WorldWideScience

Sample records for rangeland watershed water

  1. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  2. Rangeland degradation in two watersheds of Lebanon

    International Nuclear Information System (INIS)

    Darwish, T; Faour, G.

    2008-01-01

    A complex and rugged nature characterizes the Lebanese mountains.The climatic pattern prevailing in the country, deforestation and man made erosion caused increased rangeland degradation. The purpose of this study was to monitor two contrasting watersheds, representing the Lebanese agro-ecological zones, to analyze the vegetation dynamics and trace the state of rangeland degradation. The Kfarselouane (205 km2) and Aarsal (316.7 km2) watersheds are located in the Lebanon and Anti-Lebanon mountain chain and characterized by sub humid and semi-arid climate respectively.Using multitemporal spot vegetation images between 1999 and 2005 to analyze the normalized differential vegetation index (NDVI) revealed some improvement of the vegetation cover over recent years in Kfaselouane with a steady state in Aarsal. The NDVI trend curve inclines in spring and declines in summer and fall. Judging by the time scale amplitude change and highest magnitude between the peak and lower NDVI level in Aarsal, an increased vulnerability to drought is observed in the dry Lebanese areas. Comparing land cover/use in Aarsal area between 1962 and 2000 using aerial photos and large resolution Indian satellite images (IRS) showed wood fragmentation and slight increase of the degenerated forest cover from 1108 ha to 1168 ha. Landuse change was accompanied by a simultaneous increase of cultivated lands (mostly fruit trees) from 932 ha to 4878 ha with absence of soil conservation and water harvesting practices. On the contrary, grasslands decreased from 29581 ha to 25000 ha. In Kfarselouane, the area of grassland was invaded by forestland where rangeland decreased from 8073 ha to 3568 ha and woodland increased from 5766 ha to 11800 ha. Forest expansion occurred even at the account of unproductive land which decreased from 2668 ha to 248 ha, while cultivated lands did not reveal any substantial change. Based on animals' seasonal feeding pattern, a mismatch between land carrying capacity and grazing

  3. Telemetric system for hydrology and water quality monitoring in watersheds of northern New Mexico, USA.

    Science.gov (United States)

    Meyer, Michael L; Huey, Greg M

    2006-05-01

    This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.

  4. Sediment budgets and source determinations using fallout Cesium-137 in a semiarid rangeland watershed, Arizona, USA

    International Nuclear Information System (INIS)

    Ritchie, Jerry C.; Nearing, Mark A.; Rhoton, Fred E.

    2009-01-01

    Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using 137 Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137 Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using 137 Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing -5.6 and -3.2 t ha -1 yr -1 , respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be -4.3 t ha -1 yr -1 from the shrub-dominated subwatershed and -0.1 t ha -1 yr -1 from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a

  5. Water conservation for semi-arid rangelands

    International Nuclear Information System (INIS)

    Willis, W.O.

    1983-01-01

    Water deficiency is most often the cause for low forage production on rangelands in semi-arid and arid regions. Water conservation methods have been developed but additional research is needed to develop the best management practices for various climatic regions. Poor management is another major cause of low rangeland production. Better management, including the application of research findings, depends on attitudes, policies, adaptability of findings, resources for implementation and a good understanding of the governing biotic and abiotic factors. (author)

  6. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  7. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  8. Developing an operational rangeland water requirement satisfaction index

    Science.gov (United States)

    Senay, Gabriel B.; Verdin, James P.; Rowland, James

    2011-01-01

    Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/

  9. RANGELAND DEGRADATION: EXTENT, IMPACTS, AND ALTERNATIVE RESTORATION TECHNIQUES IN THE RANGELANDS OF ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available Rangeland degradation remains a serious impediment to improve pastoral livelihoods in the lowlands of Ethiopia. This review paper presents an overview of the extent of rangeland degradation, explores its drivers, discusses the potential impacts of rangeland degradation and also suggests alternative rangeland restoration techniques. It is intended to serve as an exploratory tool for ensuing more detailed quantitative analyses to support policy and investment programs to address rangeland degradation in Ethiopia. The extent of rangeland degradation increases with time, and the productivity of rangelands are losing if not given due attention. The major drivers leading to rangeland degradation includes climate change, overgrazing, bush encroachment, population pressure, drought, and government policy, encroachment of rain fed agriculture and decline of traditional resource management institution. Degradation of rangeland has resulted in substantial declines in rangeland condition, water potential, soil status, and animal performance, livestock holding at the household level and community become destitute. Another consequence of rangeland degradation is linked to food insecurity, poverty to the extent of food aid, expansion of aridity and the need for alternative livelihood and income diversification. Moreover, it has increasingly become a threat to the pastoral production systems, and has contributed towards increases in poverty and tribal conflicts over grazing land and water resources. In spite of these impacts, the adoption of alternative restoration techniques in the country is highly insufficient. To address rangeland degradation problems, there is a strong need to substantially increase the investments and strengthen the policy support for sustainable land management.

  10. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  11. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  12. Ecosystem water availability in juniper versus sagebrush snow-dominated rangelands

    Science.gov (United States)

    Western Juniper (J. occidentalis Hook.) now dominates over 3.6 million ha of rangeland in the Intermountain Western US. Critical ecological relationships among snow distribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as sage grouse, remain poorly und...

  13. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    of runoff production potential indicated that May and June accounted for the highest runoff and it can be inferred from these results that both of these months are characterized with storms which was confirmed by interviewing local residents and as range-land covers the largest land use in the basin as well as low vegetation density in the spring and summer due to overgrazing, much more runoff has been produced which is in line with the studies conducted by the Department of Natural Resources of the Golestan province in Aq Emam watershed (2003 as well as findings of Eftekhari et al. The results showed that the highest areas of the sub watershed 8, and 3 were suitable for rain water harvesting. Thus, the appropriate areas for rain water harvesting in the sub watersheds do not have a uniform spatial distribution according to the results. It can be argued that these sub basins are characterized by 4 criteria to be appropriate for rain water harvesting, which is in confirmation with Miliniai et al. Also according to the results, the areas suitable for rainwater harvesting in each sub-basin have heterogeneous spatial distribution as confirmed by the results of Eftekhari and Jin et al. Given the final map from integrating data layers, it was found that the central part of the study area has a good potential for rainwater harvesting and as results show, suitable area for water harvesting in the watershed coincides with range-lands that have a moderate crown cover as confirmed by the results reported by Tabatabaii et al. Conclusion: Finally it can be said that spatial evaluation and identification of proper areas for rain water harvesting is an important and necessary step in the application of rain water harvesting systems. Keywords: Surface water harvesting, Spatial evaluation, Sub watersheds priority, GIS, SCS

  14. Integrating Science and Land Management for the Conservation Effects Assessment Project (CEAP) in Southwestern Rangelands

    Science.gov (United States)

    Goodrich, D. C.; Heilman, P.; Nearing, M.; Speath, K.; Hernandez, M.; Wei, H.; Holifield-Collins, C.; Kautz, M.; Nichols, M.; Barlow, J.; Guertin, P.; Burns, S.; Stone, J. J.; Weltz, M.; Metz, L.; Norfleet, L.; Duriancik, L.; Johnson, M.

    2013-12-01

    Farm Bill legislation enacted by Congress in 2002 directed the U.S. Department of Agriculture to assess of the benefits and efficacy of conservation practices provided by a variety of USDA programs. Benefits include improved agricultural production, reduction of erosion and associated nutrient losses, improved water quality, improved soil resilience, and improved habitat among others. To conduct the assessment, the USDA initiated CEAP or the Conservation Effects Assessment Project in 2003, which included a national assessment complemented by small watershed studies. The national assessment started in eastern and midwestern cultivated croplands and has now progressed to western rangelands. This presentation will discuss the challenges of assessing the effects of rangeland conservation practices in a period of unusually hot and dry climatic conditions in the Cienega Creek Watershed (CCW) located southeast of Tucson, Arizona. As is common in the western U.S., the CCW consists of a patchwork of private and public lands in the west with much of the public lands leased for grazing cattle. The watershed also has high recreational value and provides many ecosystem services, including wildlife habitat qualities and flood protection to Tucson. A combination of monitoring, modeling, and remote sensing was utilized in the assessment. Conservation spending in the watershed ramped up in 1997. However, the 16-year period from 1997-2012 contains almost half of the 23 driest seasons (lowest 20 percentile) from the 117-year observed precipitation record. Initial results indicate that Landsat remotely sensed images can be effectively used to estimate both green and senescent canopy cover. This enabled detection of the impacts of drought and changes in canopy cover from practices such as prescribed fire and mechanical brush removal. Cienega Creek Watershed - Land Ownership

  15. Watershed characterization and analysis using the VELMA ...

    Science.gov (United States)

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices (BMPs) for restoring ecosystem services such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. VELMA has been applied to agricultural, forest, rangeland and arctic watersheds across North America. Urban applications are under development. This seminar will discuss how VELMA is being used to help inform (1) salmon recovery planning in Puget Sound, and (2) water quality protection in Chesapeake Bay agricultural landscapes. These examples highlight the importance of model validation; how VELMA is being linked with additional models to aid BMP identification; and how the model is being transferred to community groups, tribes, and state and federal agencies engaged in environmental decision making. This invited seminar for the Washington State Department of Ecology will provide an overview of EPA’s VELMA watershed simulator and its applications for identifying best management practices for protecting and restoring vital ecosystem services, such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. After the seminar, the presenter will meet with Department of Ecology staff to discuss the feasibility of including VELMA in their Puget Sound

  16. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  17. Measuring ecological function on California's rangelands

    Science.gov (United States)

    Porzig, E.

    2016-12-01

    There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.

  18. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    Science.gov (United States)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and

  19. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  20. Sustaining working rangelands: Insights from rancher decision making

    Science.gov (United States)

    Grazed rangeland ecosystems encompass diverse global land resources, and are complex social-ecological systems from which society demands both goods (e.g., livestock and forage production) and services (e.g., abundant and high quality water). In the dialogue on rangeland conservation and sustainable...

  1. Future scenarios of impacts to ecosystem services on California rangelands

    Science.gov (United States)

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  2. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  3. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  4. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  5. Assessment of water resource potential for common use of cow and goat by GIS (Case study: Boroujerd Rangeland, Sarab Sefid, Iran)

    International Nuclear Information System (INIS)

    Ariapour, A; Karami, K; Sadr, A

    2014-01-01

    One of the most important factors to sustainability utilization of natural potential by rangeland grazing suitability is water resources suitability. This study is a model for quantitative, qualitative and spatial distance assessment of water resource's propriety for goat and cow grazing based on geographic information systems (GIS) in Boroujerd Sarab Sefid rangeland, Lorestan province, Iran 2013. In this research from combining three factors such as quantity, quality and water resource's distances; the final model of degree of propriety of water resources for goat and cow grazing is characterized. Results showed that slope factor was the reason of limitation, and it is considered as a limiting factor in propriety of water resources, so in terms of access to water resources for goat grazing, 4856.4 ha (100%) located in S1 classes and for cow grazing, 4023.14 ha (68.6%) located in S1(suitability) classes, 1,187 ha (20.24%) in S2 classes and 654.8 ha (11.16%) located in S3 classes, respectively for both. So according to the results the rangelands in this region are most suitable for goat because of terrain and weather but this, in combination with, cow hasbandry will allow diversity of economic production and stability of incomes

  6. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  7. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  8. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  9. Evaluating soil moisture and hydraulic conductivity in semi-arid rangeland soils

    International Nuclear Information System (INIS)

    Whitaker, M.P.L.

    1993-01-01

    The US DOE's Office of Civilian Radioactive Waste Management (DOE-OCRWM) Fellowship Program supports various disciplines of academic research related to the isolation of radionuclides from the biosphere. The purpose of this paper is to provide an example of a university research application in the specific discipline of hydrology and water resources (a multi-disciplinary field encompassing engineering and the earth sciences), and to discuss how this research pertains to the objectives of the DOE-OCRWM Fellowship Program. The university research application is twofold: One portion focuses on the spatial variability of soil moisture (θ) and the other section compares point measurements with small watershed estimates of hydraulic conductivity (K) in a semi-arid rangeland soil in Arizona. For soil moisture measurements collected over a range of horizontal sampling intervals, no spatial correlation was evident. This outcome is reassuring to computer modelers who have assumed no spatial correlation for soil moisture over smaller scales. In regard to hydraulic conductivity, point measurements differed significantly from small watershed estimates of hydraulic conductivity which were derived from a calibrated and verified rainfall-runoff computer model. The estimates of saturated hydraulic conductivity (Ks) were obtained from previous computer simulations in which measured data was collected in the same research location as the present study

  10. An environmental assessment of United States drinking water watersheds

    Science.gov (United States)

    James Wickham; Timothy Wade; Kurt Riitters

    2011-01-01

    Abstract There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of 5,265 drinking water watersheds using data on land cover, hydrography and conservation status. Approximately 78% of the conterminous United States...

  11. Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions

    Science.gov (United States)

    Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.

    2017-12-01

    Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.

  12. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  13. Composite measures of watershed health from a water quality perspective.

    Science.gov (United States)

    Mallya, Ganeshchandra; Hantush, Mohamed; Govindaraju, Rao S

    2018-05-15

    Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity of water quality violations, risk metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for assessing water quality-based watershed health. In this study, a modified methodology for computing R-R-V measures is presented, and a new composite watershed health index is proposed. Risk-based assessments for different water quality parameters are carried out using identified national sampling stations within the Upper Mississippi River Basin, the Maumee River Basin, and the Ohio River Basin. The distributional properties of risk measures with respect to water quality parameters are reported. Scaling behaviors of risk measures using stream order, specifically for the watershed health (WH) index, suggest that WH values increased with stream order for suspended sediment concentration, nitrogen, and orthophosphate in the Upper Mississippi River Basin. Spatial distribution of risk measures enable identification of locations exhibiting poor watershed health with respect to the chosen numerical standard, and the role of land use characteristics within the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fire impact on soil-water repellency and functioning of semi-arid croplands and rangelands: Implications for prescribed burnings and wildfires

    Science.gov (United States)

    Stavi, Ilan; Barkai, Daniel; Knoll, Yaakov M.; Glion, Hiam Abu; Katra, Itzhak; Brook, Anna; Zaady, Eli

    2017-03-01

    An unintended fire outbreak during summer 2015 in the semi-arid Israeli Negev resulted in the burning of extensive croplands and rangelands. The rangelands have been managed over the long term for occasional grazing, while the croplands have been utilized for rainfed wheat cropping. Yet, during the studied year, the croplands were left fallow, allowing the growth of herbaceous vegetation, which was harvested and baled for hay before the fire outbreak. The study objectives were to investigate the impacts of fire, land-use, and soil depth on water-repellency and on the status and dynamics of some of the most important organic and mineral soil resources. Additionally, we aimed to assess the severity of this fire outbreak. The soil-water repellency was studied by measuring the soil's water drop penetration time (WDPT) and critical surface tension (CST). A significant effect of fire on soil hydrophobicity was recorded, with a slight increase in mean WDPT and a slight decrease in mean CST in the burnt sites than in the non-burnt sites. Yet, soil hydrophobicity in the burnt lands was rather moderate and remained within the water repellency's lowest class. A significant effect of land-use on the means of WDPT and CST was also recorded, being eleven-fold greater and 7% smaller, respectively, in the rangelands than in the croplands. This is consistent with the almost eightfold greater mean above-ground biomass recorded in the non-burnt rangelands than in the non-burnt post-harvest croplands, revealing the positive relations between available fuel load and soil-water repellency. The effect of soil depth was significant for CST but not for WDPT. Overall, the gathered data suggest that fire severity was low to moderate. Fire was also found to significantly affect the fire severity only slightly increased the soil water repellency, and at the same time, increased on-site availability of some important soil resources. Nevertheless, it is acknowledged that such fires could impose

  15. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  16. Maintaining ecosystem services through continued livestock production on California rangelands

    Science.gov (United States)

    Barry, S.; Becchetti, T.

    2015-12-01

    Nearly 40% of California is rangeland comprising the largest land type in California and providing forage for livestock, primarily beef cattle. In addition to forage, rangelands provide a host of ecosystem systems services, including habitat for common and endangered species, fire fuels management, pollination services, clean water, viewsheds, and carbon sequestration. Published research has documented that most of these ecosystem services are positively impacted by managed livestock grazing and rancher stewardship. Ranchers typically do not receive any monetary reimbursement for their stewardship in providing these ecosystem services to the public. Markets have been difficult to establish with limited ability to adequately monitor and measure services provided. At the same time, rangelands have been experiencing rapid conversion to urbanization and more profitable and intensive forms of agriculture such as almond and walnut orchards. To prevent further conversion of rangelands and the loss of the services they provide, there needs to be a mechanism to identify and compensate landowners for the value of all products and services being received from rangelands. This paper considers two methods (opportunity cost and avoided cost) to determine the value of Payment for Ecosystem Services (PES) for rangelands. PES can raise the value of rangelands, making them more competitive financially. Real estate values and University of California Cooperative Extension Cost Studies, were used to demonstrate the difference in value (lost opportunity cost) between the primary products of rangelands (livestock production) and the products of the converted rangelands (almond and walnut orchards). Avoided costs for vegetation management and habitat creation and maintenance were used to establish the value of managed grazing. If conversion is to be slowed or stopped and managed grazing promoted to protect the ecosystem services rangelands provide, this value could be compensated through

  17. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  18. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  20. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  1. Assessment of CREAMS [Chemicals, Runoff, and Erosion from Agricultural Management Systems] and ERHYM-II [Ekalaka Rangeland Hydrology and Yield Model] computer models for simulating soil water movement on the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laundre, J.W.

    1990-05-01

    The major goal of radioactive waste management is long-term containment of radioactive waste. Long-term containment is dependent on understanding water movement on, into, and through trench caps. Several computer simulation models are available for predicting water movement. Of the several computer models available, CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) and ERHYM-II (Ekalaka Rangeland Hydrology and Yield Model) were tested for use on the Idaho National Engineering Laboratory (INEL). The models were calibrated, tested for sensitivity, and used to evaluate some basic trench cap designs. Each model was used to postdict soil moisture, evapotranspiration, and runoff of two watersheds for which such data were already available. Sensitivity of the models was tested by adjusting various input parameters from high to low values and then comparing model outputs to those generated from average values. Ten input parameters of the CREAMS model were tested for sensitivity. 17 refs., 23 figs., 20 tabs

  2. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    Science.gov (United States)

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  4. Water quality and mass transport in four watersheds in eastern Puerto Rico: Chapter E in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Stallard, Robert F.; Murphy, Sheila F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Water quality of four small watersheds in eastern Puerto Rico has been monitored since 1991 as part of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets program. These watersheds represent a montane, humid-tropical environment and differ in geology and land cover. Two watersheds are located on granitic rocks, and two are located on volcaniclastic rock. For each bedrock type, one watershed is covered with mature rainforest in the Luquillo Mountains, and the other watershed is undergoing reforestation after being affected by agricultural practices typical of eastern Puerto Rico. A subwatershed of the Icacos watershed, the Guabá, was also monitored to examine scaling effects. The water quality of the rivers draining forest, in the Icacos and Guabá (granitic watersheds) and Mameyes (a volcaniclastic watershed), show little contamination by human activities. The water is well oxygenated and has a nearly neutral pH, and nutrient concentrations are low. Concentrations of nutrients in the disturbed watersheds, the Cayaguás (granitic rock) and Canóvanas (volcaniclastic rock), are greater than in the forested watersheds, indicating some inputs from human activities. High in-stream productivity in the Canóvanas watershed leads to occasional oxygen and calcite supersaturation and carbon dioxide undersaturation. Suspended sediment concentrations in all watersheds are low, except during major storms. Most dissolved constituents derived from bedrock weathering or atmospheric deposition (including sodium, magnesium, calcium, silica, alkalinity, and chloride) decrease in concentration with increasing runoff, reflecting dilution from increased proportions of overland or near-surface flow. Strongly bioactive constituents (dissolved organic carbon, potassium, nitrate, ammonium ion, and phosphate) commonly display increasing concentration with increasing runoff, regardless of their ultimate origin (bedrock or atmosphere). The concentrations of many of the

  5. Management of Collective Rangelands in Rhamna (Morocco ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Management of Collective Rangelands in Rhamna (Morocco) ... reduce the pressure on natural resources and promote sustainable management. ... Project status ... IDRC congratulates first cohort of Women in Climate Change Science Fellows ... and adaptive water management: Innovative solutions from the Global South”.

  6. Restoring Degraded Rangelands in Jordan: Optimizing Mechanized Micro-Water Harvesting Technique Using Rangeland Hydrology and Erosion Model (RHEM)

    Science.gov (United States)

    Continuous population growth, recent refugee movement and migration as well as boundary restrictions and their implications on the nomadic lifestyle are additive pressure on rangelands throughout the Middle East. In particular, overgrazing through increased livestock herds threatens the Jordanian ra...

  7. Managing the livestock– Wildlife interface on rangelands

    Science.gov (United States)

    du Toit, Johan T.; Cross, Paul C.; Valeix, Marion

    2017-01-01

    On rangelands the livestock–wildlife interface is mostly characterized by management actions aimed at controlling problems associated with competition, disease, and depredation. Wildlife communities (especially the large vertebrate species) are typically incompatible with agricultural development because the opportunity costs of wildlife conservation are unaffordable except in arid and semi-arid regions. Ecological factors including the provision of supplementary food and water for livestock, together with the persecution of large predators, result in livestock replacing wildlife at biomass densities far exceeding those of indigenous ungulates. Diseases are difficult to eradicate from free-ranging wildlife populations and so veterinary controls usually focus on separating commercial livestock herds from wildlife. Persecution of large carnivores due to their depredation of livestock has caused the virtual eradication of apex predators from most rangelands. However, recent research points to a broad range of solutions to reduce conflict at the livestock–wildlife interface. Conserving wildlife bolsters the adaptive capacity of a rangeland by providing stakeholders with options for dealing with environmental change. This is contingent upon local communities being empowered to benefit directly from their wildlife resources within a management framework that integrates land-use sectors at the landscape scale. As rangelands undergo irreversible changes caused by species invasions and climate forcings, the future perspective favors a proactive shift in attitude towards the livestock–wildlife interface, from problem control to asset management.

  8. The Role of Rangelands in Diversified Farming Systems: Innovations, Obstacles, and Opportunities in the USA

    Directory of Open Access Journals (Sweden)

    Nathan F. Sayre

    2012-12-01

    Full Text Available Discussions of diversified farming systems (DFS rarely mention rangelands: the grasslands, shrublands, and savannas that make up roughly one-third of Earth's ice-free terrestrial area, including some 312 million ha of the United States. Although ranching has been criticized by environmentalists for decades, it is probably the most ecologically sustainable segment of the U.S. meat industry, and it exemplifies many of the defining characteristics of DFS: it relies on the functional diversity of natural ecological processes of plant and animal (reproduction at multiple scales, based on ecosystem services generated and regenerated on site rather than imported, often nonrenewable, inputs. Rangelands also provide other ecosystem services, including watershed, wildlife habitat, recreation, and tourism. Even where non-native or invasive plants have encroached on or replaced native species, rangelands retain unusually high levels of plant diversity compared with croplands or plantation forests. Innovations in management, marketing, incentives, and easement programs that augment ranch income, creative land tenure arrangements, and collaborations among ranchers all support diversification. Some obstacles include rapid landownership turnover, lack of accessible U.S. Department of Agriculture certified processing facilities, tenure uncertainty, fragmentation of rangelands, and low and variable income, especially relative to land costs. Taking advantage of rancher knowledge and stewardship, and aligning incentives with production of diverse goods and services, will support the sustainability of ranching and its associated public benefits. The creation of positive feedbacks between economic and ecological diversity should be the ultimate goal.

  9. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  10. Climate impacts on agriculture: Implications for forage and rangeland production

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack; Fay, Philip; Polley, Wayne; Hatfield, Jerry L.

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N

  11. Water quality trends in the Blackwater River watershed, West Virginia

    Science.gov (United States)

    Smith, Jessica; Welsh, Stuart A.; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  12. Valuation of rangeland ecosystem services

    Science.gov (United States)

    Gascoigne, W.R.

    2011-01-01

    Economic valuation lends itself well to the anthropocentric orientation of ecosystem services. An economic perspective on ecosystems portrays them as natural assets providing a flow of goods and services valuable to individuals and society collectively. A few examples include the purification of drinking water, reduced risk from flooding and other extreme events, pollination of agricultural crops, climate regulation, and recreation opportunities from plant and animal habitat maintenance, among many others. Once these goods and services are identified and quantified, they can be monetized to complete the valuation process. The monetization of ecosystem goods and services (in the form of dollars) provides a common metric that allows for cross-comparison of attributes and evaluation of differing ecological scenarios. Complicating the monetization process is the fact that most of these goods and services are public and non-market in nature; meaning they are non-rival and non-exclusive and are typically not sold in a traditional market setting where monetary values are revealed. Instead, one must employ non-market valuation techniques, with primary valuation methods typically being very time and resource consuming, intimidating to non-economists, and often impractical. For these reasons, benefit transfer methods have gained popularity. This methodology harnesses the primary collection results of existing studies to make inferences about the economic values of non-market goods and services at an alternative policy site (in place and/or in time). For instance, if a primary valuation study on oak reestablishment on rangelands in southern California yielded a value of $30 per-acre associated with water regulation, this result can be transferred, with some adjustments, to say something about the value of an acre of oaks on rangelands in northern portions of the state. The economic valuation of rangeland ecosystem services has many roles. Economic values may be used as input

  13. Earth observation for rangeland monitoring

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available .kashan.co.za] INTRODUCTION Grass nitrogen (N), as an indicator of rangeland quality, plays a crucial role in understanding the distribution, densities and feeding patterns of both wild herbivores and livestock. Zebras and livestock in the grazing and agricultural lands... ? How can grass nitrogen be mapped for assessing and monitoring of rangeland quality at wider or regional scales? ? Conventional point-based techniques for assessing rangeland quality proved to be expensive, laborious and time consuming...

  14. Export of Dissolved Organic Carbon following Prescribed Fire on Forested Watersheds: Implications for Watershed Management for Drinking Water Supply

    Science.gov (United States)

    Zhang, W.; Olivares, C. I.; Uzun, H.; Erdem, C. U.; Trettin, C.; Liu, Y.; Robinson, E. R.; Karanfil, T.; Chow, A. T.

    2016-12-01

    Detrital material in forest watersheds is the major terrestrial source of dissolved organic matter (DOM) and disinfection byproduct (DBP) precursors in surface source waters, but it is also the fuel for forest fires. Prescribed fire, as a fuel reduction technique is intended to reduce the amount of forest detritus, and therefore the risk of wildfire. Accordingly, periodic prescribed fire can reduce the accumulation of detritus on forest floor and the amount of DOM export after forest treatments. To evaluate the effects of prescribed fire on water quality, we conducted a controlled study on a paired first-order watershed system that includes a 160 ha treatment watershed (WS77) and 200 ha control watershed (WS80) on the Santee Experimental Forest, near Charleston South Carolina. WS77 has been used for prescribed fire research since the 1960's, the current experimental burn occurred on April, 2016. WS80 has not been managed or burned for at least 55 years. Gauging stations were equipped with in-situ TOC sensors and flow-proportional water samplers for monitoring temporal trends on water quality. Water samples taken from the first runoff event from both watersheds including rising limb, peak discharge, and falling limb were used for detailed chemical characterizations including DOC and nutrient concentrations, coagulation efficiency, and DBP formation such as trihalomethanes (THMs) and halocacetic acids (HAAs) from chlorination as well as N-nitrosodimethylamine (NDMA) from chlorination, and chemical formula assignment on DOM using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) before and after chlorination and chloramination. Preliminary FT-ICR-MS data shows that DOM chemical compositions are different between raw samples collected from WS77 and WS80. Chlorination resulted in a shift toward lower molecular mass compared to the raw materials. While chloramination did not cause a drastic mass shift, such a treatment also produced DOM moieties

  15. Carbon fluxes on North American rangelands

    Science.gov (United States)

    Tony Svejcar; Raymond Angell; James A. Bradford; William Dugas; William Emmerich; Albert B. Frank; Tagir Gilmanov; Marshall Haferkamp; Douglas A. Johnson; Herman Mayeux; Pat Mielnick; Jack Morgan; Nicanor Z. Saliendra; Gerald E. Schuman; Phillip L. Sims; Kereith Snyder

    2008-01-01

    Rangelands account for almost half of the earth's land surface and may play an important role in the global carbon (C) cycle. We studied net ecosystem exchange (NEE) of C on eight North American rangeland sites over a 6-yr period. Management practices and disturbance regimes can influence NEE; for consistency, we compared ungrazed and undisturbed rangelands...

  16. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  17. Criterion III: Maintenance of rangeland productive capacity [Chapter 4

    Science.gov (United States)

    G. R. Evans; R. A. Washmgton-Allen; R. D. Child; J. E. Mitchell; B. R. Bobowskl; R. V. Loper; B. H. Allen-Diaz; D. W. Thompson; G. R. Welling; T. B. Reuwsaat

    2010-01-01

    Maintenance of rangeland productive capacity is one of five criteria established by the Sustainable Rangelands Roundtable (SRR) to monitor and assess rangeland sustainable management. Within this criterion, six indicators were developed through the Delphi Process and the expert opinions of academicians, rangeland scientists, rangeland management agency personnel, non-...

  18. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Stéphanie Piel

    2012-12-01

    Full Text Available This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water.

  19. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  20. Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001

    Science.gov (United States)

    Galeone, Daniel G.; Low, Dennis J.

    2003-01-01

    Powell Creek and Armstrong Creek Watersheds are in Dauphin County, north of Harrisburg, Pa. The completion of the Dauphin Bypass Transportation Project in 2001 helped to alleviate traffic congestion from these watersheds to Harrisburg. However, increased development in Powell Creek and Armstrong Creek Watersheds is expected. The purpose of this study was to establish a baseline for future projects in the watersheds so that the effects of land-use changes on water quality can be documented. The Pennsylvania Department of Environmental Protection (PADEP) (2002) indicates that surface water generally is good in the 71 perennial stream miles in the watersheds. PADEP lists 11.1 stream miles within the Armstrong Creek and 3.2 stream miles within the Powell Creek Watersheds as impaired or not meeting water-quality standards. Siltation from agricultural sources and removal of vegetation along stream channels are cited by PADEP as likely factors causing this impairment.

  1. Importance of Integrated Watershed Management on Water Quality

    OpenAIRE

    BABUR, Emre; KARA, Ömer

    2018-01-01

    Themanagement and planning of water resources recently become important andincreasingly complex. While the most of the developed countries managed theirwater source with sustainable plans to water production, our country has newlystarted the work within its watershed management principles. Due to excessivepopulation growth the environmental problems blow out after industrialization,land degradation, wrong agricultural and forestry applications. Thesemisapplications negatively affect water res...

  2. Water-quality assessment of the Cypress Creek watershed, Warrick County, Indiana

    Science.gov (United States)

    Bobo, Linda L.; Peters, Charles A.

    1980-01-01

    The U.S. Soil Conservation Service needs chemical, biological, microbiological, and hydrological data to prepare an environmental evaluation of the water quality in the Cypress Creek watershed, Warrick County, Ind., before plans can be devised to (1) improve water quality, (2) minimize flooding, (3) reduce sedimentation, and (4) provide adequate outlets for drainage in the watershed. The U.S. Geological Survey obtained these data for the Soil Conservation Service in a water-quality survey of the watershed from March to August 1979. Past and present surface coal mining is the factor having the greatest impact on water quality in the watershed. The upper reaches of Cypress Creek receive acid-mine drainage from a coal-mine waste slurry during periods of intense rainfall. All the remaining tributaries, except Summer Pecka ditch, drain mined or reclaimed lands. The general water type of Cypress Creek and most of its tributaries is calcium and magnesium sulfate. In contrast, the water type at background site 21 on Summer Pecka ditch is calcium sulfate. Specific conductance ranged from 470 to 4,730 micromhos per centimeter at 25 degrees Celsius, and pH ranged from 1.2 to 8.8. Specific conductance, hardness, and concentrations of major ions and dissolved solids were highest in tributaries affected by mining. The pH was lowest in the same tributaries. Concentrations of iron, manganese, and sulfate in water samples and chlordane, DDT, and PCB 's in streambed samples exceeded water-quality limits set by the U.S. Environmental Protection Agency. (USGS)

  3. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  4. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  5. EnviroAtlas - Number of Water Markets per HUC8 Watershed, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Science.gov (United States)

    This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Addi

  6. Determination of Water Quality Status at Sampean Watershed Bondowoso Residence Using Storet Method

    Science.gov (United States)

    Sugiyarto; Hariono, B.; Destarianto, P.; Nuruddin, M.

    2018-01-01

    Sampean watershed has an important social and economic function for the people surroundings. Sampean watershed wich cover Bondowoso and Situbondo residence is an urban watershed that has strategic value for national context needs special traetment. Construction activity at upper and lower course of Sampean watershed is highly intensive and growth of inhabitant also increase. The change of land utilization and increase of settlement area at upper, midlle, and lower course caused polutant infiltration to Sampean river watershed so it has impact on water quality. The source of pollution at Sampean river comes from domestic waste, industrial waste, agricultural waste and animal husbandry waste. The purpose of this research is to determine load of pollution and analize the pollution load carrying capacity at Sampean watershed. The data used in this research are rainfall, river flow rate and water quality at 6 certain points within 3 years during 2014 until 2016. The method to determine overall pollution rate is STORET (Storage and Retrieval of Water Quality Data System) method. The analysis results for the first, second, third and forth grade are -24 (moderate quality), -12 (moderate quality), -2 (good quality), and 0 (good quality) respectively.

  7. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    Science.gov (United States)

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  8. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2018-04-01

    Full Text Available In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphorus, and sediment loss in stream water from a no-till corn-soybean rotation planted with winter cover crops cereal rye (Secale cereale and hairy vetch (Vicia villosa in non-tile drained paired watersheds in Illinois, USA. The paired watersheds are under mixed land use (agriculture, forest, and pasture. The control watershed had 27 ha of row-crop agriculture, and the treatment watershed had 42 ha of row crop agriculture with cover crop treatment (CC-treatment. During a 4-year calibration period, 42 storm events were collected and Event Mean Concentrations (EMCs for each storm event were calculated for total suspended solids (TSS, nitrate-N (NO3-N, ammonia-N (NH4-N, dissolved reactive phosphorus (DRP, and total discharge. Predictive regression equations developed from the calibration period were used for calculating TSS, NO3-N, NH4-N, and DRP losses of surface runoff for the CC-treatment watershed. The treatment period consisted of total 18 storm events, seven of which were collected during the cereal rye, eight in the hairy vetch cover crop season and three during cash crop season. Cover crops reduced TSS and discharge by 33% and 34%, respectively in the CC-treatment watershed during the treatment period. However, surprisingly, EMCs for NO3-N, NH4-N, and DRP did not decrease. Stream discharge from the paired-watersheds will continue to be monitored to determine if the current water quality results hold or new patterns emerge.

  9. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Semiarid rangelands in the western United States have been or are being invaded by introduced annual weeds that negatively impact ecosystem services and pose a major conservation threat. Rehabilitation and restoration of these rangelands are challenging due to inter-annual climate and sub-seasonal ...

  10. Rangelands: Where Anthromes Meet Their Limits

    Directory of Open Access Journals (Sweden)

    Nathan F. Sayre

    2017-05-01

    Full Text Available Defining rangelands as anthromes enabled Ellis and Ramankutty (2008 to conclude that more than three-quarters of Earth’s land is anthropogenic; without rangelands, this figure would have been less than half. They classified all lands grazed by domestic livestock as rangelands, provided that human population densities were low; similar areas without livestock were excluded and classified instead as ‘wildlands’. This paper examines the empirical basis and conceptual assumptions of defining and categorizing rangelands in this fashion. Empirically, we conclude that a large proportion of rangelands, although used to varying degrees by domesticated livestock, are not altered significantly by this use, especially in arid, highly variable environments and in settings with long evolutionary histories of herbivory by wild animals. Even where changes have occurred, the dynamics and components of many rangelands remain structurally and functionally equivalent to those that preceded domestic livestock grazing or would be found in its absence. In much of Africa and Asia, grazing is so longstanding as to be inextricable from ‘natural’ or reference conditions for those sites. Thus, the extent of anthropogenic biomes is significantly overstated. Conceptually, rangelands reveal the dependence of the anthromes thesis on outdated assumptions of ecological climax and equilibrium. Coming to terms with rangelands—how they can be classified, understood, and managed sustainably—thus offers important lessons for understanding anthromes and the Anthropocene as a whole. At the root of these lessons, we argue, is not the question of human impacts on ecosystems but property relations among humans.

  11. A System Method for the Assessment of Integrated Water Resources Management (IWRM) in Mountain Watershed Areas: The Case of the "Giffre" Watershed (France)

    Science.gov (United States)

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management ( IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions.

  12. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    Science.gov (United States)

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  13. A NEW MULTI-SPECTRAL THRESHOLD NORMALIZED DIFFERENCE WATER INDEX (MST-NDWI WATER EXTRACTION METHOD – A CASE STUDY IN YANHE WATERSHED

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2018-05-01

    Full Text Available Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI. A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5 based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI, Enhanced Water Index (EWI, and Automated Water Extraction Index (AWEI. The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  14. Water environmental planning and management at the watershed scale:A case study of Lake Qilu,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water environmental planning and management has become essential for guiding the water pollution control activities.Past water pollution control activities have been site specific,with little thought on water quality standard reaching at the watershed scale.Based on the watershed approach,a seven-step methodological framework for water environmental planning and management was developed.The framework was applied to water environmental planning and management of the Lake Qilu watershed in Yunnan Province,China.Results show that the reduction amount of total nitrogen (TN) under the plan is 1,205 tons per year so that the target of environmental capacity can be reached in 2020.Compared with traditional methods,the framework has its prevalence and could be generalized to analogous watersheds.

  15. Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities

    Science.gov (United States)

    Richardson, A. J.; Escobar, D. E.; Gausman, H. W.; Everitt, J. H. (Principal Investigator)

    1982-01-01

    The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer.

  16. Conserving biodiversity on native rangelands: Symposium proceedings

    Science.gov (United States)

    Daniel W. Uresk; Greg L. Schenbeck; James T. O' Rourke

    1997-01-01

    These proceedings are the result of a symposium, "Conserving biodiversity on native rangelands" held on August 17, 1995 in Fort Robinson State Park, NE. The purpose of this symposium was to provide a forum to discuss how elements of rangeland biodiversity are being conserved today. We asked, "How resilient and sustainable are rangeland systems to the...

  17. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Science.gov (United States)

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code MODFLOW-NWT. The model simulates steady-state groundwater-flow and base flow in streams by using the streamflow routing (SFR) package. The objectives of this study were to: (1) develop an improved understanding of the groundwater-flow system in the Bad River Watershed at the regional scale, including the sources of water to the Bad River Band of Lake Superior Chippewa Reservation (Reservation) and groundwater/surface-water interactions; (2) provide a quantitative platform for evaluating future impacts to the watershed, which can be used as a starting point for more detailed investigations at the local scale; and (3) identify areas where more data are needed. This report describes the construction and calibration of the groundwater-flow model that was subsequently used for analyzing potential locations for the collection of additional field data, including new observations of water-table elevation for refining the conceptualization and corresponding numerical model of the hydrogeologic system.

  18. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    Science.gov (United States)

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual

  19. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  20. A systematic review of US rangeland social science

    Science.gov (United States)

    Rangeland science aims to create knowledge to sustain rangeland social-ecological systems over the long term. Range science has made substantial progress on understanding ecological dynamics of rangeland systems and the management practices that sustain them, and these findings have been systematica...

  1. Comparison of computer models for estimating hydrology and water quality in an agricultural watershed

    Science.gov (United States)

    Various computer models, ranging from simple to complex, have been developed to simulate hydrology and water quality from field to watershed scales. However, many users are uncertain about which model to choose when estimating water quantity and quality conditions in a watershed. This study compared...

  2. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  3. Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  4. Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  5. Ranch business planning and resource monitoring for rangeland sustainability

    Science.gov (United States)

    Kristie A. Maczko; John A. Tanaka; Michael Smith; Cindy Garretson-Weibel; Stanley F. Hamilton; John E. Mitchell; Gene Fults; Charles Stanley; Dick Loper; Larry D. Bryant; J. K. (Rooter) Brite

    2012-01-01

    Aligning a rancher's business plan goals with the capability of the ranch's rangeland resources improves the viability and sustainability of family ranches. Strategically monitoring the condition of soil, water, vegetation, wildlife, livestock production, and economics helps inform business plan goals. Business planning and resource monitoring help keep...

  6. Urban Waters and the Patapsco Watershed/Baltimore Region (Maryland)

    Science.gov (United States)

    Patapsco Watershed / Baltimore Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  7. Rangeland monitoring and assessment: a review

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2018-04-01

    Full Text Available Rangelands provide vast landscapes for grazing and foraging for livestock and wildlife. Services of rangelands are diverse and generally provide food for millions of the world’s population, especially the rural and sometimes poor communities...

  8. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Science.gov (United States)

    Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  9. A RANGELAND GRASSHOPPER INSURANCE PROGRAM

    OpenAIRE

    Skold, Melvin D.; Davis, Robert M.

    1995-01-01

    The incidence of benefits and costs from controlling rangeland grasshoppers on public grazing lands poses problems of economic efficiency and distributional equity. Public grasshopper control programs operate like public disaster assistance. However, grasshopper infestations are an insurable risk. This article proposes a rangeland grasshopper insurance program which reduces the economic inefficiencies and distributional inequities of the existing program.

  10. Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern California watersheds.

    Directory of Open Access Journals (Sweden)

    Scott Bauer

    Full Text Available Marijuana (Cannabis sativa L. cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state- and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species.

  11. USDA internet tool to estimate runoff and soil loss on rangelands: rangelands hydrology and erosion model

    Science.gov (United States)

    Rangelands are the most dominant land cover type in the United States (770 million acres) with approximately 53% of the nation’s rangelands owned and managed by the private sector, while approximately 43% are managed by the federal government. Information on the type, extent, and spatial location of...

  12. Modeling of water erosion by seagis model. Case Watershed Dam Siliana

    International Nuclear Information System (INIS)

    Chabaan, Chayma

    2016-01-01

    water erosion is a complicated phenomenon, largely obvious in north Africa, especially in the watershed of Siliana, where natural factors and the aggressiveness of the environment do affect the loss of soil there, which characterized by a form so uneven with attitudes that vary from 700 to 1350 m rigid going from 5 to 10 pour cent and sometimes more. Moreover, it has drained with a thick hydrographic network. Generally, water erosion depends of the importance and the frequent agent factor of this erosion ( rain and streaming), soil type, the topography and the occupation of soil. The usage of mathematic models has to take on consideration of these parameters. The main objective of this work consist in developing put into affect a geomatic approach of stimulation which aims at estimate in time and space, the impact of the climate, and the soil occupation on the water erosion and the transportation of the sediments diversions into sliding of a small watershed. Locally, this approach allows evaluating the parameters of water erosion of SEAGIS model (USLE/RUSLE) to an extent that is identifies and drowing the emergency areas of intervention in the watershed of Siliana.

  13. Future scenarios of urbanization and its effects on water quantity and quality in three New England watersheds

    Science.gov (United States)

    Hutyra, L.; Yang, Y.; Kim, J.; Cheng, C.; O'Brien, P.; Rouhani, S.; Douglas, E. M.; Nicolson, C.; Ryan, R.; Schaaf, C.; Warren, P.; Wollheim, W. M.

    2013-12-01

    New England watersheds have been impacted by human development and environmental stressors that are similar to those projected to impact large portions of the United States and the world. These impacts are likely to continue as some parts of the region are projected to lose over 60% of private forestland to development by 2030. Such dramatic changes have important consequences for water quality and quantity. Because of the complex and varied interactions between human and natural systems, simply understanding the processes affecting current and historical conditions in urbanizing watersheds is inadequate to model the future. Understanding future hydrologic conditions is made more difficult because of the uncertainties inherent in projecting future climate conditions. One approach to handling this complexity is to use scenarios to explore a range of potential futures following contrasting trajectories of change. Here we describe how four scenarios of land use change were developed using a stakeholder driven process. We then began using the scenarios in hydrological models to estimate future changes in water quality and quantity. The study area includes three watersheds (the Charles, Neponset and Ipswich) that have undergone varying degrees of urbanization in the greater Boston area of Massachusetts in the northeastern United States. The Charles and Neponset River watersheds are densely populated and include the city of Boston itself. Municipal water supplies in these two watersheds are mostly from the Massachusetts Water Resources Authority (MWRA) sources in western Massachusetts. The Ipswich River watershed is highly suburban, and communities are largely dependent on local water supplies. If the historical urbanization trends continue, the impervious area in the Charles River watershed is projected to increase by 13%, 16% in Neponset River watershed, and 24% in Ipswich River watershed by 2030. For the Charles River watershed, analyses identified hot spots for

  14. Meeting wild bees' needs on rangelands

    Science.gov (United States)

    Some arid rangeland regions, notably those with warm dry climates of the temperate zones, host great diversities of native bees, primarily non-social species among which are many floral specialists. Rangeland bee faunas are threatened indirectly by invasive exotic weeds wherever these displace nat...

  15. EVALUATION AND MAPPING OF RANGELANDS DEGRADATION USING REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    Majid Ajorlo

    2005-05-01

    Full Text Available The empirical and scientifically documents prove that misuse of natural resource causes degradation in it. So natural resources conservation is important in approaching sustainable development aims. In current study, Landsat Thematic Mapper images and grazing gradient method have been used to map the extent and degree of rangeland degradation. In during ground-based data measuring, factors such as vegetation cover, litter, plant diversity, bare soil, and stone & gravels were estimated as biophysical indicators of degradation. The next stage, after geometric correction and doing some necessary pre-processing practices on the study area’s images; the best and suitable vegetation index has been selected to map rangeland degradation among the Normalized Difference Vegetation Index (NDVI, Soil Adjusted Vegetation Index (SAVI, and Perpendicular Vegetation Index (PVI. Then using suitable vegetation index and distance parameter was produced the rangelands degradation map. The results of ground-based data analysis reveal that there is a significant relation between increasing distance from critical points and plant diversity and also percentage of litter. Also there is significant relation between vegetation cover percent and distance from village, i.e. the vegetation cover percent increases by increasing distance from villages, while it wasn’t the same around the stock watering points. The result of analysis about bare soil and distance from critical point was the same to vegetation cover changes manner. Also there wasn’t significant relation between stones & gravels index and distance from critical points. The results of image processing show that, NDVI appears to be sensitive to vegetation changes along the grazing gradient and it can be suitable vegetation index to map rangeland degradation. The degradation map shows that there is high degradation around the critical points. These areas need urgent attention for soil conservation. Generally, it

  16. Current situation of rangelands in Mexico

    Science.gov (United States)

    Alicia Melgoza-Castillo

    2006-01-01

    Rangelands are natural areas with certain characteristics that make them unsuitable for agriculture. They include several types of vegetation such as deserts, grasslands, shrubs, forests, and riparian areas. Cattle ranching, along with the products and services it engenders, is a prime activity that rangelands have traditionally supported.

  17. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  18. Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii ▿

    Science.gov (United States)

    Goto, Dustin K.; Yan, Tao

    2011-01-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring. PMID:21515724

  19. How Do Terrestrial Determinants Impact the Response of Water Quality to Climate Drivers?—An Elasticity Perspective on the Water–Land–Climate Nexus

    Directory of Open Access Journals (Sweden)

    Afed U. Khan

    2017-11-01

    Full Text Available Investigating water–land–climate interactions is critical for urban development and watershed management. This study examined this nexus by elasticity and statistical approaches through the lens of three watersheds: The Yukon, Mekong and Murray. Here, this study reports the fundamental characteristics, explanations and ecological and management implications of terrestrial determinant influence on the response of water quality to climate drivers. The stability of the response, measured by climate elasticity of water quality (CEWQ, is highly dependent on terrestrial determinants, with strong impacts from anthropogenic biomes and low impacts from surficial geology. Compared to temperature elasticity, precipitation elasticity of water quality is more unstable due to its possible linkages with many terrestrial determinants. Correlation and linear models were developed for the interaction system, which uncovered many interesting scenarios. The results implied that watersheds with a higher ratio of rangeland biomes have a lower risk of instability as compared to watersheds with a higher proportion of dense settlement, cropland and forested biomes. This study discusses some of the most essential pathways where instability might adversely affect CEWQ parameters and recommends suggestions for policy makers to alleviate the instability impacts to bring sustainability to the water environment.

  20. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Science.gov (United States)

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  1. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  2. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    Science.gov (United States)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  3. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  4. An Application of BLM's Riparian Inventory Procedure to Rangeland Riparian Resources in the Kern and Kaweah River Watersheds

    Science.gov (United States)

    Patricia Gradek; Lawrence Saslaw; Steven Nelson

    1989-01-01

    The Bakersfield District of the Bureau of Land Management conducted an inventory of rangeland riparian systems using a new method developed by a Bureau-wide task force to inventory, monitor and classify riparian areas. Data on vegetation composition were collected for 65 miles of streams and entered into a hierarchical vegetation classification system. Ratings of...

  5. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  6. Climate-change-driven deterioration of water quality in a mineralized watershed.

    Science.gov (United States)

    Todd, Andrew S; Manning, Andrew H; Verplanck, Philip L; Crouch, Caitlin; McKnight, Diane M; Dunham, Ryan

    2012-09-04

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 μg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  7. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  8. Impacts and socio-ecological feedbacks associated with regionalization of water supply in a suburban New England watershed

    Science.gov (United States)

    Wollheim, W. M.; Stewart, R. J.; Polsky, C.; Pontius, R.; Hopkinson, C.

    2012-12-01

    Suburban watersheds often rely on locally derived ecosystem services such as water supply, even as these services are threatened by existing land use and land-use change patterns. At some point, the ability of the watershed to provide such services may become impaired. Socio-ecological feedbacks are likely to emerge, leading to more active management of locally derived water provisioning services, or replacement of services generated locally with those from more distant locations. We applied a spatially distributed hydrological model to explore the impact of multiple interacting and spatially varying human activities, including feedbacks, on the hydrology of a suburban watershed in the Boston, MA, metropolitan area, the Ipswich R. watershed. We accounted for the role of impervious surfaces, lawns and lawn watering, septic systems, and water use, as well as several socio-ecological feedbacks evident in the region (water bans, regional import). The result of human activities on the landscape is that most of the river system is wetter than a hypothetical pristine condition (predicted mean basin runoff during summers of 0.65 mm per day in contemporary vs. 0.10 mm per day in pristine). However, water withdrawals along the large main stem river remove some of this excess, resulting in a reduced net effect of human activities at the large watershed scale (predicted mean basin runoff of 0.54 mm per day). Recent feedbacks in response to low flows have resulted in increasing importance of imported water supplies, removing local constraint to further development. Because suburban watersheds continue to rely on local ecosystem services, suburban watersheds may be useful model systems within which to study socio-ecological feedbacks.

  9. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    OpenAIRE

    Guzmán-Arias, Isabel

    2014-01-01

    This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershed, o...

  10. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    OpenAIRE

    Isabel Guzmán-Arias

    2014-01-01

    This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershe...

  11. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems

    Science.gov (United States)

    Alkemade, Rob; Reid, Robin S.; van den Berg, Maurits; de Leeuw, Jan; Jeuken, Michel

    2013-01-01

    Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized existing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss. PMID:22308313

  12. Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India

    Science.gov (United States)

    Singh, Ramesh; Garg, Kaushal K.; Wani, Suhas P.; Tewari, R. K.; Dhyani, S. K.

    2014-02-01

    Bundelkhand region of Central India is a hot spot of water scarcity, land degradation, poverty and poor socio-economic status. Impacts of integrated watershed development (IWD) interventions on water balance and different ecosystem services are analyzed in one of the selected watershed of 850 ha in Bundelkhand region. Improved soil, water and crop management interventions in Garhkundar-Dabar (GKD) watershed of Bundelkhand region in India enhanced ET to 64% as compared to 58% in untreated (control) watershed receiving 815 mm annual average rainfall. Reduced storm flow (21% vs. 34%) along with increased base flow (4.5% vs. 1.2%) and groundwater recharge (11% vs. 7%) of total rainfall received were recorded in treated watershed as compared to untreated control watershed. Economic Water productivity and total income increased from 2.5 to 5.0 INR m-3 and 11,500 to 27,500 INR ha-1 yr-1 after implementing integrated watershed development interventions in GKD watershed, respectively. Moreover IWD interventions helped in reducing soil loss more than 50% compared to control watershed. The results demonstrated that integrated watershed management practices addressed issues of poverty in GKD watershed. Benefit to cost ratio of project interventions was found three and pay back period within four years suggest economic feasibility to scale-up IWD interventions in Bundelkhend region. Scaling-up of integrated watershed management in drought prone rainfed areas with enabling policy and institutional support is expected to promote equity and livelihood along with strengthening various ecosystem services, however, region-specific analysis is needed to assess trade-offs for downstream areas along with onsite impact.

  13. A review of concentrated flow erosion processes on rangelands: fundamental understanding and knowledge gaps

    Science.gov (United States)

    Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolera...

  14. Geology, Hydrology, and Water Quality of the Little Blackwater River Watershed, Dorchester County, Maryland, 2006-09

    Science.gov (United States)

    Fleming, Brandon J.; DeJong, Benjamin D.; Phelan, Daniel J.

    2011-01-01

    The Little Blackwater River watershed is a low-lying tidal watershed in Dorchester County, Maryland. The potential exists for increased residential development in a mostly agricultural watershed that drains into the Blackwater National Wildlife Refuge. Groundwater and surface-water levels were collected along with water-quality samples to document hydrologic and geochemical conditions within the watershed prior to potential land-use changes. Lithologic logs were collected in the Little Blackwater River watershed and interpreted with existing geophysical logs to conceptualize the shallow groundwater-flow system. A shallow water table exists in much of the watershed as shown by sediment cores and surface geophysical surveys. Water-table wells have seasonal variations of 6 feet, with the lowest water levels occurring in September and October. Seasonally low water-table levels are lower than the stage of the Little Blackwater River, creating the potential for surface-water infiltration into the water table. Two stream gages, each equipped with stage, velocity, specific conductance, and temperature sensors, were installed at the approximate mid-point of the watershed and near the mouth of the Little Blackwater River. The gages recorded data continuously and also were equipped with telemetry. Discharge calculated at the mouth of the Little Blackwater River showed a seasonal pattern, with net positive discharge in the winter and spring months and net negative discharge (flow into the watershed from Blackwater National Wildlife Refuge and Fishing Bay) in the summer and fall months. Continuous water-quality records showed an increase in specific conductance during the summer and fall months. Discrete water-quality samples were collected during 2007--08 from 13 of 15 monitoring wells and during 2006--09 from 9 surface-water sites to characterize pre-development conditions and the seasonal variability of inorganic constituents and nutrients. The highest mean values of

  15. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    whole study area during the 2017 growing season. The forage maps captured similar seasonal and spatial patterns of forage production as ground measured dry biomass. This study demonstrated a near real-time monitoring tool for ranchers to estimate forage production with sUAS technology and improved watershed-scale rangeland management.

  16. Vulnerability of amphibians to climate change: implications for rangeland management

    Science.gov (United States)

    Karen E. Bagne; Deborah M. Finch; Megan M. Friggens

    2011-01-01

    Many amphibian populations have declined drastically in recent years due to a large number of factors including the emerging threat of climate change (Wake 2007). Rangelands provide important habitat for amphibians. In addition to natural wetlands, stock tanks and other artificial water catchments provide habitat for many amphibian species (Euliss et al. 2004).

  17. EPA Office of Water (OW): Clean Watersheds Needs Survey NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Clean Watersheds Needs Survey (CWNS) is a comprehensive assessment of the capital needs to the water quality goals set in the Clean Water Act. Every four years,...

  18. The impact of Land use Change on Water Pollution Index of Kali Madiun Sub-watershed

    Directory of Open Access Journals (Sweden)

    Pranatasari Dyah Susanti

    2017-07-01

    Full Text Available Land use change is one of the effects of population growth and increased human activities. Land use change that overlooked the rule of ecosystem sustainability has a propensity to adversely affect the environment, including the decline of water quality. Kali Madiun is a sub-watershed of Bengawan Solo Watershed that allegedly endured the impacts of land use change. This study aimed to investigate the impacts of land use change on the water quality index of Kali Madiun Sub-watershed. Land use change analysis was done by overlay analysis of spatial data including the maps of land use in 2010 and 2015. Samples were the surface water in the upper, middle and lower part of Kali Madiun Sub-Watershed. Water quality analysis was carried out by comparing the results of water quality parameter assessment based on Government Regulation No. 82 of 2001, while water quality index was figured out by an assessment based on the Decree of the Minister of Environment No. 115 of 2003. The results indicated that during the five years observation, there were land use changes in the upper, middle and lower part of Kali Madiun Sub-watershed. Several parameters increased in 2010 to 2015, namely: TDS, BOD, COD, nitrate, detergents, oils and greases. Pollution index shifted from slightly polluted in 2010 into moderately polluted in 2015. We propose a strategy to solve these problems by the involvement of stakeholders and the participation of local community in managing both domestic and industrial wastes. Also, it should be supported by palpable regulations related to land conversion. Furthermore, it is expected that the effort will reduce the potential of pollution and improve the water quality.

  19. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  20. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    Science.gov (United States)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  1. Watersheds and Water Policy Funding From USDA-CSREES: Vision, Outlook, and Priorities

    Science.gov (United States)

    Cavallaro, N.

    2006-05-01

    The Cooperative State Research, Education and Extension Service (CSREES) of the United States Department of Agriculture funds research, extension, and education grants in all aspects of agriculture, the environment, human health and well-being, and communities. Water is key natural resource for all of these areas and there are several types of funding opportunities available. The primary sources for watersheds and water management funding within CSREES are the Water and Watersheds program of the National Research Initiative, and the National Integrated Research, Education and Extension Program in Water Quality. These two programs have substantially reduced their focus in the last three years in order to meet the federal budget office demands for measurable outcomes. This paper will discuss the current and priorities and likely trends in funding in these areas. In addition, to the above two programs, agricultural water security is a prominent issue related to water management and policy. A recent listening session on agricultural water security and policy resulted in white paper available on the CSREES website. This paper will also describe a recommended strategy for CSREES efforts and current and projected needs and opportunities. Briefly, six themes for research, education, and extension activities were identified: Irrigation Efficiency and Management; Drought Risk Assessment and Preparedness; General Water Conservation and Management; Rural/Urban Water Reuse; Water Marketing, Distribution and Allocation; and Biotechnology. Of these six themes, it was recommended that CSREES should focus on the three: 1.Exploring new technologies and systems for the use of recycled/reuse water in agricultural, rural, and urbanizing watersheds, 2.Probing the human, social, and economic dimensions of agricultural water security (including water markets) with a focus on adoption-outreach and behavioral change, and 3.Discovering biotechnological improvements in water use efficiency of

  2. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  3. Conserving rangeland resources. | Mentis | African Journal of Range ...

    African Journals Online (AJOL)

    ... goal-attainment, (5) try to correct departures, and (6) align individual and societal interests by manipulating market-forces. Keywords: altruism; conservation; Conservation implementation; Conservation properties; human activity; Human values; philosophy; Range resources; rangeland; Rangelands; Science philosophy

  4. The value of milk in rangelands in Mandera County, Kenya

    Science.gov (United States)

    Ngugi, Keziah; Ertsen, Maurits

    2015-04-01

    Lack of water over expansive regions in Greater Horn of Africa created the rangelands and rangelands created pastoralism. Pastoralism involve keeping of large livestock herds and movement in search of resources, mainly water, pasture, medicine and wild foods. Several studies have been done in the last century and findings pointed at pastoralism being primitive and unsustainable. It has been predicted it would die in the last century but in the rangelands, pastoralism lives on and it is resilient. This study is based in Mandera, a pastoralism county in Kenya that neighbors Ethiopia to the North and Somalia to the East. The study sought to investigate contribution of milk to pastoralism resilience. Interviews were conducted in the field among the pastoralists, women groups, transporters, traders, government officials and consumers of milk. These information was corroborated with actual field investigations in the expansive rangelands of Mandera County. Pastoralists rarely slaughter or sell their livestock even when the animals waste away during droughts. This is because they have been through such cycles before and observed livestock make tremendous recovery when the right conditions were restored. Rangelands lack infrastructure, there are no roads, schools, telephone or hospitals. Pastoralists diet is comprised of rice, wheat and milk. It was established milk was the main source of income among pastoralists in Mandera County. From milk, the pastoralists make income that is used to purchase the other foodstuffs. Milk is available on daily basis in large quantities owing to the large number of livestock. Unfortunately, every pastoralist household produce copious amounts of milk, thus no local demand and transport infrastructure is nonexistent, making sale of milk a near impossible task. The findings showed the pastoralists have established unique routes through which milk reach the markets in urban centers where demand is high. Urbanization sustain pastoralism. These

  5. Sustainable rangeland management, economic growth, and a cautious role for the SRM

    Science.gov (United States)

    Interest in the art and science of rangeland management increased dramatically during the 20th century and it was out of this interest that the profession of rangeland management was born. As public interest in rangeland management grew, so did the number, breadth, and depth of rangeland management ...

  6. Opportunities and obstacles for rangeland conservation in San Diego County, California, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Farley

    2017-03-01

    Full Text Available Working landscapes such as rangelands are increasingly recognized as having high conservation value, providing a variety of ecosystem services, including food, fiber, habitat, recreation, open space, carbon storage, and water, in addition to a broad range of social benefits. However, conversion of rangelands to other land uses has been prevalent throughout the western United States, leading to greater attention in the conservation community to the importance of collaborating with private landowners. The level of interest in collaborative conservation among private landowners and the types of conservation programs they choose to participate in depend on the social, economic, and environmental context. We used GIS analysis and interviews with ranchers to evaluate rangeland conversion and participation in conservation programs among ranchers in San Diego County, California, USA, which is part of a biodiversity hotspot with high plant species richness and a large number of endemic and rare species. We found that > 25% of rangelands were converted to other uses, primarily urbanization, over the past 25 years while the area of public rangeland increased by 9%. Interviews revealed that ranchers in San Diego County have had limited involvement with most conservation programs, and a critical factor for nonparticipation was providing programs access to private land, along with other issues related to trust and social values. Among ranchers who had participated in conservation programs, the payment level and the agency or organization administering the program were key factors. Our results provide insight into factors influencing whether and when ranchers are likely to participate in conservation initiatives and illustrate that private and public land conservation are strongly linked and would be more effective if the two strategies were better integrated.

  7. The public water supply protection value of forests: A watershed-scale ecosystem services based upon total organic carbon

    Science.gov (United States)

    We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...

  8. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  9. Water quality analysis of a highly acidic watershed in southeast Ohio

    International Nuclear Information System (INIS)

    Eberhart, R.J.; Edwards, K.B.; Stuart, B.J.

    1998-01-01

    Due to acid mine drainage from abandoned coal mines, the 301 square mile Moxahala Creek watershed in southeast Ohio is one of the most acidic watersheds in the state. A watershed evaluation plan is being developed so that the most influential tributaries can be identified for restoration. Moxahala Creek has an upstream pH of 6.0 and a downstream of pH of 4.0. Forty monthly sampling and flowrate measurements for 12 months are being taken. The samples are taken where each major tributary enters Moxahala Creek, and the creek itself is sampled in selected locations. The goal of this watershed study is to determine which tributaries have the most adverse effect on Moxahala Creek's water quality. By analyzing the chemical loads and other characteristics of the tributaries, those of poorest quality and most influence on Moxahala Creek will be determined. Eventually, a geographic information system for the watershed will be developed to provide the capability to visually examine the impact of each tributary on Moxahala Creek. Three tributaries that have the greatest adverse impact on Moxahala Creek have been identified using the collected data. These three tributaries may be the targets of future reclamation strategies

  10. Pastoral Decision-Making: An Empirical Investigation of Rangeland Use

    International Nuclear Information System (INIS)

    MacPeak, J.

    1999-01-01

    Recent research in range ecology suggests that the process of resource degradation in African arid and semi-arid rangelands may be less reliant on how many animals are kept on the rangeland than on where these animals are kept. Analysis of pastoralist land use decisions indicated that rangeland condition influences livestock keeping. However, it was found that food and income production strategies, herd characteristics play critical roles in livestock keeping decisions

  11. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  12. Watershed-based survey designs

    Science.gov (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  13. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Science.gov (United States)

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  14. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Science.gov (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  15. Using remotely sensed imagery to monitor savanna rangeland deterioration through woody plant proliferation: a case study from communal and biodiversity conservation rangeland sites in Mokopane, South Africa

    CSIR Research Space (South Africa)

    Munyati, C

    2011-05-01

    Full Text Available rangeland, whereas the communal rangelands were getting more opened up by livestock trampling. Rangeland management practices of fire utilisation, stocking levels and stock concentration account for the differing trends. Lightly grazed and heavily grazed...

  16. Water budgets of two forested watersheds in South Carolina

    Science.gov (United States)

    Ge Sun; Jianbiao Lu; David L. Gartner; Masato Miwa; Carl C. Trettin

    2000-01-01

    Wetland protection, restoration and management require detail information of the water budgets for a particular system. Relatively undisturbed systems with long-term hydrologic records are extremely valuable for developing reference wetlands and detecting effects of management. Two forested flatwoods watersheds in the lower coastal plain of South Carolina have been...

  17. Effects of Climate Change in the Water Balance of a Modified River Watershed System in Central Illinois

    Science.gov (United States)

    Honings, J.; Seyoum, W. M.

    2017-12-01

    Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate

  18. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  19. Private sector embedded water risk: Merging the corn supply chain network and regional watershed depletion

    Science.gov (United States)

    Kim, T.; Brauman, K. A.; Schmitt, J.; Goodkind, A. L.; Smith, T. M.

    2016-12-01

    Water scarcity in US corn farming regions is a significant risk consideration for the ethanol and meat production sectors, which comprise 80% of all US corn demand. Water supply risk can lead to effects across the supply chain, affecting annual corn yields. The purpose of our study is to assess the water risk to the US's most corn-intensive sectors and companies by linking watershed depletion estimates with corn production, linked to downstream companies through a corn transport model. We use a water depletion index as an improved metric for seasonal water scarcity and a corn sourcing supply chain model based on economic cost minimization. Water depletion was calculated as the fraction of renewable (ground and surface) water consumption, with estimates of more than 75% depletion on an annual average basis indicating a significant water risk. We estimated company water risk as the amount of embedded corn coming from three categories of water stressed counties. The ethanol sector had 3.1% of sourced corn grown from counties that were more than 75% depleted while the beef sector had 14.0%. From a firm perspective, Tyson, JBS, Cargill, the top three US corn demanding companies, had 4.5%, 9.6%, 12.8% of their sourced corn respectively, coming from watersheds that are more than 75% depleted. These numbers are significantly higher than the global average of 2.2% of watersheds being classified as more than 75% depleted. Our model enables corn using industries to evaluate their supply chain risk of water scarcity through modeling corn sourcing and watershed depletion, providing the private sector a new method for risk estimation. Our results suggest corn dependent industries are already linked to water scarcity risk in disproportionate amounts due to the spatial heterogeneity of corn sourcing and water scarcity.

  20. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  1. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  2. A Dynamic Model of California's Hardwood Rangelands

    Science.gov (United States)

    Richard B. Standiford; Richard E. Howitt

    1991-01-01

    Low profitability of hardwood rangeland management, and oak tree harvesting for firewood markets and forage enhancement has led to concern about the long-term sustainability of the oak resource on rangelands. New markets for recreational hunting may give value to oaks for the habitat they provide for game species, and broaden the economic base for managers. A ranch...

  3. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  4. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  5. Rangeland dynamics in South Omo Zone of Southern Ethiopia: Assessment of rangeland condition in relation to altitude and Grazing types

    NARCIS (Netherlands)

    Terefe, A.; Ebro, A.; Tessema, Z.K.

    2010-01-01

    A study was undertaken in Hamer and Benna-Tsemay districts of the Southern Ethiopia with the objective to determine the condition of the rangelands for grazing animals as influenced by altitude and grazing types. The rangelands in each of the study districts were stratified based on altitude and

  6. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  7. New Tools to Estimate Runoff, Soil Erosion, and Sustainability of Rangeland Plant Communities

    Science.gov (United States)

    Rangelands are the largest land cover type in the world. Degradation from mismanagement, desertification, and drought impact more than 50% of rangelands across the globe. The USDA Agricultural Research Service has been evaluating sustainability of rangeland for over 40-years by conducted rangeland r...

  8. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Matt Moran

    2013-01-01

    Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV)is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV...

  9. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    Full Text Available Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural in the flood, dry and transition seasons during three consecutive years (2010-2012 within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH(4(+-N, SRP, K(+, COD(Mn, and Cl- were generally highest in urban watersheds. NO3(-N Concentration was generally highest in agricultural watersheds. Mg(2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research

  10. Identification of anthropogenic influences on water quality of rivers in Taihu watershed

    NARCIS (Netherlands)

    Wang, X.L.; Lu, Y.L.; Han, Jingyi; He, G.Z.; Wang, T.Y.

    2007-01-01

    Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 rivers in the Taihu watershed. Concentrations of physicochemical parameters of surface

  11. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  12. Livestock systems and rangeland degradation in the new World Atlas of Desertification

    Science.gov (United States)

    Zucca, Claudio; Reynolds, James F.; Cherlet, Michael

    2015-04-01

    Livestock systems and rangeland degradation in the new World Atlas of Desertification Land degradation and desertification (LDD), which are widespread in global rangelands, are complex processes. They are caused by multiple (but limited) number of biophysical and socioeconomic drivers that lead to an unbalance in the capacity of the land to sustainably produce ecosystem services and economic value. Converging evidence indicates that the key biophysical and socioeconomic drivers include agricultural or pastoral land use and management practices, population growth, societal demands (e.g., urbanization), and climate change (e.g., increasing aridity and drought). The new World Atlas of Desertification (WAD) describes these global issues, documents their spatial change, and highlights the importance of these drivers in relation to land degradation processes. The impacts of LDD on the atmosphere, on water and on biodiversity are also covered. The WAD spatially illustrates relevant types of livestock and rangeland management systems, related (over-under) use of resources, various management activities, and some of the common features and transitions that contribute to LDD. For example, livestock grazing in marginal areas is increasing due to competition with agricultural encroachment and, hence, vulnerable lands are under threat. The integration of stratified global data layers facilitates identifying areas where stress on the land system can be linked to underlying causal issues. One of the objectives of the new WAD is to provide synthesis and tools for scientists and stakeholders to design sustainable solutions for efficient land use in global rangelands.

  13. Assessing the effects of regional payment for watershed services program on water quality using an intervention analysis model.

    Science.gov (United States)

    Lu, Yan; He, Tian

    2014-09-15

    Much attention has been recently paid to ex-post assessments of socioeconomic and environmental benefits of payment for ecosystem services (PES) programs on poverty reduction, water quality, and forest protection. To evaluate the effects of a regional PES program on water quality, we selected chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) as indicators of water quality. Statistical methods and an intervention analysis model were employed to assess whether the PES program produced substantial changes in water quality at 10 water-quality sampling stations in the Shaying River watershed, China during 2006-2011. Statistical results from paired-sample t-tests and box plots of COD and NH3-N concentrations at the 10 stations showed that the PES program has played a positive role in improving water quality and reducing trans-boundary water pollution in the Shaying River watershed. Using the intervention analysis model, we quantitatively evaluated the effects of the intervention policy, i.e., the watershed PES program, on water quality at the 10 stations. The results suggest that this method could be used to assess the environmental benefits of watershed or water-related PES programs, such as improvements in water quality, seasonal flow regulation, erosion and sedimentation, and aquatic habitat. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Interpreting and Correcting Cross-scale Mismatches in Resilience Analysis: a Procedure and Examples from Australia's Rangelands

    Directory of Open Access Journals (Sweden)

    John A. Ludwig

    2005-12-01

    Full Text Available Many rangelands around the globe are degraded because of mismatches between the goals and actions of managers operating at different spatial scales. In this paper, we focus on identifying, interpreting, and correcting cross-scale mismatches in rangeland management by building on an existing four-step resilience analysis procedure. Resilience analysis is an evaluation of the capacity of a system to persist in the face of disturbances. We provide three examples of cross-scale resilience analysis using a rangeland system located in northern Australia. The system was summarized in a diagram showing key interactions between three attributes (water quality, regional biodiversity, and beef quality, which can be used to indicate the degree of resilience of the system, and other components that affect these attributes at different scales. The strengths of cross-scale interactions were rated as strong or weak, and the likely causes of mismatches in strength were interpreted. Possible actions to correct cross-scale mismatches were suggested and evaluated. We found this four-step, cross-scale resilience analysis procedure very helpful because it reduced a complex problem down to manageable parts without losing sight of the larger-scale whole. To build rangeland resilience, many such cross-scale mismatches in management will need to be corrected, especially as the global use of rangelands increases over the coming decades.

  15. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  16. Delineation and Characterization of Furnace Brook Watershed in Marshfield, Massachusetts: A Study of Effects upon Conjunctive Water Use within a Watershed

    Science.gov (United States)

    Croll, E. D.; Enright, R.

    2012-12-01

    An understanding of conjunctive use between surface and ground water is essential to resource management both for sustained public use and watershed conservation practices. The Furnace Brook watershed in Marshfield, Massachusetts supplies a coastal community of 25,132 residents with nearly 50% of the town water supply. As with many other coastal communities, development pressure has increased creating a growing demand for freshwater extraction. It has been observed, however, that portions of the stream and Furnace Pond disappear entirely. This has created a conflict between protection of the designated wetland areas and meeting public pressure for water resources, even within what is traditionally viewed as a humid region. Questions have arisen as to whether the town water extraction is influencing this losing behavior by excessively lowering water-table elevations and potentially endangering the health of the stream. This study set out to initially characterize these behaviors and identify possible influences of anthropogenic and natural sources acting upon the watershed including stream flow obstructions, water extraction, and geologic conditions. The initial characterization was conducted utilizing simple, low-cost and minimally intrusive methods as outlined by Lee and Cherry (1978), Rosenberry and LaBaugh (2008) and others during a six week period. Five monitoring stations were established along a 3.0 mile reach of the basin consisting of mini-piezometers, seepage meters, survey elevation base-lines, and utilizing a Marsh-McBirney flow velocity meter. At each station stream discharge, seepage flux rates and hydraulic gradients were determined to develop trends of stream behavior. This methodology had the benefit of demonstrating the efficacy of an intrinsically low-expense, minimally intrusive initial approach to characterizing interactions between surface and ground water resources. The data was correlated with town pumping information, previous geologic

  17. Adaptive management for complex communal rangelands in South ...

    African Journals Online (AJOL)

    Many of the intransigent problems facing the world arise in complex systems. In this paper, I propose that communal rangelands in South Africa be recognised as complex social–ecological systems and that one of the reasons that development initiatives have had little impact on improving livelihoods and rangeland ...

  18. Criterion IV: Social and economic indicators of rangeland sustainability (Chapter 5)

    Science.gov (United States)

    Daniel W. McCollum; Louis E. Swanson; John A. Tanaka; Mark W. Brunson; Aaron J. Harp; L. Allen Torell; H. Theodore Heintz

    2010-01-01

    Social and economic systems provide the context and rationale for rangeland management. Sustaining rangeland ecosystems requires attention to the social and economic conditions that accompany the functioning of those systems. We present and discuss economic and social indicators for rangeland sustainability. A brief conceptual basis for each indicator is offered,...

  19. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    Directory of Open Access Journals (Sweden)

    Isabel Guzmán-Arias

    2014-03-01

    Full Text Available This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershed, of which very few can envision growth expectations in terms of water consumption. The proposed resource planning process integrates the analysis conducted in this thesis and tries to identify the basic steps to be followed for the pro­per management of the resource in the future.

  20. An Integrated Social, Economic, and Ecologic Conceptual (ISEEC) framework for considering rangeland sustainability

    Science.gov (United States)

    William E. Fox; Daniel W. McCollum; John E. Mitchell; Louis E. Swanson; Urs P. Kreuter; John A. Tanaka; Gary R. Evans; H. Theodore Heintz; Robert P. Breckenridge; Paul H. Geissler

    2009-01-01

    Currently, there is no standard method to assess the complex systems in rangeland ecosystems. Decision makers need baselines to create a common language of current rangeland conditions and standards for continued rangeland assessment. The Sustainable Rangeland Roundtable (SRR), a group of private and public organizations and agencies, has created a forum to discuss...

  1. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed

    DEFF Research Database (Denmark)

    Stea, Emma C.; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2015-01-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens (Escherichia coli O157:H...

  2. Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Ngoc Quyen

    2014-09-01

    Full Text Available Srepok watershed plays an important role in Central Highland in Viet Nam. It impacts to developing social-economic conditions. Therefore, it is necessary to research elements which impact to natural resources in this watershed. The Soil and Water Assessment Tool (SWAT model and Geography Information System (GIS were used to simulate water discharge in the Srepok watershed. The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then, we assessed land use change which impacted on water discharge in the watershed. The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009. After using SWAT-CUP software to calibration, NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station. After that, land cover in 2010 was processed like land cover in 2000 and set up SWAT model again. The simulated water discharge in scenario 1 (land use 2000 was compared with scenario 2 (land use 2010, the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge. However, the effect of land cover on water resource could be seen clearly via total water yield. The percentage of surface flow in 2000 was twice times more than in 2010; retard and base flow in 2000 was slightly more than in 2010. Therefore, decreased surface flow, increased infiltration capacity of water and enriched base flow resulted in the growth of land cover.

  3. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    Science.gov (United States)

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  4. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  5. Augmentation of Water Resources Potential and Cropping Intensification Through Watershed Programs.

    Science.gov (United States)

    Mondal, Biswajit; Singh, Alka; Singh, S D; Kalra, B S; Samal, P; Sinha, M K; Ramajayam, D; Kumar, Suresh

    2018-02-01

      This paper presents the biophysical impact of various interventions made under watershed development programs, in terms of the creation of additional water resources, and resultant changes in land use and cropping patterns in the Bundelkhand region of Madhya Pradesh State, India. Both primary and secondary data gathered from randomly selected watersheds and their corresponding control villages were used in this study. Analysis revealed that emphasis was given primarily to the creation of water resources potential during implementation of the programs, which led to augmentation of surface and groundwater availability for both irrigation and non-agricultural purposes. In addition, other land based interventions for soil and moisture conservation, plantation activities, and so forth, were taken up on both arable and nonarable land, which helped to improve land slope and land use, cropping pattern, agricultural productivity, and vegetation cover.

  6. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  7. Payments for Ecosystem Services for watershed water resource allocations

    Science.gov (United States)

    Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian

    2018-01-01

    Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES

  8. PERSPECTIVES ON RANGELAND ECOLOGY AND MANAGEMENT

    OpenAIRE

    Heady, Harold F.

    2011-01-01

    This paper reviews changes in rangeland ecology and management in the U.S.A. over the last 65 years and speculates on future changes. Emphasis has shifted from livestock management to ecological and environmental concerns, hence "rangeland ecology." The term "range management" may have outlived its usefulness and may also be detrimental to our image. The vision that we have of ourselves is not the same as others have of us. Many members of the Society for Range Management (SRM) and most of ou...

  9. Bio solids Effects in Chihuahuan Desert Rangelands: A Ten-Year Study

    International Nuclear Information System (INIS)

    Wester, D.B; Sosebee, R.E; Fish, E.B; Villalobos, J.C; Zartman, R.E; Gonzalez, R.M; Jurado, P.; Moffet, C.A

    2011-01-01

    Arid and semiarid rangelands are suitable for responsible bio solids application. Topical application is critical to avoid soil and vegetation disturbance. Surface-applied bio solids have long-lasting effects in these ecosystems. We conducted a 10-year research program investigating effects of bio solids applied at rates from 0 to 90 dry Mg ha -1 on soil water infiltration; runoff and leachate water quality; soil erosion; forage production and quality; seedling establishment; plant physiological responses; nitrogen dynamics; bio solids decomposition; and grazing animal behavior and management. Bio solids increased soil water infiltration and reduced erosion. Effects on soil water quality were observed only at the highest application rates. Bio solids increased soil nitrate-nitrogen. Bio solids increased forage production and improved forage quality. Bio solids increased leaf area of grasses; photosynthetic rates were not necessarily increased by bio solids. Bio solids effects on plant establishment are expected only under moderately favorable conditions. Over an 82-mo exposure period, total organic carbon, nitrogen, and total and available phosphorus decreased and inorganic matter increased. Grazing animals spent more time grazing, ruminating, and resting in bio solids-treated areas; positive effects on average daily gain were observed during periods of higher rainfall. Our results suggest that annual bio solids application rates of up to 18 Mg ha -1 are appropriate for desert rangelands.

  10. Community participation and implementation of water management instruments in watersheds

    Directory of Open Access Journals (Sweden)

    Mario Alejandro Perez Rincon

    2013-04-01

    Full Text Available The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee’s members (2009 - 2011. Engagement and integration among the stakeholders was observed. Still, the interviews’ results have shown that the Committee’s statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  11. Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City.

    Science.gov (United States)

    Jujnovsky, Julieta; González-Martínez, Teresa Margarita; Cantoral-Uriza, Enrique Arturo; Almeida-Leñero, Lucia

    2012-03-01

    Studies from the ecosystem services perspective can provide a useful framework because they allow us to fully examine the benefits that humans obtain from socio-ecological systems. Mexico City, the second largest city in the world, has faced severe problems related to water shortages, which have worsened due to increasing population. Demand for space has forced changes in land cover, including covering areas that are essential for groundwater recharge. The city has 880 km(2) of forest areas that are crucial for the water supply. The Magdalena River Watershed was chosen as a model because it is a well-preserved zone within Mexico City and it provides water for the population. The general aim of this study was to assess the ecosystem service of the water supply in the Magdalena River Watershed by determining its water balance (SWAT model) and the number of beneficiaries of the ecosystem services. The results showed that the watershed provides 18.4 hm(3) of water per year. Baseflow was dominant, with a contribution of 85%, while surface runoff only accounted for 15%. The zone provides drinking water to 78,476 inhabitants and could supply 153,203 potential beneficiaries. This work provides an example for understanding how ecosystem processes determine the provision of ecosystem services and benefits to the population in a rural-urban watershed in Mexico City.

  12. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    Science.gov (United States)

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  13. Seasonal Variation in Water Chemistry Parameters in the Clayburn - Willband Watershed, Abbotsford, British Columbia.

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Faculty and students from the University of the Fraser Valley (UFV) have conducted time series sampling of the Fraser River at Fort Langley and six Fraser Valley tributaries as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Clayburn - Willband - Stoney watershed has become a focus of the sampling being conducted by faculty and students from the Geography and Biology Departments at UFV. Water chemistry data (water temperature, dissolved oxygen, conductivity, pH and turbidity) and samples (nutrients, major ions and bacteria) have been collected weekly from sites on these creeks. These watersheds are threatened by increasing urban development, increasing idustrial activity, and expansion of agricultural landuse within the watershed. Documenting the seasonal changes in the water chemistry as measured during the onset of the heavy fall and winter precipitation events, the wet and cool winters and springs, and the hot and dry summers will assist in attempts to protect these important salmon spawning streams from anthropogenic activity.

  14. Hydrology and water quality of two first order forested watersheds in coastal South Carolina

    Science.gov (United States)

    D.M. Amatya; M. Miwa; C.A. Harrison; C.C. Trettin; G. Sun

    2006-01-01

    Two first-order forested watersheds (WS 80 and WS 77) on poorly drained pine-hardwood stands in the South Carolina Coastal Plain have been monitored since mid-1960s to characterize the hydrology, water quality and vegetation dynamics. This study examines the flow and nutrient dynamics of these two watersheds using 13 years (1 969-76 and 1977-81) of data prior to...

  15. Effects of watershed experiments on water chemistry at the Marcell Experimental Forest. Chapter 14.

    Science.gov (United States)

    Stephen D. Sebestyen; Elon S. Verry

    2011-01-01

    The Marcell Experimental Forest (MEF) was established during the 1960s to study the hydrology and ecology of lowland watersheds where upland mineral soils drain to central peatlands (Boelter and Verry 1977). The effects of seven large-scale manipulations on water chemistry have been studied on the MEF watersheds and the data now span up to four decades. In this chapter...

  16. Water quality assessment and meta model development in Melen watershed - Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Meeting wild bees' needs on Western US rangelands

    Science.gov (United States)

    James H. Cane

    2011-01-01

    Rangelands are areas that are too arid, or with soils too shallow, to support either forests or cultivated agriculture, but that nonetheless produce enough vegetation for livestock grazing. Some arid rangeland regions, notably those with warm, dry climates in temperate zones (e.g., the warm deserts of the United States and adjacent Mexico, parts of Australia, South...

  18. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Directory of Open Access Journals (Sweden)

    Alexandria K. Graves

    2011-11-01

    Full Text Available Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC, but as others, such as enterotoxigenic E. coli (ETEC. Pulsed field gel electrophoresis (PFGE was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern

  19. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  20. Ecologic, Economic, and Social Considerations for Rangeland Sustainability: An Integrated Conceptual Framework

    Science.gov (United States)

    Daniel W. McCollum; H. Theodore Jr. Heintz; Aaron J. Harp; John A. Tanaka; Gary R. Evans; David Radloff; Louis E. Swanson; William E. III Fox; Michael G. Sherm Karl; John E. Mitchell

    2006-01-01

    Use and sustainability of rangelands are inherently linked to the health and sustainability of the land. They are also inherently linked to the social and economic infrastructures that complement and support those rangelands and rangeland uses. Ecological systems and processes provide the biological interactions underlying ecosystem health and viability. Social and...

  1. Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis

    Science.gov (United States)

    Frederick B. Pierson; C. Jason Williams

    2016-01-01

    Fire can dramatically influence rangeland hydrology and erosion by altering ecohydrologic relationships. This synthesis presents an ecohydrologic perspective on the effects of fire on rangeland runoff and erosion through a review of scientific literature spanning many decades. The objectives are: (1) to introduce rangeland hydrology and erosion concepts necessary for...

  2. A description of rangeland on commercial and communal land ...

    African Journals Online (AJOL)

    Analysis of a Landsat TM image from a rangeland near Peddie, Eastern Cape, revealed differences in two vegetation indices (normalised difference vegetation index, NDVI, and moving standard deviation index, MSDI) between communal and commercial rangeland. It was suggested that the difference in the MSDI reflected ...

  3. Coupling of Water and Carbon Cycles in Boreal Ecosystems at Watershed and National Scales

    Science.gov (United States)

    Chen, J. M.; Ju, W.; Govind, A.; Sonnentag, O.

    2009-05-01

    The boreal landscapes is relatively flat giving the impression of spatial homogeneity. However, glacial activities have left distinct fingerprints on the vegetation distribution on moderately rolling terrains over the boreal landscape. Upland or lowland forests types or wetlands having various degrees of hydrological connectivitiy to the surrounding terrain are typical of the boreal landscape. The nature of the terrain creates unique hydrological conditions affecting the local-scale ecophysiological and biogeochemical processes. As part of the Canadian Carbon Program, we investigated the importance of lateral water redistribution through surface and subsurface flows in the spatial distribution of the vertical fluxes of water and carbon. A spatially explicit hydroecological model (BEPS-TerrainLab) has been developed and tested in forested and wetland watersheds . Remotely sensed vegetation parameters along with other spatial datasets are used to run this model, and tower flux data are used for partial validation. It is demonstrated in both forest and wetland watersheds that ignoring the lateral water redistribution over the landscape, commonly done in 1-dimensional bucket models, can cause considerable biases in the vertical carbon and water flux estimation, in addition to the distortion of the spatial patterns of these fluxes. The biases in the carbon flux are considerably larger than those in the water flux. The significance of these findings in national carbon budget estimation is demonstrated by separate modeling of 2015 watersheds over the Canadian landmass.

  4. Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011

    Science.gov (United States)

    Risser, Dennis W.; Conlon, Matthew D.

    2018-05-17

    This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12

  5. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie; Liu, Yuanmin; Deng, Cai; Nie, Ning

    2015-01-01

    Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management. PMID:25768942

  6. Use of Nutrient Balances in Comprehensive Watershed Water Quality Modeling of Chesapeake Bay

    National Research Council Canada - National Science Library

    Donigian, Anthony

    1998-01-01

    ... state of-the-art watershed modeling capability that includes detailed soil process simulation for agricultural areas, linked to an instream water quality and nutrient model capable of representing...

  7. Introducing cattle grazing to a noxious weed-dominated rangeland shifts plant communities

    Directory of Open Access Journals (Sweden)

    Josh S. Davy

    2015-10-01

    Full Text Available Invasive weed species in California's rangelands can reduce herbaceous diversity, forage quality and wildlife habitat. Small-scale studies (5 acres or fewer have shown reductions of medusahead and yellow starthistle using prescribed grazing on rangelands, but little is published on the effects of pasture-scale (greater than 80 acres prescribed grazing on weed control and plant community responses. We report the results of a 6-year collaborative study of manager-applied prescribed grazing implemented on rangeland that had not been grazed for 4 years. Grazing reduced medusahead but did not alter yellow starthistle cover. Medusahead reductions were only seen in years that did not have significant late spring rainfall, suggesting that it is able to recover from heavy grazing if soil moisture is present. Later season grazing appears to have the potential to suppress medusahead in all years. In practice, however, such grazing is constrained by livestock drinking water availability and forage quality, which were limited even in years with late spring rainfall. Thus, we expect that grazing treatments under real-world constraints would reduce medusahead only in years with little late spring rainfall. After 10 years of grazing exclusion, the ungrazed plant communities began to shift, replacing medusahead with species that have little value, such as ripgut and red brome.

  8. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    Science.gov (United States)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    Water flows in watersheds containing extensive areas of irrigated paddies are complex because of the substantial volumes involved and the repeated cycles of water diversion from, and return to, streams. For better management of low-flow conditions, numerous studies have attempted to quantify the return flow using the stable isotopes of water; however, the temporal variation in these isotopic compositions due to fractionation during evaporation from water surfaces hinders their application to watersheds with extensive irrigated paddies. In this study, we tested the applicability of the strontium isotopes (87Sr/86Sr, hereafter Sr ratio) for studying hydrological processes in a typical agricultural watershed located on the alluvial fan of the Kinu River, namely the Gogyo River, in central Japan. The Sr ratio of water changes only because of interactions with the porous media it flows through, or because of mixing with water that has different Sr ratios. We sampled water both at a single rice paddy, and on the watershed scale in the irrigated and non-irrigated periods. The soil water under the paddy decreased as sampling depth increased, and the soil water at a depth of 1.5 m showed a similar Sr ratio to the spring. The water sampled in the drainage channel with a concrete lined bottom showed a similar Sr ratio to the irrigation water, whereas that with a soil bottom was plotted between the plots of the irrigation water and shallow aquifer. These results suggest the Sr ratio decreases as it mixes with the soil water through percolation; whereas the Sr ratio will be less likely to change when water drains from paddies via surface pathways. The streamflow samples were plotted linearly on the Sr ratio and 1/Sr plot, indicating that the streamflow was composed of two end-members; the irrigation water and the shallow aquifer. The continuous decline in the Sr ratio along the stream suggests an exfiltration of water from the shallow aquifers. The stream water during the non

  9. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  10. Watershed modeling applications in south Texas

    Science.gov (United States)

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    Watershed models can be used to simulate natural and human-altered processes including the flow of water and associated transport of sediment, chemicals, nutrients, and microbial organisms within a watershed. Simulation of these processes is useful for addressing a wide range of water-resource challenges, such as quantifying changes in water availability over time, understanding the effects of development and land-use changes on water resources, quantifying changes in constituent loads and yields over time, and quantifying aquifer recharge temporally and spatially throughout a watershed.

  11. Managing climate change risks in rangeland systems [Chapter 15

    Science.gov (United States)

    Linda A. Joyce; Nadine A. Marshall

    2017-01-01

    The management of rangelands has long involved adapting to climate variability to ensure that economic enterprises remain viable and ecosystems sustainable; climate change brings the potential for change that surpasses the experience of humans within rangeland systems. Adaptation will require an intentionality to address the effects of climate change. Knowledge of...

  12. Water use and the thermoregulatory behaviour of kangaroos in arid regions: insights into the colonisation of arid rangelands in Australia by the Eastern Grey Kangaroo (Macropus giganteus).

    Science.gov (United States)

    Dawson, Terence J; McTavish, Kirsten J; Munn, Adam J; Holloway, Joanne

    2006-01-01

    The Eastern Grey Kangaroo (Macropus giganteus) occurs mostly in the wetter regions of eastern Australia. However, in the past 30-40 years it has moved into more arid regions (rainfall Kangaroo (Macropus rufus). An increased access to water (supplied for domestic stock) may explain this range extension, but changes in the availability of preferred feed could also be involved. The water use, drinking patterns and thermoregulatory behaviour of these two species of kangaroo have been examined in a semi-free range study, during summer at an arid rangeland site. Foraging was largely nocturnal in both species and during the day they behaved to reduce heat loads. This was especially so for M. giganteus, which showed greater shade seeking. However, it still used more water (72 +/- 2.6 mL kg(-1) day(-1), mean +/- SE) than M. rufus (56 +/- 7.6 mL kg(-1) day(-1)) and drank twice as frequently. Although M. giganteus produced a less concentrated urine (1422 +/- 36 mosmol kg(-1)) than M. rufus (1843 +/- 28 mosmol kg(-1)), kidney physiology did not explain all of the differences in water metabolism between the species. Water from the feed and faecal water retention also appear to be involved. Broadly, a better access to reliable water and the utilisation of mesic microhabitats has enabled M. giganteus to make inroads into the changing rangelands of eastern Australia. However, changes in the vegetation, due to stock grazing, have also favoured M. giganteus, which is a grass eating specialist.

  13. Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine Graben

    Science.gov (United States)

    Zizinga, A.

    2017-12-01

    Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management

  14. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Post-adoption behaviour of farmers towards soil and water conservation technologies of watershed management in India

    Directory of Open Access Journals (Sweden)

    Gopal Lal Bagdi

    2015-09-01

    Full Text Available The Indian Institute of Soil and Water Conservation (IISWC and its Research Centres have developed many successful model watershed projects in India in the past and implemented many Soil and Water Conservation (SWC technologies for sustainable watershed management. While many evaluation studies were conducted on these projects in the past, there has been no assessment of the post-adoption status of the SWC technologies over a longer period. It was imperative to appraise the behaviour of the farmers with regard to the continuance or discontinuance of the technologies adopted, diffusion or infusion that took place and technological gaps that occurred in due course of time in the post watershed programme. Therefore, it was realized that the post-adoption behaviour of beneficiary farmers who have adopted different soil and water conservation technologies for watershed management projects should be studied in detail. The research study was initiated in 2012 as a core project at Vasad as the lead Centre along with IISWC headquarter Dehradun, and Centres Agra, Bellary, Chandigarh, Datia, Kota & Ooty, with the specific objectives of the study to measure the extent of post-adoption behaviour (continued-adoption, discontinuance, technological gap, diffusion and infusion of farmers towards the adopted SWC technologies of watershed management. In the present study various indices regarding continued adoption, dis-adoption (discontinuance, technological gap, diffusion, infusion regarding soil and water conservation technologies for watershed management were developed for measurement of post-adoption behaviour of farmers. It was revealed that a little less than three-fourth (73% of SWC technologies continued to be adopted and more than one-fourth (27% were discontinued by farmers. Out of the total continue adopted SWC technologies by farmers, a little less than one-fifth (19% of technologies continued to be adopted with a technological gap. More than one

  16. A Sensitivity Analysis of Impacts of Conservation Practices on Water Quality in L’Anguille River Watershed, Arkansas

    Directory of Open Access Journals (Sweden)

    Gurdeep Singh

    2018-04-01

    Full Text Available Assessing the performance of appropriate agricultural conservation practices (CPs frequently relies on the use of simulation models as a cost-effective tool instead of depending solely on the monitoring of water quality at individual field and watershed levels. This study evaluates the predicted impacts of several CPs on nutrient and sediment loss at the hydrological response unit scale in the L’Anguille River Watershed, which is a watershed identified as a “focus watershed” under the Mississippi River Basin healthy watershed Initiative (MRBI program. The Soil and Water Assessment Tool model was calibrated and validated between 1998–2005 and 2006–2012, respectively for flow, sediment, total phosphorus, and nitrate nitrogen. Out of the seven MRBI CPs modeled in this study, the highest reduction in sediment (80% and nutrient (58% for total phosphorus and 16% for total nitrogen was predicted for the critical area planting practice, followed by filter strip, irrigation land leveling, grade stabilization structure, irrigation pipeline, nutrient management, and irrigation water management. Some of the predicted impacts conflicted with expected CP performance. The study underscores the importance of the proper formulation of CP algorithms in using simulation models for predicting impacts on water quality.

  17. Soil Moisture Variability and its Effects on Herbage Production in Semi-arid Rangelands of Kenya

    International Nuclear Information System (INIS)

    Too, D.K.; Trlica, M.J.; Swift, D.M.; Musembi, D.K.

    1999-01-01

    Results obtained from recent studies focused on rangelands potential as influenced by human activity and climatic factors in the semi-arid and arid pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document primary production in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory, field and numerical methods were employed over several seasons and years. Forb and grass production was more variable than that of the browse (dwarf shrub) layer. Compared to forbs and dwarf shrubs, the grass layer contributed less to the total production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variation in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal differences were very evident, with highest estimates in the long rainy and the lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential were identified to be moisture deficiency, resource-use conflicts, an increasing and partially sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can improve rangeland production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information Systems, GIS); (b) technical interventions (i.e. soil and water conservation, restoration of degraded areas, fodder production); (c) social-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development improvement of livestock marketing channels etc.) and (d) continued

  18. The Role of Rural Communities in Conservation of Rangelands in Mahneshan Township

    Directory of Open Access Journals (Sweden)

    Kobra Karimi

    2016-05-01

    Full Text Available The aim of this study was to investigate the action of rangeland-depended livestock holders regarding rangeland conservation, including protection and rehabilitation activities and to analyse relevant influencing factors, using a mixed method of survey and case study. The data were collected through analysing existing documents, focus groups, semi-structured and structured interviews using questionnaires submitted to 204 rural livestock holders in the Mahneshan Township. The quantitative data were analysed using SPSS and AMOS software. According to the results farmers’ knowledge regarding the role, importance and factors affecting rangeland degradation was relatively high, however they had a low level of knowledge and action about mechanical conservation techniques. The action of livestock holders in terms of biological conservation activities and grazing management showed a positive and signifincat corrletaion with variables such as implementing of rangeland projects, their interaction with external institutions, participating in extension training courses, education level and irrigated and rainfed agricultural land size. Moreover, based on a path analysis, 37% of the variance of the farmers’ actions regarding the rangeland conservation was explained by the variables such as rangeland rehabilitation actions, farmers’ conservation knowledge, farmers’ interaction with natural resources experts, beekeeping, and participating in extension training courses. Promotional and extension activities and farmers’ interaction with experts have a positive effect in enhancing farmers’ knowledge and actions for sustainable rangeland use and conservation.

  19. Trends in annual, seasonal, and monthly streamflow characteristics at 227 streamgages in the Missouri River watershed, water years 1960-2011

    Science.gov (United States)

    Norton, Parker A.; Anderson, Mark T.; Stamm, John F.

    2014-01-01

    The Missouri River and its tributaries are an important resource that serve multiple uses including agriculture, energy, recreation, and municipal water supply. Understanding historical streamflow characteristics provides relevant guidance to adaptive management of these water resources. Streamflow records in the Missouri River watershed were examined for trends in time series of annual, seasonal, and monthly streamflow. A total of 227 streamgages having continuous observational records for water years 1960–2011 were examined. Kendall’s tau nonparametric test was used to determine statistical significance of trends in annual, seasonal, and monthly streamflow. A trend was considered statistically significant for a probability value less than or equal to 0.10 that the Kendall’s tau value equals zero. Significant trends in annual streamflow were indicated for 101 out of a total of 227 streamgages. The Missouri River watershed was divided into six watershed regions and trends within regions were examined. The western and the southern parts of the Missouri River watershed had downward trends in annual streamflow (56 streamgages), whereas the eastern part of the watershed had upward trends in streamflow (45 streamgages). Seasonal and monthly streamflow trends reflected prevailing annual streamflow trends within each watershed region.

  20. Participative approach to elicit water quality monitoring needs from stakeholder groups - An application of integrated watershed management.

    Science.gov (United States)

    Behmel, S; Damour, M; Ludwig, R; Rodriguez, M J

    2018-07-15

    Water quality monitoring programs (WQMPs) must be based on monitoring objectives originating from the real knowledge needs of all stakeholders in a watershed and users of the resource. This paper proposes a participative approach to elicit knowledge needs and preferred modes of communication from citizens and representatives of organized stakeholders (ROS) on water quality and quantity issues. The participative approach includes six steps and is adaptable and transferable to different types of watersheds. These steps are: (1) perform a stakeholder analysis; (2) conduct an adaptable survey accompanied by a user-friendly public participation geographical information system (PPGIS); (3) hold workshops to meet with ROS to inform them of the results of the survey and PPGIS; discuss attainment of past monitoring objectives; exchange views on new knowledge needs and concerns on water quality and quantity; (4) meet with citizens to obtain the same type of input (as from ROS); (5) analyze the data and information collected to identify new knowledge needs and modes of communication and (6) identify, in collaboration with the individuals in charge of the WQMPs, the short-, medium- and long-term monitoring objectives and communication strategies to be pursued. The participative approach was tested on two distinct watersheds in the province of Quebec, Canada. It resulted in a series of optimization objectives of the existing WQMPs, new monitoring objectives and recommendations regarding communication strategies of the WQMPs' results. The results of this study show that the proposed methodology is appreciated by all parties and that the outcomes and monitoring objectives are acceptable. We also conclude that successful integrated watershed management is a question of scale, and that every aspect of integrated watershed management needs to be adapted to the surface watershed, the groundwater watershed (aquifers) and the human catchment area. Copyright © 2018 Elsevier Ltd. All

  1. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  2. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  3. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    Science.gov (United States)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  4. The GEOGLAM Rangelands and Pasture Productivity Activity: Recent Progress and Future Directions

    Science.gov (United States)

    Guerschman, J. P.; Held, A. A.; Donohue, R. J.; Renzullo, L. J.; Sims, N.; Kerblat, F.; Grundy, M.

    2015-12-01

    Rangelands and pastures cover about a third of the world's land area and support livestock production which represents ~40% of global agricultural gross domestic product. The global consumption of animal protein shows a clear increasing trend, driven by both total population and per capita income increases, putting a growing pressure on the sustainability of grazing lands worldwide. Despite their relevance, rangelands have received less attention than croplands regarding global monitoring of the resource productivity and condition. The Rangelands and Pasture Productivity (RaPP) activity is a component within the Global Agricultural Monitoring initiative established under the Group on Earth Observations (GEOGLAM) in 2013. GEOGLAM RaPP is aimed at providing the global community with the means to monitor the world's rangelands and pastures on a routine basis, and the capacity to produce animal protein in real-time, at global, regional and national levels. Since its launch two years ago GEOGLAM RAPP has made progress in the four implementation elements. These include: 1- the establishment of community of practice; 2- the development of a global monitoring system for rangeland condition; 3- the establishment of pilot sites in main rangeland systems for satellite data products validation and model testing; and 4- integration with livestock production models. Three international workshops have been held building the community of practice. A prototype monitoring system that provides global visualisations and querying capability of vegetation cover data and anomalies has been established. Pilot sites, mostly in areas with long records of field measurements of rangeland condition and productivity have been proposed for nine countries. The link to global livestock models, including physical and economic components, have been established. Future challenges for GEOGLAM RaPP have also been identified and include: better representation of the areas occupied by rangelands

  5. Experimental forest watershed studies contribution to the effect of disturbances on water quality

    Science.gov (United States)

    Daniel G. Neary

    2012-01-01

    The most sustainable and best quality fresh water sources in the world originate in forested watersheds (Dissmeyer 2000, Brooks et al. 2003, Barten and Ernst 2004). The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, and moderating the climatic extremes which affect stream...

  6. Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: Analysis of surface waters by purge and trap method.

    Science.gov (United States)

    Horii, Yuichi; Minomo, Kotaro; Ohtsuka, Nobutoshi; Motegi, Mamoru; Nojiri, Kiyoshi; Kannan, Kurunthachalam

    2017-05-15

    Surface waters including river water and effluent from sewage treatment plants (STPs) were collected from Tokyo Bay watershed, Japan, and analyzed for seven cyclic and linear volatile methylsiloxanes (VMSs), i.e., D3, D4, D5, D6, L3, L4, and L5 by an optimized purge and trap extraction method. The total concentrations of seven VMSs (ΣVMS) in river water ranged from watershed was estimated at 2300kg. Our results indicate widespread distribution of VMSs in Tokyo Bay watershed and the influence of domestic wastewater discharges as a source of VMSs in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    Science.gov (United States)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  8. Ecological evaluation of rangeland quality in dry subtropics of Azerbaijan

    Science.gov (United States)

    Gasanova, A. F.

    2014-12-01

    The results of ecological evaluation of soil-landscape complexes of winter rangelands of Gobustan with the use of energy criteria are discussed. The diagnostic characteristics of soil fertility and correction coefficients for the thickness of texture of soil horizons, soil salinization, soil erosion, and microelemental composition of soils have been used to separate the soils of winter rangelands into several quality groups. A larger part of the soils belongs to the medium quality group with the mean weighted quality factor (bonitet) of 52. Special assessment scales have been suggested for the differential ecological assessment and monitoring of the rangelands. In the past 40 years, the area of steppe landscapes has decreased from 22.7 to 12%, whereas the area of semideserts has increased up to 64%. The area of best-quality soils within the studied rangelands had decreased by three times, and their average quality factor has decreased from 92 to 86.

  9. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    International Nuclear Information System (INIS)

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    Two small eastern Ohio watersheds surface mined for coal and reclaimed were studied during 1986-89. Water level and water quality data were compared with data from investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by flatlying sedimentary rocks above clay beds underlying two major coal seams. Two aquifers overlay each under clay. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the spoil, creating a new aquifer with hydraulic and chemical characteristics different from those of the original upper aquifer. Water levels were measured continuously in one well in each aquifer and every 2 months in other wells. Water levels in upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining and, in middle aquifers, water levels increased more than 5 ft during mining; equilibrium occurred almost immediately thereafter. Water samples were collected from three upper aquifer wells, one middle-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Samples were collected in 1986, 1987, 1988, and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant anion in the upper aquifer after mining. In general, significant increases in concentrations of dissolved constituents in groundwater resulted from surface mining. The continued decrease in pH indicates that groundwater had not reached complete geochemical equilibrium in either watershed more than 8 years after mining ended

  10. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  11. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.

    Science.gov (United States)

    Webb, Nicholas P; Herrick, Jeffrey E; Duniway, Michael C

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation, or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explored how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting, and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass–succulent states across the ecological sites at the plot scale (0.25 ha). We identified vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area could be effectively controlled when bare ground cover was 100 cm in length was less than ∼35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the

  12. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  13. Study on Rangeland production Potential and its Limitations in the Semi-Arid lands of Northern Kenya

    International Nuclear Information System (INIS)

    Keya, G.A.; Hornetz, B.

    1999-01-01

    Results obtained from recent studies focused on rangeland potential as influenced by human activity and climatic factors in the semi-arid and pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document the primary production potential in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory field and numeric methods were employed over several seasons and years. Forb and grass production was more viable than that of the brows (dwarf shrub) layer. Compared to forbs and dwarf shrubs, The grass layer contributed less to the total of production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variations in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal difference were very evident, with highest estimates in the long rainy and lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential and were identified to be moisture deficiency, resource-use conflicts, an increasing and partial sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can increase rangelands production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information systems, GIS); (b) technical interventions (i.e. soil and water conservation,restoration of degraded ares, fodder production); (c)socio-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development, improvement of livestock marketing channels, etc) and (d) continued

  14. Linking ecosystem services with state-and-transition models to evaluate rangeland management decisions

    Science.gov (United States)

    Lohani, S.; Heilman, P.; deSteiguer, J. E.; Guertin, D. P.; Wissler, C.; McClaran, M. P.

    2014-12-01

    Quantifying ecosystem services is a crucial topic for land management decision making. However, market prices are usually not able to capture all the ecosystem services and disservices. Ecosystem services from rangelands, that cover 70% of the world's land area, are even less well-understood since knowledge of rangelands is limited. This study generated a management framework for rangelands that uses remote sensing to generate state and transition models (STMs) for a large area and a linear programming (LP) model that uses ecosystem services to evaluate natural and/or management induced transitions as described in the STM. The LP optimization model determines the best management plan for a plot of semi-arid land in the Empire Ranch in southeastern Arizona. The model allocated land among management activities (do nothing, grazing, fire, and brush removal) to optimize net benefits and determined the impact of monetizing environmental services and disservices on net benefits, acreage allocation and production output. The ecosystem services under study were forage production (AUM/ac/yr), sediment (lbs/ac/yr), water runoff (inches/yr), soil loss (lbs/ac/yr) and recreation (thousands of number of visitors/ac/yr). The optimization model was run for three different scenarios - private rancher, public rancher including environmental services and excluding disservices, and public rancher including both services and disservices. The net benefit was the highest for the public rancher excluding the disservices. A result from the study is a constrained optimization model that incorporates ecosystem services to analyze investments on conservation and management activities. Rangeland managers can use this model to understand and explain, not prescribe, the tradeoffs of management investments.

  15. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  16. Introduced and invasive species in novel rangeland ecosystems: friends or foes?

    Science.gov (United States)

    Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.

    2012-01-01

    Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses

  17. Land use and water quality degradation in the Peixe-Boi River watershed

    Directory of Open Access Journals (Sweden)

    Bruno Wendell de Freitas Pereira

    2016-04-01

    Full Text Available This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage network. The relationship between human disturbance and water quality was analyzed based on observations of land use changes using satellite imagery and in situ collection of water samples. The results show that 46% of the permanent preservation areas have conflicted uses, especially with respect to urban squatters, exposed soil and, most notably, pasture, with over 84 % of the area in conflict. Critical levels of dissolved oxygen reaching 2.14 mg L-1 and pH of 5.12 were observed in some sampling points. These values are below the fresh water standards set by Resolution 357/05 of CONAMA. The poorest water quality may be related to irregular use and occupation of areas within the permanent preservation areas. There is therefore an urgent need to develop a plan for the sustainable use and occupation of catchment area land in the Peixe-Boi River watershed in order to restore the environment and improve water quality.

  18. Very High Resolution Panoramic Photography to Improve Conventional Rangeland Monitoring 1994

    Science.gov (United States)

    Rangeland monitoring often includes repeat photographs as a basis for documentation and although photographic equipment and electronics have been evolving rapidly, basic rangeland photo monitoring methods have changed little over time. Ground based digital photography is underutilized, especially s...

  19. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  20. Investigating water use over the Choptank River Watershed using a multisatellite data fusion approach

    Science.gov (United States)

    Sun, Liang; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Alfieri, Joseph G.; Sharifi, Amirreza; McCarty, Gregory W.; Yang, Yun; Yang, Yang; Kustas, William P.; McKee, Lynn

    2017-07-01

    The health of the Chesapeake Bay ecosystem has been declining for several decades due to high levels of nutrients and sediments largely tied to agricultural production systems. Therefore, monitoring of agricultural water use and hydrologic connections between crop lands and Bay tributaries has received increasing attention. Remote sensing retrievals of actual evapotranspiration (ET) can provide valuable information in support of these hydrologic modeling efforts, spatially and temporally describing consumptive water use by crops and natural vegetation and quantifying response to expansion of irrigated area occurring with Bay watershed. In this study, a multisensor satellite data fusion methodology, combined with a multiscale ET retrieval algorithm, was applied over the Choptank River watershed located within the Lower Chesapeake Bay region on the Eastern Shore of Maryland, USA to produce daily 30 m resolution ET maps. ET estimates directly retrieved on Landsat satellite overpass dates have high accuracy with relative error (RE) of 9%, as evaluated using flux tower measurements. The fused daily ET time series have reasonable errors of 18% at the daily time step - an improvement from 27% errors using standard Landsat-only interpolation techniques. Annual water consumption by different land cover types was assessed, showing reasonable distributions of water use with cover class. Seasonal patterns in modeled crop transpiration and soil evaporation for dominant crop types were analyzed, and agree well with crop phenology at field scale. Additionally, effects of irrigation occurring during a period of rainfall shortage were captured by the fusion program. These results suggest that the ET fusion system will have utility for water management at field and regional scales over the Eastern Shore. Further efforts are underway to integrate these detailed water use data sets into watershed-scale hydrologic models to improve assessments of water quality and inform best

  1. Hydrology and climate of four watersheds in eastern Puerto Rico: Chapter C in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Murphy, Sheila F.; Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Puerto Rico lies directly in the path of the easterly trade winds, which deliver steady rainfall to the mountains and steer tropical wave systems toward the island. Hurricanes and tropical storms derived from these tropical waves differ in frequency and intensity, contributing to substantial interannual variation in precipitation and stream discharge. Puerto Rico's steep topography and small water-storage capacity leave the island's water supply and developed flood plains vulnerable to extreme weather events, such as hurricanes, floods, and droughts. This vulnerability may increase in the future owing to ongoing change, both local (such as land-cover shifts, water-supply projects, and construction of roads and other infrastructure) and regional (climate variability and change). Climate change, which could lead to more intense and prolonged droughts as well as an increase in the magnitude and frequency of destructive storms in the Caribbean, may alter temperature and affect the availability of water for human and ecosystem needs. Accurate assessment of hydrologic regimes and water budgets is therefore crucial for effective management of water resources. As part of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets program, hydrologic and geomorphologic processes and stream chemistry of four small watersheds in eastern Puerto Rico, which differ in geology and land cover, have been studied since 1991. Spatial and temporal characteristics of precipitation and stream discharge, along with water budgets, were determined for the watersheds for the period 1991 to 2005. The locations of the watersheds relative to the Luquillo Mountains and the range's associated rain shadow dominate hydrological processes, dwarfing influences of land cover. The influence of geology is reflected in recession characteristics of the rivers (recession is faster in soils overlying volcaniclastic bedrock) and in hillslope geomorphic processes (sediment is delivered at higher

  2. Regional Standards for Rangeland Health and Guidelines for Livestock Grazing Management ... A Progress Report

    OpenAIRE

    1996-01-01

    In August 1995, new BLM regulations for rangeland administration went into effect. The new regulations require BLM to establish regional standards for rangeland health and guidelines for grazing management. This publication is a report on the alternatives being considered for the Montana/Dakotas Rangeland Health Standards and Guidelines process.

  3. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  4. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale

    Science.gov (United States)

    Takahiro Sayama; Jeffrey J. McDonnell

    2009-01-01

    Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We...

  5. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira

    2014-08-01

    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  6. Earth stewardship on rangelands: Coping with ecological, economic, and political marginality

    Science.gov (United States)

    Rangelands encompass 30-40 percent of Earth's land surface and support 1-2 billion people. Their predominant use is extensive livestock production by pastoralists and ranchers. But rangelands are characterized by ecological, economic, and political marginality, and higher-value, more intensive land ...

  7. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    OpenAIRE

    Gurbir Singh; Jon E. Schoonover; Karl W. J. Williard

    2018-01-01

    In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphor...

  8. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    Science.gov (United States)

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  9. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    Science.gov (United States)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  10. Multi-source water pollution in the Upper Citarum watershed, Indonesia, with special reference to its spatiotemporal variation.

    Science.gov (United States)

    Parikesit; Salim, H; Triharyanto, E; Gunawan, B; Sunardi; Abdoellah, O S; Ohtsuka, R

    2005-01-01

    The Citarum River in West Java is the largest water supplier to the Saguling Dam, which plays a major role in electric power generation for the entire Java Island and is used for the aquaculture of marketed fish. To elucidate the extent of degradation in water quality and its causes in the Upper Citarum watershed, physical, chemical and biological parameters for water samples collected from various sites were analyzed. The results demonstrate large site-to-site variations in water qualities and pollutant loads derived from various human activities such as agriculture, cattle raising and the textile industry. To halt worsening conditions of the Citarum watershed, integrated mitigation efforts should be made, taking biophysical pollution mechanisms and local socioeconomic conditions into account.

  11. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  12. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  13. Ground-Water-Quality Data for Selected Wells in the Beaver Creek Watershed, West Tennessee

    National Research Council Canada - National Science Library

    Williams, Shannon D

    1996-01-01

    In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation, began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee...

  14. Discussion of submitted posters for Section 2.3 (Rangeland Germplasm Resources)

    Science.gov (United States)

    As part of the IX International Rangeland Congress held in Rosario, Argentina, a total of 70 posters from 17 countries were submitted to Section 2.3 (Rangeland Germplasm Resources). These posters documented research conducted in five major regions of the world: South America, North America, Africa...

  15. Alterations in land uses based on amendments to the Brazilian Forest Law and their influences on water quality of a watershed.

    Science.gov (United States)

    Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G

    2015-01-01

    The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.

  16. Water resources protection today: end-of-pipe technology and cleaner production. Case study of the Czech Odra River watershed.

    Science.gov (United States)

    Chour, V

    2001-01-01

    This paper reports on integrated watershed-based protection and sustainable use of water resources to increase the effectiveness of water pollution abatement. The approach includes improvements in end-of-pipe waste-water treatment technologies and implementation of Cleaner Production (CP) principles and policies within the watershed. An example of the general effectiveness of this approach is illustrated by the Czech Odra River Cleaner Production Project where reductions in pollution were achieved with improved industrial production. The CP theme is worth considering as an important challenge for the IWA.

  17. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  18. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    Science.gov (United States)

    Harden, Stephen L.

    2015-01-01

    The effects of concentrated animal feeding operations (CAFOs) on water quality were investigated at 54 agricultural stream sites throughout the North Carolina Coastal Plain during 2012 and 2013. Three general watershed land-use types were examined during the study, including 18 background watersheds with no active CAFOs (BK sites), 18 watersheds with one or more active swine CAFOs but no poultry CAFOs (SW sites), and 18 watersheds with at least one active swine CAFO and one active dry-litter poultry CAFO (SP sites). The watershed drainage areas for these 54 stream sites ranged from 1.2 to 17.5 square miles. Conventional fertilizers used for crop production are the primary source of nutrients at the BK sites. Animal-waste manures represent an additional source of nutrients at the SW and SP study sites.

  19. Evaluating the Effectiveness of Agricultural Management Practices under Climate Change for Water Quality Improvement in a Rural Agricultural Watershed of Oklahoma, USA

    Science.gov (United States)

    Rasoulzadeh Gharibdousti, S.; Kharel, G.; Stoecker, A.; Storm, D.

    2016-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. The FCR watershed with an area of 813 km2 includes one major lake fed by four tributaries. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. In this study we aim to estimate the effectiveness of different BMPs in improving watershed health under future climate projections. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the FCR watershed. The watershed was delineated using the 10 m USGS Digital Elevation Model and divided into 43 sub-basins with an average area of 8 km2 (min. 0.2 km2 - max. 28 km2). Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 1,217 hydrologic response units. The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated (1991 - 2000) and validated (2001 - 2010) against the monthly USGS observations of streamflow recorded at the watershed outlet using three statistical matrices: coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB). Model parametrization resulted into satisfactory values of R2 (0.56) and NS (0.56) in calibration period and an excellent model performance (R2 = 0.75; NS = 0.75; PB = water and sediment yields under a combination of three Coupled Model Intercomparison Project-5 Global Climate Model projections and two concentration pathways (4.5 and 8.5) downscaled to the

  20. Water resources of the Pomme de Terre River Watershed, West-central Minnesota

    Science.gov (United States)

    Cotter, R.D.; Bidwell, L.E.

    1966-01-01

    The watershed is underlain by water-bearing glacial drift, cretaceous rocks, and Precambrian crystalline rocks.  It is an elongate basin 92 miles long and has a drainage area of 977 square miles.  The Pomme de Terre River flows within an outwash valley discharging into the Minnesota River at Marsh Lake.

  1. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  2. Storms do not alter long-term watershed development influences on coastal water quality

    Science.gov (United States)

    A twelve year (2000 − 2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially i...

  3. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin

    2012-01-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak......, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210....... Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a “delivery” mechanism for excess nutrients...

  4. Impact of Water Usage on the Hydrology of Streams in the Mill River Watershed, Massachusetts

    Science.gov (United States)

    Newton, R. M.; Rhodes, A. L.; Pufall, A.; Bradstreet, E.; Katchpole, S.; Mattison, E.; Woods, R.

    2001-05-01

    Removal of surface water for municipal water supplies has reduced base flow in two tributary streams to the Mill River in Whately Massachusetts. This reduction in the flow of high quality water from these tributaries reduces the amount of dilution of high anthropogenic chemical loads in the main branch of the Mill River leading to high concentrations of chloride and sulfate. The city of Northampton, operates a reservoir on West Brook that removes an average of 5,700 m3/day. West Brook occupies a 28.4 km2 watershed underlain by Paleozoic igneous and metamorphic rocks that are mainly overlain by thin deposits of Pleistocene till. There are isolated areas of stratified drift in the area of the reservoir and where West Brook enters into the area formerly occupied by Glacial Lake Hitchcock. The reservoir (0.35 km2 in area) lies within the upper third of the subcatchment and is primarily fed by Avery Brook (7.6 km2 watershed). Although the reservoirs watershed represent about one third of the West Brook watershed, high water demands limit the release of water from the reservoir to periods of high flow associated with intense rainfall or snowmelt events. A comparison of unit hydrographs from Avery Brook, upstream of the reservoir with those from West Brook near where it enters the Mill River show significant lower discharges downstream (1mm/day). A comparison of flow duration curves show that discharges below the reservoir are dramatically lower during low flow conditions. The town of South Deerfield operates a reservoir on Roaring Brook that removes approximately 3,800 m3/day. Roaring Brook occupies a 14.0 km2 watershed that is similar in geology to West Brook. The reservoir is located on the downstream section of the brook just above where it enters the Mill River. Unlike the Northampton reservoir, water is almost continually released from the reservoir although the rate does fluctuate greatly. Data from a gage station located just downstream of the dam show rapid

  5. The experimental watersheds in Slovenia

    International Nuclear Information System (INIS)

    Sraj, M; Rusjan, S; Petan, S; Vidmar, A; Mikos, M; Globevnik, L; Brilly, M

    2008-01-01

    Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.

  6. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    Science.gov (United States)

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    Excessive nutrients and sediment are among the most significant environmental stressors in the Delaware Inland Bays (Rehoboth, Indian River, and Little Assawoman Bays). Sources of nutrients, sediment, and other contaminants within the Inland Bays watershed include point-source discharges from industries and wastewater-treatment plants, runoff and infiltration to ground water from agricultural fields and poultry operations, effluent from on-site wastewater disposal systems, and atmospheric deposition. To determine the most effective restoration methods for the Inland Bays, it is necessary to understand the relative distribution and contribution of each of the possible sources of nutrients, sediment, and other contaminants. A cooperative study involving the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was initiated in 2000 to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed that can be used as a water-resources planning and management tool. The model code Hydrological Simulation Program - FORTRAN (HSPF) was used. The 719-square-kilometer watershed was divided into 45 model segments, and the model was calibrated using streamflow and water-quality data for January 1999 through April 2000 from six U.S. Geological Survey stream-gaging stations within the watershed. Calibration for some parameters was accomplished using PEST, a model-independent parameter estimator. Model parameters were adjusted systematically so that the discrepancies between the simulated values and the corresponding observations were minimized. Modeling results indicate that soil and aquifer permeability, ditching, dominant land-use class, and land-use practices affect the amount of runoff, the mechanism or flow path (surface flow, interflow, or base flow), and the loads of sediment and nutrients. In general, the edge-of-stream total suspended solids yields in the Inland Bays

  7. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  8. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  9. Simulated water budget of a small forested watershed in the continental/maritime hydroclimatic region of the United States

    Science.gov (United States)

    Liang Wei; Timothy E. Link; Andrew T. Hudak; John D. Marshall; Kathleen L. Kavanagh; John T. Abatzoglou; Hang Zhou; Robert E. Pangle; Gerald N. Flerchinger

    2016-01-01

    Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long-term water balances by explicitly simulating the internal...

  10. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  11. Morphological, physical and pedogenetic attributes related to water yield in small watersheds in Guarapari/ES, Brazil

    Directory of Open Access Journals (Sweden)

    Alexson de Mello Cunha

    2011-08-01

    Full Text Available Soil characteristics related to the genesis, land use and management are important factors in water dynamics in watersheds. This study evaluated physical, morphological and pedogenetic attributes related to water yield potential in small watersheds in Guarapari, ES, Brazil. The following representative profiles were selected, morphologically described and sampled in area of Atlantic Forest domain: Lithic Udifolists, Oxyaquic Udifluventes, Typic Paleudults, Typic Hapludults, Typic Hapludox, Oxic Dystrudepts and Typic Endoaquents. Samples were collected in the soil profiles for physical analysis. Measurements of field-saturated hydraulic conductivity and soil penetration resistance were perfomed in some profiles, which were under different uses. The Endoaquents of Limão Creek can be considered efficient as temporary water reservoirs. However, the use of artificial drainage tends to reduce this effect. Differential erosion was detected by the sand texture on the surface of the Typic Paleudults due to the low degree of clay flocculation, slope, high resistance to the penetration and low hydraulic conductivity of the Bt horizon, making it necessary to adopt soil management practices to increase the water infiltration. Under pasture, mainly in the cattle trails where the trampling is more intense, there was high resistance to penetration in the superficial layers of the Typic Hapludults. The Typic Hapludox have the greatest potential for water yield in the small watersheds because of its greater extent in the headwaters and their morphological and physical characteristics, which can result in increased aquifer recharge.

  12. Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Junior Cesar Avanzi

    2013-10-01

    Full Text Available The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE and a Geographic Information System (GIS, and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.

  13. Climate change and watershed mercury export in a Coastal Plain watershed

    Science.gov (United States)

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  14. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  15. Payments for watershed services: opportunities and realities

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Ivan

    2007-08-15

    Many nations have found that regulatory approaches to land and water management have limited impact. An alternative is to create incentives for sound management - under mechanisms known as payments for ecosystem services. It is a simple idea: people who look after ecosystems that benefit others should be recognised and rewarded. In the case of watersheds, downstream beneficiaries of wise upstream land and water use should compensate the stewards. To be effective these 'payments for watershed services' must cover the cost of watershed management. In developing countries, they might also aid local development and reduce poverty. But new research shows that the problems in watersheds are complex and not easily solved. Payments for watershed services do not guarantee poverty reduction and cannot replace the best aspects of regulation.

  16. Effects of Soil Management Practices on Water Erosion under Natural Rainfall Conditions on a Humic Dystrudept

    Directory of Open Access Journals (Sweden)

    Vinicius Ferreira Chaves de Souza

    Full Text Available ABSTRACT Water erosion is the main cause of soil degradation and is influenced by rainfall, soil, topography, land use, soil cover and management, and conservation practices. The objective of this study was to quantify water erosion in a Humic Dystrudept in two experiments. In experiment I, treatments consisted of different rates of fertilizer applied to the soil surface under no-tillage conditions. In experiment II, treatments consisted of a no-tillage in natural rangeland, burned natural rangeland and natural rangeland. Forage turnip, black beans, common vetch, and corn were used in rotation in the treatments with crops in the no-tillage during study period. The treatments with crops and the burned rangeland and natural rangeland were compared to a bare soil control, without cultivation and without fertilization. Increasing fertilization rates increased organic carbon content, soil resistance to disintegration, and the macropore volume of the soil, due to the increase in the dry mass of the crops, resulting in an important reduction in water erosion. The exponential model of the ŷ = ae-bx type satisfactorily described the reduction in water and soil losses in accordance with the increase in fertilization rate and also described the decrease in soil losses in accordance with the increase in dry mass of the crops. Water erosion occurred in the following increasing intensity: in natural rangeland, in cultivated natural rangeland, and in burned natural rangeland. Water erosion had less effect on water losses than on soil losses, regardless of the soil management practices.

  17. Bush encroachment dynamics and rangeland management implications in the Horn of Africa

    Science.gov (United States)

    Rangelands in the Horn of Africa have been undergoing a rapid shift from herbaceous to woody plant dominance in the past decades, threatening subsistence livestock herding and pastoral food security. Despite of significant rangeland management implications, quantification of the spatial extent of en...

  18. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Directory of Open Access Journals (Sweden)

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  19. Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina.

    Science.gov (United States)

    Pilgrim, C M; Mikhailova, E A; Post, C J; Hains, J J

    2014-11-01

    Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (-42.6 % pasture/grassland and -57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the

  20. Climate change effects on rangelands and rangeland management: Affirming the need for monitoring

    Science.gov (United States)

    Daniel W. Mccollum; John A. Tanaka; Jack A. Morgan; John E. Mitchell; William E. Fox; Kristie A. Maczko; Lori Hidinger; Clifford S. Duke; Urs P. Kreuter

    2017-01-01

    Uncertainty as to the extent and magnitude of changes in conditions that might occur due to climate change poses a problem for land and resource managers as they seek to adapt to changes and mitigate effects of climate variability. We illustrate using scenarios of projected future conditions on rangelands in the Northern Great Plains and Desert Southwest of the United...

  1. Quality of water and antibiotic resistance of Escherichia coli from water sources of hilly tribal villages with and without integrated watershed management-a one year prospective study.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Khedkar, Smita U; Lundborg, Cecilia Stålsby

    2014-06-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  2. Primary factors affecting water quality and quantity in four watersheds in Eastern Puerto Rico

    Science.gov (United States)

    Murphy, Sheila F.; Stallard, Robert F.

    2009-01-01

    As part of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, four small watersheds in eastern Puerto Rico were monitored to identify and evaluate the effects of geology, landcover, atmospheric deposition, and other factors on stream water quality and quantity. Two catchments are located on coarse-grained granitic plutonic rocks, which weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sediments, which weather to quartz-poor, fine-grained soils. These differing soil materials result in different hydrologic regimes. Soils on the granitic rocks have greater permeability than those developed on the volcaniclastic rocks, allowing more water infiltration and potentially greater landslide erosion rates. For each bedrock type, one catchment was covered with mature rainforest, and the other catchment was affected by agricultural practices typical of eastern Puerto Rico. These practices led to the erosion of much of the original surface soil in the agricultural watersheds, which introduced large quantities of sediment to stream channels. The agricultural watersheds are undergoing natural reforestation, like much of Puerto Rico. Eastern Puerto Rico receives large atmospheric inputs of marine salts, pollutants from the Northern Hemisphere, and Saharan Desert dust. Marine salts contribute over 80 percent of the ionic charge in precipitation, with peak inputs in January. Intense storms, mostly hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Temperate pollution contributes nitrate, ammonia, and sulfate, with maximum inputs during northern cold fronts in January, April, and May. Pollution inputs have increased through time. Desert dust peaks in June and July, during times of maximum dust transport from the Saharan Desert across the Atlantic Ocean.

  3. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  4. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    Science.gov (United States)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science

  5. Management of communal rangelands - the dialogue between science and indigenous knowledge: the case of the Eastern Cape

    CSIR Research Space (South Africa)

    Dube, S

    2010-07-01

    Full Text Available Communal area rangeland resource users are an important part of the rangeland ecosystem; rangeland management policies and practice should, therefore, accommodate their socio-cultural practices and knowledge. Indigenous knowledge (IK) is often...

  6. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Directory of Open Access Journals (Sweden)

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land management based on statistical probability. This study provides an important initial evaluation of alpine rangeland, for which ground-based information is limited.

  7. Fractal water quality fluctuations spanning the periodic table in an intensively farmed watershed.

    Science.gov (United States)

    Aubert, Alice H; Kirchner, James W; Gascuel-Odoux, Chantal; Faucheux, Mikael; Gruau, Gérard; Mérot, Philippe

    2014-01-21

    Recently developed measurement technologies can monitor surface water quality almost continuously, creating high-frequency multiparameter time series and raising the question of how best to extract insights from such rich data sets. Here we use spectral analysis to characterize the variability of water quality at the AgrHys observatory (Western France) over time scales ranging from 20 min to 12 years. Three years of daily sampling at the intensively farmed Kervidy-Naizin watershed reveal universal 1/f scaling for all 36 solutes, yielding spectral slopes of 1.05 ± 0.11 (mean ± standard deviation). These 36 solute concentrations show varying degrees of annual cycling, suggesting different controls on watershed export processes. Twelve years of daily samples of SO4, NO3, and dissolved organic carbon (DOC) show that 1/f scaling does not continue at frequencies below 1/year in those constituents, whereas a 12-year daily record of Cl shows a general 1/f trend down to the lowest measurable frequencies. Conversely, approximately 12 months of 20 min NO3 and DOC measurements show that at frequencies higher than 1/day, the spectra of these solutes steepen to slopes of roughly 3, and at time scales shorter than 2-3 h, the spectra flatten to slopes near zero, reflecting analytical noise. These results confirm and extend the recent discovery of universal fractal 1/f scaling in water quality at the relatively pristine Plynlimon watershed in Wales, further demonstrating the importance of advective-dispersive transport mixing in catchments. However, the steeper scaling at subdaily time scales suggests additional short-term damping of solute concentrations, potentially due to in-stream or riparian processes.

  8. Land use and water quality degradation in the Peixe-Boi River watershed

    OpenAIRE

    Bruno Wendell de Freitas Pereira; Maria de Nazaré Martins Maciel; Francisco de Assis Oliveira; Marcelo Augusto Moreno da Silva Alves; Adriana Melo Ribeiro; ; Bruno Monteiro Ferreira; Ellen Gabriele Pinto Ribeiro

    2016-01-01

    This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage networ...

  9. Vegetation - Herbivory Dynamics in Rangeland Ecosystems: Geospatial Modeling for Savanna and Wildlife Conservation in California and Namibia

    OpenAIRE

    Tsalyuk, Miriam

    2014-01-01

    Rangelands cover about half of Earth's land surface, encompass considerable biodiversity, and provide pivotal ecosystem services. However, rangelands across the globe face degradation due to changes in climate, land use, and management. Moreover, since herbivory is fundamental to rangeland ecosystem dynamics, shifts in the distribution of herbivores lead to overgrazing and desertification. To better understand, predict, and prevent changes on rangelands it is important to monitor these landsc...

  10. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Science.gov (United States)

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  11. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  12. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS

    Directory of Open Access Journals (Sweden)

    Haw Yen

    2016-04-01

    Full Text Available In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT has been demonstrated to provide superior performance with a large amount of referencing databases. However, it is cumbersome to perform tedious initialization steps such as preparing inputs and developing a model with each changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS is introduced to serve as a national-scale Decision Support System (DSS to conduct challenging watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A & M University, and supported by the U.S. Environmental Protection Agency. Three different spatial resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12 and three temporal scales (time steps in daily/monthly/annual are available as alternatives for general users. In addition, users can specify preferred values of model parameters instead of using the pre-defined sets. With the aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only providing the ending HUC number of the targeted watershed and the simulation period. In the case study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS framework while conducting relevant topics or policies in the future.

  13. Methodological application for the study of water ecosystem services associated with human consumption of water: the case study of the micro-watershed of Rio Macho, subbasin of the Rio Virilla, Costa Rica

    International Nuclear Information System (INIS)

    Cascante Campos, Alejandro; Mendez Garcia, Maria

    2014-01-01

    The priority areas of intervention to support environmental management of the micro-watershed of the Rio Macho are determined from the supply of water ecosystem services, associated with human consumption of water. Socioeconomic and biophysical conditions are characterized in that micro-watershed. The state of the main variables are determined in the incidence of the supply of water ecosystem services in the micro-watershed. A zoning is realized to determine the priority areas of intervention based on the supply of water ecosystem services. Intervention guidelines are proposed in the different priority areas to improve the supply of water ecosystem services of the future. The proposals were focused on the protection of forest cover, pollution reduction plans in riverbeds and the work with communities in environmental education programs [es

  14. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.

    Science.gov (United States)

    Yang, Qi; Benoy, Glenn A; Chow, Thien Lien; Daigle, Jean-Louis; Bourque, Charles P-A; Meng, Fan-Rui

    2012-01-01

    Runoff from crop production in agricultural watersheds can cause widespread soil loss and degradation of surface water quality. Beneficial management practices (BMPs) for soil conservation are often implemented as remedial measures because BMPs can reduce soil erosion and improve water quality. However, the efficacy of BMPs may be unknown because it can be affected by many factors, such as farming practices, land-use, soil type, topography, and climatic conditions. As such, it is difficult to estimate the impacts of BMPs on water quality through field experiments alone. In this research, the Soil and Water Assessment Tool was used to estimate achievable performance targets of water quality indicators (sediment and soluble P loadings) after implementation of combinations of selected BMPs in the Black Brook Watershed in northwestern New Brunswick, Canada. Four commonly used BMPs (flow diversion terraces [FDTs], fertilizer reductions, tillage methods, and crop rotations), were considered individually and in different combinations. At the watershed level, the best achievable sediment loading was 1.9 t ha(-1) yr(-1) (89% reduction compared with default scenario), with a BMP combination of crop rotation, FDT, and no-till. The best achievable soluble P loading was 0.5 kg ha(-1) yr(-1) (62% reduction), with a BMP combination of crop rotation and FDT and fertilizer reduction. Targets estimated through nonpoint source water quality modeling can be used to evaluate BMP implementation initiatives and provide milestones for the rehabilitation of streams and rivers in agricultural regions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA.

    Science.gov (United States)

    Böhlke, John Karl; Michel, Robert L

    2009-07-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO(4)(=) differ by a factor of 2, and seasonal variations in SO(4)(=) concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing (3)H, (35)S, delta(34)S, delta(2)H, delta(18)O, delta(3)He, CFC-12, SF(6), and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO(4)(=) and radioactive (35)S were about twice as high in throughfall as in open deposition, but the weighted composite values of (35)S/S (11.1 and 12.1x10(-15)) and delta(34)S (+3.8 and +4.1 per thousand) were similar. In both streams (Shelter Run, Mill Run), (3)H concentrations and delta(34)S values during high flow were similar to those of modern deposition, delta(2)H and delta(18)O values exhibited damped seasonal variations, and (35)S/S ratios (0-3x10(-15)) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO(4)(=) in both watersheds. In the Mill Run watershed, (3)H concentrations in stream base flow (10-13 TU) were consistent with relatively young groundwater discharge, most delta(34)S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO(4)(=) was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, (3)H concentrations in stream base flow (1-3 TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow delta(34)S values (+1.6 per thousand) were significantly lower than the modern deposition values, and the annual export rate of SO(4)(=) was less than the modern deposition rate

  16. Plant/life form considerations in the rangeland hydrology and erosion model (RHEM)

    Science.gov (United States)

    Resilience of rangeland to erosion has largely been attributed to adequate plant cover; however, plant life/growth form, and individual species presence can have a dramatic effect on hydrologic and erosion dynamics on rangelands. Plant life/growth form refers to genetic tendency of a plant to grow i...

  17. Watershed Management Optimization Support Tool (WMOST) ...

    Science.gov (United States)

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  18. Climate, water use, and land surface transformation in an irrigation intensive watershed - streamflow responses from 1950 through 2010

    Science.gov (United States)

    Dale, Joseph; Zou, Chris B.; Andrews, William J.; Long, James M.; Liang, Ye; Qiao, Lei

    2015-01-01

    Climatic variability and land surface change have a wide range of effects on streamflow and are often difficult to separate. We analyzed long-term records of climate, land use and land cover, and re-constructed the water budget based on precipitation, groundwater levels, and water use from 1950 through 2010 in the Cimarron–Skeleton watershed and a portion of the Cimarron–Eagle Chief watershed in Oklahoma, an irrigation-intensive agricultural watershed in the Southern Great Plains, USA. Our results show that intensive irrigation through alluvial aquifer withdrawal modifies climatic feedback and alters streamflow response to precipitation. Increase in consumptive water use was associated with decreases in annual streamflow, while returning croplands to non-irrigated grasslands was associated with increases in streamflow. Along with groundwater withdrawal, anthropogenic-induced factors and activities contributed nearly half to the observed variability of annual streamflow. Streamflow was more responsive to precipitation during the period of intensive irrigation between 1965 and 1984 than the period of relatively lower water use between 1985 and 2010. The Cimarron River is transitioning from a historically flashy river to one that is more stable with a lower frequency of both high and low flow pulses, a higher baseflow, and an increased median flow due in part to the return of cropland to grassland. These results demonstrated the interrelationship among climate, land use, groundwater withdrawal and streamflow regime and the potential to design agricultural production systems and adjust irrigation to mitigate impact of increasing climate variability on streamflow in irrigation intensive agricultural watershed.

  19. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    Science.gov (United States)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  20. Farmers’ and Consumers’ Preferences for Drinking Water Quality Improvement through Land Management Practices: The Case Study of the Soyang Watershed in South Korea

    OpenAIRE

    Saem Lee; Hyun No Kim; Trung Thanh Nguyen; Thomas Koellner; Hio-Jung Shin

    2018-01-01

    The drinking water quality along the Soyang watershed has been affected negatively by the intensive agricultural practices in the upstream area. Our study used a choice experiment method in order to estimate the values that the upstream water providers (i.e., farmers) and downstream water users (i.e., consumers) attach to the following attributes, namely, the agricultural profits, water quality, and biodiversity level of the Soyang watershed in South Korea. The preferences of the upstream wat...

  1. Understanding toxicity at the watershed scale : design of the Syncrude Sandhill Fen watershed research project

    International Nuclear Information System (INIS)

    Wytrykush, C.

    2010-01-01

    Fens are peat-accumulating wetlands with a water table consisting of mineral-rich ground or surface water. This study discussed the construction of a fen-type reclaimed wetland constructed in a post-mining oil sands landscape. Syncrude Canada's Sandhill fen watershed project represents the first attempt at constructing a fen wetland in the oil sands region. The wetland and its watershed will be constructed on a soft tailings deposit. The design basis for the fen and watershed was developed by a team of researchers and scientists. The aim of the fen design was to control the salinity caused by tailings consolidation and seepage over time. Methods of mitigating potentially toxic effects from salinity were discussed.

  2. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Science.gov (United States)

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  3. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    Science.gov (United States)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial

  4. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  5. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed

    Science.gov (United States)

    Rodriguez, Hector German; Popp, Jennie; Maringanti, Chetan; Chaubey, Indrajeet

    2011-01-01

    An increased loss of agricultural nutrients is a growing concern for water quality in Arkansas. Several studies have shown that best management practices (BMPs) are effective in controlling water pollution. However, those affected with water quality issues need water management plans that take into consideration BMPs selection, placement, and affordability. This study used a nondominated sorting genetic algorithm (NSGA-II). This multiobjective algorithm selects and locates BMPs that minimize nutrients pollution cost-effectively by providing trade-off curves (optimal fronts) between pollutant reduction and total net cost increase. The usefulness of this optimization framework was evaluated in the Lincoln Lake watershed. The final NSGA-II optimization model generated a number of near-optimal solutions by selecting from 35 BMPs (combinations of pasture management, buffer zones, and poultry litter application practices). Selection and placement of BMPs were analyzed under various cost solutions. The NSGA-II provides multiple solutions that could fit the water management plan for the watershed. For instance, by implementing all the BMP combinations recommended in the lowest-cost solution, total phosphorous (TP) could be reduced by at least 76% while increasing cost by less than 2% in the entire watershed. This value represents an increase in cost of 5.49 ha-1 when compared to the baseline. Implementing all the BMP combinations proposed with the medium- and the highest-cost solutions could decrease TP drastically but will increase cost by 24,282 (7%) and $82,306 (25%), respectively.

  6. Guiding principles for management of forested, agricultural, and urban watersheds

    Science.gov (United States)

    Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard

    2015-01-01

    Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...

  7. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts.

    Science.gov (United States)

    Spromberg, Julann A; Baldwin, David H; Damm, Steven E; McIntyre, Jenifer K; Huff, Michael; Sloan, Catherine A; Anulacion, Bernadita F; Davis, Jay W; Scholz, Nathaniel L

    2016-04-01

    Adult coho salmon Oncorhynchus kisutch return each autumn to freshwater spawning habitats throughout western North America. The migration coincides with increasing seasonal rainfall, which in turn increases storm water run-off, particularly in urban watersheds with extensive impervious land cover. Previous field assessments in urban stream networks have shown that adult coho are dying prematurely at high rates (>50%). Despite significant management concerns for the long-term conservation of threatened wild coho populations, a causal role for toxic run-off in the mortality syndrome has not been demonstrated.We exposed otherwise healthy coho spawners to: (i) artificial storm water containing mixtures of metals and petroleum hydrocarbons, at or above concentrations previously measured in urban run-off; (ii) undiluted storm water collected from a high traffic volume urban arterial road (i.e. highway run-off); and (iii) highway run-off that was first pre-treated via bioinfiltration through experimental soil columns to remove pollutants.We find that mixtures of metals and petroleum hydrocarbons - conventional toxic constituents in urban storm water - are not sufficient to cause the spawner mortality syndrome. By contrast, untreated highway run-off collected during nine distinct storm events was universally lethal to adult coho relative to unexposed controls. Lastly, the mortality syndrome was prevented when highway run-off was pretreated by soil infiltration, a conventional green storm water infrastructure technology.Our results are the first direct evidence that: (i) toxic run-off is killing adult coho in urban watersheds, and (ii) inexpensive mitigation measures can improve water quality and promote salmon survival. Synthesis and applications . Coho salmon, an iconic species with exceptional economic and cultural significance, are an ecological sentinel for the harmful effects of untreated urban run-off. Wild coho populations cannot withstand the high rates of

  8. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    Science.gov (United States)

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  9. Stream water chemistry in watersheds receiving different atmospheric inputs of H+, NH4+, NO3-, and SO42-1

    Science.gov (United States)

    Stottlemyer, R.

    1997-01-01

    Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3-, and SO42-. Volume-weighted precipitation H+, NH4+, NO3-, and SO42- concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3- and SO42- concentrations, but the highest stream water NO3and SO42- concentrations. Among sites, the ratio of mean monthly upstream NO3- concentration to precipitation NO3- concentration declined (p 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha-1 y-1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.

  10. Applying a dryland degradation framework for rangelands: the case of Mongolia.

    Science.gov (United States)

    Jamsranjav, C; Reid, R S; Fernández-Giménez, M E; Tsevlee, A; Yadamsuren, B; Heiner, M

    2018-04-01

    Livestock-caused rangeland degradation remains a major policy concern globally and the subject of widespread scientific study. This concern persists in part because it is difficult to isolate the effects of livestock from climate and other factors that influence ecosystem conditions. Further, degradation studies seldom use multiple plant and soil indicators linked to a clear definition of and ecologically grounded framework for degradation assessment that distinguishes different levels of degradation. Here, we integrate two globally applicable rangeland degradation frameworks and apply them to a broad-scale empirical data set for the country of Mongolia. We compare our assessment results with two other recent national rangeland degradation assessments in Mongolia to gauge consistency of findings across assessments and evaluate the utility of our framework. We measured livestock-use impacts across Mongolia's major ecological zones: mountain and forest steppe, eastern steppe, steppe, and desert steppe. At 143 sites in 36 counties, we measured livestock-use and degradation indicators at increasing distances from livestock corrals in winter-grazed pastures. At each site, we measured multiple indicators linked to our degradation framework, including plant cover, standing biomass, palatability, species richness, forage quality, vegetation gaps, and soil surface characteristics. Livestock use had no effect on soils, plant species richness, or standing crop biomass in any ecological zone, but subtly affected plant cover and palatable plant abundance. Livestock effects were strongest in the steppe zone, moderate in the desert steppe, and limited in the mountain/forest and eastern steppes. Our results aligned closely with those of two other recent country-wide assessments, suggesting that our framework may have widespread application. All three assessments found that very severe and irreversible degradation is rare in Mongolia (1-18% of land area), with most rangelands

  11. The Environmental Protection Agency's Watershed-based Approach: where social and natural sciences meet to address today's water resource challenges

    Science.gov (United States)

    Biddle, J. C.

    2010-12-01

    A growing number of governmental organizations at the local, state, and federal level collaborate with nongovernmental organizations and individuals to solve watershed scale problems (Imperial and Koontz, 2007). Such a shift in policy approach from hierarchical regulation to bottom-up collaboration is largely a result of regulator’s recognition of the interdependence of natural and socio-economic systems on a watershed scale (Steelman and Carmin, 2002. Agencies throughout the federal government increasingly favored new governing institutions that encourage cooperation between local actors with conflicting interests, divergent geographic bases, and overlapping administrative jurisdictions to resolve continuing disputes over resource management (Bardach 1998). This favoritism of collaborative over command-and-control approaches for managing nonpoint source pollution led to the development of watershed partnerships and the watershed-based approach (Lubell et al., 2002). This study aims to further collaborative governance scholarship and aid decision-makers in identifying the critical elements of collaborative governance resulting in environmental improvements. To date, this relationship has not been empirically determined, in spite of the fact that collaborative governance is used routinely by the U.S. Environmental Protection Agency in resolving issues related to watershed management and other applications. This gap in the research is largely due to the lack of longitudinal data. In order to determine whether changes have occurred, environmental data must be collected over relatively long time periods (Koontz and Thomas, 2006; Sabatier, et al., 2005). However, collecting these data is often cost prohibitive. Monitoring water quality is expensive and requires technical expertise, and is often the first line item cut in environmental management budgets. This research is interdisciplinary, looking at the physical, chemical, and biological parameters for 44 waterbodies

  12. Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach

    Science.gov (United States)

    Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.

    2018-06-01

    A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.

  13. Current stage of the restoration of Chernozems in rangeland ecosystems of the steppe zone

    Science.gov (United States)

    Rusanov, A. M.

    2015-06-01

    The results of two rounds of soil and geobotanic surveys of rangeland ecosystems in the steppe zone are presented. The same sites with southern chernozems (Calcic Chernozems) under steppe plant communities at different stages of pasture degradation were investigated at the end of the 1980s, when they suffered maximum anthropogenic loads, and in 2011-2013, after a long period of relative rest. In the 1980s, degradation of soil physical properties in rangeland ecosystems under the impact of long-term unsustainable management was noted. At the same time, it was found that the major qualitative and quantitative properties of humus in the chernozems were preserved independently from the level of pasture degradation. The following period of moderate grazing pressure had a favorable effect on the soil properties. Owing to the good characteristics of the soil humus, the restoration of the physical properties of chernozems-including their structural state, water permeability, and bulk density-took place in a relatively short period. It is argued that the soil bulk density is a natural regulator of the species composition of steppe vegetation, because true grasses (Poaceae)-typical representatives of the steppe flora-have a fibrous root system requiring the soils with low density values. The improvement of the properties of chernozems is related to the development of secondary ecosystems with a higher portion of grasses in place of damaged rangelands and to the increase in the area of nominal virgin phytocenoses.

  14. Livestock-rangeland management practices and community perceptions towards rangeland degradation in South Omo zone of Southern Ethiopia

    NARCIS (Netherlands)

    Admasu, T.; Abule, E.; Tessema, Z.K.

    2010-01-01

    A survey was conducted in Hamer and Benna-Tsemay districts of the South Omo zone of Ethiopia, with the objectives of assessing the range-livestock management practices and perceptions of the different pastoral groups (Hamer, Benna, and Tsemay) towards rangeland degradation. This information is

  15. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  16. The occurrence of Campylobacter in river water and waterfowl within a watershed in southern Ontario, Canada.

    Science.gov (United States)

    Van Dyke, M I; Morton, V K; McLellan, N L; Huck, P M

    2010-09-01

    Quantitative PCR and a culture method were used to investigate Campylobacter occurrence over 3 years in a watershed located in southern Ontario, Canada that is used as a source of drinking water. Direct DNA extraction from river water followed by quantitative PCR analysis detected thermophilic campylobacters at low concentrations (seagulls, ducks and geese) were detected at a similar rate using PCR (32%) and culture-based (29%) methods, and although Campylobacter jejuni was isolated most frequently, C. lari ssp. concheus was also detected. Campylobacter were frequently detected at low concentrations in the watershed. Higher prevalence rates using quantitative PCR was likely because of the formation of viable but nonculturable cells and low recovery of the culture method. In addition to animal and human waste, waterfowl can be an important contributor of Campylobacter in the environment. Results of this study show that Campylobacter in surface water can be an important vector for human disease transmission and that method selection is important in determining pathogen occurrence in a water environment. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  17. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  18. Rangeland Use Rights Privatisation Based on the Tragedy of the Commons: A Case Study from Tibet

    Directory of Open Access Journals (Sweden)

    Yonten Nyima Yundannima

    2017-01-01

    Full Text Available Rangeland use rights privatisation based on a tragedy of the commons assumption has been the backbone of state policy on rangeland management and pastoralism in China. Through an empirical case study from Pelgon county, Tibet Autonomous Region in China, this paper provides an empirical analysis of rangeland use rights privatisation. It shows that the tragedy of the commons is not the correct model to apply to Tibetan pastoralism because pasture use in Tibet has never been an open-access institution. Thus, when the tragedy of the commons model is applied as a rationale for rangeland use rights privatisation, the result is not what is intended by the policy, but rather a misfit to features of pastoralism and thus disruption of the essence of pastoralism, i.e. mobility and flexibility. The paper further shows that a hybrid institution combining household rangeland tenure with community-based use with user fees is a restoration of the pastoralist institution. This demonstrates the capacity of pastoralists to create adaptive new institutions congruent with the interdependent and integrated nature of pastoralism consisting of three components: pastoralists, livestock, and rangeland.

  19. Priority and construction sites of water storage in a watershed in response to climate change

    Science.gov (United States)

    Lin, Cheng-Yu; Zhang, Wen-Yan; Lin, Chao-Yuan

    2014-05-01

    Taiwan is located at the Eastern Asia Monsoon climate zone. Typhoons and/or convectional rains occur frequently and result in high intensity storms in the summer season. Once the detention facilities are shortage or soil infiltration rate become worse in a watershed due to land use, surface runoff is easily to concentrate and threaten the protected areas. Therefore, it is very important to examine the functionality of water storage for a watershed. The purpose of this study is to solve the issue of flooding in the Puzi Creek. A case study of Yizen Bridge Watershed, in which the SCS curve number was used as an index to extract the spatial distribution of the strength of water storage, and the value of watershed mean CN along the main channel was calculated using area-weighting method. Therefore, the hotspot management sites were then derived and the priority method was applied to screen the depression sites for the reference of management authorities in detention ponds placement. The results show that the areas of subzone A with the characteristics of bad condition in topography and soil, which results in poor infiltration. However, the areas are mostly covered with forest and are difficult to create the artificial water storage facilities. Detention dams are strongly recommended at the site of depression in the river channel to decrease discharge velocity and reduce impact from flood disaster. The areas of subzone B are mainly located at the agriculture slope land. The topographic depressions in the farmland are the suitable places to construct the farm ponds for the use of flood detention and sediment deposition in the rainy seasons and irrigation in the dry seasons. Areas of subzone C are mainly occupied the gentle slope land with a better ability in water storage due to low CN value. Farm ponds constructed in the riparian to bypass the nearby river channel can create multifunctional wetland to effectively decrease the peak discharge in the downstream during

  20. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  1. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia

    Science.gov (United States)

    Tarigan, Suria; Wiegand, Kerstin; Sunarti; Slamet, Bejo

    2018-01-01

    In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT) model and observed several watersheds to derive the direct runoff coefficient (C) and baseflow index (BFI). The model had a strong performance, with Nash-Sutcliffe efficiency values of 0.80-0.88 (calibration) and 0.80-0.85 (validation) and percent bias values of -2.9-1.2 (calibration) and 7.0-11.9 (validation). We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a watershed can provide

  2. Global view of remote sensing of rangelands: Evolution, applications, future pathways [Chapter 10

    Science.gov (United States)

    Matt Reeves; Robert A. Washington-Allen; Jay Angerer; E. Raymond Hunt; Ranjani Wasantha Kulawardhana; Lalit Kumar; Tatiana Loboda; Thomas Loveland; Graciela Metternicht; R. Douglas. Ramsey

    2015-01-01

    The term "rangeland" is rather nebulous, and there is no single definition of rangeland that is universally accepted by land managers, scientists, or international bodies (Lund, 2007; Reeves and Mitchell, 2011). Dozens and possibly hundreds (Lund, 2007) of definitions and ideologies exist because various stakeholders often have unique objectives...

  3. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 4: Fishery and rangeland

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.

    2007-01-01

    This fourth part is the continuation of the third part on agricultural products. The major fishery and rangeland products entering the Chinese society from 1980 to 2002 are calculated and analyzed in detail in this paper. The aquatic production, mainly relying on freshwater and seawater breeding, Enhancement policy of fishery resources, including closed fishing season system, construction of artificial fish reefs and ecological fish breeding, etc., is discussed in detail. The degradation of the major rangeland areas, hay yields and intake rangeland resources by the livestock, are also described associated with the strategic adjustment and comprehensive program to protect rangeland resources during the study period

  4. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Science.gov (United States)

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  5. Forest, water and people: The roles and limits of mediation in transforming watershed conflict in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Ahmad Dhiaulhaq

    2017-11-01

    Full Text Available This study focuses on watershed management in Northern Thailand, where conflict over forest, land and water-use is a prevailing problem. A characteristic of watershed conflicts is that they are often multifaceted and involve multiple stakeholders with different interests and values, consequently requiring conflict management approaches that are sustainable in their outcomes, including addressing the underlying causes of the conflicts. Drawing from a case study in Mae Tia Mae Tae watershed in Northern Thailand, this study explores how mediation by external third party can contribute to the transformation of conflicts in the watershed and how the broader institutional contexts in which the conflict is embedded shapes the mediation outcomes. The study suggests that co-creation of mutual understanding and recognition of each party’s socio-cultural differences, including land-use practices, are critical in building trust and in how conflict transformation processes moved forward. Moreover, the ability of the mediator in facilitating the establishment of a deliberative institution (i.e. a watershed network committee and agreed rules on forest utilization were also critical in maintaining long-term collaboration in the watershed and potentially preventing other conflicts arising in the future. Some issues, however, may threaten the continuity of the cooperation and sustainability of peace in the watershed, including the lack of structural reform that formally recognizes local people’s rights, insecure land tenure, and the absence of legal recognition for the watershed network committee as a legitimate mechanism for watershed decision making. The paper discusses these findings by comparing it with those from our previous studies in other locations (Cambodia, Indonesia and Western Thailand to strengthen the insights from Northern Thailand. Finally, the research puts forward some recommendations for reforms and to strengthen the use of effective

  6. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India

    Science.gov (United States)

    Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K. N.

    2009-08-01

    The Kali sub-watershed is situated in the semi-arid region of Gujarat, India and forms a part of the Mahi River Watershed. This watershed receives an average annual rainfall of 900mm mainly between July and September. Due to high runoff potential, evapo-transpiration and poor infiltration, drought like situation prevails in this area from December to June almost every year. In this paper, augmentation of water resource is proposed by construction of runoff harvesting structures like check dam, percolation pond, farm pond, well and subsurface dyke. The site suitability for different water harvesting structures is determined by considering spatially varying parameters like runoff potential, slope, fracture pattern and micro-watershed area. GIS is utilised as a tool to store, analyse and integrate spatial and attribute information pertaining to runoff, slope, drainage and fracture. The runoff derived by SCS-CN method is a function of runoff potential which can be expressed in terms of runoff coefficient (ratio between the runoff and rainfall) which can be classified into three classes, viz., high (>40%), moderate (20-40%) and low (<20%). In addition to IMSD, FAO specifications for water harvesting/recharging structures, parameters such as effective storage, rock mass permeability are herein considered to augment effective storage. Using the overlay and decision tree concepts in GIS, potential water harvesting sites are identified. The derived sites are field investigated for suitability and implementation. In all, the accuracy of the site selection at implementation level varies from 80-100%.

  7. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.

  8. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    Science.gov (United States)

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  9. Determining RUSLE P-factors for stonebunds and trenches in rangeland and cropland, Northern Ethiopia

    Science.gov (United States)

    Taye, Gebeyehu; Poesen, Jean; Vanmaercke, Matthias; Van Wesemael, Bas; Tesfay, Samuel; Teka, Daniel; Nyssen, Jan; Deckers, Jozef; Haregeweyn, Nigussie

    2017-04-01

    The implementation of soil and water conservation (SWC) measures in the Ethiopian highlands is a top priority to reduce soil erosion rates and to enhance the sustainability of agroecosystem. Nonetheless, the effectiveness of many of these measures for different hillslope and land use conditions remains currently poorly understood. As a result, the overall effects of these measures at regional or catchment scale remain hard to quantify. This study addresses this knowledge gap by determining the cover-management (C) and support practice (P) factors of the Revised Universal Soil Loss Equation (RUSLE), for commonly used SWC measures in semi-arid environments (i.e. stone bunds, trenches and a combination of both). Calculations were based on soil loss data collected with runoff plots in Tigray, northern Ethiopia (i.e. 21 runoff plots of 600 to 1000 m2, monitored during 2010, 2011 and 2012). The runoff plots were installed in rangeland and cropland sites corresponding to a gentle (5%), medium (12%) and steep (16%) slope gradients. The C and P factors of the RUSLE were calculated following the recommended standard procedures. Results show that the C-factor for rangeland ranges from 0.31 to 0.98 and from 0.06 to 0.39 for cropland. For rangeland, this large variability is due to variations in vegetation cover caused by grazing. In cropland, C-factors vary with tillage practices and crop types. The calculated P-factors ranged from 0.32 to 0.74 for stone bunds, from 0.07 to 0.65 for trenches and from 0.03 to 0.22 for a combination of both stone bunds and trenches. This variability is partly due to variations in the density of the implemented measures in relation to land use (cropland vs rangeland) and slope angles. However, also annual variations in P factor values are highly significant. Especially trenches showed a very significant decline of effectiveness over time, which is attributable to their reduced static storage capacity as a result of sediment deposition (e.g. for

  10. Water Quality in Micro-watersheds Under Different Land Uses in the Municipality of Alegre, Espírito Santo

    Directory of Open Access Journals (Sweden)

    Milena Scaramussa Pastro

    2018-05-01

    Full Text Available ABSTRACT The present study aimed to evaluate water quality attributes in micro-watersheds under different soil uses. Therefore, four micro-watersheds under the following vegetation cover were selected: pasture, primary forest reforestation, forest, and coffee plantation. Surface and underground water sampling was performed bimonthly between February and December 2014, where thermotolerant coliforms, dissolved oxygen, total nitrogen, phosphorus, turbidity, temperature, pH, biochemical demand for oxygen and total solids were analyzed. Descriptive analyses of each variable were performed during dry and rainy periods, and the values were compared with the normative standards established by Brazilian legislation. Water Quality Indices (WQIs were also calculated for each collection site. All sites presented some type of nonconformity with human consumption standards. The highest WQI values were found in the forest area micro-basin, followed by the coffee plantation and pasture area micro-basins, highlighting the importance of forested areas for water quality.

  11. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    Science.gov (United States)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  12. Heat dosage and oviposition depth influence egg mortality of two common rangeland grasshopper species

    Science.gov (United States)

    Rangeland fire is a common naturally occurring event and management tool, with the amount and structure of biomass controlling transfer of heat belowground. Temperatures grasshopper eggs are exposed to during rangeland fires are mediated by species specific oviposition traits. This experiment examin...

  13. Bayesian estimation of shrubs diversity in rangelands under two management systems in northern Syria

    NARCIS (Netherlands)

    Niane, A.A.; Singh, M.; Struik, P.C.

    2014-01-01

    The diversity of shrubs in rangelands of northern Syria is affected by the grazing management systems restricted by the increase in human and livestock populations. To describe and estimate diversity and compare the rangeland grazing management treatments, two popular indices for diversity, the

  14. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    Science.gov (United States)

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  15. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    Science.gov (United States)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  16. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    Science.gov (United States)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  17. Development of an Intelligent Digital Watershed to understand water-human interaction for a sustainable Agroeconomy in Midwest USA

    Science.gov (United States)

    Mishra, S. K.; Rapolu, U.; Ding, D.; Muste, M.; Bennett, D.; Schnoor, J. L.

    2011-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. Considerable research has been performed to develop an understanding of the impact of local land use decisions on field and catchment processes at an annual basis. Still less is known about the impact of economic and environmental outcomes on decision-making processes at the local and national level. Traditional geographic information management systems lack the ability to support the modeling and analysis of complex spatial processes. New frameworks are needed to track, query, and analyze the massive amounts of data generated by ensembles of simulations produced by multiple models that couple socioeconomic and natural system processes. On this context, we propose to develop an Intelligent Digital Watershed (IDW) which fuses emerging concepts of Digital Watershed (DW). DW is a comprehensive characterization of the eco hydrologic systems based on the best available digital data generated by measurements and simulations models. Prototype IDW in the form of a cyber infrastructure based engineered system will facilitate novel insights into human/environment interactions through multi-disciplinary research focused on watershed-related processes at multiple spatio-temporal scales. In ongoing effort, the prototype IDW is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. This paper would also lay out the database design that stores metadata about simulation scenarios, scenario inputs and outputs, and connections among these elements- essentially the database. The paper describes the cyber infrastructure and

  18. Invasive Plants on Rangelands: a Global Threat

    Science.gov (United States)

    Invasive plant species are spreading and invading rangelands at an unprecedented rate costing ranchers billions of dollars to control invasive plants each year. In its simplest form, the invasion process has four primary stages, including introduction, establishment, spread and colonization. Th...

  19. Application of the Water Erosion Prediction Project (WEPP) Model to simulate streamflow in a PNW forest watershed

    Science.gov (United States)

    A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu

    2011-01-01

    Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...

  20. Integrating the Indigenous Knowledge of Borana Pastoralists into Rangeland Management Strategies in Southern Ethiopia

    OpenAIRE

    World Bank

    2005-01-01

    Pastoralists' indigenous knowledge (IK) about ecology and social organization led to rangeland-management strategies appropriate to deal with the erratic rainfall in African drylands. Herd mobility was traditionally practiced as the key strategy to make use of the scattered rangeland resources on a large scale.

  1. Chapter 19. Cumulative watershed effects and watershed analysis

    Science.gov (United States)

    Leslie M. Reid

    1998-01-01

    Cumulative watershed effects are environmental changes that are affected by more than.one land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  2. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Said, A.; Sehlke, G.; Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T.; Glover, T.

    2006-01-01

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  3. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  4. Fundamentals of watershed hydrology

    Science.gov (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  5. Water quality monitoring of the Pirapó River watershed, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    E. C. Bortoletto

    Full Text Available This study aimed to evaluate the water quality of the Pirapó River watershed in Paraná, Brazil, and identify the critical pollution sites throughout the drainage basin. The water quality was monitored during the period from January 2011 to December 2012. Nine points distributed throughout the main channel of the Pirapó River were sampled for a total of 17 samplings. The water quality was evaluated based on the determination of 14 physical, chemical and microbiological parameters. Analysis of the variables monitored in the Pirapó River watershed using factor analysis/principal components analysis (FA/PCA indicated the formation of three distinct groups of parameters: water temperature (Twater, dissolved oxygen (DO and a group composed of total suspended solids (TSS, turbidity and nitrite (NO2–. The parameters Twater and DO exhibited a relationship with the seasonality, and the TSS, turbidity, and NO2– levels were correlated with surface runoff caused by rainfall events. Principal component analysis (PCA of the sampling points enabled the selection of the 10 most important variables from among the 14 evaluated parameters. The results showed that the nitrate (NO3–, NO2–, TSS, turbidity and total phosphorous (TP levels were related to the soil type, and the parameters DO, electrical conductivity (EC, ammoniacal nitrogen (N-NH3 and thermotolerant coliforms (TC were related to organic matter pollution, with the P5 sampling site being the most critical site. The ordination diagram of the sampling points as a function of the PCA indicated a reduction from 9 to 5 sampling points, indicating the potential for decreasing the costs associated with monitoring.

  6. Sediment–water distribution of contaminants of emerging concern in a mixed use watershed

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, David J., E-mail: david.fairbairn@state.mn.us [University of Minnesota, Water Resources Center, 1985 Buford Ave., St Paul, MN 55108 (United States); Karpuzcu, M. Ekrem [University of Minnesota, Water Resources Center, 1985 Buford Ave., St Paul, MN 55108 (United States); Arnold, William A. [University of Minnesota, Civil, Environmental, and Geo-Engineering, 500 Pillsbury Drive SE, Minneapolis, MN 55455 (United States); Barber, Brian L. [University of Minnesota, Department of Soil, Water, and Climate, 1902 Dudley Ave, Saint Paul, MN 55108 (United States); Kaufenberg, Elizabeth F. [University of Minnesota, Water Resources Center, 1985 Buford Ave., St Paul, MN 55108 (United States); Koskinen, William C. [United States Department of Agriculture, Agricultural Research Service, 1991 Upper Buford Circle, University of Minnesota, Saint Paul, MN 55108 (United States); Novak, Paige J. [University of Minnesota, Civil, Environmental, and Geo-Engineering, 500 Pillsbury Drive SE, Minneapolis, MN 55455 (United States); Rice, Pamela J. [United States Department of Agriculture, Agricultural Research Service, 1991 Upper Buford Circle, University of Minnesota, Saint Paul, MN 55108 (United States); Swackhamer, Deborah L. [University of Minnesota, Water Resources Center, 1985 Buford Ave., St Paul, MN 55108 (United States)

    2015-02-01

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CECs) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from four stream sites for over two years and analyzed for selected personal care products, pesticides, human and veterinary medications, and phytoestrogens. Spatial and temporal analyses indicate that pharmaceuticals and personal care products (urban/residential CECs) are significantly elevated in water and/or sediment at sites with greater population density (> 100 people/km{sup 2}) and percentage of developed land use (> 8% of subwatershed area) than those with less population density and land area under development. Significant spatial variations of agricultural pesticides in water and sediment were detectable, even though all sites had a high percentage of agricultural land use. Seasonality in CEC concentration was observed in water but not in sediment, although sediment concentrations of three CECs did vary between years. Average measured non-equilibrium distribution coefficients exceeded equilibrium hydrophobic partitioning-based predictions for 5 of the 7 detected CECs by at least an order of magnitude. Agreement of measured and predicted distribution coefficients improved with increasing hydrophobicity and in-stream persistence. The more polar and degradable CECs showed greater variability in measured distributions across different sampling events. Our results confirm that CECs are present in urban and agricultural stream sediments, including those CECs that would typically be thought of as non-sorptive based on their log K{sub ow} values. These results and the observed patterns of sediment and water distributions augment existing information to improve prediction of CEC fate and transport, leading to more accurate assessments of exposure and risk to surface water

  7. Hydrologic and water quality monitoring on Turkey Creek watershed, Francis Marion National Forest, SC

    Science.gov (United States)

    D.M. Amatya; T.J. Callahan; A. Radecki-Pawlik; P. Drewes; C. Trettin; W.F. Hansen

    2008-01-01

    The re-initiation of a 7,260 ha forested watershed study on Turkey Creek, a 3rd order stream, within the Francis Marion National forest in South Carolina, completes the development of a multi-scale hydrology and ecosystem monitoring framework in the Atlantic Coastal Plain. Hydrology and water quality monitoring began on the Santee Experimental...

  8. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Minghua

    2009-01-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  9. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  10. Contrasting nitrogen fate in watersheds using agricultural and water quality information

    Science.gov (United States)

    Essaid, Hedeff I.; Baker, Nancy T.; McCarthy, Kathleen A.

    2016-01-01

    Surplus nitrogen (N) estimates, principal component analysis (PCA), and end-member mixing analysis (EMMA) were used in a multisite comparison contrasting the fate of N in diverse agricultural watersheds. We applied PCA-EMMA in 10 watersheds located in Indiana, Iowa, Maryland, Nebraska, Mississippi, and Washington ranging in size from 5 to 1254 km2 with four nested watersheds. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer, and manure for the period from 1987 to 2004. Watershed average Surplus N ranged from 11 to 52 kg N ha−1 and from 9 to 32% of N input. Solute concentrations in streams, overland runoff, tile drainage, groundwater (GW), streambeds, and the unsaturated zone were used in the PCA-EMMA procedure to identify independent components contributing to observed stream concentration variability and the end-members contributing to streamflow and NO3 load. End-members included dilute runoff, agricultural runoff, benthic-processing, tile drainage, and oxic and anoxic GW. Surplus N was larger in watersheds with more permeable soils (Washington, Nebraska, and Maryland) that allowed greater infiltration, and oxic GW was the primary source of NO3 load. Subsurface transport of NO3 in these watersheds resulted in some removal of Surplus N by denitrification. In less permeable watersheds (Iowa, Indiana, and Mississippi), NO3 was rapidly transported to the stream by tile drainage and runoff with little removal. Evidence of streambed removal of NO3 by benthic diatoms was observed in the larger watersheds.

  11. Development and application of the Qausi Distributed Water Balance model (QDWB in the Neishaboor-Rokh watershed

    Directory of Open Access Journals (Sweden)

    sajjad razavi

    2017-03-01

    Full Text Available Limitation of water resources in Iran motivates sustaining and preserving of the resources in order to supply future water needs. Fulfilling these objectives will not be possible unless having accurate water balance of watersheds. The purpose of this study is to estimate the water balance parameters using a distributed method. The large number of distributed models and methods was studied and “Quasi Distributed Water Balance model” (QDWB was written in the MATLAB programming environment. To conduct this model, it is needed that each data layer (precipitation, potential evapotranspiration, land use, soil data,.. to be converted into grid format. In this research the 500m * 500m cell size was used and water balance parameters for each cell was estimated. Runoff and deep percolation obtained from surface balance equation and irrigation needs were estimated based on soil moisture deficit. The study area of 9157 square kilometers is Neyshabour- Rokh watershed. The results showed there is a good correlation between water balance parameters such as precipitation-runoff, precipitation-evapotranspiration, and precipitation- deep percoulation and demonstrate that QDWB model is consistent with the basin hydrological process.Change in soil moisture at basin wide is 1 MCM in 1388-89 and 40 MCM in 1380-81. The evapotranspiration results from a distributed model” SWAT” and QDWB model were in good agreement.

  12. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    Science.gov (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  13. Botanical Criteria of Baharkish Rangeland in Quchan, Khorasan ...

    African Journals Online (AJOL)

    ADOWIE PERE

    University of Mashhad International Campus, Mashhad, I.R of IRAN ... ABSTRACT: Rangelands are natural ecosystems containing a range of resources of genetic ..... Ecology of world vegetation. .... Science Journal of Islamic Azad University,.

  14. Agricultural, Runoff, Erosion and Salinity (ARES) Database to Better Evaluate Rangeland State and Sustainability

    Science.gov (United States)

    Rangelands comprise approximately 40% of the earth’s surface and are the largest land cover type in the world. Degradation from mismanagement, desertification, and drought impact more than 50% of rangelands across the globe. The USDA Agricultural Research Service (ARS) has been evaluating means of r...

  15. Watershed responses to Amazon soya bean cropland expansion and intensification.

    Science.gov (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-05

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  16. Post-Fire soil water repellency, hydrologic response, and sediment yield compared between grass-converted and chaparral watersheds

    Science.gov (United States)

    Ken R. Hubbert; Pete M. Wohlgemuth; Jan L. Beyers; Marcia G. Narog; Ross Gerrard

    2012-01-01

    In 2002, the Williams Fire burned >90 % of the San Dimas Experimental Forest, providing an opportunity to investigate differences in soil water repellency, peak discharge, and sediment yield between grass-converted and chaparral watersheds. Post-fire water repellency and moisture content were measured in the winter and summer for four years. Peak discharge was...

  17. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-11-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET), with

  18. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of

  19. Water-right and water-allocation procedures of farmers' managed perennial spate irrigation systems of mithawan watershed, D.G. Khan, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Ahmad, S.

    2007-01-01

    A study was conducted on water rights, water allocation and local institutions prevailing in the perennial spate irrigation systems of Mithawan watershed o D.G. Khan District of Punjab. The Study Area was selected is the Mthawan watershed on the D.G. Khan-Quetta Road almost 70 kms from D.G. Khan and 10 km away from the road, representing real-life operating systems. Small-scale isolated and large-scale contiguous perennial spate irrigation systems were selected for study. A three-prong methodology was designed covering (a) interactive dialogue of the focus groups to document the community-perceptions regarding systems water-rights, water allocation and local institution prevailing in the area; (b) structured interviews to document systematic data regarding some of the study-aspects; and (c) diagnostic surveys to document some of the measured data regarding scheme performance. Water rights and allocation procedures both in small-scale isolated and large-scale Contiguous perennial spate irrigation-system are very clearly defined and do not change with time and space. Local institutions like Biradri and Muchi take care of just allocation of water. An irrigator is deputed who takes care of allocated time among various tribes. At the same time, the community is bringing more area under irrigation. Obviously it has increased water-requirements and in turn management of irrigation system. Previously they were reconstructing the diversion structure only. Present expansion in irrigated area has increased the necessity of maintaining the water-conveyance network more frequently, particularly at critical sections. However, the realization regarding water-losses still needs to be promoted. The linkages of resource-management with water-productivity are going to be the future area of consideration in theses systems, due to expansion of the system largely because of increased population and urge to increase their livelihood. (author)

  20. Simulated effects of hydrologic, water quality, and land-use changes of the Lake Maumelle watershed, Arkansas, 2004–10

    Science.gov (United States)

    Hart, Rheannon M.; Green, W. Reed; Westerman, Drew A.; Petersen, James C.; DeLanois, Jeanne L.

    2012-01-01

    Lake Maumelle, located in central Arkansas northwest of the cities of Little Rock and North Little Rock, is one of two principal drinking-water supplies for the Little Rock, and North Little Rock, Arkansas, metropolitan areas. Lake Maumelle and the Maumelle River (its primary tributary) are more pristine than most other reservoirs and streams in the region with 80 percent of the land area in the entire watershed being forested. However, as the Lake Maumelle watershed becomes increasingly more urbanized and timber harvesting becomes more extensive, concerns about the sustainability of the quality of the water supply also have increased. Two hydrodynamic and water-quality models were developed to examine the hydrology and water quality in the Lake Maumelle watershed and changes that might occur as the watershed becomes more urbanized and timber harvesting becomes more extensive. A Hydrologic Simulation Program–FORTRAN watershed model was developed using continuous streamflow and discreet suspended-sediment and water-quality data collected from January 2004 through 2010. A CE–QUAL–W2 model was developed to simulate reservoir hydrodynamics and selected water-quality characteristics using the simulated output from the Hydrologic Simulation Program–FORTRAN model from January 2004 through 2010. The calibrated Hydrologic Simulation Program–FORTRAN model and the calibrated CE–QUAL–W2 model were developed to simulate three land-use scenarios and to examine the potential effects of these land-use changes, as defined in the model, on the water quality of Lake Maumelle during the 2004 through 2010 simulation period. These scenarios included a scenario that simulated conversion of most land in the watershed to forest (scenario 1), a scenario that simulated conversion of potentially developable land to low-intensity urban land use in part of the watershed (scenario 2), and a scenario that simulated timber harvest in part of the watershed (scenario 3). Simulated land

  1. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    Science.gov (United States)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  2. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  3. Threats to Mediterranean rangelands: a case study based on the views of citizens in the Viotia prefecture, Greece.

    Science.gov (United States)

    Kyriazopoulos, Apostolos P; Arabatzis, Garyfallos; Abraham, Eleni M; Parissi, Zoi M

    2013-11-15

    Rangelands in Greece constitute a very important natural resource as they occupy 40% of the total surface. Not only is their forage production essential for the development of extensive livestock farming, but also they play a key role in outdoor recreational activities, protection from erosion, provision of water supplies and biodiversity conservation. However, land use changes, inappropriate management and wildfires threaten their existence. The research was conducted among the citizens of Viotia prefecture, an area close to Athens, Greece, using personal interviews with a structured questionnaire in 2008. The aim was to record citizens' opinions regarding the threats to rangelands. The results suggest that the main threats as perceived by the respondents, are land use changes especially for urban development, and wildfires. The application of cluster analysis highlighted the differentiation among the respondents in ranking these threats. The more ecologically aware citizens recognised that mismanagement, abandonment and agriculture also threaten rangelands. These threats can have a considerable impact on the lives of the local people. Policy makers and managers should take the opinions of local citizens into consideration, and engage them in decision making so that sustainable management policies could be applied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Factors affecting long-term trends in surface-water quality in the Gwynns Falls watershed, Baltimore City and County, Maryland, 1998–2016

    Science.gov (United States)

    Majcher, Emily H.; Woytowitz, Ellen L.; Reisinger, Alexander J.; Groffman, Peter M.

    2018-03-30

    Factors affecting water-quality trends in urban streams are not well understood, despite current regulatory requirements and considerable ongoing investments in gray and green infrastructure. To address this gap, long-term water-quality trends and factors affecting these trends were examined in the Gwynns Falls, Maryland, watershed during 1998–2016 in cooperation with Blue Water Baltimore. Data on water-quality constituents and potential factors of influence were obtained from multiple sources and compiled for analysis, with a focus on data collected as part of the National Science Foundation funded Long-Term Ecological Research project, the Baltimore Ecosystem Study.Variability in climate (specifically, precipitation) and land cover can overwhelm actions taken to improve water quality and can present challenges for meeting regulatory goals. Analysis of land cover during 2001–11 in the Gwynns Falls watershed indicated minimal change during the study time frame; therefore, land-cover change is likely not a factor affecting trends in water quality. However, a modest increase in annual precipitation and a significant increase in winter precipitation were apparent in the region. A higher proportion of runoff producing storms was observed in the winter and a lower proportion in the summer, indicating that climate change may affect water quality in the watershed. The increase in precipitation was not reflected in annual or seasonal trends of streamflow in the watershed. Nonetheless, these precipitation changes may exacerbate the inflow and infiltration of water to gray infrastructure and reduce the effectiveness of green infrastructure. For streamflow and most water-quality constituents examined, no discernable trends were noted over the timeframe examined. Despite the increases in precipitation, no trends were observed for annual or seasonal discharge at the various sites within the study area. In some locations, nitrate, phosphate, and total nitrogen show downward

  5. Water Resource Assessment, Gaps, and Constraints of Vegetable Production in Robit and Dangishta Watersheds, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worqlul, A. W.; Dile, Y.; Jeong, J.; Schmitter, P.; Bizimana, J. C.; Gerik, T.; Srinivasan, R.; Richardson, J. W.; Clarke, N.

    2017-12-01

    Rainfed agriculture supports the majority of the poor in sub-Saharan Africa. However, rainfall variability, land degradation and low soil fertility lessen their effectiveness for feeding the growing population. This study aims to estimate the water resources potential to sustain small-scale irrigation (SSI) in Ethiopia into the dry season to expand the food supply by growing vegetable and to understand the gaps and constraints of irrigated vegetable production. The case studies were located in Robit and Dangishta watersheds of the Ethiopian highlands near Lake Tana, where detailed field-level data were collected. The study focused on data from 18 households who have been cultivating tomato and onion during the dry season using irrigation in each watershed. The two components of the Integrated Decision Support System (IDSS) - the Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) - were used to assess impacts of SSI at multiple scales. Results suggest that there is a substantial amount of surface runoff and shallow groundwater recharge at watershed scale. The field-scale analysis within the Robit watershed indicated that optimal tomato yield could be obtained with 450 mm of irrigation and 200 to 250 kg/ha of urea with 50 kg/ha of diammonium phosphate (DAP). In Dangishta, optimum onion yield can be obtained by applying 550 mm irrigation and 120 to 180 kg/ha of urea with 50 kg/ha of DAP. Studying field scale water balance, the average shallow groundwater recharge (after accounting other groundwater users such as household and livestock uses) was not sufficient to meet tomato and onion water demand. The field-scale analysis also indicated that soil evaporation attributed a significant proportion of evapotranspiration (i.e. 60% of the evapotranspiration for onion and 40% for tomato). Use of mulching or other soil and water conservation interventions could increase water for cropping by reducing soil evaporation thereby enhancing

  6. Rangeland resource trends in the United States: A technical document supporting the 2000 USDA Forest Service RPA Assessment

    Science.gov (United States)

    John E. Mitchell

    2000-01-01

    This report documents trends in America's rangelands as required by the Renewable Resources Planning Act of 1974. The Forest Service has conducted assessments of the rangeland situation for 30 years. Over this period, rangeland values and uses have gradually shifted from concentrating upon forage production and meeting increasing demand for red meat to a more...

  7. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2017-05-01

    Full Text Available In this paper, a stochastic multi-objective chance-constrained programming model (SMOCCP was developed for tackling the water supply management problem. Two objectives were included in this model, which are the minimization of leakage loss amounts and total system cost, respectively. The traditional SCCP model required the random variables to be expressed in the normal distributions, although their statistical characteristics were suitably reflected by other forms. The SMOCCP model allows the random variables to be expressed in log-normal distributions, rather than general normal form. Possible solution deviation caused by irrational parameter assumption was avoided and the feasibility and accuracy of generated solutions were ensured. The water supply system in the Xiaoqing River watershed was used as a study case for demonstration. Under the context of various weight combinations and probabilistic levels, many types of solutions are obtained, which are expressed as a series of transferred amounts from water sources to treated plants, from treated plants to reservoirs, as well as from reservoirs to tributaries. It is concluded that the SMOCCP model could reflect the sketch of the studied region and generate desired water supply schemes under complex uncertainties. The successful application of the proposed model is expected to be a good example for water resource management in other watersheds.

  8. Rehabilitation of community-owned, mixed-use rangelands: Lessons from the Ewaso ecosystem in Kenya

    Science.gov (United States)

    Globally, 10-20% of arid and semi-arid rangelands have been classified as severely degraded (UNCCD 1994; MEA 2005), and in sub-Saharan Africa specifically, 70% of rangelands are considered moderately to severely degraded (Dregne 1992; UNCCD 1994). Given that these drylands make up 43% of Africa’s la...

  9. McKenzie River Watershed Coordination, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2003-11-01

    BPA funding, in conjunction with contributions from numerous partners organizations and grant funds supports the McKenzie Watershed Council's (MWC) efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. Primary goals of the MWC are to improve resource stewardship and conserve fish, wildlife, and water quality resources. Underpinning the goals is the MWC's baseline program centered on relationship building and information sharing. Objectives for FY02 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups to restore fish and wildlife habitat in the watershed, with a focus on the middle to lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though an outreach and education program, utilizing (BPA funded) Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations.

  10. Influence of watershed topographic and socio-economic attributes on the climate sensitivity of global river water quality

    Science.gov (United States)

    Khan, Afed U.; Jiang, Jiping; Wang, Peng; Zheng, Yi

    2017-10-01

    Surface waters exhibit regionalization due to various climatic conditions and anthropogenic activities. Here we assess the impact of topographic and socio-economic factors on the climate sensitivity of surface water quality, estimated using an elasticity approach (climate elasticity of water quality (CEWQ)), and identify potential risks of instability in different regions and climatic conditions. Large global datasets were used for 12 main water quality parameters from 43 water quality monitoring stations located at large major rivers. The results demonstrated that precipitation elasticity shows higher sensitivity to topographic and socio-economic determinants as compared to temperature elasticity. In tropical climate class (A), gross domestic product (GDP) played an important role in stabilizing the CEWQ. In temperate climate class (C), GDP played the same role in stability, while the runoff coefficient, slope, and population density fuelled the risk of instability. The results implied that watersheds with lower runoff coefficient, thick population density, over fertilization and manure application face a higher risk of instability. We discuss the socio-economic and topographic factors that cause instability of CEWQ parameters and conclude with some suggestions for watershed managers to bring sustainability in freshwater bodies.

  11. Spatial distribution of overland flow and sediment yield in semi-arid rangelands

    International Nuclear Information System (INIS)

    Sarah, P.; Lavee, H.

    2009-01-01

    Feedbacks and mutual links exist among soil, vegetation and water; they enable co-evolution of these features within eco-geomorphic systems, These relations are fragile, especially in semi-arid areas where grazing is the main land use. The simples subdivision of the surface of many semi-arid rangelands is into a two-component mosaic pattern comprising shrub patches interspersed with open spaces, with the former acting s skinks for water and other resources, and the latter as sources. However close observations in areas under grazing in the northern Negev region of Israel suggested that the spatial patterns of surface components is more complicated, and that the open space between shrubs consists of two components: herbaceous areas, separated by trampling routes that support no vegetation. (Author)

  12. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  13. Recovery of rangelands : the functioning of soil seed banks in a semi-arid African savanna

    NARCIS (Netherlands)

    Tessema, Z.K.

    2011-01-01

    Rangelands in Africa provide important forage resources for herbivores; particularly perennial grasses provide grazing for domestic and wild herbivores. However, semi-arid African rangelands experience severe vegetation and soil degradation due to heavy grazing, causing negative impacts

  14. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia

    Directory of Open Access Journals (Sweden)

    S. Tarigan

    2018-01-01

    Full Text Available In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis and rubber (Hevea brasiliensis plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT model and observed several watersheds to derive the direct runoff coefficient (C and baseflow index (BFI. The model had a strong performance, with Nash–Sutcliffe efficiency values of 0.80–0.88 (calibration and 0.80–0.85 (validation and percent bias values of −2.9–1.2 (calibration and 7.0–11.9 (validation. We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a

  15. GRACE storage-runoff hystereses reveal the dynamics of regional watersheds

    Science.gov (United States)

    Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. ...

  16. Farmer Resettlements and Water Energy Stresses Arising From Aggravating Drought Conditions in Mahaweli River Watershed, Sri Lanka

    Science.gov (United States)

    Thabrew, L.

    2012-12-01

    Climate change is expected to cause significant changes in water quantity and water quality in river basins throughout the world, with particularly significant impacts in developing regions. Climate change effects are often exacerbated by other simultaneous activities in developing countries, such as population growth, reliance on subsistence agriculture, and expanding provision of electricity. Each of these activities requires access to readily-available freshwater. For example, population growth requires more water for irrigation as food production needs increase. Additionally, water is needed for generating electricity in hydropower facilities as well as other facilities, which require water to run steam turbines or to cool facilities. As such, many developing countries face the real and immediate need to anticipate and adapt to climatic stresses on water resources in both the agricultural and residential sectors. Water withdrawal in both of these sectors is largely driven by individual behaviors, such as electricity use in the home and irrigation practices on farmland, aggregated at the household, community, and regional level. Our ongoing project in Sri Lanka focuses on understanding aforementioned issues in coupled natural and human systems in the Mahaweli River Watershed (MWR) to inform decision-makers to streamline policies and strategies for effective adaptation to worsening drought conditions. MWR produces more than 60% of the rice demand and nearly 40% of the energy requirement of the country. Although irrigation is currently the sector that withdraws the most water, with government plans for resettling farmer communities and developing new urban centers in the region by 2030, electricity production is expected to compete for water against irrigation in the future. Thus, understanding the water-energy nexus is crucial to planning for conservation and efficiency. Through a pilot survey conducted by our interdisciplinary research team, in five locations in

  17. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia.

    Science.gov (United States)

    Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye

    2018-05-01

    Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.

  18. Detecting gradual and abrupt changes in water quality time series in response to regional payment programs for watershed services in an agricultural area

    Science.gov (United States)

    He, Tian; Lu, Yan; Cui, Yanping; Luo, Yabo; Wang, Min; Meng, Wei; Zhang, Kaijie; Zhao, Feifei

    2015-06-01

    Market-based watershed protection instruments can effectively improve water quality at various catchment scales. Two payments for watershed services (PWS) programs for water quality improvement have been successively implemented in the Huai River catchment and its sub-watershed, the Shaying River catchment, in Henan Province since 2009. To detect changes in water quality in response to PWS schemes, nonparametric statistical approaches were used to analyze gradual and abrupt trends in water quality, focusing on chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) at 26 monitoring stations in the Huai River watershed during 2006-2013. The nonparametric Mann-Kendall test and the Theil-Sen estimator were used to identify trends and their magnitudes in weekly water quality observations and the Pettitt test was applied to change-point analysis of water quality time series. We found decreasing concentration trends in the weekly water quality data set in this catchment, with water quality at most stations affected by the PWS schemes. The COD and NH3-N concentrations decreased at 26 stations by an average of 0.05 mg/L wk and 0.01 mg/L wk, respectively, from 2006 to 2013. Meanwhile, the mean concentrations of COD and NH3-N decreased at the 26 stations by an average of 18.03 mg/L and 4.82 mg/L, respectively, after the abrupt change points of the time-series trends of these two pollutants. We also estimated annual reductions in COD and NH3-N for each station based on average flow observations using the Theil-Sen approach along with the resulting economic benefits from 2009 to 2010. The COD and NH3-N reductions were 14604.50 and 6213.25 t/y, respectively, in the Huai River catchment in Henan Province. The total economic benefits of reductions in these two pollutants were 769.71 million ¥ in 2009 and 2010, accounting for 0.08% and 0.06%, respectively, of the GDP in the entire Huai River watershed of Henan Province. These results provide new insights into the linkages

  19. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    Science.gov (United States)

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  20. Multi isotopic characterization (Li-Cu-Zn-Pb) of waste waters pollution in a small watershed (Loire River basin, France)

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.

    2016-12-01

    The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.

  1. [Aquatic insects and water quality in Peñas Blancas watershed and reservoir].

    Science.gov (United States)

    Mora, Meyer Guevara

    2011-06-01

    The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.

  2. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  3. Spatial modeling on the upperstream of the Citarum watershed: An application of geoinformatics

    Science.gov (United States)

    Ningrum, Windy Setia; Widyaningsih, Yekti; Indra, Tito Latif

    2017-03-01

    The Citarum watershed is the longest and the largest watershed in West Java, Indonesia, located at 106°51'36''-107°51' E and 7°19'-6°24'S across 10 districts, and serves as the water supply for over 15 million people. In this area, the water criticality index is concerned to reach the balance between water supply and water demand, so that in the dry season, the watershed is still able to meet the water needs of the society along the Citarum river. The objective of this research is to evaluate the water criticality index of Citarum watershed area using spatial model to overcome the spatial dependencies in the data. The result of Lagrange multiplier diagnostics for spatial dependence results are LM-err = 34.6 (p-value = 4.1e-09) and LM-lag = 8.05 (p-value = 0.005), then modeling using Spatial Lag Model (SLM) and Spatial Error Model (SEM) were conducted. The likelihood ratio test show that both of SLM dan SEM model is better than OLS model in modeling water criticality index in Citarum watershed. The AIC value of SLM and SEM model are 78.9 and 51.4, then the SEM model is better than SLM model in predicting water criticality index in Citarum watershed.

  4. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    Science.gov (United States)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate

  5. Vegetation restoration on degraded rangelands through the use of microcatchment and brush packs in the communal areas of the Eastern Cape

    CSIR Research Space (South Africa)

    Lesoli, MS

    2010-07-01

    Full Text Available Rangeland degradation results in declining functional capacity, increased poverty, and food insecurity. Major changes in rangeland surface morphology and soil characteristics have a drastic effect on the primary productivity of the rangeland...

  6. Effects of climate change on rangeland vegetation in the Northern Rockies Region [Chapter 7

    Science.gov (United States)

    Matt C. Reeves; Mary E. Manning; Jeff P. DiBenedetto; Kyle A. Palmquist; William K. Lauenroth; John B. Bradford; Daniel R. Schlaepfer

    2018-01-01

    Rangelands are dominated by grass, forb, or shrub species, but are usually not modified by using agronomic improvements such as fertilization or irrigation (Lund 2007; Reeves and Mitchell 2011) as these lands would normally be considered pastures. Rangeland includes grassland, shrubland, and desert ecosystems, alpine areas, and some woodlands (box 7.1). This chapter...

  7. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Water, energy, and biogeochemical budgets investigation at Panola Mountain research watershed, Stockbridge, Georgia; a research plan

    Science.gov (United States)

    Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol

    1993-01-01

    The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)

  9. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  10. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  11. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  12. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Directory of Open Access Journals (Sweden)

    Renzhi Liu

    2015-12-01

    Full Text Available Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA, designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River. Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  13. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  14. Hydrologic ramifications of an increased role of wildland fire across the rangeland-dry forest continuum

    Science.gov (United States)

    The increased role of wildland fire across the rangeland-dry forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Much of the Intermountain West now exists in a state in which rangeland and woodland wildfires stimulated by invasive che...

  15. Quantifying Hillslope to Watershed Erosional Response Following Wildfire

    Science.gov (United States)

    Vega, S.; Pierson, F. B.; Williams, C. J.; Brooks, E. S.; Strand, E. K.; Seyfried, M. S.; Murdock, M.; Pierce, J. L.; Roehner, C.; Lindsay, K.; Robichaud, P. R.; Brown, R. E.

    2017-12-01

    Across the western US, wildfires in sagebrush vegetation are occurring at a more frequent rate and higher severity. This has resulted in a decline of sagebrush rangeland. The changing fire regime can be attributed to invasive plant species and warming climate conditions. As the result of wildfire, protective vegetation cover is removed leaving the soil bare and exposed to erosion. Erosion following wildfire is a main concern among land managers due to the threat it poses to resources, infrastructure, and human health. Numerous studies have used artificial rainfall to assess post-fire runoff and erosion and rehabilitation treatment effectiveness. These results have found that high intensity rain events typical of summer convective storms drive post-fire erosion. The purpose of this study is to improve scientific understanding of how site-specific physical and biological attributes affect hillslope to watershed scale sediment yield on a mountainous burned sagebrush landscape. This study uses natural rainfall and a network of silt fences to quantify hillslope to watershed scale erosion response. The erosional drivers over various spatial scales were evaluated in context with vegetation recovery for a 2 year post-fire period. A network of silt fences was installed over long and short hillslope distances and in swales within the 130 ha Murphy Creek catchment in the Reynolds Creek Experimental Watershed in southwestern Idaho. We evaluated: 1) vegetation, soils, and sediment delivery across multiple spatial scales associated with 30 silt fences spanning north and south facing aspects, 2) precipitation input at two meteorological stations, and 3) watershed streamflow and sediment discharge from an existing weir. During the first and second year post-fire, the swales on both aspects produced more sediment than the short and long hillslopes. The results suggest that significant amounts of sediment and organic matter were deposited in the swales creating drifts. Sediment

  16. Seasonal food habits of swift fox (Vulpes velox) in cropland and rangeland landscapes in western Kansas

    Science.gov (United States)

    Sovada, M.A.; Roy, C.C.; Telesco, D.J.

    2001-01-01

    Food habits of swift foxes (Vulpes velox) occupying two distinct landscapes (dominated by cropland versus rangeland) in western Kansas were determined by analysis of scats collected in 1993 and 1996. Frequencies of occurrence of prey items in scats were compared between cropland and rangeland areas by season. Overall, the most frequently occurring foods of swift foxes were mammals (92% of all scats) and arthropods (87%), followed by birds (24%), carrion (23%), plants (15%) and reptiles (4%). No differences were detected between landscapes for occurrence of mammals, arthropods or carrion in any season (P ≥ 0.100). Plants, specifically commercial sunflower seeds, were consumed more frequently in cropland than in rangeland in spring (P = 0.004) and fall (P = 0.001). Birds were more common in the swift fox diet in cropland than in rangeland during the fall (P = 0.008), whereas reptiles occurred more frequently in the diet in rangeland than in cropland during spring (P = 0.042). Variation in the diet of the swift fox between areas was most likely due to its opportunistic foraging behavior, resulting in a diet that closely links prey use with availability.

  17. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    Science.gov (United States)

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  19. Seedbed preparation influence on morphometric characteristics of perennial grasses of a semi-arid rangeland in Kenya

    OpenAIRE

    Opiyo, Francis EO; Ekaya, Wellington N; Nyariki, Dickson M; Mureithi, Stephen Mwangi

    2011-01-01

    Semi-arid rangelands in Kenya are an important source of forage for both domestic and wild animals. However, indigenous perennial grasses notably Cenchrus ciliaris (African foxtail grass), Eragrostis superba (Maasai love grass) and Enteropogon macrostachyus (Bush rye grass) are disappearing at an alarming rate. Efforts to re-introduce them through restoration programs have often yielded little success. This can partly be attributed to failure of topsoil to capture and store scarce water to me...

  20. A comparison of the effects of different rangeland management ...

    African Journals Online (AJOL)

    A comparison of the effects of different rangeland management systems on ... Three management systems exploit these areas: commercial livestock ranching, communal livestock ranching and game ranching. ... AJOL African Journals Online.

  1. Consistency of Hydrologic Relationships of a Paired Watershed Approach

    Science.gov (United States)

    Herbert Ssegane; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Ernest W. Tollner; Jami E.. Nettles

    2013-01-01

    Paired watershed studies are used around the world to evaluate and quantify effects of forest and water management practices on hydrology and water quality. The basic concept uses two neighboring watersheds (one as a control and another as a treatment), which are concurrently monitored during calibration (pre-treatment) and post-treatment periods. A statistically...

  2. DEVELOPMENTS IN MONITORING RANGELANDS USING REMOTELY-SENSED CROSS-FENCE COMPARISONS

    Directory of Open Access Journals (Sweden)

    A. D. Kilpatrick

    2012-07-01

    Full Text Available This paper presents a new method for the use of earth-observation images to assess relative land condition over broad regions, using a cross-fence comparison methodology. It controls for natural spatial and temporal variables (e.g. rainfall, temperature soils, ecosystem so that we can objectively monitor rangelands and other areas for the effects of management. The method has been tested with small and large scale theoretical models, as well as a case study in South Australian rangelands. This method can also be applied in other systems and experiments such as field trials of crop varieties as a robust spatial statistic.

  3. Trends in Surface-Water Nitrate-N Concentrations and Loads from Predominantly-Forested Watersheds of the Chesapeake Bay Basin

    Science.gov (United States)

    Eshleman, K. N.

    2011-12-01

    Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the

  4. Occurrence of pesticides in surface water and sediments from three central California coastal watersheds, 2008-2009

    Science.gov (United States)

    Smalling, Kelly L.; Orlando, James L.

    2011-01-01

    Water and sediment (bed and suspended) were collected from January 2008 through October 2009 from 12 sites in 3 of the largest watersheds along California's Central Coast (Pajaro, Salinas, and Santa Maria Rivers) and analyzed for a suite of pesticides by the U.S. Geological Survey. Water samples were collected in each watershed from the estuaries and major tributaries during 4 storm events and 11 dry season sampling events in 2008 and 2009. Bed sediments were collected from depositional zones at the tributary sampling sites three times over the course of the study. Suspended sediment samples were collected from the major tributaries during the four storm events and in the tributaries and estuaries during three dry season sampling events in 2009. Water samples were analyzed for 68 pesticides using gas chromatography/mass spectrometry. A total of 38 pesticides were detected in 144 water samples, and 13 pesticides were detected in more than half the samples collected over the course of the study. Dissolved pesticide concentrations ranged from below their method detection limits to 36,000 nanograms per liter (boscalid). The most frequently detected pesticides in water from all the watersheds were azoxystrobin, boscalid, chlorpyrifos, DCPA, diazinon, oxyfluorfen, prometryn, and propyzamide, which were found in more than 80 percent of the samples. On average, detection frequencies and concentrations were higher in samples collected during winter storm events compared to the summer dry season. With the exception of the fungicide, myclobutanil, the Santa Maria estuary watershed exhibited higher pesticide detection frequencies than the Pajaro and Salinas watersheds. Bed and suspended sediment samples were analyzed for 55 pesticides using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment samples, 17 pesticides were detected

  5. Assessing Rangeland Attributes On Semi-Arid Zone Of North Darfur State Sudan

    Directory of Open Access Journals (Sweden)

    Mohamed Almontasir A. M. Mohamed

    2015-08-01

    Full Text Available Abstract The study was conducted over a two years period of 2012 and 2013 at three sites of Alfashir locality Ummarahik 25km north of Alfashir Fashar in eastern part of Alfashir about 5km and Berka 30km west of Alfashir Western Sudan in semi-arid zone. The aim of this study was to assess rangeland attributes. Measurements of plant density vegetation cover range production and carrying capacity were assessed. Results showed that total forage production was low and inadequate to satisfy requirements of livestock for inhabiting the area average range production all over the area was found to be 50.68 kgha and 59.21 kgha for the seasons 2012 and 2013 respectively. The average ground cover was about 34.71 and 42.41 for two seasons. The average plant density for the first season was 27.1 plantm2 while the average plant density for the second season was 29.4 plantm2. The study concluded that unwise utilization and exploitation of the rangelands particularly by man causes range deterioration and serious reduction in range production in both quantity and quality so the study suggested that improvement and rehabilitation such lands rangelands should be done. Further research work is needed to assess rangeland attributes across different ecological zones in North Darfur State.

  6. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Science.gov (United States)

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  7. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  8. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Xuyang; Liu Xingmei; Ficklin, Darren; Zhang Minghua

    2008-01-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application

  9. Water balance in paired watersheds with eucalyptus and degraded grassland in Pampa biome

    Science.gov (United States)

    Rangelands of the Pampa biome, which cover regions of Argentina, Uruguay and Brazil (176,496 km2 – 2.07% of Brazilian territory and 63% of Rio Grande do Sul State territory, southern region of Brazil) in South America (total area of 750,000 km2), are being substituted by crops and commercial eucalyp...

  10. China's Rangelands under Stress : A comparative study of pasture commons in the Ningxia Hui Autonomous Region

    NARCIS (Netherlands)

    Ho, P.P.S.

    2000-01-01

    China's economic reforms have exacerbated the problems of over-grazing and desertification in the country's pastoral areas. In order to deal with rangeland degradation, the Chinese government has resorted to nationalization, or semi-privatization. Since the implementation of rangeland policy has

  11. Forests, rangelands and climate change in Southern Africa

    CSIR Research Space (South Africa)

    Naidoo, Sasha

    2013-09-01

    Full Text Available This paper provides an analysis of the implications of climate change for forests and rangelands in southern Africa. The extent of the resources and their economic and social functions and drivers of change is outlined. The vulnerability...

  12. The challenge of integrated rangeland monitoring: synthesis address

    African Journals Online (AJOL)

    The utility of monitoring and its guiding principles will only work effectively where good environmental governance is practiced by users and producers affecting rangeland ecosystems. Keywords: adaptive management, complex, environmental governance, human impacts, multi-scale, socio-ecological. African Journal of ...

  13. Coastal watershed management across an international border in the Tijuana River watershed

    Science.gov (United States)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  14. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].

    Science.gov (United States)

    Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun

    2007-11-01

    Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.

  15. Effect of management on rangeland phytomass, cover and condition ...

    African Journals Online (AJOL)

    similarity of management effects on rangeland condition and forage provision across major dryland biomes. Taking a macro-ecological perspective, we analysed if management effects differed between South Africa's central grassland and ...

  16. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance.

    Science.gov (United States)

    Robinson, Lance W; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship-notably the "design principles" for effective governance of commons-do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  17. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance

    Science.gov (United States)

    Robinson, Lance W.; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S.

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship—notably the "design principles" for effective governance of commons—do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  18. Runoff and soil erosion from two rangeland sites

    Science.gov (United States)

    Historically over 50 years of rainfall/runoff research using rainfall simulators has been conducted at various rangeland sites in the West, however these sites rarely have consecutive yearly measurements. This limits the understanding of dynamic annual conditions and the interactions of grazing, pla...

  19. Robustness and management adaptability in tropical rangelands: a viability-based assessment under the non-equilibrium paradigm.

    Science.gov (United States)

    Accatino, F; Sabatier, R; De Michele, C; Ward, D; Wiegand, K; Meyer, K M

    2014-08-01

    Rangelands provide the main forage resource for livestock in many parts of the world, but maintaining long-term productivity and providing sufficient income for the rancher remains a challenge. One key issue is to maintain the rangeland in conditions where the rancher has the greatest possibility to adapt his/her management choices to a highly fluctuating and uncertain environment. In this study, we address management robustness and adaptability, which increase the resilience of a rangeland. After reviewing how the concept of resilience evolved in parallel to modelling views on rangelands, we present a dynamic model of rangelands to which we applied the mathematical framework of viability theory to quantify the management adaptability of the system in a stochastic environment. This quantification is based on an index that combines the robustness of the system to rainfall variability and the ability of the rancher to adjust his/her management through time. We evaluated the adaptability for four possible scenarios combining two rainfall regimes (high or low) with two herding strategies (grazers only or mixed herd). Results show that pure grazing is viable only for high-rainfall regimes, and that the use of mixed-feeder herds increases the adaptability of the management. The management is the most adaptive with mixed herds and in rangelands composed of an intermediate density of trees and grasses. In such situations, grass provides high quantities of biomass and woody plants ensure robustness to droughts. Beyond the implications for management, our results illustrate the relevance of viability theory for addressing the issue of robustness and adaptability in non-equilibrium environments.

  20. Grasshopper (Orthoptera: Acrididae) community composition in the rangeland of the northern slopes of The Qilian Mountains in northwestern China.

    Science.gov (United States)

    Sun, T; Liu, Z Y; Qin, L P; Long, R J

    2015-01-01

    In order to describe grasshopper (Orthoptera: Acrididae) species composition, diversity, abundance, and density of four rangelands types, we compared the grasshopper community composition and dynamics in the rangeland of the northern slopes of the Qilian Mountains. In total, 55 grasshopper species were collected from 2007 to 2009, representing three families and six subfamilies. The subfamily Oedipodinae was dominant, followed by Gomphocerinae and Catantopinae. Species abundance varied among rangeland types (RTs). The greatest abundance of grasshoppers was found in mountain rangeland, while the lowest abundance of grasshoppers was caught in alpine shrublands. Three species (Chorthippus cf. brunneus (Thunberg) (Acrididae), Chorthippus Dubius (Zubovski), and Gomphocerus licenti (Chang) were broadly distributed in the four RTs and constituted 7.5% of all grasshoppers collected. Ch. dubius was very abundant in desert rangeland and alpine shrubland. Bryodema dolichoptera Yin et Feng Eremippus qilianshanensis Lian and Zheng, and Filchnerella qilianshanensis Xi and Zheng (Pamphagidae) were endemic to the region of the Qilian Mountains. Species similarity between RTs ranged from 17.8 to 51.6 based on the Renkonen index. Similarly, the Sörensen index indicated a wide separation in species composition among RTs. The abundance of the eight most common species showed obvious differences among RTs and years. On average, mountain rangeland had the highest density values in 2007 and 2008, and alpine shrubland supported the smallest density. The densities in desert and mountain rangeland in 2007 were significantly higher than in 2008, while alpine rangeland and shrublands did not present obvious differences among years. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  1. Study of the quality and quantity of waters of a tributary watershed of Paraíba do Sul river- São Paulo, after environmental preservation actions

    Directory of Open Access Journals (Sweden)

    Alexandra Andrade

    2012-12-01

    Full Text Available Monitoring programs of water quality and quantity are necessary to provide subsidies to assess the conditions of the watersheds and for decision making regarding to the management of water resources. This study analyzed the quality and quantity of waters of the Macacos stream watershed, a tributary of the Paraíba do Sul river, in São Paulo State, by monitoring the parameters: temperature, pH, conductivity and dissolved oxygen at five sites in the watershed. The measurements of flow and height of water depth during dry and wet seasons of 2010 and 2011 allowed the construction of the "rating curve" in four points of water quality monitoring and to reconstruct the series of water flow in these seasons. The analysis results showed that there is indication of changes in water quality parameters due to the conservation practices adopted. The water temperature parameter was the most influenced by the seasonal variation in runoff. Several physical factors may have influenced the correlation of the other parameters with runoff, especially the different environmental recovery actions implemented in the study to achieve the sustainability of the water resources.

  2. Identifying agricultural land management successes and water quality improvements at the sub-watershed scale: A case study in south-central Minnesota

    Science.gov (United States)

    Perry, M.; Triplett, L.; Smith, C.; Westfield, J.; Clause, C.

    2017-12-01

    In agricultural regions with highly-impacted water quality, it can be challenging to generate local motivation for water improvement efforts. Although the problem is daunting, and the magnitude of each individual's efforts may be indistinguishable in a mainstem stream, we may be able to detect incremental improvements earlier within a sub-watershed. In Seven Mile Creek, a small watershed in south-central Minnesota, we monitored at the sub-watershed scale to search for evidence of intermediate improvements during a years-long effort to reduce nutrient and sediment loads. The watershed is 9300 hectares with approximately 95% committed to corn and soybeans. Subwatershed 1 (SW1) is 4030 hectares and subwatershed 2 (SW2) is 3690 hectares (43% and 40% of the watershed area, respectively). In both subwatersheds, ubiquitous subsurface drain tile quickly drains water from the land, shunting it into tributaries and the mainstem which then have flashy storm responses. In 2016-2017, the two subwatersheds differed in water quality and storm response, despite nearly identical size, topography, climate, and geology. For example, during large storm events in 2016, total suspended sediment (TSS) concentrations were measured as high as 113 mg L-1 in subwatershed 1 and 79 mg L-1 in subwatershed 2. However, the annual average TSS concentration was 2 mg L-1 in SW1 and 3 mg L-1 in SW2, resulting in a higher loading from SW2. In contrast, the annual average nitrate concentration was higher in SW1 than SW2 (28 mg L-1 and 20 mg L-1, respectively). We determined that the difference is likely due to differences in soil type, cropping practices, or recent best management practice (BMP) implementation. While a few landowners have taken substantial actions to implement BMPs, others remain skeptical about the sources of and potential solutions for pollution in this creek. In SW1 there has been more effective management of water flow and sediment mobilization, while in SW2 nitrate is the success

  3. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  4. Uncertainty in BMP evaluation and optimization for watershed management

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT

  5. Accountability to Public Stakeholders in Watershed-Based Restoration

    Science.gov (United States)

    There is an increasing push at the federal, state, and local levels for watershed-based conservation projects. These projects work to address water quality issues in degraded waterways through the implementation of a suite of best management practices on land throughout a watersh...

  6. Development of Optimal Water-Resources Management Strategies for Kaidu-Kongque Watershed under Multiple Uncertainties

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-01-01

    Full Text Available In this study, an interval-stochastic fractile optimization (ISFO model is advanced for developing optimal water-resources management strategies under multiple uncertainties. The ISFO model can not only handle uncertainties presented in terms of probability distributions and intervals with possibility distribution boundary, but also quantify subjective information (i.e., expected system benefit preference and risk-averse attitude from different decision makers. The ISFO model is then applied to a real case of water-resources systems planning in Kaidu-kongque watershed, China, and a number of scenarios with different ecological water-allocation policies under varied p-necessity fractiles are analyzed. Results indicate that different policies for ecological water allocation can lead to varied water supplies, economic penalties, and system benefits. The solutions obtained can help decision makers identify optimized water-allocation alternatives, alleviate the water supply-demand conflict, and achieve socioeconomic and ecological sustainability, particularly when limited water resources are available for multiple competing users.

  7. Impact of Rangeland Degradation on Soil Physical, Chemical

    African Journals Online (AJOL)

    major threats to enhance a sustainable pastoral-livestock production in Ethiopia. ... overall negative impact on the soil physical and chemical characteristics, demanding ... chemical properties (Gemedo et al., 2006) as well as the rangeland .... parameters such as life forms (annuals and perennials), plant forms (woody plant,.

  8. Rangeland Ecosystem Services: Nature's Supply and Humans' Demand

    Science.gov (United States)

    Ecosystem services are the benefits that society receives from nature and they include the regulation of climate, the pollination of crops, the provisioning of intellectual inspiration and recreational environment, as well as many essential goods such as food, fiber, and wood. Rangeland ecosystem se...

  9. Water- and air-quality and surficial bed-sediment monitoring of the Sweetwater Reservoir watershed, San Diego County, California, 2003-09

    Science.gov (United States)

    Mendez, Gregory O.; Majewski, Michael S.; Foreman, William T.; Morita, Andrew Y.

    2015-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to assess the overall health of the Sweetwater watershed in San Diego County, California. This study was designed to provide a data set that could be used to evaluate potential effects from the construction and operation of State Route 125 within the broader context of the water quality and air quality in the watershed. The study included regular sampling of water, air, and surficial bed sediment at Sweetwater Reservoir (SWR) for chemical constituents, including volatile organic compounds (VOCs), base-neutral and acid- extractable organic compounds (BNAs) that include polycyclic aromatic hydrocarbons (PAHs), pesticides, and metals. Additionally, water samples were collected for anthropogenic organic indicator compounds in and around SWR. Background water samples were collected at Loveland Reservoir for VOCs, BNAs, pesticides, and metals. Surficial bed-sediment samples were collected for PAHs, organochlorine pesticides, and metals at Sweetwater and Loveland Reservoirs.

  10. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  11. [Influence of land use change on dissolved organic carbon export in Naoli River watershed. Northeast China].

    Science.gov (United States)

    Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan

    2015-12-01

    The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.

  12. Methodology to Analyse the actual and the future effect of water scarcity on the available water resources in Meguellil watershed

    Science.gov (United States)

    Oueslati, I.; Lili-Chabaane, Z.; Shabou, M.; Zribi, M.; Ben Issa, N.; chakroun, H.; Galafassi, D.; Rathwell, K.; Hoff, H.; Pizzigalli, C.

    2012-04-01

    Scarcity often has its roots in water shortage, and it is in the arid and semiarid regions affected by droughts and wide climate variability, combined with population growth and economic development, that the problems of water scarcity are most acute. The Merguellil watershed, situated in the center of Tunisia, represents exactly this state of fact where the agriculture is the main consumer with about 80% of the total water resources because of the continuous increase and intensification of irrigated area. The surface water can satisfy a very low portion of this demand; consequently, the groundwater is overexploited. The irrigation sector is divided into public and private. While the public irrigated areas are well known, the private ones are not sufficiently controlled mainly the water volumes pumped from the aquifer. Therefore, a sustainable management of all available water resources and meeting as much as possible all water demands, is crucial. To analyze the actual and future water balance of the Merguellil watershed, and to identify critical trends and thresholds and effective solutions, a WEAP (Water Evaluation and Planning system) application has been developed. It utilizes a constrained optimization algorithm to allocate water among competing demands in a basin. The year 2009 is considered as the reference one which represents the basic definition of the water system as it currently exists, and forms the foundation of all scenarios analysis. Three scenarios were compared to the reference one. The first combines between the reduction of 10% in precipitation, as it is forseen by the regional climate model RCA (driven by ECHAM5) that provides statistic data of precipitation until 2050, and the increase of 2% per year in irrigated area in the kairouan plain deduced from the land use maps dating from 1991/1992 to 2009/2010 obtained by multi dates remote sensing data. The second scenario is the application of a deficit irrigation that respects the yield

  13. Evaluation of environmental change in rangelands of Uzbekistan with application of nuclear techniques approach

    International Nuclear Information System (INIS)

    Nasyrov, M.G.; Safarov, A.N.; Osmanov, B.S.

    2004-01-01

    Full text: Desertification and land degradation are a problem of major importance in the arid and semi-arid regions of the world. Deterioration of soil and plant cover has adversely affected nearly 50% of land areas as a result of extended droughts and human mismanagement of cultivated and rangelands. Due to several factors such as soil erosion, overgrazing, collection of plants and other anthropogenic activities the most part of these biomes are under degradation. The problem of assessments of current status of rangelands becomes very important days after days. Therefore, it needs to work out and implement new time and labor saving methods of assessment of current status of natural biomes. Soil erosion is a natural process caused by water, wind, and ice that have affected the earth's surface since the beginning if time. Man's activities often accelerate soil erosion. Soil erosion and its off-site, downstream damages are major concerns around the world causing losses in soil productivity, degradation of landscape, degradation of water quality, and loss of soil organic carbon. Current techniques for assessing soil erosion are (1) long-term soil erosion plot monitoring, (2) field surveys, and (3) soil erosion models (Evans, 1995). Each of this techniques has strengths and weaknesses. Over the last 30 years, research has shown the potential of using radioactive fallout 137 Cs to provide timely and quantitative estimates of soil erosion and redeposition at point, field, and reconnaissance scales. Applications of 137 Cs o provide an independent measurement of soil erosion rates, patterns, and redepositions are well-documented (Ritchie and McHenry, 1990). The unique advantages of the 137 Cs technique to study soil erosion rates and patterns are that it (a) requires only one trip to the field; (b) provides results quickly; (c) allows retrospective assessment of soil erosion rates; (d) provides average losses for 35 to 40 year period thus is less influenced by extreme

  14. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  15. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Science.gov (United States)

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  16. Book title: Rangelands systems: Processes, management and challenges - Chapter title: Invasive plant species and novel ecosystems

    Science.gov (United States)

    Rangelands represent the dominant land use systems in many countries of the world and provide sociological and cultural benefits to millions of people in both rural and urban areas. The undesirable impacts of rangeland weeds have been recognized for well over 100 years and infest between 41 and 51 ...

  17. Water Resources and Groundwater in a Glaciated Andean Watershed (Cordillera Blanca, Peru)

    Science.gov (United States)

    McKenzie, J. M.; Gordon, R.; Baraer, M.; Lautz, L.; Mark, B. G.; Wigmore, O.; Chavez, D.; Aubry-Wake, C.

    2014-12-01

    It is estimated that almost 400 million people live in watersheds where glaciers provide at least 10% of the runoff, yet many questions remain regarding the impact of climate change and glacier recession on water resources derived from these high mountain watersheds. We present research from the Cordillera Blanca, Peru, an area with the highest density of glaciers in the tropics. While glacier meltwater buffers stream discharge throughout the range, groundwater is a major component of dry season runoff, contributing up to 50-70% of outflow in some tributaries. In order to predict future changes to water resources it is critical to understand how groundwater can offset future hydrologic stress by maintaining stream baseflow, including recharge mechanisms, subsurface pathways, storage, and net fluxes to rivers. We present a synthesis of results based on hydrologic modeling, drilling/piezometers, geophysics, and artificial and natural hydrologic tracers. Our findings show that 'pampas', low-relief mountain valleys, are critical for baseflow generation by storing groundwater on interannual timescales. Pampas have a total area of ~65 km2 and are comprised of unconsolidated glacial, talus, lacustrine and wetland (bofedales) deposits. The valleys commonly have buried talus aquifers that are overlain by low permeability, glaciolacustrine deposits. Glaciofluvial outwash deposits and small wetlands also act as unconfined aquifers. These groundwater systems appear to be primarily recharged by wet season precipitation, and at higher elevations also by glacial meltwater. Additionally a ubiquitous feature in the valleys are springs, often located at the base of talus deposits, which generate a large hydrologic flux within the hydrologic systems. While glaciers are the most visible and vulnerable component of the Andean waterscape, we argue that it is crucial to understand the complete mountain hydrologic cycle, including groundwater, in order to understand the ongoing

  18. A conceptual tool for improving rangeland management decision ...

    African Journals Online (AJOL)

    ... the LLM concept should be seen as a continuous and evolving learning process that will be updated over the long term through decision support to include several other components essential to implement effective and sustainable rangeland management practices by local land users. Keywords: desertification; indicators ...

  19. McKenzie River focus watershed coordination: year-end report, 2001; ANNUAL

    International Nuclear Information System (INIS)

    Thrailkil, Jim

    2001-01-01

    BPA funding, in conjunction with contributions from numerous partners organizations, supports the McKenzie Watershed Council's efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. The goal of the MWC is to improve resource stewardship and conserve fish, wildlife, and water quality resources. The MWC will always have a baseline program centered on relationship building and information sharing. Objectives for FY01 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups that restore fish and wildlife habitat in the watershed, with a focus on the lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though a strategic and comprehensive outreach and education program, utilizing Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations

  20. Effect of soil and water conservation on rehabilitation of degraded lands and crop productivity in Maego watershed, North Ethiopia

    Directory of Open Access Journals (Sweden)

    Gebremariam Yaebiyo Dimtsu

    2018-04-01

    Full Text Available Many soil and water conservation (SWC measures were undertaken to decrease land degradation in Ethiopia. However, evaluation of their performance is essential to understand their success or failure and readjusting accordingly in the future planning.  Therefore, the objective of this study was to evaluate effectiveness of SWC measures in rehabilitation of degraded watershed and increase crop productivity in Maego watershed, Ethiopia. Seventy six sample plots were randomly taken from treated and untreated sub-watersheds for woody species and soil sampling. Crops yield was measured on top side, middle zone and below side of SWC structures. There were significantly higher woody species density and diversity, total nitrogen (TN, soil organic matter (SOM and soil moisture in the treated uncultivated land than the untreated one. The highest tree and sapling species density and diversity, TN and SOM were recorded on the exclosure part of the treated sub-watershed. Landscape position affected soil fertility, but has no effect on woody species density and diversity. The highest barley and wheat yield was measured on top side of SWC structures. Therefore, physical SWC structures should be integrated with exclosure to enhance rehabilitation of degraded watersheds/landscapes. Integration of biological SWC measures that improve soil fertility are essential on the cultivated land of the watershed. Most of the existing SWC structures, especially the old ones are filled with accumulated sediment, so maintenance is needed.

  1. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  2. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    OpenAIRE

    Sandeep S. Nerkar; Ashok J. Tamhankar; Smita U. Khedkar; Cecilia Stålsby Lundborg

    2014-01-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observationa...

  3. An overview of the rangelands atmosphere hydrosphere biosphere interaction study experiment in northeastern Asia (RAISE)

    Science.gov (United States)

    Sugita, Michiaki; Asanuma, Jun; Tsujimura, Maki; Mariko, Shigeru; Lu, Minjiao; Kimura, Fujio; Azzaya, Dolgorsuren; Adyasuren, Tsokhio

    2007-01-01

    SummaryIntensive observations, analysis and modeling within the framework of the rangelands atmosphere-hydrosphere-biosphere interaction study experiment in northeastern Asia (RAISE) project, have allowed investigations into the hydrologic cycle in the ecotone of forest-steppe, and its relation to atmosphere and ecosystem in the eastern part of Mongolia. In this region, changes in the climate have been reported and a market oriented economy was introduced recently, but their impact on the natural environment is still not well understood. In this RAISE special issue, the outcome is presented of the studies carried out by six groups within RAISE, namely: (1) Land-atmosphere interaction analysis, (2) ecosystem analysis and modeling, (3) hydrologic cycle analysis, (4) climatic modeling, (5) hydrologic modeling, and (6) integration. The results are organized in five relevant categories comprising (i) hydrologic cycle including precipitation, groundwater, and surface water, (ii) hydrologic cycle and ecosystem, (iii) surface-atmosphere interaction, (iv) effect of grazing activities on soils, plant ecosystem and surface fluxes, and (v) future prediction. Comparison with studies on rangelands in other parts of the world, and some future directions of studies still needed in this region are also summarized.

  4. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  5. Scale effects on runoff and soil erosion in rangelands: observations and estimations with predictors of different availability

    Science.gov (United States)

    Runoff and erosion estimates are needed for rangeland management decisions and evaluation of ecosystem services derived from rangeland conservation practices. The information on the effect of scale on the runoff and erosion, and on the choice of runoff and erosion predictors, remains scarce. The obj...

  6. Adapting to Climate Change through Improved Watershed ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    With greater demand for water in agriculture, industry, and tourism, the country must ... and climate change impacts, are compromising water quality and availability, ... affecting socio-economic and biophysical vulnerability in the watershed.

  7. Yield Response of Mediterranean Rangelands under a Changing Climate

    NARCIS (Netherlands)

    Daliakopoulos, Ioannis N.; Panagea, Ioanna S.; Tsanis, Ioannis K.; Grillakis, Manolis G.; Koutroulis, Aristeidis G.; Hessel, Rudi; Mayor, Angeles G.; Ritsema, Coen J.

    2017-01-01

    Understanding the Mediterranean rangelands degradation trends is a key element of mitigating their vulnerability and enhancing their resilience. Climate change and its inherent effects on mean temperature and the precipitation variability can regulate the magnitude, frequency and duration of

  8. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Science.gov (United States)

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  9. Using a dynamic model to assess trends in land degradation by water erosion in Spanish Rangelands

    Science.gov (United States)

    Ibáñez, Javier; Francisco Lavado-Contador, Joaquín; Schnabel, Susanne; Pulido-Fernández, Manuel; Martínez Valderrama, Jaime

    2014-05-01

    This work presents a model aimed at evaluating land degradation by water erosion in dehesas and montados of the Iberian Peninsula, that constitute valuable rangelands in the area. A multidisciplinary dynamic model was built including weather, biophysical and economic variables that reflect the main causes and processes affecting sheet erosion on hillsides of the study areas. The model has two main and two derived purposes: Purpose 1: Assessing the risk of degradation that a land-use system is running. Derived purpose 1: Early warning about land-use systems that are particularly threatened by degradation. Purpose 2: Assessing the degree to which different factors would hasten degradation if they changed from the typical values they show at present. Derived purpose 2: Evaluating the role of human activities on degradation. Model variables and parameters have been calibrated for a typical open woodland rangeland (dehesa or montado) defined along 22 working units selected from 10 representative farms and distributed throughout the Spanish region of Extremadura. The model is the basis for a straightforward assessment methodology which is summarized by the three following points: i) The risk of losing a given amount of soil before a given number of years was specifically estimated as the percentage of 1000 simulations where such a loss occurs, being the simulations run under randomly-generated scenarios of rainfall amount and intensity and meat and supplemental feed market prices; ii) Statistics about the length of time that a given amount of soil takes to be lost were calculated over 1000 stochastic simulations run until year 1000, thereby ensuring that such amount of soil has been lost in all of the simulations, i.e. the total risk is 100%; iii) Exogenous factors potentially affecting degradation, mainly climatic and economic, were ranked in order of importance by means of a sensitivity analysis. Particularly remarkable in terms of model performance is the major role

  10. Awareness and Adoption of Soil and Water Conservation Technologies in a Developing Country: A Case of Nabajuzi Watershed in Central Uganda

    Science.gov (United States)

    Kagoya, Sarah; Paudel, Krishna P.; Daniel, Nadhomi L.

    2018-02-01

    Soil and water conservation technologies have been widely available in most parts of Uganda. However, not only has the adoption rate been low but also many farmers seem not to be aware of these technologies. This study aims at identifying the factors that influence awareness and adoption of soil and water conservation technologies in Nabajuzi watershed in central Uganda. A bivariate probit model was used to examine farmers' awareness and adoption of soil and water conservation technologies in the watershed. We use data collected from the interview of 400 households located in the watershed to understand the factors affecting the awareness and adoption of these technologies in the study area. Findings indicate that the likelihood of being aware and adopting the technologies are explained by the age of household head, being a tenant, and number of years of access to farmland. To increase awareness and adoption of technologies in Uganda, policymakers may expedite the process of land titling as farmers may feel secure about landholding and thus adopt these technologies to increase profitability and productivity in the long run. Incentive payments to farmers residing in the vulnerable region to adopt these considered technologies may help to alleviate soil deterioration problems in the affected area.

  11. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    Science.gov (United States)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    The Chester River has been the subject of ongoing scientific studies in response to both the Clean Water Act and the EPA's Chesapeake Bay Program initiatives. The Upper, Middle, and Lower Chester are on the Maryland Department of Environment's list of "impaired waters". The Chester River Watershed (CRW) Observatory is lead by the Center for Environment & Society at Washington College. Eight clusters representing 22 public and private K-12 schools in the CRW provide the sampling sites distributed throughout the watershed. Weather stations will be installed at these sites allowing monitoring of the watershed's microclimate. Each cluster will be assigned a Basic Observation Buoy (BOB), an easy to assemble inexpensive buoy platform for real-time water column and atmospheric condition measurements. The BOBs are fitted with a data sonde to collect similar data parameters (e.g. salinity, temperature) as the main stem Chesapeake Bay buoys do. These assets will be deployed and the data transmitted to the Chester River Geographic Information System site for archival and visual display. Curriculum already developed for the Chesapeake Bay Interpretive Buoy System by the NOAA Chesapeake Bay Office will be adapted to the Chester River Watershed. Social issues of water sustainability will be introduced using the Watershed Game (Northland NEMO ®). During 2011 NOAA's Chesapeake Bay Office completed curriculum projects including Chesapeake Exploration, Build-a-Buoy (BaBs) and Basic Observation Buoys (BOBs). These engaging projects utilize authentic data and hands-on activities to demonstrate the tools scientists use to understand system interactions in the Bay. Chesapeake Exploration is a collection of online activities that provides teachers and students with unprecedented access to Bay data. Students are guided through a series of tasks that explore topics related to the interrelation between watersheds, land-use, weather, water quality, and living resources. The BaBs and BOBs

  12. Presidential address - 1999 Towards a national rangeland policy ...

    African Journals Online (AJOL)

    There are some problems with the publication of the journal, but Council hopes to have our ... The first is that all agencies funded through DACST will be reviewed ... to improve our understanding of management issues in communal rangeland. ... All current programmes to rehabilitate degraded land contain budgets for the ...

  13. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  14. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    Science.gov (United States)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  15. Metal cycling within mountain pine beetle impacted watersheds of Keystone Gulch, Colorado

    Science.gov (United States)

    Heil, E. M.; Navarre-Sitchler, A.; Wanty, R. B.

    2016-12-01

    Metal cycling in mountain watersheds may be altered due to rapid landscape changes. Previous studies have examined the impact of deforestation and wildfires, on the fate and transport of metals in watersheds. However, we have only begun to understand changes in metal cycling in watersheds impacted by the mountain pine beetle. Warming climates and extended droughts have enabled pine beetles to impact larger areas. In these areas tree death occurs an average of three years after the initial infestation. In this short period of time the trees stop transpiring, defoliate, and die. The rapid deposition of pine needles to the forest floor, and subsequent decomposition of the needles, increases organic carbon (OC) availability and release metals that are stored in the impacted watersheds. Consequently, both OC and metal fluxes into and through the beetle-infested watersheds may be larger than those in non-infested watersheds. Four watersheds along Keystone Gulch Rd., located in Keystone, CO, were chosen for soil, water, and needle sampling because of their similar bedrock, drainage area, tree density and type, aspect, and their varying degree of pine beetle infestation. Sequential extractions using simulated rainwater, MgCl2, and pyrophosphate (representing soil pore water, exchangeable fraction, and organically bound metals) were performed on the Keystone Gulch soil samples to develop a better understanding of the distribution of metals in soils. Samples were classified by degree of beetle impact within and between the watersheds. The most obvious differences in the soil extractions between the four watersheds were observed for aluminum and iron and to a slightly lesser extent copper and zinc. In general, aluminum, iron, and zinc concentrations were higher while copper concentrations were lower in soils from less beetle-impacted watersheds. Metal concentrations in stream waters will be evaluated in the context of metal mobility through and out of the watershed.

  16. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  17. Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems.

    Science.gov (United States)

    Sasaki, Takehiro; Okubo, Satoru; Okayasu, Tomoo; Jamsran, Undarmaa; Ohkuro, Toshiya; Takeuchi, Kazuhiko

    2009-03-01

    The current growing body of evidence for diversity-disturbance relationships suggests that the peaked pattern predicted by the intermediate disturbance hypothesis (IDH) may not be the rule. Even if ecologists could quantify the diversity-disturbance relationship consistent with the IDH, the applicability of the IDH to land management has rarely been addressed. We examined two hypotheses related to the generality and management applicability of the IDH to Mongolian rangeland ecosystems: that the diversity-disturbance relationship varies as a function of landscape condition and that some intermediate scales of grazing can play an important role in terms of sustainable rangeland management through a grazing gradient approach. We quantified the landscape condition of each ecological site using an ordination technique and determined two types of landscape conditions: relatively benign and harsh environmental conditions. At the ecological sites characterized by relatively benign environmental conditions, diversity-disturbance relationships were generally consistent with the IDH, and maximum diversity was observed at some intermediate distance from the source of the grazing gradient. In contrast, the IDH was not supported at most (but not all) sites characterized by relatively harsh environmental conditions. The intermediate levels of grazing were generally located below the ecological threshold representing the points or zones at which disturbance should be limited to prevent drastic changes in ecological conditions, suggesting that there is little "conundrum" with regard to intermediate disturbance in the studied systems in terms of land management. We suggest that the landscape condition is one of the primary factors that cause inconsistencies in diversity-disturbance relationships. The ecological threshold can extend its utility in rangeland management because it also has the compatibility with the maintenance of species diversity. This study thus suggests that some

  18. Stochastic Watershed Models for Risk Based Decision Making

    Science.gov (United States)

    Vogel, R. M.

    2017-12-01

    Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation

  19. Multi-agency Oregon Pilot: Working towards a national inventory and assessment of rangelands using onsite data

    Science.gov (United States)

    Paul L. Patterson; James Alegria; Leonard Jolley; Doug Powell; J. Jeffery Goebel; Gregg M. Riegel; Kurt H. Riitters; Craig. Ducey

    2014-01-01

    Rangelands are lands dominated by grasses, forbs, and shrubs and are managed as a natural ecosystem. Although these lands comprise approximately 40 percent of the landmass of the continental United States, there is no coordinated effort designed to inventory, monitor, or assess rangeland conditions at the national scale. A pilot project in central Oregon with the U.S....

  20. Rangeland restoration for Hirola, the world's most endangered antelope

    Science.gov (United States)

    Rangeland restoration can improve habitat for threatened species such as the hirola antelope (Beatragus hunteri) that inhabit savannas of eastern Kenya. However, restoration success likely varies across soil types and target restoration species, as well as according to restoration approach. We teste...

  1. Exploring the invasion of rangelands by Acacia mearnsii (black ...

    African Journals Online (AJOL)

    Reducing A. mearnsii canopy could promote grass production while encouraging carbon sequestration. Given the high AGB and clearing costs, it may be prudent to adopt the 'novel ecosystems' approach in managing infested landscapes. Keywords: grassland, invasive plants, landscape ecology, rangeland condition ...

  2. Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data

    Science.gov (United States)

    Sipayung, Sinta B.; Nurlatifah, Amalia; Siswanto, Bambang

    2018-05-01

    Bengawan Solo Watershed is one of the largest watersheds in Indonesia. This watershed flows in many areas both in Central Java and East Java. Therefore, the water resources condition greatly affects many people. This research will be conducted on prediction of climate change effect on water resources condition in terms of rainfall conditions in Bengawan Solo River Basin. The goal of this research is to know and predict the climate change impact on water resources based on CCAM (Conformal Cubic Atmosphere Model) with downscaling baseline (historical) model data from 1949 to 2005 and RCP 4.5 from 2006 to 2069. The modeling data was validated with in-situ data (measurement data). To analyse the water availability condition in Bengawan Solo Watershed, the simulation of river flow and water balance condition were done in Bengawan Solo River. Simulation of river flow and water balance conditions were done with ArcSWAT model using climate data from CCAM, DEM SRTM 90 meter, soil type, and land use data. The results of this simulation indicate there is (i) The CCAM data itself after validation has a pretty good result when compared to the insitu data. Based on CCAM simulation results, it is predicted that in 2040-2069 rainfall in Bengawan Solo River Basin will decrease, to a maximum of only about 1 mm when compared to 1971-2000. (ii) The CCAM rainfall prediction itself shows that rainfall in Bengawan Solo River basin will decline until 2069 although the decline itself is not significant and tends to be negligible (rainfall is considered unchanged) (iii) Both in the DJF and JJA seasons, precipitation is predicted to decline as well despite the significant decline. (iv) The river flow simulation show that the water resources in Bengawan Solo River did not change significantly. This event occurred because the rainfall also did not change greatly and close to 0 mm/month.

  3. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed

    Science.gov (United States)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.

    2015-12-01

    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  4. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  5. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements

    International Nuclear Information System (INIS)

    Muskett, Reginald R; Romanovsky, Vladimir E

    2009-01-01

    The Arctic permafrost regions make up the largest area component of the cryosphere. Observations from the Gravity Recovery and Climate Experiment (GRACE) mission offer to provide a greater understanding of changes in water mass within permafrost regions. We investigate a GRACE monthly time series, snow water equivalent from the special scanning microwave imager (SSM/I), vegetation water content and soil moisture from the advanced microwave scanning radiometer for the Earth observation system (AMSR-E) and in situ discharge of the Lena, Yenisei, Ob', and Mackenzie watersheds. The GRACE water equivalent mass change responded to mass loading by snow accumulation in winter and mass unloading by runoff in spring-summer. Comparison of secular trends from GRACE to runoff suggests groundwater storage increased in the Lena and Yenisei watersheds, decreased in the Mackenzie watershed, and was unchanged in the Ob' watershed. We hypothesize that the groundwater storage changes are linked to the development of closed- and open-talik in the continuous permafrost zone and the decrease of permafrost lateral extent in the discontinuous permafrost zone of the watersheds.

  6. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  7. ASSESSMENT OF WATER BALANCE OF A WATERSHED USING SWAT MODEL FOR WATER RESOURCES MANAGEMENT

    OpenAIRE

    Sandra George; Sathian, K.K.

    2016-01-01

    An attempt has been made in this study to assess the hydrological behavior of the Kurumali sub basin of Karuvannur river basin using SWAT model and other geospatial technologies. All the thematic maps and attribute information of the watershed have been collected from various Government agencies. SWAT model has been set up for the Kurumali sub basin by inputting the digital thematic maps, physical properties of soil and climatic parameters. Total area of the watershed corresponding to the out...

  8. Addressing water quality issues on a watershed basis: a comprehensive approach for utilizing chapter 20 of the Michigan drain code

    International Nuclear Information System (INIS)

    McCulloch, J.P.

    2002-01-01

    There are five major watersheds in Oakland County. They are the Clinton, Flint, Huron, Rouge and Shiawassee. Included in these watersheds are 61 individual cities, villages and townships. Actions taken by one community within the watershed have a significant impact on other communities in the watershed. Consequently, a multi-community approach needs to be identified and utilized to comprehensively address public health and water quality issues. Some of the issues faced by these communities individually include stormwater management, flooding, drainage, and river and stream management. Failing septic systems, illicit connections causing groundwater contamination, and habitat and wetland degradation are also primary concerns. Finally, wastewater treatment capacity and sanitary sewer service also are regularly dealt with by these communities. Traditionally, short-term solutions to these often urgent problems required the construction of relief sewers or temporary retention structures. Unfortunately, solving the problem in one area often meant the creation of new problems downstream. Coordinating efforts among these 61 individual communities is difficult. These difficult challenges are best met with a coordinated, comprehensive plan. (author)

  9. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948-1997

    Science.gov (United States)

    Makarieva, Olga; Nesterova, Nataliia; Lebedeva, Lyudmila; Sushansky, Sergey

    2018-04-01

    In 2018, 70 years have passed since the beginning of observations at the Kolyma Water-Balance Station (KWBS), a unique scientific research hydrological and permafrost catchment. The volume and duration (50 continuous years) of hydrometeorological standard and experimental data, characterizing the natural conditions and processes occurring in mountainous permafrost conditions, significantly exceed any counterparts elsewhere in the world. The data are representative of mountainous territory of the North-East of Russia. In 1997, the station was terminated, thereby leaving Russia without operating research watersheds in the permafrost zone. This paper describes the dataset containing the series of daily runoff from 10 watersheds with an area from 0.27 to 21.3 km2, precipitation, meteorological observations, evaporation from soil and snow, snow surveys, soil thaw and freeze depths, and soil temperature for the period 1948-1997. It also highlights the main historical stages of the station's existence, its work and scientific significance, and outlines the prospects for its future, where the Kolyma Water-Balance Station could be restored to the status of a scientific research watershed and become a valuable international centre for hydrological research in permafrost. The data are available at https://doi.org/10.1594/PANGAEA.881731.

  10. State and transition models: Theory, applications, and challenges. In: Briske, D.D. Rangeland Systems: Processes, Management and Challenges

    Science.gov (United States)

    State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...

  11. Application of a virtual watershed in academic education

    Directory of Open Access Journals (Sweden)

    A. L. Horn

    2005-01-01

    Full Text Available Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed.

  12. Hydrologic Impacts Associated with the Increased Role of Wildland Fire Across the Rangeland-Xeric Forest Continuum of the Great Basin and Intermountain West, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.

    2011-12-01

    The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically

  13. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    Science.gov (United States)

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    -quality sampling results, bottom-sediment samples analyzed for contaminants of emerging concern indicated that adjacent land uses can affect in-stream conditions. Contaminants of emerging concern were detected in four categories: urban compounds, industrial compounds, fecal steroids, and personal care products. Compounds in one or more of the four contaminant categories were detected at higher concentrations in upstream sites than in downstream sites in the tributaries and in the lower Boise River. High concentrations of compounds in upstream locations indicated that adjacent land use might be an important factor in contributing contaminants of emerging concern to the lower Boise River watershed. Expanded monitoring at Mason Creek near the mouth included a streamgage, a continuous water-quality monitor, and monthly water-quality sample collection. Data collected during expanded monitoring efforts at Mason Creek near the mouth provided information to develop and compare water-quality models. Regression models were developed using turbidity, discharge, and seasonality as surrogates to estimate concentrations of water-quality constituents. Daily streamflow also was used in a load model to estimate daily loads of water-quality constituents. Surrogate regression models may be useful for long-term monitoring and generally performed better than other models to estimate concentrations and loads of total phosphorus, total nitrogen, and suspended sediment in Mason Creek. Biological sampling results from Mason Creek showed low periphyton biomass and chlorophyll-a concentrations compared to those historically measured in the Boise River near Parma, Idaho, during October and November. The most abundant invertebrate found in Mason Creek was the highly tolerant and invasive New Zealand mudsnail (Potamopyrgus antipodarum). The presence of small rainbow trout (90 millimeters) may indicate salmonid spawning in Mason Creek. The rangeland-fish-index score of 58 for Mason Creek is comparable to

  14. Ecology and Conservation of Acacia senegal in the Rangelands ...

    African Journals Online (AJOL)

    Ecology and Conservation of Acacia senegal in the Rangelands ofLuwero and Nakasongola Districts. Jacob Godfrey Agea, Joseph Obua, Sara Namirembe, Mukadasi Buyinza, Daniel Waiswa. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  15. Advances in modeling soil erosion after disturbance on rangelands

    Science.gov (United States)

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  16. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    Science.gov (United States)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  17. Environmental diagnosis of the soil usage and the water resources preservation of Juqueriquerê river’s watershed

    OpenAIRE

    Pinto Neto, José Nunes; Moura, Luciana Machado; Fernandes, Gisele Aparecida; Carvalho, Alessandra Rodrigues de; Figueiredo, Marilu Alcântara de Melo; Faria, Elaine Dias de; Pons, Nívea Adriana Dias

    2013-01-01

    The management of the soil usage and the water resources protection has received more and more attention from society and environmental studies. In this perspective, geo-processing tools can help in the production of more representative diagnosis, reporting the reality of the study fields in a clearer way. This paper aims at performing a diagnosis of the soil usage as well as the state of preservation of the water resources of Juqueriquerê River’s watershed. To create the database and the fin...

  18. GROUND WATER MANAGEMENT AND SOIL CONSERVATION OF KORAYAR WATERSHED THROUGH REMOTE SENSING AND GIS

    OpenAIRE

    M. Balakrishnan; Dr. Ilanthirayan

    2017-01-01

    Watershed management is often seen as a potential engine for agricultural growth and development in fragile and marginal rain-fed areas India. Enhanced livelihood opportunities for watershed community through investment in their assets and improvements in income and productivity are the leading objective of the programme, as mentioned in the guidelines for watershed management programme (WMP) in India. Watershed management may be defined as an integrated approach of greenery for a better env...

  19. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Science.gov (United States)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study

  20. Water Resources Response to Climate and Land-Cover Changes in a Semi-Arid Watershed, New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Joonghyeok Heo

    2015-01-01

    Full Text Available This research evaluates a climate-land cover-water resources interconnected system in a semi-arid watershed with minimal human impact from 1970 - 2009. We found _ increase in temperature and 10.9% decrease in precipitation. The temperature exhibited a lower increase trend and precipitation showed a similar decrease trend compared to previous studies. The dominant land-cover change trend was grass and forest conversion into bush/shrub and developed land and crop land into barren and grass land. These alterations indicate that changes in temperature and precipitation in the study area may be linked to changes in land cover, although human intervention is recognized as the major land-cover change contributor for the short term. These alterations also suggest that decreasing human activity in the study area leads to developed land and crop land conversion into barren and grass land. Hydrological responses to climate and land-cover changes for surface runoff, groundwater discharge, soil water content and evapotranspiration decreased by 10.2, 10.0, 4.1, and 10.5%, respectively. Hydrological parameters generally follow similar trends to that of precipitation in semi-arid watersheds with minimal human development. Soil water content is sensitive to land-cover change and offset relatively by the changes in precipitation.

  1. Use of the soil and water assessment tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions.

    Science.gov (United States)

    Almendinger, James E; Murphy, Marylee S; Ulrich, Jason S

    2014-01-01

    For two watersheds in the northern Midwest United States, we show that landscape depressions have a significant impact on watershed hydrology and sediment yields and that the Soil and Water Assessment Tool (SWAT) has appropriate features to simulate these depressions. In our SWAT models of the Willow River in Wisconsin and the Sunrise River in Minnesota, we used Pond and Wetland features to capture runoff from about 40% of the area in each watershed. These depressions trapped considerable sediment, yet further reductions in sediment yield were required for calibration and achieved by reducing the Universal Soil Loss Equation (USLE) cropping-practice (P) factor to 0.40 to 0.45. We suggest terminology to describe annual sediment yields at different conceptual spatial scales and show how SWAT output can be partitioned to extract data at each of these scales. These scales range from plot-scale yields calculated with the USLE to watershed-scale yields measured at the outlet. Intermediate scales include field, upland, pre-riverine, and riverine scales, in descending order along the conceptual flow path from plot to outlet. Sediment delivery ratios, when defined as watershed-scale yields as a percentage of plot-scale yields, ranged from 1% for the Willow watershed (717 km) to 7% for the Sunrise watershed (991 km). Sediment delivery ratios calculated from published relations based on watershed area alone were about 5 to 6%, closer to pre-riverine-scale yields in our watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed

    Science.gov (United States)

    Fazeli Farsani, Iman; Farzaneh, M. R.; Besalatpour, A. A.; Salehi, M. H.; Faramarzi, M.

    2018-04-01

    The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R 2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.

  3. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  5. The hydrological calibration and validation of a complexly-linked watershed reservoir model for the Occoquan watershed, Virginia

    Science.gov (United States)

    Xu, Zhongyan; Godrej, Adil N.; Grizzard, Thomas J.

    2007-10-01

    SummaryRunoff models such as HSPF and reservoir models such as CE-QUAL-W2 are used to model water quality in watersheds. Most often, the models are independently calibrated to observed data. While this approach can achieve good calibration, it does not replicate the physically-linked nature of the system. When models are linked by using the model output from an upstream model as input to a downstream model, the physical reality of a continuous watershed, where the overland and waterbody portions are parts of the whole, is better represented. There are some additional challenges in the calibration of such linked models, because the aim is to simulate the entire system as a whole, rather than piecemeal. When public entities are charged with model development, one of the driving forces is to use public-domain models. This paper describes the use of two such models, HSPF and CE-QUAL-W2, in the linked modeling of the Occoquan watershed located in northern Virginia, USA. The description of the process is provided, and results from the hydrological calibration and validation are shown. The Occoquan model consists of six HSPF and two CE-QUAL-W2 models, linked in a complex way, to simulate two major reservoirs and the associated drainage areas. The overall linked model was calibrated for a three-year period and validated for a two-year period. The results show that a successful calibration can be achieved using the linked approach, with moderate additional effort. Overall flow balances based on the three-year calibration period at four stream stations showed agreement ranging from -3.95% to +3.21%. Flow balances for the two reservoirs, compared via the daily water surface elevations, also showed good agreement ( R2 values of 0.937 for Lake Manassas and 0.926 for Occoquan Reservoir), when missing (un-monitored) flows were included. Validation of the models ranged from poor to fair for the watershed models and excellent for the waterbody models, thus indicating that the

  6. The effects of acidic mine drainage from historical mines in the Animas River watershed, San Juan County, Colorado—What is being done and what can be done to improve water quality?

    Science.gov (United States)

    Church, Stanley E.; Owen, Robert J.; Von Guerard, Paul; Verplanck, Philip L.; Kimball, Briant A.; Yager, Douglas B.

    2007-01-01

    Historical production of metals in the western United States has left a legacy of acidic drainage and toxic metals in many mountain watersheds that are a potential threat to human and ecosystem health. Studies of the effects of historical mining on surface water chemistry and riparian habitat in the Animas River watershed have shown that cost-effective remediation of mine sites must be carefully planned. of the more than 5400 mine, mill, and prospect sites in the watershed, ∼80 sites account for more than 90% of the metal loads to the surface drainages. Much of the low pH water and some of the metal loads are the result of weathering of hydrothermally altered rock that has not been disturbed by historical mining. Some stream reaches in areas underlain by hydrothermally altered rock contained no aquatic life prior to mining.Scientific studies of the processes and metal-release pathways are necessary to develop effective remediation strategies, particularly in watersheds where there is little land available to build mine-waste repositories. Characterization of mine waste, development of runoff profiles, and evaluation of ground-water pathways all require rigorous study and are expensive upfront costs that land managers find difficult to justify. Tracer studies of water quality provide a detailed spatial analysis of processes affecting surface- and ground-water chemistry. Reactive transport models were used in conjunction with the best state-of-the-art engineering solutions to make informed and cost-effective remediation decisions.Remediation of 23% of the high-priority sites identified in the watershed has resulted in steady improvement in water quality. More than $12 million, most contributed by private entities, has been spent on remediation in the Animas River watershed. The recovery curve for aquatic life in the Animas River system will require further documentation and long-term monitoring to evaluate the effectiveness of remediation projects implemented.

  7. Phenomapping of rangelands in South Africa using time series of RapidEye data

    Science.gov (United States)

    Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen

    2016-12-01

    Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 2011⿿2012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.

  8. McKenzie River Focus Watershed Coordination: Year-End Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2000-01-01

    This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management include the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing

  9. Landslides and sediment budgets in four watersheds in eastern Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    The low-latitude regions of the Earth are undergoing profound, rapid landscape change as forests are converted to agriculture to support growing population. Understanding the effects of these land-use changes requires analysis of watershed-scale geomorphic processes to better inform and manage this usually disorganized process. The investigation of hillslope erosion and the development of sediment budgets provides essential information for resource managers. Four small, montane, humid-tropical watersheds in the Luquillo Experimental Forest and nearby Río Grande de Loíza watershed, Puerto Rico (18° 20' N., 65° 45' W.), were selected to compare and contrast the geomorphic effects of land use and bedrock geology. Two of the watersheds are underlain largely by resistant Cretaceous volcaniclastic rocks but differ in land use and mean annual runoff: the Mameyes watershed, with predominantly primary forest cover and runoff of 2,750 millimeters per year, and the Canóvanas watershed, with mixed secondary forest and pasture and runoff of 970 millimeters per year. The additional two watersheds are underlain by relatively erodible granitic bedrock: the forested Icacos watershed, with runoff of 3,760 millimeters per year and the agriculturally developed Cayaguás watershed, with a mean annual runoff of 1,620 millimeters per year. Annual sediment budgets were estimated for each watershed using landslide, slopewash, soil creep, treethrow, suspended sediment, and streamflow data. The budgets also included estimates of sediment storage in channel beds, bars, floodplains, and in colluvial deposits. In the two watersheds underlain by volcaniclastic rocks, the forested Mameyes and the developed Canóvanas watersheds, landslide frequency (0.21 and 0.04 landslides per square kilometer per year, respectively), slopewash (5 and 30 metric tons per square kilometer per year), and suspended sediment yield (325 and 424 metric tons per square kilometer per year), were lower than in the

  10. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  11. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  12. Ecology and utilization of desert shrub rangelands in Iraq

    NARCIS (Netherlands)

    Thalen, Derk Catharinus Peter

    1979-01-01

    When grazing is the accepted land use, vegetation is the key resource. The present study deals with the desert shrub rangelands of lraq, which contain the major characteristics of such an area, having been under grazing for many centuries. Emphasis is given to the ecology and utilization of the

  13. The Effect of Population Variation on the Water Quality of Latian Dam Watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2004-05-01

    Full Text Available The increasing expansion of resential areas and urbanization together with industrial and agricultural development in Iran have made it possible to destroy the ecological system of the natural society remarkably. The watershed of Latian Dam , as one of the sources to supply the drinking water of Tehran is of specific geographical and climatic important ,and because it is adjutant to Tehran , it has exprienced considerable change in population and residential expansion. In this research, we have tried to focus on the changes of the quality of water in the Jajrood River , by surveying the population growth of this area, in recent years. Considering the results of this research the number of tourist have also increased remarkably in the last few years and the quality of water has also been changed because of the increasing number of tourist in the region. Therefore ,without regarding the ecological ,hygienically and controlling necessities in this area , there many be dangerous conditions and consequences forced upon one of the important drinking water sources of Tehran  in the near future.

  14. Modeled Watershed Runoff Associated with Variations in Precipitation Data with Implications for Contaminant Fluxes

    Science.gov (United States)

    Watershed-scale fate and transport models are important tools for estimating the sources, transformation, and transport of contaminants to surface water systems. Precipitation is one of the primary inputs to watershed biogeochemical models, influencing changes in the water budge...

  15. Grazing exclusion, substrate type, and drought frequency affect plant community structure in rangelands of the arid unpredictable Arabian Deserts

    Science.gov (United States)

    El-Keblawy, Ali; El-Sheikh, Mohamed

    2017-04-01

    Grazing and drought can adversely affect the ecology and management of rangeland ecosystems. Several management actions have been applied to restore species diversity and community structure in degraded rangelands of the unpredictable arid environment. Protection from grazing is considered as a proper approach for restoration of degraded rangelands, but this depends on substrate type and sometime is hindered with water deficiency (drought). In this study, the effect of protection from grazing animals on species diversity and plant community structure was assessed after a dry and wet periods in both sandy and gravelly substrates in the Dubai Desert Conservation reserve (DDCR), United Arab Emirates. Two sites were selected during November 2012 on the two substrate types (fixed sandy flat and gravel plain) in the arid DDCR. An enclosure was established in each site. Plant community attributes (plant cover, density, frequency, species composition, and diversity indices) were assessed in a number of permanent plots laid inside and outside each enclosure during November 2012, April 2014 and April 2016. The results showed that protection improved clay content, but decreased the organic matters. Interestingly, the protection reduced the concentrations of most estimated nutrients, which could be attributed to the high turnover rate of nutrients associated grazing and low decomposition of accumulated dry plants of non-protected sites. Protection significantly increased all plant community attributes, but the only significant effect was for plant density. Plant density was almost twice greater inside than outside the enclosures. During the dry period, protection resulted in significantly greater deterioration in cover, density and all diversity indices in gravel, compared to sandy sites. Most of the grasses and shrubby plants had died in the gravel plains. However, plant community of the gravel plains was significantly restored after receiving considerable rainfalls. The

  16. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  17. 50 years of change at 14 headwater snowmelt-dominated watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2017-12-01

    Wyoming is a headwater state contributing to the water resources of four major US basins: Columbia River, Colorado River, Great Basin, and Missouri River. Most of the annual precipitation in this semi-arid state is received at high elevations as snow. Water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs - all depends on the variable and potentially changing annual snowmelt. Thus, characterizing snowmelt and snowmelt-dominated runoff variability and change at high-elevation headwater watersheds in Wyoming is of utmost importance. Next to quantifying variability and changes in total precipitation, snow-water equivalent (SWE), annual runoff and low flows at 14 selected and representative high-elevation watersheds during the previous 50 years, we also explore past watershed disturbances. Wildfires, forest management (e.g. timber harvest), and recent bark beetle outbakes have altered the vegetation and potentially the hydrology of these high-elevation watersheds. We present a synthesis and trend analysis of 49-75 complete water years (wy) of daily streamflow data for 14 high-elevation watersheds, 25-36 complete wy of daily SWE and precipitation data for the closest SNOTEL stations, and spatiotemporal data on burned areas for 20 wy, tree mortality for 18 wy, timber harvest during the 20th century, as well as overview on legacy tie-drive related distrbances. These results are discussed with respect to the differing watershed characteristics in order to present a spectrum of possible hydrologic responses. The importance of our work lies in extending our understanding of snowmelt headwater annual runoff and low-flow dynamics in Wyoming specifically. Such regional synthesis would inform and facilitate water managers and planners both at local state-wide level, but also in the intermountain US West.

  18. Land use influence in the Cerrado biome water quality: a comparative study between watersheds in the Goiás State, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Fernando Stone

    2009-08-01

    Full Text Available Based on the assumption that the water quality in a watershed is directly related to the degree of equilibrium between the natural and anthropic factors, in this paper we examined the effects of the land cover changes in areas of savanna (Cerrado biome over the watersheds ecological viability (expressed here as Water Quality Index. Thus, we analyzed two middle-sized basins located in the Goiás State (a representative area of this biome, with different characteristics regarding both the physical aspects (soil, topography and remnant vegetation and human aspects (environmental degradation level and economic development index: (1 João Leite basin, located in the Center-South State (anthropic level = 88%, and (2 São Domingos basin, in the Northern State (anthropic level = 25%. Chemical analyses have indicated that the water in the São Domingos basin presents, in general, a better quality for human consumption and for the ecosystem maintaining, reflecting the high conservation state of this basin as well.

  19. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Science.gov (United States)

    Penny, Gopal; Srinivasan, Veena; Dronova, Iryna; Lele, Sharachchandra; Thompson, Sally

    2018-01-01

    The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2 = 0.95). We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation) and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed runoff. Independently of

  20. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    Science.gov (United States)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  1. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks.

    Science.gov (United States)

    Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S

    2017-09-01

    Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).

  2. Watershed health assessment to monitor land degradation

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Hazbavi, Zeinab; Cerdà, Artemi

    2017-04-01

    ). References Cerdà, A., A. G. Morera, and M. B. Bodí. 2009. Soil and Water Losses from New Citrus Orchards Growing on Sloped Soils in the Western Mediterranean Basin. Earth Surface Processes and Landforms 34 (13): 1822-1830. doi:10.1002/esp.1889. Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2016. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res, 54, 2, 154-165 DOI: 10.1071/SR15092 Choudhury, B. U., A. R. Fiyaz, K. P. Mohapatra, and S. Ngachan. 2016. Impact of Land Uses, Agrophysical Variables and Altitudinal Gradient on Soil Organic Carbon Concentration of North-Eastern Himalayan Region of India. Land Degradation and Development 27 (4): 1163-1174. doi:10.1002/ldr.2338. Davudirad, A. A., S. H. Sadeghi, and A. Sadoddin. 2016. The Impact of Development Plans on Hydrological Changes in the Shazand Watershed, Iran. Land Degradation and Development 27 (4): 1236-1244. doi:10.1002/ldr.2523. Fava, F., G. Pulighe, and A. T. Monteiro. 2016. Mapping Changes in Land Cover Composition and Pattern for Comparing Mediterranean Rangeland Restoration Alternatives. Land Degradation and Development 27 (3): 671-681. doi:10.1002/ldr.2456. Fernández-Romero, M. L., B. Lozano-García, L. Parras-Alcántara, C. D. Collins, and J. M. Clark. 2016. Effects of Land Management on Different Forms of Soil Carbon in Olive Groves in Mediterranean Areas. Land Degradation and Development 27 (4): 1186-1195. doi:10.1002/ldr.2327. Ferreira, A. C. C., L. F. C. Leite, A. S. F. de Araújo, and N. Eisenhauer. 2016. Land-use Type Effects on Soil Organic Carbon and Microbial Properties in a Semi-Arid Region of Northeast Brazil. Land Degradation and Development 27 (2): 171-178. doi:10.1002/ldr.2282. Gómez-Acata, E. S., I. Valencia-Becerril, C

  3. Probabilistic assessment of wildfire hazard and municipal watershed exposure

    Science.gov (United States)

    Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille

    2012-01-01

    The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...

  4. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Directory of Open Access Journals (Sweden)

    Santosh R. Ghimire

    2017-03-01

    Full Text Available We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S. using life cycle assessment (LCA and life cycle cost assessment. Life cycle impact assessment (LCIA categories included energy demand, fossil fuel, metals, ozone depletion, global warming, acidification, smog, blue and green water use, ecotoxicity, eutrophication, and human health effects. Building upon previous LCAs of near-optimal domestic and agricultural RWH systems in the region, we scaled functional unit LCIA scores for adoption rates of 25%, 50%, 75%, and 100% and compared these to conventional municipal water and well water systems. In addition to investigating watershed-scale impacts of RWH adoption, which few studies have addressed, potential life cycle cost savings due to reduced cumulative energy demand were scaled in each watershed for a more comprehensive analysis. The importance of managing the holistic water balance, including blue water (surface/ground water, green water (rainwater use, and annual precipitation and their relationship to RWH are also addressed. RWH contributes to water resource sustainability by offsetting surface and ground water consumption and by reducing environmental and human health impacts compared to conventional sources. A watershed-wide RWH adoption rate of 25% has a number of ecological and human health benefits including blue water use reduction ranging from 2–39 Mm3, cumulative energy savings of 12–210 TJ, and reduced global warming potential of 600–10,100 Mg CO2 eq. Potential maximum lifetime energy cost savings were estimated at $5M and $24M corresponding to domestic RWH in Greens Mill and agricultural RWH in Back Creek watersheds.

  5. Adaptation to heavy rainfall events: watershed-community planning of soil and water conservation technologies in Syria

    Science.gov (United States)

    Ziadat, Feras; Al-Wadaey, Ahmed; Masri, Zuhair; Sakai, Hirokazu

    2010-05-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) and other research, predict a significant future increase in the frequency and intensity of heavy rainfall events in many regions. This increase runoff and soil erosion, and reduce agricultural productivity, as well as increasing risks of flood damage to crops and infrastructure. Implementing adaptation measures and improved land management through erosion control and soil protection are among those that protect water and agriculture and limit their vulnerability. Soil erosion control practices are often based on long-term climatic averages. Special attention is needed to provide protection against average high-return frequency storms as well as severe storms with low-return frequency. Suitable and affordable soil conservation plans, coupled with an appropriate enabling environment, are needed. A watershed and community were selected in the mountainous area of North West Syria. The fields represent the non-tropical highland dry areas and dominated by olive orchards on steep slopes. Farmers were aware of resource degradation and productivity reduction, but lacked financial capital to implement the needed adaptation measures. A micro-credit system was established with the help of the UNDP Global Environment Facility - Small Grants Program (GEF-SGP) with small grants available for each farmer. Haphazard implementation on scattered fields proved inefficient in demonstrating obvious impact. Therefore, each watershed was classified into three erosion risk categories (high, moderate and low), derived from maps of flow accumulation, slope steepness, slope shape and land use. Using field survey of land ownership, the boundaries of 168 farms in the watersheds were mapped. Farmers' fields were classified using the erosion-risk map and considering the on-farm erosion hazard and the off-farm effect on other farmers' fields following the hillslope sequence. More than 60% of the farms were

  6. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  7. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ... watershed needs. Through this program, we provide Federal leadership and assistance on; Efficient use of... availability and quality issues within the relevant watershed; and Otherwise meet the definition of a...

  8. A synoptic review of U.S. rangelands: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Matthew Clark Reeves; John E. Mitchell

    2012-01-01

    The Renewable Resources Planning Act of 1974 requires the USDA Forest Service to conduct assessments of resource conditions. This report fulfills that need and focuses on quantifying extent, productivity, and health of U.S. rangelands. Since 1982, the area of U.S. rangelands has decreased at an average rate of 350,000 acres per year owed mostly to conversion to...

  9. Parameterization of erodibility in the Rangeland Hydrology and Erosion Model

    Science.gov (United States)

    The magnitude of erosion from a hillslope is governed by the availability of sediment and connectivity of runoff and erosion processes. For undisturbed rangelands, sediment is primarily detached and transported by rainsplash and sheetflow (splash-sheet) processes in isolated bare batches, but sedime...

  10. Rainfall prediction of Cimanuk watershed regions with canonical correlation analysis (CCA)

    Science.gov (United States)

    Rustiana, Shailla; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje; Hermawan, Eddy; Berliana Sipayung, Sinta; Gede Nyoman Mindra Jaya, I.; Krismianto

    2017-10-01

    Rainfall prediction in Indonesia is very influential on various development sectors, such as agriculture, fisheries, water resources, industry, and other sectors. The inaccurate predictions can lead to negative effects. Cimanuk watershed is one of the main pillar of water resources in West Java. This watersheds divided into three parts, which is a headwater of Cimanuk sub-watershed, Middle of Cimanuk sub-watershed and downstream of Cimanuk sub- watershed. The flow of this watershed will flow through the Jatigede reservoir and will supply water to the north-coast area in the next few years. So, the reliable model of rainfall prediction is very needed in this watershed. Rainfall prediction conducted with Canonical Correlation Analysis (CCA) method using Climate Predictability Tool (CPT) software. The prediction is every 3months on 2016 (after January) based on Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data over West Java. Predictors used in CPT were the monthly data index of Nino3.4, Dipole Mode (DMI), and Monsoon Index (AUSMI-ISMI-WNPMI-WYMI) with initial condition January. The initial condition is chosen by the last data update. While, the predictant were monthly rainfall data CHIRPS region of West Java. The results of prediction rainfall showed by skill map from Pearson Correlation. High correlation of skill map are on MAM (Mar-Apr-May), AMJ (Apr-May-Jun), and JJA (Jun-Jul-Aug) which means the model is reliable to forecast rainfall distribution over Cimanuk watersheds region (over West Java) on those seasons. CCA score over those season prediction mostly over 0.7. The accuracy of the model CPT also indicated by the Relative Operating Characteristic (ROC) curve of the results of Pearson correlation 3 representative point of sub-watershed (Sumedang, Majalengka, and Cirebon), were mostly located in the top line of non-skill, and evidenced by the same of rainfall patterns between observation and forecast. So, the model of CPT with CCA method

  11. Weathering, landscape equilibrium, and carbon in four watersheds in eastern Puerto Rico: Chapter H in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    The U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program research in eastern Puerto Rico involves a double pair-wise comparison of four montane river basins, two on granitic bedrock and two on fine-grained volcaniclastic bedrock; for each rock type, one is forested and the other is developed. A confounding factor in this comparison is that the developed watersheds are substantially drier than the forested (runoff of 900–1,600 millimeters per year compared with 2,800–3,700 millimeters per year). To reduce the effects of contrasting runoff, the relation between annual runoff and annual constituent yield were used to estimate mean-annual yields at a common, intermediate mean-annual runoff of 1,860 millimeters per year. Upon projection to this intermediate runoff, the ranges of mean-annual yields among all watersheds became more compact or did not substantially change for dissolved bedrock, sodium, silica, chloride, dissolved organic carbon, and calcium. These constituents are the primary indicators of chemical weathering, biological activity on the landscape, and atmospheric inputs; the narrow ranges indicate little preferential influence by either geology or land cover. The projected yields of biologically active constituents (potassium, nitrate, ammonium ion, phosphate), and particulate constituents (suspended bedrock and particulate organic carbon) were considerably greater for developed landscapes compared with forested watersheds, consistent with the known effects of land clearing and human waste inputs. Equilibrium rates of combined chemical and physical weathering were estimated by using a method based on concentrations of silicon and sodium in bedrock, river-borne solids, and river-borne solutes. The observed rates of landscape denudation greatly exceed rates expected for a dynamic equilibrium, except possibly for the forested watershed on volcaniclastic rock. Deforestation and agriculture can explain the accelerated physical

  12. Rangelands Vegetation under Different Management Systems and Growth Stages in North Darfur State, Sudan (Range Attributes

    Directory of Open Access Journals (Sweden)

    Mohamed AAMA Mohamed

    2014-09-01

    Full Text Available This study was conducted at Um Kaddada, North Darfur State, Sudan, at two sites (closed and open for two consecutive seasons 2008 and 2009 during flowering and seed setting stages to evaluate range attributes at the locality. A split plot design was used to study vegetation attributes. Factors studied were management systems (closed and open and growth stages (flowering and seed setting. Vegetation cover, plant density, carrying capacity, and biomass production were assessed. Chemical analyses were done for selected plants to determine their nutritive values. The results showed high significant differences in vegetation attributes (density, cover and biomass production between closed and open areas. Closed areas had higher carrying capacity compared to open rangelands. Crude protein (CP and ash contents of range vegetation were found to decrease while Crude fiber (CF and Dry matter yield (DM had increased with growth. The study concluded that closed rangelands are better than open rangelands because it fenced and protected. Erosion index and vegetation degradation rate were very high. Future research work is needed to assess rangelands characteristics and habitat condition across different ecological zones in North Darfur State, Sudan.DOI: http://dx.doi.org/10.3126/ije.v3i3.11093 International Journal of Environment Vol.3(3 2014: 332-343

  13. BPA riparian fencing and alternative water development projects completed within Asotin Creek Watershed ; 2000 and 2001 Asotin Creek fencing final report of accomplishments

    International Nuclear Information System (INIS)

    Johnson, B.J.Bradley J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84

  14. Use of biosolids to enhance rangeland forage quality.

    Science.gov (United States)

    McFarland, Michael J; Vasquez, Issaak Romero; Vutran, MaiAnh; Schmitz, Mark; Brobst, Robert B

    2010-05-01

    Biosolids land application was demonstrated to be a potentially cost-effective means for restoring forage productivity and enhancing soil-moisture-holding capacity on disturbed rangelands. By land-applying aerobically digested, anaerobically digested, composted, and lime-stabilized biosolids on rangeland test plots at rates of up to 20 times (20X) the estimated nitrogen-based agronomic rate, forage yields were found to increase from 132.8 kg/ha (118.2 lb/ac) (control plots) to 1182.3 kg/ha (1052.8 lb/ac). Despite the environmental benefits associated with increased forage yield (e.g., reduced soil erosion, improved drainage, and enhanced terrestrial carbon sequestration), the type of forage generated both before and after biosolids land application was found to be dominated by invasive weeds, all of which were characterized as having fair to poor nutritional value. Opportunistic and shallow rooting invasive weeds not only have marginal nutritional value, they also limit the establishment of native perennial grasses and thus biodiversity. Many of the identified invasive species (e.g., Cheatgrass) mature early, a characteristic that significantly increases the fuel loads that support the increased frequency and extent of western wildfires.

  15. A GIS-based disaggregate spatial watershed analysis using RADAR data

    International Nuclear Information System (INIS)

    Al-Hamdan, M.

    2002-01-01

    Hydrology is the study of water in all its forms, origins, and destinations on the earth.This paper develops a novel modeling technique using a geographic information system (GIS) to facilitate watershed hydrological routing using RADAR data. The RADAR rainfall data, segmented to 4 km by 4 km blocks, divides the watershed into several sub basins which are modeled independently. A case study for the GIS-based disaggregate spatial watershed analysis using RADAR data is provided for South Fork Cowikee Creek near Batesville, Alabama. All the data necessary to complete the analysis is maintained in the ArcView GIS software. This paper concludes that the GIS-Based disaggregate spatial watershed analysis using RADAR data is a viable method to calculate hydrological routing for large watersheds. (author)

  16. Hydrosedimentological modeling of watershed in southeast Brazil, using SWAT

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2010-08-01

    Full Text Available The quantitative evaluation of soil loss due to erosion, of water loss and of load sediments that reach water bodies is fundamental to the environmental planning of a watershed, contributing to the process of decision for best options for soil tillage and water quality maintenance. Estimates of these data have been accomplished throughout the world using empiric or conceptual models. Besides being economically viable in scenarios development, environmental models may contribute to the location of critical areas, leading to emergency contention operations caused by erosive processes. Among these models, we highlight the SWAT (Soil and Water Assessment Tool which was applied in São Bartolomeu watershed, located in the Zona da Mata, Minas Gerais state, southeastern Brazil, to identify areas of greater sensitivity to erosion considering the soil type and land use. To validate the model, 10 experimental plots were installed in the dominant crops of the watershed between 2006 and 2008, for monitoring the runoff and soil losses under natural rainfall. Field results and simulations showed the SWAT efficiency for sediment yield and soil losses estimations, as they are influenced by factors such as soil moisture, rainfall intensity, soil type and land use (dominated by Oxisols, Ultisols, Inceptisols and Entisols. These losses can be reduced significantly by improving crops management of. A simulation scenario replacing pastures cover by Eucalyptus was introduced, which significantly reduced soil loss in many parts of the watershed.

  17. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry...... concentration facilitated conservation of entire ecosystems. We investigate the benefits that accrued through dynamic linkages of the hydrological cycle and groundwater aquifer system. This provides a clear example of the need to consider integrated watershed effects, industrial structure, and linkages...... in determining conservation policy. We incorporated remote-sensing data, expert opinion on current watershed quality, and a spatial economic and hydrological model of O`ahu’s freshwater use with reports of conservation activities from 1910–1960 to assess these benefits. We find a 2.3% annual increase...

  18. Use of isotopologues as natural tracers of ground water application to Engenho Nogueira watershed, UFMG campus, Brazil

    International Nuclear Information System (INIS)

    Aguiar, Raquel Pazzini Scarpelli de

    2015-01-01

    Isotope Ratio Mass Spectrometry is the ideal method to determine with high precision the ratio of stable isotopes of light elements. Due to this fact, it is used in environmental research, especially in hydrological studies, avoiding the need of injection. This work implanted a method for analysis of water isotopes ( 18 O and 2 H) and validated the method for the measurement of δ 18 O, in the Laboratory of Isotope Ratio Mass Spectrometry of the Center for Development of Nuclear Technology. The performance of the method was evaluated according to the following criteria: stability, linearity, precision, accuracy and robustness. This method was applied to studies of groundwater in the watershed of the Engenho Nogueira Creek, located at the Federal University of Minas Gerais (UFMG) campus, in the northern region of the city of Belo Horizonte, Brazil. The watershed of the Engenho Nogueira Creek has been studied in several occasions in recent years for different purposes; however, the use of natural isotopes of water had never been applied to these studies. This technique can expand the diversity of data on the local aquifer, helping to fill gaps in its understanding, besides, it can confirm data previously obtained. The expansion of the academic and administrative units of the UFMG campus since 2000 implies in an incremented importance of the management of the local since the demand for water grows each year. (author)

  19. Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach

    Science.gov (United States)

    Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...

  20. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty