA than those with the AA genotype (p = 0.034; Kruskal-Wallis test. This result suggests that the Rsa I polymorphism may be involved in Pit-1 protein expression or function, which in turn may influence GH transcription and expression. Thus, the Rsa I PIT1 gene polymorphism in this pig line may be used as a molecular marker to identify higher GH expression and possibly select for carcass and performance traits affected by GH.

  8. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  9. Porphyromonas gingivalis decreases osteoblast proliferation through IL-6-RANKL/OPG and MMP-9/TIMPs pathways

    Directory of Open Access Journals (Sweden)

    Le Xuan

    2009-01-01

    Full Text Available Background: Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption. This bacterium exerts its pathogenic effect indirectly through multiple virulence factors, such as lipopolysaccharides, fimbriae, and proteases. Another possible pathogenic path may be through a direct interaction with the host′s soft and hard tissues (e.g., alveolar bone, which could lead to periodontitis. Aims and Objectives: The aim of the present study was to investigate the direct effect of live and heat-inactivated P gingivalis on bone resorption, using an in vitro osteoblast culture model. Results: Optical microscopy and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide MTT assay revealed that live P gingivalis induced osteoblast detachment and reduced their proliferation. This effect was specific to live bacteria and was dependent on their concentration. Live P gingivalis increased IL-6 mRNA expression and protein production and downregulated RANKL and OPG mRNA expression. The effect of live P gingivalis on bone resorption was strengthened by an increase in MMP-9 expression and its activity. This increase was accompanied by an increase in TIMP-1 and TIMP-2 mRNA expression and protein production by osteoblasts infected with live P gingivalis. Conclusion: Overall, the results suggest that direct contact of P gingivalis with osteoblasts induces bone resorption through an inflammatory pathway that involves IL-6, RANKL/OPG, and MMP-9/TIMPs.

  10. Effects of metoclopramide on mRNA levels of steroid 5α-reductase isozymes in prostate of adult rats.

    Science.gov (United States)

    Sánchez, Pilar; Torres, Jesús M; Castro, Beatriz; Frías, José F; Ortega, Esperanza

    2013-03-01

    The rising incidence of prostate cancer and benign prostatic hypertrophy in the Western world is a cause of increasing public health concern. The most active androgen in the prostate is 5α-dihydrotestosterone obtained from testosterone (T) by the enzyme 5α-reductase (5α-R), expressed in the prostate as two isozymes, 5α-R1 and 5α-R2. These isozymes are involved in the growth and development of normal prostate and in the onset and progression of prostate disease. Besides androgens, prolactin (PRL) may also play a role, although it is not clear whether its effects on the prostate are in synergism with or independent of those of androgens. We previously demonstrated that sulpiride, an inductor of hyperprolactinemia, increased mRNA levels of 5α-R isozymes in prostate of adult rat. We hypothesized a possible interrelationship between PRL levels and 5α-R, although the effects of sulpiride per se cannot be ruled out. In the present study, one-step quantitative reverse transcription polymerase chain reaction coupled with laser-induced fluorescence capillary electrophoresis was used to quantify mRNA levels of both 5α-R isozymes in prostate of adult rat after administration of metoclopramide (MTC), another inductor of PRL secretion. With the administration regimens studied, MTC produced an increase in prostate weight and mRNA levels of 5α-R1 and 5α-R2 in adult rats. Given our finding that MTC per se or MTC-induced hyperprolactinemia modifies prostate disease-related parameters in animals with reduced plasma T levels, further investigation is warranted into the possibility that MTC use by aging males may increase their risk of prostate disease.

  11. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  12. Ethylmalonic acid modulates Na+, K(+)-ATPase activity and mRNA levels in rat cerebral cortex.

    Science.gov (United States)

    Schuck, Patrícia Fernanda; De Assis, Dênis Reis; Viegas, Carolina Maso; Pereira, Talita Carneiro Brandão; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Bogo, Mauricio Reis; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2013-03-01

    Ethylmalonic acid (EMA) accumulates in tissues of patients affected by short-chain acyl-CoA dehydrogenase deficiency and ethylmalonic encephalopathy, illnesses characterized by variable neurological symptoms. In this work, we investigated the in vitro and in vivo EMA effects on Na(+), K(+)-ATPase (NAK) activity and mRNA levels in cerebral cortex from 30-day-old rats. For in vitro studies, cerebral cortex homogenates were incubated in the presence of EMA at 0.5, 1, or 2.5 mM concentrations for 1 h. For in vivo experiments, animals received three subcutaneous EMA injections (6 μmol g(-1); 90-min interval) and were killed 60 min after the last injection. After that, NAK activity and its mRNA expression were measured. We observed that EMA did not affect this enzyme activity in vitro. In contrast, EMA administration significantly increased NAK activity and decreased mRNA NAK expression as assessed by semiquantitative reverse transcriptase polymerase chain reaction when compared with control group. Considering the high score of residues prone to phosphorylation on NAK, this profile can be associated with a possible regulation by specific phosphorylation sites of the enzyme. Altogether, the present results suggest that NAK alterations may be involved in the pathophysiology of brain damage found in patients in which EMA accumulates. Copyright © 2012 Wiley Periodicals, Inc.

  13. Association between OPG, RANK and RANKL gene polymorphisms ...

    Indian Academy of Sciences (India)

    2009) and MMP-9 production. (Sandberg et al. 2006). .... rupture. RANKL promoted vascular smooth muscle cell. (VSMC) calcification via induction of the bone morphogenic protein (BMP) (Panizo et al. 2009). RANKL was highly. 88 ... Bunimov N., Smith J. E., Gosselin D. and Laneuville O. 2007. Translational regulation of ...

  14. mRNA expression levels in failing human hearts predict cellular electrophysiological remodeling: a population-based simulation study.

    Directory of Open Access Journals (Sweden)

    John Walmsley

    Full Text Available Differences in mRNA expression levels have been observed in failing versus non-failing human hearts for several membrane channel proteins and accessory subunits. These differences may play a causal role in electrophysiological changes observed in human heart failure and atrial fibrillation, such as action potential (AP prolongation, increased AP triangulation, decreased intracellular calcium transient (CaT magnitude and decreased CaT triangulation. Our goal is to investigate whether the information contained in mRNA measurements can be used to predict cardiac electrophysiological remodeling in heart failure using computational modeling. Using mRNA data recently obtained from failing and non-failing human hearts, we construct failing and non-failing cell populations incorporating natural variability and up/down regulation of channel conductivities. Six biomarkers are calculated for each cell in each population, at cycle lengths between 1500 ms and 300 ms. Regression analysis is performed to determine which ion channels drive biomarker variability in failing versus non-failing cardiomyocytes. Our models suggest that reported mRNA expression changes are consistent with AP prolongation, increased AP triangulation, increased CaT duration, decreased CaT triangulation and amplitude, and increased delay between AP and CaT upstrokes in the failing population. Regression analysis reveals that changes in AP biomarkers are driven primarily by reduction in I[Formula: see text], and changes in CaT biomarkers are driven predominantly by reduction in I(Kr and SERCA. In particular, the role of I(CaL is pacing rate dependent. Additionally, alternans developed at fast pacing rates for both failing and non-failing cardiomyocytes, but the underlying mechanisms are different in control and heart failure.

  15. Role of interleukin-6 on RANKL-RANK/osteoprotegerin system in hypothyroid ovariectomized mice.

    Directory of Open Access Journals (Sweden)

    Karol Kaminski

    2011-04-01

    Full Text Available Postmenopausal women frequently develop hypothyroidism. Estrogen depletion is accompanied by an increase of IL-6, accelerating bone turnover. The influence of hypothyroidism on bone metabolism in postmenopausal women is poorly understood. The aim of the study was an attempt to clarify the role of interleukin-6 on RANKL-RANK/osteoprotegerin system in hypothyroid ovariectomized mice. The study was performed on 56, 12-13 weeks old, female mice: C57BL/6J (wild-type; WT and C57BL/6JIL6-/-Kopf (IL-6 knock-out; IL6KO. The mice were randomly divided into 8 groups with 7 mice in each one: 1/ WT controls, 2/ IL6KO controls, 3/ WT hypothyroid mice, 4/ IL6KO hypothyroid mice, 5/ WT ovariectomized, 6/ IL6KO ovariectomized, 7/ WT ovariectomized hypothyroid mice and 8/ IL6KO ovariectomized hypothyroid mice. Experimental model of menopause was produced by bilateral ovariectomy carried out in 8-9 weeks old mice. Experimental model of hypothyroidism was induced by propylthiouracyl administration in driking water. The serum levels of TRACP 5b, osteocalcin, OPG and RANKL were determined by ELISA. Serum RANKL concentrations were elevated significantly in all groups of ovariectomized mice as compared to respective controls, but in a minor degree in IL6KO hypothyroid mice as compared to wild-type animals. Moreover sRANKL values were significantly lower in IL6KO as compared to WT controls and IL6KO PTU injected mice. Osteoprotegerin serum levels were decreased in all IL-6 deficient mice and in a highest degree in sham-operated hypothyroid mice. To sum up, the results of the present study suggest that estrogens deficit is a strong stimulus for RANKL-RANK/OPG pathway that breaks an inhibitory influence of hypothyroidism even in IL-6 deficient mice.

  16. Transforming growth factor β1 protein and mRNA levels in inflammatory bowel diseases: towards solving the contradictions by longitudinal assessment of the protein and mRNA amounts.

    Science.gov (United States)

    Liberek, Anna; Kmieć, Zbigniew; Wierzbicki, Piotr M; Jakóbkiewicz-Banecka, Joanna; Liberek, Tomasz; Łuczak, Grażyna; Plata-Nazar, Katarzyna; Słomińska-Frączek, Magdalena; Kaszubowska, Lucyna; Gabig-Cimińska, Magdalena; Węgrzyn, Alicja

    2013-01-01

    Previously published studies on levels of the transforming growth factor-β1 (TGF-β1) protein and mRNA of the corresponding gene in patients suffering from inflammatory bowel diseases (IBD) gave varying results, leading to contradictory conclusions. To solve the contradictions, we aimed to assess longitudinally TGF-β1 protein and mRNA levels at different stages of the disease in children suffering from IBD. The study group consisted of 19 pediatric patients with IBD at the age between 3.5 and 18.4 years. The control group consisted of 42 children aged between 2.0 and 18.0 years. The plasma TGF-β1 concentration was measured with ELISA. mRNA levels of the TGF-β1 gene isolated from samples of the intestinal tissue were assessed by reverse transcription and real-time PCR. Levels of TGF-β1 protein in plasma and corresponding mRNA in intestinal tissue were significantly higher in IBD patients than in controls. TGF-β1 and corresponding transcripts were also more abundant in plasma and intestinal tissue, respectively, in patients at the active stage of the disease than during remission. In every single IBD patient, plasma TGF-β1 level and mRNA level in intestinal tissue was higher at the active stage of the disease than during remission. Levels of TGF-β1 and corresponding mRNA are elevated during the active stage of IBD but not during the remission. Longitudinal assessment of this cytokine in a single patient may help to monitor the clinical course of IBD.

  17. Role of Wnt/β-catenin and RANKL/OPG in bone healing of diabetic Charcot arthropathy patients.

    Science.gov (United States)

    Folestad, Agnetha; Ålund, Martin; Asteberg, Susanne; Fowelin, Jesper; Aurell, Ylva; Göthlin, Jan; Cassuto, Jean

    2015-01-01

    Charcot neuropathy is characterized by bone destruction in a foot leading to deformity, instability, and risk of amputation. Little is known about the pathogenic mechanisms. We hypothesized that the bone-regulating Wnt/β-catenin and RANKL/OPG pathways have a role in Charcot arthropathy. 24 consecutive Charcot patients were treated by off-loading, and monitored for 2 years by repeated foot radiography, MRI, and circulating levels of sclerostin, dickkopf-1, Wnt inhibitory factor-1, Wnt ligand-1, OPG, and RANKL. 20 neuropathic diabetic controls and 20 healthy controls served as the reference. Levels of sclerostin, Dkk-1 and Wnt-1, but not of Wif-1, were significantly lower in Charcot patients than in the diabetic controls at inclusion. Dkk-1 and Wnt-1 levels responded to off-loading by increasing. Sclerostin levels were significantly higher in the diabetic controls than in the other groups whereas Wif-1 levels were significantly higher in the healthy controls than in the other groups. OPG and RANKL levels were significantly higher in the Charcot patients than in the other groups at inclusion, but decreased to the levels in healthy controls at 2 years. OPG/RANKL ratio was balanced in all groups at inclusion, and it remained balanced in Charcot patients on repeated measurement throughout the study. High plasma RANKL and OPG levels at diagnosis of Charcot suggest that there is high bone remodeling activity before gradually normalizing after off-loading treatment. The consistently balanced OPG/RANKL ratio in Charcot patients suggests that there is low-key net bone building activity by this pathway following diagnosis and treatment. Inter-group differences at diagnosis and changes in Wnt signaling following off-loading treatment were sufficiently large to be reflected by systemic levels, indicating that this pathway has a role in bone remodeling and bone repair activity in Charcot patients. This is of particular clinical relevance considering the recent emergence of

  18. The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism.

    Science.gov (United States)

    Nechama, Morris; Uchida, Takafumi; Mor Yosef-Levi, Irit; Silver, Justin; Naveh-Many, Tally

    2009-10-01

    Secondary hyperparathyroidism is a major complication of chronic kidney disease (CKD). In experimental models of secondary hyperparathyroidism induced by hypocalcemia or CKD, parathyroid hormone (PTH) mRNA levels increase due to increased PTH mRNA stability. K-homology splicing regulator protein (KSRP) decreases the stability of PTH mRNA upon binding a cis-acting element in the PTH mRNA 3' UTR region. As the peptidyl-prolyl isomerase (PPIase) Pin1 has recently been shown to regulate the turnover of multiple cytokine mRNAs, we investigated the role of Pin1 in regulating PTH mRNA stability in rat parathyroids and transfected cells. The data generated were consistent with Pin1 being a PTH mRNA destabilizing protein. Initial analysis indicated that Pin1 activity was decreased in parathyroid protein extracts from both hypocalcemic and CKD rats and that pharmacologic inhibition of Pin1 increased PTH mRNA levels posttranscriptionally in rat parathyroid and in transfected cells. Pin1 mediated its effects via interaction with KSRP, which led to KSRP dephosphorylation and activation. In the rat parathyroid, Pin1 inhibition decreased KSRP-PTH mRNA interactions, increasing PTH mRNA levels. Furthermore, Pin1-/- mice displayed increased serum PTH and PTH mRNA levels, suggesting that Pin1 determines basal PTH expression in vivo. These results demonstrate that Pin1 is a key mediator of PTH mRNA stability and indicate a role for Pin1 in the pathogenesis of secondary hyperparathyroidism in individuals with CKD.

  19. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis.

    Science.gov (United States)

    Delion, Martial; Braux, Julien; Jourdain, Marie-Laure; Guillaume, Christine; Bour, Camille; Gangloff, Sophie; Pimpec-Barthes, Françoise Le; Sermet-Gaudelus, Isabelle; Jacquot, Jacky; Velard, Frédéric

    2016-09-01

    Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting

  20. Effect of L-Caldesmon on Osteoclastogenesis in RANKL-Induced RAW264.7 Cells.

    Science.gov (United States)

    Liou, Ying-Ming; Chan, Chu-Lung; Huang, Renjian; Wang, Chih-Lueh Albert

    2018-01-29

    Non-muscle caldesmon (l-CaD) is involved in the regulation of actin cytoskeletal remodeling in the podosome formation, but its function in osteoclastogenesis remains to be determined. In this study, RANKL-induced differentiation of RAW264.7 murine macrophages to osteoclast-like cells (OCs) was used as a model to determine the physiological role of l-CaD and its phosphorylation in osteoclastogenesis. Upon RANKL treatment, RAW264.7 cells undergo cell-cell fusion into multinucleate and TRAP-positive large OCs with a concomitant increase of l-CaD expression. Using gain- and loss-of-function in OC precursor cells followed by RANKL induction, we showed that the expression of l-CaD in response to RANKL activation is an important event for osteoclastogenesis and bone resorption. To determine the effect of l-CaD phosphorylation in osteoclastogenesis, three decoy peptides of l-CaD were used with, respectively, Ser-to-Ala mutations at the Erk- and Pak1-mediated phosphorylation sites, and Ser-to-Asp mutation at the Erk-mediated phosphorylation sites. Both the former two peptides competed with the C-terminal segment of l-CaD for F-actin binding and accelerated formation of podosome-like structures in RANKL-induced OCs, while the third peptide did not significantly affect the F-actin binding of l-CaD and decreased the formation of podosome-like structures in OCs. With the experiments using dephosphorylated and phosphorylated l-CaD mutants, we further showed that dephosphorylated l-CaD mutant facilitated RANKL-induced TRAP activity with an increased cell fusion index, whereas phosphorylated l-CaD decreased the TRAP activity and cell fusion. Our findings suggested that both the level of l-CaD expression and the extent of l-CaD phosphorylation play a role in RANKL-induced osteoclast differentiation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Arsenic Trioxide Attenuates NF-κB and Cytokine mRNA Levels in the Livers of Cocks.

    Science.gov (United States)

    Zhang, Kexin; Zhao, Panpan; Guo, Guangyang; Guo, Ying; Tian, Li; Sun, Xiao; Li, Siwen; He, Ying; Sun, Ying; Chai, Hongliang; Zhang, Wen; Xing, Mingwei

    2016-04-01

    Arsenic (As) is a trace element widely found in nature. It exists in several forms, including organic arsenic, inorganic arsenic, and trivalent arsenic, the most toxic. Arsenic trioxide (As2O3) is widespread in nature. This form tends to accumulate in animals and humans and therefore has a potential harm for them. Cytokines play essential roles in the immune response and inflammation. Although the importance of cytokines in the responses to arsenic exposure has been demonstrated in many types of mammals, the function of these in poultry, especially in chickens, remains unclear. The purpose of the present study was to examine the effect of As2O3 exposure on cytokines in cock livers. In this study, 72 1-day-old male Hy-line cocks were randomly divided into four groups including the control group, low-As group, middle-As group, and high-As group. The livers were collected on days 30, 60, and 90 of the experiment. The levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 beta (IL-12β), and interleukin-1 beta (IL-1β) mRNA in the livers of the cocks were measured using real-time PCR. The results showed that the expression levels of IL-6, IL-8, TNF-α, and NF-κB which seemed to be a critical mediator in the inflammatory response tended to increase in the birds chronically treated with As2O3. However, the mRNA expression levels of IL-4, IL-12β, and IL-1β were decreased in the experiment. The information regarding the effects of As2O3 on cytokine mRNA expression generated in this study will be important information for arsenic toxicology evaluation.

  2. Rapid, Transient Fluconazole Resistance in Candida albicans Is Associated with Increased mRNA Levels of CDR

    Science.gov (United States)

    Marr, Kieren A.; Lyons, Christopher N.; Rustad, Tiger; Bowden, Raleigh A.; White, Theodore C.

    1998-01-01

    Fluconazole-resistant Candida albicans, a cause of recurrent oropharyngeal candidiasis in patients with human immunodeficiency virus infection, has recently emerged as a cause of candidiasis in patients receiving cancer chemotherapy and marrow transplantation (MT). In this study, we performed detailed molecular analyses of a series of C. albicans isolates from an MT patient who developed disseminated candidiasis caused by an azole-resistant strain 2 weeks after initiation of fluconazole prophylaxis (K. A. Marr, T. C. White, J. A. H. vanBurik, and R. A. Bowden, Clin. Infect. Dis. 25:908–910, 1997). DNA sequence analysis of the gene (ERG11) for the azole target enzyme, lanosterol demethylase, revealed no difference between sensitive and resistant isolates. A sterol biosynthesis assay revealed no difference in sterol intermediates between the sensitive and resistant isolates. Northern blotting, performed to quantify mRNA levels of genes encoding enzymes in the ergosterol biosynthesis pathway (ERG7, ERG9, and ERG11) and genes encoding efflux pumps (MDR1, ABC1, YCF, and CDR), revealed that azole resistance in this series is associated with increased mRNA levels for members of the ATP binding cassette (ABC) transporter superfamily, CDR genes. Serial growth of resistant isolates in azole-free media resulted in an increased susceptibility to azole drugs and corresponding decreased mRNA levels for the CDR genes. These results suggest that C. albicans can become transiently resistant to azole drugs rapidly after exposure to fluconazole, in association with increased expression of ABC transporter efflux pumps. PMID:9756759

  3. EGF receptor inhibitors increase ErbB3 mRNA and protein levels in breast cancer cells

    DEFF Research Database (Denmark)

    Grøvdal, Lene Melsæther; Kim, Jiyoung; Holst, Mikkel Roland

    2012-01-01

    gene expression of FAS which is involved in apoptotic signaling. Together, our data strongly suggest that resistance to EGFR inhibitors may result from the compensation of other family members and that combinations of anti-cancer drugs are required to increase the sensitivity of these treatments....... induced by gefitinib treatment on mRNA levels of the most common genes known to be involved in breast cancer. As expected, we found that gefitinib downregulated genes whose functions were linked to cellular proliferation, such as Ki-67, topoisomerase II alpha and cyclins, and surprisingly downregulated...

  4. α2A -Adrenergic receptor polymorphisms and mRNA expression levels are associated with delay discounting in cocaine users.

    Science.gov (United States)

    Havranek, Michael M; Hulka, Lea M; Tasiudi, Eve; Eisenegger, Christoph; Vonmoos, Matthias; Preller, Katrin H; Mössner, Rainald; Baumgartner, Markus R; Seifritz, Erich; Grünblatt, Edna; Quednow, Boris B

    2017-03-01

    Cocaine users characteristically display preferences for smaller immediate rewards over larger delayed rewards, and this delay discounting (DD) has been proposed as an endophenotype of cocaine addiction. Recent evidence suggests that the norepinephrine system and more specifically the α2A -adrenergic receptor (ADRA2A) are impacted by chronic cocaine use while also being potentially involved in the neural mechanisms underlying DD. Hence, we investigated the effects of ADRA2A polymorphisms and ADRA2A mRNA expression levels on DD of cocaine users and stimulant-naïve controls. Two hundred and twenty-three participants (129 cocaine users and 94 stimulant-naïve healthy controls) completed a computerized DD paradigm and were genotyped for three single nucleotide polymorphisms (SNPs; rs1800544, rs521674 and rs602618) in the ADRA2A gene, while their peripheral ADRA2A mRNA expression was quantified in whole blood samples. The three SNPs were in near-perfect linkage disequilibrium. Accordingly, significant group*genotype interactions were found for all three ADRA2A variants revealing steeper DD in cocaine users (but not in controls) carrying the G-allele of SNP rs1800544, the T-allele of rs521674 and the C-allele of rs602618. Similarly, high ADRA2A mRNA expression levels were significantly associated with a reduced tendency to choose smaller more immediate rewards (over larger delayed rewards) in cocaine users but not in controls. As the relationship between DD and cocaine use was moderated by ADRA2A SNPs and by peripheral ADRA2A gene expression, we propose that the norepinephrine system is involved in DD deficits observed in cocaine using individuals. Consequently, pharmacological compounds targeting ADRA2As might be considered for the symptom-specific treatment of delay aversion in stimulant addiction. © 2015 Society for the Study of Addiction.

  5. Exogenous glucagon-like peptide-2 (GLP-2) augments GLP-2 receptor mRNA and maintains proglucagon mRNA levels in resected rats

    DEFF Research Database (Denmark)

    Koopmann, Matthew C; Nelson, David W; Murali, Sangita G

    2008-01-01

    ), crypt-villus height, and crypt cell proliferation (by bromodeoxyuridine staining) were determined. Plasma bioactive GLP-2 (by radioimmunoassay), proglucagon and GLP-2 receptor mRNA expression (by Northern blot and real-time reverse transcriptase quantitative polymerase chain reaction) were measured. GLP...... activity. Plasma bioactive GLP-2 concentration increased 70% upon resection, with an additional 54% increase upon GLP-2 infusion in resected rats (P ... GLP-2 receptor expression 3-fold in resected animals and was colocalized to vasoactive intestinal peptide-positive and endothelial nitric oxide synthase-expressing enteric neurons and serotonin-containing enteroendocrine cells in the jejunum and ileum of resected rats. CONCLUSIONS: Exogenous GLP-2...

  6. Effects of sulpiride on mRNA levels of steroid 5alpha-reductase isozymes in prostate of adult rats.

    Science.gov (United States)

    Sánchez, Pilar; Torres, Jesús M; Vílchez, Pablo; Del Moral, Raimundo G; Ortega, Esperanza

    2008-01-01

    Prolactin (PRL) is implicated in prostate growth and in the development and regulation of benign prostatic hypertrophy (BPH) and prostate cancer (PCa). PRL may exert its effects on prostate in synergism with androgens. The most active androgen in the prostate is the 5alpha-dihydrotestosterone (DHT) obtained from testosterone by the 5alpha-reductase (5alpha-R) enzyme, which is expressed in the prostate as two isozymes, 5alpha-R1 and 5alpha-R2. In this study, sulpiride, a prolactin-secretion inductor, was administered to male rats. mRNA levels of 5alpha-R1 and 5alpha-R2 were measured in prostate of controls and sulpiride-treated rats, using one-step quantitative RT-PCR coupled with laser-induced fluorescence capillary electrophoresis (LIF-CE). Results demonstrated that sulpiride-induced hyperprolactinemia is associated with an increase in mRNA levels of both 5alpha-R1 and 5alpha-R2 in prostate of adult rats. Although a direct effect of sulpiride on prostate gland cannot be ruled out, hyperprolactinemia may be a factor to be considered in aging males, in whom prostatic diseases such as BPH and PCa are more frequent.

  7. Vesicular monoamine transporter 2 mRNA levels are reduced in platelets from patients with Parkinson's disease.

    Science.gov (United States)

    Sala, Gessica; Brighina, Laura; Saracchi, Enrico; Fermi, Silvia; Riva, Chiara; Carrozza, Veronica; Pirovano, Marta; Ferrarese, Carlo

    2010-09-01

    Despite advances in neuroimaging, the diagnosis of idiopathic Parkinson's disease (PD) remains clinical. The identification of biological markers for an early diagnosis is of great interest to start a neuroprotective therapy aimed at slowing, blocking or reversing the disease progression. Vesicular monoamine transporter 2 (VMAT2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and release. Thus, VMAT2 impairment can regulate intra- and extracellular dopamine levels, influencing oxidative stress and neuronal death. Because in vivo imaging studies have demonstrated a VMAT2 reduction in PD patients greater than would be explained by neuronal loss alone, as an exploratory study we assessed VMAT2 mRNA and protein levels in platelets from 39 PD patients, 39 healthy subjects and 10 patients with vascular parkinsonism (VP) to identify a possible peripheral biomarker for PD. A significant reduction (p platelets. Although further studies in a greater number of cases are needed to confirm our data, the reduction in VMAT2 mRNA in platelets from PD patients suggests the existence of a systemic impairment of this transporter possibly contributing to PD pathology.

  8. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum1

    Science.gov (United States)

    Ostrem, James A.; Olson, Steve W.; Schmitt, Jürgen M.; Bohnert, Hans J.

    1987-01-01

    Mesembryanthemum crystallinum responds to salt stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665596

  9. Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian-hui, E-mail: jianhui_yangxa@163.com [Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi Province (China); Li, Bing [Department of Dermatology, the 451st Hospital of People’s Liberation Army, Xi’an 710054, Shaanxi Province (China); Wu, Qiong; Lv, Jian-guo; Nie, Hui-Yong [Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi Province (China)

    2016-09-02

    Receptor activator of nuclear factor-κB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, was reported to prevent reduction of bone mass and strength and improve the cancellous bone structure and biochemical properties in ovariectomy rats. However, the molecular mechanism of EA on the osteoclast formation has not been reported. The purpose of this study was to investigate the effects and mechanism of EA on RANKL-induced osteoclastogenesis. Our results showed that EA inhibited the formation of osteoclast, as well as the expression of osteoclastogenesis-related marker proteins in bone marrow macrophages (BMMs). At molecular levels, EA inhibited RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. In conclusion, the present study demonstrated that EA can suppress osteoclastogenesis in vitro. Moreover, we clarified that these inhibitory effects of EA occur through suppression of NF-κB and ERK activation. Therefore, EA may be a potential agent in the treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • EA inhibited the formation of osteoclast in BMMs. • EA inhibits the expression of osteoclastogenesis-related marker proteins in BMMs. • EA inhibits RANKL-induced NF-κB activation in BMMs. • EA inhibits RANKL-induced ERK phosphorylation in BMMs.

  10. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Baoshan Liu

    2017-09-01

    Full Text Available Objective: As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1 and the risk level in MDS. Materials and Methods: There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/ TPP1/POT1/RAP1 in patients with MDS. Results: Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS and the World Health Organization Prognostic Scoring System (WPSS criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Conclusion: Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins’ mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  11. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase

    Directory of Open Access Journals (Sweden)

    David Mizael Ortíz-Martinez

    2016-01-01

    Full Text Available Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393±0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23±2.15 μg/mL and 1.95±0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54±45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50 refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50 refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity.

  12. Insulin elevates leptin secretion and mRNA levels via cyclic AMP in 3T3-L1 adipocytes deprived of glucose

    Directory of Open Access Journals (Sweden)

    Tomomi Tsubai

    2016-11-01

    Conclusion: Insulin alone stimulates leptin secretion and elevates leptin mRNA levels via cAMP under the lack of glucose metabolism, while glucose is a significant and ambivalent effector on the insulin effects of leptin.

  13. Muramyl Dipeptide Enhances Lipopolysaccharide-Induced Osteoclast Formation and Bone Resorption through Increased RANKL Expression in Stromal Cells

    Directory of Open Access Journals (Sweden)

    Masahiko Ishida

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is bacterial cell wall component capable of inducing osteoclast formation and pathological bone resorption. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is ubiquitously expressed by bacterium. In this study, we investigated the effect of MDP in LPS-induced osteoclast formation and bone resorption. LPS was administered with or without MDP into the supracalvariae of mice. The number of osteoclasts, the level of mRNA for cathepsin K and tartrate-resistant acid phosphatase (TRAP, the ratio of the bone destruction area, the level of tartrate-resistant acid phosphatase form 5b (TRACP 5b, and C-terminal telopeptides fragments of type I collagen as a marker of bone resorption in mice administrated both LPS and MDP were higher than those in mice administrated LPS or MDP alone. On the other hand, MDP had no effect on osteoclastogenesis in parathyroid hormone administrated mice. MDP enhanced LPS-induced receptor activator of NF-κB ligand (RANKL expression and Toll-like receptor 4 (TLR4 expression in vivo and in stromal cells in vitro. MDP also enhanced LPS-induced mitogen-activated protein kinase (MAPK signaling, including ERK, p38, and JNK, in stromal cells. These results suggest that MDP might play an important role in pathological bone resorption in bacterial infection diseases.

  14. The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach

    Directory of Open Access Journals (Sweden)

    Tachibana Taro

    2011-10-01

    Full Text Available Abstract Background Cellular function is regulated by the balance of stringently regulated amounts of mRNA. Previous reports revealed that RNA polymerase II (RNAPII, which transcribes mRNA, can be classified into the pausing state and the active transcription state according to the phosphorylation state of RPB1, the catalytic subunit of RNAPII. However, genome-wide association between mRNA expression level and the phosphorylation state of RNAPII is unclear. While the functional importance of pausing genes is clear, such as in mouse Embryonic Stem cells for differentiation, understanding this association is critical for distinguishing pausing genes from active transcribing genes in expression profiling data, such as microarrays and RNAseq. Therefore, we examined the correlation between the phosphorylation of RNAPII and mRNA expression levels using a combined analysis by ChIPseq and RNAseq. Results We first performed a precise quantitative measurement of mRNA by performing an optimized calculation in RNAseq. We then visualized the recruitment of various phosphorylated RNAPIIs, such as Ser2P and Ser5P. A combined analysis using optimized RNAseq and ChIPseq for phosphorylated RNAPII revealed that mRNA levels correlate with the various phosphorylation states of RNAPII. Conclusions We demonstrated that the amount of mRNA is precisely reflected by the phased phosphorylation of Ser2 and Ser5. In particular, even the most "pausing" genes, for which only Ser5 is phosphorylated, were detectable at a certain level of mRNA. Our analysis indicated that the complexity of quantitative regulation of mRNA levels could be classified into three categories according to the phosphorylation state of RNAPII.

  15. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    Science.gov (United States)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  16. Correlation of thyroid stimulating hormone receptor mRNA expression levels in peripheral blood with undesirable clinicopathological features in papillary thyroid carcinoma patients

    Science.gov (United States)

    Liu, Riming; Hao, Shaolong; Zhang, Hua; Ma, Jihong; Liu, Xincheng; Xu, Jie; Liu, Xin; Ning, Jinyao; Sun, Yan; Jiang, Lixin; Li, Guojun; Song, Xicheng; Zheng, Haitao

    2017-01-01

    To determine the extent to which thyroid stimulating hormone receptor (TSHR) mRNA in peripheral blood (PB) has diagnostic value for papillary thyroid carcinoma (PTC). We obtained pre- and postoperative PB samples from 104 thyroid disease patients and collected 11 healthy volunteers’ PB samples twice apiece at different times. We used reverse transcription polymerase chain reaction (RT-PCR) to quantify TSHR mRNA expression levels in the samples. T-test and chi-square test were used to compare quantitative data and rates. The mean preoperative PB TSHR mRNA expression level of the PTC patients was significantly higher than that of the healthy volunteers. However, on the postoperative day 1, PB TSHR mRNA level of PTC patients significantly decreased but not for healthy controls. Preoperative PB TSHR mRNA expression levels were significantly associated with patient age, capsular invasion status, lymph node metastasis status, and BRAFV600E mutation status (P cancer foci, or Hashimoto thyroiditis status. Preoperative assessment of the PB TSHR mRNA expression level combined with ultrasonography of the thyroid had better accuracy in the diagnosis of PTC than either method alone did. Moreover, TSHR mRNA expression significantly affected recurrence of PTC patients. Our findings suggest that PB TSHR mRNA expression level is a promising novel biomarker for the early detection, diagnosis, and treatment of PTC. It may serve as a noninvasive means of PTC detection and a prognostic biomarker of residual tumor and help guide further treatment. PMID:29088773

  17. Significance of the BRAF mRNA Expression Level in Papillary Thyroid Carcinoma: An Analysis of The Cancer Genome Atlas Data.

    Directory of Open Access Journals (Sweden)

    Young Jun Chai

    Full Text Available BRAFV600E is the most common mutation in papillary thyroid carcinoma (PTC, and it is associated with high-risk prognostic factors. However, the significance of the BRAF mRNA level in PTC remains unknown. We evaluated the significance of BRAF mRNA expression level by analyzing PTC data from The Cancer Genome Atlas (TCGA database.Data from 499 patients were downloaded from the TCGA database. After excluding other PTC variants, we selected 353 cases of classic PTC, including 193 cases with BRAFV600E and 160 cases with the wild-type BRAF. mRNA abundances were measured using RNA-Seq with the Expectation Maximization algorithm.The mean BRAF mRNA level was significantly higher in BRAFV600E patients than in patients with wild-type BRAF (197.6 vs. 179.3, p = 0.031. In wild-type BRAF patients, the mean BRAF mRNA level was higher in cases with a tumor > 2 cm than those with a tumor ≤ 2.0 cm (189.4 vs. 163.8, p = 0.046, and was also higher in cases with lymph node metastasis than in those without lymph node metastasis (188.5 vs. 157.9, p = 0.040. Within BRAFV600E patients, higher BRAF mRNA expression was associated with extrathyroidal extension (186.4 vs. 216.4, p = 0.001 and higher T stage (188.1 vs. 210.2, p = 0.016.A higher BRAF mRNA expression level was associated with tumor aggressiveness in classic PTC regardless of BRAF mutational status. Evaluation of BRAF mRNA level may be helpful in prognostic risk stratification of PTC.

  18. 1,25-Dihydroxyvitamin D3 Inhibits the RANKL Pathway and Impacts on the Production of Pathway-Associated Cytokines in Early Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2013-01-01

    Full Text Available Objectives. To study effects of 1,25-dihydroxyvitamin D3 (1,25(OH2D3 on RANKL signaling pathway and pathway-associated cytokines in patients with rheumatoid arthritis (RA. Methods. Receptor activator of nuclear factor-kappa B ligand (RANKL, osteoprotegerin (OPG, IFN-γ, IL-6, TNF-α, IL-17, and IL-4 were examined in 54 patients with incipient RA using a cytometric bead array (CBA or an enzyme-linked immunosorbent assay (ELISA. Results. After 72 hours of incubation of peripheral blood mononuclear cells (PBMCs with 1,25(OH2D3 in RA patients, the levels of RANKL, TNF-α, IL-17 and IL-6 significantly decreased compared to those of the control. 1,25(OH2D3 had no significantly impact on the levels of OPG, RANKL/OPG, and IL-4. Conclusions. The present study demonstrated that 1,25(OH2D3 reduced the production of RANKL and the secretion of TNF-α, IL-17, and IL-6 in PBMCs of RA patients, which indicated that 1,25(OH2D3 might be able to decrease damage of cartilage and bone in RA patients by regulating the expression of RANKL signaling pathway and pathway-associated cytokines.

  19. RANKL signaling and osteoclastogenesis is negatively regulated by cardamonin.

    Directory of Open Access Journals (Sweden)

    Bokyung Sung

    Full Text Available Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been linked with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with bisphosphonates, and recently approved denosumab, an antibody against receptor activator of NF-κB ligand (RANKL. Because of the numerous side effects of the currently available drugs, the search continues for safe and effective therapies for bone loss. RANKL, a member of the TNF superfamily, has emerged as a major mediator of bone loss via activation of osteoclastogenesis. We have identified cardamonin, a chalcone isolated from Alpinia katsumadai Hayata that can affect osteoclastogenesis through modulation of RANKL. We found that treatment of monocytes with cardamonin suppressed RANKL-induced NF-κB activation and this suppression correlated with inhibition of IκBα kinase and of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Furthermore, cardamonin also downregulated RANKL-induced phosphorylation of MAPK including ERK and p38 MAPK. Cardamonin suppressed the RANKL-induced differentiation of monocytes to osteoclasts in a dose-dependent and time-dependent manner. We also found that an inhibitor of NF-κB essential modulator (NEMO blocked RANKL-induced osteoclastogenesis, indicating a direct link with NF-κB. Finally, osteoclastogenesis induced by human breast cancer cells or human multiple myeloma cells were completely suppressed by cardamonin. Collectively, our results indicate that cardamonin suppresses osteoclastogenesis induced by RANKL and tumor cells by suppressing activation of the NF-κB and MAPK pathway.

  20. The participation of RANK, RANKL and OPG in tumor osteolysis

    OpenAIRE

    Marcin Stanisławowski; Zbigniew Kmieć

    2009-01-01

    It was recently shown that physiological bone remodeling depends on the dynamic balance of two cytokines that are predominantly secreted by osteoblasts. RANKL promotes the differentiation of osteoclastic precursors and the activation of osteoclasts, whereas osteoprotegerin (OPG) inhibits RANKL action. During the development of many tumors, enhanced osteolysis results in pathological bone destruction. Tumor-associated osteolysis is characterized by the degradation and inhibition of osteoproteg...

  1. TREM-1 SNP rs2234246 regulates TREM-1 protein and mRNA levels and is associated with plasma levels of L-selectin.

    Directory of Open Access Journals (Sweden)

    Alex-Ander Aldasoro Arguinano

    Full Text Available High levels of TREM-1 are associated with cardiovascular and inflammatory diseases risks and the most recent studies have showed that TREM-1 deletion or blockade is associated with up to 60% reduction of the development of atherosclerosis. So far, it is unknown whether the levels of TREM-1 protein are genetically regulated. Moreover, TREM family receptors have been suggested to regulate the cellular adhesion process. The goal of this study was to investigate whether polymorphisms within TREM-1 are regulating the variants of serum TREM-1 levels and the expression levels of their mRNA. Furthermore, we aimed to point out associations between polymorphisms on TREM-1 and blood levels of selectins. Among the 10 SNPs studied, the minor allele T of rs2234246, was associated with increased sTREM-1 in the discovery population (p-value = 0.003, explaining 33% of its variance, and with increased levels of mRNA (p-value = 0.007. The same allele was associated with increased soluble L-selectin levels (p-value = 0.011. The higher levels of sTREM-1 and L-selectin were confirmed in the replication population (p-value = 0.0007 and p-value = 0.018 respectively. We demonstrated for the first time one SNP on TREM-1, affecting its expression levels. These novel results, support the hypothesis that TREM-1 affects monocytes extravasation and accumulation processes leading to atherogenesis and atherosclerotic plaque progression, possibly through increased inflammation and subsequent higher expression of sL-selectin.

  2. Effects of the pesticides prochloraz and methiocarb on human estrogen receptor alpha and beta mRNA levels analyzed by on-line RT-PCR.

    Science.gov (United States)

    Hofmeister, M V; Bonefeld-Jørgensen, E C

    2004-08-01

    Exposure to endocrine disrupters such as dioxins, PCBs and certain pesticides are suspected to affect human reproductive health. We have analyzed the effect of the currently used pesticides prochloraz and methiocarb on the estrogen receptor (ER)alpha and beta mRNA levels in parallel with the natural ligand, 17beta-estradiol (E2). Using the highly sensitive on-line RT-PCR technique we were able to quantify the ERalpha and ERbeta mRNA levels in the human breast cancer cell line, MCF7-BUS. Upon exposure with E2 or prochloraz a down regulation of ERalpha and ERbeta mRNAs was observed after 48 h of treatment. Co-treatment with the ER antagonist ICI 182,780 abolished these mRNA down regulations. Western blot analyses elicited a decreased ER protein level after 3 h of exposure with prochloraz but after 24 h the ERalpha protein level had recovered to basal level. Methiocarb exposure had no effect on the ERalpha mRNA level, whereas an increase in the ERbeta mRNA level was observed after 3 h of exposure. Our study demonstrates that like E2, prochloraz had the potential to down regulate the expression of ERalpha and ERbeta mRNAs as well as the ERalpha protein level in MCF7-BUS cells.

  3. Changes in RANKL and osteoprotegerin expression after chronic exposure to indoor air pollution as a result of cooking with biomass fuel.

    Science.gov (United States)

    Saha, Hirak; Mukherjee, Bidisha; Bindhani, Banani; Ray, Manas Ranjan

    2016-07-01

    The impact of indoor air pollution as a result of cooking with unprocessed biomass on membrane-bound and serum receptor activator of nuclear factor-kappa ligand 1 (RANKL), its soluble decoy receptor osteoprotegerin (OPG) and osteoclast precursor CD14(+) CD16(+) monocytes was investigated. Seventy-four pre-menopausal women from eastern India using biomass and 65 control women who cooked with cleaner liquefied petroleum gas were enrolled. PM10 and PM2.5 levels in their indoor air were measured with real-time aerosol monitors. The levels of membrane-bound RANKL on leukocytes and percentage CD14(+) CD16(+) monocytes in the subjects' blood were assayed by flow cytometry. Soluble RANKL and OPG in serum were measured by ELISA. The results showed that PM10 and PM2.5 levels were significantly higher in the indoor air of biomass-using households. Compared with the control women, the levels of CD4(+) and CD19(+) lymphocytes and circulating granulocytes with elevated levels of membrane-bound RANKL were higher in biomass users. The serum levels of RANKL were increased by 41% whereas serum OPG was reduced by 22% among biomass users. The absolute number of CD14(+) CD16(+) monocytes was significantly increased in biomass users than the control women. After controlling for potential confounders, PM10 and PM2.5 levels were found to be positively associated with leukocyte and serum RANKL and CD14(+) CD16(+) monocyte levels, but negatively with serum OPG. From these results, we can conclude that chronic exposure to biomass smoke increased membrane-bound and soluble RANKL and circulating osteoclast precursors but decreased OPG, suggesting an increased risk of bone resorption and consequent osteoporosis in biomass-exposed women of a child-bearing age. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Blood glutathione peroxidase-1 mRNA levels can be used as molecular biomarkers to determine dietary selenium requirements in rats.

    Science.gov (United States)

    Sunde, Roger A; Thompson, Kevin M; Evenson, Jacqueline K; Thompson, Britta M

    2009-11-01

    Transcript (mRNA) levels are increasingly being used in medicine as molecular biomarkers for disease and disease risk, including use of whole blood as a target tissue for analysis. Development of blood molecular biomarkers for nutritional status, too, has potential application that parallels opportunities in medicine, including providing solid data for individualized nutrition. We previously reported that blood glutathione peroxidase-1 (Gpx1) mRNA was expressed at levels comparable to major tissues in rats and humans. To determine the efficacy of using blood Gpx1 mRNA to assess selenium (Se) status and requirements, we fed graded levels of Se (0-0.3 microg Se/g as selenite) to weanling male rats. Se status was determined by liver Se concentration and selenoenzyme activity, and selenoprotein mRNA abundance in liver and blood was determined by ribonuclease protection analysis. Liver Se and plasma glutathione peroxidase-3 and liver Gpx1 activities indicated that minimal Se requirements were at 0.08 microg Se/g diet. When total RNA was isolated from whole blood, Gpx1 mRNA in Se-deficient rats decreased to 10% of levels in Se-adequate (0.2 microg Se/g diet) rats. With Se supplementation, blood Gpx1 mRNA levels increased sigmoidally to a plateau with a minimum Se requirement of 0.08 microg Se/g diet, whereas glutathione peroxidase-4 mRNA levels were unaffected. Similarly, Gpx1 mRNA in RNA isolated from fractionated red blood cells decreased in Se-deficient rats to 23% of Se-adequate levels, with a minimum Se requirement of 0.09 microg Se/g diet. Additional studies showed that the preponderance of whole blood Gpx1 mRNA arises from erythroid cells, most likely reticulocytes and young erythrocytes. In summary, whole blood selenoprotein mRNA levels can be used as molecular biomarkers for assessing Se requirements, illustrating that whole blood has potential as a target tissue in development of molecular biomarkers for use in nutrition as well as in medicine.

  5. Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach Tissues.

    Science.gov (United States)

    Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2013-01-01

    Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific.

  6. Lipopolysaccharide increases IL-6 secretion via activation of the ERK1/2 signaling pathway to up-regulate RANKL gene expression in MLO-Y4 cells.

    Science.gov (United States)

    Yu, Ke; Ma, Yuanyuan; Li, Xianxian; Wu, Xiangnan; Liu, Wenjia; Li, Xiaoyu; Shen, Jiefei; Wang, Hang

    2017-01-01

    Lipopolysaccharide (LPS) plays an important role in bone resorption, which involves numerous cytokines through various signaling pathways. RANKL and interleukin (IL)-6 are two important cytokines that are involved in bone remodeling. The aim of this study was to evaluate the effect of LPS on RANKL and IL-6 gene expression, the relationship of RANKL and IL-6, and the role of extracellular signal-regulated kinases 1/2 (ERK1/2) on IL-6 secretion induced by LPS in MLO-Y4 cells. The cells were stimulated by LPS at different concentrations (1, 10, 100, 500, and 1000 ng/mL) for different durations (0.5, 1, 2, 4, and 8 h and 0.5, 1, 1.5, 2, and 4 h), and the mRNA expressions of RANKL and IL-6 were determined by PCR. In the presence of 100 ng/mL LPS at different time points (0.5, 1, 1.5, 2, and 4 h), IL-6 secretion and ERK1/2 phosphorylation in the cells were determined by ELISA and western blotting, respectively. STAT3 phosphorylation in cells simulated by 100 ng/mL LPS at different time points (0.5, 1, 2, 4, and 8 h) was assessed by western blotting. We found that LPS significantly up-regulated RANKL expression and activated the ERK1/2 pathway to induce IL-6 mRNA expression and protein synthesis in MLO-Y4 cells. However, the increased IL-6 was blocked by pre-treatment of MLO-Y4 cells with the ERK1/2 inhibitor U0126 (10 µM), and the enhanced RANKL was blocked by the STAT3 inhibitor S3I-201 (100 µM). Our results indicate that LPS up-regulates osteocyte expression of RANKL and IL-6, and the increased RANKL is associated with the up-regulation of IL-6, which involves the ERK1/2 pathway. © 2016 International Federation for Cell Biology.

  7. Acid tolerance and gad mRNA levels of Escherichia coli O157:H7 grown in foods.

    Science.gov (United States)

    Yokoigawa, Kumio; Takikawa, Akiko; Okubo, Yoko; Umesako, Seiichi

    2003-05-15

    We examined the acid tolerance and gad mRNA levels of Escherichia coli O157:H7 (three strains) and nonpathogenic E. coli (strains K12, W1485, and B) grown in foods. The E. coli cells (approximately 30,000 cells) were inoculated on the surface of 10 g of solid food samples (asparagus, broccoli, carrot, celery, cucumber, eggplant, ginger, green pepper, onion, potato, radish, tomato and beef) and in 10 ml of cow's milk, cultured statically at 10-25 degrees C for 1-14 days, and subjected to an acid challenge at 37 degrees C for 1 h in LB medium (pH 3.0). When grown at 20 and 25 degrees C in all foods, except for tomato and ginger, the strains showed a stationary-phase specific acid tolerance. The acid tolerance of the O157 strains changed depending on the types of foods (3-10% survival), but was clearly lower than that of the cells grown in EC medium (more than 90% survival). Tomato and ginger induced relatively high acid tolerances (10-30% survival) in the O157 strains irrespective of the growth phase, probably because of their acidity. No remarkable difference was observed in the acid tolerance between the O157 and nonpathogenic strains grown in all foods. When grown at 10 and 15 degrees C in the foods and EC medium, none of the strains showed the stationary-phase specific acid tolerance. In beef, broccoli, celery, potato and radish, the acid tolerance showed a tendency to decrease with the prolonged cultivation time. In other foods, the acid tolerance was almost constant (about 0.1% survival) irrespective of the growth stage. The mRNA level of glutamate decarboxylase genes (gadA and gadB) correlated to the acid tolerance level when the E. coli cells were grown at 25 degrees C, but was very low even in the stationary phase when the E. coli cells were grown at 15 degrees C or below.

  8. Clinical Usefulness of Monitoring Expression Levels of CCL24 (Eotaxin-2) mRNA on the Ocular Surface in Patients with Vernal Keratoconjunctivitis and Atopic Keratoconjunctivitis.

    Science.gov (United States)

    Shiraki, Yukiko; Shoji, Jun; Inada, Noriko

    2016-01-01

    Purpose. This study aimed to evaluate the clinical efficacy of using expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface as a biomarker in patients with vernal keratoconjunctivitis (VKC) and atopic keratoconjunctivitis (AKC). Methods. Eighteen patients with VKC or AKC (VKC/AKC group) and 12 control subjects (control group) were enrolled in this study. The VKC/AKC clinical score was determined by objective findings in patients by using the 5-5-5 exacerbation grading scale. All subjects underwent modified impression cytology and specimens were obtained from the upper tarsal conjunctiva. Expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface were determined using real-time reverse transcription polymerase chain reaction. Results. The VKC group was divided into two subgroups, depending on the clinical score: the active stage subgroup with 100 points or more of clinical scores and the stable stage subgroup with 100 points or less. CCL24 (eotaxin-2) mRNA expression levels in the active VKC/AKC stage subgroup were significantly higher than those in the stable VKC/AKC subgroup and the control group. Clinical scores correlated significantly with CCL24 (eotaxin-2) mRNA expression levels in the VKC group. Conclusions. CCL24 (eotaxin-2) mRNA expression levels on the ocular surface are a useful biomarker for clinical severity of VKC/AKC.

  9. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    Science.gov (United States)

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  10. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    Directory of Open Access Journals (Sweden)

    Cornelia Kilchert

    2015-12-01

    Full Text Available In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation.

  11. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Asiri R Wijenayaka

    Full Text Available Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL mRNA and down-regulated that of osteoprotegerin (OPG mRNA, causing an increase in the RANK:OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.

  12. Lower glutamic acid decarboxylase 65kD mRNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia

    Science.gov (United States)

    Glausier, JR; Kimoto, S; Fish, KN; Lewis, DA

    2014-01-01

    Background Altered GABA signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in schizophrenia and schizoaffective disorder. PFC levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67kD (GAD67) has been consistently reported to be lower in these disorders, but the status of the second GABA-synthesizing enzyme, GAD65, remains unclear. Methods GAD65 mRNA levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. GAD65 relative protein levels were quantified in a subset of subject pairs by confocal immunofluorescence microscopy. Results Mean GAD65 mRNA levels were 13.6% lower in schizoaffective disorder subjects, but did not differ in schizophrenia subjects, relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein measures within schizoaffective disorder subjects was not attributable to factors commonly comorbid with the diagnosis. Conclusions In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in subjects with schizoaffective disorder relative to subjects with schizophrenia, these findings may support an interpretation that GAD65 down-regulation provides a homeostatic response complementary to GAD67 down-regulation expression that serves to reduce inhibition in the face of lower PFC network activity. PMID:24993056

  13. Boric acid inhibits alveolar bone loss in rats by affecting RANKL and osteoprotegerin expression.

    Science.gov (United States)

    Sağlam, M; Hatipoğlu, M; Köseoğlu, S; Esen, H H; Kelebek, S

    2014-08-01

    The goal of the present study was to evaluate the effects of systemic boric acid on the levels of expression of RANKL and osteoprotegerin (OPG) and on histopathologic and histometric changes in a rat periodontitis model. Twenty-four Wistar rats were divided into three groups of eight animals each: nonligated (NL); ligature only (LO); and ligature plus treatment with boric acid (BA) (3 mg/kg per day for 11 d). A 4/0 silk suture was placed in a subgingival position around the mandibular right first molars; after 11 d the rats were killed, and alveolar bone loss in the first molars was histometrically determined. Periodontal tissues were examined histopathologically to assess the differences among the study groups. RANKL and OPG were detected immunohistochemically. Alveolar bone loss was significantly higher in the LO group than in the BA and NL groups (p boric acid may reduce alveolar bone loss by affecting the RANKL/OPG balance in periodontal disease in rats. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Directory of Open Access Journals (Sweden)

    Elin S. Blom

    2011-01-01

    Full Text Available Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2 and v-myc myelocytomatosis viral oncogene homolog (MYC, were increased in Alzheimer's disease (AD (P<.05. Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis.

  15. Osteoprotegerin (OPG), The Endogenous Inhibitor of Receptor Activator of NF-κB Ligand (RANKL), is Dysregulated in BRCA Mutation Carriers

    Science.gov (United States)

    Widschwendter, Martin; Burnell, Matthew; Fraser, Lindsay; Rosenthal, Adam N.; Philpott, Sue; Reisel, Daniel; Dubeau, Louis; Cline, Mark; Pan, Yang; Yi, Ping-Cheng; Gareth Evans, D.; Jacobs, Ian J.; Menon, Usha; Wood, Charles E.; Dougall, William C.

    2015-01-01

    Breast cancer development in BRCA1/2 mutation carriers is a net consequence of cell-autonomous and cell nonautonomous factors which may serve as excellent targets for cancer prevention. In light of our previous data we sought to investigate the consequences of the BRCA-mutation carrier state on RANKL/osteoprotegerin (OPG) signalling. We analysed serum levels of RANKL, OPG, RANKL/OPG complex, oestradiol (E2), and progesterone (P) during menstrual cycle progression in 391 BRCA1/2-mutation carriers and 782 noncarriers. These studies were complemented by analyses of RANKL and OPG in the serum and mammary tissues of female cynomolgus macaques (n = 88) and serum RANKL and OPG in postmenopausal women (n = 150). BRCA-mutation carriers had lower mean values of free serum OPG in particular in BRCA1-mutation carriers (p = 0.018) compared with controls. Among BRCA1/2 mutation carriers, lower OPG levels were associated with germline mutation locations known to confer an increased breast cancer risk (p = 0.003). P is associated with low OPG levels in serum and tissue, particularly in BRCA-mutation carriers (rho = − 0.216; p = 0.002). Serum OPG levels were inversely correlated (rho = − 0.545, p < 0.001) with mammary epithelial proliferation measured by Ki67 expression and increased (p = 0.01) in postmenopause. The P–RANKL/OPG system is dysregulated in BRCA-mutation carriers. These and previously published data provide a strong rationale for further investigation of antiprogestogens or an anti-RANKL antibody such as denosumab for breast cancer prevention. PMID:26629528

  16. Green tea polyphenols improve cardiac muscle mRNA, and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats

    Science.gov (United States)

    Epidemiologic studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on cardiac mRNA and protein levels of genes involved in insulin an...

  17. Positive correlation between patency and mRNA levels for cyclooxygenase-2 and prostaglandin E synthase in the uterine cervix of bitches with pyometra.

    Science.gov (United States)

    Tamada, Hiromichi; Adachi, Nahoko; Kawate, Noritoshi; Inaba, Toshio; Hatoya, Shingo; Sawada, Tsutomu

    2016-03-01

    Factors involved in patency of uterine cervices in the bitch with pyometra remain to be clarified. This study examined relationship between patency and mRNA levels for inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1, COX-2 and prostaglandin E synthase (PGES) in the uterine cervix of bitches with pyometra. Cervical patency was measured by inserting the stainless steel rods with different diameter into cervical canals. Levels of mRNA expression were determined by semi-quantitative reverse transcription-polymerase chain reaction. The cervical patency was positively correlated with mRNA levels for COX-2 and PGES, but not those for iNOS and COX-1. The results suggest that gene expression of COX-2 and PGES may be involved in the regulation of patency in the uterine cervix of bitches with pyometra.

  18. Plasma cytokines do not reflect expression of pro- and anti-inflammatory cytokine mRNA at organ level after cardiopulmonary bypass in neonatal pigs

    DEFF Research Database (Denmark)

    Brix-Christensen, V.; Vestergaard, C.; Chew, M.

    2003-01-01

    Background: Plasma concentrations of inflammatory markers are increased in response to the trauma of cardiac surgery and cardiopulmonary bypass (CPB). It is, however, unknown whether the plasma cytokine levels and cytokine mRNA expression at organ level reflect each other. Methods: Twenty...... increase in OI and increased plasma IL-8 and IL-10 concentrations in the CPB-pigs compared with the sham-pigs. Conclusion: The cytokine mRNA expression pattern was very different for the pigs killed already 0.5 h after the CPB procedure compared with the pigs killed 4 h post-CPB. The plasma cytokine levels...... poorly reflected mRNA expression of the pro- and anti-inflammatory cytokines....

  19. AFP mRNA level in enriched circulating tumor cells from hepatocellular carcinoma patient blood samples is a pivotal predictive marker for metastasis.

    Science.gov (United States)

    Jin, Junhua; Niu, Xiaojuan; Zou, Lihui; Li, Lin; Li, Shugang; Han, Jingli; Zhang, Peiying; Song, Jinghai; Xiao, Fei

    2016-08-01

    Circulating tumor cells (CTCs) quantification may be helpful for evaluating cancer dissemination, predicting prognosis and assessing therapeutic effectiveness and safety. In the present study, CTCs from blood samples of 72 patients with hepatocellular carcinoma (HCC) were enriched with anti-EpCAM nanoparticles. AFP mRNA level was detected by nested polymerase chain reaction (PCR) after enrichment of CTCs from HCC blood samples at 0, 3, 6, 9 and 12 months after hepatectomy, respectively. AFP mRNA expression in CTCs was positive in 43 patients (59.7%) and negative in 29 patients (40.3%) before hepatectomy. Among 43 patients with positive AFP mRNA expression in CTCs before hepatectomy, 10 and 11 were diagnosed as intrahepatic/extrahepatic metastasis before and after hepatectomy, respectively. In addition, these 21 patients with metastasis had persisting positive AFP mRNA of CTCs during the whole tested year. Specifically, 3 patients with AFP mRNA negative in CTCs before hepatectomy changed to be positive at 6 and 9 months, and 2 of them were diagnosed as metastasis 12 months after hepatectomy. We conclude that the positive AFP mRNA of CTCs can be a pivotal predictor for HCC metastasis before and after hepatectomy. The release of AFP expression from hepatocellular carcinoma cells into circulation must be a major source of HCC metastasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Developmental changes in the hypothalamic mRNA levels of prepro-orexin and orexin receptors and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Iwasa, Takeshi; Matsuzaki, Toshiya; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-11-01

    Orexin, which is also called as hypocretin (Hcrt), a product of the prepro-orexin (pp-orexin//Hcrt) gene, affects various physiological and behavioral functions, such as the sleep-wake cycle and appetite. The developmental changes in the hypothalamic mRNA levels of pp-prexin and the orexin receptors OX1R and OX2R and their sensitivity to fasting were evaluated in both male and female rats. During development, hypothalamic pp-orexin/Hcrt mRNA expression increased in both male and female rats, whereas hypothalamic OX1R mRNA expression decreased in both sexes. In addition, hypothalamic OX2R mRNA expression increased in male rats, but did not change in female rats. Fasting did not affect hypothalamic pp-orexin/Hcrt mRNA expression in either sex. Hypothalamic OX1R mRNA expression was increased by fasting in the prepubertal period (postnatal days 20 and 30) in female rats, but was not affected by fasting in males. In male rats, hypothalamic OX2R mRNA expression was decreased by fasting during the neonatal period (postnatal day 10), but not the prepubertal period (postnatal days 20 and 30). In females, hypothalamic OX2R mRNA expression was also decreased by fasting; however, the fasting-induced downregulation of hypothalamic OX2R expression persisted until postnatal day 20. These results indicate that the developmental patterns of components of the orexin system and their sensitivity to fasting during the neonatal and prepubertal periods only differ slightly between the sexes. These differences might be involved in the development of some physiological and behavioral functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  2. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ken-ichiro, E-mail: ken1nai@med.shimane-u.ac.jp; Yamaguchi, Toru, E-mail: yamaguch@med.shimane-u.ac.jp; Kanazawa, Ippei, E-mail: ippei.k@med.shimane-u.ac.jp; Sugimoto, Toshitsugu, E-mail: sugimoto@med.shimane-u.ac.jp

    2015-05-29

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-kB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10{sup −8} M human parathyroid hormone (PTH)-(1–34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. - Highlights: • AGEs are involved in bone quality deterioration in diabetes mellitus (DM). • AGEs increased sclerostin as well as apoptosis, and decreased RANKL in osteocytes. • The effects of AGEs on osteocyte function were antagonized by human PTH-(1–34). • AGEs may cause low bone turnover and cortical porosity in DM. • PTH may be effective in bone quality deterioration by improving osteocyte function.

  3. Trypsinogen-like cDNAs and quantitative analysis of mRNA levels from the Indianmeal moth, Plodia interpunctella.

    Science.gov (United States)

    Zhu, Y C; Kramer, K J; Dowdy, A K; Baker, J E

    2000-11-01

    -like specificity to the enzymes. Quantitative RT-PCR analyses showed that, in fourth instar larvae, RC688s had 1.6-fold higher PiT2a trypsinogen-like mRNA than did HD198r. Expression of PiT2b mRNA was 3.4-fold higher in HD198r than in RC688s. Expression of PiT2c mRNA was 2.8-fold higher in RC688s than in HD198r. Mean accumulation levels of mRNAs for all three trypsinogen-like proteins were slightly higher in RC688s than in HD198r based on total RNA, and 1.3-fold higher in RC688s than in HD198r based on wet weight of larval body tissues.

  4. High-level mRNA quantification of proliferation marker pKi-67 is correlated with favorable prognosis in colorectal carcinoma.

    Science.gov (United States)

    Ihmann, Thomas; Liu, Jian; Schwabe, Wolfgang; Häusler, Peter; Behnke, Detlev; Bruch, Hans-Peter; Broll, Rainer; Windhövel, Ute; Duchrow, Michael

    2004-12-01

    The present study retrospectively examines the expression of pKi-67 mRNA and protein in colorectal carcinoma and their correlation to the outcome of patients. Immunohistochemistry and quantitative RT-PCR were used to analyze the expression of pKi-67 in 43 archival specimens of patients with curatively resected primary colorectal carcinoma, who were not treated with neo-adjuvant therapy. We determined a median pKi-67 (MIB-1) labeling index of 31.3% (range 10.3-66.4%), and a mean mRNA level of 0.1769 (DeltaC(T): range 0.01-0.69); indices and levels did not correlate. High pKi-67 mRNA DeltaC(T) values were associated with a significantly favorable prognosis, while pKi-67 labeling indices were not correlated to prognostic outcome. A multivariate analysis of clinical and biological factors indicated that tumor stage (UICC) and pKi-67 mRNA expression level were independent prognostic factors. Quantitatively determined pKi-67 mRNA can be a good and new prognostic indicator for primary resected colorectal carcinoma.

  5. Association between ERCC1 and TS mRNA levels and disease free survival in colorectal cancer patients receiving oxaliplatin and fluorouracil (5-FU) adjuvant chemotherapy.

    Science.gov (United States)

    Li, Sheng; Zhu, Liangjun; Yao, Li; Xia, Lei; Pan, Liangxi

    2014-08-29

    Aim was to explore the association of ERCC1 and TS mRNA levels with the disease free survival (DFS) in Chinese colorectal cancer (CRC) patients receiving oxaliplatin and 5-FU based adjuvant chemotherapy. Total 112 Chinese stage II-III CRC patients were respectively treated by four different chemotherapy regimens after curative operation. The TS and ERCC1 mRNA levels in primary tumor were measured by real-time RT-PCR. Kaplan-Meier curves and log-rank tests were used for DFS analysis. The Cox proportional hazards model was used for prognostic analysis. In univariate analysis, the hazard ratio (HR) for the mRNA expression levels of TS and ERCC1 (logTS: HR = 0.820, 95% CI = 0.600 - 1.117, P = 0.210; logERCC1: HR = 1.054, 95% CI = 0.852 - 1.304, P = 0.638) indicated no significant association of DFS with the TS and ERCC1 mRNA levels. In multivariate analyses, tumor stage (IIIc: reference, P = 0.083; IIb: HR = 0.240, 95% CI = 0.080 - 0.724, P = 0.011; IIc: HR TS and ERCC1 mRNA levels were not significantly associated with the DFS (TS: P = 0.264; ERCC1: P = 0.484). The mRNA expression of ERCC1 and TS were not applicable to predict the DFS of Chinese stage II-III CRC patients receiving 5-FU and oxaliplatin based adjuvant chemotherapy.

  6. Statin Treatment Is Associated with Reduction in Serum Levels of Receptor Activator of NF-κB Ligand and Neutrophil Activation in Patients with Severe Carotid Stenosis

    Directory of Open Access Journals (Sweden)

    Sébastien Lenglet

    2014-01-01

    Full Text Available Systemic and intraplaque biomarkers have been widely investigated in clinical cohorts as promising surrogate parameters of cardiovascular vulnerability. In this pilot study, we investigated if systemic and intraplaque levels of calcification biomarkers were affected by treatment with a statin in a cohort of patients with severe carotid stenosis and being asymptomatic for ischemic stroke. Patients on statin therapy had reduced serum osteopontin (OPN, RANKL/osteoprotegerin (OPG ratio, and MMP-9/pro-MMP-9 activity as compared to untreated patients. Statin-treated patients exhibited increased levels of collagen and reduced neutrophil infiltration in downstream portions of carotid plaques as compared to untreated controls. In upstream plaque portions, OPG content was increased in statin-treated patients as compared to controls. Other histological parameters (such as lipid, macrophage, smooth muscle cell, and MMP-9 content as well as RANKL, RANK, and OPG mRNA levels did not differ between the two patient groups. Serum RANKL/OPG ratio positively correlated with serum levels of neutrophilic products, intraplaque neutrophil, and MMP-9 content within downstream portions of carotid plaques. In conclusion, statin treatment was associated with improvement in serum RANKL levels and reduced neutrophil activity both systemically and in atherosclerotic plaques.

  7. Effects of ω3- and ω6-Polyunsaturated Fatty Acids on RANKL-Induced Osteoclast Differentiation of RAW264.7 Cells: A Comparative in Vitro Study

    Directory of Open Access Journals (Sweden)

    Jan C. A. Boeyens

    2014-07-01

    Full Text Available Polyunsaturated fatty acids (PUFAs have been reported to have an anabolic effect on bone in vivo, but comparative studies to identify inhibitors of osteoclast formation amongst ω3- and ω6-PUFAs are still lacking. Here we assessed the effects of the ω3-PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA and the ω6-PUFAs, arachidonic acid (AA and γ-linolenic acid (GLA on a RAW264.7 osteoclast differentiation model. The effects of PUFAs on RANKL-induced osteoclast formation were evaluated by counting tartrate resistant acid phosphatase (TRAP-positive multinucleated cells. PUFAs significantly inhibited RANKL-induced osteoclast formation in a dose-dependent manner with AA- and DHA-mediated inhibition being the strongest. Furthermore, RANKL-induced mRNA- and protein expression of the key osteoclastogenic genes cathepsin K and TRAP were inhibited by AA and more potently by DHA. Owing to the attenuated osteoclastogenesis by DHA and AA, actin ring formation and bone resorptive activity of these cells as evaluated on bone-mimetic plates were severely compromised. Hence, of the tested PUFAs, AA and DHA were found to be the most effective in inhibiting RANKL-induced osteoclast formation with the latter providing the strongest inhibitory effects. Collectively, the data indicates that these PUFAs may play an important role in regulating bone diseases characterized by excessive osteoclast activity.

  8. Prognostic Impact of mRNA Expression Levels of HER1–4 (ERBB1–4 in Patients with Locally Advanced Rectal Cancer

    Directory of Open Access Journals (Sweden)

    Melanie Kripp

    2016-01-01

    Full Text Available Background. No predictive or prognostic biomarker is available for patients with locally advanced rectal cancer (LARC undergoing perioperative chemoradiotherapy (CRT. Members of the human epidermal growth factor receptor (HER family of receptor tyrosine kinases EGFR (HER1, ERBB1, HER2 (ERBB2, HER3 (ERBB3, and HER4 (ERBB4 are therapeutic targets in several cancers. The analysis was performed to assess expression levels and study the potential prognostic impact for disease-free and overall survival in patients with LARC. Patients and Methods. ERBB1–4 mRNA expression and tumor proliferation using Ki-67 (MKI67 mRNA were evaluated using RT-quantitative PCR in paraffin-embedded tumor samples from 86 patients (median age: 63 treated with capecitabine or 5-fluorouracil-based CRT within a phase 3 clinical trial. Results. A positive correlation of HER4 and HER2, HER3 and HER2, and HER4 and HER3 with each other was observed. Patients with high mRNA expression of ERBB1 (EGFR, HER1 had significantly increased risk for recurrence and death. Patients with high mRNA expression of MKI67 had reduced risk for relapse. Conclusion. This analysis suggests a prognostic impact of both ERBB1 and MKi67 mRNA expression in LARC patients treated with capecitabine or fluorouracil-based chemoradiotherapy.

  9. Biofilm Formation by Bacillus subtilis Requires an Endoribonuclease-containing Multisubunit Complex that Controls mRNA Levels for the Matrix Gene Repressor SinR

    Science.gov (United States)

    DeLoughery, Aaron; Dengler, Vanina; Chai, Yunrong; Losick, Richard

    2016-01-01

    Biofilm formation by Bacillus subtilis is largely governed by a circuit in which the response regulator Spo0A turns on the gene for the anti-repressor SinI. SinI, in turn, binds to and inactivates SinR, a dedicated repressor of genes for matrix production. Mutants of the genes ylbF, ymcA, and yaaT are blocked in biofilm formation, but the mechanism by which they act has been mysterious. A recent report attributed their role in biofilm formation to stimulating Spo0A activity. However, we detect no measurable effect on the transcription of sinI. Instead, we find that the block in biofilm formation is caused by an increase in the levels of SinR and of its mRNA. Evidence is presented that YlbF, YmcA and YaaT interact with, and control the activity of, RNase Y, which is known to destabilize sinR mRNA. We show that the processing of another target of RNase Y, cggR-gapA mRNA, similarly depends on YlbF and YmcA. Our work suggests that sinR mRNA stability is an additional posttranscriptional control mechanism governing the switch to multicellularity and raises the possibility that YlbF, YmcA, and YaaT broadly regulate mRNA stability as part of an RNase Y-containing, multi-subunit complex. PMID:26434553

  10. [Effect of processed Polygonum multiflorum on mRNA expression level of five subtypes of CYP450 enzymes in rat liver].

    Science.gov (United States)

    Huang, Chun-Lian; Fan, Xue-Mei; Li, Qian; Wang, Yi-Ming; Wang, Shu-Mei; Gong, Meng-Juan; Luo, Guo-An

    2017-01-01

    To observe the effect of processed Polygonum multiflorum on mRNA expression levels of five subtypes of CYP450 enzymes in rat liver. SD rats were randomly divided into the normal control group, processed P. multiflorum high dose and low dose groups (5.40 g•kg⁻¹ and 1.08 g•kg⁻¹). The rats in administration groups were continuously given with processed P. mutiflorum for 7 days by ig administration, and the rats in normal control group were given with the same volume of distilled water. After successive administration of 7 days, the serum biochemical indications were detected, and Real-time quantitative PCR technology was used to detect the mRNA expression levels of five subtypes of CYP450 enzymes in rat liver. Experimental results showed that AST was decreased significantly in both low and high dose groups. ALT was significantly decreased in low dose group and significantly increased in high dose group. The mRNA expression levels of five subtypes of CYP450 enzymes in rat liver were decreased in high dose and low dose groups in a dose-dependent manner. Especially the high dose processed P. multiflorum could significantly inhibit CYP1A2 and CYP2E1 mRNA expression levels in rats. The study showed that high dose P. multiflorum water extract had hepatotoxicity, and the degree of liver damage was increased with the increase of dose. It shall be noted that 5.40 g•kg⁻¹ water extract of P. multiflorum could significantly inhibit CYP1A2 and CYP2E1 mRNA expression levels in the liver of rats. Copyright© by the Chinese Pharmaceutical Association.

  11. siRNA down-regulation of FGA mRNA in HepG2 cells demonstrated that heterozygous abnormality of the Aα-chain gene does not affect the plasma fibrinogen level.

    Science.gov (United States)

    Takezawa, Yuka; Matsuda, Kazuyuki; Terasawa, Fumiko; Sugano, Mitsutoshi; Honda, Takayuki; Okumura, Nobuo

    2013-04-01

    We encountered two afibrinogenemia patients with homozygous and compound heterozygous FGA mutation. Of interest, the patients' parents, who are heterozygous, had normal levels of plasma fibrinogen; thus, we hypothesized that liver FGA mRNA levels were higher than those of FGB and/or FGG mRNA. To test the hypothesis, we quantitated mRNA levels of a normal liver and a human hepatocyte cell line, HepG2 cells, and performed siRNA-mediated down-regulation of the fibrinogen gene in HepG2 cells. mRNA levels were determined using real-time quantitative RT- PCR for three normal livers and HepG2 cells. Down-regulation of FGA, FGB, or FGG in HepG2 cells was performed by the addition of siRNA corresponding to each of the three genes, and the mRNA levels determined in the cells and the secreted fibrinogen concentration in media. The mRNA level of normal human liver was FGA=FGB>FGG and the FGG mRNA level was about 2-fold lower than the others, that of HepG2 cells was FGA>FGG>FGB and FGA mRNA was approximately 2- or 4-fold higher than FGG mRNA and FGB mRNA. When FGA, FGB, or FGG mRNA expression levels were down-regulated by nearby 50%, fibrinogen concentrations in media were 78%, 49%, or 57% of the control, respectively. Our results suggest that FGG mRNA levels limit fibrinogen expression in normal liver and HepG2 cells and that 50% reduction of FGA mRNA levels would not limit fibrinogen expression in normal liver and HepG2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  13. Marked increase of CYP24A1 mRNA level in hepatocellular carcinoma cell lines following vitamin D administration.

    Science.gov (United States)

    Horvath, Evelin; Lakatos, Péter; Balla, Bernadett; Kósa, János Pál; Tóbiás, Bálint; Jozilan, Hasan; Borka, Katalin; Horváth, Henrik Csaba; Kovalszky, Ilona; Szalay, Ferenc

    2012-11-01

    1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits cell growth and induces apoptosis in numerous types of tumors. We aimed to examine the mRNA and protein expression of 1,25(OH)(2)D(3)-inactivating CYP24A1 and mRNA expression of the activating CYP27B1 enzymes, as well as that of vitamin D receptor (VDR), in hepatocellular carcinoma (HCC) cell cultures in response to 1,25(OH)(2)D(3) administration. Increasing amounts of 1,25(OH)(2)D(3) (0.256-10 nM) were added to cultures of HepG2, Huh-Neo, Hep3B, Huh5-15 human HCC cell lines and cells then incubated for various time periods (30 min-28 h). The mRNA expression was analyzed by real time reverse transcription-polymerase chain reaction (RT-PCR). CYP24A1 protein in HepG2 cells was detected by immuncytochemistry. CYP24A1 mRNA expression significantly (pVDR gene expression in any cell cultures. Immuncytochemistry in HepG2 cells proved that gene activation was followed by CYP24A1 protein synthesis. Our novel data indicate that administration of 1,25(OH)(2)D(3) results in a marked increase of CYP24A1 mRNA expression in some, but not all, human HCC lines in vitro. These differences could be dependent upon the origin of the tumor cells.

  14. Castration decreases single cell levels of mRNA encoding glutamic acid decarboxylase in the diagonal band of broca and the sexually dimorphic nucleus of the preoptic area.

    Science.gov (United States)

    Sagrillo, C A; Selmanoff, M

    1997-09-01

    Using quantitative in situ hybridization histochemistry (ISHH), we determined the effect of castration on single cell levels of glutamic acid decarboxylase (GAD) mRNA in discrete hypothalamic regions of the male rat brain associated with the control of gonadotropin secretion. A 48-base oligodeoxynucleotide probe was used to detect with equal affinity the two isoforms of GAD message, GAD65 and GAD67. GAD message also was quantitated in a number of selected areas of the brain to contrast GAD gene expression amongst several populations of GABAergic neurons. Comparison of 11 brain regions demonstrated a 9.3-fold range in the quantity of single cell GAD mRNA with levels being highest in the amygdala and the diagonal band of Broca, moderate in the piriform cortex, caudate nucleus, substantia innominata, globus pallidus, cingulate cortex and medial septal nucleus, and lowest in the lateral septal nucleus and the medial preoptic nucleus (MPN). Castration markedly reduced single cell GAD mRNA levels in the DBB and the MPN, two discrete hypothalamic structures known to contain dendritic fields, cell bodies, and axons of GnRH neurons projecting to the median eminence. A striking finding was a dense core of steroid-sensitive GABAergic neurons within the MPN comprising the sexually dimorphic nucleus of the preoptic area (SDN-POA). Similar to the MPN as a whole, the amount of GAD mRNA expressed by cells in the SDN-POA of sham operated control rats was greater than in castrated animals. GAD mRNA levels were inversely related to serum LH titers, suggesting a role for these neurons in the mechanism controlling gonadal steroid negative feedback on LH secretion. This report provides the basis for future work to determine if GAD65, GAD67 or whether both isoforms are affected by gonadal steroid input.

  15. Developmental changes in the hypothalamic mRNA expression levels of PACAP and its receptor PAC1 and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Iwasa, Takeshi; Matsuzaki, Toshiya; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Yiliyasi, Maira; Kato, Takeshi; Kuwahara, Akira; Irahara, Minoru

    2016-08-01

    The actions and responses of hypothalamic appetite regulatory and factors change markedly during the neonatal to pre-pubertal period. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been found to play pivotal roles in the regulation of metabolic and nutritional status through its specific receptor PAC1. PACAP/PAC1 have anorectic roles, and their functions are regulated by leptin in adulthood. In the present study, we showed that hypothalamic PACAP mRNA expression decreases during the neonatal to pre-pubertal period (from postnatal day 10-30) in both male and female rats. During this period, hypothalamic PACAP mRNA expression was not affected by 24h fasting in either sex, while the serum leptin levels (leptin is a positive regulator of hypothalamic PACAP expression in adulthood) of both sexes were decreased by fasting. On the other hand, hypothalamic PAC1 mRNA expression did not change during the neonatal to pre-pubertal period in either sex; however, its levels were consistently higher in males than in females. Hypothalamic PAC1 mRNA expression was decreased by 24h fasting in males, but no such changes were observed in females. These results indicate while hypothalamic PACAP expression is sensitive to a negative energy state and the serum leptin level in adulthood, no such relationships are seen in the pre-pubertal period. In addition, we speculate that differences in the gonadal steroidal milieu might induce sexual dimorphism in the basal hypothalamic PAC1 mRNA level and its response to fasting. The mechanisms responsible for and the physiological effects of such changes in hypothalamic PACAP and PAC1 expression during the developmental period remain to be clarified. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. PAI-1 mRNA expression and plasma level in rheumatoid arthritis: relationship with 4G/5G PAI-1 polymorphism.

    Science.gov (United States)

    Muñoz-Valle, José Francisco; Ruiz-Quezada, Sandra Luz; Oregón-Romero, Edith; Navarro-Hernández, Rosa Elena; Castañeda-Saucedo, Eduardo; De la Cruz-Mosso, Ulises; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio; Castro-Alarcón, Natividad; Parra-Rojas, Isela

    2012-12-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the synovial membrane, cartilage and bone. PAI-1 is a key regulator of the fibrinolytic system through which plasminogen is converted to plasmin. The plasmin activates the matrix metalloproteinase system, which is closely related with the joint damage and bone destruction in RA. The aim of this study was to investigate the relationship between 4G/5G PAI-1 polymorphism with mRNA expression and PAI-1 plasma protein levels in RA patients. 113 RA patients and 123 healthy subjects (HS) were included in the study. The 4G/5G PAI-1 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism method; the PAI-1 mRNA expression was determined by real-time PCR; and the soluble PAI-1 (sPAI-1) levels were quantified using an ELISA kit. No significant differences in the genotype and allele frequencies of 4G/5G PAI-1 polymorphism were found between RA patients and HS. However, the 5G/5G genotype was the most frequent in both studied groups: RA (42%) and HS (44%). PAI-1 mRNA expression was slightly increased (0.67 fold) in RA patients with respect to HS (P = 0.0001). In addition, in RA patients, the 4G/4G genotype carriers showed increased PAI-1 mRNA expression (3.82 fold) versus 4G/5G and 5G/5G genotypes (P = 0.0001), whereas the sPAI-1 plasma levels did not show significant differences. Our results indicate that the 4G/5G PAI-1 polymorphism is not a marker of susceptibility in the Western Mexico. However, the 4G/4G genotype is associated with high PAI-1 mRNA expression but not with the sPAI-1 levels in RA patients.

  17. Der RANKL-Inhibitor als neue Therapie gegen Frakturen

    Directory of Open Access Journals (Sweden)

    Muschitz Ch

    2011-01-01

    Full Text Available Osteoporotische Frakturen stellen in den westlichen Industrienationen ein erhebliches Gesundheitsproblem dar, weil sie gravierende medizinische und ökonomische Folgen verursachen. Wissenschaftliche Erkenntnisse über die Regulation des Knochenstoffwechsels führten zur Entwicklung von Denosumab, einem neuartigen Wirkstoff zur Behandlung der postmenopausalen Osteoporose. Denosumab ist ein RANK-Ligand (RANKL- Inhibitor. Durch die Bindung von Denosumab an RANKL wird RANKL daran gehindert, seinen Rezeptor RANK auf der Oberfläche von Osteoklasten und deren Vorläuferzellen zu aktivieren. Durch die Unterbrechung der RANKL/RANK-Interaktion wird die Bildung, die Funktion und das Überleben der Osteoklasten inhibiert und dadurch sowohl die Knochenresorption im kortikalen als auch im trabekulären Knochen vermindert. Mehrere klinische Phase- 3-Studien mit Denosumab belegen die Verbesserung der Knochendichte bei Frauen mit postmenopausaler Osteoporose. In einer großen Phase- 3-Studie (FREEDOM-Studie bei fast 8000 Osteoporosepatientinnen wurde die fraktursenkende Wirkung von Denosumab 3 Jahre untersucht. Die Daten nach 3-jähriger Behandlung zeigen im Vergleich zu einer Behandlung mit Placebo eine signifikante Verringerung des Frakturrisikos um bis zu 68 %. Dabei erwies sich die Therapie insgesamt als gut verträglich.

  18. Association between OPG, RANK and RANKL gene polymorphisms ...

    Indian Academy of Sciences (India)

    Association between OPG, RANK and RANKL gene polymorphisms and susceptibility to acute coronary syndrome in Korean population. Won-Seok Choe Hack-Lyoung Kim Jung-Kyu Han Young-Eun Choi Borami Seo Hyun-Jai Cho Han-Kwang Yang Kyu-Joo Park Jin-Shik Park Hun-Jun Park Pum-Joon Kim Sang-Hong ...

  19. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  20. CD40L and IL-4 stimulation of acute lymphoblastic leukemia cells results in upregulation of mRNA level of FLICE--an important component of apoptosis.

    Directory of Open Access Journals (Sweden)

    Radosław Jaworowski

    2007-03-01

    Full Text Available The use of cancer vaccines based on dendritic cells (DC presenting tumor antigens can be a promising tool in the treatment of leukemia. The functional characteristics of leukemia derived DC is still to be elucidated. CD40 promotes survival, proliferation and differentiation of normal B cells. CD40 triggering was used to enhance the poor antigen-presenting capacity of leukemic B-cells. Since it is still unclear whether CD40 ligation drives neoplastic B-cells to apoptosis or not, we assessed the mRNA expression of FLICE, FAS, FADD and TRADD - important components of apoptosis machinery, using real-time PCR in acute lymphoblastic leukemia cells before and after CD40 and IL-4 stimulation. ALL cells stimulated with CD40L/IL-4 expressed dendritic cell phenotype at mRNA and protein levels (upregulation of main costimulatory and adhesion molecules noted in real-time RT PCR and flow cytometry; they also expressed higher amounts of mRNA for FLICE, TRADD and FADD after CD40L/IL-4 stimulation. However differences statistically significant comparing cells cultured with CD40L/IL-4 and medium alone regarded only FLICE. Concluding, we showed upregulation of important elements of apoptosis at mRNA level in ALL cells after CD40 ligation.

  1. Inhibition of the RANK/RANKL signaling with osteoprotegerin prevents castration-induced acceleration of bone metastasis in castration-insensitive prostate cancer.

    Science.gov (United States)

    Takayama, Koichiro; Inoue, Takamitsu; Narita, Shintaro; Maita, Shinya; Huang, Mingguo; Numakura, Kazuyuki; Tsuruta, Hiroshi; Saito, Mitsuru; Maeno, Atsushi; Satoh, Shigeru; Tsuchiya, Norihiko; Habuchi, Tomonori

    2017-07-01

    Androgen deprivation therapy (ADT) for patients with metastatic or locally advanced prostate cancer reduces bone mineral density by stimulating receptor activator of nuclear factor kappa-B (RANK) signaling in osteoclasts. The involvement of the RANK/RANKL signaling in ADT-induced acceleration of bone metastasis in castration-insensitive prostate cancer was examined in a murine model using osteoprotegerin (OPG). Male Balb/c nude mice were divided into three groups: the non-castration, castration, and castration + OPG groups. PC-3M-luc-C6 was injected into the left ventricle of the mice. Recombinant OPG was injected intravenously twice weekly in the castration + OPG group. In-vivo imaging system (IVIS ® ) determined that the prevalence and photon counts of bone metastasis in the castration group were significantly higher than that in the non-castration and castration + OPG groups. The mean number of RANKL-positive osteoblasts and the mean serum RANKL level in the castration group were significantly higher than those in the non-castration group. RANKL-enhanced activation of osteoclasts was attenuated in the castration + OPG group. These results suggest that the mechanisms of RANK/RANKL signaling are involved in the ADT-induced acceleration of bone metastasis in castration-insensitive prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Photobiomodulation on Bax and Bcl-2 Proteins and SIRT1/PGC-1α Axis mRNA Expression Levels of Aging Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2014-01-01

    Full Text Available Objective. This study aimed to analyze the effects of low level laser irradiation (LLLI on Bax and IGF-1 and Bcl-2 protein contents and SIRT1/PGC-1α axis mRNA expression levels to prevent sarcopenia in aged rats. Material and Methods. Twenty female Sprague Dawley rats (18 months old were randomly divided into two groups (n=10 per group: control (CON and LLLI groups. The gallium-aluminum-arsenium (GaAlAs laser irradiation at 810 nm was used in the single point contact mode (3.75 J/cm2; 0.4 cm2; 125 mW/cm2; 30 s. Bax, Bcl-2, and IGF-1 proteins and SIRT1/PGC-1α axis mRNA expression were assessed 24 h after LLLI on gastrocnemius in aged rat. Results. Gastrocnemius muscle weights, gastrocnemius mass/body mass, Bcl-2/BAX ratio, Bcl-2 protein, IGF-1 protein, and the mRNA contents in SIRT1, PGC-1α, NRF1, TMF, and SOD2 were significantly (P<0.05 increased by LLLI compared to CON group without LLLI. However, levels of BAX protein and caspase 3 mRNA were significantly attenuated by LLLI compared to CON group (P<0.05. Conclusion. LLLI at 810 nm inhibits sarcopenia associated with upregulation of Bcl-2/BAX ratio and IGF-1 and SIRT1/PGC-1α axis mRNA expression in aged rats. This indicates that LLLI has potential to decrease progression of myocyte apoptosis in sarcopenic muscles.

  3. Molecular analysis of methylmalonic acidemia: Identification of novel mutations in the methylmalonyl-CoA mutase gene with decreased level of mutant mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, M.; Matsubara, Y.; Mikami, H.; Narisawa, K. [Tohoku Univ. School of Medicine, Sendai (Japan)

    1994-09-01

    Deficiency of methylmalonyl-CoA mutase (MCM) results in methylmalonic acidemia, which is inherited as an autosomal recessive trait and clinically characterized by metabolic ketoacidosis. Previous studies of Caucasian and African American patients identified seven MCM mutations, and we also detected four missense substitutions (Ala197Thr, Val368Asp, Arg369His and Val669Glu). However, mutations with decreased level of MCM mRNA, which accounts for at least 25% of mutations among Caucasian patients, have not been reported. Our study on eight Japanese patients indicated that 13 of 16 mutant alleles (81%) showed decreased level of MCM mRNA, suggesting that these {open_quotes}low message{close_quotes} alleles are likely to be common contributors to MCM deficiency. Reverse transcription/polymerase chain reaction (RT-PCR) of MCM mRNA followed by analysis on a fluorescent fragment analyzer indicated that the level of these mutant mRNAs was less than 1% controls. We were able to amplify such mutant mRNAs by nested PCR and directly determine the primary structure. Sequence analysis revealed three novel mutations: a G-to-T substitution at nucleotide position 425, a 2 bp deletion at nt 769 and 770, and a G-to-T substitution at nt 326. The first mutation (G425T) resulted in the substitution of a termination codon for glutamic acid at amino acid position 117. The analysis of 17 Japanese patients revealed the presence of G425T in 7 alleles (21%), suggesting a relatively high incidence of the mutation among Japanese patients. This observation is in sharp contrast to previous reports describing diverse heterogeneity of MCM mutations among Caucasians. Our report is the first to identify MCM mutations that decrease the stability of MCM mRNA. Amplification of trace amount of mRNA followed by sequencing analysis may provide useful tool for identifying such mutations.

  4. Differential dopamine-induced prolactin mRNA levels in various prolactin-secreting cell (sub)populations.

    Science.gov (United States)

    Kazemzadeh, M; Velkeniers, B; Herregodts, P; Collumbien, R; Finné, E; Derde, M P; Vanhaelst, L; Hooghe-Peters, E L

    1992-03-01

    We have examined the effects of dopamine on prolactin gene expression using quantitative in-situ hybridization histochemistry in different pituitary cell (sub)populations separated according to their density on a discontinuous Percoll gradient. Administration of dopamine resulted in a drastic reduction in hybridization of 35S-labelled DNA probe complementary to prolactin mRNA in total pituitary cells and in lactotrophs with low density. In contrast, dopamine significantly stimulated mRNA accumulation in prolactin-secreting cells with high density compared with other cell layers. The combined use of Percoll gradient and quantitative in-situ hybridization is a valuable and sensitive method with which to examine prolactin-secreting cell response to a given stimulation. Prolactin-secreting cells with high and low density clearly show functional heterogeneity in their response to dopamine.

  5. Contraction-induced increases in Na+-K+-ATPase mRNA levels in human skeletal muscle are not amplified by activation of additional muscle mass

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Thomassen, Martin; Lundby, Carsten

    2005-01-01

    power output was the same in AL and L, but heart rate at the end of each exercise interval was higher in AL compared with L. One minute after exercise, arm venous blood lactate was higher in AL than in L. A higher level of blood epinephrine and norepinephrine was evident 3 min after exercise in AL...... compared with L. Nevertheless, none of the exercise-induced increases in a1, a2, ß1, and ß3 mRNA expression levels were higher in AL compared with L. The most abundant Na+-K+-ATPase subunit at the mRNA level was ß1, which was expressed 3.4 times than a2. Expression of a1, ß2, and ß3 was less than 5...

  6. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis.

    Science.gov (United States)

    Xu, Beibei; Qian, Kun; Zhang, Nan; Miao, Lijun; Cai, Jingxuan; Lu, Mingxing; Du, Yuzhou; Wang, Jianjun

    2017-10-01

    Juvenile hormone (JH) regulates the development and reproduction of insects. The sublethal effects of chlorantraniliprole on JH levels and mRNA expression of JH acid methyltransferase gene (CsJHAMT) and farnesyl diphosphate synthase genes (CsFPPS1 and CsFPPS2) in Chilo suppressalis (Walker) were investigated. Exposure of sublethal concentrations of chlorantraniliprole (LC10 and LC30 ) to the third instar larvae of C. suppressalis significantly increased the JH levels in all developmental stages investigated including larvae 72 h after treatment, the first, third and fifth day of female pupae, as well as newly emerged, 12-h-old and 24-h-old female adults. A general trend of increased mRNA expression levels of CsJHAMT, CsFPPS1and CsFPPS2 was also observed in LC10 and LC30 treatment groups. Notably, the mRNA expression level of CsJHAMT significantly increased by 7.46-fold in the larvae 72 h after LC30 treatment. A significant increase of the mRNA expression levels of CsFPPS2 was also observed in the fifth day female pupae of LC10 and LC30 treatment groups (2.60-fold and 2.62-fold, respectively) as well as in 12-h-old female adults of the LC30 treatment group (3.45-fold). Sublethal concentrations of chlorantraniliprole might upregulate the expression of JH biosynthesis genes and in turn result in an increase of JH level in C. suppressalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Cytokine mRNA expressions after racing at a high altitude and at sea level in horses with exercise-induced pulmonary hemorrhage.

    Science.gov (United States)

    Saulez, Montague N; Godfroid, Jacques; Bosman, Anamarie; Stiltner, Jackie L; Breathnach, Cormac C; Horohov, David W

    2010-04-01

    To determine concentrations of cytokine mRNA in horses with exercise-induced pulmonary hemorrhage (EIPH) after racing. 97 Thoroughbreds. Following tracheobronchoscopy, the severity of EIPH was graded (scale of 0 to 4), and venous blood samples were collected from 10 horses in each grade. After RNA isolation and cDNA synthesis, real-time PCR assay was conducted to detect cytokinespecific mRNA for interleukin (IL)-1, IL-6, and IL-10; interferon (INF)-gamma; and tumor necrosis factor (TNF)-alpha. Neither location nor grade of EIPH affected the expression of IL-1 and INF-gamma. There was significantly greater overall expression of IL-6 mRNA at sea level, with significantly more IL-6 expressed in horses with grade 4 EIPH than in horses with grade 0, 1, or 2 EIPH. At a high altitude, no difference was detected for IL-6 expression among the various EIPH grades. There was significantly greater overall expression of TNF-alpha mRNA at a high altitude; however, there was no difference within the various grades of EIPH. Expression of IL-10 was significantly affected by grade of EIPH because horses with grade 3 EIPH expressed significantly more IL-10 mRNA than did horses with grade 0 or 2 EIPH; this expression was not affected by location. At sea level, increased IL-6 expression was associated with more severe EIPH, and altitude may affect gene expressions of the proinflammatory cytokine TNF-alpha and anti-inflammatory cytokine IL-6. Studies on protein concentrations of cytokine expression are needed. The pathophysiologic importance of these findings remains to be explained.

  8. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  9. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells.

    Science.gov (United States)

    Tanaka, Ken-ichiro; Yamaguchi, Toru; Kanazawa, Ippei; Sugimoto, Toshitsugu

    2015-05-29

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-кB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10(-8) M human parathyroid hormone (PTH)-(1-34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles.

    Science.gov (United States)

    Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying

    2016-02-01

    To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.

  11. Smoking modulates interleukin-6:interleukin-10 and RANKL:osteoprotegerin ratios in the periodontal tissues.

    Science.gov (United States)

    César-Neto, J B; Duarte, P M; de Oliveira, M C G; Tambeli, C H; Sallum, E A; Nociti, F H

    2007-04-01

    This study evaluated the effect of smoking on the gene expression of interleukin-1alpha, -1ra, -6, -8 and -10, tumor necrosis factor-alpha, matrix metalloproteinase (MMP)-2 and -8, receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin, in sites with periodontitis. Gingival biopsies were divided into three groups: the healthy group (periodontally healthy subjects; n=10); the periodontitis group [subjects with severe chronic periodontitis who never smoked (probing depth>or=7 mm) (n=25)]; and the smoking group (subjects diagnosed with severe chronic periodontitis who smoked>or=1 pack per day for at least 10 years; n=25). Gene and protein expressions were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Data analysis demonstrated that, except for MMP-8 and osteoprotegerin, the levels of all factors were increased by inflammation (pperiodontitis compared with controls, whereas the levels of interleukin-10, MMP-8 and osteoprotegerin were lower (pSmoking lowered the levels of interleukin-1alpha, -8, -10, tumor necrosis factor-alpha, MMP-8 and osteoprotegerin, and increased the levels of interleukin-6 and -1ra in sites with a comparable type of periodontitis (psmoking modulates gene expression in the periodontium, and the influence of smoking on periodontal disease may involve effects of interleukin-6:interleukin-10 and RANKL:osteoprotegerin ratios.

  12. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma.

    Science.gov (United States)

    Davidson, B; Goldberg, I; Gotlieb, W H; Kopolovic, J; Ben-Baruch, G; Nesland, J M; Berner, A; Bryne, M; Reich, R

    1999-01-01

    The object of this study was to analyze the potential association between the expression of MMP-2, MMP-9, MT1-MMP and TIMP-2, and disease outcome in advanced-stage ovarian carcinomas. Sections from 70 paraffin-embedded blocks (36 primary ovarian carcinomas and 34 metastatic lesions) from 45 patients diagnosed with advanced stage ovarian carcinomas (FIGO stages III-IV) were studied using mRNA in situ hybridization (ISH) technique. Patients were divided retrospectively in two groups based on disease outcome. Long-term survivors (21 patients) and short-term survivors (24 patients) were defined using a double cut-off of 36 months for disease-free survival (DFS) and 60 months for overall survival (OS). Mean follow-up period for patients that were diagnosed with advanced-stage carcinoma was 70 months. The mean values for DFS and OS were 109 and 125 months for long-term survivors, as compared to 3 and 21 months for short-term survivors, respectively. Intense mRNA signals were detected more frequently in tumor cells of short-term survivors with use of all four probes. Comparable findings were observed in peritumoral stromal cells with ISH for MMP-2, MMP-9 and TIMP-2 mRNA. Notably, primary tumors with intense mRNA signal for TIMP-2 (No = 14) were uniformly associated with a fatal outcome. In univariate analysis of primary tumors, mRNA levels of TIMP-2 in stromal cells (P = 0.0002), as well as for MMP-9 (P = 0.012) and TIMP-2 (P = 0.02) in tumor cells, correlated with poor outcome. In univariate analysis of metastatic lesions, mRNA levels of TIMP-2 in stromal cells (P = 0.031), as well as for MMP-2 (P = 0.027) and MT1-MMP (P = 0.008) in tumor cells, correlated with poor outcome. Interestingly, the presence of MT1-MMP in stromal cells correlated with longer survival (P = 0.025). In a multivariate analysis of ISH results for primary tumors, TIMP-2 levels in stromal cells (P = 0.006) and MMP-9 levels in tumor cells (P = 0.011) retained their predictive value. We conclude that

  13. Demonstration of elevated type I and type III procollagen mRNA levels in cutaneous wounds treated with helium-neon laser. Proposed mechanism for enhanced wound healing.

    Science.gov (United States)

    Saperia, D; Glassberg, E; Lyons, R F; Abergel, R P; Baneux, P; Castel, J C; Dwyer, R M; Uitto, J

    1986-08-14

    To assess laser modulation of wound healing, full-thickness cutaneous wounds were produced in the backs of pigs, and subjected to treatment with helium-neon laser. For comparison, some wounds were treated with non-laser energy source (a tungsten light) or left untreated as controls. Type I and type III procollagen mRNA levels were determined in the wounds by molecular hybridization with cDNA probes. The results indicated that type I and type III mRNA levels were markedly increased at days 17 and 28 of the healing in wounds treated with He-Ne laser, when compared to control or tungsten light-treated wounds. The results suggest that helium-neon laser stimulates wound healing by enhancing procollagen gene expression. These observations may have relevance to previous clinical studies suggesting that helium-neon laser stimulates wound healing.

  14. Effects of sodium saccharin and linoleic acid on mRNA levels of Her2/neu and p53 in a human breast epithelial cell line.

    Science.gov (United States)

    Ogretmen, B; Ratajczak, H; Gendel, S M; Stark, B C

    1996-04-19

    The effects of two food-related chemicals (sodium saccharin and linoleic acid) on the levels of Her2/neu and p53 mRNA in a non-cancerous human breast epithelial cell line (HBL-100) were tested in comparison with the effects of the known tumor promoter phorbol 12-myristate 13-acetate (TPA). Treatments were made both with and without prior treatment with two well-known tumor initiators, N-nitroso-N-methylurea (NMU) or 7,12-dimethylbenz[a]anthracene (DMBA). The effects in general were small, the greatest being increases of 46-67% in Her2/neu mRNA levels in response to treatments with TPA or sodium saccharin following NMU treatments. These results demonstrate that sodium saccharin following NMU treatments might be involved in transcriptional regulation of Her2/neu in HBL-100 cells and suggest that its effects may not be limited to urinary bladder.

  15. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  16. The Allergic Airway Inflammation Repository - a user-friendly, curated resource of mRNA expression levels in studies of allergic airways

    OpenAIRE

    Gawel, Danuta; James, A. Rani; Benson, Mikael; Liljenstrom, R.; Muraro, A.; Nestor, Colm; Zhang, Huan; Gustafsson, Mika

    2014-01-01

    Public microarray databases allow analysis of expression levels of candidate genes in different contexts. However, finding relevant microarray data is complicated by the large number of available studies. We have compiled a user-friendly, open-access database of mRNA microarray experiments relevant to allergic airway inflammation, the Allergic Airway Inflammation Repository (AAIR, http://aair.cimed.ike.liu.se/). The aim is to allow allergy researchers to determine the expression profile of th...

  17. Individual and combining effects of anti-RANKL monoclonal antibody and teriparatide in ovariectomized mice

    Directory of Open Access Journals (Sweden)

    Naoto Tokuyama

    2015-06-01

    Full Text Available We examined the individual and combined effects of teriparatide and anti-RANKL (receptor activator of nuclear factor κB ligand monoclonal antibody in ovariectomized mice. Three-month-old female C57BL/6 mice were ovariectomized (OVX or sham operated. Four weeks after OVX, they were assigned to 3 different groups to receive anti-RANKL monoclonal antibody (Ab alone (5 mg/kg single injection at 4 weeks after OVX, Ab group, teriparatide alone (80 μg/kg daily injection for 4 weeks from 4 weeks after OVX, PTH group, or mAb plus teriparatide (Ab + PTH group. Mice were sacrificed 8 weeks after OVX. Bone mineral density (BMD was measured at the femur and lumbar spine. Hind limbs were subjected to histological and histomorphometric analysis. Serum osteocalcin and CTX-I levels were measured to investigate the bone turnover. Compared with Ab group, Ab + PTH group showed a significant increase in BMD at distal femur and femoral shaft. Cortical bone volume was significantly increased in PTH and Ab + PTH groups compared with Ab group. Bone turnover in Ab + PTH group was suppressed to the same degree as in Ab group. The number of TRAP-positive multinucleated cells was markedly reduced in Ab and Ab + PTH groups. These results suggest that combined treatment of teriparatide with anti-RANKL antibody has additive effects on BMD in OVX mice compared with individual treatment.

  18. RANK/RANKL/OPG signaling pathways in necrotic jaw bone from bisphosphonate-treated subjects

    Directory of Open Access Journals (Sweden)

    C. Di Nisio

    2015-02-01

    Full Text Available Osteonecrosis of the jaw (ONJ is a chronic complication affecting long-term bisphosphonate-treated subjects, recognized by non-healing exposed bone in the maxillofacial region. The pathophysiological mechanism underlying ONJ has not been fully elucidated. The aim of the present study was to investigate the role of RANK/RANKL/OPG signaling pathway and, in parallel, to evaluate angiogenic and matrix mineralization processes in jaw bone necrotic samples obtained from bisphosphonate-treated subjects with established ONJ. Necrotic bone samples and native bone samples were processed for Light and Field Emission in Lens Scanning Electron Microscope (FEISEM analyses, for Real-Time RT-PCR to evaluate the gene expression of TNFRSF11A (RANK, TNFSF11 (RANKL, and TNFSF11B (OPG and for immunohistochemical analyses of VEGF and BSP expression. Morphological analyses performed by Light microscope and FEISEM show empty osteocytic lacunae and alteration of lamellar organization with degradation of the mineralized bone matrix in necrotic bone samples. A significant increase in TNFRSF11A, TNFSF11, TRAF6 and NFAT2 gene expression, and a reduction of TNFSF11B gene transcription level compared is also showed in necrotic bone compared to control samples. No significant difference of VEGF expression is evidenced, while lower BSP expression in necrotic bone compared to healthy samples is found. Even if the pathogenesis of bisphosphonate-associated ONJ remains unknown, a link between oral pathogens and its development seems to exist. We suppose lipopolysaccharide produced by bacteria colonizing and infecting necrotic bone and the surrounding viable area could trigger RANK/RANKL/OPG signaling pathway and, in this context, osteoclasts activation could be considered as a protective strategy carried out by the host bone tissue to delimitate the necrotic area and to counteract infection.

  19. Effects of bamboo vinegar powder on growth performance and mRNA expression levels of interleukin-10, interleukin-22, and interleukin-25 in immune organs of weaned piglets

    Directory of Open Access Journals (Sweden)

    Yongjiu Huo

    2016-06-01

    Full Text Available The aim of this study was to explore the effects of bamboo vinegar powder on growth performance, diarrhea situation and mRNA expression levels of cytokines i.e., interleukin-10 (IL-10, interleukin-22 (IL-22, and interleukin-25 (IL-25 in immune organs of weaned piglets, and to accumulate theoretical data for the application of bamboo vinegar powder in weaned piglet production. Forty-five crossbred (Duroc × Landrace × Yorkshire, all male weaned piglets with similar body weight (6.74 ± 0.17 kg at 31 days of age were randomly assigned to 5 treatments with 3 replicates per treatment and 3 piglets in each replicate. The five treatments were as follows: CON (a basal diet, ANT (the basal diet + 0.12% antibiotics, BV1 (the basal diet + 0.1% bamboo vinegar powder, BV5 (the basal diet + 0.5% bamboo vinegar powder, BV10 (the basal diet + 1.0% bamboo vinegar powder. This experiment lasted 35 days. The growth performance and diarrhea situation were recorded. The relative mRNA expression levels of IL-10, IL-22 and IL-25 in liver, spleen, duodenum and mesenteric lymph nodes were detected by real-time PCR. Feed: gain of BV5 was significantly lower than that of CON (P < 0.05. In comparison with CON, diarrhea rate and diarrhea index of BV1 and BV5 all tended to decrease (P < 0.1. Compared with CON, mRNA expression level of IL-10 in liver of ANT tended to be lower (P < 0.1 and these of BV1, BV5 and BV10 were significantly reduced (P < 0.05. The mRNA expression levels of IL-10 in duodenum of ANT, BV1, BV5 and BV10 were all lower than those of CON, of which BV10 had significantly decreased IL-10 mRNA expression in duodenum (P < 0.05. The mRNA expression levels of IL-22 in duodenum of ANT, BV1, BV5 and BV10 all tended to be inhibited compared with CON (P < 0.1. With the increase of bamboo vinegar powder dosage, mRNA expression levels of IL-25 in spleen and mesenteric lymph nodes of BV1, BV5 and BV10 tended to be up-regulated. Overall

  20. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level

    DEFF Research Database (Denmark)

    Xue, Z T; Larsen, K; Jochimsen, B U

    1991-01-01

    The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere. Quantitative mRNA hybridization experiments using nodule-s...... was about 5-fold at 4% oxygen. No expression at atmospheric oxygen or in response to low oxygen was observed when using cDNA probes for other nodulin genes such as leghemoglobin c3, nodulin-22 and nodulin-44. Udgivelsesdato: 1991-May...

  1. Assessment of the relationship between melatonin, hormones of the pituitary-ovarian, -thyroid and -adrenocortical axes, and osteoprotegerin and its ligand sRANKL in girls with anorexia nervosa.

    Science.gov (United States)

    Ostrowska, Zofia; Ziora, Katarzyna; Oświęcimska, Joanna; Wołkowska-Pokrywa, Kinga; Szapska, Bożena

    2013-05-20

    It has been suggested that disturbances in melatonin (MEL) secretion might play a role in osteoporosis development in females with anorexia nervosa (AN). It might be hypothesized that changes in the levels of hormones of the pituitary-ovarian, -thyroid and -adrenocortical axes might mediate the potential relationship between MEL and bone tissue. We investigated whether a relationship existed between MEL and LH, FSH-E2, TSH-FT3, FT4 and ACTH-cortisol axes in girls with AN. We also aimed to establish whether such a relationship might adversely affect the balance of the OPG/sRANKL system. Eighty-six girls with AN and 21 healthy subjects aged 12.6 to 18.2 years participated in the study. The serum levels of hormones as well as OPG and sRANKL were determined by radioimmunoassay (RIA), immunoradiometric assay (IRMA) or enzyme-linked immunosorbent assay (ELISA) methods. Our study participants with AN showed a significant reduction in body mass and body mass index (BMI), a decrease in LH, E2 and FT3 concentrations, increased MEL concentration at 02.00 hours and increased amplitude between its nocturnal and morning levels (Δ MEL2.00/9.00) as well as an increase in cortisol concentration. These changes were associated with a significant increase of OPG and sRANKL levels and a decrease in the OPG/sRANKL ratio. BMI values correlated positively with LH, FSH, E2, FT3 and the OPG/sRANKL ratio while the correlation between BMI and cortisol was negative. Δ MEL2.00/9.00 correlated positively with cortisol and negatively with LH, FSH, E2, FT3 concentrations and the OPG/sRANKL ratio. A positive correlation was observed between LH, E2 and the OPG/sRANKL ratio as well as between cortisol and sRANKL while the correlation between LH and OPG as well as between cortisol and the OPG/sRANKL ratio was negative. E2 and LH were shown to be significant and independent predictors of Δ MEL2.00/9.00. LH turned out to be a significant and independent predictor of OPG, cortisol and FT3 were

  2. Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats.

    Science.gov (United States)

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru

    2016-11-01

    The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy

  3. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats.

    Science.gov (United States)

    Ma, Jiangwei; Qiao, Zengyong; Xu, Biao

    2013-10-01

    The aim of this study was to characterise the effects of ischemic preconditioning (IP) on heart function parameters (ΔST and ΔT), activities of serum creatine kinase (CK), lactate dehydrogenase (LDH), and levels of serum nitric oxide (NO), malondialdehyde (MDA), and myocardium Caspase-3 mRNA, SOCS-1, SOCS-3, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression levels and Apoptosis index in myocardium IR rats. Results showed that ΔST and ΔST values in IP group were markedly lower than those in IR group. Compared with IR group, IP significantly (p myocardium Caspase-3 mRNA (0.303 ± 0.021 vs 0.515 ± 0.022) gene expression (p myocardium SOCS-1 (0.241 ± 0.031 vs 0.596 ± 0.036), SOCS-3 (0.258 ± 0.031 vs 0.713 ± 0.057), TNF-α (0.137 ± 0.011 vs 0.427 ± 0.035) and IL-6 (0.314 ± 0.021 vs 0.719 ± 0.064) mRNA gene expression (p < 0.01) compared to IR model group. We conclude that IP is effective in the therapy of heart disease. These findings may have implications for the clinical development of preconditioning-based therapies for ischemic heart disease.

  4. Hepatic mRNA expression and plasma levels of insulin-like growth factor-I (IGF-I in broiler chickens selected for different growth rates

    Directory of Open Access Journals (Sweden)

    Poliana Fernanda Giachetto

    2004-01-01

    Full Text Available The hepatic expression and plasma concentrations of IGF-I were investigated in three broiler chicken strains selected for different growth rates (HP-Hubbard-Pettersen, a fast growing strain; NN-Naked-neck, a strain with an intermediate growth rate and a heterozygous genotype, and C-Caipira, a slow growing crossbred strain. The chickens were studied at 1, 21 and 42 days of age and had free access to food throughout the study. Hepatic IGF-I mRNA expression was assessed by dot blot analysis using a randomly labeled chicken IGF-I cDNA as the probe and plasma IGF-I concentrations were assayed by radioimmunoassay. The hepatic levels of IGF-I mRNA increased from 1 to 21 days of age in all strains, with NN chickens showing a higher (p < 0.05 IGF-I expression than the other strains. Plasma IGF-I concentrations increased (p < 0.05 with broiler chicken age, but there were no significant differences among the strains. These results indicate that despite differences in the growth rates among the strains, the changes in the expression of IGF-I mRNA in liver and in the plasma levels of IGF-I were independent of broiler chicken strain, but varied with chicken age.

  5. XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression.

    Science.gov (United States)

    Bartolucci, Roberta; Wei, Jia; Sanchez, Jose Javier; Perez-Roca, Laia; Chaib, Imane; Puma, Francesco; Farabi, Raffaele; Mendez, Pedro; Roila, Fausto; Okamoto, Tatsuro; Taron, Miquel; Rosell, Rafael

    2009-01-01

    Molecular markers can help identify patients with early-stage non-small-cell lung cancer (NSCLC) with a high risk of relapse. Excision repair cross-complementing 1 (ERCC1), Xeroderma pigmentosum group G (XPG), and breast cancer 1 (BRCA1) are involved in DNA damage repair, whereas ribonucleotide reductase M1 (RRM1) is implicated in DNA synthesis. Expression levels of these molecules might therefore have a prognostic role in lung cancer. We examined ERCC1, RRM1, XPG, and BRCA1 mRNA levels by real-time quantitative polymerase chain reaction in 54 patients with stage IB-IIB resected NSCLC. A strong correlation was observed between the 4 genes. For patients with low BRCA1, regardless of XPG mRNA expression levels, disease-free survival (DFS) was not reached. For patients with intermediate/high BRCA1 and high XPG, DFS was 50.7 months. However, for patients with intermediate/high BRCA1 and low/intermediate XPG, DFS decreased to 16.3 months (P = .002). Similar differences were observed in overall survival, with median survival not reached for patients with low BRCA1, regardless of XPG levels, or for patients with intermediate/high BRCA1 and high XPG. Conversely, for patients with intermediate/high BRCA1 levels and low/intermediate XPG levels, median survival dropped to 25.5 months (P = .007). BRCA1 and XPG were identified as independent prognostic factors for both median survival and DFS. High BRCA1 mRNA expression confers poor prognosis in early NSCLC, and the combination of high BRCA1 and low XPG expression still further increases the risk of shorter survival. These findings can help optimize the customization of adjuvant chemotherapy.

  6. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron.

    Science.gov (United States)

    Zhang, Jianzhen; Zhu, Kun Yan

    2006-09-01

    Chitin synthase (EC 2.4.1.16) is a crucial enzyme responsible for chitin biosynthesis in all chitin-containing organisms. This paper reports a complete cDNA encoding chitin synthase 1 (AqCHS1), change of AqCHS1 mRNA level in response to diflubenzuron exposure, and concentration-dependent effect of diflubenzuron on chitin synthesis in the common malaria mosquito (Anopheles quadrimaculatus). The cDNA consists of 5723 nucleotides, including an open reading frame (ORF) of 4734 nucleotides that encode 1578 amino acid residues and a non-translated region of 989 nucleotides. The deduced amino acid sequence contains all the chitin synthase signature motifs (EDR, QRRRW and SWGTR) and shows 97% identity to that of An. gambiae (AgCHS1, XM_321337). Northern blot and real-time quantitative PCR analyses revealed a significant increase of AqCHS1 mRNA level in the larvae exposed to diflubenzuron at 100 and 500 microg/L. As confirmed by real-time quantitative PCR, AqCHS1 mRNA level was enhanced by 2-fold in the larvae exposed to diflubenzuron at 500 microg/L for 24 h. In contrast, exposures of the larvae to diflubenzuron at 4.0, 20, 100 and 500 microg/L for 48 h resulted in decreases of chitin content by 9.0%, 43%, 58% and 76%, respectively. Significantly increased AqCHS1 mRNA level associated with decreased chitin synthesis may imply possible inhibition of chitin synthase, or abnormal chitin synthase translocation or chitin microfibril assembly conferred by diflubenzuron. Increased AqCHS1 expression due to increased transcription and/or increased mRNA stability may serve as a feedback mechanism to compensate such an effect in the mosquitoes. Further studies are necessary to elucidate the relationship between reduced chitin synthesis and increased expression of AqCHS1 in order to shed new light on trafficking and regulation of chitin biosynthesis in the mosquito affected by diflubenzuron.

  7. RANKL Signaling and ErbB Receptors in Breast Carcinogenesis.

    Science.gov (United States)

    Zoi, Ilianna; Karamouzis, Michalis V; Adamopoulos, Christos; Papavassiliou, Athanasios G

    2016-10-01

    ErbB family members, ErbB1/EGFR/HER-1, ErbB2/HER-2, ErbB3/HER-3 and ErbB4/HER-4, have been implicated in breast cancer (BC) tumorigenicity. Recently, crucial roles for RANK/RANKL signaling in addition to key downstream factor NF-κB have been demonstrated in mammary tumorigenesis. Here, we present the hypothesis of a novel association between ErbB and RANK pathways in promoting BC. The proposed model alludes to the cross-talk that might occur between RANK and ErbB receptors. This interplay might regulate RANK signaling and consequently, modulate carcinogenesis, mainly in ErbB2 over-expressing BC cells. Thus, we highlight the significance of the RANK/RANKL axis as a putative therapeutic target in this malignancy, and furthermore, suggest that the combination of ErbB and RANK/RANKL inhibitors may have therapeutic benefit for certain BC patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    Directory of Open Access Journals (Sweden)

    Deutsch Eric W

    2008-05-01

    Full Text Available Abstract Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63. Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50 but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.

  9. Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats.

    Science.gov (United States)

    Xavier, Murilo; de Souza, Renato Aparecido; Pires, Viviane Araújo; Santos, Ana Paula; Aimbire, Flávio; Silva, José Antônio; Albertini, Regiane; Villaverde, Antonio Balbin

    2014-01-01

    The present study investigated the effects of low-level light-emitting diode (LED) therapy (880 ± 10 nm) on interleukin (IL)-10 and type I and III collagen in an experimental model of Achilles tendinitis. Thirty male Wistar rats were separated into six groups (n = 5), three groups in the experimental period of 7 days, control group, tendinitis-induced group, and LED therapy group, and three groups in the experimental period of 14 days, tendinitis group, LED therapy group, and LED group with the therapy starting at the 7th day after tendinitis induction (LEDT delay). Tendinitis was induced in the right Achilles tendon using an intratendinous injection of 100 μL of collagenase. The LED parameters were: optical power of 22 mW, spot area size of 0.5 cm(2), and irradiation time of 170 s, corresponding to 7.5 J/cm(2) of energy density. The therapy was initiated 12 h after the tendinitis induction, with a 48-h interval between irradiations. The IL-10 and type I and III collagen mRNA expression were evaluated by real-time polymerase chain reaction at the 7th and 14th days after tendinitis induction. The results showed that LED irradiation increased IL-10 (p < 0.001) in treated group on 7-day experimental period and increased type I and III collagen mRNA expression in both treated groups of 7- and 14-day experimental periods (p < 0.05), except by type I collagen mRNA expression in LEDT delay group. LED (880 nm) was effective in increasing mRNA expression of IL-10 and type I and III collagen. Therefore, LED therapy may have potentially therapeutic effects on Achilles tendon injuries.

  10. Interleukin-8 and vascular endothelial growth factor mRNA and protein levels are down-regulated in ovarian carcinoma cells in serous effusions.

    Science.gov (United States)

    Davidson, Ben; Reich, Reuven; Kopolovic, Juri; Berner, Aasmund; Nesland, Jahn M; Kristensen, Gunnar B; Tropé, Claes G; Bryne, Magne; Risberg, Bjørn; van de Putte, Gregg; Goldberg, Iris

    2002-01-01

    Angiogenic factors are involved in tumor growth and spread. The aim of this study was to evaluate the expression of angiogenesis-related genes in malignant serous effusions of patients with advanced-stage (FIGO stage III and IV) ovarian carcinoma. In addition, to compare the results for carcinoma cells in effusions with corresponding primary tumors and metastatic lesions, and analyze their prognostic role. Sections from 66 effusions and 90 primary and metastatic lesions from 62 ovarian and primary peritoneal carcinoma patients, were evaluated for expression of basic fibroblast factor (bFGF), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) using mRNA in situ hybridization (ISH). Protein expression was evaluated in a subset of specimens using immunohistochemistry (IHC). ISH results were correlated with clinical parameters. In both effusions and solid tumors, bFGF mRNA was the most commonly expressed factor (93% of effusions and 95% of solid tumors) followed by IL-8, while VEGF was expressed in a minority of the specimens (P 0.05). Peritoneal and pleural effusions showed similar expression patterns. In conclusion, bFGF is the major angiogenic factor expressed in ovarian carcinoma at the mRNA level. It is highly expressed in both solid tumors and serous effusions, while IL-8 and VEGF are down regulated in carcinoma cells in effusions, possibly due to the lack of interaction with stromal cells. mRNA expression of VEGF, bFGF, and IL-8 does not appear to be a predictor of disease outcome in advanced-stage ovarian carcinoma. Carcinoma cells in pleural and peritoneal effusions show a similar metastatic expression profile, in agreement with our previous findings, supporting the true metastatic nature of ovarian carcinoma cells in ascites.

  11. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    Science.gov (United States)

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Trolox Prevents Osteoclastogenesis by Suppressing RANKL Expression and Signaling*S⃞

    OpenAIRE

    Lee, Jong-Ho; Kim, Ha-Neui; Yang, Daum; Jung, Kyoungsuk; Kim, Hyun-Man; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2009-01-01

    Excessive receptor activator of NF-κB ligand (RANKL) signaling causes enhanced osteoclast formation and bone resorption. Thus, down-regulation of RANKL expression or its downstream signals may be a therapeutic approach to the treatment of pathological bone loss. In this study, we investigated the effects of Trolox, a water-soluble vitamin E analogue, on osteoclastogenesis and RANKL signaling. Trolox potently inhibited interleukin-1-induced osteoclast formation in bone ...

  13. Expression of RANKL in osteolytic membranes: association with fibroblastic cell markers.

    Science.gov (United States)

    Ramage, Samuel C; Urban, Nicole H; Jiranek, William A; Maiti, Aparna; Beckman, Matthew J

    2007-04-01

    Aseptic loosening is often mentioned as the primary reason for costly revision of total joint arthroplasties. Receptor activator of nuclear factor-kappaB ligand (RANKL) appears to be a major factor in the bone resorption observed in periprosthetic osteolysis. RANKL plays an essential role in the recruitment, differentiation, and survival of the osteoclasts implicated in periprosthetic osteolysis. This study was performed in an effort to identify the cell type in the periprosthetic membrane responsible for expression of RANKL. Tissues harvested from osteolytic lesions in nine patients undergoing total joint revision were serially sectioned for immunohistochemical analysis. Intercellular adhesion molecule-1 (ICAM-1) and prolyl 4-hydroxylase (5B5) antibodies were used to detect fibroblasts, and anti-CD-163 (Ber-MAC3) was used to detect macrophages. In addition, antibodies to osteoprotegerin (OPG), RANKL, and receptor activator of nuclear factor-kappaB (RANK) were utilized. The binding pattern of these antibodies was then viewed with confocal microscopy with the use of only secondary antibodies as method controls. Histological analysis was confined to areas of the membrane where cells were detected with use of Hoechst 34580 nuclear stain. In the membrane specimens from all nine patients, diffuse RANKL staining was localized to areas lacking cells and more intense staining was seen in areas containing nucleated cells. There was strong colocalization between RANKL and OPG, and there was weak but specific colocalization between RANKL and both 5B5 and ICAM-1. In contrast, there was complete separation of antibody staining of Ber-MAC3 and RANKL, indicating only generalized overlap of the myeloid markers with the RANKL. RANKL expression was localized to cells that stained positively for fibroblast markers. The data also indicated that there is an intact RANKL/RANK/OPG system in the periprosthetic membrane that could regulate focalized bone resorption in osteolysis

  14. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel

    Directory of Open Access Journals (Sweden)

    Wang Tingting

    2008-04-01

    Full Text Available Abstract Background One of the major challenges in currently chemotherapeutic theme is lacking effective biomarkers for drug response and sensitivity. Our current study focus on two promising biomarkers, ERCC1 (excision repair cross-complementing group 1 and BRCA1 (breast cancer susceptibility gene 1. To investigate their potential role in serving as biomarkers for drug sensitivity in cancer patients with metastases, we statistically measure the mRNA expression level of ERCC1 and BRCA1 in tumor cells isolated from malignant effusions and correlate them with cisplatin and/or docetaxel chemosensitivity. Methods Real-time quantitative PCR is used to analysis related genes expression in forty-six malignant effusions prospectively collected from non-small cell lung cancer (NSCLC, gastric and gynecology cancer patients. Viable tumor cells obtained from malignant effusions are tested for their sensitivity to cisplatin and docetaxel using ATP-TCA assay. Results ERCC1 expression level is negatively correlated with the sensitivity to cisplatin in NSCLC patients (P = 0.001. In NSCLC and gastric group, BRCA1 expression level is negatively correlated with the sensitivity to cisplatin (NSCLC: P = 0.014; gastric: P = 0.002 while positively correlated with sensitivity to docetaxel (NSCLC: P = 0.008; gastric: P = 0.032. A significant interaction is found between ERCC1 and BRCA1 mRNA expressions on sensitivity to cisplatin (P = 0.010, n = 45. Conclusion Our results demonstrate that ERCC1 and BRCA1 mRNA expression levels are correlated with in vitro chemosensitivity to cisplatin and/or docetaxel in malignant effusions of NSCLC and gastric cancer patients. And combination of ERCC1 and BRCA1 may have a better role on predicting the sensitivity to cisplatin than the single one is considered.

  15. Gender differences in tryptophan hydroxylase-2 mRNA, serotonin, and 5-hydroxytryptophan levels in the brain of catfish, Clarias gariepinus, during sex differentiation.

    Science.gov (United States)

    Raghuveer, K; Sudhakumari, C C; Senthilkumaran, B; Kagawa, H; Dutta-Gupta, A; Nagahama, Y

    2011-03-01

    Tryptophan hydroxylase (tph) is the key regulator in serotonin (5-HT) biosynthesis that stimulates the release of GnRH and gonadotropins by acting at the level of hypothalamo-hypophyseal axis. In brain, 5-HT is expressed predominantly in preoptic area-hypothalamus (POA-HYP) region in teleosts. Therefore, in the present study we isolated tph2 from catfish brain to evaluate its expression pattern in male and female brains during early development. Tph2 cloned from catfish brain is 2.768 Kb in length which encodes predicted protein of 488 amino acid residues. The characterization of recombinant tph2 was done by transient transfection in CHO cells. Tissue distribution of tph2 revealed ubiquitous expression except ovary. Real time PCR analysis in discrete regions of adult male brain revealed that tph2 mRNA was abundant in the POA-HYP and optic tectum+cerebellum+thalamus (OCT) regions. Differential expression of tph2 was observed at mRNA and protein levels in the POA-HYP and OCT regions of male and female brains during development that further correlate with the 5-hydroxytryptophan (5-HTP) and 5-HT levels measured using HPLC method in these regions of male and female brains. Tph2 immunoreactive neurons were observed in different regions of brain at 50 days post hatch using catfish specific tph2 antibody. Changes in tph2 mRNA expression, 5-HTP, and 5-HT levels in the POA-HYP+OCT region of brains of methyltestosterone and para-chlorophenylalanine treated fishes during development further endorse our results. Based on our results, we propose that the serotonergic system is involved in brain sex differentiation in teleosts. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Trolox Prevents Osteoclastogenesis by Suppressing RANKL Expression and Signaling*S⃞

    Science.gov (United States)

    Lee, Jong-Ho; Kim, Ha-Neui; Yang, Daum; Jung, Kyoungsuk; Kim, Hyun-Man; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2009-01-01

    Excessive receptor activator of NF-κB ligand (RANKL) signaling causes enhanced osteoclast formation and bone resorption. Thus, down-regulation of RANKL expression or its downstream signals may be a therapeutic approach to the treatment of pathological bone loss. In this study, we investigated the effects of Trolox, a water-soluble vitamin E analogue, on osteoclastogenesis and RANKL signaling. Trolox potently inhibited interleukin-1-induced osteoclast formation in bone marrow cell-osteoblast coculture by abrogating RANKL induction in osteoblasts. This RANKL reduction was attributed to the reduced production of prostaglandin E2 via a down-regulation of cyclooxygenase-2 activity. We also found that Trolox inhibited osteoclast formation from bone marrow macrophages induced by macrophage colony-stimulating factor plus RANKL in a reversible manner. Trolox was effective only when present during the early stage of culture, which implies that it targets early osteoclast precursors. Pretreatment with Trolox did not affect RANKL-induced early signaling pathways, including MAPKs, NF-κB, and Akt. We found that Trolox down-regulated the induction by RANKL of c-Fos protein by suppressing its translation. Ectopic overexpression of c-Fos rescued the inhibition of osteoclastogenesis by Trolox in bone marrow macrophages. Trolox also suppressed interleukin-1-induced osteoclast formation and bone loss in mouse calvarial bone. Taken together, our findings indicate that Trolox prevents osteoclast formation and bone loss by inhibiting both RANKL induction in osteoblasts and c-Fos expression in osteoclast precursors. PMID:19299513

  17. Anguillicola crassus infection significantly affects the silvering related modifications in steady state mRNA levels in gas gland tissue of the European eel

    Directory of Open Access Journals (Sweden)

    Bernd ePelster

    2016-05-01

    Full Text Available Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow eel and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to ROS (reactive oxygen species defense, important to cope with reactive oxygen species generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and

  18. Evaluation of RANKL/OPG Serum Concentration Ratio as a New Biomarker for Coronary Artery Calcification: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Mohammadpour

    2012-01-01

    Full Text Available Objective. There is a strong need for biomarkers to identify patients at risk for future cardiovascular events related with progressive atherosclerotic disease. Osteoprotegerin (OPG protects the skeleton from excessive bone resorption by binding to receptor activator of nuclear factor-κB ligand (RANKL and preventing it from binding to its receptor, receptor activator of nuclear factor-κB. However, conflicting results have been obtained about association of serum level of OPG or RANKL with coronary artery disease (CAD. Based on their role in inflammation and matrix degradation and the fact that atherosclerotic plaque formation is an inflammatory process, we hypothesized that RANKL : OPG ratio could be a better biomarker for CAD. Methods. In this cross-sectional study, the correlation between RANKL : OPG ratio serum concentration and coronary artery calcification (CAC in 50 patients with ischemic coronary disease has been investigated. We used ELISA method for measuring RANKL and OPG serum concentrations. Results. There was a significant correlation between RANKL : OPG serum concentration ratio and CAC in our study population (P=0.01. Conclusion. Our results suggested that RANKL : OPG ratio concentration has a potential of being used as a marker for coronary artery disease.

  19. Assessment of the relationship between melatonin, hormones of the pituitary-ovarian, -thyroid and -adrenocortical axes, and osteoprotegerin and its ligand sRANKL in girls with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Zofia Ostrowska

    2013-05-01

    Full Text Available Background: It has been suggested that disturbances in melatonin (MEL secretion might play a role in osteoporosis development in females with anorexia nervosa (AN. It might be hypothesized that changes in the levels of hormones of the pituitary-ovarian, -thyroid and -adrenocortical axes might mediate the potential relationship between MEL and bone tissue.Aim: We investigated whether a relationship existed between MEL and LH, FSH-E2, TSH-FT3, FT4 and ACTH-cortisol axes in girls with AN. We also aimed to establish whether such a relationship might adversely affect the balance of the OPG/sRANKL system.Material/Methods: Eighty-six girls with AN and 21 healthy subjects aged 12.6 to 18.2 years participated in the study. The serum levels of hormones as well as OPG and sRANKL were determined by radioimmunoassay (RIA, immunoradiometric assay (IRMA or enzyme-linked immunosorbent assay (ELISA methods.Discussion: Our study participants with AN showed a significant reduction in body mass and body mass index (BMI, a decrease in LH, E2 and FT3 concentrations, increased MEL concentration at 02.00 hours and increased amplitude between its nocturnal and morning levels (Δ MEL2.00/9.00 as well as an increase in cortisol concentration. These changes were associated with a significant increase of OPG and sRANKL levels and a decrease in the OPG/sRANKL ratio. BMI values correlated positively with LH, FSH, E2, FT3 and the OPG/sRANKL ratio while the correlation between BMI and cortisol was negative. Δ MEL2.00/9.00 correlated positively with cortisol and negatively with LH, FSH, E2, FT3 concentrations and the OPG/sRANKL ratio. A positive correlation was observed between LH, E2 and the OPG/sRANKL ratio as well as between cortisol and sRANKL while the correlation between LH and OPG as well as between cortisol and the OPG/sRANKL ratio was negative. E2 and LH were shown to be significant and independent predictors of Δ MEL2.00/9.00. LH turned out to be a

  20. A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels.

    Science.gov (United States)

    Messemaker, T C; Frank-Bertoncelj, M; Marques, R B; Adriaans, A; Bakker, A M; Daha, N; Gay, S; Huizinga, T W; Toes, R E M; Mikkers, H M M; Kurreeman, F

    2016-03-01

    Long non-coding RNAs (lncRNAs) can regulate the transcript levels of genes in the same genomic region. These locally acting lncRNAs have been found deregulated in human disease and some have been shown to harbour quantitative trait loci (eQTLs) in autoimmune diseases. However, lncRNAs linked to the transcription of candidate risk genes in loci associated to rheumatoid arthritis (RA) have not yet been identified. The TRAF1 and C5 risk locus shows evidence of multiple eQTLs and transcription of intergenic non-coding sequences. Here, we identified a non-coding transcript (C5T1lncRNA) starting in the 3' untranslated region (UTR) of C5. RA-relevant cell types express C5T1lncRNA and RNA levels are further enhanced by specific immune stimuli. C5T1lncRNA is expressed predominantly in the nucleus and its expression correlates positively with C5 mRNA in various tissues (P=0.001) and in peripheral blood mononuclear cells (P=0.02) indicating transcriptional co-regulation. Knockdown results in a concurrent decrease in C5 mRNA levels but not of other neighbouring genes. Overall, our data show the identification of a novel lncRNA C5T1lncRNA that is fully located in the associated region and influences transcript levels of C5, a gene previously linked to RA pathogenesis.

  1. Clinical Usefulness of Monitoring Expression Levels of CCL24 (Eotaxin-2) mRNA on the Ocular Surface in Patients with Vernal Keratoconjunctivitis and Atopic Keratoconjunctivitis

    OpenAIRE

    Yukiko Shiraki; Jun Shoji; Noriko Inada

    2016-01-01

    Purpose. This study aimed to evaluate the clinical efficacy of using expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface as a biomarker in patients with vernal keratoconjunctivitis (VKC) and atopic keratoconjunctivitis (AKC). Methods. Eighteen patients with VKC or AKC (VKC/AKC group) and 12 control subjects (control group) were enrolled in this study. The VKC/AKC clinical score was determined by objective findings in patients by using the 5-5-5 exacerbation grading scale. All su...

  2. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease.

    Science.gov (United States)

    Gründemann, Jan; Schlaudraff, Falk; Haeckel, Olga; Liss, Birgit

    2008-04-01

    The presynaptic protein alpha-synuclein is involved in several neurodegenerative diseases, including Parkinson's disease (PD). In rare familial forms of PD, causal mutations (PARK1) as well as multiplications (PARK4) of the alpha-synuclein gene have been identified. In sporadic, idiopathic PD, abnormal accumulation and deposition of alpha-synuclein might also cause degeneration of dopaminergic midbrain neurons, the clinically most relevant neuronal population in PD. Thus, cell-specific quantification of alpha-synuclein expression-levels in dopaminergic neurons from idiopathic PD patients in comparison to controls would provide essential information about contributions of alpha-synuclein to the etiology of PD. However, a number of previous studies addressing this question at the tissue-level yielded varying results regarding alpha-synuclein expression. To increase specificity, we developed a cell-specific approach for mRNA quantification that also took into account the important issue of variable RNA integrities of the individual human postmortem brain samples. We demonstrate that PCR -amplicon size can confound quantitative gene-expression analysis, in particular of partly degraded RNA. By combining optimized UV-laser microdissection- and quantitative RT-PCR-techniques with suitable PCR assays, we detected significantly elevated alpha-synuclein mRNA levels in individual, surviving neuromelanin- and tyrosine hydroxylase-positive substantia nigra dopaminergic neurons from idiopathic PD brains compared to controls. These results strengthen the pathophysiologic role of transcriptional dysregulation of the alpha-synuclein gene in sporadic PD.

  3. Elevated α-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease

    Science.gov (United States)

    Gründemann, Jan; Schlaudraff, Falk; Haeckel, Olga; Liss, Birgit

    2008-01-01

    The presynaptic protein α-synuclein is involved in several neurodegenerative diseases, including Parkinson's disease (PD). In rare familial forms of PD, causal mutations (PARK1) as well as multiplications (PARK4) of the α-synuclein gene have been identified. In sporadic, idiopathic PD, abnormal accumulation and deposition of α-synuclein might also cause degeneration of dopaminergic midbrain neurons, the clinically most relevant neuronal population in PD. Thus, cell-specific quantification of α-synuclein expression-levels in dopaminergic neurons from idiopathic PD patients in comparison to controls would provide essential information about contributions of α-synuclein to the etiology of PD. However, a number of previous studies addressing this question at the tissue-level yielded varying results regarding α-synuclein expression. To increase specificity, we developed a cell-specific approach for mRNA quantification that also took into account the important issue of variable RNA integrities of the individual human postmortem brain samples. We demonstrate that PCR –amplicon size can confound quantitative gene-expression analysis, in particular of partly degraded RNA. By combining optimized UV-laser microdissection- and quantitative RT–PCR-techniques with suitable PCR assays, we detected significantly elevated α-synuclein mRNA levels in individual, surviving neuromelanin- and tyrosine hydroxylase-positive substantia nigra dopaminergic neurons from idiopathic PD brains compared to controls. These results strengthen the pathophysiologic role of transcriptional dysregulation of the α-synuclein gene in sporadic PD. PMID:18332041

  4. The effects of dietary Myrtle (Myrtus communis) on skin mucus immune parameters and mRNA levels of growth, antioxidant and immune related genes in zebrafish (Danio rerio).

    Science.gov (United States)

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Van Doan, Hien; Dadar, Maryam

    2017-07-01

    Myrtle (Myrtus communis L., Myrtaceae) is a significant plant which naturally distributed around the globe. Although numerous studies have demonstrated the benefits of myrtle in different species, studies using the oral route are rare in the literature. In the present study, we evaluated the effect of myrtle intake on the antioxidant, immune, appetite and growth related genes as well as mucosal immune responses in zebrafish (Danio rerio) model. Zebrafish were fed control or myrtle (5, 10 and 20 g kg(-1) myrtle) supplemented diets for sixty days. The results showed that, oral administration of Myrtle significantly improved mucosal immune responses (the activity of lysozyme, total Ig and protease). Furthermore, fish fed 20 g kg(-1) showed remarkably higher antioxidant (sod and cat) enzymes gene expression compared other treatment. There were significant difference between myrtle fed fish and control group regarding tnf-alpha and lyz expression. Also, evaluation of growth (gh and igf1) related genes revealed remarkable upregulation in 20 g kg(-1) myrtle treatment compared other myrtle treatments and control group. Similar results was observed regarding the mRNA levels of appetite related genes (ghrl) in zebrafish fed 20 g kg(-1) myrtle. The present results indicated that dietary administration of myrtle improved mucosal immune parameters and altered mRNA levels of selected genes. These results on zebrafish model also highlights the potential use of Myrtle supplements as additive in human diets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Irbesartan inhibits advanced glycation end product (AGE)-induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) mRNA levels in glomerular endothelial cells.

    Science.gov (United States)

    Matsui, Takanori; Nishino, Yuri; Maeda, Sayaka; Takeuchi, Masayoshi; Yamagishi, Sho-ichi

    2011-05-01

    Renin-angiotensin system (RAS) plays a central role in the development and progression of diabetic nephropathy. There is a growing body of evidence that advanced glycation end products (AGE) and inflammation contribute to diabetic nephropathy as well. However, the pathophysiological crosstalk between the RAS and AGE in inflammatory reactions in glomerular endothelial cells (ECs) remains unknown. In this study, we examined whether and how irbesartan, an angiotensin II type 1 receptor blocker (ARB), inhibited the AGE-induced vascular cell adhesion molecule-1 (VCAM-1) gene expression in cultured human glomerular ECs. Irbesartan or an anti-oxidant N-acetylcysteine inhibited the AGE-induced increase in reactive oxygen species (ROS) generation and subsequently blocked up-regulation of VCAM-1 mRNA levels in glomerular ECs. AGE significantly stimulated angiotensin II production by glomerular ECs. Furthermore, irbesartan completely suppressed up-regulation of VCAM-1 mRNA levels in AGE plus angiotensin II-exposed glomerular ECs. Our present data suggest that there exists a crosstalk between the RAS and AGE in inflammatory reactions in glomerular ECs. Irbesartan may play a protective role against diabetic nephropathy by blocking the deleterious effects of AGE-elicited angiotensin II and ROS. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    Science.gov (United States)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  7. Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury.

    Science.gov (United States)

    Barnes, Brian R; Szelenyi, Eric R; Warren, Gordon L; Urso, Maria L

    2009-12-01

    This study characterizes the temporal relationship of membrane type-1 matrix metalloproteinase (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in skeletal muscle following injury. Tibialis anterior (TA) muscles from 60 mice were exposed and injured by applying a cold steel probe (-79 degrees C) to the muscle for 10 s. Thereafter, TA muscles from uninjured and injured legs were collected at 3, 10, 24, 48, and 72 h postinjury for analysis of local MT1-MMP, TIMP-2, and matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) mRNA and protein content via quantitative RT-PCR, immunoblotting, zymography, and immunofluorescence. All data are expressed as fold change of injured leg vs. uninjured leg. MT1-MMP mRNA levels were decreased significantly at 48 and 72 h postinjury by approximately 9- and 21-fold, respectively (P muscle injury initiates a sequence of events in the MT1-MMP proteolytic cascade resulting in elevated levels of the soluble (50 kDa) fragment of MT1-MMP, which could enhance pericellular extracellular matrix remodeling.

  8. Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed

    Directory of Open Access Journals (Sweden)

    Rossie Sandra

    2004-06-01

    Full Text Available Abstract Background Intermediate-conductance, calcium-activated potassium channels (IKs modulate proliferation and differentiation in mesodermal cells by enhancing calcium influx, and they contribute to the physiology of fluid movement in certain epithelia. Previous reports suggest that IK channels stimulate proliferative growth in a keratinocyte cell line; however, because these channels indirectly promote calcium influx, a critically unique component of the keratinocyte differentiation program, an alternative hypothesis is that they would be anti-proliferative and pro-differentiating. This study addresses these hypotheses. Methods Real-time PCR, patch clamp electrophysiology, and proliferation assays were used to determine if human IK1 (hIK1 expression and function are correlated with either proliferation or differentiation in cultured human skin epidermal keratinocytes, and skin biopsies grown in explant culture. Results hIK1 mRNA expression in human keratinocytes and skin was increased in response to anti-proliferative/pro-differentiating stimuli (elevated calcium and Vitamin D. Correspondingly, the hIK1 agonist 1-EBIO inhibited keratinocyte proliferation suggesting that the channel could be anti-proliferative and pro-differentiating. However, this proliferative inhibition by 1-EBIO was not reversed by a panel of hIK1 blockers, calling into question the mechanism of 1-EBIO action. Subsequent patch clamp electrophysiological analysis failed to detect hIK1 channel currents in keratinocytes, even those expressing substantial hIK1 mRNA in response to calcium and Vitamin D induced differentiation. Identical electrophysiological recording conditions were then used to observe robust IK1 currents in fibroblasts which express IK1 mRNA levels comparable to those of keratinocytes. Thus, the absence of observable hIK1 currents in keratinocytes was not a function of the electrophysiological techniques. Conclusion Human keratinocyte differentiation is

  9. Amiodarone decreases gene expression of low-density lipoprotein receptor at both the mRNA and the protein level

    NARCIS (Netherlands)

    Hudig, F.; Bakker, O.; Wiersinga, W. M.

    1998-01-01

    Amiodarone, a potent antiarrhythmic drug, decreases plasma and tissue triiodothyronine (T3) and increases plasma cholesterol levels, resembling changes seen during hypothyroidism. The increase of serum cholesterol during amiodarone medication is associated with a decreased expression of the hepatic

  10. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): can hormones and mRNA expression levels serve as indicators to assess stress?

    Science.gov (United States)

    Müller, Sabine; Lehnert, Kristina; Seibel, Henrike; Driver, Jörg; Ronnenberg, Katrin; Teilmann, Jonas; van Elk, Cornelius; Kristensen, Jakob; Everaarts, Eligius; Siebert, Ursula

    2013-07-17

    The harbour porpoise is exposed to increasing pressure caused by anthropogenic activities in its marine environment. Numerous offshore wind farms are planned or under construction in the North and Baltic Seas, which will increase underwater noise during both construction and operation. A better understanding of how anthropogenic impacts affect the behaviour, health, endocrinology, immunology and physiology of the animals is thus needed. The present study compares levels of stress hormones and mRNA expression of cytokines and acute-phase proteins in blood samples of harbour porpoises exposed to different levels of stress during handling, in rehabilitation or permanent human care.Free-ranging harbour porpoises, incidentally caught in pound nets in Denmark, were compared to harbour porpoises in rehabilitation at SOS Dolfijn in Harderwijk, the Netherlands, and individuals permanently kept in human care in the Dolfinarium Harderwijk and Fjord & Belt Kerteminde, Denmark. Blood samples were investigated for catecholamines, adrenaline, noradrenaline and dopamine, as well as for adrenocorticotropic hormone (ACTH), cortisol, metanephrine and normetanephrine. mRNA expression levels of relevant cell mediators (cytokines IL-10 and TNFα, acute-phase proteins haptoglobin and C-reactive protein and the heat shock protein HSP70) were measured using real-time PCR. Biomarker expression levels varied between free-ranging animals and porpoises in human care. Hormone and cytokine ranges showed correlations to each other and to the health status of investigated harbour porpoises. Hormone concentrations were higher in free-ranging harbour porpoises than in animals in human care. Adrenaline can be used as a parameter for the initial reaction to acute stress situations; noradrenaline, dopamine, ACTH and cortisol are more likely indicators for the following minutes of acute stress. There is evidence for different correlations between production of normetanephrine, metanephrine, cortisol and

  11. RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy.

    Science.gov (United States)

    Azim, Hatem A; Peccatori, Fedro A; Brohée, Sylvain; Branstetter, Daniel; Loi, Sherene; Viale, Giuseppe; Piccart, Martine; Dougall, William C; Pruneri, Giancarlo; Sotiriou, Christos

    2015-02-21

    RANKL is important in mammary gland development during pregnancy and mediates the initiation and progression of progesterone-induced breast cancer. No clinical data are available on the effect of pregnancy on RANK/RANKL expression in young breast cancer patients. We used our previously published dataset of 65 pregnant and 130 matched young breast cancer patients with full clinical, pathological, and survival information. 85% of patients had available transcriptomic data as well. RANK/RANKL expression by immunohistochemistry using H-score on the primary tumor and adjacent normal tissue was performed. We examined the difference in expression of RANK/RANKL between pregnant and non-pregnant patients and their association with clinicopathological features and prognosis. We also evaluated genes and pathways associated with RANK/RANKL expression on primary tumors. RANKL but not RANK expression was more prevalent in the pregnant group, both on the tumor and adjacent normal tissue, independent of other clinicopathological factors (both P Pregnancy increases RANKL expression both in normal breast and primary tumors. These results could guide further development of RANKL-targeted therapy.

  12. Predictive value of PD-L1 based on mRNA level in the treatment of stage IV melanoma with ipilimumab.

    Science.gov (United States)

    Brüggemann, C; Kirchberger, M C; Goldinger, S M; Weide, B; Konrad, A; Erdmann, M; Schadendorf, D; Croner, R S; Krähenbühl, L; Kähler, K C; Hafner, C; Leisgang, W; Kiesewetter, F; Dummer, R; Schuler, G; Stürzl, M; Heinzerling, L

    2017-10-01

    PD-L1 is established as a predictive marker for therapy of non-small cell lung cancer with pembrolizumab. Furthermore, PD-L1 positive melanoma has shown more favorable outcomes when treated with anti-PD1 antibodies and dacarbazine compared to PD-L1 negative melanoma. However, the role of PD-L1 expression with regard to response to checkpoint inhibition with anti-CTLA-4 is not clear, yet. In addition, the lack of standardization in the immunohistochemical assessment of PD-L1 makes the comparison of results difficult. In this study, we investigated the PD-L1 gene expression with a new fully automated technique via RT-PCR and correlated the findings with the response to the anti-CTLA-4 antibody ipilimumab. Within a retrospective multi-center trial, PD-L1 gene expression was evaluated in 78 melanoma patients in a total of 111 pre-treatment tumor samples from 6 skin cancer centers and analyzed with regard to response to ipilimumab. For meaningful statistical analysis, the cohort was enriched for responders with 30 responders and 48 non-responders. Gene expression was assessed by quantitative RT-PCR after extracting mRNA from formalin-fixed paraffin embedded tumor tissue and correlated with results from immunohistochemical (IHC) stainings. The evaluation of PD-L1 expression based on mRNA level is feasible. Correlation between PD-L1 expression as assessed by IHC and RT-PCR showed varying levels of concordance depending on the antibody employed. RT-PCR should be further investigated to measure PD-L1 expression, since it is a semi-quantitative method with observer-independent evaluation. With this approach, there was no statistical significant difference in the PD-L1 expression between responders and non-responders to the therapy with ipilimumab. The evaluation of PD-L1 expression based on mRNA level is feasible. Correlation between PD-L1 expression as assessed by IHC and RT-PCR showed varying levels of concordance depending on the antibody employed. RT-PCR should be

  13. Placental leptin mRNA expression and serum leptin levels in pre-eclampsia associated with HIV infection.

    Science.gov (United States)

    Haffejee, Firoza; Naicker, Thajasvarie; Singh, Moganavelli; Kharsany, Ayesha B M; Adhikari, Miriam; Singh, Ravesh; Maharaj, Niren; Moodley, Jagidesa

    2017-01-01

    Leptin, primarily produced by adipocytes, is implicated in the development of pre-eclampsia. This study examines placental leptin production and serum leptin levels in HIV infected and uninfected normotensive and pre-eclamptic pregnancies. Placental leptin production was analysed by RT-PCR and serum leptin levels by ELISA in normotensive (n = 90) and pre-eclamptic (n = 90) pregnancies which were further stratified by HIV status. Placental leptin production was higher in pre-eclampsia compared to normotensive pregnancies irrespective of HIV status (p = .04). Serum leptin was non-significantly raised in HIV uninfected (p = .42) but lower in HIV-infected (p = .03) pre-eclampsia. The latter had lower BMI (p = .007) and triceps skin-fold thickness (p leptin and triceps skin-fold thickness (p leptin. Thus, serum leptin levels are not indicative of increased placental production when pre-eclampsia is associated with HIV infection.

  14. Hind limb unloading of mice modulates gene expression at the protein and mRNA level in mesenchymal bone cells

    Directory of Open Access Journals (Sweden)

    Palmieri Daniela

    2010-07-01

    Full Text Available Abstract Background We investigated the extent, modalities and reversibility of changes at cellular level in the expression of genes and proteins occurring upon Hind limb unloading (HU in the tibiae of young C57BL/6J male mice. We focused on the effects of HU in chondrogenic, osteogenic, and marrow mesenchymal cells. Methods We analyzed for expression of genes and proteins at two time points after HU (7 and 14 days, and at 14 days after recovery from HU. Levels of mRNAs were tested by in situ hybridization. Protein levels were tested by immunohistochemistry. We studied genes involved in osteogenesis (alkaline phosphatase (AP, osteocalcin (OC, bonesialoprotein (BSP, membrane type1 matrix metalloproteinase (MT1-MMP, in extracellular matrix (ECM formation (procollagenases (BMP1, procollagenase enhancer proteins (PCOLCE and remodeling (metalloproteinase-9 (MMP9, RECK, and in bone homeostasis (Stro-1, CXCL12, CXCR4, CD146. Results We report the following patterns and timing of changes in gene expression induced by HU: 1 transient or stable down modulations of differentiation-associated genes (AP, OC, genes of matrix formation, maturation and remodelling, (BMP1, PCOLCEs MMP9 in osteogenic, chondrogenic and bone marrow cells; 2 up modulation of MT1-MMP in these same cells, and uncoupling of its expression from that of AP; 3 transient down modulation of the osteoblast specific expression of BSP; 4 for genes involved in bone homeostasis, up modulation in bone marrow cells at distal epiphysis for CXCR4, down modulation of CXCL12, and transient increases in osteoblasts and marrow cells for Stro1. 14 days after limb reloading expression returned to control levels for most genes and proteins in most cell types, except AP in all cells, and CXCL12, only in bone marrow. Conclusions HU induces the coordinated modulation of gene expression in different mesenchymal cell types and microenvironments of tibia. HU also induces specific patterns of expression for

  15. Glucose Uptake Inhibition Decreases Expressions of Receptor Activator of Nuclear Factor-kappa B Ligand (RANKL) and Osteocalcin in Osteocytic MLO-Y4-A2 Cells.

    Science.gov (United States)

    Takeno, Ayumu; Kanazawa, Ippei; Notsu, Masakazu; Tanaka, Ken-Ichiro; Sugimoto, Toshitsugu

    2017-10-10

    Bone and glucose metabolism are closely associated with each other. Both osteoblast and osteoclast functions are important for the action of osteocalcin, which plays pivotal roles as an endocrine hormone regulating glucose metabolism. However, it is unknown whether osteocytes are involved in the interaction between bone and glucose metabolism. We used MLO-Y4-A2, a murine long bone-derived osteocytic cell line, to investigate effects of glucose uptake inhibition on expressions of osteocalcin and bone-remodeling modulators in osteocytes. We found that glucose transporter 1 (GLUT1) is expressed in MLO-Y4-A2 cells and that treatment with phloretin, a GLUT inhibitor, significantly inhibited glucose uptake. Real-time PCR and western blot showed that phloretin significantly and dose-dependently decreased the expressions of RANKL and osteocalcin, whereas osteoprotegerin or sclerostin was not affected. Moreover, phloretin activated AMP-activated protein kinase (AMPK), an intracellular energy sensor. Coincubation of ara-A, an AMPK inhibitor, with phloretin canceled the phloretin-induced decrease in osteocalcin expression, but not RANKL. In contrast, phloretin suppressed phosphorylation of ERK1/2, JNK, and p38 MAPK, and treatments with a p38 inhibitor SB203580 and a MEK inhibitor PD98059, but not a JNK inhibitor SP600125, significantly decreased expressions of RANKL and osteocalcin. These results indicate that glucose uptake by GLUT1 is required for RANKL and osteocalcin expressions in osteocytes, and that inhibition of glucose uptake decreases their expressions through AMPK, ERK1/2 and p38 MAPK pathways. These findings suggest that lowering glucose uptake into osteocytes may contribute to maintain blood glucose levels by decreasing osteocalcin expression and RANKL-induced bone resorption. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  16. Changes in var gene mRNA levels during erythrocytic development in two phenotypically distinct Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Dahlbäck, Madeleine; Lavstsen, Thomas; Salanti, Ali

    2007-01-01

    points along the 48 hours intra-erythrocytic cycle for extraction of RNA and for analysis of expression of variant surface antigens by flow cytometry. Total RNA from each parasite sample was extracted and cDNA synthesized. Quantitative real-time PCR was performed using gene-specific primers for all var...... genes. Samples for flow cytometry were labelled with rabbit IgG targeting DBL5epsilon of VAR2CSA and serum IgG from malaria-exposed men and pregnant women. RESULTS: var transcripts were detected at all time points of the intra-erythrocytic cycle by quantitative real-time PCR, although transcription......BACKGROUND: The var multigene family encodes PfEMP1, which are expressed on the surface of infected erythrocytes and bind to various host endothelial receptors. Antigenic variation of PfEMP1 plays a key role in malaria pathogenesis, a process partially controlled at the level of var gene...

  17. Expression of human amyloid precursor protein in Drosophila melanogaster nerve cells causes a decrease in presynaptic gene mRNA levels.

    Science.gov (United States)

    Rodin, D I; Schwarzman, A L; Sarantseva, S V

    2015-08-10

    Amyloid precursor protein (APP) is a key player in Alzheimer's disease. The proteolytic cleavage of APP results in various short peptide fragments including the toxic amyloid-beta peptide, which is a main component of senile plaques. However, the functions of APP and its processed fragments are not yet well understood. Here, using real-time polymerase chain reaction, we demonstrate that exogenous expression of APP, its mutant form APP-Swedish, or two truncated forms in Drosophila melanogaster causes a significant (P ≤ 0.05) drop in the mRNA levels of the presynaptic proteins synaptotagmin-1 and neuronal synaptobrevin. The results obtained from this study suggest a potential role of APP or its fragments in the regulation of synaptic gene transcription.

  18. Dataset of mRNA levels for dopaminergic receptors, adrenoceptors and tyrosine hydroxylase in lymphocytes from subjects with clinically isolated syndromes

    Directory of Open Access Journals (Sweden)

    Marco Cosentino

    2016-12-01

    Full Text Available This data article presents a dataset of mRNA levels for dopaminergic receptors, adrenoceptors and for tyrosine hydoxylase, the rate-limiting enzyme in the synthesis of catecholamines, in peripheral blood mononuclear cells as well as in CD4+ T effector and regulatory cells from subjects with clinically isolated syndromes (CIS, which is a first episode of neurological disturbance(s suggestive of multiple sclerosis. CIS subjects are divided into two groups according to their eventual progression, after 12 months from CIS, to clinically established multiple sclerosis. The data reported are related to the article entitled "Dopaminergic receptors and adrenoceptors in circulating lymphocytes as putative biomarkers for the early onset and progression of multiple sclerosis" (M. Cosentino, M. Zaffaroni, M. Legnaro, R. Bombelli, L. Schembri, D. Baroncini, A. Bianchi, R. Clerici, M. Guidotti, P. Banfi, G. Bono, F. Marino, 2016 [1].

  19. The Allergic Airway Inflammation Repository--a user-friendly, curated resource of mRNA expression levels in studies of allergic airways.

    Science.gov (United States)

    Gawel, D R; Rani James, A; Benson, M; Liljenström, R; Muraro, A; Nestor, C E; Zhang, H; Gustafsson, M

    2014-08-01

    Public microarray databases allow analysis of expression levels of candidate genes in different contexts. However, finding relevant microarray data is complicated by the large number of available studies. We have compiled a user-friendly, open-access database of mRNA microarray experiments relevant to allergic airway inflammation, the Allergic Airway Inflammation Repository (AAIR, http://aair.cimed.ike.liu.se/). The aim is to allow allergy researchers to determine the expression profile of their genes of interest in multiple clinical data sets and several experimental systems quickly and intuitively. AAIR also provides quick links to other relevant information such as experimental protocols, related literature and raw data files. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Levels of estrogen receptor B splice variant (ERBΔ5 mRNA correlates with progesterone receptor in breast carcinomas

    Directory of Open Access Journals (Sweden)

    Mandušić Vesna

    2010-01-01

    Full Text Available It is well known that breast tumors which are estrogen positive ER(+ are more likely to respond to hormone therapy. However, a certain percentage of ER(+/PR(+ tumors do not respond to this therapy. Identification of the second estrogen receptor, named estrogen receptor beta (ERβ, as well as the existence of numerous isoforms/splice variants of both ERα and ERβ, suggests that a complex regulation of estrogen action exists. In this study, we analyzed the expression ratio of ERβ1 isoform and ERβΔ5 splice variant mRNAs, and its correlation with ER/PR status by quantitative RT-PCR and clinical and histopathological parameters. We found that the relative proportion of ERβΔ5 in the total ERβ1 transcript 'pool' inversely correlates with the PR level (p = -0,359, p< 0,003, Spearman. It may be that the ERβΔ5 variant modulates the ERα activity of downstream targets. In addition, we suggest that the determination of the expression profiles of ERα and ERβ isoforms and splice variants in the defined groups of patients are necessary for elucidating their involvement in endocrine resistance.

  1. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    Science.gov (United States)

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  2. In vitro effects of four native Brazilian medicinal plants in CYP3A4 mRNA gene expression, glutathione levels and P-glycoprotein activity.

    Directory of Open Access Journals (Sweden)

    Andre Luis Dias Araujo Mazzari

    2016-08-01

    Full Text Available Erythrina mulungu Benth. (Fabaceae, Cordia verbenacea A. DC. (Boraginaceae, Solanum paniculatum L. (Solanaceae and Lippia sidoides Cham. (Verbenaceae are medicinal plants species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI. In this work we assess non-toxic concentrations (100μg/mL of their infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp activity in vincristine-resistant Caco-2 cells (Caco-2 VCR. Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (two-fold decrease, p<0.05, this being correlated with an antagonist effect upon hPXR (EC50 = 0.38mg/mL. Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p<0.001, Lippia sidoides (-12%, p<0.05 and Cordia verbenacea (-47%, p<0.001. The later plant extract was able to decrease GGT activity (-48%, p<0.01. In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  3. Assessment of placental and maternal stress responses in patients with pregnancy related complications via monitoring of heat shock protein mRNA levels.

    Science.gov (United States)

    Hromadnikova, Ilona; Dvorakova, Lenka; Kotlabova, Katerina; Kestlerova, Andrea; Hympanova, Lucie; Novotna, Veronika; Doucha, Jindrich; Krofta, Ladislav

    2015-03-01

    The study describes the stress response in the central cotyledon zone of placental tissue and in maternal whole peripheral blood to pregnancy related complications including gestational hypertension (n = 31), preeclampsia w or w/o fetal growth restriction (n = 95), and fetal growth restriction (n = 39) using real-time RT-PCR and genes encoding Hsp27, Hsp60, Hsp70, Hsp90 and HspBP1 proteins. The placental tissue does not respond to pregnancy induced hypertension, fetal growth restriction and short-term severe preeclampsia that requires immediate termination of gestation. Upregulation of Hsp27, Hsp90 and HspBP1 appears just in case of long-term deteriorated conditions (usually in mild preeclampsia, that enable further continuation of gestation, when properly treated). On the other hand, maternal circulation is able to reflect both maternal and fetal pathologic conditions. While pregnancy related complications always induce upregulation of Hsp70 and downregulation of Hsp90 in maternal whole peripheral blood, the increase of Hsp60 mRNA levels occurs entirely in patients with preeclampsia and/or fetal growth restriction. Hsp60, Hsp70 and Hsp90 are dysregulated in maternal circulation irrespective of the severity of the disease (in both mild and severe preeclampsia) and the requirements for the delivery (before and after 34th week of gestation). Nevertheless, the highest Hsp60 mRNA levels may be observed in pregnancies with signs of the centralization of the fetal circulation associated with fetal hypoxia.

  4.  The impact of IL18 gene polymorphisms on mRNA levels and interleukin-18 release by peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Violetta Dziedziejko

    2012-06-01

    Full Text Available  Introduction:Interleukin-18 (IL-18 is a pleiotropic cytokine playing an important role as a modulator of immune responses, found to play a role in pathogenesis of numerous inflammatory-associated disorders. In the present study a potential association between 7 common single-nucleotide polymorphisms (SNPs spanning the whole IL18 gene, gene expression and the release of IL-18 from the stimulated peripheral blood mononuclear cells (PBMCs was investigated.Materials/Methods:PBMCs were isolated from peripheral blood of 29 healthy volunteers, genotyped for the presence of IL18 SNPs: rs1946518: A>C, rs187238: G>C, rs360718: A>C, rs360722: C>T, rs360721: C>G, rs549908: T>G, and rs5744292: A>G. IL-18 concentration and IL18 mRNA levels were investigated after incubation of cells for 48 h with different stimulants (PHA, LPS, and anti-CD3/CD28 antibodies.Results:After treatment with LPS and antibodies IL-18 concentrations were significantly lower in rs1946518AA homozygotes than in C allele carriers. When differences in IL18 mRNA levels between non-stimulated and stimulated cells were analyzed, significantly decreased gene expression was noted in rs1946518 AA homozygotes (as compared with C allele carriers in samples treated with PHA and LPS. Similar trends were observed in the case of rs187238 SNP; however, the differences reached statistical significance only after PHA treatment.Conclusions:Our study supports the role of rs1946518 (-607A>C and rs187238 (-137G>C SNPs as genetic determinants of the observed variability in IL18 expression.

  5. MicroRNA-145 ModulatesN6-Methyladenosine Levels by Targeting the 3'-Untranslated mRNA Region of theN6-Methyladenosine Binding YTH Domain Family 2 Protein.

    Science.gov (United States)

    Yang, Zhe; Li, Jiong; Feng, Guoxing; Gao, Shan; Wang, Yuan; Zhang, Shuqin; Liu, Yunxia; Ye, Lihong; Li, Yueguo; Zhang, Xiaodong

    2017-03-03

    N 6 -Methyladenosine (m 6 A) is a prevalent modification present in the mRNAs of higher eukaryotes. YTH domain family 2 (YTHDF2), an m 6 A "reader" protein, can recognize mRNA m 6 A sites to mediate mRNA degradation. However, the regulatory mechanism of YTHDF2 is poorly understood. To this end, we investigated the post-transcriptional regulation of YTHDF2. Bioinformatics analysis suggested that the microRNA miR-145 might target the 3'-untranslated region (3'-UTR) of YTHDF2 mRNA. The levels of miR-145 were negatively correlated with those of YTHDF2 mRNA in clinical hepatocellular carcinoma (HCC) tissues, and immunohistochemical staining revealed that YTHDF2 was closely associated with malignancy of HCC. Interestingly, miR-145 decreased the luciferase activities of 3'-UTR of YTHDF2 mRNA. Mutation of predicted miR-145 binding sites in the 3'-UTR of YTHDF2 mRNA abolished the miR-145-induced decrease in luciferase activity. Overexpression of miR-145 dose-dependently down-regulated YTHDF2 expression in HCC cells at the levels of both mRNA and protein. Conversely, inhibition of miR-145 resulted in the up-regulation of YTHDF2 in the cells. Dot blot analysis and immunofluorescence staining revealed that the overexpression of miR-145 strongly increased m 6 A levels relative to those in control HCC cells, and this increase could be blocked by YTHDF2 overexpression. Moreover, miR-145 inhibition strongly decreased m 6 A levels, which were rescued by treatment with a small interfering RNA-based YTHDF2 knockdown. Thus, we conclude that miR-145 modulates m 6 A levels by targeting the 3'-UTR of YTHDF2 mRNA in HCC cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Comparative immunohistochemical expression of RANK, RANKL and OPG in radicular and dentigerous cysts.

    Science.gov (United States)

    de Moraes, Maiara; de Lucena, Hévio Freitas; de Azevedo, Paulo Roberto Medeiros; Queiroz, Lélia Maria Guedes; Costa, Antonio de Lisboa Lopes

    2011-11-01

    Receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) are members of the superfamily of ligands and receptors of tumour necrosis factor family involved in bone metabolism. The formation, differentiation and activity of osteoclasts are regulated by these proteins. To clarify the roles of osteoclast regulatory factors in cystic expansion of odontogenic cysts, expression of these proteins were analysed in radicular and dentigerous cysts. The immunohistochemistry expression of these biomarkers were evaluated and measured in lining epithelium and fibrous capsule of the radicular (n=20) and dentigerous cysts (n=20). A similar expression in lining epithelium was observed in the lesions. The fibrous capsule of dentigerous cyst showed a higher content of RANK-positive and RANKL-positive cells than fibrous capsule of radicular cyst. In the lining epithelium the RANKL/OPG ratio showed higher numbers of OPG-positive than RANKL-positive cells, whereas fibrous capsule of the cysts had a tendency to present a similar expression (OPG=RANKL). Ours findings indicate the presence of RANK, RANKL and OPG in cysts. Moreover, increased expression of OPG compared to RANKL in the lining epithelium could contribute to the differential bone resorption activity in theses lesions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of low levels of dietary available phosphorus on phosphorus utilization, bone mineralization, phosphorus transporter mRNA expression and performance in growing pigs.

    Science.gov (United States)

    Pokharel, Bishwo B; Regassa, Alemu; Nyachoti, Charles M; Kim, Woo K

    2017-06-03

    A study was conducted to examine the effects of different dietary levels of available phosphorus (aP) on P excretion, bone mineralization, performance and the mRNA expression of sodium-dependent P transporters in growing pigs. Sixty-day old growing pigs (n = 54) with an average initial BW of 19.50 ± 1.11 kg were randomly allocated to a control diet (C) containing 0.23% available phosphorus (aP), T1 containing 0.17% aP and T2 containing 0.11% aP. There were 6 pens per treatment with 3 pigs per pen. Body weight and feed intake were measured weekly. At the end of each week, one pig from each pen was housed in a metabolic crate for 24 h to collect fecal and urine samples and then sacrificed to obtain third metacarpal (MC3) bones and jejunal and kidney samples. Bones were scanned by Dual Energy X-ray Absorptiometry (DEXA). Fecal and urine samples were sub-sampled and analyzed for P content. The expression of P transporter mRNA in jejunum and kidney samples was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Pigs fed the T2 diet had reduced (P < 0.05) average daily gain (ADG) and gain to feed (G:F) compared to those fed the C diet during week 2. Overall, ADG and G:F were also reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C and T1 diets. Bone mineral density (BMD) and bone mineral content (BMC) were reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet throughout the experiment. At week 1, jejunal mRNA expression of Na (+)-dependent phosphate transporter 2 (SLC34A2) was increased (P < 0.01) in pigs fed the T2 diet compared to C diet. Renal mRNA expression of Na(+)-dependent phosphate transporter 1 (SLC34A1) and SLC34A3 were increased (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet at week 2 and was accompanied by lower (P < 0.05) urinary P in pigs fed the T2 diet during week 2

  8. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan, E-mail: liu-xiangyuan@263.net

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  9. Associations of Haplotypes Upstream of IRS1 with Insulin Resistance, Type 2 Diabetes, Dyslipidemia, Preclinical Atherosclerosis, and Skeletal Muscle LOC646736 mRNA Levels

    Directory of Open Access Journals (Sweden)

    Selma M. Soyal

    2015-01-01

    Full Text Available The genomic region ~500 kb upstream of IRS1 has been implicated in insulin resistance, type 2 diabetes, adverse lipid profile, and cardiovascular risk. To gain further insight into this chromosomal region, we typed four SNPs in a cross-sectional cohort and subjects with type 2 diabetes recruited from the same geographic region. From 16 possible haplotypes, 6 haplotypes with frequencies >0.01 were observed. We identified one haplotype that was protective against insulin resistance (determined by HOMA-IR and fasting plasma insulin levels, type 2 diabetes, an adverse lipid profile, increased C-reactive protein, and asymptomatic atherosclerotic disease (assessed by intima media thickness of the common carotid arteries. BMI and total adipose tissue mass as well as visceral and subcutaneous adipose tissue mass did not differ between the reference and protective haplotypes. In 92 subjects, we observed an association of the protective haplotype with higher skeletal muscle mRNA levels of LOC646736, which is located in the same haplotype block as the informative SNPs and is mainly expressed in skeletal muscle, but only at very low levels in liver or adipose tissues. These data suggest a role for LOC646736 in human insulin resistance and warrant further studies on the functional effects of this locus.

  10. [Effect of dangua recipe on glycolipid metabolism and VCAM-1 and its mRNA expression level in Apo E(-/-) mice with diabetes mellitus].

    Science.gov (United States)

    Heng, Xian-Pei; Li, Liang; Huang, Su-Ping; Chen, Yan; Lin, Miao-Xian; Zhuang, Huai-Shan; Yan, Qun-Fang; Yang, Liu-Qing; Chen, Ling; Lin, Qing; Cheng, Xin-Ling; Chen, Min-Ling; Chen, Yi-Chu; Lan, Yuan-Long; Wang, Zhi-Ta; Yao, Shu-Hong; Zhang, Zhi-San

    2014-09-01

    To study the effect of Dangua Recipe (DGR) on glycolipid metabolism, vascular cell adhesion molecule-1 (VCAM-1) and its mRNA expression level of transgenic Apo E(-/-) mouse with spontaneous atherosclerosis, thus revealing its partial mechanism for curing diabetes mellitus (DM) with angiopathy. Diabetic model was prepared by peritoneally injecting streptozotocin (STZ) to Apo E(-/-) mouse. Totally 32 modeled mice were stratified by body weight, and then divided into 4 groups referring to blood glucose levels from low to high by random digit table, i.e., the model group (MOD, fed with sterile water, at the daily dose of 15 mL/kg), the DGR group (fed with DGR at the daily dose of 15 mL/kg), the combination group (COM, fed with DGR at the daily dose of 15 mL/kg and pioglitazone at the daily dose of 4.3 mg/kg), and the pioglitazone group (PIO, at the daily dose of 4.3 mg/kg), 8 in each group. Another 8 normal glucose C57 mouse of the same age and strain were recruited as the control group. All interventions lasted for 12 weeks by gastrogavage. The fasting blood glucose (FBG), body weight, food intake, water intake, skin temperature, the length of tail, and the degree of fatty liver were monitored. The hemoglobin A1c (HbA1c), total cholesterol (TC), and LDL-C were determined. Endothelin-1 (ET-1) was determined by radioimmunoassay. Nitrogen monoxidum (NO) was determined by nitrate reductase. The kidney tissue VCAM-1 level was analyzed with ELISA. The expression of VCAM-1 mRNA in the kidney tissue was detected with real time quantitative PCR. Compared with the control group, the body weight and food intake decreased, water intake increased in all the other model groups (P food intake and water intake increased more and the tail length was longer in the DRG group (P < 0.01). There was no statistical difference in the level of NO among groups. The degree of fatty liver in the model group was significantly severer than that in the control group (P < 0.05). It was obviously

  11. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes.

    Science.gov (United States)

    Aziz, R; Beymer, M; Negrón, A L; Newshan, A; Yu, G; Rosati, B; McKinnon, D; Fukuda, M; Lin, R Z; Mayer, C; Boehm, U; Acosta-Martínez, M

    2014-07-01

    Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP

  12. Relationship between Sustained Reductions in Plasma Lipid and Lipoprotein Concentrations with Apheresis and Plasma Levels and mRNA Expression of PTX3 and Plasma Levels of hsCRP in Patients with HyperLp(alipoproteinemia

    Directory of Open Access Journals (Sweden)

    Claudia Stefanutti

    2016-01-01

    Full Text Available The effect of lipoprotein apheresis (Direct Adsorption of Lipids, DALI (LA on plasma levels of pentraxin 3 (PTX3, an inflammatory marker that reflects coronary plaque vulnerability, and expression of PTX3 mRNA was evaluated in patients with hyperLp(alipoproteinemia and angiographically defined atherosclerosis/coronary artery disease. Eleven patients, aged 55±9.3 years (mean ± SD, were enrolled in the study. PTX3 soluble protein levels in plasma were unchanged by 2 sessions of LA; however, a downregulation of mRNA expression for PTX3 was observed, starting with the first session of LA (p<0.001. The observed reduction was progressively increased in the interval between the first and second LA sessions to achieve a maximum decrease by the end of the second session. A statistically significantly greater treatment-effect correlation was observed in patients undergoing weekly treatments, compared with those undergoing treatment every 15 days. A progressive reduction in plasma levels of C-reactive protein was also seen from the first session of LA, with a statistically significant linear correlation for treatment-effect in the change in plasma levels of this established inflammatory marker (R2=0.99; p<0.001. Our findings suggest that LA has anti-inflammatory and endothelium protective effects beyond its well-established efficacy in lowering apoB100-containing lipoproteins.

  13. I-BET151 inhibits expression of RANKL, OPG, MMP3 and MMP9 in ankylosing spondylitis in vivo and in vitro.

    Science.gov (United States)

    Fan, Jianping; Zhao, Jian; Shao, Jie; Wei, Xianzhao; Zhu, Xiaodong; Li, Ming

    2017-11-01

    Ankylosing spondylitis (AS) is characterized by osteoclastogenesis and inflammatory bone resorption. The present study aimed to investigate the effect of bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 on AS process. A total of 38 AS Chinese patients were recruited and a further 38 sex- and age-matched healthy participants were selected as control. The Bath AS Function Index and Bath AS Disease Activity Index were assessed in AS patients and levels of erythrocyte sedimentation rate and C-reactive protein were measured in AS and healthy groups. Serum from AS patients was used to induce MG63 osteoblasts and BET inhibitor I-BET151 at concentrations of 50, 100 and 200 ng/ml used for treatment of the cells. A HLA-B27/β2m transgenic AS Lewis rat model was established and treated with 30 mg/kg I-BET151 for 5 weeks. Levels of receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and MMP9 were measured using ELISA in vivo and additionally detected with western blotting and polymerase chain reaction in vitro. The levels of RANKL, OPG, MMP3 and MMP9 were upregulated in AS serum, AS serum treated MG63 cells and HLA-B27/β2m transgenic AS rats. Conversely, levels of RANKL, OPG, MMP3 and MMP9 were significantly inhibited in cells or animals treated with I-BET151. Overall, the results of the present study demonstrated that BET inhibitor I-BET151 suppresses levels of RANKL, OPG, MMP3 and MMP9 in AS in vivo and in vitro. I-BET151 may exhibit the potential to be used as a therapeutic in the treatment of AS patients.

  14. Analysis of SLC40A1 gene at the mRNA level reveals rapidly the causative mutations in patients with hereditary hemochromatosis type IV.

    Science.gov (United States)

    Speletas, Matthaios; Kioumi, Anna; Loules, Gedeon; Hytiroglou, Prodromos; Tsitouridis, John; Christakis, John; Germenis, Anastasios E

    2008-01-01

    Mutations in the SLC40A1 gene result in a dominant genetic disorder [ferroportin disease; hereditary hemochromatosis type (HH) IV], characterized by iron overload with two different clinical manifestations, normal transferrin saturation with macrophage iron accumulation (the most prevalent type) or high transferrin saturation with hepatocyte iron accumulation (classical hemochromatosis phenotype). In previous studies, the mutational analysis of SLC40A1 gene has been performed at the genomic DNA level by PCR amplification and direct sequencing of all coding regions and flanking intron-exon boundaries (usually in 9 PCR reactions). In this study, we analyzed the SLC40A1 gene at the mRNA level, in two RT-PCR reactions, followed by direct sequencing and/or NIRCA (non-isotopic RNase cleavage assay). This protocol turned out to be rapid, sensitive and reliable, facilitating the detection of the SLC40A1 gene mutations in two patients with hyperferritinemia, normal transferrin saturation and iron accumulation predominantly in macrophages and Kupffer cells. The first one displayed the well-described alteration V162 Delta and the second a novel mutation (R178G) that was further detected in two relatives in a pedigree analysis. The proposed procedure would facilitate the wide-range molecular analysis of the SLC40A1 gene, contributing to better understanding the pathogenesis of the ferroportin disease.

  15. "Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density"

    Science.gov (United States)

    2011-01-01

    Background Primary hyperparathyroidism (PHPT) affects mainly cortical bone. It is thought that parathyroid hormone (PTH) indirectly regulates the activity of osteoclasts by means of the osteoprotegerin/ligand of the receptor activator of nuclear factor-κβ (OPG/RANKL) system. Several studies have confirmed that OPG (osteoprotegerin) and RANKL (ligand of the receptor activator of nuclear factor-κβ) loci are determinants of bone mineral density (BMD) in the general population. The aim of this study is to analyze the relationship between fractures and BMD and the rs3102735 (163 A/G), rs3134070 (245 T/G) and rs2073618 (1181 G/C) SNPs of the OPG and the rs2277438 SNP of the RANKL, in patients with sporadic PHPT. Methods We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analyzed anthropometric data, history of fractures or renal lithiasis, biochemical determinants including markers for bone remodelling, BMD measurements in the lumbar spine, total hip, femoral neck and distal radius, and genotyping for the SNPs to be studied. Results Regarding the age of diagnosis, BMI, menopause status, frequency of fractures or renal lithiasis, we found no differences between genotypes in any of the SNPs studied in the PHPT group. Significant lower BMD in the distal radius with similar PTH levels was found in the minor allele homozygotes (GG) compared to heterozygotes and major allele homozygotes in both OPG rs3102735 (163 A/G) and OPG rs3134070 (245 T/G) SNPs in those with PHPT compared to control subjects. We found no differences between genotypes of the OPG rs2073618 (1181 G/C) SNP with regard to BMD in the PHPT subjects. In the evaluation of rs2277438 SNP of the RANKL in PHPT patients, we found a non significant trend towards lower BMD in the 1/3 distal radius and at total hip in the minor allele homocygotes (GG) genotype group versus heterocygotes and major allele homocygotes (AA). Conclusions Our study provides the first

  16. "Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density"

    Directory of Open Access Journals (Sweden)

    Piedra María

    2011-12-01

    Full Text Available Abstract Background Primary hyperparathyroidism (PHPT affects mainly cortical bone. It is thought that parathyroid hormone (PTH indirectly regulates the activity of osteoclasts by means of the osteoprotegerin/ligand of the receptor activator of nuclear factor-κβ (OPG/RANKL system. Several studies have confirmed that OPG (osteoprotegerin and RANKL (ligand of the receptor activator of nuclear factor-κβ loci are determinants of bone mineral density (BMD in the general population. The aim of this study is to analyze the relationship between fractures and BMD and the rs3102735 (163 A/G, rs3134070 (245 T/G and rs2073618 (1181 G/C SNPs of the OPG and the rs2277438 SNP of the RANKL, in patients with sporadic PHPT. Methods We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analyzed anthropometric data, history of fractures or renal lithiasis, biochemical determinants including markers for bone remodelling, BMD measurements in the lumbar spine, total hip, femoral neck and distal radius, and genotyping for the SNPs to be studied. Results Regarding the age of diagnosis, BMI, menopause status, frequency of fractures or renal lithiasis, we found no differences between genotypes in any of the SNPs studied in the PHPT group. Significant lower BMD in the distal radius with similar PTH levels was found in the minor allele homozygotes (GG compared to heterozygotes and major allele homozygotes in both OPG rs3102735 (163 A/G and OPG rs3134070 (245 T/G SNPs in those with PHPT compared to control subjects. We found no differences between genotypes of the OPG rs2073618 (1181 G/C SNP with regard to BMD in the PHPT subjects. In the evaluation of rs2277438 SNP of the RANKL in PHPT patients, we found a non significant trend towards lower BMD in the 1/3 distal radius and at total hip in the minor allele homocygotes (GG genotype group versus heterocygotes and major allele homocygotes (AA. Conclusions Our study provides

  17. CORRELATION BETWEEN PROTEIN-WITH-MOLECULAR-WEIGHT-53 (P53, BURKIT CELL LYMPHOMA 2 (BCL2, AND FAS LIGAND (FASL AND VASCULAR-CELL-ADHESION-MOLECULE-1 (VCAM-1 MRNA EXPRESSION LEVELS IN A PATHOGENESIS STUDY OF PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Mintareja Teguh

    2014-06-01

    Full Text Available Objective: To determine the role of protein-with-molecular-weight-53 (p53, burkit cell lymphoma 2 (Bcl2, Fas ligand (FasL mRNA, and vascular cell adhesion molecule 1 (VCAM-1, known as the apoptosis-related molecular pathway, in preeclamptic patients. Methods: Observation on the correlation between the mRNA levels of p53, Bcl2 and FasL and VCAM-1 in 31 subjects at 28-42 weeks gestational age was performed in this study using the real time reverse transcriptase-polymerase chain reaction (RT-PCR. Results: The results showed that p53 mRNA increased (>1.2350 ng/μL in the preeclampsia group compared to the normal pregnancy group (p=0.010, Bcl2 mRNA was lower (≤0.9271 ng/μL in the preeclampsia group than the control group (p=0.041. There was also a tendency of increased FasL mRNA expression (>0.5509 ng/μL in the preeclampsia group compared to the normal pregnancy group (p=0.300. The level of VCAM-1 elevated (>890.08 ng/mL in the preeclampsia group compared to the normal pregnancy group (p=0.001. In preeclampsia, the correlation between the Bcl2/p53 ratio and VCAM-1 was r=0.541 (p=0.002, whereas the correlation in normal pregnancy was r=0.099 (p=0.595. Conclusions: There are correlations between the mRNA expression levels of p53 and Bcl2 as an intrinsic pathway of apoptosis along with the VCAM-1 levels in the incidence of preeclampsia. However, no correlation is found between FasL mRNA expression and the incidence of preeclampsia.

  18. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs.

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    Full Text Available The class I major histocompatibility complex (MHC presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1. We prepared a monoclonal antibody (mAb against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1 mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.

  19. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells.

    Science.gov (United States)

    Streicher, Carmen; Heyny, Alexandra; Andrukhova, Olena; Haigl, Barbara; Slavic, Svetlana; Schüler, Christiane; Kollmann, Karoline; Kantner, Ingrid; Sexl, Veronika; Kleiter, Miriam; Hofbauer, Lorenz C; Kostenuik, Paul J; Erben, Reinhold G

    2017-07-25

    Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.

  20. Targeting RANKL in the management of bone loss in patient with breast cancer

    National Research Council Canada - National Science Library

    Nicolin, Vanessa; Valentini, Roberto

    2014-01-01

    .... RANKL in bone has also been shown to serve as a chemoattractant for cancer cells, thu explaining the tropism of certain cancers such as breast and prostate cancer to preferentially metastasize to bone...

  1. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...... correlated (PIL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...

  2. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  3. High protein and mRNA expression levels of TUBB3 (class III ß-tubulin) are associated with aggressive tumor features in esophageal adenocarcinomas.

    Science.gov (United States)

    Loeser, Heike; Schallenberg, Simon; von Winterfeld, Moritz; Tharun, Lars; Alakus, Hakan; Hölscher, Arnulf; Bollschweiler, Elfriede; Buettner, Reinhard; Zander, Thomas; Quaas, Alexander

    2017-12-29

    Esophageal adenocarcinomas show an increasing incidence in the Western world and their overall survival remains low. Microtubules are multifunctional cytoskeletal proteins involved in crucial cellular roles, including maintenance of cell shape, intracellular transport, meiosis, and mitosis. Microtubulus-TUBB3 was found overexpressed in several carcinomas suggesting a significant role in cancer development. High levels of TUBB3 expression were also described to be associated with poor clinical outcome in various cancers. It was shown that overexpression of TUBB3 could be related to reduced efficiency of taxane-based targeting anticancer drugs in several cancer types. There is a statistically significant association between high TUBB3 protein and TUBB3 mRNA expression and shortened survival (pimportance of TUBB3 in esophageal adenocarcinoma. TUBB3 serves as an independent prognostic marker and may be a valuable biomarker for routine application in esophageal adenocarcinoma especially to address the need for adjuvant treatment in individuals following neoadjuvant therapy and surgery. Future prospective studies are needed which include the results of TUBB3 in preoperative biopsy material to proof the prognostic impact of TUBB3. 280 esophageal adenocarcinomas that underwent primary surgical resection or resection after neoadjuvant therapy were analyzed by mRNA-in-situ-hybridization (RNAscope ® ) and by immunohistochemistry (TUBB3 rabbit monoclonal antibody; Epitomics).

  4. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease

    Science.gov (United States)

    Kajiya, Mikihito; Giro, Gabriela; Taubman, Martin A.; Han, Xiaozhe; Mayer, Marcia P.A.; Kawai, Toshihisa

    2010-01-01

    Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria. PMID:21523224

  5. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yoon-Hee [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Baek, Jong Min; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2016-02-05

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.

  6. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood.Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport.Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1) iron and folic acid (FeFol) tablets (FeFol group); 2) multiple micronutrient (MMN) tablets (MMN group); 3) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels.Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively (P iron uptake protein transferrin receptor 1 were 30-49% higher in the PE and PE+MMN arms than in the FeFol arm (P iron and in the absence of supplemental zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  7. Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats.

    Science.gov (United States)

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Piasecka, Anna; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Bogacz, Anna; Szulc, Michal; Kaminska, Ewa; Kujawska, Malgorzata; Gryszczynska, Agnieszka; Kachlicki, Piotr; Buchwald, Waldemar; Klejewski, Andrzej; Seremak-Mrozikiewicz, Agnieszka

    2017-05-01

    Salvia miltiorrhiza (Lamiaceae), one of the most important and popular plants of traditional medicine of Asia, is used for the prevention and treatment of cardiovascular diseases and in central nervous system disturbances. The main aim of this study was to assess the influence of subchronic (28-fold) administration of Salvia miltiorrhiza root extract (SE, 200mg/kg, p.o.) on behavioural activity and memory of rats and to evaluate the activities of cholinesterases (AChE and BuChE) and gene expression levels of AChE and BuChE as well as of beta-secretase (BACE1) in the hippocampus and frontal cortex in vivo. Huperzine A (HU, 0.5mg/kg b.w., p.o.) served as a positive control substance, whereas scopolamine (0.5mg/kg, i.p.) injection was used as a well-known model of memory impairment. The results showed that subchronic administration of SE led to an improvement of long-term memory of rats. Strong inhibition of AChE and BuChE mRNA transcription in the frontal cortex of rats treated with SE or HU was observed. The BACE1 transcript level was significantly decreased. AChE activity was statistically significantly inhibited in the frontal cortex and the hippocampus by SE (47% and 55%, respectively). Similar effects were observed in the case of HU. In summary, activity of SE provides evidence that the plant can be a source of drugs used in the treatment of Alzheimer disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Variable levels of 37-kDa/67-kDa laminin receptor (RPSA) mRNA in ovine tissues: potential contribution to the regulatory processes of PrPSc propagation?

    Science.gov (United States)

    Qiao, Jun-Wen; Su, Xiao-Ou; Li, Yu-Xing; Yang, Jian-Min; Wang, Yi-Qin; Kouadir, Mohammed; Zhou, Xiang-Mei; Yang, Li-Feng; Yin, Xiao-Min; Zhao, De-Ming

    2009-01-01

    The 37-kDa laminin receptor precursor/67-kDa laminin receptor (LRP/LR, also known as ribosomal protein SA, RPSA) has been reported to be involved in cancer development and prion internalization. Previous studies have shown that the LRP/LR is expressed in a wide variety of tissues. In particular, expression of LRP/LR mRNA may be closely related to the degree of PrP(Sc) propagation. This study presents a detailed investigation of the LRP/LR mRNA expression levels in eleven normal ovine tissues. Using real-time quantitative PCR, the highest LRP/LR expression was found in neocortex (p < 0.05). Slightly lower levels were found in the heart and obex. Intermediate levels were seen in hippocampus, cerebellum, spleen, thalamus, mesenteric lymph node, and the lowest levels were present in liver, kidney, and lung. In general, the LRP/LR mRNA levels were much higher in neuronal tissues than in peripheral tissues. The observation that differences in LRP/LR mRNA expression levels are consistent with the corresponding variation in PrP(Sc) accumulation suggests that the 37-kDa/67-kDa laminin receptor may be involved in the regulation of PrP(Sc) propagation.

  9. Macrophage Migration Inhibitory Factor Promoter Polymorphisms (−794 CATT5–8 and −173 G>C: Relationship with mRNA Expression and Soluble MIF Levels in Young Obese Subjects

    Directory of Open Access Journals (Sweden)

    Inés Matia-García

    2015-01-01

    Full Text Available We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold, while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.

  10. Macrophage Migration Inhibitory Factor Promoter Polymorphisms (−794 CATT5–8 and −173 G>C): Relationship with mRNA Expression and Soluble MIF Levels in Young Obese Subjects

    Science.gov (United States)

    Matia-García, Inés; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F.; García-Arellano, Samuel; Hernández-Bello, Jorge; Salgado-Bernabé, Aralia B.; Parra-Rojas, Isela

    2015-01-01

    We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects. PMID:25972622

  11. Molecular characterization of cytochrome P450 1A and 3A and the effects of perfluorooctanoic acid on their mRNA levels in rare minnow (Gobiocypris rarus) gills

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yong; Wang Jianshe; Wei Yanhong; Zhang Hongxia; Liu Yang [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Dai Jiayin [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China)], E-mail: daijy@ioz.ac.cn

    2008-07-07

    Perfluorooctanoic acid (PFOA), a potentially toxic perfluorinated compound (PFC), has been widely disseminated in the environment. In the present study, rare minnows (Gobiocypris rarus) exposed to PFOA exhibited histopathological gill damage, including epithelial hyperplasia of the lamellae, inflammatory cell infiltration, and lamellar fusion. Cytochrome P450s (CYPs) play a central role in the metabolism and biotransformation of a wide range of endogenous substrates and foreign compounds. Thus, we studied the CYPs and the effects of waterborne PFOA on their corresponding mRNA levels in the gills of rare minnows. Two novel CYP cDNAs (CYP1A and CYP3A) were identified in rare minnow and their mRNAs were ubiquitously expressed in all tissues examined. Upregulation of CYP3A mRNA was observed in the gills of male rare minnows exposed to 30 mg/L PFOA, while no significant changes occurred in exposed females. In contrast, down regulation of CYP1A mRNA was detected in the gills of male and female minnows exposed to PFOA. However, the effect of PFOA on gill mRNA levels of their potential regulators, aryl hydrocarbon receptor (AhR) for CYP1A, and pregnane X receptor (PXR) for CYP3A, were not consistent with the observed effects of PFOA on the corresponding CYP mRNA concentrations. This suggests a different or more complex transcriptional regulation of CYP expression following PFOA exposure.

  12. Innate differences in neuropeptide Y (NPY) mRNA expression in discrete brain regions between alcohol-preferring (P) and -nonpreferring (NP) rats: a significantly low level of NPY mRNA in dentate gyrus of the hippocampus and absence of NPY mRNA in the medial habenular nucleus of P rats.

    Science.gov (United States)

    Hwang, Bang H; Suzuki, Ryoji; Lumeng, Lawrence; Li, T-K; McBride, William J

    2004-12-01

    The neuropeptide Y (NPY) gene in rat chromosome 4 has been shown to play an important role in alcohol-seeking behavior. NPY knockout mice drink more alcohol than wild-type mice, implicating a link between NPY deficiency and high alcohol intake. This is supported by recent studies showing that intracerebroventricular injections of NPY reduce alcohol intake in both alcohol-preferring (P) and high alcohol-drinking rats. However, it is unknown which anatomical NPY systems are involved in alcohol preference. This study was designed to investigate whether there are innate differences in NPY mRNA in cerebral cortical areas, dentate gyrus (DG) of the hippocampus and medial habenular nucleus (MHb) between P and alcohol-nonpreferring (NP) rats, as these discrete brain regions are rich in NPY mRNA. [(33)P]-labeled 28-mer oligodeoxynucleotide probe was applied for the in situ hybridization study to detect the NPY mRNA, measured using quantitative autoradiography. This study revealed an absence of NPY mRNA in the MHb of P rats. We found that NPY mRNA was significantly lower in the DG of P rats than NP rats. This innate difference of NPY mRNA expression in the DG between P and NP rats is region specific. For example, in most of the cerebral cortical areas examined, an innate difference was not seen. Our study suggests that lower NPY gene expression in the DG and MHb of P rats may be factors contributing to some of the phenotypic differences observed between the P and NP lines of rats.

  13. Expression levels of mRNA for insulin-like growth factors 1 and 2, IGF receptors and IGF binding proteins in in vivo and in vitro grown bovine follicles.

    Science.gov (United States)

    Rebouças, Emanuela L; Costa, José J N; Passos, Maria J; Silva, Anderson W B; Rossi, Rodrigo O D S; van den Hurk, Robert; Silva, José R V

    2014-11-01

    This study investigated mRNA levels for insulin-like growth factors (IGFs) IGF1 (IGF-I) and IGF2 (IGF-II), IGF receptors (IGF1R and IGF2R), and binding proteins (IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6) in bovine follicles of 0.2, 0.5 or 1.0 mm in diameter. mRNA expression levels in in vitro cultured follicles that reached approximately 0.5 mm were compared with that of in vivo grown follicles. IGF1R and IGF2R expression levels in 0.5 mm in vivo follicles were higher than in 1.0 or 0.2 mm follicles, respectively. IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 showed variable expression in the follicular size classes analyzed. In vitro grown follicles had significantly reduced expression levels for IGF1, IGF1R, IGFBP-3, IGFBP-5 and IGFBP-6 mRNA when compared with 0.2 mm follicles, but, when compared with in vivo grown follicles (0.5 mm), only IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 showed a reduction in their expression. In conclusion, IGFs, their receptors and IGFBPs showed variable expression of mRNA levels in the follicular size classes analyzed.

  14. Effects of Antitumor Necrosis Factor Therapy on Osteoprotegerin, Neopterin, and sRANKL Concentrations in Patients with Rheumatoid Arthritis

    Science.gov (United States)

    Kurz, Katharina; Herold, Manfred; Russe, Elisabeth; Klotz, Werner; Weiss, Guenter; Fuchs, Dietmar

    2015-01-01

    Background. Rheumatoid arthritis is a systemic autoimmune disease characterized by joint erosions, progressive focal bone loss, and chronic inflammation. Methods. 20 female patients with moderate-to-severe rheumatoid arthritis were treated with anti-TNF-antibody adalimumab in addition to concomitant antirheumatic therapies. Patients were assessed for overall disease activity using the DAS28 score, and neopterin, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) concentrations as well as osteoprotegerin (OPG) and soluble receptor activator of NF-κB ligand (sRANKL) concentrations were determined before therapy and at week 12. Neopterin as well as OPG and sRANKL were determined by commercial ELISAs. Results. Before anti-TNF therapy patients presented with high disease activity and elevated concentrations of circulating inflammatory markers. OPG concentrations correlated with neopterin (rs = 0.494, p = 0.027), but not with DAS28. OPG concentrations and disease activity scores declined during anti-TNF-treatment (both p < 0.02). Patients who achieved remission (n = 7) or showed a good response according to EULAR criteria (n = 13) presented with initially higher baseline OPG levels, which subsequently decreased significantly during treatment (p = 0.018 for remission, p = 0.011 for good response). Conclusions. Adalimumab therapy was effective in modifying disease activity and reducing proinflammatory and bone remodelling cascades. PMID:26576067

  15. Effects of Antitumor Necrosis Factor Therapy on Osteoprotegerin, Neopterin, and sRANKL Concentrations in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Katharina Kurz

    2015-01-01

    Full Text Available Background. Rheumatoid arthritis is a systemic autoimmune disease characterized by joint erosions, progressive focal bone loss, and chronic inflammation. Methods. 20 female patients with moderate-to-severe rheumatoid arthritis were treated with anti-TNF-antibody adalimumab in addition to concomitant antirheumatic therapies. Patients were assessed for overall disease activity using the DAS28 score, and neopterin, erythrocyte sedimentation rate (ESR, and C-reactive protein (CRP concentrations as well as osteoprotegerin (OPG and soluble receptor activator of NF-κB ligand (sRANKL concentrations were determined before therapy and at week 12. Neopterin as well as OPG and sRANKL were determined by commercial ELISAs. Results. Before anti-TNF therapy patients presented with high disease activity and elevated concentrations of circulating inflammatory markers. OPG concentrations correlated with neopterin (rs=0.494, p=0.027, but not with DAS28. OPG concentrations and disease activity scores declined during anti-TNF-treatment (both p<0.02. Patients who achieved remission (n=7 or showed a good response according to EULAR criteria (n=13 presented with initially higher baseline OPG levels, which subsequently decreased significantly during treatment (p=0.018 for remission, p=0.011 for good response. Conclusions. Adalimumab therapy was effective in modifying disease activity and reducing proinflammatory and bone remodelling cascades.

  16. Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium.

    Science.gov (United States)

    Michán, Carmen; Monje-Casas, Fernando; Pueyo, Carmen

    2005-04-04

    We quantitated the copy number of mRNAs (NTG1, NTG2, OGG1, APN1, APN2, MSH2, MSH6, REV3, RAD30) encoding different DNA repair enzymes and translesion-synthesis polymerases in yeast. Quantitations reported examine how the steady-state number of each transcript is modulated in association with the growth in glucose-fermentative medium, and evaluate the respective contribution of the rate of mRNA degradation and transcription initiation to the specific mRNA level profile of each gene. Each transcript displayed a unique growth-related profile, therefore altering the relative abundance of mRNAs coding for proteins with similar functions, as cells proceed from exponential to stationary phase. Nonetheless, as general trend, they exhibited maximal levels when cells proliferate rapidly and minimal values when cells cease proliferation. We found that previous calculations on the stability of the investigated mRNAs might be biased, in particular regarding those that respond to heat shock stress. Overall, the mRNAs experienced drastic increments in their stabilities in response to gradual depletion of essential nutrients in the culture. However, differences among the mRNA stability profiles suggest a dynamic modulation rather than a passive process. As general rule, the investigated genes were much more frequently transcribed during the fermentative growth than later during the diauxic arrest and the stationary phase, this finding conciliating low steady-state levels with increased mRNA stabilities. Interestingly, while the rate at which each gene is transcribed appeared as the only determinant of the number of mRNA copies at the exponential growth, later, when cell growth is arrested, the rate of mRNA degradation becomes also a key factor for gene expression. In short, our results raise the question of how important the respective contribution of transcription and mRNA stability mechanisms is for the steady-state profile of a given transcript, and how this contribution may

  17. Effect of Gu Tong Xian capsule on expression level of type I, II collagen and BMP-2 mRNA in rabbits with fracture during long-distance running

    Directory of Open Access Journals (Sweden)

    Liang Li

    2017-05-01

    Full Text Available The study aims to analyze and investigate the effects of Gu Tong Xian Capsule on the expression level of type I, II collagen and BMP-2 mRNA in rabbits with fracture during long-distance running. 60 adult healthy rabbits were selected as research objects, and then randomly divided into three groups including model group, positive control group and treatment group, each containing 20 rabbits. The three groups were treated with saline gastric lavage, powder for fracture and trauma, and Gu Tong Xian capsule, respectively. The rabbits of the three groups were respectively sacrificed at 1st week, 2nd weeks and 4th week after operation for sample collection. After that, the expression levels of bone collagen type I, II and BMP-2 of three groups were measured and compared with each other. At all stages, the transcriptional level of type I collagen mRNA in the treatment group were significantly higher than that in the positive control group and model group (p < 0.05; Transcriptional level of type II collagen mRNA in the treatment group increased significantly in the first week, then gradually declined in the 2nd and 4th week, with significantly difference to the model group and the positive control group (p < 0.05. In addition, the transcriptional level of bone morphogenetic protein BMP-2 mRNA at fracture site of the treatment group was higher than that of model group and positive control group (p < 0.05. Gu Tong Xian Capsule can significantly promote fracture healing of experiment rabbits and reduce fracture healing time. Moreover, it can well regulate the expression levels of type I, II collagen and transcriptional level ofBMP-2 mRNA in experiment rabbits with fracture.

  18. Coordinate Changes in Histone Modifications, mRNA Levels, and Metabolite Profiles in Clonal INS-1 832/13 β-Cells Accompany Functional Adaptations to Lipotoxicity*

    Science.gov (United States)

    Malmgren, Siri; Spégel, Peter; Danielsson, Anders P.H.; Nagorny, Cecilia L.; Andersson, Lotta E.; Nitert, Marloes Dekker; Ridderstråle, Martin; Mulder, Hindrik; Ling, Charlotte

    2013-01-01

    Lipotoxicity is a presumed pathogenetic process whereby elevated circulating and stored lipids in type 2 diabetes cause pancreatic β-cell failure. To resolve the underlying molecular mechanisms, we exposed clonal INS-1 832/13 β-cells to palmitate for 48 h. We observed elevated basal insulin secretion but impaired glucose-stimulated insulin secretion in palmitate-exposed cells. Glucose utilization was unchanged, palmitate oxidation was increased, and oxygen consumption was impaired. Halting exposure of the clonal INS-1 832/13 β-cells to palmitate largely recovered all of the lipid-induced functional changes. Metabolite profiling revealed profound but reversible increases in cellular lipids. Glucose-induced increases in tricarboxylic acid cycle intermediates were attenuated by exposure to palmitate. Analysis of gene expression by microarray showed increased expression of 982 genes and decreased expression of 1032 genes after exposure to palmitate. Increases were seen in pathways for steroid biosynthesis, cell cycle, fatty acid metabolism, DNA replication, and biosynthesis of unsaturated fatty acids; decreases occurred in the aminoacyl-tRNA synthesis pathway. The activity of histone-modifying enzymes and histone modifications of differentially expressed genes were reversibly altered upon exposure to palmitate. Thus, Insig1, Lss, Peci, Idi1, Hmgcs1, and Casr were subject to epigenetic regulation. Our analyses demonstrate that coordinate changes in histone modifications, mRNA levels, and metabolite profiles accompanied functional adaptations of clonal β-cells to lipotoxicity. It is highly likely that these changes are pathogenetic, accounting for loss of glucose responsiveness and perturbed insulin secretion. PMID:23476019

  19. NF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor

    Science.gov (United States)

    Kubota, Tetsuo; Hoshino, Machiko; Aoki, Kazuhiro; Ohya, Keiichi; Komano, Yukiko; Nanki, Toshihiro; Miyasaka, Nobuyuki; Umezawa, Kazuo

    2007-01-01

    Inhibition of NF-κB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-κB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-κB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-κB inhibitors to rheumatoid arthritis therapy. PMID

  20. The Immune Response Is Involved in Atherosclerotic Plaque Calcification: Could the RANKL/RANK/OPG System Be a Marker of Plaque Instability?

    Directory of Open Access Journals (Sweden)

    Fabrizio Montecucco

    2007-01-01

    Full Text Available Atherogenesis is characterized by an intense inflammatory process, involving immune and vascular cells. These cells play a crucial role in all phases of atherosclerotic plaque formation and complication through cytokine, protease, and prothrombotic factor secretion. The accumulation of inflammatory cells and thus high amounts of soluble mediators are responsible for the evolution of some plaques to instable phenotype which may lead to rupture. One condition strongly associated with plaque rupture is calcification, a physiopathological process orchestrated by several soluble factors, including the receptor activator of nuclear factor NFκB ligand (RANKL/receptor activator of nuclear factor NFκB (RANK/osteoprotegerin (OPG system. Although some studies showed some interesting correlations with acute ischemic events, at present, more evidences are needed to evaluate the predictive and diagnostic value of serum sRANKL and OPG levels for clinical use. The major limitation is probably the poor specificity of these factors for cardiovascular disease. The identification of tissue-specific isoforms could increase the importance of sRANKL and OPG in predicting calcified plaque rupture and the dramatic ischemic consequences in the brain and the heart.

  1. CDH1 (E-cadherin) in testicular germ cell neoplasia: suppressed translation of mRNA in pre-invasive carcinoma in situ but increased protein levels in advanced tumours

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Hoei-Hansen, Christina E; Nielsen, John E

    2006-01-01

    E-cadherin (CDH1) is a transmembrane glycoprotein involved in cellular adhesion. In our recent microarray studies of testicular germ cell tumours (TGCTs) and the common precursor carcinoma in situ (CIS), CDH1 mRNA was highly expressed in CIS and embryonal carcinoma. It has previously been reported...... that the CDH1 protein is not expressed in CIS. To resolve the discrepancy, we performed a detailed analysis of the expression of CDH1 mRNA and protein in a series of normal and neoplastic testes. High expression of CDH1 mRNA in CIS was confirmed by real-time PCR and in situ hybridisation. At the protein level...... higher levels in patients with advanced disease (stage II/III) when compared to healthy individuals and patients with stage I TGCT. In conclusion, despite high mRNA levels, the CDH1 protein is not expressed in CIS, suggesting translational suppression of CDH1 protein expression. CDH1 serum levels may...

  2. Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.

    Science.gov (United States)

    Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M

    2014-12-01

    β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies

  3. Long-term in-vitro treatment of human growth hormone (GH)-secreting pituitary adenoma cells with octreotide causes accumulation of intracellular GH and GH mRNA levels.

    Science.gov (United States)

    Hofland, L J; Velkeniers, B; vd Lely, A J; van Koetsveld, P M; Kazemzadeh, M; Waaijers, M; Hooghe-Peters, E L; Lamberts, S W

    1992-09-01

    We studied the effects of long-term in-vitro exposure of human GH secreting pituitary adenoma cells to octreotide on GH release, intracellular GH concentrations and GH messenger ribonucleic acid (mRNA) levels. Human GH-secreting pituitary adenoma cells were cultured for periods from 4 days up to 3 weeks without or with octreotide (10 nM) and/or bromocriptine (10 nM). The effects of these drugs were measured on GH release, intracellular GH concentrations and intracellular GH mRNA levels. Thirteen patients with GH-secreting pituitary adenomas were studied. Twelve patients were untreated, one had been pretreated with octreotide (12 weeks, 3 x 100 micrograms daily). GH, PRL, alpha-subunit and IGF-I concentrations in plasma, media and cell extracts were determined by immunoradiometric or radioimmuno-assays. GH mRNA levels were determined by automatic quantification of grain numbers in individual adenoma cells. Incubation of the adenoma cells for 4 days with 10 nM octreotide induced a dose-dependent inhibition of GH release and a parallel increase (increase varying between 124 and 617% of control) in the intracellular GH levels was observed in six of seven adenomas. In addition, bromocriptine, when effective in inhibiting GH release by the adenomas, also induced an increase in intracellular GH levels. Even after 3 weeks of exposure to 10 nM octreotide in vitro there was a statistically significant increase in intracellular GH levels (between 191 and 923% of control). Withdrawal of octreotide after 6 days of incubation resulted in a lowering of intracellular GH levels to control values, showing that the octreotide-induced increase in intracellular GH is reversible. In a 96-hour incubation with 10 nM octreotide, GH mRNA levels were increased in two, and slightly decreased in one of the three adenomas tested. This effect was time dependent in that there was no significant effect of 10 nM octreotide on GH mRNA levels in a 24-hour incubation. (1) Long-term in-vitro exposure

  4. Effect of Bifidobacterium on the mRNA expression levels of TRAF6, GSK-3β, and microRNA-146a in LPS-stimulated rat intestinal epithelial cells.

    Science.gov (United States)

    Zhou, W; Yuan, Y; Li, J; Yuan, W M; Huang, L G; Zheng, S W

    2015-08-21

    We investigated the effect of inactivated Bifidobacterium on the mRNA expression of TRAF6, GSK-3β, and microRNA-146a in lipopolysaccharide (LPS)-stimulated rat small intestinal epithelial cells (IEC-6s). IEC-6s were randomly divided into an LPS group, a culture supernatant group, and an inactivated bacteria group. After stimulation with LPS for 5 h, the three groups were treated as follows: the LPS group was cultured for 24 h with sterile saline; the culture supernatant group was cultured with Bifidobacterium (infantis strain) culture supernatant for 24 h; and the inactivated bacteria group was cultured with inactivated infantis Bifidobacterium for 24 h. Reverse transcription polymerase chain reaction was used to determine mRNA expression levels. The mRNA expression levels of TRAF-6 and GSK-3β in the culture supernatant group were lower, and microRNA-146a expression was higher, compared with the LPS group (t = 5.278, P = 0.000; t = 6.316, P = 0.000; t = 13.218, P = 0.000, respectively). GSK-3β mRNA expression in the inactivated bacteria group was lower than in the LPS group (t = 4.837, P = 0.000). There was no difference in the mRNA expression levels of TRAF-6 and microRNA-146a between the two groups (t = 0.732, P = 0.472 and t = 1.463, P = 0.164). Both the culture supernatant and the inactivated Bifidobacterium had a protective effect on LPS-stimulated IEC-6s. The protective effect of Bifidobacterium may be achieved through increased microRNA-146a by reducing levels of TRAF6 and GSK-3β; the protective effect of inactivated Bifidobacterium may be achieved by reducing levels of GSK-3β.

  5. Increase in IL-8, IL-10, IL-13, and RANTES mRNA levels (in situ hybridization) in the nasal mucosa after nasal allergen provocation

    NARCIS (Netherlands)

    Kleinjan, A.; Dijkstra, M. D.; Boks, S. S.; Severijnen, L. A.; Mulder, P. G.; Fokkens, W. J.

    1999-01-01

    BACKGROUND: Allergic inflammation is regulated by the local production and release of several cytokines. OBJECTIVES: This study was designed to assess the changes in mRNA cytokine-positive cells after allergen provocation and to compare these cytokines with tissue eosinophilia as a marker of

  6. The effects of progesterone on oxytocin mRNA levels in the paraventricular nucleus of the female rat can be altered by the administration of diazepam or RU486.

    Science.gov (United States)

    Thomas, A; Shughrue, P J; Merchenthaler, I; Amico, J A

    1999-02-01

    Oxytocin (OT) facilitates the onset of maternal behaviour in the late pregnant rat, enhances uterine contractility at parturition, and elicits milk ejection during lactation. If the rising estradiol (E2 and declining progesterone (P) of late pregnancy is reproduced in a virgin ovariectomized rat by implanting E2- and P-filled capsules for 2 weeks followed by removal of P-containing implants 36-48 h prior to death, OT messenger ribonucleic acid (mRNA) levels increase in the paraventricular and supraoptic nuclei (PVN and SON) of the rat. Both E2 administration and P withdrawal are necessary to increase OT mRNA, but the mechanisms of these effects are not understood. P may work within the PVN although P receptors are reported to be sparse or non-existent in the PVN or outside the PVN on PR-containing neurones that project to OT-containing neurones or via membrane bound receptors that are known to bind neurosteroids and gamma aminobutyric acid (GABA). To determine the mechanism through which P may inhibit or P withdrawal may increase OT mRNA levels, virgin ovariectomized (OVX) rats received sequential E2 and P via Silastic implants for 14 days. On day 13, prior to removal of P capsules on day 14, the rats were given the benzodiazepine agonist, diazepam, or saline injections subcutaneously (s.c.) twice daily until death on day 16. OT mRNA levels were increased in the steroid-treated group that received saline but not diazepam. In experiment 2, P capsules were removed on day 14 or pharmacological P withdrawal was induced by injecting RU486 injections s.c. twice daily until death 48 h later. OT mRNA levels were increased in the steroid-treated group that received RU486. Subsequent studies demonstrated the expression of PR mRNA within the rat PVN. The data suggest that gonadal steroids may influence PVN OT mRNA levels by modulating the GABA(A) receptor or by directly altering gene transcription via the PR.

  7. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA.

  8. EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Wei Cao

    Full Text Available Epigenetic silencing is a common mechanism to inactivate tumor suppressor genes during carcinogenesis. Enhancer of Zeste 2 (EZH2 is the histone methyltransferase subunit in polycomb repressive complex 2 which mediates transcriptional repression through histone methylation. EZH2 overexpression has been linked to aggressive phenotypes of certain cancers. However, the mechanism that EZH2 played in promoting malignancy in non-small cell lung cancer (NSCLC remains unclear. In addition, the correlation of EZH2 overexpression and the prognosis of NSCLC patients in non-Asian cohort need to be determined.Up-regulation of EZH2 was found in NSCLC cells compared with normal human bronchial epithelial cells by western blot assay. Upon EZH2 knockdown using small interfering RNA (siRNA, the proliferation, anchorage-independent growth and invasion of NSCLC cells were remarkably suppressed with profound induction of G1 arrest. Furthermore, the expression of cyclin D1 was notably reduced whereas p15(INK4B, p21(Waf1/Cip1 and p27(Kip1 were increased in NSCLC cells after EZH2-siRNA delivery. To determine whether EZH2 expression contributes to disease progression in patients with NSCLC, Taqman quantitative real-time RT-PCR was used to measure the expression of EZH2 in paired tumor and normal samples. Univariate analysis revealed that patients with NSCLC whose tumors had a higher EZH2 expression had significantly inferior overall, disease-specific, and disease-free survivals compared to those whose tumors expressed lower EZH2 (P = 0.005, P = 0.001 and P = 0.003, respectively. In multivariate analysis, EZH2 expression was an independent predictor of disease-free survival (hazard ratio = 0.450, 95% CI: 0.270 to 0.750, P = 0.002.Our results demonstrate that EZH2 overexpression is critical for NSCLC progression. EZH2 mRNA levels may serve as a prognostic predictor for patients with NSCLC.

  9. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1

    Directory of Open Access Journals (Sweden)

    Yueqi Chen

    2016-09-01

    Full Text Available The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO is the major component of aged garlic extract (AGE, bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS and down-regulated the expression of NADPH oxidase 1 (Nox1. The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis.

  10. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    Science.gov (United States)

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  11. Osteoprotegerin (OPG, The Endogenous Inhibitor of Receptor Activator of NF-κB Ligand (RANKL, is Dysregulated in BRCA Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Martin Widschwendter

    2015-10-01

    The P–RANKL/OPG system is dysregulated in BRCA-mutation carriers. These and previously published data provide a strong rationale for further investigation of antiprogestogens or an anti-RANKL antibody such as denosumab for breast cancer prevention.

  12. Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin

    Science.gov (United States)

    2012-01-01

    Background Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. Results In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Conclusion Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent

  13. Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ji-Yao Li

    2011-06-01

    Full Text Available Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway.

  14. Brain region specific alterations in the protein and mRNA levels of protein kinase A subunits in the post-mortem brain of teenage suicide victims.

    Science.gov (United States)

    Pandey, Ghanshyam N; Dwivedi, Yogesh; Ren, Xinguo; Rizavi, Hooriyah S; Mondal, Amal C; Shukla, Pradeep K; Conley, Robert R

    2005-08-01

    Protein kinase A (PKA), a critical component of the adenylyl cyclase signaling system, phosphorylates crucial proteins and has been implicated in the pathophysiology of depression and suicide. The objective of the study was to examine if changes in PKA activity or in the protein and messenger RNA (mRNA) expression of any of its subunits are related to the pathophysiology of teenage suicide. We determined PKA activity and the protein and mRNA expression of different subunits of PKA in cytosol and membrane fractions obtained from the prefrontal cortex, (PFC) hippocampus, and nucleus accumbens (NA) of post-mortem brain from 17 teenage suicide victims and 17 nonpsychiatric control subjects. PKA activity was significantly decreased in the PFC but not the hippocampus of teenage suicide victims as compared with controls. However, the protein and mRNA expression of only two PKA subunits, that is, PKA RIalpha and PKA RIbeta, but not any other subunits were significantly decreased in both membrane and cytosol fractions of the PFC and protein expression of RIalpha and RIbeta in the NA of teenage suicide victims as compared to controls. A decrease in protein and mRNA expression of two specific PKA subunits may be associated with the pathogenesis of teenage suicide, and this decrease may be brain region specific, which may be related to the specific behavioral functions associated with these brain areas. Whether these changes in PKA subunits are related to suicidal behavior or are a result of suicide or are specific to suicide is not clear at this point.

  15. Triiodothyronine increases mRNA and protein leptin levels in short time in 3T3-L1 adipocytes by PI3K pathway activation.

    Directory of Open Access Journals (Sweden)

    Miriane de Oliveira

    Full Text Available The present study aimed to examine the effects of thyroid hormone (TH, more precisely triiodothyronine (T3, on the modulation of leptin mRNA expression and the involvement of the phosphatidyl inositol 3 kinase (PI3K signaling pathway in adipocytes, 3T3-L1, cell culture. We examined the involvement of this pathway in mediating TH effects by treating 3T3-L1 adipocytes with physiological (P=10nM or supraphysiological (SI=100 nM T3 dose during one hour (short time, in the absence or the presence of PI3K inhibitor (LY294002. The absence of any treatment was considered the control group (C. RT-qPCR was used for mRNA expression analyzes. For data analyzes ANOVA complemented with Tukey's test was used at 5% significance. T3 increased leptin mRNA expression in P (2.26 ± 0.36, p 0.001. These results demonstrate that the activation of the PI3K signaling pathway has a role in TH-mediated direct and indirect leptin gene expression in 3T3-L1 adipocytes.

  16. Localization of RANK, RANKL and osteoprotegerin during healing of surgically created periodontal defects in sheep.

    Science.gov (United States)

    Baharuddin, N A; Coates, D E; Cullinan, M; Seymour, G; Duncan, W

    2015-04-01

    Modeling of periodontal bone regeneration in a large animal enables better examination of the spatial and temporal regulation of osteogenesis and the remodeling of the healing defect. RANK, RANKL and osteoprotegerin (OPG) are known to be important regulators of bone healing. The aim of this study was to create periodontal defects surgically in a large animal model and to examine bone regeneration and the expression of RANK, RANKL and OPG proteins in the defect site during bone regeneration. Periodontal defects were made in the furcation of the second mandibular premolar of sheep. Wound healing was examined 6 h, and 1, 4 and 6 wk after surgery and in control tissue. The teeth and defect region were decalcified and paraffin embedded. Immunohistochemistry for RANK, RANKL and OPG was conducted. Osteoclasts were identified using TRAP staining. The defects were examined at different time points after surgery and by 6 wk the defect region had fully regenerated with new bone, albeit less dense than that in the unwounded controls. RANK-positive osteoclasts were present at the edge of the wound from week 1 and were found within the defect at week 6, corresponding to osteoclast activation and bone remodeling. RANKL staining increased from week 1 compared with unwounded tissue, and peaked at 4 and 6 wk, as the osteoblast numbers increased. At the same time, OPG immunostaining was high in controls and at week 6, suggesting that it may act to block RANKL and control the bone remodeling within the defect. Distinctive temporal and spatial expression patterns for RANK, RANKL and OPG proteins were observed during healing of surgically created periodontal wounds in a sheep model. The research identifies possible therapeutic approaches to periodontal bone repair via modulation of these members of the tumor necrosis factor family. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Evaluation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Luis Bujanda

    Full Text Available BACKGROUND: Colorectal cancer (CRC is the second most common cause of death from cancer in both men and women in the majority of developed countries. Molecular tests of blood could potentially provide this ideal screening tool. AIM: Our objective was to assess the usefulness of serum markers and mRNA expression levels in the diagnosis of CRC. METHODS: In a prospective study, we measured mRNA expression levels of 13 markers (carbonic anhydrase, guanylyl cyclase C, plasminogen activator inhibitor, matrix metalloproteinase 7 (MMP7, urokinase-type plasminogen activator receptor (uPAR, urokinase-type plasminogen activator, survivin, tetranectin, vascular endothelial growth factor (VEGF, cytokeratin 20, thymidylate synthase, cyclooxygenase 2 (COX-2, and CD44 and three proteins in serum (alpha 1 antitrypsin, carcinoembryonic antigen (CEA and activated C3 in 42 patients with CRC and 33 with normal colonoscopy results. RESULTS: Alpha 1-antitrypsin was the serum marker that was most useful for CRC diagnosis (1.79 ± 0.25 in the CRC group vs 1.27 ± 0.25 in the control group, P<0.0005. The area under the ROC curve for alpha 1-antitrypsin was 0.88 (0.79-0.96. The mRNA expression levels of five markers were statistically different between CRC cases and controls: those for which the ROC area was over 75% were MMP7 (0.81 and tetranectin (0.80, COX-2 (0.78, uPAR (0.78 and carbonic anhydrase (0.77. The markers which identified early stage CRC (Stages I and II were alpha 1-antitrypsin, uPAR, COX-2 and MMP7. CONCLUSIONS: Serum alpha 1-antitrypsin and the levels of mRNA expression of MMP7, COX-2 and uPAR have good diagnostic accuracy for CRC, even in the early stages.

  18. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  19. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2013-01-01

    in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels...

  20. Epithelial remodeling and claudin mRNA abundance in the gill and kidney of puffer fish (Tetraodon biocellatus) acclimated to altered environmental ion levels.

    Science.gov (United States)

    Duffy, Nicole M; Bui, Phuong; Bagherie-Lachidan, Mazdak; Kelly, Scott P

    2011-02-01

    In water of varying ion content, the gills and kidney of fishes contribute significantly to the maintenance of salt and water balance. However, little is known about the molecular architecture of the tight junction (TJ) complex and the regulation of paracellular permeability characteristics in these tissues. In the current studies, puffer fish (Tetraodon biocellatus) were acclimated to freshwater (FW), seawater (SW) or ion-poor freshwater (IPW) conditions. Following acclimation, alterations in systemic endpoints of hydromineral status were examined in conjunction with changes in gill and kidney epithelia morphology/morphometrics, as well as claudin TJ protein mRNA abundance. T. biocellatus were able to maintain endpoints of hydromineral status within relatively tight limits across the broad range of water ion content examined. Both gill and kidney tissue exhibited substantial alterations in morphology as well as claudin TJ protein mRNA abundance. These responses were particularly pronounced when comparing fish acclimated to SW versus those acclimated to IPW. TEM observations of IPW-acclimated fish gills revealed the presence of cells that exhibited the typical characteristics of gill mitochondria-rich cells (e.g. voluminous, Na(+)-K(+)-ATPase-immunoreactive, exposed to the external environment at the apical surface), but were not mitochondria-rich. To our knowledge, this type of cell has not previously been described in hyperosmoregulating fish gills. Furthermore, modifications in the morphometrics and claudin mRNA abundance of kidney tissue support the notion that spatial alterations in claudin TJ proteins along the nephron of fishes will likely play an important role in the regulation of salt and water balance in these organisms.

  1. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB powder for two weeks beginning on postnatal day 21 (PND21 significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5% for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT of tibia, demonstrated that bone mineral density (BMD and content (BMC were dose-dependently increased in BB-fed rats compared to controls (P<0.05. Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption.

  2. [Evaluation of bone mineral density, bone turnover markers, the OPG/RANKL system and sTNF-RI in Crohn's disease].

    Science.gov (United States)

    Sánchez Cano, Daniel; Ruiz-Villaverde, Ricardo; Olvera Porcel, M Carmen; Callejas Rubio, José Luis; Pérez, Carlos Cardeña; García, María Gómez; Calvin, Jorge González; Ortego Centeno, Norberto

    2011-01-01

    Patients with Crohn's disease are at risk of developing osteoporosis, a disease in which the inflammatory process seems to be gaining importance. We performed a cross-sectional study to evaluate bone metabolism, osteoclastogenic factors [receptor activator of NF-kB ligand (RANK-L) and osteoprotegerin (OPG)] and soluble tumor necrosis factor-α receptor I (sTNF-RI) in patients with Crohn's disease and to correlate the findings with the degree of disease activity. Sixty-four patients with Crohn's disease from the province of Granada (Spain) were included in this study. Bone mineral density (BMD) was studied through dual X-ray absorptiometry. Immunoassay was used to assess markers of bone formation [bone alkaline phosphatase (bALP) and osteocalcin (OC)] and bone resorption [tartrate resistant acid phosphatase (TRAP) and carboxyterminal telopeptide of type I procollagen (CTX)] as well as RANKL, OPG and sTNF-RI. The percentage of patients with a Z-score ≤-2 in the femoral neck or lumbar spine was 20.3% and was higher in patients with active disease, although this difference was not significant. This percentage was only higher in patients receiving corticosteroids (11.1 vs. 9.1%; P=.001). Patients with the highest disease activity had higher TRAP levels. No significant differences were found in BMD but significant differences were found in TRAP levels with respect to C-reactive protein concentrations. No association was found between levels of OPG, RANKL and sTNF-RI and BMD or disease activity. A substantial proportion of our patients had low BMD. Levels of bone turnover markers suggested higher bone resorption, possibly in relation to disease activity, without a compensatory increase in bone formation. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  3. Parallel Assessment of Bone Mineral Density and RANKL/OPG Ratio in Saudi Females

    Directory of Open Access Journals (Sweden)

    AI Hassan

    2016-02-01

    Full Text Available Background: Osteoporosis is a significant risk factor for morbidity, and its high prevalence among Saudi women should be considered to be a public health problem. Quantitative ultrasound was recommended for bone mineral density (BMD screening. Receptor activator of nuclear factor kappa-B ligand (RANKL and osteoprotegerin (OPG and their ratio are critical for physiological bone remodelling, and related abnormalities may lead to several osteopathies. Methods: The BMD of 499 Saudi females aged 20 to 65 years was measured using quantitative ultrasound from the beginning of October 2013 to the end of March 2014 at the female medical unit of Taibah University, Madinah, KSA. Possible associated risk factors for low BMD were studied. Blood RANKL and OPG were measured by enzyme-linked immunosorbent assay (ELISA. Results: No significant differences were found between participants with normal and low BMD regarding the studied risk factors. However, there was a significant association (p < 0.05 between BMD and regular physical activity among participants aged 20 years to less than 35 years, and women aged 35–50 years with higher body mass index (BMI had higher BMD. The RANKL/OPG ratio was inversely associated (p = 0.04 with BMD. Conclusions: Regular physical activity is crucial for maximizing BMD in young females and decreasing the possibility of developing osteoporosis with ageing. The RANKL/OPG ratio might be considered a useful and easy-to-use tool for the prediction of low BMD.

  4. RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2010-11-15

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  5. The effect of 1,25 dihydroxyvitamin D3 treatment on the mRNA levels of β catenin target genes in mice with colonic inactivation of both APC alleles.

    Science.gov (United States)

    DeWitt, Marsha; Johnson, Robert L; Snyder, Paul; Fleet, James C

    2015-04-01

    In colon cancer, adenomatous polyposis coli (APC) inactivating gene mutations increase nuclear β-catenin levels and stimulate proliferation. In vitro, 1,25 dihydroxyvitamin D (1,25(OH)2D), suppresses β-catenin-mediated gene transcription by inducing vitamin D receptor (VDR)-β-catenin interactions. We examined whether acute treatment with 1,25(OH)2D could suppress β-catenin-mediated gene transcription in the hyperplastic colonic lesions of mice with colon-specific deletion of both APC gene alleles (CAC; APC(Δ580/Δ580)). At four weeks of age, CAC; APC(Δ580/Δ580) and control mice were injected with vehicle or 1,25(OH)2D (1μg/kg body weight) once a day for three days and then killed six hours after the last injection. mRNA levels of β-catenin target genes were elevated in the colon of CAC; APC(Δ580/Δ580) mice. 1,25(OH)2D increased 25 hydroxyvitamin D-24 hydroxylase mRNA levels in the colon of CAC; APC(Δ580/Δ580) and control mice indicating the treatments activated the VDR. However, 1,25(OH)2D had no effect on either β-catenin target gene mRNA levels or the proliferation index in CAC; APC(Δ580/Δ580) or control mice. VDR mRNA and protein levels were lower (-65% and -90%) in the colon of CAC; APC(Δ580/Δ580) mice compared to control mice, suggesting loss of colon responsiveness to vitamin D. Consistent with this, vitamin D-induced expression of transient receptor potential cation channel, subfamily V, member 6 mRNA was reduced in the colon of CAC; APC(Δ580/Δ580) mice. Our data show that short term exposure to 1,25(OH)2D does not suppress colonic β-catenin signaling in vivo. This article is part of a special issue entitled '17th Vitamin D Workshop'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Electroacupuncture at the governor vessel and bladder meridian acupoints improves postmenopausal osteoporosis through osteoprotegerin/RANKL/RANK and Wnt/β-catenin signaling pathways.

    Science.gov (United States)

    Zheng, Xuefeng; Wu, Guangwen; Nie, Yan; Lin, Yanping

    2015-08-01

    Previous studies have demonstrated that pretreatment with electroacupuncture (EA) at the zusanli/ST36 and sanyinjiao/SP6 acupoints prevents ovariectomy-induced osteoporosis in rats; however, the therapeutic effects of EA at the governor vessel (GV) and bladder meridian (BL) acupoints remain unclear. In the present study, the effects of EA at the GV4, GV6, BL20 and BL23 acupoints on the bones of ovariectomized (OVX) rats were investigated to identify the pathways that mediate the action of EA on the bones. A postmenopausal osteoporosis model was established by performing an ovariectomy in six-month-old female Sprague Dawley rats. Following the ovariectomy, EA treatment was administered once per day for 90 days, with an interval of 5 days per 10 days. The changes in the serum levels of estradiol (E2) and the bone turnover markers, osteocalcin (OC) and tartrate-resistant acid phosphatase 5b (TRACP 5b), were determined, while the bone mineral density (BMD) of the lumbar vertebra and the histomorphology of the femur were observed. Furthermore, the expression of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL), which are involved in the OPG/RANKL pathway, were detected by ELISA. In addition, the protein expression levels of low-density lipoprotein receptor-related protein (LRP) 5, β-catenin and runt-related transcription factor (Runx) 2, which are involved in the Wnt/β-catenin signaling pathway, were detected by western blot analysis. The results revealed that the GV and BL EA treatment groups significantly increased the serum levels of E2 and OC, decreased the serum levels of TRACP 5b and increased the BMD of the lumbar vertebra when compared with the OVX group. With regard to the histomorphology of the bone tissue, an ordered arrangement and a slight thinning of the trabeculae, with no evident hairline fractures, was observed in the femurs following EA treatment in the OVX rats. Furthermore, histomorphological analysis revealed that

  7. Analysis of TLR4 (Asp299Gly and Thr399Ile) gene polymorphisms and mRNA level in patients with dengue infection: A case-control study.

    Science.gov (United States)

    Sharma, Swati; Singh, Satyendra K; Kakkar, Kavita; Nyari, Nikky; Dhole, Tapan N; Kashyap, Rajesh; Hasan, Saba

    2016-09-01

    Dengue is a systemic viral infection that spreads to humans by the bite of infected Aedes mosquitoes. The secreted NS1 protein of dengue virus activates macrophages and human PBMCs via TLR4 and induce the release of pro-inflammatory cytokines which is responsible for the pathogenesis of disease. Mutations in TLR4 gene have been associated with the increased susceptibility to many viral, bacterial and parasitic diseases. To study the impact of TLR4 Asp299Gly (rs4986790) and Thr399Ile (rs4986791) gene polymorphisms with susceptibility to dengue infection. A total of 120 dengue infected (57; DHF/DSS and 63; DF) and 200 healthy controls were included in the study. TLR4 Asp299Gly and Thr399Ile gene polymorphisms was studied by PCR-RFLP. Expression of TLR4 mRNA was evaluated by rRT-PCR. Individuals with heterozygous genotype for TLR4 Asp299Gly and Thr399Ile polymorphisms had increased susceptibility to dengue infection (OR-1.70, 95% CI=1.01-2.86 P=0.042 and OR-2.17, 95% CI=1.10-4.28, P=0.024, respectively). The frequency of Gly and Ile alleles were higher in dengue patients as compared to controls (OR-1.67, 95% CI=1.05-2.64, P=0.029 and OR-2.20, 95% CI=1.19-4.07, P=0.011, respectively). IIe/Gly haplotype was associated with the risk of the disease when compared with controls (OR=3.15, 95% CI=1.09-9.09, P=0.035). The mRNA expression was higher in DF when compared with DHF/DSS and controls (P=0.040 and 0.009, respectively). A higher expression of TLR4 mRNA was associated with DF. The TLR4 Asp299Gly and Thr399Ile gene polymorphisms were associated with the susceptibility of dengue infection probably by altering the immune response. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways.

    Science.gov (United States)

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena C; Coetzee, Magdalena

    2015-06-01

    Bone loss diseases are often associated with increased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Compounds that can attenuate RANKL-mediated osteoclast formation are of great biomedical interest. Eugenol, a phenolic constituent of clove oil possesses medicinal properties; however, its anti-osteoclastogenic potential is unexplored hitherto. Here, we found that eugenol dose-dependently inhibited the RANKL-induced multinucleated osteoclast formation and TRAP activity in RAW264.7 macrophages. The underlying molecular mechanisms included the attenuation of RANKL-mediated degradation of IκBα and subsequent activation of NF-κB pathway. Furthermore, increase in phosphorylation and activation of RANKL-induced mitogen-activated protein kinase pathways (MAPK) was perturbed by eugenol. RANKL-induced expression of osteoclast-specific marker genes such as TRAP, cathepsin K (CtsK) and matrix metalloproteinase-9 (MMP-9) was remarkably downregulated by eugenol. These findings provide the first line of evidence that eugenol mediated attenuation of RANKL-induced NF-κB and MAPK pathways could synergistically contribute to the inhibition of osteoclast formation. Eugenol could be developed as therapeutic agent against diseases with excessive osteoclast activity.

  9. Effects of varying dietary iodine supplementation levels as iodide or iodate on thyroid status as well as mRNA expression and enzyme activity of antioxidative enzymes in tissues of grower/finisher pigs.

    Science.gov (United States)

    Li, Qimeng; Mair, Christiane; Schedle, Karl; Hellmayr, Isabella; Windisch, Wilhelm

    2013-02-01

    The objective of this study was to investigate the influence of high dietary iodine supply and different iodine sources on thyroid status and oxidative stress in target tissues of the thyroid hormones in fattening pigs. Eighty castrates (body weight: 33.3 ± 0.4 kg) were randomly allotted into five different treatments: The control diet contained 150 μg I/kg as KI, the other feeding groups were supplemented with 4,000 μg I/kg (as KI and KIO(3)) and 10,000 μg I/kg (as KI and KIO(3)), respectively. The mRNA expression levels of sodium/iodide symporter (NIS) and key antioxidant enzymes (Cu/Zn SOD, CAT, GPx) were analyzed in thyroid gland, liver, kidney, muscle, and adipose tissue sampled during slaughter. Furthermore, antioxidant enzyme activities and the effect on lipid peroxidation (MDA) were determined in liver and muscle. In thyroid gland, a significant downregulation of NIS and Cu/Zn SOD mRNA expression was observed in high-iodine groups. In liver, a source effect on the mRNA expression of Cu/Zn SOD between KI and KIO(3) at 4,000 μg I/kg was shown. In contrast, not SOD but GPx activity was affected by iodine source with strongest downregulation in high KIO(3) group. In muscle, GPx activity was affected by both iodine source and dose, showing stronger downregulation in KI groups. In kidney and adipose tissue, oxidative stress parameters showed no or only unsystematic changes. However, variation in iodine supply had no effect on MDA concentrations. NIS expression was significantly decreased with increased iodine supplementation, which is to ensure the thyroid gland function. However, the alleviating effect of iodine supplementation observed in antioxidant enzyme mRNA expression and activity did not reflect on the lipid peroxide level.

  10. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    Science.gov (United States)

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  11. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Bargman, Renee; Huang, Alice; Boskey, Adele L; Raggio, Cathleen; Pleshko, Nancy

    2010-04-01

    Recently, a new class of agents targeting the receptor activator of nuclear factor-kappaB ligand (RANKL) pathway has been developed for the treatment of osteoporosis and other bone diseases. In the current study, inhibition of the RANKL pathway was evaluated to assess effects on "bone quality" and fracture incidence in an animal model of osteogenesis imperfect (OI), the oim/oim mouse. Juvenile oim/oim ( approximately 6 weeks old) and wildtype (+/+) mice were treated with either a RANKL inhibitor (RANK-Fc) or saline. After treatment, bone density increased significantly in the femurs of both genotypes. Femoral length decreased with RANK-Fc in +/+ mice. Geometric measurements at mid-diaphysis in the oim/oim groups showed increases in the ML periosteal and endosteal diameters and AP cortical thickness in the treated groups. Within +/+ groups, ML cortical thickness and ML femoral periosteal diameter were significantly increased with RANK-Fc. Biomechanical testing revealed increased stiffness in oim/oim and +/+ mice. Total strain was increased with treatment in the +/+ mice. Histologically, RANKL inhibition resulted in retained growth plate cartilage in both genotypes. The average number of fractures sustained by RANK-Fc-treated oim/oim mice was not significantly decreased compared to saline treated oim/oim mice. This preclinical study demonstrated that RANKL inhibition at the current dose improved density and some geometric and biomechanical properties of oim/oim bone, but it did not decrease fracture incidence. Further studies that address commencement of therapy at earlier time points are needed to determine whether this mode of therapy will be clinically useful in OI.

  12. Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells.

    Science.gov (United States)

    Römer, Piero; Köstler, Josef; Koretsi, Vasiliki; Proff, Peter

    2013-12-01

    This study aims to demonstrate in vitro the synergistic effect of orthodontic forces and periodontal pathogens on cyclooxygenase-2 regulation and the subsequent receptor activator of nuclear factor kappa-B ligand (RANKL) production from periodontal ligament (PDL) cells. In comparison to a control group, three experimental groups were formed from human primary PDL cells stressed with compressive forces, bacterial endotoxins, or a combination of both. Gene expression of cyclooxygenase-2 and RANKL was analysed with RT real-time PCR. The prostaglandin E2 production was determined with ELISA. A co-culture of PDL cells and an osteoclast-progenitor cell line was used in order to demonstrate the osteoclast formation effect caused by the simultaneous combined stress. The simultaneous combined stress resulted in a 56-fold up-regulation of cyclooxygenase-2 gene expression with a subsequent noticeable rise in the prostaglandin E2 in the culture medium. The RANKL/osteoprotegerin gene expression ratio was 50-fold up-regulated and the osteoclast formation assay revealed 153.5 ± 15.7 tartrate-resistant acid phosphatase (TRAP)-positive cells per well compared with 42.3 ± 3.8 TRAP-positive cells per well of the control group. The synergistic action of periodontal pathogens and orthodontic forces leads to an increased expression of cyclooxygenase-2 from PDL cells that intensify the RANKL production which in turn induces osteoclast differentiation and subsequent osteoclastogenesis. The present study puts an emphasis on the detrimental effect of orthodontic forces on patients with an active periodontal disease by underlining the significance of cyclooxygenase-2 activity and RANKL binding on the osteoclastogenesis process.

  13. Comparison of transcript levels and mRNA half-lives for the subunits of the branched-chain {alpha}-keto acid dehydrogenase (BCKD) complex in two human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, B.A.; Danner, D.J. [Emory Univ., Atlanta, GA (United States)

    1994-09-01

    BCKD is a mitochondrial multienzyme complex that catalyzes the committed step in catabolism of the keto acid derivatives of leucine, isoleucine and valine. Three subunits, El{alpha}, E1{beta} and E2 are specific to the complex. The subunits are nuclearly encoded from genes located on separate chromosomes, and it is not yet understood how gene expression of the components is regulated to maintain proper stoichiometry of the complex. The focus of the present study is to establish mRNA half-lives for the BCKD subunits in two human cell lines and to examine whether expression of transcripts for the subunits is similar in different cell types. HepG2 cells, a hepatocarcinoma cell line, and DG75 cells, a Burkitt`s lymphoma cell line, express comparable levels of BCKD complex based on total enzyme activity. Half-lives of the mRNAs for each subunit have been determined in HepG2 cells and are presently being defined in DG75 cells. mRNA half-lives were calculated by quantifying message levels over a 24 hour period following an actinomycin D block. Transcripts for the BCKD subunits are relatively stable in HepG2 cells with mRNA half-lives for the E1{alpha} of 11 hours, E1{beta}, 24 hours and E2, 22 hours. Steady-state message levels have been analyzed in both cell lines by RNase protection and quantified as a percentage of total RNA. mRNA levels for all three subunits are higher in DG75 cells than in HepG2 cells (E1{alpha}, 4-fold; E1{beta}, 1.9-fold; E2, 1.8-fold). Preliminary data indicates that the half-life of the E1{alpha} transcript in DG75 cells is approximately 29 hours, and it is possible that differences in steady-state levels of the mRNAs are achieved through different half-lives of the transcripts. The relationship between transcript levels and protein levels for the three subunits is being examined in both cell types.

  14. A novel therapeutic approach targeting rheumatoid arthritis by combined administration of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin with reference to pro-inflammatory cytokines, inflammatory enzymes, RANKL and transcription factors.

    Science.gov (United States)

    Sultana, Farhath; Rasool, MahaboobKhan

    2015-03-25

    The present study was designed to assess the combined efficacy of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin against adjuvant-induced arthritis in rats, an experimental model for rheumatoid arthritis. Arthritis was induced by intradermal injection of complete freund's adjuvant (0.1 ml) into the right hind paw of the Wistar albino rats. Morin (30 mg/kg b.wt), indomethacin (3 mg/kg b.wt) and combination of morin and indomethacin were administered intraperitoneally (from 11th to 20th day) after adjuvant injection. We have found that the activities/levels of lysosomal acid hydrolases (acid phosphatase, β-galactosidase, N-acetyl glucosaminidase and cathepsin-D), glycoproteins (hexose and hexosamine), urinary constituents (hydroxyproline and glycosaminoglycans), reactive oxygen species (LPO and NO), elastase, inflammatory mediators (TNF-α, IL-1β, MCP-1, VEGF and PGE2) and paw edema were significantly increased in arthritic rats compared to controls. Whereas, the anti-oxidant status (SOD, CAT, GPx, glutathione, and ceruloplasmin), body weight and bone collagen was found to be decreased. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-17, IL-6 and MCP-1), inflammatory enzymes (iNOS and COX-2), RANKL, and transcription factors (NF-kB p65 and AP-1) was found upregulated in the ankle joints of arthritic rats in qRT-PCR analysis. In addition, the increased protein expression of NF-kB p65 and COX-2 was also detected by immunohistochemical analysis. On the other hand, the above said imbalances were regulated back effectively to near normal as evidenced by the histopathological and radiological analysis on combined treatment with morin and indomethacin. Our study indicates that the combination therapy was more effective than either single drug alone in suppressing the pathogenesis of RA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Identification of a novel P450 gene belonging to the CYP4 family in the clam Ruditapes philippinarum, and analysis of basal- and benzo(a)pyrene-induced mRNA expression levels in selected tissues.

    Science.gov (United States)

    Pan, Luqing; Liu, Na; Xu, Chaoqun; Miao, Jingjing

    2011-11-01

    A novel full-length cDNA encoding a CYP4 protein was initially cloned from the clam, Ruditapes philippinarum. The nucleotide sequence contained an open reading frame coding for 442 amino acids and the deduced amino acid sequence showed 42.6-49.1% identity with other species CYP4s. The phylogenetic analysis demonstrated that the clam CYP4 was clustered within the CYP4s branch. The clam CYP4 mRNA expression was detected in gill, digestive gland, adductor muscle and mantle, and highest transcription level was observed in digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that there was no notable change in CYP4 mRNA expression in gill of R. philippinarum exposure to benzo(a)pyrene (BaP), while the mRNA expression was induced significantly in the digestive gland of the clam by 0.2 ppb (μgL(-1)) BaP (pclam may serve as a useful biomarker of marine environmental PAH pollution. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Determination of mRNA, and protein levels of p53, MDM2 and protein kinase CK2 subunits in F9 cells after treatment with the apoptosis-inducing drugs cisplatin and carboplatin

    DEFF Research Database (Denmark)

    Siemer, S; Ornskov, D; Guerra, B

    1999-01-01

    cisplatin and carboplatin on the mRNA and protein levels of p53, MDM2 and CK2 in a murine teratocarcinoma cell line F9. Northern and Western blot analyses were performed and the CK2 activity was determined. The degree of apoptosis after drug treatment was assessed using the TUNEL test. Six hours after...... cisplatin and carboplatin treatment, the RNA level of p53 dropped by 59% +/- 9% and 86% +/- 8% respectively, whereas the observed level of p53 protein rose to 7 and 10 times over the untreated control, respectively. Treatment with 33 microM cisplatin prompted apoptosis as early as 4 h after drug treatment....... More than 50% apoptotic cells were seen after 6 h. We conclude that cisplatin and its second generation drug carboplatin act similarly i.e. both drugs cause a concomitant decrease in p53 mRNA and an increase in p53 protein level. After 4 h treatment with either of the two drugs, p53 levels reach...

  17. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and isoform mRNA levels in Atlantic salmon

    Science.gov (United States)

    McCormick, S.D.; Regish, A.; O'Dea, M. F.; Shrimpton, J.M.

    2008-01-01

    It has long been held that cortisol, acting through a single receptor, carries out both glucocorticoid and mineralocorticoid actions in teleost fish. The recent finding that fish express a gene with high sequence similarity to the mammalian mineralocorticoid receptor (MR) suggests the possibility that a hormone other than cortisol carries out some mineralocorticoid functions in fish. To test for this possibility, we examined the effect of in vivo cortisol, 11-deoxycorticosterone (DOC) and aldosterone on salinity tolerance, gill Na+,K+-ATPase (NKA) activity and mRNA levels of NKA α1a and α1b in Atlantic salmon. Cortisol treatment for 6–14 days resulted in increased, physiological levels of cortisol, increased gill NKA activity and improved salinity tolerance (lower plasma chloride after a 24 h seawater challenge), whereas DOC and aldosterone had no effect on either NKA activity or salinity tolerance. NKA α1a and α1b mRNA levels, which increase in response to fresh water and seawater acclimation, respectively, were both upregulated by cortisol, whereas DOC and aldosterone were without effect. Cortisol, DOC and aldosterone had no effect on gill glucocorticoid receptor GR1, GR2 and MR mRNA levels, although there was some indication of possible upregulation of GR1 by cortisol (p = 0.07). The putative GR blocker RU486 inhibited cortisol-induced increases in salinity tolerance, NKA activity and NKA α1a and α1b transcription, whereas the putative MR blocker spironolactone had no effect. The results provide support that cortisol, and not DOC or aldosterone, is involved in regulating the mineralocorticoid functions of ion uptake and salt secretion in teleost fish.

  18. Putative pacemakers in the eyestalk and brain of the crayfish Procambarus clarkii show circadian oscillations in levels of mRNA for crustacean hyperglycemic hormone.

    Directory of Open Access Journals (Sweden)

    Janikua Nelson-Mora

    Full Text Available Crustacean hyperglycemic hormone (CHH synthesizing cells in the optic lobe, one of the pacemakers of the circadian system, have been shown to be present in crayfish. However, the presence of CHH in the central brain, another putative pacemaker of the multi-oscillatory circadian system, of this decapod and its circadian transcription in the optic lobe and brain have yet to be explored. Therefore, using qualitative and quantitative PCR, we isolated and cloned a CHH mRNA fragment from two putative pacemakers of the multi-oscillatory circadian system of Procambarus clarkii, the optic lobe and the central brain. This CHH transcript synchronized to daily light-dark cycles and oscillated under dark, constant conditions demonstrating statistically significant daily and circadian rhythms in both structures. Furthermore, to investigate the presence of the peptide in the central brain of this decapod, we used immunohistochemical methods. Confocal microscopy revealed the presence of CHH-IR in fibers and cells of the protocerebral and tritocerebal clusters and neuropiles, particularly in some neurons located in clusters 6, 14, 15 and 17. The presence of CHH positive neurons in structures of P. clarkii where clock proteins have been reported suggests a relationship between the circadian clockwork and CHH. This work provides new insights into the circadian regulation of CHH, a pleiotropic hormone that regulates many physiological processes such as glucose metabolism and osmoregulatory responses to stress.

  19. Active immunization with recombinant GnRH fusion protein in boars reduces both testicular development and mRNA expression levels of GnRH receptor in pituitary.

    Science.gov (United States)

    Fang, Fugui; Li, Haidong; Liu, Ya; Zhang, Yunhai; Tao, Yong; Li, Yunsheng; Cao, Hongguo; Wang, Suolu; Wang, Lin; Zhang, Xiaorong

    2010-06-01

    Immunization using recombinant maltose binding protein-gonadotropin releasing hormone (MBP-GnRH6) altered both testicular development and transcription of the pituitary GnRH receptor (GnRHR) gene in boars. Scrotal measurement and blood samples were taken at 4-week interval after immunization at 9 weeks of age. The concentrations of testosterone and anti-GnRH antibodies in serum were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The results showed that active immunization with MBP-GnRH6 increased the serum concentration of anti-GnRH antibodies (Pimmunized animals as compared with MBP immunized boars. MBP-GnRH6 immunized pigs exhibited mounting behavior 4 weeks later than MBP immunized boars. No mature spermatozoa were observed from MBP-GnRH6 immunized animals. By real-time quantitative PCR analysis, the amount of GnRHR mRNA in the pituitary tissue was found to be significantly lower in MBP-GnRH6 immunized animals than in controls (P<0.05). These data demonstrate that recombinant MBP-GnRH6 was effective in immunological castration in boars. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on corticotrophin-releasing hormone, arginine vasopressin, and pro-opiomelanocortin mRNA levels in the hypothalamus of the cynomolgus monkey.

    Science.gov (United States)

    Shridhar, S; Farley, A; Reid, R L; Foster, W G; Van Vugt, D A

    2001-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that has profound deleterious effects on development and reproduction. TCDD may act at one or more levels to alter the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. The objective of this study was to investigate whether TCDD modulates neuroendocrine systems by altering gene expression of arginine vasopressin (AVP), corticotrophin-releasing hormone (CRH), or pro-opiomelanocortin (POMC), which are important neuroregulators of the HPA and HPG axes. Four groups of female cynomolgus monkeys (Macaca fascicularis) were administered daily oral doses of gelatin capsule containing TCDD (0, 1, 5, or 25 ng/kg body weight) mixed with glucose 5 days a week for 1 year. At the end of the dosing period, animals were euthanized and brains were harvested. CRH, AVP, and POMC mRNA levels were semiquantified by in situ hybridization histochemistry on 30-microm coronal sections of the brain. Blood collected on the day of euthanasia was assayed for cortisol and progesterone. CRH mRNA levels in the paraventricular nucleus (PVN) were significantly increased by the 2 higher TCDD doses (5 and 25 ng/kg/day) compared to controls (p HPA axis by a central effect involving CRH, but had no effect on the HPG axis at the doses tested.

  1. Increases in [3H]muscimol and [3H]flumazenil binding in the dorsolateral prefrontal cortex in schizophrenia are linked to α4 and γ2S mRNA levels respectively.

    Directory of Open Access Journals (Sweden)

    Mathieu Verdurand

    Full Text Available GABA(A receptors (GABA(AR are composed of several subunits that determine sensitivity to drugs, synaptic localisation and function. Recent studies suggest that agonists targeting selective GABA(AR subunits may have therapeutic value against the cognitive impairments observed in schizophrenia. In this study, we determined whether GABA(AR binding deficits exist in the dorsolateral prefrontal cortex (DLPFC of people with schizophrenia and tested if changes in GABA(AR binding are related to the changes in subunit mRNAs. The GABA orthosteric and the benzodiazepine allosteric binding sites were assessed autoradiographically using [(3H]Muscimol and [(3H]Flumazenil, respectively, in a large cohort of individuals with schizophrenia (n = 37 and their matched controls (n = 37. We measured, using qPCR, mRNA of β (β1, β2, β3, γ (γ1, γ2, γ2S for short and γ2L for long isoform, γ3 and δ subunits and used our previous measurements of GABA(AR α subunit mRNAs in order to relate mRNAs and binding through correlation and regression analysis.Significant increases in both [(3H]Muscimol (p = 0.016 and [(3H]Flumazenil (p = 0.012 binding were found in the DLPFC of schizophrenia patients. Expression levels of mRNA subunits measured did not show any significant difference in schizophrenia compared to controls. Regression analysis revealed that in schizophrenia, the [(3H]Muscimol binding variance was most related to α4 mRNA levels and the [(3H]Flumazenil binding variance was most related to γ2S subunit mRNA levels. [(3H]Muscimol and [(3H]Flumazenil binding were not affected by the lifetime anti-psychotics dose (chlorpromazine equivalent.We report parallel increases in orthosteric and allosteric GABA(AR binding sites in the DLPFC in schizophrenia that may be related to a "shift" in subunit composition towards α4 and γ2S respectively, which may compromise normal GABAergic modulation and function. Our results may have implications for the

  2. Lycopene-rich tomato oleoresin modulates plasma adiponectin concentration and mRNA levels of adiponectin, SIRT1, and FoxO1 in adipose tissue of obese rats.

    Science.gov (United States)

    Luvizotto, R A M; Nascimento, A F; Miranda, N C M; Wang, X-D; Ferreira, A L A

    2015-06-01

    To investigate whether lycopene can modulate adiponectin levels and SIRT1 and FoxO1 gene expression in the adipose tissue of diet-induced obese rats. Male Wistar rats were first fed with hypercaloric diet (HD, n = 12) for 6 weeks, and afterward, these rats were randomly assigned to receive HD (n = 6) or HD with lycopene-rich tomato oleoresin (equivalent to lycopene 10 mg/kg body weight (BW)/day, HD + L, n = 6) by gavage for additional 6 weeks. Plasma lycopene and adiponectin levels were analyzed by high-performance liquid chromatography and immunoassay, respectively. The messenger RNA (mRNA) expressions of adiponectin, Sirtuin 1 (SIRT1), Forkhead box O 1 (FoxO1), fatty acid translocase/cluster of differentiation 36 (FAT/CD36), and PPARγ in adipose tissues were determined by quantitative polymerase chain reaction. Lycopene was detected in the plasma of rats in HD + L group but not in the HD group. Although both BW and adiposity were not different between the two groups, there was a significant increase in both plasma concentration and mRNA expression of adiponectin in the adipose tissue of the HD + L group. In addition, the lycopene supplementation upregulated mRNA expressions of SIRT1, FoxO1, and FAT/CD36 but downregulated PPARγ in adipose tissue of obese rats. These data suggest that lycopene, in the concentration used, is not toxic and also its health benefits in adipose tissue may play a role against obesity-related complications. © The Author(s) 2014.

  3. TLR2 Elicits IL-17-Mediated RANKL Expression, IL-17, and OPG Production in Neutrophils from Arthritic Mice

    Directory of Open Access Journals (Sweden)

    Viktoriya Milanova

    2014-01-01

    Full Text Available We investigated the ability of neutrophils to express receptor activator of nuclear factor kappa-B ligand (RANKL, to secrete osteoprotegerin (OPG, and to produce IL-17. Arthritis was induced by intra-articular injection of zymosan, a ligand for Toll-like receptor 2 (TLR2. Frequencies of neutrophils in bone marrow (BM, blood and synovial fluid (SF, receptor expression, and cytokine production were evaluated by flow cytometry. 1A8 antibody (1A8 Ab was used to deplete neutrophils in zymosan-injected SCID mice. IL-17, RANKL, and OPG amounts in SF, serum, or cell cultures were determined by ELISA. The development of arthritis was associated with increased secretion of IL-17, RANKL, and OPG in serum and SF, elevated frequencies of Ly6G+CD11b+ cells in BM, blood, and SF and upregulated RANKL expression. Both IL-17 and OPG were absent in serum and SF after neutrophil depletion; therefore we assume that they were released by neutrophils. In vitro blood Ly6G+CD11b+ cells from arthritic mice produced spontaneously IL-17, IFN-γ, and OPG and expressed RANKL. This phenotype was sustained by IL-17. TLR2 engagement increased IL-17 and IFN-γ production, potentiated IL-17-mediated RANKL expression, and inhibited OPG secretion. We conclude that TLR2 regulates the destructive potential of neutrophils and its targeting might limit joint alterations in arthritis.

  4. Opg, Rank, and Rankl in tooth development: co-ordination of odontogenesis and osteogenesis.

    Science.gov (United States)

    Ohazama, A; Courtney, J-M; Sharpe, P T

    2004-03-01

    Osteoprotegerin (OPG), receptor activator of nuclear factor-kappaB (RANK), and RANK ligand (RANKL) are mediators of various cellular interactions, including bone metabolism. We analyzed expression of these three genes during murine odontogenesis from epithelial thickening to cytodifferentiation stages. Opg showed expression in the thickening and bud epithelium. Expression of Opg and Rank was observed in both the internal and the external enamel epithelium as well as in the dental papilla mesenchyme. Although Rankl expression was not detected in tooth epithelium or mesenchyme, it was expressed in pre-osteogenic mesenchymal cells close to developing tooth germs. All three genes were detected in developing dentary bone at P0. The addition of exogenous OPG to explant cultures of tooth primordia produced a delay in tooth development that resulted in reduced mineralization. We propose that the spatiotemporal expression of these molecules in early tooth and bone primordia cells has a role in co-ordinating bone and tooth development.

  5. Prevalence of polymorphisms in OPG, RANKL and RANK as potential markers for Charcot arthropathy development

    OpenAIRE

    Bożena Bruhn-Olszewska; Anna Korzon-Burakowska; Grzegorz Węgrzyn; Joanna Jakóbkiewicz-Banecka

    2017-01-01

    Charcot arthropathy is one of the most serious complications of diabetic foot syndrome that leads to amputation of the affected limb. Since there is no cure for Charcot arthropathy, early diagnosis and implementation preventive care are the best available treatment. However, diagnosis is hindered by obscure clinical picture of the disease and lack of molecular markers for its early detection. Results of recent research suggest that OPG-RANKL-RANK axis regulating bone metabolism can be associa...

  6. RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes.

    Science.gov (United States)

    Varley, Ian; Hughes, David C; Greeves, Julie P; Stellingwerff, Trent; Ranson, Craig; Fraser, William D; Sale, Craig

    2015-02-01

    The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone phenotypic adaptations. To determine whether four SNPs associated with genes in the RANK/RANKL/OPG signalling pathway were associated with stress fracture injury in elite athletes. Radiologically confirmed stress fracture history was reported in 518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the whole group and were sub-stratified into male and cases of multiple stress fracture groups. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays. SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury (Pstress fracture group and 2.8% of the non-stress fracture group were homozygote for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele of rs3018362 were associated with stress fracture period prevalence (Pstress fracture whilst 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, homozygotes for the rare allele of rs1021188 and individuals possessing at least one copy of the rare allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (Pstress fracture injury. The association of rs3018362 (RANK) and rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of bone health and offers potential targets for therapeutic interventions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Bone metabolism and RANKL/RANK/OPG trail in periodontal disease

    Directory of Open Access Journals (Sweden)

    Czupkallo Lukasz

    2016-12-01

    Full Text Available Periodontal disease is an inflammatory disease of multifactorial etiology. In order for it to appear there must come to an imbalance between the effects of pathogens and host defense mechanisms. As a result of its course the destruction of structures supporting the teeth appears (periodontium, cement, bone, and consequently leads to teeth loosening and loss. In recent years, the participation of RANKL/RANK/OPG in bone remodeling process was highligted.

  8. Insulin immuno-neutralization decreases food intake in chickens without altering hypothalamic mRNA levels for genes involved in regulation of food intake and metabolism

    Science.gov (United States)

    Chickens are characterized by rather unique glucose homeostasis, with relatively high blood glucose levels, reduced glucose sensitivity of pancreatic cells, and large resistance to exogenous insulin. In mammals, insulin regulates blood glucose level but also plays a key role in appetite regulation ...

  9. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  10. Fucoidan, a Sulfated Polysaccharide, Inhibits Osteoclast Differentiation and Function by Modulating RANKL Signaling

    Directory of Open Access Journals (Sweden)

    Young Woo Kim

    2014-10-01

    Full Text Available Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-κB, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-κB activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption.

  11. Immunoexpression of RANK, RANKL, OPG, VEGF, and vWF in radicular and dentigerous cysts.

    Science.gov (United States)

    de Moraes, Maiara; de Matos, Felipe Rodrigues; de Souza, Lélia Batista; de Almeida Freitas, Roseana; de Lisboa Lopes Costa, Antônio

    2013-07-01

    Radicular (RC) and dentigerous cysts (DC) can show a range from little to quite extensive primary/secondary inflammation and it is possible that the variation seen in the fibrous capsule of these cysts might reflect differences in the osteolytic activity. Moreover, the presence of hemorrhagic areas in the fibrous capsule of DC could also contribute to the increase in osteolytic activity. The aim of this study was to compare immunohistochemical expression of nuclear factor κappaB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG), vascular endothelial growth factor (VEGF) and angiogenic index in RC and DC. These proteins were evaluated in 20 RC and DC by immunohistochemistry. Angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. RANK and RANKL were higher in DC than RC in fibrous capsule. RC showed higher expression of VEGF in the epithelium and capsule. DC exhibited higher MVC than RC. Ours results suggest that RANK and RANKL play an important role in bone resorption in DC and the hemorrhagic areas in the capsule of DC could be explained by increased vessel's number. The higher VEGF expression in RC might be related to nature of these lesions, where the inflammatory process contributes significantly to these findings. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Titanium uptake, induction of RANK-L expression, and enhanced proliferation of human T-lymphocytes.

    Science.gov (United States)

    Cadosch, Dieter; Sutanto, Michael; Chan, Erwin; Mhawi, Amir; Gautschi, Oliver P; von Katterfeld, Brilliana; Simmen, Hans-Peter; Filgueira, Luis

    2010-03-01

    There is increasing evidence that titanium ions are released from orthopedic implants by biocorrosion. The aim of this study was to investigate titanium uptake by human T-lymphocytes and its effects on phenotype and proliferation. Freshly isolated human nonadherent peripheral blood mononuclear cells (NA-PBMC), were exposed to TiCl4 [Ti(IV)]. Bioavailability and distribution of Ti(IV) in T-lymphocytes was determined by energy-filtered electron microscopy (EFTEM). The effects of Ti(IV) challenge on nonactivated and PHA-activated cells were assessed by flow cytometric analysis of surface markers, RANK-L production, and proliferation assays. EFTEM colocalized Ti(IV) with phosphorus in the nucleus, ribosomes, cytoplasmic membranes, and the surface membrane of T-lymphocytes. Ti(IV) increased significantly the expression of CD69, CCR4, and RANK-L in a concentration-dependent manner. Titanium enters T-lymphocytes through a currently unknown mechanism and binds to phosphorus-rich cell structures. Titanium influences phenotype and function of T-lymphocytes, resulting in activation of a CD69+ and CCR4+ T-lymphocyte population and secretion of RANK-L. These results strongly suggest the involvement of titanium ions challenged T-lymphocytes in the complex pathophysiological mechanisms of aseptic loosening of orthopedic implants.

  13. Identification of novel thymic epithelial cell subsets whose differentiation is regulated by RANKL and Traf6.

    Directory of Open Access Journals (Sweden)

    Nichole M Danzl

    Full Text Available Thymic epithelial cells (TECs are critical for the normal development and function of the thymus. Here, we examined the developmental stages of TECs using quantitative assessment of the cortical and medullary markers Keratin 5 and Keratin 8 (K5 and K8 respectively, in normal and gain/loss of function mutant animals. Gain of function mice overexpressed RANKL in T cells, whereas loss of function animals lacked expression of Traf6 in TECs (Traf6ΔTEC. Assessment of K5 and K8 expression in conjunction with other TEC markers in wild type mice identified novel cortical and medullary TEC populations, expressing different combinations of these markers. RANKL overexpression led to expansion of all medullary TECs (mTECs and enlargement of the thymic medulla. This in turn associated with a block in thymocyte development and loss of CD4+ CD8+, CD4+ and CD8+ thymocytes. In contrast, Traf6 deletion inhibited the production of most TEC populations including cortical TECs (cTECs, defined by absence of UEA-1 binding and LY51 expression, but had no apparent effect on thymocyte development. These results reveal a large degree of heterogeneity within the TEC compartment and the existence of several populations exhibiting concomitant expression of cortical, medullary and epithelial markers and whose production is regulated by RANKL and Traf6.

  14. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat.

    Science.gov (United States)

    Pires, Débora; Xavier, Murilo; Araújo, Tiago; Silva, José Antônio; Aimbire, Flavio; Albertini, Regiane

    2011-01-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.

  15. Molecular identification of an androgen receptor and its changes in mRNA levels during 17α-methyltestosterone-induced sex reversal in the orange-spotted grouper Epinephelus coioides.

    Science.gov (United States)

    Shi, Yu; Liu, Xiaochun; Zhang, Haifa; Zhang, Yong; Lu, Danqi; Lin, Haoran

    2012-09-01

    Androgens play a crucial role in sex differentiation, sexual maturation, and spermatogenesis in vertebrates. The action of androgens is mediated via androgen receptors (ARs). The present study reports the cloning of the cDNA sequence of the ar in the orange-spotted grouper, with high expression in testis and relatively low in subdivision of brain areas. The cDNA sequence of ar was 2358 bp, encoding a protein of 759 amino acids (aa). Phylogenetic analysis showed that the ar cDNA sequence was closely related to that of threespot wrasse (Halichoeres trimaculatus) and medaka (Oryzias latipes) arβ. As deduced from the phylogenetic tree and the high amino acid identity with the ARβ subtype of other teleosts, grouper ar seems to be more closely related to the beta than the alpha subtype cloned to date. In the first week after 17α-methyltestosterone (MT) implantation, the transcript levels of ar in the hypothalamus declined significantly, and consistently stayed at low level expression to the second week, but increased back to the control levels in the third and fourth week. In the gonad, the mRNA expression of ar was not changed in the first week compared with the control, but increased significantly in the second week, consistently reached the highest level in the third week, dropped slightly but still higher than that of the control in the fourth week. The expression pattern of ar in hypothalamus and gonad during MT-induced sex reversal suggests the involvement of ar in regulating this process in the orange-spotted grouper. The present study provides the data of the changes in the mRNA levels of ar during MT-induced sex reversal in detail to help understand the complicated signals under sex reversal. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Differential expression of the RANKL/RANK/OPG system is associated with bone metastasis in human non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Xianbo Peng

    Full Text Available BACKGROUND: Human non-small cell lung cancer (NSCLC patients exhibit a high propensity to develop skeletal metastasis, resulting in excessive osteolytic activity. The RANKL/RANK/OPG system, which plays a pivotal role in bone remodeling by regulating osteoclast formation and activity, is of potential interest in this context. MATERIALS AND METHODS: Reverse transcriptase polymerase chain reaction, western blotting, and immunohistochemical analysis were used to examine the expression of RANKL, RANK, and OPG in human NSCLC cell lines with different metastatic potentials, as well as in 52 primary NSCLC samples and 75 NSCLC bone metastasis samples. In primary NSCLC patients, the expression of these proteins was correlated with clinicopathological parameters. Recombinant human RANKL and transfected RANKL cDNA were added to the PAa cell line to evaluate the promoter action of RANKL during the process of metastasis in vitro and in vivo. RESULTS: Up-regulated RANKL, RANK, and OPG expression and increased RANKL:OPG ratio were detected in NSCLC cell lines and in tumor tissues with bone metastasis, and were correlated with higher metastatic potential. The metastatic potential of NSCLC in vitro and in vivo, including migration and invasion ability, was significantly enhanced by recombinant human RANKL and the transfection of RANKL cDNA, and was impaired after OPG was added. The increased expression of RANKL and OPG correlated with tumor stage, lymph node metastasis, and distant metastasis. CONCLUSIONS: Differential expression of RANKL, RANK, and OPG is associated with the metastatic potential of human NSCLC to skeleton, raising the possibility that the RANKL/RANK/OPG system could be a therapeutic target for the treatment of metastatic NSCLC patients.

  17. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    Directory of Open Access Journals (Sweden)

    Shahla Shojaei

    2015-12-01

    Full Text Available We aimed to compare the effects of oral ethanol (Eth alone or combined with the phytoestrogen resveratrol (Rsv on the expression of various brain-derived neurotrophic factor (BDNF transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW/day dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.

  18. The TNF-alpha system in heart failure and after heart transplantation : plasma protein levels, mRNA expression, soluble receptors and plasma buffer capacity

    NARCIS (Netherlands)

    van Riemsdijk-van Overbeeke, I C; Baan, C C; Niesters, H G; Hesse, C J; Loonen, E H; Balk, A H; Maat, A P; Weimar, W

    BACKGROUND: The two soluble tumour necrosis factor (TNF) receptors (sTNF-R1, sTNF-R2) can bind TNF-alpha, which is a cytokine with cardiodepressant properties. In heart failure and after heart transplantation, the TNF-alpha system is unbalanced, due to elevated levels of sTNF receptors. AIM: To

  19. Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients.

    Directory of Open Access Journals (Sweden)

    Ioannis Boukovinas

    Full Text Available BACKGROUND: Overexpression of RRM1 and RRM2 has been associated with gemcitabine resistance. BRCA1 overexpression increases sensitivity to paclitaxel and docetaxel. We have retrospectively examined the effect of RRM1, RRM2 and BRCA1 expression on outcome to gemcitabine plus docetaxel in advanced non-small-cell lung cancer (NSCLC patients. METHODOLOGY AND PRINCIPAL FINDINGS: Tumor samples were collected from 102 chemotherapy-naïve advanced NSCLC patients treated with gemcitabine plus docetaxel as part of a randomized trial. RRM1, RRM2 and BRCA1 mRNA levels were assessed by quantitative PCR and correlated with response, time to progression and survival. As BRCA1 levels increased, the probability of response increased (Odds Ratio [OR], 1.09: p = 0.01 and the risk of progression decreased (hazard ratio [HR], 0.99; p = 0.36. As RRM1 and RRM2 levels increased, the probability of response decreased (RRM1: OR, 0.97; p = 0.82; RRM2: OR, 0.94; p<0.0001 and the risk of progression increased (RRM1: HR, 1.02; p = 0.001; RRM2: HR, 1.005; p = 0.01. An interaction observed between BRCA1 and RRM1 allowed patients to be classified in three risk groups according to combinations of gene expression levels, with times to progression of 10.13, 4.17 and 2.30 months (p = 0.001. Low BRCA1 expression was the only factor significantly associated with longer time to progression in 31 patients receiving cisplatin-based second-line therapy. CONCLUSIONS: The mRNA expression of BRCA1, RRM1 and RRM2 is potentially a useful tool for selecting NSCLC patients for individualized chemotherapy and warrants further investigation in prospective studies.

  20. Alterations in the synthesis of IL-1β, TNF-α, IL-6 and their downstream targets RANKL and OPG by mouse calvarial osteoblasts in vitro: inhibition of bone resorption by cyclic mechanical strain

    Directory of Open Access Journals (Sweden)

    Salvador eGarcía-López

    2013-10-01

    Full Text Available Mechanical strain is an important determinant of bone mass and architecture, and the aim of this investigation was to further understand the role of the cell-cell signalling molecules, IL1-β, TNF-α and IL-6 in the mechanobiology of bone. Mouse calvarial osteoblasts in monolayer culture were subjected to a cyclic out-of-plane deformation of 0.69% for 6 s, every 90 s for 2‒48 h, and the levels of each cytokine plus their downstream targets RANKL and OPG measured in culture supernatants by ELISAs. Mouse osteoblasts constitutively synthesized IL-1β, TNF-α and IL-6, the production of which was significantly up-regulated in all three by cyclic mechanical strain. RANKL and OPG were also constitutively synthesized; mechanical deformation however, resulted in a down-regulation of RANKL and an up-regulation OPG synthesis. We next tested whether the immunoreactive RANKL and OPG were biologically active in an isolated osteoclast resorption pit assay - this showed that culture supernatants from mechanically-deformed cells significantly inhibited osteoclast-mediated resorptive activity across the 48 h time-course. These findings are counterintuitive, because IL-1β, TNF-α and IL-6 have well-established reputations as bone resorptive agents. Nevertheless, they are pleiotropic molecules with multiple biological activities, underlining the complexity of the biological response of osteoblasts to mechanical deformation, and the need to understand cell-cell signalling in terms of cytokine networks. It is also important to recognize that osteoblasts cultured in vitro are deprived of the mechanical stimuli to which they are exposed in vivo - in other words, the cells are in a physiological default state that in the intact skeleton leads to decreased bone strains below the critical threshold required to maintain normal bone structure.

  1. Association between fertilin beta, protamines 1 and 2 and spermatid-specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos.

    Directory of Open Access Journals (Sweden)

    Bartosz Kempisty

    2008-04-01

    Full Text Available Fertilization involves a series of cellular interactions culminating in the fusion of gamete membranes, creating a zygote and then an embryo. During the process of human fertilization in vivo or in conventional in vitro fertilization (IVF, sperm must be capable of undergoing the acrosome reaction, binding to the zona pellucida (ZP, and penetrating the ZP to fuse with the oolema. The key role in this process is played by fertilin beta. Protamines and histones are the proteins that bind to sperm chromatin and contribute in chromatin remodeling during early spermiogenesis. It has been suggested that these proteins may also participate in successful fertilization and embryo development. Using reverse transcription and real-time quantitative PCR reaction (QR-PCR methods and zygote and embryo scoring, we compared fertilin beta, protamine 1 (PRM1, protamine 2 (PRM2, spermatid-specific linker histone 1 (HILS1 mRNAs levels, in vitro fertilization ability of mature spermatozoa, and quality of embryos obtained from in vitro fertilization (IVF. We found significantly lower contents of fertilin beta transcript in spermatozoa from patients in which IVF fertilization failed (p<0.001. We also noticed a correlation between high levels of fertilin beta and increased quality of embryos (p<0.05. We observed an increase in PRM1 and PRM2 mRNA levels in spermatozoa obtained from patients with successful in vitro fertilization versus compared to the number of these transcripts isolated from spermatozoa of patients in which in vitro fertilization failed (P<0.001, (P<0.001, respectively. We found direct correlation between PRM1 and PRM2 mRNA levels to the quality of embryos (r=0.31, P=0.012, (r=0.31, P=0.011, respectively. The differences in HILS1 mRNA contents between these two groups were not statistically significant (P>0,05. We did not observe an association between HILS1 transcript contents and quality of embryos (r=0.22, P=0.076. We suggest that fertilin beta and

  2. The role of RANK/RANKL/OPG signalling pathways in osteoclastogenesis in odontogenic keratocysts, radicular cysts, and ameloblastomas.

    Science.gov (United States)

    Tekkesin, Merva Soluk; Mutlu, Sevcihan; Olgac, Vakur

    2011-09-01

    The aim of this study was to evaluate the immunohistochemical expression of molecules involved in osteoclastogenesis, including the receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) in odontogenic keratocysts (OKCs), which has been named as a keratocystic odontogenic tumour by the WHO, and compare their expression with radicular cysts and ameloblastomas. RANK is a member of tumour necrosis factor receptor family and it is activated by RANK ligand. OPG binds to RANKL and inactivates it. The imbalance of these factors could cause the differential bone resorption activity in some diseases and tumours. The expression of these molecules was evaluated in ameloblastomas (n = 20), OKCs (n = 20), and radicular cysts (n = 20) by immunohistochemistry. Immunohistochemical reactivity for RANK, RANKL, and OPG was detected in neoplastic and nonneoplastic epithelium and connective tissue cells. RANK showed the greatest expression in OKCs followed by ameloblastomas, with the lowest expression seen in radicular cysts. Expression of RANKL was detected in all lesions and no significant differences were observed between groups. OPG was expressed very low in all groups. In the stroma, the number of RANK positive cells was higher in OKCs when compared with ameloblastomas and radicular cysts but radicular cyst had higher numbers of RANKL positive cells in the stroma than ameloblastomas. The molecular system of RANK/RANKL/OPG is variably expressed in OKCs, radicular cysts, and ameloblastomas and this system may be involved in the osteoclastogenic mechanisms in OKCs and ameloblastomas. Advanced studies could further clarify the role of RANK, RANKL, and OPG in mediating tumour associated bone osteolysis.

  3. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Adám Sike

    Full Text Available The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  4. Expression of Thyroid Hormone Receptors in Villous Trophoblasts and Decidual Tissue at Protein and mRNA Levels Is Downregulated in Spontaneous and Recurrent Miscarriages.

    Science.gov (United States)

    Ziegelmüller, Brigitte; Vattai, Aurelia; Kost, Bernd; Kuhn, Christina; Hofmann, Simone; Bayer, Birgit; Toth, Bettina; Jeschke, Udo; Ditsch, Nina

    2015-07-01

    Thyroid hormones are essential for the maintenance of pregnancy, and a deficiency in maternal thyroid hormones has been associated with early pregnancy losses. The expression of THRα1, THRβ1 and THRα2 increases with gestational age. The aim of this study was the investigation of the protein and mRNA-levels of THR isoforms THRα1, THRα2, THRβ1 and THRβ2 in normal, spontaneous and recurrent miscarriages. The identification of THR-expressing cells in the decidua was done with double immunofluorescence. The nuclear expression of THRα1, THRα2, THRβ1 and THRβ2 is downregulated at protein level in spontaneous and recurrent miscarriages in villous trophoblast tissue. In decidual tissue, we found a significant downregulation only for THRα1 in spontaneous miscarriages. For recurrent miscarriages, THRα1 and THRβ1 were both significantly downregulated in decidual tissue. By applying HLA-G as a trophoblast marker, we found a significant co-expression only for THRβ2. The results of our study show that thyroid hormone receptors THRα1, THRα2, THRβ1 and THRβ2 are downregulated in spontaneous and recurrent miscarriages. The majority of cells expressing the thyroid hormone receptors in the decidua are decidual stromal cells. © The Author(s) 2015.

  5. Three mutations in Zea mays affecting zein accumulation: a comparison of zein polypeptides, in vitro synthesis and processing, mRNA levels, and genomic organization

    Energy Technology Data Exchange (ETDEWEB)

    Burr, F.A.; Burr, B.

    1982-07-01

    Researchers studied three mutations, opaque-2 (o2), opaque-7 (o7), and floury-2(fl2), each of which causes a depression in zein synthesis. Researchers examined the processing efficiencies of the rough endoplasmic reticulum membranes in vitro, the levels of RNA transcription using cloned zein probes, and the genomic organization of the zein sequences as possible sites for the genetic defects. The results obtained indicate that the steps in prezein translation and processing occurring on the protein body membranes are not accountable for the lowered zein content in any ofl the mutations. The o2 mutation that typically shows a paucity of 22.5-kdalton zein polypeptides was found to have a concomitant reduction in a particular subgroup of mRNAs coding for this size class. Southern analyses suggest that the 02 mutation is not the result of a large deletion of tandem-linked zein genes.

  6. Protein and mRNA levels support the notion that a genetic regulatory circuit controls growth phases in E. coli populations

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2015-09-01

    Full Text Available Bacterial populations transition between growing and non-growing phases, based on nutrient availability and stresses conditions. The hallmark of a growing state is anabolism, including DNA replication and cell division. In contrast, bacteria in a growth-arrested state acquire a resistant physiology and diminished metabolism. However, there is little knowledge on how this transition occurs at the molecular level. Here, we provide new evidence that a multi-element genetic regulatory circuit might work to maintain genetic control among growth-phase transitions in Escherichia coli. This work contributes to the discovering of design principles behind the performance of biological functions, which could be of relevance on the new disciplines of biological engineering and synthetic biology.

  7. The Relationship Between Vitamin D Levels and Receptor Activator of Nuclear Factor Ligand in Hashimoto’s Thyroiditis

    Directory of Open Access Journals (Sweden)

    Hakan Yavuzer

    2017-12-01

    Full Text Available Aim: In order to analyze the relationship of Hashimoto’s thyroiditis with vitamin D and osteoclastogenic markers, we investigated vitamin D, osteoprotegerin (OPG and receptor activator of nuclear factor ligand (RANKL levels in patients over 60 years with and without Hashimoto’s thyroiditis. Methods: Eighty three female patients (49 with and 34 without Hashimoto’s thyroiditis, who attended the endocrinology and geriatrics departments between May 2013 and October 2013 were included in the study. Results: There was no statistically significant difference in the levels of vitamin D, OPG and RANKL between the groups. Vitamin D was significantly correlated with OPG and RANKL in patients with Hashimoto’s thyroiditis. In addition, a significant relationship was found between OPG and RANKL levels. Of the patients with Hashimoto’s thyroiditis, 33 were autoantibody-positive and 16 were negative. Vitamin D, OPG and RANKL levels were significantly lower in antibody-positive patients than in negative subjects. Conclucion: There were no differences in vitamin D, OPG and RANKL levels between patients with and without Hashimoto’s thyroidits. Autoantibody-positive Hashimoto’s thyroiditis group had statistically significantly lower vitamin D, OPG and RANKL levels. This reverse correlation suggests that autoantibodies may have an effect on osteoclastogenesis.

  8. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    Science.gov (United States)

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Digital multiplexed mRNA analysis of functionally important genes in single human oocytes and correlation of changes in transcript levels with oocyte protein expression☆

    Science.gov (United States)

    Riris, Solon; Webster, Philippa; Homer, Hayden

    2014-01-01

    Objective To investigate functionally important transcripts in single human oocytes with the use of NanoString technology and determine whether observed differences are biologically meaningful. Design Analysis of human oocytes with the use of NanoString and immunoblotting. Setting University-affiliated reproductive medicine unit. Patients Women undergoing in vitro fertilization. Intervention Human oocytes were analyzed with the use of NanoString or immunoblotting. Main Outcome Measures The abundance of transcripts for ten functionally important genes—AURKA, AURKC, BUB1, BUB1B (encoding BubR1), CDK1, CHEK1, FYN, MOS, MAP2K1, and WEE2—and six functionally dispensable genes were analyzed with the use of NanoString. BubR1 protein levels in oocytes from younger and older women were compared with the use of immunoblotting. Result(s) All ten functional genes but none of the six dispensable genes were detectable with the use of NanoString in single oocytes. There was 3- to 5-fold variation in BUB1, BUB1B, and CDK1 transcript abundance among individual oocytes from a single patient. Transcripts for these three genes—all players within the spindle assembly checkpoint surveillance mechanism for preventing aneuploidy—were reduced in the same oocyte from an older patient. Mean BUB1B transcripts were reduced by 1.5-fold with aging and associated with marked reductions in BubR1 protein levels. Conclusion(s) The abundance of functionally important transcripts exhibit marked oocyte-to-oocyte heterogeneity to a degree that is sufficient to affect protein expression. Observed variations in transcript abundance are therefore likely to be biologically meaningful, especially if multiple genes within the same pathway are simultaneously affected. PMID:24444598

  10. Digital multiplexed mRNA analysis of functionally important genes in single human oocytes and correlation of changes in transcript levels with oocyte protein expression.

    Science.gov (United States)

    Riris, Solon; Webster, Philippa; Homer, Hayden

    2014-03-01

    To investigate functionally important transcripts in single human oocytes with the use of NanoString technology and determine whether observed differences are biologically meaningful. Analysis of human oocytes with the use of NanoString and immunoblotting. University-affiliated reproductive medicine unit. Women undergoing in vitro fertilization. Human oocytes were analyzed with the use of NanoString or immunoblotting. The abundance of transcripts for ten functionally important genes-AURKA, AURKC, BUB1, BUB1B (encoding BubR1), CDK1, CHEK1, FYN, MOS, MAP2K1, and WEE2-and six functionally dispensable genes were analyzed with the use of NanoString. BubR1 protein levels in oocytes from younger and older women were compared with the use of immunoblotting. All ten functional genes but none of the six dispensable genes were detectable with the use of NanoString in single oocytes. There was 3- to 5-fold variation in BUB1, BUB1B, and CDK1 transcript abundance among individual oocytes from a single patient. Transcripts for these three genes-all players within the spindle assembly checkpoint surveillance mechanism for preventing aneuploidy-were reduced in the same oocyte from an older patient. Mean BUB1B transcripts were reduced by 1.5-fold with aging and associated with marked reductions in BubR1 protein levels. The abundance of functionally important transcripts exhibit marked oocyte-to-oocyte heterogeneity to a degree that is sufficient to affect protein expression. Observed variations in transcript abundance are therefore likely to be biologically meaningful, especially if multiple genes within the same pathway are simultaneously affected. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Molecular profiling of short-term and long-term surviving patients identifies CD34 mRNA level as prognostic for glioblastoma survival.

    Science.gov (United States)

    Michaelsen, Signe Regner; Urup, Thomas; Olsen, Lars Rønn; Broholm, Helle; Lassen, Ulrik; Poulsen, Hans Skovgaard

    2018-01-05

    Despite extensive treatment, overall survival (OS) for glioblastoma (GBM) remains poor. A small proportion of patients present long survival over 3 years, but the underlying molecular background separating these long-term survivors (LTS) from short-term survivors (STS) are insufficiently understood. Accordingly, study aim was to identify independent prognostic biomarkers for survival. Study cohort consisted of 93 primary GBM patients treated with radiation-, chemo- and bevacizumab therapy, among which 14 STS (OS ≤ 12 months) and 6 LTS (OS ≥ 36 months) were identified, all confirmed being IDH wild-type. RNA expression levels in diagnostic tumor specimen for 792 genes were analyzed by NanoString technology. While no differences were found with regard to GBM subtype between LTS versus STS, comparative analysis of individual genes identified 14 significantly differently expressed candidate genes. Univariate analysis in the whole patient cohort found that 12 of these were significantly associated with OS, of which increased IFNG, CXCL9, LGALS4, CD34 and decreased MGMT levels remained significant associated with prolonged OS in multivariate analysis correcting for known prognostic variables. Validation analyses in an independent dataset from the AVAglio study confirmed CD34 as significant in comparative analysis between STS and LTS patients and as an independent prognostic factor. Analysis of this dataset further supported CD34 expression to be associated with improved bevacizumab efficacy, while CD34 immunohistochemistry indicated variation in CD34 expression to result primarily from varying tumor vascularization. Collectively, CD34 expression candidates as a prognostic biomarker in GBM able to identify survival outliers and could also be predictive for efficacy of bevacizumab.

  12. Matrix metalloprotease-3 and tissue inhibitor of metalloprotease-1 mRNA and protein levels are altered in response to traumatic skeletal muscle injury.

    Science.gov (United States)

    Urso, Maria L; Szelenyi, Eric R; Warren, Gordon L; Barnes, Brian R

    2010-07-01

    The purpose of this study was to characterize the time course of matrix metalloprotease-3 (MMP-3) and tissue inhibitor of metalloprotease-1 (TIMP-1) expression in mouse tibialis anterior (TA) muscle post-injury. Mice were anesthetized, the TA muscle exposed, and injury induced by applying a cold steel probe (-79 degrees C) to the muscle for 10 s. Muscle was collected from uninjured and injured legs at 3, 10, 24, 48, and 72 h post-injury. qRT-PCR, immunoblotting, and immunohistochemistry were used to quantify/localize MMP-3 and TIMP-1. MMP-3 transcripts increased 19- and 12-fold, 10 and 24 h post-injury (p injury (p = 0.01), respectively, with a subsequent decrease 72 h post-injury (p injury and remained elevated (p injury (p injury, returning to baseline by 72 h post-injury. In response to injury, injured skeletal muscle preferentially produces increased levels of the latent form of the MMP-3 protein with a concomitant decrease in the active form, and a significant decrease in TIMP-1 expression. The altered pattern of MMP-3/TIMP-1 expression may be due to alterations in post-transcriptional mechanisms that are responsible for specific regulation of the MMP-3/TIMP-1 system. These data suggest that there is a disproportionate regulation of the MMP-3/TIMP-1 system following traumatic injury and this response may contribute to impaired extracellular matrix remodeling.

  13. cDNA sequences and mRNA levels of two hexamerin storage proteins PinSP1 and PinSP2 from the Indianmeal moth, Plodia interpunctella.

    Science.gov (United States)

    Zhu, Yu Cheng; Muthukrishnan, Subbaratnam; Kramer, Karl J

    2002-05-01

    In insects, storage proteins or hexamerins accumulate apparently to serve as sources of amino acids during metamorphosis and reproduction. Two storage protein-like cDNAs obtained from a cDNA library prepared from fourth instar larvae of the Indianmeal moth (Plodia interpunctella) were cloned and sequenced. The first clone, PinSP1, contained 2431 nucleotides with a 2295 nucleotide open reading frame (ORF) encoding a protein with 765 amino acid residues. The second cDNA, PinSP2, consisted of 2336 nucleotides with a 2250-nucleotide ORF encoding a protein with 750 amino acid residues. PinSP1 and PinSP2 shared 59% nucleotide sequence identity and 44% deduced amino acid sequence identity. A 17-amino acid signal peptide and a molecular mass of 90.4 kDa were predicted for the PinSP1 protein, whereas a 15-amino acid signal peptide and a mass of 88 kDa were predicted for PinSP2. Both proteins contained conserved insect larval storage protein signature sequence patterns and were 60-70% identical to other lepidopteran larval storage proteins. Expression of mRNA for both larval storage proteins was determined using the quantitative reverse transcription polymerase chain reaction method. Only very low levels were present in the second instar, but both mRNAs dramatically increased during the third instar, peaked in the fourth instar, decreased dramatically late in the same instar and pupal stages, and were undetectable during the adult stage. Males and females exhibited similar mRNA expression levels for both storage proteins during the pupal and adult stages. The results support the hypothesis that P. interpunctella, a species that does not feed after the larval stage, accumulates these two storage proteins as reserves during larval development for subsequent use in the pupal and adult stages.

  14. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  15. Aldehydic components of cinnamon bark extract suppresses RANKL-induced osteoclastogenesis through NFATc1 downregulation.

    Science.gov (United States)

    Tsuji-Naito, Kentaro

    2008-10-15

    Several major bone diseases are directly attributable to bone loss, including osteoporosis, bone metastasis, and rheumatoid arthritis. The nuclear factor of activated T cell 1 (NFATc1), a transcription factor, has recently been shown to play an essential role in osteoclastogenesis. In this study, we found that of several herbs, Cinnamomum zeylanicum (C. zeylanicum) exhibited the strong inhibitory effects on osteoclastogenesis and that its mechanism of action involves the suppression of NFATc1-mediated signal transduction. C. zeylanicum dose-dependently inhibited osteoclast-like cell formation at concentrations of 12.5-50 microg/ml without affecting cell viability. Resorption pit assays have shown that C. zeylanicum also inhibits the bone-resorbing activity of mature osteoclasts. Treatment with C. zeylanicum inhibited the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced NFATc1 and c-fos expression. Additionally, C. zeylanicum moderately inhibited phosphorylation of IkappaB-alpha, suggesting that the c-fos/NFATc1 pathway, rather than the nuclear factor-kappaB (NF-kappaB) pathway, is the primary target of C. zeylanicum during RANKL-induced osteoclastogenesis. Using an HPLC-DAD system, we identified three major peaks for four characteristic components in the C. zeylanicum extract and identified an unknown peak as 2-methoxycinnamaldehyde via HPLC and a 2D-COSY (1)H NMR study. We identified cinnamaldehyde and 2-methoxycinnamaldehyde as active components reducing osteoclast-like cell formation and inhibiting NFATc1 expression. Notably, in a resorption pit assay, 2-methoxycinnamaldehyde exhibited remarkable inhibition rates of 95% at 2 microM on bone resorption. In summary, this study points to the conclusion that C. zeylanicum inhibits RANKL-induced osteoclastogenesis. This finding raises prospects for the development of a novel approach in the treatment of osteopenic disease.

  16. Diversities in hepatic HIF-1, IGF-I/IGFBP-1, LDH/ICD, and their mRNA expressions induced by CoCl(2) in Qinghai-Tibetan plateau mammals and sea level mice.

    Science.gov (United States)

    Chen, Xue-Qun; Wang, Shi-Jun; Du, Ji-Zeng; Chen, Xiao-Cheng

    2007-01-01

    Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-Tibetan-Plateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan-Plateau mammals and sea-level mice after injection of CoCl(2) (20, 40, or 60 mg/kg) and normobaric hypoxia (16.0% O(2), 10.8% O(2), and 8.0% O(2)) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl(2) markedly increased 1) HIF-1alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl(2) 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae. Results suggest that 1) HIF-1alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl(2) induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl(2) reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau-acclimatized mammals.

  17. A 3'UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility.

    Science.gov (United States)

    Cipolla, Gabriel A; Park, Jong Kook; de Oliveira, Liana A; Lobo-Alves, Sara Cristina; de Almeida, Rodrigo C; Farias, Ticiana D J; Lemos, Débora de S; Malheiros, Danielle; Lavker, Robert M; Petzl-Erler, Maria Luiza

    2016-10-01

    Genetic variations mapping to 3' untranslated regions (3'UTRs) may overlap with microRNA (miRNA) binding sites, therefore potentially interfering with translation inhibition or messenger RNA (mRNA) degradation. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) located within the 3'UTRs of six candidate genes and predicted to interfere with miRNA ligation could account for disease-relevant differential mRNA levels. Focusing on pemphigus foliaceus (PF) - an autoimmune blistering skin condition with unique endemic patterns - we investigated whether nine 3'UTR SNPs from the CD1D, CTLA4, KLRD1, KLRG1, NKG7, and TNFSF13B genes differentially expressed in PF were disease-associated. The heterozygous genotype of the KLRG1 rs1805672 polymorphism was associated with increased predisposition to PF (A/G vs. A/A: P=0.038; OR=1.60), and a trend for augmented susceptibility was observed for carriers of the G allele (P=0.094; OR=1.44). In silico analyses suggested that rs1805672 G allele could disrupt binding of miR-584-5p, and indicated rs1805672 as an expression Quantitative Trait Locus (eQTL), with an effect on KLRG1 gene expression. Dual-luciferase assay showed that miR-584-5p mediated approximately 50% downregulation of the reporter gene's activity through the 3'UTR of KLRG1 harboring rs1805672 A allele (vs. miRNA-negative condition, P=0.006). This silencing relationship was lost after site-directed mutation to G allele (vs. miRNA-negative condition, P=0.391; vs. rs1805672 A allele, P=0.005). Collectively, these results suggest that a disease-associated SNP located within the 3'UTR of KLRG1 directly interferes with miR-584-5p binding, allowing for KLRG1 mRNA differential accumulation, which in turn may contribute to pathogenesis of autoimmune diseases, such as pemphigus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A 3’UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility

    Science.gov (United States)

    Cipolla, Gabriel A.; Park, Jong K.; de Oliveira, Liana A.; Lobo-Alves, Sara Cristina; de Almeida, Rodrigo C.; Farias, Ticiana D. J.; Lemos, Débora de S.; Malheiros, Danielle; Lavker, Robert M.; Petzl-Erler, Maria Luiza

    2016-01-01

    Genetic variations mapping to 3’ untranslated regions (3’UTRs) may overlap with microRNA (miRNA) binding sites, therefore potentially interfering with translation inhibition or messenger RNA (mRNA) degradation. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) located within the 3’UTRs of six candidate genes and predicted to interfere with miRNA ligation could account for disease-relevant differential mRNA levels. Focusing on pemphigus foliaceus (PF) – an autoimmune blistering skin condition with unique endemic patterns – we investigated if nine 3’UTR SNPs from the CD1D, CTLA4, KLRD1, KLRG1, NKG7, and TNFSF13B genes differentially expressed in PF were disease-associated. The heterozygous genotype of the KLRG1 rs1805672 polymorphism was associated with increased predisposition to PF (A/G vs. A/A: P=0.038; OR=1.60), and a trend for augmented susceptibility was observed for carriers of the G allele (P=0.094; OR=1.44). In silico analyses suggested that rs1805672 G allele could disrupt binding of miR-584-5p, and indicated rs1805672 as an expression Quantitative Trait Locus (eQTL), with an effect on KLRG1 gene expression. Dual-luciferase assay showed that miR-584-5p mediated approximately 50% downregulation of the reporter gene’s activity through the 3’UTR of KLRG1 harboring rs1805672 A allele (vs. miRNA-negative condition, P=0.006). This silencing relationship was lost after site-directed mutation to G allele (vs. miRNA-negative condition, P=0.391; vs. rs1805672 A allele, P=0.005). Collectively, these results suggest that a disease-associated SNP located within the 3’UTR of KLRG1 directly interferes with miR-584-5p binding, allowing for KLRG1 mRNA differential accumulation, which in turn may contribute to pathogenesis of autoimmune diseases, such as pemphigus. PMID:27424220

  19. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy

    DEFF Research Database (Denmark)

    Ito, Hiromu; Koefoed, Mette; Tiyapatanaputi, Prarop

    2005-01-01

    Structural allograft healing is limited because of a lack of vascularization and remodeling. To study this we developed a mouse model that recapitulates the clinical aspects of live autograft and processed allograft healing. Gene expression analyses showed that there is a substantial decrease...... in the genes encoding RANKL and VEGF during allograft healing. Loss-of-function studies showed that both factors are required for autograft healing. To determine whether addition of these signals could stimulate allograft vascularization and remodeling, we developed a new approach in which rAAV can be freeze...

  20. The RANKL/RANK system as a therapeutic target for bone invasion by oral squamous cell carcinoma (Review).

    Science.gov (United States)

    Jimi, Eijiro; Shin, Masashi; Furuta, Hiroyuki; Tada, Yukiyo; Kusukawa, Jingo

    2013-03-01

    Squamous cell carcinomas (SCCs) of the gingiva frequently invade the mandible or maxilla; this invasion is associated with a worse prognosis. The bone destruction associated with carcinomal invasion is mediated by osteoclasts rather than directly by the carcinoma. Therefore, if the cellular and molecular mechanisms by which oral SCC regulates bone invasion were known, it could inform the development of new therapeutic targets. Recently, dysregulation of the functional equilibrium in the receptor activator of NF-κB ligand (RANKL)/RANK/osteoprotegerin (OPG) triad has been shown to be responsible for osteolysis associated with the development of malignant tumors in bone sites. Furthermore, the administration of OPG or soluble RANK prevents bone metastasis by cancer cells. In this review, we discuss recent findings indicating that bone invasion by oral SCC is mediated via RANKL/RANK and may be successfully prevented by RANKL inhibition.

  1. Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: relations of TNF-alpha and leptin mRNA expressions and serum lipid levels.

    Science.gov (United States)

    Kim, Sung Ok; Yun, Su-Jin; Jung, Bomi; Lee, Eunjoo H; Hahm, Dae-Hyun; Shim, Insop; Lee, Hye-Jung

    2004-07-30

    To find out whether the expressions of these adipocyte markers are influenced by oriental medicine, obesity rats induced by high fat diet (HFD) for 8 weeks were injected with 50 mg/100 g body weight adlay seed crude extract (ACE), daily for 4 weeks. The results are summarized as follows: HFD + ACE group significantly reduced food intakes and body weights. Weights of epididymal and peritoneal fat were dramatically increased in HFD groups compared with those of normal diet (ND) group but significantly decreased more in HFD + ACE group than those of HFD + saline group (sham). Those of brown adipocytes were increased in HFD + ACE group compared to ND and sham groups but there was no significant difference. The sizes in white adipose tissue (WAT) by microscope were markedly larger in HFD groups than ND group but considerably reduced in HFD + ACE group compared with sham group. The levels of triglyceride, total-cholesterol and leptin in blood serum were significantly decreased in HFD + ACE group compared to those of sham group. Leptin and TNF-alpha mRNA expressions in WAT of rats were remarkably increased more in sham group than in those of ND group. Those of HFD + ACE group were significantly decreased compared with those of sham group, especially. TNF-alpha mRNA expression in HFD + ACE group was declined more than that of ND group. In conclusion, treatments of ACE modulated expressions of leptin and TNF-alpha and reduced body weights, food intake, fat size, adipose tissue mass and serum hyperlipidemia in obesity rat fed HFD. Accordingly, the oriental medicine extract, adlay seed crude extract, can be considered for obesity therapies controlling.

  2. Lipopolysaccharide-Induced CXCL10 mRNA Level and Six Stimulant-mRNA Combinations in Whole Blood: Novel Biomarkers for Bortezomib Responses Obtained from a Prospective Multicenter Trial for Patients with Multiple Myeloma.

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    Full Text Available To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS-granulocyte-macrophage colony-stimulating factor (GM-CSF, LPS-CXCL chemokine 10 (CXCL10, LPS-CCL chemokine 4 (CCL4, phytohemagglutinin-CCL4, zymosan A (ZA-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test and non-parametric (unpaired Mann-Whitney test tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test and non-parametric (paired Wilcoxon test tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA and/or the six combinations may serve as potential biomarkers for the response to bortezomib treatment in MM patients.

  3. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  4. Interleukin-35 upregulates OPG and inhibits RANKL in mice with collagen-induced arthritis and fibroblast-like synoviocytes.

    Science.gov (United States)

    Li, Y; Li, D; Li, Y; Wu, S; Jiang, S; Lin, T; Xia, L; Shen, H; Lu, J

    2016-04-01

    IL-35 is a novel anti-inflammatory cytokine, but the exact role of IL-35 in the progression of RA remains unclear, especially associated with osteoporosis and bone erosion. The present research has not been reported. Our purpose is to study how IL-35 affects RA bone destruction. This study investigated the effect of interleukin-35 (IL-35) on OPG and RANKL expression in collagen-induced arthritis (CIA) in rats and in cultured fibroblast-like synoviocytes (FLS). Thirty DBA/1J mice were randomly assigned to three groups (n = 10 per group): the control group, the CIA group, and the CIA + IL-35 group. Collagen-induced arthritis was induced by immunization with collagen. IL-35 was intraperitoneally injected daily for 10 days, starting from the 24(th) day after immunization. FLS cells were isolated and cultured from CIA. The expression of IL-17, RANKL, and OPG was determined by RT-PCR and Western blot. Each experiment was repeated three times. CIA mice exhibited arthritis symptoms on day 24, followed by a rapid progression of arthritis. The expression of IL-17 and RANKL was increased and the expression of OPG was decreased in CIA mice compared with control mice. IL-35 treatment inhibited the development of arthritis in CIA mice, accompanied by a decrease in the expression of IL-17 and RANKL and an increase in the expression of OPG. Furthermore, IL-35 dose-dependently inhibited the expression of RANKL and increased the expression of OPG in cultured FLS cells. IL-35 inhibits RANKL expression and increases OPG expression in CIA mice. IL-35 may be used for treating rheumatoid arthritis.

  5. Molecular characterization of aquaporin 1 and aquaporin 3 from the gills of the African lungfish, Protopterus annectens, and changes in their branchial mRNA expression levels and protein abundance during three phases of aestivation

    Directory of Open Access Journals (Sweden)

    You R. Chng

    2016-11-01

    Full Text Available African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription may precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens. These results provide insights into how P

  6. The Presence of the Y-Chromosome, Not the Absence of the Second X-Chromosome, Alters the mRNA Levels Stored in the Fully Grown XY Mouse Oocyte

    Science.gov (United States)

    Xu, Baozeng; Obata, Yayoi; Cao, Feng; Taketo, Teruko

    2012-01-01

    The oocytes of B6.YTIR sex-reversed female mouse mature in culture but fail to develop after fertilization because of their cytoplasmic defects. To identify the defective components, we compared the gene expression profiles between the fully-grown oocytes of B6.YTIR (XY) females and those of their XX littermates by cDNA microarray. 173 genes were found to be higher and 485 genes were lower in XY oocytes than in XX oocytes by at least 2-fold. We compared the transcript levels of selected genes by RT-PCR in XY and XX oocytes, as well as in XO oocytes missing paternal X-chromosomes. All genes tested showed comparable transcript levels between XX and XO oocytes, indicating that mRNA accumulation is well adjusted in XO oocytes. By contrast, in addition to Y-encoded genes, many genes showed significantly different transcript levels in XY oocytes. We speculate that the presence of the Y-chromosome, rather than the absence of the second X-chromosome, caused dramatic changes in the gene expression profile in the XY fully-grown oocyte. PMID:22792347

  7. Infection of RANKL-Primed RAW-D Macrophages with Porphyromonas gingivalis Promotes Osteoclastogenesis in a TNF-α-Independent Manner

    Science.gov (United States)

    Kukita, Akiko; Ichigi, Yuka; Takigawa, Ippei; Watanabe, Toshiyuki; Kukita, Toshio; Miyamoto, Hiroshi

    2012-01-01

    Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in

  8. MicroRNA-92 expression may be associated with reduced estrogen receptor β1 mRNA levels in cervical portion of uterosacral ligaments in women with pelvic organ prolapse.

    Science.gov (United States)

    He, Ke; Niu, Gang; Gao, Jun; Liu, Jun-Xiu; Qu, Hu

    2016-03-01

    This study examined microRNA-92 (miR-92) expression level in relation to the mRNA level of its potential target gene, estrogen receptor β1 (ERβ1), in female patients diagnosed with pelvic organ prolapse (POP). Between July 2012 and September 2014, a total of 104 patients were recruited at the First Affiliated Hospital of Sun Yat-sen University, which included 56 POP patients and 48 non-POP control subjects. Based on POP-Q score, the POP patients were further categorized into POP II and POP III groups. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to quantify miR-92 expression level. ERβ1 tissue expression was measured by western blot and immunohistochemistry (IHC) methods. SPSS 19.0 software was used for statistical analysis. No remarkable differences were observed between the POP group and non-POP group, and between the POP II and POP III groups, with respect to age, body mass index (BMI), parity, menopause status, and family history of POP. The expression level of miR-92 in the POP group was dramatically higher than the non-POP group (Pligament tissue showed inverse correlation between miR-92 and ERβ1 expression levels in POP patients (Pligaments of women diagnosed with POP, compared to non-POP subjects POP III patients exhibited more severe changes than POP II patients. Further, ERβ1expression is inversely correlated to miR-92 expression. Taken together, our results suggest that miR-92 and ERβ1 expression levels may be used as reliable diagnostic markers for assessing the severity of POP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Prevalence of polymorphisms in OPG, RANKL and RANK as potential markers for Charcot arthropathy development.

    Science.gov (United States)

    Bruhn-Olszewska, Bożena; Korzon-Burakowska, Anna; Węgrzyn, Grzegorz; Jakóbkiewicz-Banecka, Joanna

    2017-03-29

    Charcot arthropathy is one of the most serious complications of diabetic foot syndrome that leads to amputation of the affected limb. Since there is no cure for Charcot arthropathy, early diagnosis and implementation preventive care are the best available treatment. However, diagnosis is hindered by obscure clinical picture of the disease and lack of molecular markers for its early detection. Results of recent research suggest that OPG-RANKL-RANK axis regulating bone metabolism can be associated with Charcot arthropathy and that SNPs in OPG gene are associated with the disease. Here we report the results of comprehensive analysis of ten SNPs in OPG, RANKL and RANK genes in 260 subjects divided into diabetes, neuropathy and Charcot arthropathy groups. Besides genotype analysis we performed linkage disequilibrium and hierarchical clustering to obtain information about correlation between SNPs. Our results show that OPG 245T/G (rs3134069) and OPG 1217C/T (rs3102734) polymorphisms co-occur in patients with Charcot arthropathy (r2 = 0.99). Moreover, hierarchical clustering revealed a characteristic profile of all SNPs in Charcot arthropathy and neuropathy, which is distinct from control group. Our results suggest that analysis of multiple SNPs can be used as potential marker of Charcot arthropathy and provide insight into possible molecular mechanisms of its development.

  10. Inhibitory Effect of Chrysanthemum zawadskii Herbich var. latilobum Kitamura Extract on RANKL-Induced Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Dong Ryun Gu

    2013-01-01

    Full Text Available Chrysanthemum zawadskii Herbich var. latilobum Kitamura, known as “Gujulcho” in Korea, has been used in traditional medicine to treat various inflammatory diseases, including rheumatoid arthritis. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of C. zawadskii Herbich var. latilobum Kitamura ethanol extract (CZE on osteoclast differentiation induced by treatment with the receptor activator of NF-κB ligand (RANKL. CZE inhibited osteoclast differentiation and formation in a dose-dependent manner. The inhibitory effect of CZE on osteoclastogenesis was due to the suppression of ERK activation and the ablation of RANKL-stimulated Ca2+-oscillation via the inactivation of PLCγ2, followed by the inhibition of CREB activation. These inhibitory effects of CZE resulted in a significant repression of c-Fos expression and a subsequent reduction of NFATc1, a key transcription factor for osteoclast differentiation, fusion, and activation in vitro and in vivo. These results indicate that CZE negatively regulates osteoclast differentiation and may be a therapeutic candidate for the treatment of various bone diseases, such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis.

  11. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model

    Directory of Open Access Journals (Sweden)

    Bouchra Sojod

    2017-05-01

    Full Text Available Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.

  12. The Effect of RANKL/OPG Balance on Reducing Implant Complications

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Kapasa

    2017-09-01

    Full Text Available Despite the phenomenal success of implants particularly in the realms of dentistry and orthopaedics, there are still challenges to overcome. The failure of implants resulting from infection, prosthetic loosening, and non-union continue to be the most notorious examples. The cascade of fracture healing and bone repair, especially with the presence of an implant, is complex because it involves a multifaceted immune response alongside the intricate process of bone formation and remodelling. Bone loss is a serious clinical problem that is frequently accompanied by chronic inflammation, illustrating that there is a convoluted relationship between inflammation and bone erosion. The effects of pro-inflammatory factors play a significant role in initiating and maintaining osteoclastogenesis that results in bone resorption by osteoclasts. This is because there is a disruption of the relative ratio between Receptor Activator of Nuclear Factor κB-Ligand (RANKL and osteoprotegerin (OPG, which is central to modulating bone repair and remodelling. This review aims to provide a background to the bone remodelling process, the bone repair cascade post-implantation, and the associated complications. Furthermore, current clinical solutions that can influence bone formation via either internal or extrinsic mechanisms will be described. These efficacious treatments for osteolysis via targeting the RANKL/OPG ratio may be crucial to reducing the incidence of related implant failures in the future.

  13. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance.

    Directory of Open Access Journals (Sweden)

    You R Chng

    Full Text Available African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp. This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.

  14. Effects of pectin pentaoligosaccharide from Hawthorn ( Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet.

    Science.gov (United States)

    Li, Tuo-Ping; Zhu, Ru-Gang; Dong, Yin-Ping; Liu, Yong-Hui; Li, Su-Hong; Chen, Gang

    2013-08-07

    The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases.

  15. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response

    Directory of Open Access Journals (Sweden)

    J. E. Zhang

    2017-05-01

    Full Text Available Genetic polymorphisms in the gene encoding cytochrome P450 (CYP 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149 obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS data from a prospective cohort of warfarin-treated patients (n = 711 was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017, an effect opposite to that previously reported with CYP4F2 (rs2108622. However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI, gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex

  16. Cyanidin Chloride inhibits ovariectomy-induced osteoporosis by suppressing RANKL-mediated osteoclastogenesis and associated signaling pathways.

    Science.gov (United States)

    Cheng, Jianwen; Zhou, Lin; Liu, Qian; Tickner, Jennifer; Tan, Zhen; Li, Xiaofeng; Liu, Mei; Lin, Xixi; Wang, Tao; Pavlos, Nathan J; Zhao, Jinmin; Xu, Jiake

    2018-03-01

    Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk, and trap. Further investigation revealed that Cyanidin Chloride inhibits RANKL-induced NF-κB activation, suppresses the degradation of IκB-α and attenuates the phosphorylation of extracellular signal-regulated kinases (ERK). In addition, Cyanidin Chloride abrogated RANKL-induced calcium oscillations, the activation of nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1), and the expression of c-Fos. Further, we showed that Cyanidin Chloride protects against ovariectomy-induced bone loss in vivo. Together our findings suggest that Cyanidin Chloride is capable of inhibiting osteoclast formation, hydroxyapatite resorption and RANKL-induced signal pathways in vitro and OVX-induced bone loss in vivo, and thus might have therapeutic potential for osteolytic diseases. © 2017 Wiley Periodicals, Inc.

  17. The abundant synovial expression of the RANK/RANKL/Osteoprotegerin system in peripheral spondylarthritis is partially disconnected from inflammation

    NARCIS (Netherlands)

    Vandooren, Bernard; Cantaert, Tineke; Noordenbos, Troy; Tak, Paul P.; Baeten, Dominique

    2008-01-01

    OBJECTIVE: Spondylarthritis (SpA) and rheumatoid arthritis (RA) have different patterns of bone damage, with more pronounced bone erosions in RA. The RANK/RANKL/osteoprotegerin (OPG) system plays a central role in bone resorption by promoting the maturation and activation of osteoclasts. To assess

  18. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  19. Methods for quantification of in situ hybridization signals obtained by film autoradiography and phosphorimaging applied for estimation of regional levels of calmodulin mRNA classes in the rat brain.

    Science.gov (United States)

    Vizi, S; Palfi, A; Hatvani, L; Gulya, K

    2001-08-01

    Comparative analysis of the regional abundances of the various mRNAs in neural tissues requires the quantitation of target nucleic acid sequences while their tissue distribution is preserved. A quantitative in situ hybridization protocol is presented for the assessment of regional levels of calmodulin (CaM) I, II and III mRNAs in the rat brain. Coronal brain cryostat sections were hybridized with multiple CaM [35S]cRNA probes and co-exposed to an autoradiographic film or storage phosphor screen, together with a membrane-based radioactive standard scale. The membrane scale was calibrated against a brain paste standard scale. Regression analyses of the sensitometric graphs of standard scales corresponding to the autoradiographic film and to the storage phosphor screen were performed by means of exponential (ROD=p(1)(1-exp[-p(2)x])) and linear (LI=ax) functions, respectively (ROD is relative optical density, LI is labeling intensity, and x is radioactivity). The ROD/LI values for the hybridized brain regions were converted into cRNA probe copy numbers (estimations of mRNA copy numbers) through use of the above standard scales. This method was applied to compare the regional abundances of multiple CaM mRNAs in the brains of control, dehydrated, chronic ethanol-treated and ethanol withdrawal-treated animals.

  20. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    Science.gov (United States)

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. The involvement of miR-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability.

    Science.gov (United States)

    Morais, Denis R; Reis, Sabrina T; Viana, Nayara; Piantino, Camila Berfort; Massoco, Cristina; Moura, Caio; Dip, Nelson; Silva, Iran A; Srougi, Miguel; Leite, Katia Rm

    2014-01-01

    MicroRNAs (miRNA) are small non-coding RNAs that play an important role in the control of gene expression by inhibiting protein translation or promoting messenger RNA degradation. Today, miRNAs have been shown to be involved in various physiological and pathological cellular processes, including cancer, where they can act as oncogenes or tumor suppressor genes. Recently, lowered expression of miR-100, resulting in upregulation of FGFR3, has been correlated with low-grade, non-invasive bladder urothelial cancer, as an alternative oncogenesis pathway to the typical FGFR3 gene mutation. Our aim is to analyze the role of miR-100 in bladder cancer cell lines in controlling the expression of some of its possible target genes, including FGFR3 and its relationship with proliferation, apoptosis and DNA ploidy. The bladder cancer cell lines RT4 and T24 were transfected with pre-miR 100, anti-miR 100 and their respective controls using a lipid-based formulation. After transfection mRNA and protein levels of its supposed target genes THAP2, BAZ2A, mTOR, SMARCA5 and FGFR3 were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. Cell proliferation, apoptosis and DNA ploidy were analyzed by flow cytometry. For statistical analysis, a t-test was applied, p RT4, mTOR (p = 0.023) and SMARCA5 (p = 0.015) in T24. There was a reduction in the expression of all proteins, variable from 22.5% to 57.1% in both cell lines. In T24 miR-100 promoted an increase in cell proliferation and anti-miR 100 promoted apoptosis characterizing miR-100 as an oncomiR in this cell line representative of a high-grade urothelial carcinoma. miR-100 transfection reduces expression of BAZ2A, mTOR and SMARCA5 mRNA and protein in BC cell lines. miR-100 would be classified as an oncomiR in T24 cells representative of high grade urothelial carcinoma promoting increase in cell proliferation and reduction in apoptosis. The knowledge of miRNA role in tumors will allow their use

  2. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis.

    Directory of Open Access Journals (Sweden)

    Ji-Hye Kim

    Full Text Available Type 1 diabetes with periodontitis shows elevated TNF-α expression. Tumor necrosis factor (TNF-α stimulates the expression of receptor activator of nuclear factor-κB ligand (RANKL and sclerostin. The objective of this study was to determine the effect of TNF-α expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis using infliximab (IFX, a TNF-α antagonist. Rats were divided into two timepoint groups: day 3 and day 20. Each timepoint group was then divided into four subgroups: 1 control (C, n = 6 for each time point; 2 periodontitis (P, n = 6 for each time point; 3 diabetes with periodontitis (DP, n = 8 for each time point; and 4 diabetes with periodontitis treated with IFX (DP+IFX, n = 8 for each time point. To induce type 1 diabetes, rats were injected with streptozotocin (50 mg/kg dissolved in 0.1 M citrate buffer. Periodontitis was then induced by ligature of the mandibular first molars at day 7 after STZ injection (day 0. IFX was administered once for the 3 day group (on day 0 and twice for the 20 day group (on days 7 and 14. The DP group showed greater alveolar bone loss than the P group on day 20 (P = 0.020. On day 3, higher osteoclast formation and RANKL-positive osteocytes in P group (P = 0.000 and P = 0.011, respectively and DP group (P = 0.006 and P = 0.017, respectively than those in C group were observed. However, there was no significant difference in osteoclast formation or RANKL-positive osteocytes between P and DP groups. The DP+IFX group exhibited lower alveolar bone loss (P = 0.041, osteoclast formation (P = 0.019, and RANKL-positive osteocytes (P = 0.009 than that of the DP group. On day 20, DP group showed a lower osteoid area (P = 0.001 and more sclerostin-positive osteocytes (P = 0.000 than P group. On days 3 and 20, the DP+IFX group showed more osteoid area (P = 0.048 and 0.040, respectively but lower sclerostin-positive osteocytes (both P = 0.000 than DP group. Taken together, these

  3. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis.

    Science.gov (United States)

    Kim, Ji-Hye; Kim, Ae Ri; Choi, Yun Hui; Jang, Sungil; Woo, Gye-Hyeong; Cha, Jeong-Heon; Bak, Eun-Jung; Yoo, Yun-Jung

    2017-01-01

    Type 1 diabetes with periodontitis shows elevated TNF-α expression. Tumor necrosis factor (TNF)-α stimulates the expression of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin. The objective of this study was to determine the effect of TNF-α expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis using infliximab (IFX), a TNF-α antagonist. Rats were divided into two timepoint groups: day 3 and day 20. Each timepoint group was then divided into four subgroups: 1) control (C, n = 6 for each time point); 2) periodontitis (P, n = 6 for each time point); 3) diabetes with periodontitis (DP, n = 8 for each time point); and 4) diabetes with periodontitis treated with IFX (DP+IFX, n = 8 for each time point). To induce type 1 diabetes, rats were injected with streptozotocin (50 mg/kg dissolved in 0.1 M citrate buffer). Periodontitis was then induced by ligature of the mandibular first molars at day 7 after STZ injection (day 0). IFX was administered once for the 3 day group (on day 0) and twice for the 20 day group (on days 7 and 14). The DP group showed greater alveolar bone loss than the P group on day 20 (P = 0.020). On day 3, higher osteoclast formation and RANKL-positive osteocytes in P group (P = 0.000 and P = 0.011, respectively) and DP group (P = 0.006 and P = 0.017, respectively) than those in C group were observed. However, there was no significant difference in osteoclast formation or RANKL-positive osteocytes between P and DP groups. The DP+IFX group exhibited lower alveolar bone loss (P = 0.041), osteoclast formation (P = 0.019), and RANKL-positive osteocytes (P = 0.009) than that of the DP group. On day 20, DP group showed a lower osteoid area (P = 0.001) and more sclerostin-positive osteocytes (P = 0.000) than P group. On days 3 and 20, the DP+IFX group showed more osteoid area (P = 0.048 and 0.040, respectively) but lower sclerostin-positive osteocytes (both P = 0.000) than DP group. Taken together

  4. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts.

    Science.gov (United States)

    Huang, Hong; Wang, Jue; Zhang, Yan; Zhu, Guochun; Li, Yi-Ping; Ping, Ji; Chen, Wei

    2017-12-29

    The tooth root is essential for normal tooth physiological function. Studies on mice with mutations or targeted gene deletions revealed that osteoclasts (OCs) play an important role in tooth root development. However, knowledge on the cellular and molecular mechanism underlying how OCs mediate root formation is limited. During bone formation, growth factors (e.g. Insulin-like growth factor-1, IGF-1) liberated from bone matrix by osteoclastic bone resorption stimulate osteoblast differentiation. Thus, we hypothesize that OC-osteoblast coupling may also apply to OC-odontoblast coupling; therefore OCs may have a direct impact on odontoblast differentiation through the release of growth factor(s) from bone matrix, and consequently regulate tooth root formation. To test this hypothesis, we used a receptor activator of NF-κB ligand (RANKL) knockout mouse model in which OC differentiation and function was entirely blocked. We found that molar root formation and tooth eruption were defective in RANKL-/- mice. Disrupted elongation and disorganization of Hertwig's epithelial root sheath (HERS) was observed in RANKL-/- mice. Reduced expression of nuclear factor I C (NFIC), osterix, and dentin sialoprotein, markers essential for radicular (root) odontogenic cell differentiation indicated that odontoblast differentiation was disrupted in RANKL deficient mice likely contributing to the defect in root formation. Moreover, down-regulation of IGF/AKT/mTOR activity in odontoblast indicated that IGF signaling transduction in odontoblasts of the mutant mice was impaired. Treating odontoblast cells in vitro with conditioned medium from RANKL-/- OCs cultured on bone slices resulted in inhibition of odontoblast differentiation. Moreover, depletion of IGF-1 in bone resorption-conditioned medium (BRCM) from wild-type (WT) OC significantly compromised the ability of WT osteoclastic BRCM to induce odontoblast differentiation while addition of IGF-1 into RANKL-/- osteoclastic BRCM rescued

  5. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors.

    Science.gov (United States)

    Yao, Zhenqiang; Lei, Wei; Duan, Rong; Li, Yanyun; Luo, Lu; Boyce, Brendan F

    2017-06-16

    Cytokines, including receptor activator of nuclear factor κB ligand (RANKL) and TNF, induce increased osteoclast (OC) formation and bone loss in postmenopausal osteoporosis and inflammatory arthritides. RANKL and TNF can independently induce OC formation in vitro from WT OC precursors via TNF receptor-associated factor (TRAF) adaptor proteins, which bind to their receptors. Of these, only TRAF6 is required for RANKL-induced osteoclastogenesis in vitro However, the molecular mechanisms involved remain incompletely understood. Here we report that RANKL induced the formation of bone-resorbing OCs from TRAF6 -/- OC precursors when cultured on bone slices but not on plastic. The mechanisms involved increased TNF production by TRAF6 -/- OC precursors resulting from their interaction with bone matrix and release of active TGFβ from the resorbed bone, coupled with RANKL-induced autophagolysosomal degradation of TRAF3, a known inhibitor of OC formation. Consistent with these findings, RANKL enhanced TNF-induced OC formation from TRAF6 -/- OC precursors. Moreover, TNF induced significantly more OCs from mice with TRAF3 conditionally deleted in myeloid lineage cells, and it did not inhibit RANKL-induced OC formation from these cells. TRAF6 -/- OC precursors that overexpressed TRAF3 or were treated with the autophagolysosome inhibitor chloroquine formed significantly fewer OCs in response to TNF alone or in combination with RANKL. We conclude that RANKL can enhance TNF-induced OC formation independently of TRAF6 by degrading TRAF3. These findings suggest that preventing TRAF3 degradation with drugs like chloroquine could reduce excessive OC formation in diseases in which bone resorption is increased in response to elevated production of these cytokines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Deregulated expression of hnRNP A/B proteins in human non-small cell lung cancer: parallel assessment of protein and mRNA levels in paired tumour/non-tumour tissues

    Directory of Open Access Journals (Sweden)

    Boukakis Georgios

    2010-08-01

    Full Text Available Abstract Background Heterogeneous nuclear ribonucleoproteins (hnRNPs of the A/B type (hnRNP A1, A2/B1, A3 are highly related multifunctional proteins participating in alternative splicing by antagonising other splicing factors, notably ASF/SF2. The altered expression pattern of hnRNP A2/B1 and/or splicing variant B1 alone in human lung cancer and their potential to serve as molecular markers for early diagnosis remain issues of intense investigation. The main objective of the present study was to use paired tumour/non-tumour biopsies from patients with non-small cell lung cancer (NSCLC to investigate the expression profiles of hnRNP A1, A2/B1 and A3 in conjunction with ASF/SF2. Methods We combined western blotting of tissue homogenates with immunohistochemical examination of fixed tissue sections and quantification of mRNA expression levels in tumour versus adjacent normal-looking areas of the lung in the same patient. Results Our study, in addition to clear evidence of mostly uncoupled deregulation of hnRNPs A/B, has revealed hnRNP A1 to be the most deregulated protein with a high frequency of over-expression (76%, followed by A3 (52% and A2/B1 (43%. Moreover, direct comparison of protein/mRNA levels showed a lack of correlation in the case of hnRNP A1 (as well as of ASF/SF2, but not of A2/B1, suggesting that different mechanisms underlie their deregulation. Conclusion Our results provide strong evidence for the up-regulation of hnRNP A/B in NSCLC, and they support the existence of distinct mechanisms responsible for their deregulated expression.

  7. Carvedilol decrease IL-1β and TNF-α, inhibits MMP-2, MMP-9, COX-2, and RANKL expression, and up-regulates OPG in a rat model of periodontitis.

    Directory of Open Access Journals (Sweden)

    Raimundo Fernandes de Araújo Júnior

    Full Text Available Periodontal diseases are initiated primarily by Gram-negative, tooth-associated microbial biofilms that elicit a host response that causes osseous and soft tissue destruction. Carvedilol is a β-blocker used as a multifunctional neurohormonal antagonist that has been shown to act not only as an anti-oxidant but also as an anti-inflammatory drug. This study evaluated whether Carvedilol exerted a protective role against ligature-induced periodontitis in a rat model and defined how Carvedilol affected metalloproteinases and RANKL/RANK/OPG expression in the context of bone remodeling. Rats were randomly divided into 5 groups (n = 10/group: (1 non-ligated (NL, (2 ligature-only (LO, and (3 ligature plus Carvedilol (1, 5 or 10 mg/kg daily for 10 days. Periodontal tissue was analyzed for histopathlogy and using immunohistochemical analysis characterized the expression profiles of MMP-2, MMP-9, COX-2, and RANKL/RANK/OPG and determined the presence of IL-1β, IL-10 and TNF-α, myeloperoxidase (MPO, malonaldehyde (MDA and, glutathione (GSH. MPO activity in the group with periodontal disease was significantly increased compared to the control group (p<0.05. Rats treated with 10 mg/kg Carvedilol presented with significantly reduced MPO and MDA concentrations (p<0.05 in addition to presenting with reduced levels of the pro-inflammatory cytokines IL-1 β and TNF-α (p<0.05. IL-10 levels in Carvedilol-treated rats remained unaltered. Immunohistochemical analysis demonstrated reduced expression of MMP-2, MMP-9, RANK, RANKL, COX-2, and OPG in rats treated with 10 mg/kg Carvedilol. This study demonstrated that Carvedilol affected bone formation/destruction and anti-inflammatory activity in a rat model of periodontitis.

  8. No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Olesen, Malene; Skov, Vibe; Mechta, Mie

    2012-01-01

    The aim of this study was to examine the effects of the OPG-RANKL-TRAIL system on proliferation, regulation of calcification-associated genes and calcification of human vascular smooth muscle cells (HVSMCs). Small interfering (si)RNA-mediated knockdown of OPG was followed by treatment of HVSMCs...... of a calcification-associated gene set. Finally, in the long term calcification assay, we found that cells isolated from seven different human donors showed a great variability in the response to RANKL and insulin. However, overall RANKL and/or insulin did not affect the development of calcification of HVSMCs...

  9. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  10. The siRNA-mediated knockdown of GluN3A in 46C-derived neural stem cells affects mRNA expression levels of neural genes, including known iGluR interactors

    Science.gov (United States)

    Eilebrecht, Elke; Schöneborn, Hendrik; Neumann, Sebastian; Benecke, Arndt G.; Hollmann, Michael

    2018-01-01

    For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs, since its incorporation into receptors alters hallmark features of conventional NMDARs composed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that GluN3A plays a more diversified role. It is considered to be critically involved in the maturation of glutamatergic synapses, and it might act as a molecular brake to prevent premature synaptic strengthening. Its expression pattern supports a putative role during neural development, since GluN3A is predominantly expressed in early pre- and postnatal stages. In this study, we used RNA interference to efficiently knock down GluN3A in 46C-derived neural stem cells (NSCs) both at the mRNA and at the protein level. Global gene expression profiling upon GluN3A knockdown revealed significantly altered expression of a multitude of neural genes, including genes encoding small GTPases, retinal proteins, and cytoskeletal proteins, some of which have been previously shown to interact with GluN3A or other iGluR subunits. Canonical pathway enrichment studies point at important roles of GluN3A affecting key cellular pathways involved in cell growth, proliferation, motility, and survival, such as the mTOR pathway. This study for the first time provides insights into transcriptome changes upon the specific knockdown of an NMDAR subunit in NSCs, which may help to identify additional functions and downstream pathways of GluN3A and GluN3A-containing NMDARs. PMID:29438442

  11. Quantification of rainbow trout (Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17 beta or alpha-zearalenol.

    Science.gov (United States)

    Celius, T; Matthews, J B; Giesy, J P; Zacharewski, T R

    2000-12-15

    Estrogen receptor-mediated induction of zona radiata (ZR) and vitellogenin (VTG) mRNA and protein in rainbow trout (Oncorhynchus mykiss) was compared to assess their utility as biomarkers for exposure to estrogenic compounds. Partial sequences of rainbow trout ZR and beta-actin were cloned by reverse transcriptase polymerase chain reaction (RT-PCR) using degenerate primers based on conserved regions across a number of species. A 549 bp fragment of the rainbow trout ZR-gene showed a high degree of amino acid sequence identity to that of salmon (77%), winter flounder (64%), carp ZP2 (63%) and medaka (61%) ZR-proteins. The 1020 bp beta-actin fragment was approximately 100% identical to sequences from several species. Real-time PCR was used to quantify the induction of ZR-gene and VTG in rainbow trout liver after in vivo exposure to estradiol-17 beta (E(2)) (0.01, 0.1, 1.0 or 10 mg/kg body weight (bw) fish) or alpha-zearalenol (alpha-ZEA) (0.1, 1.0 or 10 mg/kg bw). Real-time PCR and indirect enzyme-linked immunosorbent assay (ELISA) showed that ZR and VTG were induced in both the liver and the plasma after a single injection of E(2) or alpha-ZEA. ZR was more responsive to low levels of E(2) and alpha-ZEA than VTG, and real-time PCR was shown to be more sensitive than the ELISA. Rainbow trout ZR-gene and proteins provide a sensitive biomarker for assessing estrogenic activity.

  12. Administration of anti-receptor activator of nuclear factor-kappa B ligand (RANKL) antibody for the treatment of osteoporosis was associated with amelioration of hepatitis in a female patient with growth hormone deficiency: a case report.

    Science.gov (United States)

    Takeno, Ayumu; Yamamoto, Masahiro; Notsu, Masakazu; Sugimoto, Toshitsugu

    2016-11-24

    Growth hormone deficiency (GHD) is associated with non-alcoholic fatty liver disease (NAFLD). A recent animal study showed that hepatocyte-specific receptor activator of nuclear factor-kappa B (RANK) knockout mice had significantly lower liver fat content compared with control mice concomitant with a decrease in production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) from hepatocytes and kupffer cells. The role of anti-RANK ligand (RANKL) antibody for osteoporosis on hepatitis in patients with aGHD is still unknown. A forty-seven-year-old female patient was referred to our hospital to investigate chronic hepatitis caused by unknown etiology. She had past history of craniopharyngioma treated with craniotomy and post-surgical radiotherapy. She was for the first time diagnosed as panhypopituitarism including growth hormone deficiency and osteoporosis by endocrine examinations and bone mineral densitometry, respectively. In addition, non-alcoholic steatohepatitis (NASH) was histologically confirmed by liver biopsy in this time. Sixty mg anti-RANKL antibody, which was subcutaneously injected to treat the osteoporosis every six months after replacement of 5 mg hydrocortisone and 30 μg oral desmopressin, rapidly decreased the levels of her liver enzymes (ALT and γGTP were 133 to 72 U/L and 284 to 99 U/L at 16 months after the beginning of the treatment, respectively). Additional amelioration of liver dysfunction was not observed after growth hormone replacement. The clinical course of the present case suggested that RANKL-RANK signaling may be a key pathological mechanism in establishment or development of NAFLD or NASH in patients with panhypopituitarism including GHD.

  13. The tight junction protein transcript abundance changes and oxidative damage by tryptophan deficiency or excess are related to the modulation of the signalling molecules, NF-κB p65, TOR, caspase-(3,8,9) and Nrf2 mRNA levels, in the gill of young grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Jiang, Wei-Dan; Wen, Hai-Lang; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Wu, Pei; Zhao, Juan; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2015-10-01

    This study is for the first time to explore the possible effects of dietary tryptophan (Trp) on structural integrity and the related signalling factor gene expression in the gill of young grass carp (Ctenopharyngodon idella). Fish were fed with six different experimental diets containing graded levels of Trp at 0.7 (control), 1.7, 3.1, 4.0, 5.2 and 6.1 g kg(-1) diet for 8 weeks. The results firstly demonstrated that Trp deficiency or excess caused increases in reactive oxygen species (ROS) contents, and severe oxidative damage (lipid peroxidation and protein oxidation) in the gill of fish, and those negative effects could be reversed by optimal Trp levels. Secondly, compared with the optimal Trp levels, Trp deficiency could cause decreases in the mRNA levels of the barrier functional proteins (occludin, zonula occludens-1, claudin-c, and -3) and increases in the mRNA levels of the pore-formation proteins (claudin-12 and -15) mRNA levels in the gill of fish, and those were reversed by the optimal levels of Trp. The negative effects of Trp deficiency on those tight junction protein gene expression might be partly related to the increases in the mRNA levels of pro-inflammatory cytokines and related signalling factors (tumor necrosis factor α, interleukin 8, interleukin 1β and transcription factor-κB) and decreases in the mRNA levels of anti-inflammatory cytokines and related signalling factors [interleukin 10, transforming growth factor-β1, nuclear inhibitor factor κBα (iκBα), target of rapamyc and ribosome protein S6 kinase 1 (S6K1)] in the gill of fish. In addition, optimal dietary Trp protected the gill of fish against its deficiency-caused increases in the mRNA levels of the apoptosis signalling (caspase-3, caspase-8, caspase-9) and decreases in anti-superoxide radicals capacity, anti-hydroxyl radical capacity, glutathione contents and the activities of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase

  14. Relationship between circulating serum osteoprotegerin and total receptor activator of nuclear κ-B ligand levels, triglycerides, and coronary calcification in postmenopausal women.

    Science.gov (United States)

    Poornima, Indu G; Mackey, Rachel H; Buhari, Alhaji M; Cauley, Jane A; Matthews, Karen A; Kuller, Lewis H

    2014-07-01

    This study evaluates the relationship of blood osteoprotegerin (OPG) and receptor activator of nuclear κ-B ligand (RANKL) levels with coronary artery calcium (CAC) and cardiovascular risk factors in two studies of postmenopausal women. OPG, a marker of bone turnover, and its ligand, RANKL, may contribute to cardiovascular disease risk. We tested the hypothesis that serum OPG and RANKL levels were associated with CAC and cardiovascular disease risk factors among postmenopausal women in the Women On the Move through Activity and Nutrition Study (WOMAN Study; n = 86; mean [SD], age 58 [2.9] y) and replicated our findings in the Healthy Women Study (HWS; n = 205; mean [SD] age, 61 [2.3] y). Serum OPG, total RANKL, and CAC were measured at baseline and 48 months in the WOMAN Study and on the eighth postmenopausal visit in the HWS. In the WOMAN Study, higher OPG was associated with higher CAC, and higher total RANKL was associated with lower CAC and triglycerides. In the HWS, higher total RANKL was also associated with lower CAC and triglycerides. In logistic regression models adjusted for body mass index and triglycerides, the odds ratios (95% CIs) for CAC per unit increase in OPG were 1.78 (1.17-2.73) for the WOMAN Study and 1.02 (0.84-1.24) for the HWS, and the odds ratios (95% CIs) for CAC per unit increase in log total RANKL were 0.86 (0.64-1.17) for the WOMAN Study and 0.83 (0.72-0.96) for the HWS. The inverse association of total RANKL with CAC and triglycerides is a new finding and may have important implications given the increasing use of drugs that modify total RANKL and its receptor, receptor activator of nuclear κ-B.

  15. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.

    Science.gov (United States)

    Chen, Qiansi; Li, Meng; Zhang, Zhongchun; Tie, Weiwei; Chen, Xia; Jin, Lifeng; Zhai, Niu; Zheng, Qingxia; Zhang, Jianfeng; Wang, Ran; Xu, Guoyun; Zhang, Hui; Liu, Pingping; Zhou, Huina

    2017-01-10

    Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed mi

  16. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Harunori [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi [Department of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima Kobe, Hyogo 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Miyazawa, Keiji [Discovery Research III, Research and Development, Kissei Pharmaceutical Company, 4365-1 Hodakakashiwara, Azumino, Nagano 399-8304 (Japan); Hla, Timothy [Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Avenue, Box 69, NY 10065 (United States); Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  17. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability.

    Science.gov (United States)

    Kedersha, N; Anderson, P

    2002-11-01

    Mammalian stress granules (SGs) are cytoplasmic domains into which mRNAs are sorted dynamically in response to phosphorylation of eukaryotic initiation factor (eIF) 2alpha, a key regulatory step in translational initiation. The activation of one or more of the eIF2alpha kinases leads to SG assembly by decreasing the levels of eIF2-GTP-tRNA(Met), the ternary complex that is normally required for loading the initiator methionine onto the 48 S preinitiation complex to begin translation. This stress-induced scarcity of eIF2-GTP-tRNA(Met) allows the RNA-binding proteins TIA-1 (T-cell internal antigen-1) and TIAR (TIA-1-related protein) to bind the 48 S complex in lieu of the ternary complex, thereby promoting polysome disassembly and the concurrent routing of the mRNA into a SG. The actual formation of SGs occurs upon auto-aggregation of the prion-like C-termini of TIA-1 proteins; this aggregation is reversed in vivo by overexpression of the heat-shock protein (HSP) chaperone HSP70. Remarkably, HSP70 mRNA is excluded from SGs and is preferentially translated during stress, indicating that the RNA composition of the SG is selective. Moreover, the effects of HSP70 on TIA aggregation suggest a feedback loop whereby HSP70 synthesis is auto-regulated. Proteins that promote mRNA stability [e.g. HuR (Hu protein R)] and destabilize mRNA [i.e. tristetraprolin (TTP)] are also recruited to SGs, suggesting that SGs effect a process of mRNA triage, by promoting polysome disassembly and routing mRNAs to cytoplasmic domains enriched for HuR and TTP. This model reveals connections between the eIF2alpha kinase system, mRNA stability and cellular chaperone levels.

  18. Effect of repeated L-DOPA, bromocriptine, or lisuride administration on preproenkephalin-A and preproenkephalin-B mRNA levels in the striatum of the 6-hydroxydopamine-lesioned rat.

    Science.gov (United States)

    Henry, B; Crossman, A R; Brotchie, J M

    1999-02-01

    dorsally, while PPE-B expression was reduced in the striatum at all rostrocaudal levels. Repeated l-DOPA administration was accompanied by elevations in striatal PPE-B mRNA levels and a further elevation, above lesion-induced levels, in PPE-A expression. This further elevation was restricted to the dorsolateral striatum. However, following repeated bromocriptine or lisuride administration no increase in PPE-B expression was observed and the lesion-induced increase in PPE-A expression was normalized to prelesion levels. Increased PPE-A and PPE-B levels may, through decreasing GABA and glutamate release, respectively, in output nuclei of the basal ganglia, play a role in the development of L-DOPA- and dopamine-agonist induced dyskinesia in Parkinson's disease. These studies suggest that anti-parkinsonian treatments which are not associated with an elevation in PPE-B and/or normalize elevated PPE-A precursor expression, such as NMDA-receptor antagonists or long-acting dopamine D2 receptor agonists, e.g., cabergoline or ropinirole, may reduce dyskinesia in Parkinson's disease. Copyright 1999 Academic Press.

  19. The intra-articular injection of RANKL-binding peptides inhibits cartilage degeneration in a murine model of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Md. Zahirul Haque Bhuyan

    2017-06-01

    Full Text Available We recently found that the receptor activator of NF-κB ligand (RANKL-binding peptide, OP3-4 stimulated the differentiation of both chondrocytes and osteoblasts. OP3-4 is also shown to inhibit cartilage degeneration. To clarify whether the peptide can inhibit cartilage degeneration without stimulating bone formation, we first performed a proliferation assay using C3H10T1/2 (the murine mesenchymal stem cell line, which is the common origin of both chondrocytes and osteoblasts. The RANKL-binding peptides, OP3-4 and W9, promoted cellular proliferation at 24 and 48 h, respectively. Next, we injected both peptides into the intra-articular space of the knee joints of mice with monosodium-iodoacetate (MIA-induced osteoarthritis to clarify the effects of the peptides on cartilage tissue. Twenty-five nine-week-old male C57BL/6J mice received injections of vehicle, or the same molar amount of W9, OP3-4, or a control peptide (which could not stimulate osteoblast differentiation on days 7, 14, and 21 after the injection of MIA. The mice were sacrificed on day 28. The histomorphometric analyses revealed that both peptides inhibited the degeneration of cartilage without enhancing bone formation activity. Our data suggest that the stimulation of mesenchymal cell proliferation by the RANKL-binding peptides might lead to the inhibition of cartilage degeneration.

  20. Polymorphisms in the RANK/RANKL Genes and Their Effect on Bone Specific Prognosis in Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Alexander Hein

    2014-01-01

    Full Text Available The receptor activator of NF-κB (RANK pathway is involved in bone health as well as breast cancer (BC pathogenesis and progression. Whereas the therapeutic implication of this pathway is established for the treatment of osteoporosis and bone metastases, the application in adjuvant BC is currently investigated. As genetic variants in this pathway have been described to influence bone health, aim of this study was the prognostic relevance of genetic variants in RANK and RANKL. Single nucleotide polymorphisms in RANK(L (rs1054016/rs1805034/rs35211496 were genotyped and analyzed with regard to bone metastasis-free survival (BMFS, disease-free survival, and overall survival for a retrospective cohort of 1251 patients. Cox proportional hazard models were built to examine the prognostic influence in addition to commonly established prognostic factors. The SNP rs1054016 seems to influence BMFS. Patients with two minor alleles had a more favorable prognosis than patients with at least one common allele (HR 0.37 (95% CI: 0.17, 0.84, whereas other outcome parameters remained unaffected. rs1805034 and rs35211496 had no prognostic relevance. The effect of rs1054016(RANKL adds to the evidence that the RANK pathway plays a role in BC pathogenesis and progression with respect to BMFS, emphasizing the connection between BC and bone health.

  1. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd

  2. Beta-adrenergic signaling affect osteoclastogenesis via osteocytic MLO-Y4 cells' RANKL production.

    Science.gov (United States)

    Yao, Qianqian; Liang, Hengxing; Huang, Bo; Xiang, Lin; Wang, Tianlu; Xiong, Yi; Yang, Bo; Guo, Yanjun; Gong, Ping

    2017-07-08

    The sympathetic nervous system play a pivotal role in bone remodeling through β-adrenoceptor (β-AR). However, it is not well documented whether the β-adrenoceptor pathway has the potential to influence osteocytes. In this study, cell viability, the expression of β-AR subtypes, enzymes of catecholamine synthesis or degradation, bone-related gene and protein in osteocytic MLO-Y4 cells were investigated by β-adrenergic stimulation. Isoproterenol (ISO) promoted RANKL to OPG expression in osteocytes, as well as osteoclasts formation in osteocytes-RAW264.7 cell co-cultures but not RAW264.7 cell monoculture. The ISO-stimulated effect was enhanced in β1-AR antagonist pretreatment, but was rescued by blocking β2-AR. The results indicate that β1-and β2-AR play reciprocal roles on MLO-Y4 cells in the regulation of osteoclastogenesis, and osteocyte β-adrenergic signaling might be a new valuable therapy for bone disease. Copyright © 2016. Published by Elsevier Inc.

  3. Clathrin-dependent endocytosis of membrane-bound RANKL in differentiated osteoclasts

    Directory of Open Access Journals (Sweden)

    P. Narducci

    2010-03-01

    Full Text Available Bone is continuously repaired and remodelled through well-coordinated activity of osteoblasts that form new bone and osteoclasts, which resorb it. Osteoblasts synthesize and secrete two key molecules that are important for osteoclast differentiation, namely the ligand for the receptor of activator of nuclear factor κB (RANKL and its decoy receptor osteoprotegerin (OPG. Active membrane transport is a typical feature of the resorbing osteoclast during bone resorption. Normally, one resorption cycle takes several hours as observed by monitoring actin ring formation and consequent disappearance in vitro. During these cyclic changes, the cytoskeleton undergoes remarkable dynamic rearrangement. Active cells show a continuous process of exocytosis that plays an essential role in transport of membrane components, soluble molecules and receptor-mediated ligands thus allowing them to communicate with the environment. The processes that govern intracellular transport and trafficking in mature osteoclasts are poorly known. The principal methodological problem that have made these studies difficult is a physiological culture of osteoclasts that permit observing the vesicle apparatus in conditions similar to the in vivo conditions. In the present study we have used a number of morphological approaches to characterize the composition, formation and the endocytic and biosynthetic pathways that play roles in dynamics of differentiation of mature bone resorbing cells using a tri-dimensional system of physiologic coculture.

  4. A-Type Cranberry Proanthocyanidins Inhibit the RANKL-Dependent Differentiation and Function of Human Osteoclasts

    Directory of Open Access Journals (Sweden)

    Amy B. Howell

    2011-03-01

    Full Text Available This study investigated the effect of A-type cranberry proanthocyanidins (AC-PACs on osteoclast formation and bone resorption activity. The differentiation of human pre-osteoclastic cells was assessed by tartrate-resistant acid phosphatase (TRAP staining, while the secretion of interleukin-8 (IL-8 and matrix metalloproteinases (MMPs was measured by ELISA. Bone resorption activity was investigated by using a human bone plate coupled with an immunoassay that detected the release of collagen helical peptides. AC-PACs up to 100 µg/mL were atoxic for osteoclastic cells. TRAP staining evidenced a dose-dependent inhibition of osteoclastogenesis. More specifically, AC-PACs at 50 µg/mL caused a 95% inhibition of RANKL-dependent osteoclast differentiation. This concentration of AC-PACs also significantly increased the secretion of IL-8 (6-fold and inhibited the secretion of both MMP-2 and MMP-9. Lastly, AC-PACs (10, 25, 50 and 100 µg/ml affected bone degradation mediated by mature osteoclasts by significantly decreasing the release of collagen helical peptides. This study suggests that AC-PACs can interfere with osteoclastic cell maturation and physiology as well as prevent bone resorption. These compounds may be considered as therapeutic agents for the prevention and treatment of periodontitis.

  5. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK

    Directory of Open Access Journals (Sweden)

    Mylchreest S

    2006-03-01

    Full Text Available Abstract Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors or co-cultures of macrophages and osteoblasts (from the same donor, were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors 70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in

  6. Proinsulin C-peptide modulates the expression of ERK1/2, type I collagen and RANKL in human osteoblast-like cells (Saos-2).

    Science.gov (United States)

    Russo, Cristina; Lazzaro, Veronica; Gazzaruso, Carmine; Maurotti, Samantha; Ferro, Yvelise; Pingitore, Piero; Fumo, Francesca; Coppola, Adriana; Gallotti, Pietro; Zambianchi, Valentina; Fodaro, Mariangela; Galliera, Emanuela; Marazzi, Monica Gioia; Corsi Romanelli, Massimiliano Marco; Giannini, Sandro; Romeo, Stefano; Pujia, Arturo; Montalcini, Tiziana

    2017-02-15

    A lower bone mass accompanied by a higher bone fragility with increased risk of fracture are observed in individuals with type 1 diabetes mellitus. Low C-peptide levels are associated with low lumbar mineral density in postmenopausal woman. In this work, we investigated the role of C-peptide on the osteoblast cell biology in vitro. We examined intracellular pathways and we found that C peptide activates ERK1/2 in human osteoblast-like cells (Saos-2). We also observed that proinsulin C-peptide prevents a reduction of type I collagen expression and decreases, in combination with insulin, receptor activator of nuclear factor-κB (RANKL) levels. In this work we show for the first time that Cpeptide activates a specific intracellular pathway in osteoblasts and it modulates the expression of protein involved in bone remodeling. Our results suggest that both C-peptide may have a role in bone metabolism. Further studies are needing to fully clarify its role. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Advanced oxidation protein products induce apoptosis, and upregulate sclerostin and RANKL expression, in osteocytic MLO-Y4 cells via JNK/p38 MAPK activation.

    Science.gov (United States)

    Yu, Chaoqun; Huang, Dong; Wang, Kunyuan; Lin, Bochuan; Liu, Yuanhang; Liu, Songbo; Wu, Weichi; Zhang, Huiru

    2017-02-01

    Advanced oxidation protein products (AOPPs) are recognized as novel markers of oxidative stress and contribute to various medical conditions, which are associated with secondary osteoporosis. However, little is currently known regarding the role of AOPPs in the development of secondary osteoporosis. As the commander cells of bone remodeling, osteocytes are involved in the pathogenesis of osteoporosis. The present study aimed to determine the cytotoxic mechanisms of AOPPs on osteocytic MLO‑Y4 cells. The results demonstrated that treatment with AOPPs significantly triggered apoptosis of MLO‑Y4 cells, in a dose‑ and time‑dependent manner. Furthermore, exposure to AOPPs induced phosphorylation of c‑Jun N‑terminal kinases (JNK) and p38 mitogen‑activated protein kinases (MAPK). Conversely, N‑acetylcysteine inhibited the activation of JNK and p38 MAPK, thus suggesting that the AOPPs‑induced activation of JNK/p38 MAPK is reactive oxygen species (ROS)‑dependent. In addition, SB203580 and SP600125 suppressed apoptosis, but did not affect ROS production, following AOPPs treatment. Notably, AOPPs also induced a significant upregulation in the expression levels of sclerostin and receptor activator of nuclear factor kappa‑B ligand (RANKL) in a JNK/p38 MAPK-dependent manner. These findings provide novel insights into the molecular mechanisms underlying AOPPs‑mediated cell death, and suggest that modulation of apoptotic pathways via the MAPK signaling cascade may be considered a therapeutic strategy for the prevention and treatment of secondary osteoporosis.

  8. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 (China); Fan, Qiming; Tang, Tingting [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Gu, Dongyun, E-mail: dongyungu@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China (China); School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  9. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions.

    Science.gov (United States)

    Hiroi, Ryoko; Weyrich, Giulia; Koebele, Stephanie V; Mennenga, Sarah E; Talboom, Joshua S; Hewitt, Lauren T; Lavery, Courtney N; Mendoza, Perla; Jordan, Ambra; Bimonte-Nelson, Heather A

    2016-01-01

    Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of

  10. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions

    Science.gov (United States)

    Hiroi, Ryoko; Weyrich, Giulia; Koebele, Stephanie V.; Mennenga, Sarah E.; Talboom, Joshua S.; Hewitt, Lauren T.; Lavery, Courtney N.; Mendoza, Perla; Jordan, Ambra; Bimonte-Nelson, Heather A.

    2016-01-01

    Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of

  11. Carboxylesterase 1 gene duplication and mRNA expression in adipose tissue are linked to obesity and metabolic function

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Poulsen, Pernille; Wojtaszewski, Jørgen

    2013-01-01

    involved in the control of mRNA expression. Here, we investigated mRNA expression level in adipose tissue and its association with measures of adiposity and metabolic function in a population of elderly twins. Furthermore, the heritability of mRNA expression level in adipose tissue and the effect of gene...

  12. Palmitoleic Acid Inhibits RANKL-Induced Osteoclastogenesis and Bone Resorption by Suppressing NF-κB and MAPK Signalling Pathways.

    Science.gov (United States)

    van Heerden, Bernadette; Kasonga, Abe; Kruger, Marlena C; Coetzee, Magdalena

    2017-04-28

    Osteoclasts are large, multinucleated cells that are responsible for the breakdown or resorption of bone during bone remodelling. Studies have shown that certain fatty acids (FAs) can increase bone formation, reduce bone loss, and influence total bone mass. Palmitoleic acid (PLA) is a 16-carbon, monounsaturated FA that has shown anti-inflammatory properties similar to other FAs. The effects of PLA in bone remain unexplored. Here we investigated the effects of PLA on receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast formation and bone resorption in RAW264.7 murine macrophages. PLA decreased the number of large, multinucleated tartrate resistant acid phosphatase (TRAP) positive osteoclasts and furthermore, suppressed the osteolytic capability of these osteoclasts. This was accompanied by a decrease in expression of resorption markers (Trap, matrix metalloproteinase 9 (Mmp9), cathepsin K (Ctsk)). PLA further decreased the expression of genes involved in the formation and function of osteoclasts. Additionally, PLA inhibited NF-κB activity and the activation of mitogen activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Moreover, PLA induced apoptosis in mature osteoclasts. This study reveals that PLA inhibits RANKL-induced osteoclast formation in RAW264.7 murine macrophages through suppression of NF-κB and MAPK signalling pathways. This may indicate that PLA has potential as a therapeutic for bone diseases characterized by excessive osteoclast formation.

  13. Attempted replication of SNPs in RANKL and OPG with musculoskeletal adverse events during aromatase inhibitor treatment for breast cancer.

    Science.gov (United States)

    Dempsey, Jacqueline M; Xi, Jingyue; Henry, N Lynn; Rae, James M; Hertz, Daniel L

    2018-02-01

    Aromatase inhibitor (AI) therapy is highly efficacious in the treatment of estrogen receptor-positive breast cancer; however, in a subset of patients AI use is discontinued due to drug-induced musculoskeletal adverse events (MS-AE). Several studies have investigated the role of germline single nucleotide polymorphisms (SNPs) on patients' risk of MS-AEs; however, no associations have yet to be validated for translation into clinical practice. This study attempted to replicate SNPs in RANKL ( rs7984870 ) and OPG ( rs2073618 ) on the risk of AI-induced MS-AEs and screen for secondary associations with MS-AE-related treatment discontinuation and serum and urine markers of bone health. Previously reported associations were not replicated with our primary hypothesis, change in MS-AE from baseline to 3 mo; however, patients homozygous for the G allele of rs7984870 in RANKL had lower risk of MS-AE-associated treatment discontinuation in analyses of secondary phenotypes without statistical correction.

  14. Sequence of the human glycogen-associated regulatory subunit of type 1 protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM

    DEFF Research Database (Denmark)

    Chen, Y H; Hansen, L; Chen, Min

    1994-01-01

    of protein phosphatase 1 (PP1 G-subunit) plays a key role in the insulin stimulation of glycogen synthesis and the activity of PP1 is decreased in insulin-resistant subjects, we have now cloned the human G-subunit cDNA to search for abnormalities in the corresponding gene (designated PPP1R3 in the human...... genome nomenclature) in patients with NIDDM. The human cDNA was isolated from a skeletal muscle cDNA library and was found to encode a 126-kDa protein, which shows 73% amino acid identity to the rabbit PP1 G-subunit. The human G-subunit cDNA from 30 insulin-resistant NIDDM patients was analyzed...... for genetic variations in the G-subunit by using single-stranded conformation polymorphism (SSCP) scanning of reversely transcribed mRNA. One variant SSCP profile was detected in the region encoding the COOH-terminal part of the PP1 G-subunit in only one NIDDM patient, and subsequent nucleotide sequencing...

  15. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  16. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ethanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor-κB Activation

    Science.gov (United States)

    Lin, Tzu-Hung; Yang, Rong-Sen; Wang, Kuan-Chin; Lu, Dai-Hua; Liou, Houng-Chi; Ma, Yun; Chang, Shao-Han; Fu, Wen-Mei

    2013-01-01

    The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone loss diseases, including rheumatoid arthritis and osteoporosis. In this study, we examined the effects of WL1101 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Treatment with WL1101 significantly inhibited RANKL-stimulated osteoclastogenesis. Two isolated active compounds, ((−)-epicatechin) or WL14 (4-hydroxy-3-aminobenzoic acid) could also inhibit RANKL-induced osteoclastogenesis. WL1101 suppressed the RANKL-induced nuclear factor-κB (NF-κB) activation and nuclear translocation, which is the key process during osteoclastogenesis, by inhibiting the activation of IκB kinase (IKK) and IκBα. In animal model, oral administration of WL1101 (50 or 200 mg/kg/day) effectively decreased the excess bone resorption and significantly antagonized the trabecular bone loss in ovariectomized rats. Our results demonstrate that the ethanol extracts of fresh rhizomes of Davallia formosana inhibit osteoclast differentiation via the inhibition of NF-κB activation and effectively ameliorate ovariectomy-induced osteoporosis. WL1101 may thus have therapeutic potential for the treatment of diseases associated with excessive osteoclastic activity. PMID:24191169

  18. Ethanol Extracts of Fresh Davallia formosana (WL1101 Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor-κB Activation

    Directory of Open Access Journals (Sweden)

    Tzu-Hung Lin

    2013-01-01

    Full Text Available The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone loss diseases, including rheumatoid arthritis and osteoporosis. In this study, we examined the effects of WL1101 on receptor activator of nuclear factor-κB ligand (RANKL-induced osteoclastogenesis. Treatment with WL1101 significantly inhibited RANKL-stimulated osteoclastogenesis. Two isolated active compounds, ((−-epicatechin or WL14 (4-hydroxy-3-aminobenzoic acid could also inhibit RANKL-induced osteoclastogenesis. WL1101 suppressed the RANKL-induced nuclear factor-κB (NF-κB activation and nuclear translocation, which is the key process during osteoclastogenesis, by inhibiting the activation of IκB kinase (IKK and IκBα. In animal model, oral administration of WL1101 (50 or 200 mg/kg/day effectively decreased the excess bone resorption and significantly antagonized the trabecular bone loss in ovariectomized rats. Our results demonstrate that the ethanol extracts of fresh rhizomes of Davallia formosana inhibit osteoclast differentiation via the inhibition of NF-κB activation and effectively ameliorate ovariectomy-induced osteoporosis. WL1101 may thus have therapeutic potential for the treatment of diseases associated with excessive osteoclastic activity.

  19. Increased vitamin D-driven signalling and expression of the vitamin D receptor, MSX2, and RANKL in tooth resorption in cats

    NARCIS (Netherlands)

    Booij-Vrieling, H.E.; Ferbus, D.; Tryfonidou, M.A.; Riemers, F.M.; Penning, L.C.; Berdal, A.; Everts, V.; Hazewinkel, H.A.W.

    2010-01-01

    Tooth resorption occurs in 20-75% of cats (Felis catus). The aetiology is not known, but vitamin D is suggested to be involved. Vitamin D acts through a nuclear receptor (VDR) and increases the expression of receptor activator of nuclear factor-κB ligand (rankl) and muscle segment homeobox 2 (msx2)

  20. Increased vitamin D-driven signalling and expression of the vitamin D receptor, MSX2, and RANKL in tooth resorption in cats

    NARCIS (Netherlands)

    Vrieling, H.E.|info:eu-repo/dai/nl/30483467X; Ferbus, D.; Tryfonidou, M.A.|info:eu-repo/dai/nl/24306599X; Riemers, F.M.; Penning, L.C.|info:eu-repo/dai/nl/110369181; Berdal, A.; Everts, V.; Hazewinkel, H.A.W.|info:eu-repo/dai/nl/070975760

    2010-01-01

    Eur J Oral Sci. 2010 Feb;118(1):39-46. Increased vitamin D-driven signalling and expression of the vitamin D receptor, MSX2, and RANKL in tooth resorption in cats. Booij-Vrieling HE, Ferbus D, Tryfonidou MA, Riemers FM, Penning LC, Berdal A, Everts V, Hazewinkel HA. Department of Clinical Sciences

  1. Anti-RANKL treatment inhibits erosive joint destruction and lowers inflammation but has no effect on bone formation in the delayed-type hypersensitivity arthritis (DTHA) model

    DEFF Research Database (Denmark)

    Atkinson, Sara Marie; Bleil, Janine; Maier, Rene

    2016-01-01

    Background: The aims of the present study were to determine the relationship between bone destruction and bone formation in the delayed-type hypersensitivity arthritis (DTHA) model and to evaluate the effect of receptor activator of nuclear factor kappa B ligand (RANKL) blockade on severity...

  2. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells

    NARCIS (Netherlands)

    Borsje, Manon A.; Ren, Yijin; de Haan-Visser, H. Willy; Kuijer, Roel

    OBJECTIVE: To compare two clinically applied treatments to stimulate bone healing-low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF)-for their effects on RANKL and OPG expression in osteoblast-like cells in vitro. MATERIALS AND METHODS: LIPUS or PEMF was applied to

  3. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells.

    Directory of Open Access Journals (Sweden)

    Irina Gurt

    Full Text Available Increased osteoclast-mediated bone resorption is characteristic of osteoporosis, malignant bone disease and inflammatory arthritis. Targeted deletion of Sirtuin1 (Sirt1, a key player in aging and metabolism, in osteoclasts results in increased osteoclast-mediated bone resorption in vivo, making it a potential novel therapeutic target to block bone resorption. Sirt1 activating compounds (STACs were generated and were investigated in animal disease models and in humans however their mechanism of action was a source of controversy. We studied the effect of SRT2183 and SRT3025 on osteoclastogenesis in bone-marrow derived macrophages (BMMs in vitro, and discovered that these STACs inhibit RANKL-induced osteoclast differentiation, fusion and resorptive capacity without affecting osteoclast survival. SRT2183 and SRT3025 activated AMPK, increased Sirt1 expression and decreased RelA/p65 lysine310 acetylation, critical for NF-κB activation, and an established Sirt1 target. However, inhibition of osteoclastogenesis by these STACs was also observed in BMMs derived from sirt1 knock out (sirt1-/- mice lacking the Sirt1 protein, in which neither AMPK nor RelA/p65 lysine 310 acetylation was affected, confirming that these effects require Sirt1, but suggesting that Sirt1 is not essential for inhibition of osteoclastogenesis by these STACs under these conditions. In sirt1 null osteoclasts treated with SRT2183 or SRT3025 Sirt3 was found to be down-regulated. Our findings suggest that SRT2183 and SRT3025 activate Sirt1 and inhibit RANKL-induced osteoclastogenesis in vitro however under conditions of Sirt1 deficiency can affect Sirt3. As aging is associated with reduced Sirt1 level and activity, the influence of STACs on Sirt3 needs to be investigated in vivo in animal and human disease models of aging and osteoporosis.

  4. PPARγ inhibits inflammation and RANKL expression in epoxy resin-based sealer-induced osteoblast precursor cells E1 cells.

    Science.gov (United States)

    Kim, Tae-Gun; Lee, Young-Hee; Bhattari, Govinda; Lee, Nan-Hee; Lee, Kwang-Won; Yi, Ho-Keun; Yu, Mi-Kyung

    2013-01-01

    The AH26 of epoxy resin-based sealer is used widely owing to its excellent physical characteristics but it induces oxidative stress and cytotoxicity at the periapical tissues. AH26 exhibited cytotoxicity towards MC-3T3-E1 cells, which resulted in mitochondria-mediated apoptosis. Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammatory effect in several tissue and cells, but its action of AH26-related inflammation is not completely understood. The aim of this study is to investigate the anti-inflammatory and anti-osteoclastic mechanisms of PPARγ in AH26-induced MC-3T3 E1 cells. AH26 was prepared according to the manufacturer's instructions. The 1-day extraction sample, which was diluted by 30%, was tested in this experiment. Recombinant deficiency adenoviral PPARγ (Ad/PPARγ) was used to examine PPARγ over-expression in MC-3T3 E1 cells. AH26-induced reactive oxygen species (ROS) formation was analysed using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) with fluorescence-activated cell sorting (FACS), and the expression of receptor activator of nuclear factor-κB ligand (RANKL) and inflammatory molecules was determined by immunoblotting. The anti-inflammatory and anti-osteoclastic mechanisms of the PPARγ-involved signal pathway was examined by immunoblotting. The AH26 elutes induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), RANKL expression and ROS formation. In addition, the AH26 elutes suppressed the expression of PPARγ. However, the recovery of PPARγ expression with Ad/PPARγ resulted in the inhibition of iNOS, COX-2, RANKL and ROS formation despite the AH26 treatment in MC-3T3 E1 cells. The mechanism of PPARγ was confirmed by the blocking of nuclear factor kappa B (NF-κB) translocation to the nucleus after the suppression of ERK1/2, SAPK/JNK and AP-1 in AH26-induced MC-3T3 E1 cells. From this result, PPARγ acts to inhibit bone destruction in AH26-induced bone cells. Therefore, the anti-inflammatory and

  5. Ormeloxifene inhibits osteoclast differentiation in parallel to downregulating RANKL-induced ROS generation and suppressing the activation of ERK and JNK in murine RAW264.7 cells.

    Science.gov (United States)

    Kharkwal, Geetika; Chandra, Vishal; Fatima, Iram; Dwivedi, Anila

    2012-06-01

    Ormeloxifene (Orm), a triphenylethylene compound, has been established as a selective estrogen receptor modulator (SERM) that suppresses the ovariectomy-induced bone resorption in rats. However, the precise mechanism underlying the bone-preserving action of Orm remains unclear. In this study, we evaluated the effect of Orm on osteoclast formation induced by receptor activator of nuclear factor κB ligand (RANKL) in the murine macrophage cell line RAW264.7. We also explored the mechanism of action of Orm by studying the RANKL-induced signaling pathways required for osteoclast differentiation. We found that Orm inhibited osteoclast formation from murine macrophage RAW264.7 cells induced by RANKL in a dose-dependent manner. Orm was able to abolish RANKL-induced reactive oxygen species (ROS) elevation and inhibited the transcriptional activation of two key RANKL-induced transcription factors namely activator protein-1 (AP-1) and NF-κB through mechanisms involving MAPKs. Activation of two MAPKs, i.e. ERK (MAPK1) and JNK (MAPK8), was alleviated by Orm effectively, which subsequently affected the activation of c-Jun and c-Fos, which are the essential components of the AP-1 transcription complex. Taken together, our results demonstrate that Orm potentially inhibits osteoclastogenesis by inhibiting ROS generation and thereby suppressing the activation of ERK1/2 (MAPK3/MAPK1) and JNK (MAPK8) and transcription factors (NF-κB and AP-1), which subsequently affect the regulation of osteoclastogenesis. These results provide a possible mechanism of action of Orm in regulating osteoclastogenesis, thereby supporting the beneficial bone-protective effects of this compound.

  6. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Pudhom, Khanitha [Department of Chemistry, Faculty of Science and Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  7. Regulatory effect of calcineurin inhibitor, tacrolimus, on IL-6/sIL-6R-mediated RANKL expression through JAK2-STAT3-SOCS3 signaling pathway in fibroblast-like synoviocytes

    Science.gov (United States)

    2013-01-01

    Introduction This study investigated whether the calcineurin inhibitor, tacrolimus, suppresses receptor activator of NF-κB ligand (RANKL) expression in fibroblast-like synoviocytes (FLS) through regulation of IL-6/Janus activated kinase (JAK2)/signal transducer and activator of transcription-3 (STAT3) and suppressor of cytokine signaling (SOCS3) signaling. Methods The expression of RANKL, JAK2, STAT3, and SOCS3 proteins was assessed by western blot analysis, real-time PCR and ELISA in IL-6 combined with soluble IL-6 receptor (sIL-6R)-stimulated rheumatoid arthritis (RA)-FLS with or without tacrolimus treatment. The effects of tacrolimus on synovial inflammation and bone erosion were assessed using mice with arthritis induced by K/BxN serum. Immunofluorescent staining was performed to identify the effect of tacrolimus on RANKL and SOCS3. The tartrate-resistant acid phosphatase staining assay was performed to assess the effect of tacrolimus on osteoclast differentiation. Results We found that RANKL expression in RA FLS is regulated by the IL-6/sIL-6R/JAK2/STAT3/SOCS3 pathway. Inhibitory effects of tacrolimus on RANKL expression in a serum-induced arthritis mice model were identified. Tacrolimus inhibits RANKL expression in IL-6/sIL-6R-stimulated FLS by suppressing STAT3. Among negative regulators of the JAK/STAT pathway, such as CIS1, SOCS1, and SOCS3, only SOCS3 is significantly induced by tacrolimus. As compared to dexamethasone and methotrexate, tacrolimus more potently suppresses RANKL expression in FLS. By up-regulating SOCS3, tacrolimus down-regulates activation of the JAK-STAT pathway by IL-6/sIL-6R trans-signaling, thus decreasing RANKL expression in FLS. Conclusions These data suggest that tacrolimus might affect the RANKL expression in IL-6 stimulated FLS through STAT3 suppression, together with up-regulation of SOCS3. PMID:23406906

  8. Gut-derived serotonin induced by depression promotes breast cancer bone metastasis through the RUNX2/PTHrP/RANKL pathway in mice.

    Science.gov (United States)

    Zong, Jian-Chun; Wang, Xing; Zhou, Xiang; Wang, Chen; Chen, Liang; Yin, Liang-Jun; He, Bai-Cheng; Deng, Zhong-Liang

    2016-02-01

    Breast cancer metastasizes to the bone in a majority of patients with advanced disease resulting in bone destruction. The underlying mechanisms are complex, and both processes are controlled by an interaction between locally and systemically derived signals. Clinically, breast cancer patients with depression have a higher risk of bone metastasis, yet the etiology and mechanisms are yet to be elucidated. MDA‑MB‑231 breast cancer cells were used to establish a bone metastasis model by using intracardiac injection in nude mice. Chronic mild stress (CMS) was chosen as a model of depression in mice before and after inoculation of the cells. Knockdown of the RUNX‑2 gene was performed by transfection of the cells with shRNA silencing vectors against human RUNX‑2. A co‑culture system was used to test the effect of the MDA‑MB‑231 cells on osteoclasts and osteoblasts. RT‑PCR and western blotting were used to test gene and protein expression, respectively. We confirmed that depression induced bone metastasis by promoting osteoclast activity while inhibiting osteoblast differentiation. Free serotonin led to an increase in the expression of RUNX2 in breast cancer cells (MDA‑MB‑231), which directly inhibited osteoblast differentiation and stimulated osteoclast differentiation by the PTHrP/RANKL pathway, which caused bone destruction and formed osteolytic bone lesions. Additionally, the interaction between depression and breast cancer cells was interrupted by LP533401 or RUNX2 knockdown. In conclusion, depression promotes breast cancer bone metastasis partly through increasing levels of gut‑derived serotonin. Activation of RUNX2 in breast cancer cells by circulating serotonin appears to dissociate coupling between osteoblasts and osteoclasts, suggesting that the suppression of gut‑derived serotonin decreases the rate of breast cancer bone metastasis induced by depression.

  9. Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver.

    Science.gov (United States)

    Nagashima, Kazuki; Sawa, Shinichiro; Nitta, Takeshi; Prados, Alejandro; Koliaraki, Vasiliki; Kollias, George; Nakashima, Tomoki; Takayanagi, Hiroshi

    2017-11-04

    The gut-associated lymphoid tissues (GALTs), including Peyer's patches (PPs), cryptopatches (CPs) and isolated lymphoid follicles (ILFs), establish a host-microbe symbiosis by the promotion of immune reactions against gut microbes. Microfold cell inducer (MCi) cells in GALTs are the recently identified mesenchymal cells that express the cytokine RANKL and initiate bacteria-specific immunoglobulin A (IgA) production via induction of microfold (M) cell differentiation. In the previous study, the Twist2-Cre driver was utilized for gene deletion in mesenchymal cells including MCi cells. In order to investigate MCi cells more extensively, it will be necessary to develop experimental tools in addition to the Twist2-Cre driver mice and characterize such drivers in specificity and efficiency. Here we show that M cell differentiation and IgA production are impaired in the targeted deletion of RANKL by the Col6a1-Cre driver. We compared Col6a1-Cre with Twist2-Cre in terms of the specificity for mesenchymal cells in GALTs. Col6a1-Cre CAG-CAT-EGFP mice exhibited EGFP expression in podoplanin+CD31- cells including MCi cells, while Twist2-Cre mice were shown to target endothelial cells and podoplanin+CD31- cells. Tnfsf11fl/ΔCol6a1-Cre mice exhibited the absence of M cells and severe IgA reduction together with an alteration in gut microbial composition. Moreover, we analyzed germ free mice to test whether changes in the microbiota are the cause of M cell deficiency. M cell differentiation was normal in the CPs/ILFs of germ free mice, indicating that MCi cells induce M cells independently of microbial colonization. This study demonstrates that Col6a1-Cre driver mice are as useful as Twist2-Cre driver mice for functional analyses of GALT-resident mesenchymal cells, including MCi cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Osteoprotegerin Levels Decrease in Abstinent Alcohol-Dependent Patients.

    Science.gov (United States)

    Malik, Peter; von Gleissenthall, Gabriele; Gasser, Rudolf W; Moncayo, Roy; Giesinger, Johannes M; Mechtcheriakov, Sergei

    2016-06-01

    Osteoprotegerin (OPG) is a parameter of increasing interest in the search for pathophysiological mechanisms of reduced bone mineral density (BMD). It has been shown to be increased in alcohol-dependent subjects. In our study, we wanted to examine whether changes in OPG and receptor activator of the nuclear factor-κB ligand (RANKL) levels during an 8-week abstinence period in alcohol-dependent patients treated in an alcohol rehabilitation clinic would occur and whether alcohol-related variables, smoking, status, or physical activity prior to the study served as an influence on BMD and on OPG/RANKL levels. Forty-three patients, who were abstinent not longer than a week, were included in the study. OPG and RANKL as well as other markers of bone metabolism were measured at baseline, and after 8 weeks of treatment, BMD was measured once. OPG levels decreased significantly, while osteocalcin, a marker of bone formation, increased significantly. RANKL as well as RANKL/OPG ratio, Serum CrossLaps, and all examined hormones showed no significant changes over time. Inflammatory parameters showed a significant reduction after 8 weeks. We detected no influence of potentially confounding variables of alcohol dependency on the course of OPG or other laboratory values. Our results could point to the well-known risk for reduced BMD in these patients being reversible with abstinence through an excess of bone formation. We also confirmed earlier findings that inflammatory processes play a role in the pathogenesis of alcohol-induced disturbances in bone metabolism. Copyright © 2016 by the Research Society on Alcoholism.

  11. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood

    DEFF Research Database (Denmark)

    Rönn, Tina; Volkov, Petr; Gillberg, Linn

    2015-01-01

    Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96 ma...

  12. Voltage-Gated Na+ Channel Isoforms and Their mRNA Expression Levels and Protein Abundance in Three Electric Organs and the Skeletal Muscle of the Electric Eel Electrophorus electricus.

    Directory of Open Access Journals (Sweden)

    Biyun Ching

    Full Text Available This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn α-subunit (scna and β-subunit (scnb isoforms from, and to quantify their transcript levels in, the main electric organ (EO, Hunter's EO, Sach's EO and the skeletal muscle (SM of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs. The full coding sequences of two scna (scn4aa and scn4ab and three scnb (scn1b, scn2b and scn4b were identified for the first time (except scn4aa in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach's EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter's EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct.

  13. CD36 mRNA and Protein Expression Levels Are Significantly Increased in the Heart and Testis of apoE Deficient Mice in Comparison to Wild Type (C57BL/6

    Directory of Open Access Journals (Sweden)

    Kazem Zibara

    2002-01-01

    Full Text Available CD36, an 88kd-adhesion molecule, plays a major role as a scavenging receptor implicated in cellular lipid metabolism. Secretory mammary epithelium, microvasculature endothelium, adipocytes, smooth muscle cells, and platelets express CD36. In addition, CD36 expression is significantly enhanced in macrophages differentiating into foam cells. The effect of pathological levels of cholesterol, as observed in apoE−/−, on vascular CD36 expression is, at this stage, not known. In this study, a quantitative analysis of CD36 transcription and protein expression levels, present in tissues of male C57BL/6 and apolipoprotein-E (apoE deficient mice was carried out by Northern and Western blots. Four-week-old animals were fed a chow diet over different periods of time (0, 6, 16, or 20 weeks. Immunohistochemistry was used to localize CD36 protein expression in the heart and testis. Results indicate that CD36 transcription is increased in hearts of apoE deficient animals (100% higher at 6 weeks, and 30% higher at 16 and 20 weeks in comparison to wild type. This was confirmed at the protein level, which showed an increase of at least 100% at 6 weeks, and between 40% to 50% increase at 16 and 20 weeks of apoE−/− mice compared to controls. In addition, CD36 transcription levels were significantly increased in testis of apoE animals (at least 100% at 6, 16, and 20 weeks compared to C57BL/6 wild type. Such an increase was also confirmed at the protein level (65% increase at 16 weeks in apoE mice compared to control. Finally, localization of CD36 protein expression by immunohistochemistry showed that it was expressed in the capillaries of heart and testis endothelial cells and also at the head of spermatozoid during spermatogenesis. These results indicate that high circulating cholesterol levels, in apoE deficient mice, significantly enhance the expression of CD36 in the heart and testis. Such enhanced CD36 expression might lead to organ remodeling and

  14. Translational repression of mRNA for eucaryotic elongation factors in Friend erythroleukemia cells.

    Science.gov (United States)

    Slobin, L I; Jordan, P

    1984-11-15

    Poly(A)-containing mRNA was prepared from polyribosomes and postpolyribosomal messenger ribonucleoprotein particles (mRNP) from Friend erythroleukemic cells. Both mRNA types were translated in vitro and the 35S-labeled translation products examined by two-dimensional gel electrophoresis. Among the most abundant untranslated mRNA species was the mRNA coding for eucaryotic elongation factor Tu (eEF-Tu). In addition, the mRNA for eucaryotic elongation factor Ts was also present in Friend cells in untranslated form. Calculations based on translation assays indicate that eEF-Tu represents about 15% of the translation products of RNP mRNA and that approximately 40% of the eEF-Tu synthesized in vitro is encoded by translationally repressed mRNA. This repressed mRNA can be activated by addition of cycloheximide to cell cultures. At the level of 0.1 micrograms/ml, cycloheximide was found to inhibit cellular protein synthesis by about 50% while augmenting the relative rate of eEF-Tu synthesis 1.6-fold. This result suggested that eEF-Tu mRNA might initiate poorly. However, addition of supersaturating levels of mRNA to a reticulocyte lysate augmented eEF-Tu synthesis about twofold, while generally depressing the synthesis of other proteins by about 40%. Thus the storage of large amounts of eEF-Tu mRNA in vivo is unlikely to be due directly to the ineffectiveness of the mRNA in competing for the initiation machinery of the cell. The results presented in this report suggest that the supply of active eEF-Tu in erythroleukemic cells is controlled, at least in part, by a translational mechanism.

  15. Comparison of protein and mRNA expression evolution in humans and chimpanzees.

    Directory of Open Access Journals (Sweden)

    Ning Fu

    Full Text Available Even though mRNA expression levels are commonly used as a proxy for estimating functional differences that occur at the protein level, the relation between mRNA and protein expression is not well established. Further, no study to date has tested whether the evolutionary differences in mRNA expression observed between species reflect those observed in protein expression. Since a large proportion of mRNA expression differences observed between mammalian species appears to have no functional consequences for the phenotype, it is conceivable that many or most mRNA expression differences are not reflected at the protein level. If this is true, then differences in protein expression may largely reflect functional adaptations observed in species phenotypes. In this paper, we present the first direct comparison of mRNA and protein expression differences seen between humans and chimpanzees. We reproducibly find a significant positive correlation between mRNA expression and protein expression differences. This correlation is comparable in magnitude to that found between mRNA and protein expression changes at different developmental stages or in different physiological conditions within one species. Noticeably, this correlation is mainly due to genes with large expression differences between species. Our study opens the door to a new level of understanding of regulatory evolution and poses many new questions that remain to be answered.

  16. Topical Treatment with Xiaozheng Zhitong Paste (XZP Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling

    Directory of Open Access Journals (Sweden)

    Yanju Bao

    2015-01-01

    Full Text Available To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05. Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all. Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats.

  17. A medium-chain fatty acid, capric acid, inhibits RANKL-induced osteoclast differentiation via the suppression of NF-κB signaling and blocks cytoskeletal organization and survival in mature osteoclasts.

    Science.gov (United States)

    Kim, Hyun-Ju; Yoon, Hye-Jin; Kim, Shin-Yoon; Yoon, Young-Ran

    2014-08-01

    Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (MCSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced IκBα phosphorylation, p65 nuclear translocation, and NF-κB transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

  18. 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG.

    Science.gov (United States)

    Cheng, Zhong; Landish, Bolaky; Chi, Zhang; Nannan, Cui; Jingyu, Du; Sen, Lu; Xiangjin, Lin

    2018-01-01

    3Dprinting is defined as the use of printing technology to deposit living cells, and biomaterials on a given /a substrate. Graphene oxide nanoparticles (GO-np) have been used as a delivery vehicle for small molecule drugs in order to investigate the state of GO-np within 3D tissue constructs in terms of a composite 3D printing scaffold, which in turn is relevant to the protection of cartilage. We transplanted rats with hydrogel/GO-np and hydrogel, which in turn showed that hydrogel/GO-np protected the tissue of cartilage by the signal pathway of Rank/Rankl/OPG. Those findings indicated that GO-np may be potentially used to control the release of carrier materials and influence the signal pathway of Rank/Rankl/OPG. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis of mRNA recognition by human thymidylate synthase.

    Science.gov (United States)

    Brunn, Nicholas D; Dibrov, Sergey M; Kao, Melody B; Ghassemian, Majid; Hermann, Thomas

    2014-12-23

    Expression of hTS (human thymidylate synthase), a key enzyme in thymidine biosynthesis, is regulated on the translational level through a feedback mechanism that is rarely found in eukaryotes. At low substrate concentrations, the ligand-free enzyme binds to its own mRNA and stabilizes a hairpin structure that sequesters the start codon. When in complex with dUMP (2'-deoxyuridine-5'-monophosphate) and a THF (tetrahydrofolate) cofactor, the enzyme adopts a conformation that is unable to bind and repress expression of mRNA. Here, we have used a combination of X-ray crystallography, RNA mutagenesis and site-specific cross-linking studies to investigate the molecular recognition of TS mRNA by the hTS enzyme. The interacting mRNA region was narrowed to the start codon and immediately flanking sequences. In the hTS enzyme, a helix-loop-helix domain on the protein surface was identified as the putative RNA-binding site.

  20. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    Directory of Open Access Journals (Sweden)

    Amandine Bonnet

    2014-09-01

    Full Text Available Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs. mRNPs are then exported through nuclear pore complexes (NPCs, which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed.

  1. Different profiles of the mRNA levels of DNA repair genes in MCF-7 and SH-SY5Y cells after treatment with combination of cisplatin, 50-Hz electromagnetic field and bleomycin.

    Science.gov (United States)

    Sanie-Jahromi, Fatemeh; Saadat, Mostafa

    2017-10-01

    Neurotoxicity is known to be a major dose-limiting adverse effect of cisplatin (CDDP), alone or in combination with other chemicals. DNA repair capacity serve as a neuroprotective factor against CDDP. The purpose of this study was to evaluate the effect of 50-Hz electromagnetic field (EMF) in combination with CDDP and bleomycin (Bleo) on expression of some of DNA repair genes (GADD45A, XRCC1, XRCC4, Ku70, Ku80, DNA-PKcs and LIG4) in MCF-7 (breast cancer) and SH-SY5Y (neuroblastoma) cell lines. MCF-7 and SH-SY5Y cells were pre-treated with CDDP in the presence or absence of EMF and then exposed to different concentration of Bleo. EMF (0.50mT intensity) was used in the intermittenet pattern of "15min field on/15min field off" with 30min total exposure. Cell viability assay was done and then the transcript levels of the examined genes were measured using quantitative real-time PCR in "CDDP+Bleo" and "CDDP+EMF+Bleo" treatments. Our results indicated that MCF-7 cells treated with "CDDP+EMF+Bleo" showed more susceptibility compared with "CDDP+Bleo" treated ones, while SH-SY5Y susceptibility was not changed between the two treatments. The represented data indicated that MCF-7 and SH-SY5Y cells showed non-random disagreement in DNA repair gene expression in 11 conditions (out of 14 conditions) with each other (χ2=4.52, df=1, P=0.033). This finding can be promising for sensitizing breast cancer cells while protecting against CDDP induced neuropathy in cancer patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA.

    Science.gov (United States)

    Takara, Kohji; Takagi, Kentaro; Tsujimoto, Masayuki; Ohnishi, Noriaki; Yokoyama, Teruyoshi

    2003-06-20

    A steroid xenobiotic receptor (SXR) is involved in the induction of MDR1/P-glycoprotein. MDR1 up-regulation by digoxin was previously demonstrated in human colon adenocarcinoma Caco-2 cells, but the participation of SXR remains unclear. Herein, the participation of SXR in MDR1 up-regulation was examined using reverse transcription-polymerase chain reaction in Caco-2 cells, and digoxin-tolerant cells (Caco/DX) as well as human colon carcinoma LS180 cells, which expressed SXR. MDR1 mRNA expression in Caco-2 or LS180 cells was increased by exposure to 1 microM digoxin for 24h, in a concentration-dependent manner, but SXR mRNA decreased concentration-dependently and was undetectable or significantly lower at 1 microM digoxin, indicating antithetical changes in MDR1 and SXR mRNA expression. Moreover, the MDR1 mRNA level was higher in Caco/DX cells than Caco-2 cells, whereas the SXR mRNA level was lower in Caco/DX cells. Consequently, digoxin was demonstrated to up-regulate MDR1 mRNA and simultaneously down-regulate SXR mRNA expression.

  3. Xplore mRNA assays for the quantification of IL-1 beta and TNF-alpha mRNA in lipopolysaccharide-induced mouse macrophages.

    Science.gov (United States)

    Van Arsdell, S W; Murphy, K P; Pazmany, C; Erickson, D; Burns, C; Moody, M D

    2000-06-01

    Because the accurate measurement of a number of cytokine mRNA transcripts provides valuable knowledge about cytokine gene regulation, we have developed the Xplore assay for the quantification of cytokine mRNA. This microplate-based assay is rapid (under four hours), quantitative over three orders of magnitude and carries no risk of false-positive values from contamination with amplified target. Here, we describe the use of Xplore assays to measure the steady-state mRNA levels of TNF-alpha and IL-1 beta produced by mouse WEHI and J774 macrophage-like cell lines.

  4. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuo [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Li, Xianan [Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Cheng, Liang [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Wu, Hongwei [Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Zhang, Can [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Li, Kanghua, E-mail: lkh8738@sina.com [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China)

    2015-10-30

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  5. Beyond Antibodies: B Cells and the OPG/RANK-RANKL Pathway in Health, Non-HIV Disease and HIV-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Kehmia Titanji

    2017-12-01

    Full Text Available HIV infection leads to severe B cell dysfunction, which manifests as impaired humoral immune response to infection and vaccinations and is not completely reversed by otherwise effective antiretroviral therapy (ART. Despite its inability to correct HIV-induced B cell dysfunction, ART has led to significantly increased lifespans in people living with HIV/AIDS. This has in turn led to escalating prevalence of non-AIDS complications in aging HIV-infected individuals, including malignancies, cardiovascular disease, bone disease, and other end-organ damage. These complications, typically associated with aging, are a significant cause of morbidity and mortality and occur significantly earlier in HIV-infected individuals. Understanding the pathophysiology of these comorbidities and delineating clinical management strategies and potential cures is gaining in importance. Bone loss and osteoporosis, which lead to increase in fragility fracture prevalence, have in recent years emerged as important non-AIDS comorbidities in patients with chronic HIV infection. Interestingly, ART exacerbates bone loss, particularly within the first couple of years following initiation. The mechanisms underlying HIV-induced bone loss are multifactorial and complicated by the fact that HIV infection is linked to multiple risk factors for osteoporosis and fracture, but a very interesting role for B cells in HIV-induced bone loss has recently emerged. Although best known for their important antibody-producing capabilities, B cells also produce two cytokines critical for bone metabolism: the key osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL and its physiological inhibitor osteoprotegerin (OPG. Dysregulated B cell production of OPG and RANKL was shown to be a major contributor to increased bone loss and fracture risk in animal models and HIV-infected humans. This review will summarize our current knowledge of the role of the OPG/RANK–RANKL pathway in B

  6. Effects of a Mikania laevigata extract on bone resorption and RANKL expression during experimental periodontitis in rats

    Directory of Open Access Journals (Sweden)

    Bruno B. Benatti

    2012-06-01

    Full Text Available OBJECTIVES: The Mikania laevigata extract (MLE (popularly known in Brazil as "guaco" possesses anti-inflammatory properties. In the present study we tested the effects of MLE in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying such effects. MATERIAL AND METHODS: Periodontal disease was induced by a ligature placed around the mandibular first molars of each animal. Male Wistar rats were divided into 4 groups: non-ligated animals treated with vehicle; non-ligated animals treated with MLE (10 mg/kg, daily; ligature-induced animals treated with vehicle and ligature-induced animals treated with MLE (10 mg/kg, daily. Thirty days after the induction of periodontal disease, the animals were euthanized and mandibles and gingival tissues removed for further analysis. RESULTS: Morphometric analysis of alveolar bone loss demonstrated that MLE-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-κB ligand (RANKL measured by immunohistochemistry. Moreover, gingival tissues from the MLE-treated group showed decreased neutrophil migration myeloperoxidase (MPO assay. CONCLUSIONS: These results indicate that MLE may be useful to control bone resorption during progression of experimental periodontitis in rats.

  7. Papel do sistema RANKL/RANK/OPG como regulador-chave da remodelação óssea durante a movimentação ortodôntica

    Directory of Open Access Journals (Sweden)

    Raí Matheus Carvalho Santos

    2