WorldWideScience

Sample records for range water reducer

  1. Water neutral: reducing and ofsetting water footprints

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2008-01-01

    During the past few years the concept of the ‘water footprint’ has started to receive recognition within governments, non-governmental organizations, businesses and media as a useful indicator of water use. The increased interest in the water-footprint concept has prompted the question about what

  2. Water temperature impacts water consumption by range cattle in winter

    Science.gov (United States)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  3. Range Cattle Winter Water Consumption in Northern Great Plains

    Science.gov (United States)

    Water consumption and DMI has been found to be positively correlated and may interact to alter range cow productivity. Environmental conditions can have a significant influence on water consumption during the winter. The objective of this study was to determine influences of water and air temperatur...

  4. Silicon photonics thermal phase shifter with reduced temperature range

    Science.gov (United States)

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  5. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  6. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  7. White Sands Missile Range 2011 Drinking Water Quality Report

    Science.gov (United States)

    2012-01-01

    acerca de su agua potable . Haga que alguien lo traduzca para usted, o hable con alguien que lo entienda. Main Post White Sands Missile Range 2011...standards. What is This Water Quality Report? Este informe contiene informacion importante acerca de su agua potable . Haga que alguien lo traduzca

  8. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  9. Translational and Rotational Diffusion in Water in the Gigapascal Range

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.

    2013-11-01

    First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

  10. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  11. Water hammer reduces fouling during natural water ultrafiltration.

    Science.gov (United States)

    Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M

    2012-03-15

    Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Potential Effects of a Water Market on Enhancing Water Productivity and Reducing Water-Related Conflicts in Fars Province, Iran

    Directory of Open Access Journals (Sweden)

    Mansour Zibaei

    2017-03-01

    Full Text Available The growing demand for water and the declining trend in renewable water resources in most regions has led to serious limitations on water availability calling for the sustainable management of the harvestable resources. This has, in turn, encouraged most planners in the water sector to focus on demand management. A number of tools are already available for realizing water demand management goals; one such tool is establishing a water market. The present study is designed and implemented in two stages to investigate the role of a water market in water resources management. In the first stage, the creation of a water market at the farm and basin levels is simulated using a mathematical planning model. The second stage involves the investigation of the combined effects of the water market and water extraction rationing policies. It is found that rationing policies lead to reduced extractions from groundwater resources. The two-stage random cluster sampling method is used to collect the required data. Pilot villages are selected based on the data obtained from the first sampling stage. Pilot farms are then selected in the second stage based on water availability in each place. The input-output data, quantities of available water, and any other data required are finally collected through interviews with local farmers. Results reveal that the volume of exchanged water accounts for 9.5% of the total water consumed and the average improvement gained in farmers’ income ranges from 15 to as high as 42%. This clearly provides enough incentives for the farmers to enter the water market. Like all other water saving policies and measures, establishing a water market might increase consumption, contrary to the national objectives, in the absence of proper supplementary preventive measures. Thus, a second scenario is designed to investigate the combined effects of both water extraction rationing and water marketing. According to this scenario, the total

  13. Effect of simple solutes on the long range dipolar correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)

    2016-03-14

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

  14. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Science.gov (United States)

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  15. Spectrophotometric determination of silica in water. Low range

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-07-01

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 μg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  16. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  17. Effect of electrolyzed reduced water on malondialdehyde levels and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effects of electrolyzed reduced water (ERW) on .... dehydrated and cleared with alcohol. ... assay tubes were incubated at a temperature of ... oxygen-dependent and oxygen-independent .... Oxidative Medicine and.

  18. Cooperative water network system to reduce carbon footprint.

    Science.gov (United States)

    Lim, Seong-Rin; Park, Jong Moon

    2008-08-15

    Much effort has been made in reducing the carbon footprint to mitigate climate change. However, water network synthesis has been focused on reducing the consumption and cost of freshwater within each industrial plant. The objective of this study is to illustrate the necessity of the cooperation of industrial plants to reduce the total carbon footprint of their water supply systems. A mathematical optimization model to minimize global warming potentials is developed to synthesize (1) a cooperative water network system (WNS) integrated over two plants and (2) an individual WNS consisting of two WNSs separated for each plant. The cooperative WNS is compared to the individual WNS. The cooperation reduces their carbon footprint and is economically feasible and profitable. A strategy for implementing the cooperation is suggested for the fair distribution of costs and benefits. As a consequence, industrial plants should cooperate with their neighbor plants to further reduce the carbon footprint.

  19. Deficit irrigation of peach trees to reduce water consumption

    Science.gov (United States)

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  20. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    Science.gov (United States)

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  1. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    KAUST Repository

    Grupstra, Carsten G. B.

    2017-05-15

    Zooxanthellate corals are threatened by climate change but may be able to escape increasing temperatures by colonizing higher latitudes. To determine the effect of host range expansion on symbiont genetic diversity, we examined genetic variation among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them on Oculina spp. samples from the western North Atlantic and the Mediterranean. We then used them to compare symbiont genotype diversity between an Iberian core and an expansion front population of O. patagonica. Only one multilocus S. psygmophilum genotype was identified at the expansion front, and it was shared with the core population, which harbored seven multilocus genotypes. This pattern suggests that O. patagonica range expansion is accompanied by reduced symbiont genetic diversity, possibly due to limited dispersal of symbionts or local selection.

  2. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  3. Experimental investigation on the active range of sulfate-reducing bacteria for geological disposal

    International Nuclear Information System (INIS)

    Fukunaga, S.; Fujiki, K.; Asano, H.; Yoshikawa, H.

    1995-01-01

    The active range of Desulfovibrio desulfuricans, a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels. SRB activity was estimated at 35 C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely. A chart was obtained showing the active range of Desulfovibrio desulfuricans in terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified

  4. Absorption properties of water-in-oil emulsions in the low THz frequency range

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    We use transmission THz spectroscopy to investigate the absorption properties of water-in-oil emulsions with water content varying in the 0-20% range, relevant for a range of food products. We find that at low frequencies the effective absorption coefficient of the emulsion is suppressed compared...... to bulk water....

  5. Diet change—a solution to reduce water use?

    International Nuclear Information System (INIS)

    Jalava, M; Kummu, M; Porkka, M; Varis, O; Siebert, S

    2014-01-01

    Water and land resources are under increasing pressure in many parts of the globe. Diet change has been suggested as a measure to contribute to adequate food security for the growing population. This paper assesses the impact of diet change on the blue and green water footprints of food consumption. We first compare the water consumption of the current diets with that of a scenario where dietary guidelines are followed. Then, we assess these footprints by applying four scenarios in which we gradually limit the amount of protein from animal products to 50%, 25%, 12.5% and finally 0% of the total protein intake. We find that the current water use at the global scale would be sufficient to secure a recommended diet and worldwide energy intake. Reducing the animal product contribution in the diet would decrease global green water consumption by 6%, 11%, 15% and 21% within the four applied scenarios, while for blue water, the reductions would be 4%, 6%, 9% and 14%. In Latin America, Europe, Central and Eastern Asia and Sub-Saharan Africa, diet change mainly reduces green water use, while in the Middle East region, North America, Australia and Oceania, both blue and green water footprints decrease considerably. At the same time, in South and Southeast Asia, diet change does not result in decreased water use. Our results show that reducing animal products in the human diet offers the potential to save water resources, up to the amount currently required to feed 1.8 billion additional people globally; however, our results show that the adjustments should be considered on a local level. (letter)

  6. Water tables constrain height recovery of willow on Yellowstone's northern range.

    Science.gov (United States)

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  7. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  8. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  9. Effect of electrolyzed reduced water on malondialdehyde levels and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effects of electrolyzed reduced water (ERW) on malondialdehyde (MDA) levels and neutrophil cells in Wistar rats suffering from aggressive periodontitis. Methods: Wistar rats (Rattus norvegicus) were infected with A. actinomycetemcomitans before being divided into a control group and a treatment ...

  10. SU-C-207A-04: Accuracy of Acoustic-Based Proton Range Verification in Water

    International Nuclear Information System (INIS)

    Jones, KC; Sehgal, CM; Avery, S; Vander Stappen, F

    2016-01-01

    Purpose: To determine the accuracy and dose required for acoustic-based proton range verification (protoacoustics) in water. Methods: Proton pulses with 17 µs FWHM and instantaneous currents of 480 nA (5.6 × 10 7 protons/pulse, 8.9 cGy/pulse) were generated by a clinical, hospital-based cyclotron at the University of Pennsylvania. The protoacoustic signal generated in a water phantom by the 190 MeV proton pulses was measured with a hydrophone placed at multiple known positions surrounding the dose deposition. The background random noise was measured. The protoacoustic signal was simulated to compare to the experiments. Results: The maximum protoacoustic signal amplitude at 5 cm distance was 5.2 mPa per 1 × 10 7 protons (1.6 cGy at the Bragg peak). The background random noise of the measurement was 27 mPa. Comparison between simulation and experiment indicates that the hydrophone introduced a delay of 2.4 µs. For acoustic data collected with a signal-to-noise ratio (SNR) of 21, deconvolution of the protoacoustic signal with the proton pulse provided the most precise time-of-flight range measurement (standard deviation of 2.0 mm), but a systematic error (−4.5 mm) was observed. Conclusion: Based on water phantom measurements at a clinical hospital-based cyclotron, protoacoustics is a potential technique for measuring the proton Bragg peak range with 2.0 mm standard deviation. Simultaneous use of multiple detectors is expected to reduce the standard deviation, but calibration is required to remove systematic error. Based on the measured background noise and protoacoustic amplitude, a SNR of 5.3 is projected for a deposited dose of 2 Gy.

  11. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  12. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  13. Reduced mandibular range of motion in Duchenne Muscular Dystrophy: predictive factors.

    Science.gov (United States)

    van Bruggen, H W; Van Den Engel-Hoek, L; Steenks, M H; Bronkhorst, E M; Creugers, N H J; de Groot, I J M; Kalaykova, S I

    2015-06-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16.7 ± 7.7 years) and 23 controls were assessed using a questionnaire about mandibular function and impairments. All participants underwent a clinical examination of the masticatory system, including measurement of mandibular range of motion and variables related to mandibular movements. In all patients, quantitative ultrasound of the digastric muscle and the geniohyoid muscle and the motor function measure (MFM) scale were performed. The patients were divided into early and late ambulatory stage (AS), early non-ambulatory stage (ENAS) and late non-ambulatory stage (LNAS). All mandibular movements were reduced in the patient group (P < 0.001) compared to the controls. Reduction in the aMMO (<40 mm) was found in 26% of the total patient group. LNAS patients had significantly smaller mandibular movements compared to AS and ENAS (P < 0.05). Multiple linear regression analysis for aMMO revealed a positive correlation with the body height and disease progression, with MFM total score as the strongest independent risk factor (R(2) = 0.71). Mandibular movements in DMD are significantly reduced and become more hampered with loss of motor function, including the sitting position, arm function, and neck and head control. We suggest that measurement of the aMMO becomes a part of routine care of patients with DMD. © 2015 John Wiley & Sons Ltd.

  14. Humans running in place on water at simulated reduced gravity.

    Directory of Open Access Journals (Sweden)

    Alberto E Minetti

    Full Text Available BACKGROUND: On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate appendages, and limited muscle power. However, if gravity is reduced to less than Earth's gravity, running on water should require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able to run on water. We test these predictions in the laboratory using a reduced gravity simulator. METHODOLOGY/PRINCIPAL FINDINGS: We adapted a model equation, previously used by Glasheen and McMahon to explain the dynamics of Basilisk lizard, to predict the body mass, stride frequency and gravity necessary for a person to run on water. Progressive body-weight unloading of a person running in place on a wading pool confirmed the theoretical predictions that a person could run on water, at lunar (or lower gravity levels using relatively small rigid fins. Three-dimensional motion capture of reflective markers on major joint centers showed that humans, similarly to the Basilisk Lizard and to the Western Grebe, keep the head-trunk segment at a nearly constant height, despite the high stride frequency and the intensive locomotor effort. Trunk stabilization at a nearly constant height differentiates running on water from other, more usual human gaits. CONCLUSIONS/SIGNIFICANCE: The results showed that a hydrodynamic model of lizards running on water can also be applied to humans, despite the enormous difference in body size and morphology.

  15. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James; Rodgers, John; Alley, Bethany; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  16. Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James; Rodgers, John; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  17. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James W. [Clemson Univ., SC (United States); Rodgers, John H. [Clemson Univ., SC (United States); Alley, Bethany [Clemson Univ., SC (United States); Beebe, Alex [Clemson Univ., SC (United States); Coffey, Ruthanne [Clemson Univ., SC (United States); Jurinko, Kristen [Clemson Univ., SC (United States); Pardue, Michael [Clemson Univ., SC (United States); Ritter, Tina [Clemson Univ., SC (United States); Spacil, Michael M. [Clemson Univ., SC (United States)

    2013-08-08

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  18. Benchmarking Water Quality from Wastewater to Drinking Waters Using Reduced Transcriptome of Human Cells.

    Science.gov (United States)

    Xia, Pu; Zhang, Xiaowei; Zhang, Hanxin; Wang, Pingping; Tian, Mingming; Yu, Hongxia

    2017-08-15

    One of the major challenges in environmental science is monitoring and assessing the risk of complex environmental mixtures. In vitro bioassays with limited key toxicological end points have been shown to be suitable to evaluate mixtures of organic pollutants in wastewater and recycled water. Omics approaches such as transcriptomics can monitor biological effects at the genome scale. However, few studies have applied omics approach in the assessment of mixtures of organic micropollutants. Here, an omics approach was developed for profiling bioactivity of 10 water samples ranging from wastewater to drinking water in human cells by a reduced human transcriptome (RHT) approach and dose-response modeling. Transcriptional expression of 1200 selected genes were measured by an Ampliseq technology in two cell lines, HepG2 and MCF7, that were exposed to eight serial dilutions of each sample. Concentration-effect models were used to identify differentially expressed genes (DEGs) and to calculate effect concentrations (ECs) of DEGs, which could be ranked to investigate low dose response. Furthermore, molecular pathways disrupted by different samples were evaluated by Gene Ontology (GO) enrichment analysis. The ability of RHT for representing bioactivity utilizing both HepG2 and MCF7 was shown to be comparable to the results of previous in vitro bioassays. Finally, the relative potencies of the mixtures indicated by RHT analysis were consistent with the chemical profiles of the samples. RHT analysis with human cells provides an efficient and cost-effective approach to benchmarking mixture of micropollutants and may offer novel insight into the assessment of mixture toxicity in water.

  19. Neck arthritis pain is reduced and range of motion is increased by massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2014-11-01

    The literature on the effects of massage therapy on neck arthritis pain is mixed depending on the dose level, and it is also based on self-report. In the present study an attempt was made to enhance the effects of weekly massage therapy by having the participants massage themselves daily. And in addition to self-reports on pain, range of motion (ROM) and the associated ROM pain were assessed before and after the first massage session and pre-post the last session one month later. Staff and faculty members at a medical school who were eligible for the study if they had neck arthritis pain were randomly assigned to a massage or a waitlist control group (N = 24 per group). The massage group received moderate pressure massages weekly by a massage therapist plus daily self-massages. The waitlist control group received the same schedule massages one month after being control subjects. The massage group showed significant short-term reductions after the first and last day massages in self-reported pain and in ROM-associated pain as well as an increase in ROM. Comparisons between the massage group (N = 23) and the control group (N = 14) on the last versus the first day data suggested significantly different changes including increased ROM and reduced ROM-associated pain for the massage group and reduced ROM and increased ROM-associated pain for the control group. These changes occurred specifically for flexion and right and left lateral flexion motions. These data highlight the importance of designing massage therapy protocols that target the most affected neck muscle groups and then assessing range of motion and related pain before and after the massage therapy. Comparisons with other studies also suggest that moderate pressure may contribute to the massage effects, and the use of daily self-massages between sessions may sustain the effects and serve as a cost-effective therapy for individuals with neck arthritis pain. Copyright © 2014. Published by Elsevier Ltd.

  20. Innovative methods to reduce salt water intrusion in harbours

    Science.gov (United States)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  1. Knee arthritis pain is reduced and range of motion is increased following moderate pressure massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2015-11-01

    The literature on massage therapy effects on knee pain suggests that pain was reduced based on self-report, but little is known about range of motion (ROM) effects. Medical School staff and faculty who had knee arthritis pain were randomly assigned to a moderate pressure massage therapy or a waitlist control group (24 per group). Self-reports included the WOMAC (pain, stiffness and function) and the Pittsburgh Sleep Quality Index. ROM and ROM-related pain were assessed before and after the last sessions. The massage group showed an immediate post-massage increase in ROM and a decrease in ROM-associated pain. On the last versus the first day of the study, the massage group showed greater increases in ROM and decreases in ROM-related pain as well as less self-reported pain and sleep disturbances than the waitlist control group. These data highlight the effectiveness of moderate pressure massage therapy for increasing ROM and lessening ROM-related pain and long-term pain and sleep disturbances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Least limiting water range in assessing compaction in a Brazilian Cerrado latosol growing sugarcane

    Directory of Open Access Journals (Sweden)

    Wainer Gomes Gonçalves

    2014-04-01

    Full Text Available In the south-central region of Brazil, there is a trend toward reducing the sugarcane inter-harvest period and increasing traffic of heavy harvesting machinery on soil with high water content, which may intensify the compaction process. In this study, we assessed the structural changes of a distroferric Red Latosol (Oxisol by monitoring soil water content as a function of the Least Limiting Water Range (LLWR and quantified its effects on the crop yield and industrial quality of the first ratoon crop of sugarcane cultivars with different maturation cycles. Three cultivars (RB 83-5054, RB 84-5210 and RB 86-7515 were subjected to four levels of soil compaction brought about by a differing number of passes of a farm tractor (T0 = soil not trafficked, T2 = 2 passes, T10 = 10 passes, and T20 = 20 passes of the tractor in the same place in a 3 × 4 factorial arrangement with three replications. The deleterious effects on the soil structure from the farm machinery traffic were limited to the surface layer (0-10 cm of the inter-row area of the ratoon crop. The LLWR dropped to nearly zero after 20 tractor passes between the cane rows. We detected differences among the cultivars studied; cultivar RB 86-7515 stood out for its industrial processing quality, regardless of the level of soil compaction. Monitoring of soil moisture in the crop showed exposure to water stress conditions, although soil compaction did not affect the production variables of the sugarcane cultivars. We thus conclude that the absence of traffic on the plant row maintained suitable soil conditions for plant development and may have offset the harmful effects of soil compaction shown by the high values for bulk density between the rows of the sugarcane cultivars.

  3. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  4. Water Pricing as an Economic Justification for Reducing Non-Revenue Water (NRW Projects

    Directory of Open Access Journals (Sweden)

    Massoud Tabesh

    2017-03-01

    Full Text Available Management of water demand and modification of consumption patterns are becoming increasingly essential due to the increasingly limited precipitation and the growing population which have led to both severe restrictions on renewable water resources and increasing demands for water in Iran. The most important consumption management measures involve reducing Non-Revenue Water (NRW and decreasing water losses in the water supply system. Non-revenue water is defined as the difference between the total inflow and the metered consumption in the supply system. The losses may be divided into the two components of apparent and real losses. Achieving reductions in non-revenue water calls for the careful study and evaluation of the operational procedures proposed in each case since reductions will be economical only when accurate and realistic values are considered in water pricing. The present study draws upon the data obtained from non-revenue water projects implemented in District 4 of Tehran Water and Wastewater Company, the measures proposed by the project consultant, and the economic justifications claimed for all the costs associated with the measures to eliminate water losses. The cost of the proposed measures are calculated for two different economic values of water proposed to ensure benefits, and under four different interest rates. Results confirm the profitability of the non-revenue water solutions based on the finished cost of water even at subsidized rates of public funds. However, project profitability will be in question if the economic price of water is assumed to be equivalent to the total trade price of water and if both real and apparent losses are to be reduced.

  5. Increasing hydro turbine operation range and efficiencies using water injection in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Francke, Haakon Hjort

    2010-09-15

    It is a well known fact that most Francis turbines, because of the fixed blade design, faces challenges when running at partial load operation. Especially in the operating range below approximately 50 % of the rated output, it is common to observe severe pressure pulsations and surge in the draft tube. These pressure fluctuations are believed to be related to the swirling flow exiting the runner. By using water jets in the draft tube cone directed towards the swirling flow, the swirl strength is believed to be reduced and thereby also the pressure fluctuations produced by the swirl. This system thus has a potential of increasing the turbine operating range. The system can be activated when needed, and will not affect the turbine when running at its best efficiency point.Based on the main hypothesis, a simplified swirl rig was designed and constructed in order to investigate the nozzle influence on the swirling flow and on the pressure pulsations in a simplified environment. To expand the understanding of the nozzle performance in a Francis turbine, experiments were conducted in a model turbine with a prototype of movable nozzles. To establish a link between laboratory nozzle measurements and full scale nozzle measurements, field measurements were carried out on full scale Francis turbines running at partial discharge. For this purpose the turbines installed at Skarsfjord Power Station and Skibotn Power Station were used, where full scale nozzle injection systems were installed. The test results suggested that the concept of water injection worked, but not unconditionally. A reduction in pressure fluctuations was achieved both in laboratory and field experiments, as well as a noticeable reduction regarding fluctuations in the shaft run-out at Skibotn. In addition, water injection gave a surprisingly positive effect at overload conditions in the model turbine, even though the nozzle angle was directed in the same direction as the overload swirl. Ideally, the results

  6. Methods and means for reducing pressure in systems for fire fighting and water spraying in mines

    Energy Technology Data Exchange (ETDEWEB)

    Kozlyuk, A I; Grin' , G V; Yushchenko, Yu N

    1986-01-01

    Valves are evaluated used in water systems for fire fighting and dust suppression in underground black coal mines in the USSR. Specifications of the KR-2, the KR-3 and the R-86 pressure-reducing valves used in deep mines are analyzed. The valves are characterized by low reliability, low capacity and low pressure reducing range. Therefore groups (parallel arrangement) of pressure-reducing valves are used. Using valve groups increases equipment cost. The pressure-reducing systems should consist of no more than 2 valves. The VNIIGD Institute developed the RKGD pressure-reducing valve with the following specifications: inlet pressure 6.87 MPa, outlet pressure from 0.98 to 2.45 MPa, water discharge 100 m/sup 3//h). The RKGD valves are characterized by high reliability but extremely high weight. Therefore, the VNIIGD Institute developed a modified version of pressure-reducing valve, called the PRK (with maximum inlet pressure of 5 MPa, outlet pressure ranging from 0.5 to 1.5 MPa, water discharge 80 m/sup 3//h and weighing 5 kg). Design of the PRK pressure-reducing valve is shown.

  7. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome

    Directory of Open Access Journals (Sweden)

    Reiter Lawrence T

    2011-01-01

    Full Text Available Abstract Background Angelman syndrome (AS is a neurogenetic disorder characterized by severe developmental delay with mental retardation, a generally happy disposition, ataxia and characteristic behaviors such as inappropriate laughter, social-seeking behavior and hyperactivity. The majority of AS cases are due to loss of the maternal copy of the UBE3A gene. Maternal Ube3a deficiency (Ube3am-/p+, as well as complete loss of Ube3a expression (Ube3am-/p-, have been reproduced in the mouse model used here. Results Here we asked if two characteristic AS phenotypes - social-seeking behavior and hyperactivity - are reproduced in the Ube3a deficient mouse model of AS. We quantified social-seeking behavior as time spent in close proximity to a stranger mouse and activity as total time spent moving during exploration, movement speed and total length of the exploratory path. Mice of all three genotypes (Ube3am+/p+, Ube3am-/p+, Ube3am-/p- were tested and found to spend the same amount of time in close proximity to the stranger, indicating that Ube3a deficiency in mice does not result in increased social seeking behavior or social dis-inhibition. Also, Ube3a deficient mice were hypoactive compared to their wild-type littermates as shown by significantly lower levels of activity, slower movement velocities, shorter exploratory paths and a reduced exploratory range. Conclusions Although hyperactivity and social-seeking behavior are characteristic phenotypes of Angelman Syndrome in humans, the Ube3a deficient mouse model does not reproduce these phenotypes in comparison to their wild-type littermates. These phenotypic differences may be explained by differences in the size of the genetic defect as ~70% of AS patients have a deletion that includes several other genes surrounding the UBE3A locus.

  8. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  9. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  10. One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite

    Science.gov (United States)

    Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn

    2011-01-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  11. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  12. Luminescence imaging of water during proton-beam irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-01-01

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy

  13. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    Science.gov (United States)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  14. Water quality audits can improve availability and reduce costs

    International Nuclear Information System (INIS)

    Dvorin, R.S.; Schlesinger, H.A.

    1984-01-01

    The Water Quality Audit (WQA) is an independent, detailed review and thorough analysis of an operating plant's water technology control systems and operator education (as distinguished from operator training). The need for such an audit and its role in improving the reliability and availability of both nuclear and fossil-fueled power plants is discussed. Instances of how the failure of either system hardware or operational control has caused injection of seawater, acid, caustic, or ion exchange resin into the condensate-feedwater system and steam generator are revealed. The systems to be audited are described, and the stage-wise nature of the audit explained. The potential savings of an audit are outlined and the timing and range of costs of a WQA are given

  15. Advanced technology heavy water monitors offering reduced implementation costs

    International Nuclear Information System (INIS)

    Kalechstein, W.; Hippola, K.B.

    1984-10-01

    The development of second generation heavy water monitors for use at CANDU power stations and heavy water plants has been completed and the instruments brought to the stage of commercial availability. Applications of advanced technology and reduced utilization of custom manufactured components have together resulted in instruments that are less expensive to produce than the original monitors and do not require costly station services. The design has been tested on two prototypes and fully documented, including the inspection and test procedures required for manufacture to the CSA Z299.3 quality verfication program standard. Production of the new monitors by a commercial vendor (Barringer Research Ltd.) has begun and the first instrument is scheduled for delivery to CRNL's NRU reactor in late 1984

  16. Importance of pressure reducing valves (PRVs) in water supply networks.

    Science.gov (United States)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  17. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel

    2014-01-01

    Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  18. Removal of sulphates from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2002-03-01

    Full Text Available are present in almost all types of water, usually as a simple anion SO42-. The sulphates together with hydrogencarbonates and chlorides are principal anions in natural waters. In typical underground and surface waters, the concentration of sulphates is in the range from ten to hundreds milligrams per litre.Nowadays, the importance of the control of sulphate concentration in waste waters increases. According to the Slovak legislation the limit concentration of sulphates in surface and drinking waters is 250 mg.l-1 . In rivers the contents of sulphates increases mainly by the discharge of waste waters, which are coming mainly from chemical, textile, metallurgical, pharmaceutical, paper and mining industry. The concentration of sulphates in these waters is in the order of grams per litre.Many technologies for the sulphates removal from waste waters exist, including biologico-chemical processes. The principle of one of these methods is the reduction of sulphates by sulphate-reducing bacteria to hydrogen-sulphide.The objective of this work was to study the effect of initial sulphates concentration on the activity of anaerobic sulphate reducers as well as the kinetics of the anaerobic sulphate reduction. The batch reactor was used at temperature of 30°C and pH 7,5. Lactate was used as the carbon source.

  19. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  20. Operation Clean Feather: Reducing oil pollution in Newfoundland waters

    International Nuclear Information System (INIS)

    Chardine, J.W.; Pelly, G.

    1994-01-01

    Oil pollution of marine waters around Newfoundland, and particularly in the vicinity of Placentia Bay, is a frequent occurrence. Many oiled seabirds are found on beaches in the bay, particularly in winter. The most likely pollution sources are ship operators who dump waste oils from bilges and slop tanks. In an effort to reduce the chronic discharge of waste oil into Placentia Bay, and thus the incidence of bird oiling, Operation Clean Feather was launched in 1991-92 and consisted of weekly surveys of Placentia Bay beaches, sampling of oil from vessels using the bay and from oiled birds and beaches, and experimentation to determine possible recovery rates of birds oiled at sea. The operation was considered a success at a number of levels. Significant reductions in numbers of oiled birds were noted in both 1991 and 1992 compared to 1989 or 1990. Estimated oil-related mortality was reduced to ca 25% of levels seen in the two years prior to the operation. The operation also provided the opportunity to test and refine an organizational framework designed to deal with the problem of chronic oil pollution reports. Communication efforts heightened the awareness of the oil pollution problem in Newfoundland waters. These efforts included distribution of pamphlets in various languages to ship operators, describing the seriousness of oil-related marine bird mortality and warning of the substantial fines that can be imposed under the Canada Shipping Act. 6 refs., 3 figs., 1 tab

  1. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    KAUST Repository

    Grupstra, Carsten G. B.; Coma, Rafel; Ribes, Marta; Leydet, Karine Posbic; Parkinson, John Everett; McDonald, Kelly; Catllà , Marc; Voolstra, Christian R.; Hellberg, Michael E.; Coffroth, Mary Alice

    2017-01-01

    among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them

  2. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  3. Research on Reduced-Moderation Water Reactor (RMWR)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from 238 U to 239 Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  4. Progress in design study on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Shirakawa, Toshihisa; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takeda, Renzo [Hitachi Ltd., Tokyo (Japan); Yokoyama, Tsugio [Toshiba Corp., Kawasaki, Kanagawa (Japan); Hibi, Koki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Wada, Shigeyuki [Japan Atomic Power Co., Tokyo (Japan)

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPC) in 1998, under technical cooperation with three Japanese reactor vendors. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight-lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR type core with high void fraction and super-flat core, a long operation cycle BWR type core using void tube assembly, a high conversion BWR type core without blankets, a high conversion PWR type core using heavy water as a coolant, and a PWR type core for plutonium multi-recycle using seed-blanket type fuel assemblies. Detailed feasibility studies for the RMWR have been continued on core design study. The present report summarizes the recent progress in the design study for the RMWR. (author)

  5. Research on Reduced-Moderation Water Reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  6. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  7. Monitoring of water supply connections as an element to reduce apparent losses of water?

    Science.gov (United States)

    Gwoździej-Mazur, Joanna

    2017-11-01

    Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the right water meter in the operating conditions is not an easy issue. The problem has been further intensified by decrease of water consumption which began in the 90s of the twentieth century and continuing to the present day. As a result, there has changed the structure of water consumption in both the residential and industrial applications. In this situation, a right selection of the optimal water meter it is an important case. The article presents the results of research in the field of characteristic flows in the water supply connections in multi-family housing using modern monitoring systems. It has been presented the calculated inequality ratio of water consumption, which can be helpful when designing a plumbing systems. In addition, the structure of water consumption due to the typical flow ranges was determined.

  8. Monitoring of water supply connections as an element to reduce apparent losses of water?

    Directory of Open Access Journals (Sweden)

    Gwoździej-Mazur Joanna

    2017-01-01

    Full Text Available Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the right water meter in the operating conditions is not an easy issue. The problem has been further intensified by decrease of water consumption which began in the 90s of the twentieth century and continuing to the present day. As a result, there has changed the structure of water consumption in both the residential and industrial applications. In this situation, a right selection of the optimal water meter it is an important case. The article presents the results of research in the field of characteristic flows in the water supply connections in multi-family housing using modern monitoring systems. It has been presented the calculated inequality ratio of water consumption, which can be helpful when designing a plumbing systems. In addition, the structure of water consumption due to the typical flow ranges was determined.

  9. Conceptual designing of reduced-moderation water reactor with heavy water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, Kohki; Shimada, Shoichiro; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi; Wada, Shigeyuki

    2001-12-01

    The conceptual designing of reduced-moderation water reactors, i.e. advanced water-cooled reactors using plutonium mixed-oxide fuel with high conversion ratios more than 1.0 and negative void reactivity coefficients, has been carried out. The core is designed on the concept of a pressurized water reactor with a heavy water coolant and a triangular tight lattice fuel pin arrangement. The seed fuel assembly has an internal blanket region inside the seed fuel region as well as upper and lower blanket regions (i.e. an axial heterogeneous core). The radial blanket fuel assemblies are introduced in a checkerboard pattern among the seed fuel assemblies (i.e. a radial heterogeneous core). The radial blanket region is shorter than the seed fuel region. This study shows that the heavy water moderated core can achieve negative void reactivity coefficients and conversion ratios of 1.06-1.11.

  10. Reduced mandibular range of motion in Duchenne muscular dystrophy : Predictive factors

    NARCIS (Netherlands)

    van Bruggen, H. W.; Van Den Engel-Hoek, L.; Steenks, M. H.; Bronkhorst, E. M.; Creugers, N. H J; de Groot, I. J M; Kalaykova, S. I.

    2015-01-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16·7

  11. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  12. Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces

    Science.gov (United States)

    Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz

    2017-07-01

    The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.

  13. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    Science.gov (United States)

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. © 2013.

  14. Water enema CT examination of rectum cancer by reduced amount of water

    International Nuclear Information System (INIS)

    Palko, A.; Gyulai, Cs.; Fedinecz, N.; Balogh, A.; Nagy, F.

    2000-01-01

    To define whether volume of water, administered during water enema CT (WE-CT) for local staging of rectal cancer, may be reduced without compromising the diagnostic value of the examination. Materials and Methods: 29 patients with rectum cancer underwent preoperative WE-CT. Contrast-enhanced CT (equilibrium phase) measurements were performed after i.v. injection of smooth muscle relaxant and rectal administration of 400 - 500 ml lukewarm tap water. Quality of the obtained scans was evaluated and the images were analyzed for depth of tumor invasion. Results of the CT examinations were compared to findings at surgery. Results: Despite reduced dose of water enema, 19/29 examinations were of excellent quality, 6/29 good, and 4/29 poor, but still diagnostic. We achieved sensitivity (90.1), specificity (70.1) and accuracy (86.2) in differentiating tumors confined to the bowel wall from those extending beyond it. Conclusion: Large volume of water enema administered during CT examination of the rectum may cause complaints and increases the risk of complications. Our results prove that using lower amount of water does not impair the quality of examination and accuracy of local staging of rectum carcinomas. (orig.) [de

  15. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  16. Reducing the Risk of Water Pollution in Vulnerable Coastal ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Outcomes to improve water quality The team will recommend ways to minimize exposure to contaminants and to ... for improving access to potable water will prepare a regional strategy for integrated water management. ... Total funding.

  17. Reduced innate immunity of Cuban Treefrogs at leading edge of range expansion.

    Science.gov (United States)

    Goetz, Scott M; Romagosa, Christina M; Appel, Arthur G; Guyer, Craig; Mendonça, Mary T

    2017-12-01

    During geographic range expansion, populations of non-indigenous species at the invasion front may benefit from directing resources away from immune defense. To test this hypothesis, we investigated the strength of two innate immune components in populations of invasive Cuban Treefrogs (Osteopilus septentrionalis) in a long-colonized area (core region) and at the invasion front (leading-edge region). First, we compared the region-specific metabolic response of frogs injected with an endotoxin that induces systemic inflammation (lipopolysaccharide, LPS) to sham-injected control frogs pooled from both regions. Males and females were analyzed independently because we detected a sex-related difference in mass-independent metabolism of control frogs, with males exhibiting a significantly higher metabolic rate (F 1, 21  = 29.02, P leading-edge populations, there was no significant difference in the metabolic rate of LPS-injected and control frogs (males, P  = 0.195; females, P  = 0.132). Second, we directly compared bacterial killing ability of frog blood plasma between regions. Bactericidal ability of plasma was significantly greater in frogs from the core region in comparison with those at the leading edge (F 1, 26   = 28.67, P < 0.001). For both immune components that we examined, populations from the core exhibited stronger immune responses. Our findings support hypotheses predicting an inverse relationship between immunity and range expansion. © 2018 Wiley Periodicals, Inc.

  18. Swarming of Creseis acicula Rang (Pteropoda) in the coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Swarms of Creseis acicula Rang (Pteropoda) were observed in the coastal waters of Goa regularly in October, from 1976 to 1980. The highest biomass value obtained for this species was 494 ml/100 m@u3@@, forming 96% of zooplankton population...

  19. Advances in the ROBLINKS project on long-range shallow-water robust acoustic communciation links

    NARCIS (Netherlands)

    Gijzen, M.B. van; Walree, P.A. van; Cano, D.; Passerieux, J-M.; Waldhorst, A.; Weber, R.

    2000-01-01

    Within the ROBLINKS project waveforms and algorithms have been developed to establish robust underwater acoustic communication links with high data rates in shallow water. To evaluate the signalling schemes, a wide range of experiments has been performed during a sea trial that has been held in May

  20. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  1. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates

    DEFF Research Database (Denmark)

    Jiménez-Alfaro, Borja; Draper, David; Nogues, David Bravo

    2012-01-01

    and maximum entropy modeling to assess whether different sampling (expert versus systematic surveys) may affect AOO estimates based on habitat suitability maps, and the differences between such measurements and traditional coarse-grid methods. Fine-scale models performed robustly and were not influenced...... by survey protocols, providing similar habitat suitability outputs with high spatial agreement. Model-based estimates of potential AOO were significantly smaller than AOO measures obtained from coarse-scale grids, even if the first were obtained from conservative thresholds based on the Minimal Predicted...... permit comparable measures among species. We conclude that estimates of AOO based on fine-resolution distribution models are more robust tools for risk assessment than traditional systems, allowing a better understanding of species ranges at habitat level....

  2. Reducing the age range of tsunami deposits by 14C dating of rip-up clasts

    Science.gov (United States)

    Ishizawa, Takashi; Goto, Kazuhisa; Yokoyama, Yusuke; Miyairi, Yosuke; Sawada, Chikako; Takada, Keita

    2018-02-01

    Erosion by tsunami waves represents an important issue when determining the age of a tsunami deposit, because the age is usually estimated using dating of sediments above and below the deposit. Dating of material within the tsunami deposit, if suitable material is obtainable, can be used to further constrain its age. Eroded sediments are sometimes incorporated within the tsunami deposits as rip-up clasts, which might therefore be used as minimum age dating material. However, the single calibrated 14C age often shows a wide age range because of fluctuations in the calibration curve. Therefore, it remains uncertain whether rip-up clast measurements are useful to constrain the depositional age of tsunami deposits, or not. In this study, we carried out high-resolution 14C dating of tsunami deposits, including rip-up clasts of peat, in Rikuzentakata, northeastern Japan, where numerous rip-up clasts were observed within a tsunami deposit. Sediments above and below the tsunami deposit and a 5 cm large rip-up clast were dated sequentially. Comparison of these dating results with the calibration curve revealed that the clast was inverted. Its age was better constrained based on the stratigraphic order, and we infer that the clast corresponds to approximately 100 years of sedimentation. The oldest age of the clast was consistent with the age of the peat immediately below the tsunami deposit, suggesting that surface sediments probably formed the rip-up clast at the time of the tsunami. Thus, the dating of the rip-up clast was useful to further constrain the depositional age of the tsunami deposit, as we narrowed the tsunami deposit age range by approximately 100 years. Results show that ignoring tsunami-related erosion might lead to overestimation of the tsunami deposit age. For this reason, an appropriate dating site, which is less affected by minor tsunami-related erosion with regards to the paleo-topography, should be explored. We therefore propose a more effective

  3. Reduced Time in Therapeutic Range and Higher Mortality in Atrial Fibrillation Patients Taking Acenocoumarol.

    Science.gov (United States)

    Rivera-Caravaca, José Miguel; Roldán, Vanessa; Esteve-Pastor, María Asunción; Valdés, Mariano; Vicente, Vicente; Marín, Francisco; Lip, Gregory Y H

    2018-01-01

    The efficacy and tolerability of vitamin K antagonists (VKAs) depends on the quality of anticoagulant control, reflected by the mean time in therapeutic range (TTR) of international normalized ratio 2.0 to 3.0. In the present study, we aimed to investigate the association between TTR and change in TTR (ΔTTR) with the risk of mortality and clinically significant events in a consecutive cohort of atrial fibrillation (AF) patients. We included 1361 AF patients stable on VKAs (international normalized ratio 2.0-3.0) during at least the previous 6 months. After 6 months of follow-up we recalculated TTR, calculated ΔTTR (ie, the difference between baseline and 6-month TTRs) and investigated the association of both with the risk of mortality and "clinically significant events" (defined as the composite of stroke or systemic embolism, major bleeding, acute coronary syndrome, acute heart failure, and all-cause deaths). The median ΔTTR at 6 months of entry was 20% (interquartile range 0-34%), 796 (58.5%) patients had a TTR reduction of at least 20%, while 330 (24.2%) had a TTR <65%. During follow-up, 34 (2.5% [4.16% per year]) patients died and 61 (4.5% [7.47% per year]) had a clinically significant event. Median ΔTTR was significantly higher in patients who died (35.5% vs 20%; P = 0.002) or sustained clinically significant events (28% vs 20%; P = 0.022). Based on Cox regression analyses, the overall risk of mortality at 6 months for each decrease point in TTR was 1.02 (95% CI, 1.01-1.04; P = 0.003), and the risk of clinically significant events was 1.01 (95% CI, 1.00-1.03; P = 0.028). Patients with TTR <65% at 6 months had higher risk of mortality (hazard ratio = 2.96; 95% CI, 1.51-5.81; P = 0.002) and clinically significant events (hazard ratio = 1.71; 95% CI, 1.01-2.88; P = 0.046). Our findings suggest that in AF patients anticoagulated with VKAs, a change in TTR over 6 months (ie, ΔTTR) is an independent risk factor for mortality and clinically significant events

  4. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    Science.gov (United States)

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.

  5. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting

    Directory of Open Access Journals (Sweden)

    Géza Gergely eAmbrus

    2015-09-01

    Full Text Available High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS of the dorsolateral prefrontal cortex (DLPFC in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night’s sleep. An associative word-pair learning test, taken from Marshall and colleagues, was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 minutes while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 minutes after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.

  6. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting.

    Science.gov (United States)

    Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea

    2015-01-01

    High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.

  7. New tube fitting range can slash assembly time, reduce tube material costs and eliminate hot work

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-09-15

    Parker Instrumentation has developed a permanent tube connection technology known as Phastite for use in high pressure applications such as in the offshore oil and gas sector. The Phastite push-fit connector offers major savings over traditional permanent and higher pressure connection techniques such as welded or cone-and-thread tube fittings. It also reduces assembly times by 20-fold or more and eliminates the need for hot work permits. The fittings are designed to withstand working pressures up to 1,379 bar. Phastite tube fittings can be used on offshore platforms, as well as on support vessels,, subsea equipment and ROVs such as hydraulic systems for wellhead control, emergency shut down, chemical injection, pumping packages, gas booster systems and test equipment. The connectors offer considerable savings in material cost and weight because they do not need to be used with more expensive tubing with extra thickness to accommodate a thread. Phastite is also resistant to vibration and does not need any anti-vibration accessories. A joint can be made in a matter of seconds with a simple handheld hydraulic tool that makes the push-fit connection. A sealing mechanism based on a series of defined internal ridges creates a secure seal by radial compression. The ridges grip in a way that retains all of the tubing's strength. An additional characteristic is the maintenance free nature of the Phastite connection. 1 fig.

  8. A New System for Households in Spain to Evaluate and Reduce Their Water Consumption

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-01-01

    Full Text Available The objective of this paper is to describe a developed model and its corresponding application, known as System to Evaluate the Water Consumption at Home (SEWAT. The aim is to create a new model to evaluate the efficiency of water consumption. Thanks to the input of the water bills by users, the model allows them to check if water consumption is efficient, in order to give them an opportunity to evaluate their water usage. To succeed in it, several researches were tracked in order to establish consumer trends and to identify the most efficient value for this magnitude. Furthermore, a survey was conducted to obtain updated values to validate information from previous studies. However, the main aim of this model is to use the resources efficiently, so it has to be useful accordingly. Therefore, after the evaluation, the application has a section with recommendations for the users to reduce their water consumption through a range of different indications. This section is divided into four: bathroom, kitchen, new appliance and reusing water. Each section shows the expected benefits if the users follow the recommended options. The main result is a unique application in Spain, which includes a system of evaluation, comparison and a section of recommendations for the users. Eventually, the model will have a promising outcome, because it surely will change the awareness of citizens about this subject.

  9. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.

    Science.gov (United States)

    Ye, Bibi; Chu, Zhaosheng; Wu, Aiping; Hou, Zeying; Wang, Shengrui

    2018-01-01

    Macrophytes show a zonal distribution along the lake littoral zone because of their specific preferred water depths while the optimum growth water depths of dominant submersed macrophytes in natural lakes are not well known. We studied the seasonal biomass and frequency patterns of dominant and companion submersed macrophytes along the water depth gradient in Lake Erhai in 2013. The results showed that the species richness and community biomass showed hump-back shaped patterns along the water depth gradient both in polydominant and monodominant communities. Biomass percentage of Potamogenton maackianus showed a hump-back pattern while biomass percentages of Ceratophyllum demersum and Vallisneria natans appeared U-shaped patterns across the water depth gradient in polydominant communities whereas biomass percentage of V. natans increased with the water depth in monodominant communities. Dominant species demonstrated a broader distribution range of water depth than companion species. Frequency and biomass of companion species declined drastically with the water depth whereas those of dominant species showed non-linear patterns across the water depth gradient. Namely, along the water depth gradient, biomass of P. maackianus and V. natans showed hump-back patterns and biomasses of C. demersum displayed a U-shaped pattern in the polydominant communities but biomass of V. natans demonstrated a hump-back pattern in the monodominant communities; frequency of P. maackianus showed a hump-back pattern and C. demersum and V. natans maintained high frequencies in the two types of communities. We can speculate that in Lake Erhai the optimum growth water depths of P. maackianus and C. demersum in the polydominant communities are 2.5-4.5 m and 1-2 m or 5-6 m, respectively and that of V. natans is 3-5 m in the polydominant communities and 2.5-5 m in the monodominant communities. This is the first report that the optimum water depth ranges in the horizontal direction of three

  10. Ranges of the fragments from thermal (slow) neutron fission of /sup 235/U in water

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H; Chao, Z; Sheng, Z; Wang, L; Feng, X

    1980-05-01

    According to the principle of thick target, we used the aqueous solutions of uranyl chloride of various concentrations as thick targets and platinum plates of known surface area as absorbers immersed in the target solutions. The ranges of the U(n, f) fission fragments /sup 89/Sr, /sup 91/Y, /sup 140/Ba, /sup 141/Ce and /sup 144/Ce in the aqueous solutions of uranyl chloride of various concentrations were determined. In the concentration region of 0.16 U% - 6.2 U%, the uranium concentration had no significant effect on the measurement of the range. Therefore, the ranges of the fission fragments in diluted UO/sub 2/Cl/sub 2/ solutions are very close to those in pure water, and the mean value of the ranges in UO/sub 2/Cl/sub 2/ solutions of various concentrations was taken as the range in water. The experimental results of the ranges of these five fission fragments in water were: R/sub Sr-90/ = 2.39 +- 0.04 mgcm/sup -2/, R/sub Y-91/ = 2.35 +- 0.09 mgcm/sup -2/, R/sub Ba-140/ = 1.92 +- 0.07 mgcm/sup -2/, R/sub Ce-141/ = 1.91 +- 0.12 mgcm/sup -2/, R/sub Ce-144/ = 1.84 +- 0.10 mgcm/sup -2/. In order to estimate the effect of back scattering of fission fragments in platinum plate, we did the experiments using stainless steel plate as absorber (the aqueous solutions of uranyl chloride as thick targets). The results were similar. Thus, the effect of back scattering was not significant. This work provides a convenient means for determining the ranges of the fission fragments in a liquid.

  11. Core design study on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Hiroshi, Akie; Yoshihiro, Nakano; Toshihisa, Shirakawa; Tsutomu, Okubo; Takamichi, Iwamura

    2002-01-01

    The conceptual core design study of reduced-moderation water reactors (RMWRs) with tight-pitched MOX-fuelled lattice has been carried out at JAERI. Several different RMWR core concepts based on both BWR and PWR have been proposed. All the core concepts meet with the aim to achieve both a conversion ratio of 1.0 or larger and negative void reactivity coefficient. As one of these RMWR concepts, the ABWR compatible core is also proposed. Although the conversion ratio of this core is 1.0 and the void coefficient is negative, the discharge burn-up of the fuel was about 25 GWd/t. By adopting a triangular fuel pin lattice for the reduction of moderator volume fraction and modifying axial Pu enrichment distribution, it was aimed to extend the discharge burn-up of ABWR compatible type RMWR. By using a triangular fuel lattice of smaller moderator volume fraction, discharge burn-up of 40 GWd/t seems achievable, keeping the high conversion ratio and the negative void coefficient. (authors)

  12. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  14. Radiation-induced polymerization of water-saturated styrene in a wide range of dose rate

    International Nuclear Information System (INIS)

    Takezaki, J.; Okada, T.; Sakurada, I.

    1978-01-01

    Radiation-induced polymerization of water-saturated styrene (water content 3.5 x 10 -2 mole/liter) was carried out in a wide range of dose rate between 1.2 x 10 3 and 1.8 x 10 7 rad/sec, and compared with the polymerization of the moderately dried styrene (water content 3.2 x 10 -3 mole/liter). Molecular weight distribution curves of the polymerization products showed that they were generally consisted of four parts, namely, oligomers, radical, cationic, and super polymers. Contributions of the four constituents to the polymerization and the number average degrees of polymerization (DP) of the four kinds of polymers were calculated by the graphical analysis of the curves. The rate of radical polymerization and DP of radical polymers are independent of the water content; the dose rate dependences of the polymerization rate and DP agree with the well known square root and inverse square root laws, respectively, of the radical polymerization of styrene. The rate of ionic polymerization is directly proportional to the dose rate, but it decreases, at a given dose rate, inversely proportional to the water content of styrene. DP of ionic polymer is independent of the dose rate but decreases with increasing water content. The super polymer of DP about 10 4 is not formed in the case of the moderately dried styrene. G values for the initiating radical and ion formation are calculated to be independently of the dose rate and water content, 0.66 and 0.027, respectively. It was suggested that oligomer was formed in the early stage by the interaction of cation with anion and only those cations which had survived underwent polymerization. 10 figures, 4 tables

  15. Reducing water use for animal production through aquaculture

    NARCIS (Netherlands)

    Verdegem, M.C.J.; Bosma, R.H.; Verreth, J.A.J.

    2006-01-01

    Animals fed formulated diets indirectly consume large quantities of water. Globally, about 1.2 m3 of water is needed to produce 1 kg of grain used in animal feeds. Cattle in feedlots consume about 7 kg of feed concentrate to gain 1 kg in weight. For pigs this is close to 4 kg and for poultry

  16. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  17. 3Ts for Reducing Lead in Drinking Water: Training

    Science.gov (United States)

    It is important to train school officials to raise awareness of the potential occurrences, causes, and health effects of lead in drinking water; assist school officials in identifying potential areas where elevated lead may occur.

  18. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  19. The performance of cassava flour as a water reducing admixture

    African Journals Online (AJOL)

    CHINYERE

    were then ground to a fine texture in a mill and the flour obtained sieved ... Figure 1: Effect of Water/cement Ratio Upon Slump and Compacting Factor. Saturated Density ... attributed to the bleeding and segregation observed in these mixes.

  20. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    ... or well supplies to consumers’ taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management...

  1. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range

    Directory of Open Access Journals (Sweden)

    Cristina Pulido

    2014-08-01

    Full Text Available Distribution of aquatic macrophytes in lakes is related to geographical, morphological, catchment and water chemistry variables as well as human impacts, which modify the original environment. Here, we aim at building statistical models to establish the ecological niches of 11 aquatic macrophytes (10 different phanerogams and the genus Nitella from oligotrophic soft-water lakes and infer their ecological requirements and environmental constraints at the southernmost limit of their distribution. Macrophyte occurrence and environmental variables were obtained from 86 non-exploited oligotrophic soft-water lakes from the Pyrenees (Southern Europe; 42º50´N, 1º00´E; macrophytes inhabited 55 of these lakes. Optimum ranges and macrophyte occurrence were predicted in relation to 18 geographical, morphological, catchment and water chemistry variables using univariate and multivariate logistic models. Lakes at low altitude, in vegetated catchments and with low water concentration of NO3- and SO4-2, were the most suitable to host macrophytes. In general, individual species of aquatic macrophytes showed clear patterns of segregation along conductivity and pH gradients, although the specific combination of variables selected in the best models explaining their occurrence differed among species.  Based on the species response to pH and conductivity, we found Isoetes lacustris have its optimum in waters with low conductivity and pH (i.e. negative monotonic response. In contrast, Callitriche palustris, Ranunculus aquatilis, Subularia aquatica, Nitella spp., and Myriophyllum alterniflorum showed an optimum at intermediate values (i.e. unimodal response, whereas Potamogeton berchtoldii, Potamogeton alpinus, and Ranunculus trichophyllus as species had their optimum at relatively high water pH and conductivity (i.e. positive monotonic response. This pattern has been observed in other regions for the same species, although with different optima and tolerance

  2. Summer carbon dioxide and water vapor fluxes across a range of northern peatlands

    Science.gov (United States)

    Humphreys, Elyn R.; Lafleur, Peter M.; Flanagan, Lawrence B.; Hedstrom, Newell; Syed, Kamran H.; Glenn, Aaron J.; Granger, Raoul

    2006-12-01

    Northern peatlands are a diverse group of ecosystems varying along a continuum of hydrological, chemical, and vegetation gradients. These ecosystems contain about one third of the global soil carbon pool, but it is uncertain how carbon and water cycling processes and response to climate change differ among peatland types. This study examines midsummer CO2 and H2O fluxes measured using the eddy covariance technique above seven northern peatlands including a low-shrub bog, two open poor fens, two wooded moderately rich fens, and two open extreme-rich fens. Gross ecosystem production and ecosystem respiration correlated positively with vegetation indices and with each other. Consequently, 24-hour net ecosystem CO2 exchange was similar among most of the sites (an average net carbon sink of 1.5 ± 0.2 g C m-2 d-1) despite large differences in water table depth, water chemistry, and plant communities. Evapotranspiration was primarily radiatively driven at all sites but a decline in surface conductance with increasing water vapor deficit indicated physiological restrictions to transpiration, particularly at the peatlands with woody vegetation and less at the peatlands with 100% Sphagnum cover. Despite these differences, midday evapotranspiration ranged only from 0.21 to 0.34 mm h-1 owing to compensation among the factors controlling evapotranspiration. Water use efficiency varied among sites primarily as a result of differences in productivity and plant functional type. Although peatland classification includes a great variety of ecosystem characteristics, peatland type may not be an effective way to predict the magnitude and characteristics of midsummer CO2 and water vapor exchanges.

  3. Reducing phosphorus loading of surface water using iron-coated sand

    NARCIS (Netherlands)

    Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F.

    2013-01-01

    Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an

  4. Parametric soil water retention models: a critical evaluation of expressions for the full moisture range

    Science.gov (United States)

    Madi, Raneem; Huibert de Rooij, Gerrit; Mielenz, Henrike; Mai, Juliane

    2018-02-01

    Few parametric expressions for the soil water retention curve are suitable for dry conditions. Furthermore, expressions for the soil hydraulic conductivity curves associated with parametric retention functions can behave unrealistically near saturation. We developed a general criterion for water retention parameterizations that ensures physically plausible conductivity curves. Only 3 of the 18 tested parameterizations met this criterion without restrictions on the parameters of a popular conductivity curve parameterization. A fourth required one parameter to be fixed. We estimated parameters by shuffled complex evolution (SCE) with the objective function tailored to various observation methods used to obtain retention curve data. We fitted the four parameterizations with physically plausible conductivities as well as the most widely used parameterization. The performance of the resulting 12 combinations of retention and conductivity curves was assessed in a numerical study with 751 days of semiarid atmospheric forcing applied to unvegetated, uniform, 1 m freely draining columns for four textures. Choosing different parameterizations had a minor effect on evaporation, but cumulative bottom fluxes varied by up to an order of magnitude between them. This highlights the need for a careful selection of the soil hydraulic parameterization that ideally does not only rely on goodness of fit to static soil water retention data but also on hydraulic conductivity measurements. Parameter fits for 21 soils showed that extrapolations into the dry range of the retention curve often became physically more realistic when the parameterization had a logarithmic dry branch, particularly in fine-textured soils where high residual water contents would otherwise be fitted.

  5. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  6. TH-C-BRD-05: Reducing Proton Beam Range Uncertainty with Patient-Specific CT HU to RSP Calibrations Based On Single-Detector Proton Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P [University College London, London (United Kingdom); Massachusetts General Hospital, Boston, MA (United States); Sharp, G; Testa, M; Lu, H-M [Massachusetts General Hospital, Boston, MA (United States); Bentefour, E [Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Royle, G [University College London, London (United Kingdom)

    2014-06-15

    Purpose: Beam range uncertainty in proton treatment comes primarily from converting the patient's X-ray CT (xCT) dataset to relative stopping power (RSP). Current practices use a single curve for this conversion, produced by a stoichiometric calibration based on tissue composition data for average, healthy, adult humans, but not for the individual in question. Proton radiographs produce water-equivalent path length (WEPL) maps, dependent on the RSP of tissues within the specific patient. This work investigates the use of such WEPL maps to optimize patient-specific calibration curves for reducing beam range uncertainty. Methods: The optimization procedure works on the principle of minimizing the difference between the known WEPL map, obtained from a proton radiograph, and a digitally-reconstructed WEPL map (DRWM) through an RSP dataset, by altering the calibration curve that is used to convert the xCT into an RSP dataset. DRWMs were produced with Plastimatch, an in-house developed software, and an optimization procedure was implemented in Matlab. Tests were made on a range of systems including simulated datasets with computed WEPL maps and phantoms (anthropomorphic and real biological tissue) with WEPL maps measured by single detector proton radiography. Results: For the simulated datasets, the optimizer showed excellent results. It was able to either completely eradicate or significantly reduce the root-mean-square-error (RMSE) in the WEPL for the homogeneous phantoms (to zero for individual materials or from 1.5% to 0.2% for the simultaneous optimization of multiple materials). For the heterogeneous phantom the RMSE was reduced from 1.9% to 0.3%. Conclusion: An optimization procedure has been designed to produce patient-specific calibration curves. Test results on a range of systems with different complexities and sizes have been promising for accurate beam range control in patients. This project was funded equally by the Engineering and Physical Sciences

  7. Reducing environmental risks in water management in British Columbia

    International Nuclear Information System (INIS)

    Brownlow, H.

    1998-01-01

    The issue of water management regarding hydroelectric generating facilities in British Columbia was discussed. BC Hydro has adopted the following three processes to address water management risks: (1) the Electric System Operating Review, (2) Water Use Plans, and (3) an Environmental Management System. The greatest concern regarding water management are the potential impacts to fish and fish habitat. More than 90 per cent of BC Hydro's installed capacity is hydroelectric, with the balance produced by natural gas and diesel. All facilities are licensed under the provincial Water Act which has been in effect for the past century and is currently way out of date. Among its inadequacies is the fact that it does not provide for the protection of fish. The B.C. Fish Protection Act suggests that effective immediately, there should be no new dams on the Fraser and other significant rivers. BC Hydro facilities impact 16 of the 2,576 streams in British Columbia that support anadromous (migrating) salmon stocks. BC Hydro has 25 dams and diversions located on these 16 rivers. It was concluded that BC Hydro's impact on fish and fish habitat, although relatively small compared to the total fish resource in the province, is significant. The technology now used by BC Hydro is claimed to have the capacity to allow for easy documentation, rapid communication and the development of a comprehensive database for use in identifying and managing the impact of the Utility's operations on the fish population. 10 refs., 12 figs

  8. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water

    Science.gov (United States)

    Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.

    2016-04-01

    Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.

  9. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.

    Science.gov (United States)

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M

    2015-02-01

    The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  10. Water-Based Automobile Paints Potentially Reduce the Exposure of Refinish Painters to Toxic Metals

    Directory of Open Access Journals (Sweden)

    Der-Jen Hsu

    2018-05-01

    Full Text Available Exposure to lead-containing dusts is a global public health concern. This work addresses an important issue of whether eco-friendly water-based paints reduce the exposure potential of auto-repainting workers to metals. With this aim, metal levels in automobile paints and worker metal exposure were measured using both solvent- and water-based paints. The levels of metals, and particularly Pb, Cr (total, Fe, and Cu, in solvent-based paints varied greatly among colors and brands. Lead concentrations ranged from below the detection limit (~0.25 μg/g to 107,928 μg/g (dry film across all samples. In water-based paints, the concentrations of Pb and Cr (total were generally two to three orders of magnitude lower, but the concentrations of Al and Cu exceeded those in some solvent-based paints. The personal short-term exposure of workers who applied water-based paints of popular colors, such as black and white, were generally low, with Pb levels of less than <4 µg/m3 and Cr (total levels of less than 1 µg/m3. Conversely, mean short-term exposure to Pb during the painting of a yellow cab using solvent-based paints were 2028 µg/m3, which was ~14 times the Taiwan short-term permissible exposure limit, while the mean level of exposure to Cr (total was 290 µg/m3, which was well below the exposure limit. This study demonstrates that water-based paints reduce the exposure potential to lead, and highlights the importance of source control in limiting the toxic metals in paints.

  11. Dietary strategies for reduced phosphorus excretion and improved water quality

    NARCIS (Netherlands)

    Maguire, R.O.; Dou, Z.; Sims, J.T.; Brake, J.; Joern, B.C.

    2005-01-01

    Received for publication October 29, 2004. Cost effective feeding strategies are essential to deal with P surpluses associated with intensive animal agriculture and the consequent impact on water quality. Reduction of P overfeeding, use of feed additives to enhance dietary P utilization, and

  12. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  13. Cultivation of zebra mussels (Dreissena polymorpha) within their invaded range to improve water quality in reservoirs.

    Science.gov (United States)

    McLaughlan, C; Aldridge, D C

    2013-09-01

    Algal and cyanobacterial blooms in reservoirs are driven by nutrient enrichment and may present economic and conservation challenges for water managers. Current approaches such as suppression of algal growth with barley straw, ferric dosing or manipulation of fish stocks have not yielded long term successes. A possibility that has sparked growing interest is the encouragement and cultivation of natural filter feeders, such as mussels, which remove suspended matter from the water and reduce nutrient levels through biodeposition and assimilation. This review focusses on the zebra mussel (Dreissena polymorpha) as a tool for enhancement of water quality in reservoirs. Native to the Ponto-Caspian region, this species has invaded many lakes and reservoirs across North America and Western Europe, where it occurs in very high densities. While purposeful introduction of a non-native species into new sites is socially unacceptable, we investigate the possible benefits of encouraging increased abundance of zebra mussels in sites where the species is already established. We estimate that the annual nitrogen and phosphorus input into a large UK reservoir (Grafham Water) could be assimilated into zebra mussel biomass by encouraging settlement onto 3075 m and 1400 m of commercial mussel ropes, respectively. While zebra mussel cultivation has an incredible capacity to push eutrophic systems towards a clear water state, there are many risks associated with encouraging an invasive species, even within sites where it has already established. The zebra mussel is a prominent biofouler of native unionid mussels and raw water pipes, it changes the physical characteristics of the places it inhabits, in sites low in phosphorus it can be responsible for toxic cyanobacterial blooms, it alters nutrient cycling and community structure and it can have negative impacts on amenity value. Increased propagule pressure from elevated numbers of veliger larvae in the water column may increase the risk

  14. Acoustic time-of-flight for proton range verification in water

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2016-09-15

    Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0,  0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron

  15. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2015-12-01

    Full Text Available Beijing is one of the most water-stressed regions in the world. Reducing agricultural water use has long been the basis of local policy for sustainable water use. In this article, the potential to reduce the life cycle (cradle to gate water footprints of wheat and maize that contribute to 94% of the local cereal production was assessed. Following ISO 14046, consumptive and degradative water use for the wheat-maize rotation system was modeled under different irrigation and nitrogen (N application options. Reducing irrigation water volume by 33.3% compared to current practice did not cause a significant yield decline, but the water scarcity footprint and water eutrophication footprint were decreased by 27.5% and 23.9%, respectively. Similarly, reducing the N application rate by 33.3% from current practice did not cause a significant yield decline, but led to a 52.3% reduction in water eutrophication footprint while maintaining a similar water scarcity footprint. These results demonstrate that improving water and fertilizer management has great potential for reducing the crop water footprints at the farm scale. This situation in Beijing is likely to be representative of the challenge facing many of the water-stressed regions in China, where a sustainable means of agricultural production must be found.

  16. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.

    Science.gov (United States)

    Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu

    2017-11-01

    Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The range and effectiveness of short-term measures to reduce traffic emissions during high air pollution episodes

    International Nuclear Information System (INIS)

    Elsom, Derek M.

    1999-01-01

    Concern for continuing poor urban air quality, caused primarily by motor vehicles emissions, and the slow progress being made towards reducing total vehicle emissions by long-term measures, such as improving fuel and vehicle technologies, has prompted some authorities to try to reduce the severity and duration of high air pollution episodes by implementing short-term traffic restraint measures. This paper reviews the range of episodic air quality management schemes applied in cities around the world and comments on the effectiveness of such schemes. The difficulty of targeting vehicles according to the contribution they make to the air quality problem is highlighted. The problem of some schemes simply causing a displacement of the area of excessive vehicle emissions rather than reducing total emissions is reviewed. Rapid developments in telematics and improved urban air quality and traffic monitoring networks (e.g. Urban Traffic Management and Control systems) may offer significant improvements in the effectiveness of episodic management schemes in the future. (Author)

  19. Reducing water losses via intelligent pressure management; Reduzierung von Wasserverlusten durch intelligentes Druckmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Oppinger, Peter [VAG-Armaturen GmbH, Mannheim (Germany). Marketing

    2008-03-15

    Leaks in water pipes and leaking municipal water-transmission and piping systems, particularly in developing and threshold countries account for water-losses of up to 50% of the water supplied by the waterworks. This article examines three different solutions for effective pressure management on the basis of an intelligent control system, by means of which water-losses can be reduced to a stable and economically rational level. (orig.)

  20. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  1. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Alsanea, Fahed [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 (United States); Moskvin, Vadim [Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, RT 041, Indianapolis, Indiana 46202-5289 (United States); Stantz, Keith M., E-mail: kstantz@purdue.edu [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 and Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, Indiana 46202-5289 (United States)

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  2. A simplified Excel® algorithm for estimating the least limiting water range of soils

    Directory of Open Access Journals (Sweden)

    Leão Tairone Paiva

    2004-01-01

    Full Text Available The least limiting water range (LLWR of soils has been employed as a methodological approach for evaluation of soil physical quality in different agricultural systems, including forestry, grasslands and major crops. However, the absence of a simplified methodology for the quantification of LLWR has hampered the popularization of its use among researchers and soil managers. Taking this into account this work has the objective of proposing and describing a simplified algorithm developed in Excel® software for quantification of the LLWR, including the calculation of the critical bulk density, at which the LLWR becomes zero. Despite the simplicity of the procedures and numerical techniques of optimization used, the nonlinear regression produced reliable results when compared to those found in the literature.

  3. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  4. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  5. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    Science.gov (United States)

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  6. Improving water management practices to reduce nutrient export from rice paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying

    2011-01-01

    Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.

  7. Fish-protection devices at unscreened water diversions can reduce entrainment: evidence from behavioural laboratory investigations

    Science.gov (United States)

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Kavvas, M. Levent; Cech, Joseph J.; Fangue, Nann A.

    2015-01-01

    Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento–San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188–202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities. PMID:27293725

  8. Quantification of the least limiting water range in an oxisol using two methodological strategies

    Directory of Open Access Journals (Sweden)

    Wagner Henrique Moreira

    2014-12-01

    Full Text Available The least limiting water range (LLWR has been used as an indicator of soil physical quality as it represents, in a single parameter, the soil physical properties directly linked to plant growth, with the exception of temperature. The usual procedure for obtaining the LLWR involves determination of the water retention curve (WRC and the soil resistance to penetration curve (SRC in soil samples with undisturbed structure in the laboratory. Determination of the WRC and SRC using field measurements (in situ is preferable, but requires appropriate instrumentation. The objective of this study was to determine the LLWR from the data collected for determination of WRC and SRC in situ using portable electronic instruments, and to compare those determinations with the ones made in the laboratory. Samples were taken from the 0.0-0.1 m layer of a Latossolo Vermelho distrófico (Oxisol. Two methods were used for quantification of the LLWR: the traditional, with measurements made in soil samples with undisturbed structure; and in situ , with measurements of water content (θ, soil water potential (Ψ, and soil resistance to penetration (SR through the use of sensors. The in situ measurements of θ, Ψ and SR were taken over a period of four days of soil drying. At the same time, samples with undisturbed structure were collected for determination of bulk density (BD. Due to the limitations of measurement of Ψ by tensiometer, additional determinations of θ were made with a psychrometer (in the laboratory at the Ψ of -1500 kPa. The results show that it is possible to determine the LLWR by the θ, Ψ and SR measurements using the suggested approach and instrumentation. The quality of fit of the SRC was similar in both strategies. In contrast, the θ and Ψ in situ measurements, associated with those measured with a psychrometer, produced a better WRC description. The estimates of the LLWR were similar in both methodological strategies. The quantification of

  9. Spectrophotometric determination of silica in water. Low range; Determinacion espectrofotometrica de silicio en aguas. Rango bajo

    Energy Technology Data Exchange (ETDEWEB)

    Acosta L, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: eal@nuclear.inin.mx

    1992-07-15

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 {mu}g/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  10. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  11. Structural changes in latosols of the cerrado region: I - relationships between soil physical properties and least limiting water range

    Directory of Open Access Journals (Sweden)

    Eduardo da Costa Severiano

    2011-06-01

    Full Text Available The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR, and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR. The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.

  12. Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Lamy

    Full Text Available BACKGROUND: Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. METHODOLOGY: We assessed cavitation resistance (P(50, growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F(ST and quantitative genetic differentiation (Q(ST, for retrospective identification of the evolutionary forces acting on these traits. RESULTS/DISCUSSION: In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h(2 (ns = 0.43±0.18, CV(A = 4.4%. Q(ST was significantly lower than F(ST, indicating uniform selection for P(50, rather than genetic drift. Putative mechanisms underlying Q(ST

  13. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    Science.gov (United States)

    Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain

    2011-01-01

    Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST

  14. Can virtual water 'trade' reduce water scarcity in semi-arid countries? The case of Spain

    OpenAIRE

    Garrido, Alberto; Novo, Paula; Rodriguez Casado, Roberto; Varela-Ortega, Consuelo

    2009-01-01

    Agricultural trade is by far the largest vehicle to ‘move’ water virtually around the world. Observing that most countries import and export water embedded in the exchanged products, the objective of this study is to assess the virtual water ‘trade’ in Spain for the period 1997-2006. We differentiate between the green and blue components of virtual water from a hydrological and economic perspective. The combination of spatial and time dimensions offers a unique empirical setting to determine ...

  15. Advances in Nuclear Power Plant Water Chemistry in Reducing Radiation Exposure

    International Nuclear Information System (INIS)

    Febrianto

    2005-01-01

    Water quality in light water reactor in Pressurized Water Reactor as well as in Boiling Water Reactor has being gradually improved since the beginning, to reduce corrosion risk and radiation exposure level. Corrosion problem which occurred to both type of reactors can reduce the plants availability, increase the operation and maintenance cost and increase the radiation exposure. Corrosion and radiation exposure risk in both reactor rare different. BWR type reactor has more experiences in corrosion problem because at the type of reactor lets water to boil in the core, while at PWR type reactor, water is kept not to boil. The BWR reactor has also higher radiation exposure rather than the PWR one. Many collaborative efforts of plants manufacturers and plant operator utilities have been done to reduce the radiation exposure level and corrosion risk. (author)

  16. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    International Nuclear Information System (INIS)

    Yamamoto, S; Komori, M; Toshito, T; Watabe, H

    2016-01-01

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imaging of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.

  17. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Komori, M [Nagoya University, Nagoya, Aichi (Japan); Toshito, T [Nagoya Proton Therapy Center, Nagoya, Aichi (Japan); Watabe, H [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imaging of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.

  18. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    Science.gov (United States)

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  19. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Studer, Björn; Evangelou, Michael W H; Schulin, Rainer

    2018-03-19

    Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L -1 to ∼10 μg L -1 , which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g -1 . Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g -1  Pb, 150 μg g -1 Zn, 15-35 μg g -1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study. Copyright © 2018 Elsevier Ltd. All rights

  20. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund; Kymäläinen, Maija; Rautkari, Lauri

    2018-01-01

    focuses on selected experimental techniques that can give deeper insights into various aspects of water in wood in the entire moisture domain from dry to fully water-saturated. These techniques fall into three broad categories: (1) gravimetric techniques that determine how much water is absorbed, (2...

  1. Heterogeneous freezing of super cooled water droplets in micrometre range- freezing on a chip

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    A new setup to analyse the freezing behaviour of ice nucleation particles (INPs) dispersed in aqueous droplets has been developed with the aim to analyse ensembles of droplets with sizes in the micrometre range, in which INPs are immersed. Major disadvantages of conventional drop-freezing experiments like varying drop sizes or interactions between the water- oil mixture and the INP, were solved by introducing a unique freezing- chip consisting of an etched and sputtered 15x15x1 mm gold-plated silicon or pure gold film (Pummer et al., 2012; Zolles et al., 2015). Using this chip, isolated micrometre-sized droplets can be generated with sizes similar to droplets in real world clouds. The experimental set-up for drop-freezing experiments was revised and improved by establishing automated process control and image evaluation. We were able to show the efficiency and accuracy of our setup by comparing measured freezing temperatures of different INPs (Snomax®, K- feldspar, birch pollen (Betula pendula) washing water, juniper pollen suspension (Juniperus communis) and ultrapure water) with already published results (Atkinson et al., 2013; Augustin et al., 2013; Pruppacher and Klett, 1997; Pummer et al., 2012; Wex et al., 2015; Zolles et al., 2015). Comparison of our measurements with literature data show the important impact of droplet size, INP concentration and number of active sites on the T50 values. Here, the new set-up exhibits its strength in reproducibility and accuracy which is due to the defined and isolated droplets. Finally, it opens a temperature window down to -37˚ C for freezing experiments which was not accessible with former traditional approaches .Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (vol 498, pg 355, 2013), Nature, 500, 491-491, 2013. Augustin, S., Wex, H

  2. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  3. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park

    Science.gov (United States)

    James A. Lutz; Jan W. van Wagtendonk; Jerry F. Franklin

    2010-01-01

    Modelled changes in climate water deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and composition may accelerate in the future, with species responding individualistically to further declines in water availability. Declining water availability may disproportionately affect Pinus monticola...

  4. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    Science.gov (United States)

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  6. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  7. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  8. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.; Michoud, Gregoire; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  9. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    esiri

    2013-11-13

    Nov 13, 2013 ... Key words: Sulphate-reducing bacteria, corrosion, water pipeline, biocide. INTRODUCTION ... small amount of organic material required to produce biomass):. )1(. 3. 2 .... Oil, gas and shipping industries are seriously affected.

  10. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  11. Reducing nitrogen leaching from fertilizers to surface waters: catchment specific indicators of economic benefits

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Levin, Gregor; Odgaard, Mette Vestergaard

    2018-01-01

    We explore with impact pathway methodology the economic benefits of reducing nitrogen leaching to transitional surface waters, as expected for a proportionality test under the EU’s Water Framework Directive article 4. Ten different catchments is analyzed for a policy scenario where downstream dis...

  12. Interspecific variation in physiological and foliar metabolic responses to reduced soil water availability

    Science.gov (United States)

    Climatic uncertainty, particularly in regard to water resources, may alter irrigation management of rice, an essential cereal grain acknowledged as the primary food source for more than half the world’s population. To reduce water use, an alternate wetting and drying (AWD) system has been developed...

  13. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.

    Science.gov (United States)

    Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah

    2014-11-15

    The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. Copyright © 2014 Elsevier B.V. All

  14. Soil Water Retention and Relative Permeability for Full Range of Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2010-09-28

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

  15. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  16. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  17. Monitoring of water supply connections as an element to reduce apparent losses of water?

    OpenAIRE

    Gwoździej-Mazur Joanna

    2017-01-01

    Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the rig...

  18. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    Science.gov (United States)

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.

  19. Application of Titanium Compounds to Reduce Fluoride Ion in Water Resources with High Fluoride Ion Contents

    Directory of Open Access Journals (Sweden)

    Fariborz Riahi

    2005-06-01

    Full Text Available The present work describes studies on the sorption of fluoride ions from water by titanium compounds used in water treatment to reduce fluoride content in water resources. There are different methods of reducing fluoride ion in water, each associated with specific problems such as secondary contamination, environmental contamination, high costs, or the need for primary and secondary treatment. In this study, application of titanium sulfate and Metatitanic acid produced from titanium ore concentrate (ileminite is investigated in the removal of fluoride ion and the possibility of complete purification of fluorine containing wastewater is examined to determine the optimal conditions. Metatitanic acid has a great sorption property for fluoride ion. Also titanium sulfate is a suitable and more effective material for this purpose. Efficiency of this material in reducing fluoride ion content is 99.9% and it is possible to refresh sorbet material for reuse without problems arising from Ti+4 ion contamination.

  20. An off-on Fluorescent Sensor for Detecting a Wide Range of Water Content in Organic Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kanghyeon; Lee, Wanjin; Kim, Jae Nyoung; Kim, Hyung Jin [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-08-15

    This paper describes the synthesis and water sensing properties of a fluorescent photoinduced electron transfer (PET) sensor (5) with an extended operating sensing range. The 1,8-naphthalimide derivative (5) attached with a piperazine group and a carboxylic group was synthesized and applied as a fluorescent water sensor in water-miscible organic solvents. The fluorescence intensity of the dye 5 increased with increasing water content up to 80% (v/v) and the fluorescence intensities were enhanced 45-, 67- and 122-fold in aqueous EtOH, DMF and DMSO solutions, respectively. In aqueous acetone solution, the enhancement of the fluorescence intensities was somewhat lower (30-fold) but the response range was wider (0-90%, v/v)

  1. Blue Planet dialysis: novel water-sparing strategies for reducing dialysate flow.

    Science.gov (United States)

    Molano-Triviño, Alejandra; Wancjer, Benjamin; Neri, Mauro M; Karopadi, Akash N; Rosner, Mitchell; Ronco, Claudio

    2017-11-08

    Hemodialysis (HD) is an expensive therapy in economic and in ecological terms, owing to a high carbon footprint and significant consumption of natural sources, especially water. Our aim was to review strategies to diminish waste of water in maintenance dialysis, exploring previously described water reuse trends and less known strategies for reducing the dialysate flow. We conducted a systematic review of water-sparing strategies, including the reuse of reverse osmosis rejected water and the reduction of dialysate flux. We performed a search in Medline, Pubmed, Scielo, OVID and Biblioteca Redentor, using key words: Dialysate flow rate, Dialysate flux, and decrease; excluding: online, peritoneal, continuous, blood access, needle, hemodiafiltration, acute, pharmacokinetics, increase. We limited our search to adult humans or in vitro trials in English, Spanish, Italian and Portuguese, between January 1980 and June 2017. We found 816 trials. 37 articles were retrieved for review, and 11 articles were analyzed. Conservation of water in chronic HD should be considered an important responsibility of healthcare practitioners all over the world. We present a wider usage of dialysate flow rates, considering that it would lead to significant water conservation without much compromise on dialysis efficacy in small patients. We believe that further investigation into the utility of reduced dialysate flux in different populations is needed to broaden our understanding of how we can use these techniques in order to significantly reduce water consumption during chronic HD while still ensuring optimum efficacy and efficiency of the therapy.

  2. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    Science.gov (United States)

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern. © 2014 Society for Risk Analysis.

  3. Water hardness reduces the accumulation and toxicity of uranium in a freshwater macrophyte (Ceratophyllum demersum)

    Energy Technology Data Exchange (ETDEWEB)

    Markich, Scott J., E-mail: smarkich@optusnet.com.au

    2013-01-15

    There is a lack of good quality data and mechanistic understanding on the effects of true water hardness (calcium (Ca) and magnesium (Mg)) on the bioavailability and toxicity of uranium (U) to freshwater biota. This study determined the effect of true water hardness (20, 75, 150, 275 and 400 mg CaCO{sub 3} L{sup −1}) on the cell surface binding affinity (log K), accumulation and toxicity (growth inhibition) of U in a submerged, rootless, macrophyte (Ceratophyllum demersum) in a synthetic freshwater with constant alkalinity (13 mg CaCO{sub 3} L{sup −1}) and pH (6.2) over 7 days. A 20-fold increase in water hardness resulted in a 4-fold decrease in U toxicity (median effect concentration (EC50) = 134 μg L{sup −1} U at 20 mg CaCO{sub 3} L{sup −1} hardness, increasing to 547 μg L{sup −1} U at 400 mg CaCO{sub 3} L{sup −1} hardness), cell surface binding affinity (log K = 6.25 at 20 mg CaCO{sub 3} L{sup −1} hardness, decreasing to log K = 5.64 at 400 mg CaCO{sub 3} L{sup −1} hardness) and accumulation (the concentration factor decreased from 63 at 20 mg CaCO{sub 3} L{sup −1} hardness to 15 at 400 mg CaCO{sub 3} L{sup −1} hardness) of U. Calcium provided a 4-fold greater protective effect against U accumulation and toxicity compared to Mg. Speciation calculations indicated negligible differences in the percentages of key U species (UO{sub 2}{sup 2+}, UO{sub 2}OH{sup +}, UO{sub 2}(OH){sub 2}) over the range of water hardness tested. The inhibition of U binding at the cell surface, and subsequent uptake, by C. demersum, with increasing Ca and/or Mg concentration, may be explained in terms of (i) competition between Ca{sup 2+}/Mg{sup 2+} and UO{sub 2}{sup 2+} (and/or UO{sub 2}OH{sup +}) for physiologically active sites at the cell surface, and/or (ii) reduced negative charge (electrical potential) at the cell surface, resulting in a decrease in the activity of UO{sub 2}{sup 2+} (and/or UO{sub 2}OH{sup +}) at the plant/water interface (boundary layer

  4. Investigation on resistance to drought and efficiency of water usage in two range species, Dactylis glomerata and Eragrostis curvula

    International Nuclear Information System (INIS)

    Jafari, M.; Saiedian, F.; Heydari, H.; Azarnayvand, H.; Farzaneh, Z.

    2000-01-01

    Determination of water efficiency and resistance to drought in range plants are important factors that have essential role in selection of range development methods. As there is not any comprehensive study in resistance to drought, present research was done with selection of two range species. Selected species were two kinds of Gramineae, namely Dactylis glomerata and Eragrostis curvula. Some parameters such as used water, length, width and number of leaves, dry mass of leaves were studies. Obtained results showed that length and width of leaves were not under stress in irrigation periods, but number of leaves, dry mass of leaf and stem decreased under drought stress. Amount of decrease in Eragrostis curvula was less than Dactylis glomerata Increment of irrigation periods, increased root growth rather than stem, but root growth in Dactylis glomerata was more than Eragrostis curvula for production of dry matter, Dactylis glomerata species has less water requirement and higher water usage efficiency in terms of amount of water usage. In terms of resistance to drought, Eragrostis curvula has more resistance rather than Dactylis glomerata because of high water potential and lower witt ing point

  5. Can Mobile-Enabled Payment Methods Reduce Petty Corruption in Urban Water Provision?

    Directory of Open Access Journals (Sweden)

    Aaron Krolikowski

    2014-02-01

    Full Text Available Corruption in the urban water sector constrains economic growth and human development in low-income countries. This paper empirically evaluates the ability of novel mobile-enabled payment methods to reduce information asymmetries and mitigate petty corruption in the urban water sector’s billing and payment processes. Overcoming these barriers may promote improved governance and water service delivery. The case of Dar es Salaam is used to explore the role of mobile-enabled payment instruments through the use of a stratified random sample of 1097 water utility customers and 42 interviews with representatives from the water sector, the telecommunications industry, civil society, and banking institutions. Results show that mobile-enabled payment methods can reduce information asymmetries and the incidence of petty corruption to promote improved financial management by making payment data more transparent and limiting the availability of economic rents in the billing and payment process. Implications for African urban water services include wider availability and more effective use of human and financial resources. These can be used to enhance water service delivery and citizen participation in the production of urban water supplies. The use of mobile-enabled payment methods in the urban water sector represents an application of mobile communication technologies in a low-income country with proven potential for scalability that simultaneously supports the achievement of development objectives.

  6. Fire and water: volcanology, geomorphology, and hydrogeology of the Cascade Range, central Oregon

    Science.gov (United States)

    Katharine V. Cashman; Natalia I. Deligne; Marshall W. Gannett; Gordon E. Grant; Anne. Jefferson

    2009-01-01

    This field trip guide explores the interactions among the geologic evolution, hydrology, and fluvial geomorphology of the central Oregon Cascade Range. Key topics include the geologic control of hydrologic regimes on both the wet and dry sides of the Cascade Range crest, groundwater dynamics and interaction between surface and groundwater in young volcanic arcs, and...

  7. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    Science.gov (United States)

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. © 2014 John Wiley & Sons Ltd.

  8. Dynamic Simulation of Water Networks to Control and Reduce Physical Unaccounted-for Water

    Directory of Open Access Journals (Sweden)

    Nima Zorriasateyn

    2005-09-01

    Full Text Available A significant percentage of unaccounted-for water consists of leakage in water distribution networks in Iran. To detect leakage area with less costs and time spending and then identify the exact  place of it with special instruments, would be economical and a better water resource management. In this research, a real case has been selected and examined with dynamic simulation using MIKE NET. The method that has been carried out in this research based on maximizing the correlation coefficient and minimizing the sum of error squares between pressure measured inputs (observed data and calculated pressure (by model. According to the results, dynamic simulation of municipal water distribution system can be used as a guide to determine the place and the amount of leakage.Thereby the area of  large leakage can be simulated with appropriate accuracy through measured pressure. Therefor from management aspect, dynamic simulation can be used to decrease time consumption and to save costs for detecting leakage.

  9. Atmospheric and surface water pollution interpretation in the Gdansk beltway impact range by the use of multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dubiella-Jackowska, Aleksandra; Polkowska, Zaneta; Kudlak, Blazej; Namiesnik, Jacek [Chemical Faculty, Department of Analytical Chemistry, Gdansk University of Technology, Gdansk (Poland); Astel, Aleksander [Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian Academy, Slupsk (Poland); Staszek, Wojciech [Faculty of Physical Geography and Environmental Management, University of Gdansk, Gdansk (Poland)

    2010-09-15

    The present study deals with the application of the hierarchical cluster analysis and non-parametric tests in order to interpret the Gdansk Beltway impact range. The data set represents concentration values for major inorganic ions (Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, F{sup -}, Cl{sup -}, NO{sub 3}{sup -}, and SO{sub 4}{sup 2-}) as well as electrolytic conductivity and pH measured in various water samples [precipitation, throughfall water, road runoff, and surface water (drainage ditches, surface water reservoirs, and spring water)] collected in the vicinity of the beltway. Several similarity groups were discovered both in the objects and in the variables modes according to the water sample. In the majority of cases clear anthropogenic (fertilizers usage and transport, road salting in winter) and semi-natural (sea salt aerosols, erosion of construction materials) impacts were discovered. Spatial variation was discovered for road runoff samples and samples collected from surface water reservoirs and springs. Surprisingly no clear seasonal variability was discovered for precipitation chemistry, while some evidences for existing of summer and winter specific chemical profile was discovered for road runoff samples. In general, limited range of the Gdansk Beltway impact was proven. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. The use of Powdered Activated Carbon in reducing the Doc in water treatment plants

    International Nuclear Information System (INIS)

    Nikravesh, S. H.; Etemad-Shahidi, A.; Razeghi, N.

    2003-01-01

    Today as the technology improves and the application of energy and chemicals enhances, the organic pollutants increases in surface waters in which waste waters are discharged into. In order to reduce water-born diseases, necessary actions should be taken to decrease the pollutants. Common methods of surface water treatment are not sufficient anymore. Therefore complementary methods like using activated carbon, aeration, oxidation and reverse osmosis should be used. In this paper the use of powdered activated carbon, Total organic carbon test and jar test in reducing the concentration of organic carbons in water treatment is investigated. Initial experimental results showed large errors in total organic carbon evaluation so dissolved organic carbon was measured instead. The results showed that using the powdered activated carbon in addition to conventional treatment method using ferric chloride, greatly reduces organic pollutants. Adding about 60 mg/lit of powdered activated carbon may reduce dissolved organic carbon up to 90% in optimum conditions. However, different factors like the quality of surface water, experimental errors, instrumental errors and tool errors can influence the experimental results

  11. Water metabolism of leaves of Quercus robur in antierosion stands in the south of its range

    Directory of Open Access Journals (Sweden)

    V. P. Bessonova

    2016-10-01

    Full Text Available We have investigated the main parameters of water exchange in leaves of Quercus robur L. which grow on the south-facing slope of the Viyskoviy ravine in a variety of water supply conditions. We established that the greatest intensity of transpiration of leaves of Q. robur occurred in the forest vegetation conditions of SG2, the smallest in SG1–0. In all study periods the largest amplitude of daily fluctuations in intensity of transpiration occurred in leaves of plants along the talweg, at other test sites the limits were much lower. The highest rates of transpiration were in September, which is connected with the high temperatures and lower relative air humidity compared with the days of measurement in July and May. We established that at the beginning of the growing season there was no difference in the total amount of water in the leaves of the trees that grow on the middle and upper parts of the slope, but that it was greater in plants along the talweg. In the following months the difference between the water content in the leaves of trees along the talweg and upper third of the slope increased. The leaves of trees that grow in the poorest conditions of water supply were characterized by the highest water-holding capacity, which is coordinated with their containing the highest content of hydrophilic colloids. The values for water deficit in May and in July fell within the maximum fluctuations for the species studied, but in early September they exceeded the maximum value in the leaves of trees on the upper third of the slope.

  12. Reducing phosphorus loss in tile water with managed drainage in a claypan soil.

    Science.gov (United States)

    Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris

    2015-03-01

    Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Response of range grasses to water produced from in situ fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q D; Moore, T S; Sexton, J C

    1984-11-01

    In situ-produced waters collected while retorting oil shale and tar sands to produce oil, and coal to produce gas, were tested for their effects on plant growth. Basin wildrye (Elymus cinereus), western wheatgrass (Agropyron smithii) 'Rosana', alkali sacaton (Sporobolus airoides), bluebunch wheatgrass (Agropyron spicatum) and Nuttall alkaligrass (Puccinellia airoides) were utilized. Root weight, shoot weight, total dry weight, leaf area and root/shoot weight ratios were determined. All experiments were conducted under greenhouse conditions using hydroponic techniques and horticultural grade perlite for plant support. Measurements were collected after a 10-week growth period. Results show that differences in plant growth can be monitored using dry biomass, leaf area and root to shoot ratio measurements when plants are subjected to retort waters. Plant species reaction to a water may be different. Generally, alkali sacaton, basin wildrye and western wheatgrass are least susceptible to toxicity by the majority of retort waters tested. Bluebunch wheatgrass is most susceptible. Waters from different retort procedures vary in toxicity to different plant species.

  14. The role of wastewater treatment in reducing pollution of surface waters with zearalenone.

    Science.gov (United States)

    Gromadzka, Karolina; Waśkiewicz, Agnieszka; Świetlik, Joanna; Bocianowski, Jan; Goliński, Piotr

    2015-06-01

    Zearalenone (ZEA) is a mycotoxin produced by some Fusarium species in food and feed. The toxicity of ZEA and its metabolites is related to the chemical structure of the mycotoxin, which is similar to naturally occurring oestrogens. Currently, there is increasing awareness of the presence of fungi and their toxic metabolites in the aquatic environment. One of the sources of these compounds are the effluents from wastewater treatment plants. The average annual efficiency of zearalenone reduction in the Łęczyca plant in our three-year study was in the range from 51.35 to 69.70 %. The threeway analysis of variance (year, month, and kind of wastewater) shows that the main effects of all factors and all interactions between them were significant for zearalenone and dissolved organic carbon content. Our findings suggest that wastewater is not the main source of surface water pollution with zearalenone. Future research should investigate the means to reduce ZEA and its migration from the fields through prevention strategies such as breeding for crops, plant debris management (crop rotation, tillage), and/or chemical and biological control.

  15. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  16. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  17. Environmental Characterization of Mine Countermeasure Test Ranges: Hydrography and Water Column Optics

    Science.gov (United States)

    2015-09-30

    RESULTS In general, water transparency improved over time during the second and third weeks after the passage of hurricane Barry. The vertical...relationship between visible and near-infrared reflected light from corals, macroalgae and micralgae. Submitted to CoBOP Special Issue of Limnology and

  18. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Pedersen, Christian; Andersen, Peter E.

    2012-01-01

    the optimal resolution by spectral shaping. As our results show, with currently available semiconductor-based light sources with up to 100–120 nm bandwidth centered close to 1060 nm, the resolution degradation caused by the water absorption spectrum is smaller than 10%, and it can be compensated by spectral...

  19. Analisis Kuat Tekan Beton Dengan Bahan Tambah Reduced Water Dan Accelerated Admixture

    OpenAIRE

    Rahmat, Rahmat; Hendriyani, Irna; Anwar, Moh. Syaiful

    2016-01-01

    Concrete consist of: cement mortar, coarse aggregate, fine aggregate, water, and addictive materials. The main ingredient in manufacturing of concrete: rock material that called as aggregates. Aggregate has an important role on the quality of the concrete. Various types and trademarks for admixture of concrete that can be used as addictive of the concrete mix with specific purpose. The study aims to determine the effect of the added material of Reduced Water and Accelerated Admixture (Bestmit...

  20. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Iftikhar, A.; Mir, N.

    2010-01-01

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  1. The application of membrane technology for reuse of process water and minimisation of waste water in a textile washing range

    NARCIS (Netherlands)

    van t Hul, J.P.; Racz, I.G.; Reith, T.

    1997-01-01

    Recycling of process streams and reduction of waste disposal using membrane technology in a continuous textile washing process after dyeing with reactive dyes have been investigated theoretically. A mathematical process model of a conventional open-width washing range has been extended by membrane

  2. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Bortfeld, Thomas; Martin, Benjamin C.; Soukup, Martin

    2009-01-01

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be very sensitive to setup errors and range uncertainties. If these errors are not accounted for during treatment planning, the dose distribution realized in the patient may by strongly degraded compared to the planned dose distribution. The authors implemented the probabilistic approach to incorporate uncertainties directly into the optimization of an intensity modulated treatment plan. Following this approach, the dose distribution depends on a set of random variables which parameterize the uncertainty, as does the objective function used to optimize the treatment plan. The authors optimize the expected value of the objective function. They investigate IMPT treatment planning regarding range uncertainties and setup errors. They demonstrate that incorporating these uncertainties into the optimization yields qualitatively different treatment plans compared to conventional plans which do not account for uncertainty. The sensitivity of an IMPT plan depends on the dose contributions of individual beam directions. Roughly speaking, steep dose gradients in beam direction make treatment plans sensitive to range errors. Steep lateral dose gradients make plans sensitive to setup errors. More robust treatment plans are obtained by redistributing dose among different beam directions. This can be achieved by the probabilistic approach. In contrast, the safety margin approach as widely applied in photon therapy fails in IMPT and is neither suitable for handling range variations nor setup errors.

  3. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  4. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  5. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people's attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio-cesium and -iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.

  6. Use of a range scaling method to determine alanine/water stopping power ratios

    International Nuclear Information System (INIS)

    McEwen, M.R.; Sephton, J.P.; Sharpe, P.H.G.; Shipley, D.R.

    2003-01-01

    A phantom composed of alanine dosimeter material has been constructed and depth-dose measurements made in a 10 MeV electron beam. The results have demonstrated the feasibility of using relative depth-dose measurements to determine stopping power ratios in materials of dosimetric interest. Experimental stopping power ratios for alanine dosimeter material and water agreed with the data of ICRU Report 37 within the uncertainty of the experiment (±1.2% at a 95% confidence level)

  7. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  8. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  9. Long-Range Reduced Predictive Information Transfers of Autistic Youths in EEG Sensor-Space During Face Processing.

    Science.gov (United States)

    Khadem, Ali; Hossein-Zadeh, Gholam-Ali; Khorrami, Anahita

    2016-03-01

    The majority of previous functional/effective connectivity studies conducted on the autistic patients converged to the underconnectivity theory of ASD: "long-range underconnectivity and sometimes short-rang overconnectivity". However, to the best of our knowledge the total (linear and nonlinear) predictive information transfers (PITs) of autistic patients have not been investigated yet. Also, EEG data have rarely been used for exploring the information processing deficits in autistic subjects. This study is aimed at comparing the total (linear and nonlinear) PITs of autistic and typically developing healthy youths during human face processing by using EEG data. The ERPs of 12 autistic youths and 19 age-matched healthy control (HC) subjects were recorded while they were watching upright and inverted human face images. The PITs among EEG channels were quantified using two measures separately: transfer entropy with self-prediction optimality (TESPO), and modified transfer entropy with self-prediction optimality (MTESPO). Afterwards, the directed differential connectivity graphs (dDCGs) were constructed to characterize the significant changes in the estimated PITs of autistic subjects compared with HC ones. By using both TESPO and MTESPO, long-range reduction of PITs of ASD group during face processing was revealed (particularly from frontal channels to right temporal channels). Also, it seemed the orientation of face images (upright or upside down) did not modulate the binary pattern of PIT-based dDCGs, significantly. Moreover, compared with TESPO, the results of MTESPO were more compatible with the underconnectivity theory of ASD in the sense that MTESPO showed no long-range increase in PIT. It is also noteworthy that to the best of our knowledge it is the first time that a version of MTE is applied for patients (here ASD) and it is also its first use for EEG data analysis.

  10. Comparison of three methods reducing the beam parameter product of a laser diode stack for long range laser illumination applications

    Science.gov (United States)

    Lutz, Yves; Poyet, Jean-Michel; Metzger, Nicolas

    2013-10-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is well suited for long-range image recording. Even when laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) microlenses, their beam parameter product (BPP) are not compatible with a direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long range applications. To overcome these difficulties, we conducted investigations in three different ways. A first near infrared illuminator based on the use of conductively cooled mini-bars was designed, realized and successfully tested during outdoor experimentations. This custom specified stack was then replaced in a second step by an off-the-shelf FAC + SAC micro lensed stack where the brightness was increased by polarization overlapping. The third method still based on a commercial laser diode stack uses a non imaging optical shaping principle resulting in a virtually restacked laser source with enhanced beam parameters. This low cost, efficient and low alignment sensitivity beam shaping method allows obtaining a compact and high performance laser diode illuminator for long range active imaging applications. The three methods are presented and compared in this paper.

  11. [Forensic age estimation in juveniles and young adults: Reducing the range of scatter in age diagnosis by combining different methods].

    Science.gov (United States)

    Schmidt, Sven; Schramm, Danilo; Ribbecke, Sebastian; Schulz, Ronald; Wittschieber, Daniel; Olze, Andreas; Vieth, Volker; Ramsthaler, H Frank; Pfischel, Klaus; Pfeiffer, Heidi; Geserick, Gunther; Schmeling, Andreas

    2016-01-01

    The dramatic rise in the number of refugees entering Germany means that age estimation for juveniles and young adults whose age is unclear but relevant to legal and official procedures has become more important than ever. Until now, whether and to what extent the combination of methods recommended by the Study Group on Forensic Age Diagnostics has resulted in a reduction of the range of scatter of the summarized age diagnosis has been unclear. Hand skeletal age, third molar mineralization stage and ossification stage of the medial clavicular epiphyses were determined for 307 individuals aged between 10 and 29 at time of death on whom autopsies were performed at the Institutes of Legal Medicine in Berlin, Frankfurt am Main and Hamburg between 2001 and 2011. To measure the range of scatter, linear regression analysis was used to calculate the standard error of estimate for each of the above methods individually and in combination. It was found that combining the above methods led to a reduction in the range of scatter. Due to various limitations of the study, the statistical parameters determined cannot, however, be used for age estimation practice.

  12. The Joint Front Range Climate Change Vulnerability Study: Closing the Gap between Science and Water Management Decisions

    Science.gov (United States)

    Kaatz, L.; Yates, D.; Woodbury, M.

    2008-12-01

    There is increasing concern among metropolitan water providers in Colorado's Front Range about the possible impacts of global and regional climate changes on their future water supply. This is of particular worry given that recent studies indicate global warming may lead to unprecedented drought conditions in the Southwest U.S. (IPCC 2007). The City of Aurora, City of Boulder, Colorado Springs Utilities, Denver Water, City of Ft. Collins, and Northern Colorado Water Conservancy District, along with additional water agencies including the Colorado Water Conservation Board, the Water Research Foundation (formerly AwwaRF), and the NOAA-CIRES Western Water Assessment, have come together to participate in a study intended to provide the education, tools, and methodology necessary to examine possible effects of climate change on several common watersheds. The central objective of this project is to assess possible changes in the timing and volume of hydrologic runoff from selected climate change scenarios centered about the years 2040 and 2070. Two hydrologic models will be calibrated and implemented in the study for this purpose. The future temperature and precipitation scenarios used to generate corresponding future streamflow are based on regionally downscaled temperature and precipitation projections. The projected streamflow obtained by running varied sequences of temperature and precipitation through the hydrologic models, will be compared to historic streamflow to estimate the sensitivity of water supplies to climate change. This regional unified approach is intended to help Colorado water providers communicate with their customers and the media cohesively, by working with the same historic and projected hydrometeorological data, historic natural streamflow, and methodology. Lessons learned from this collaborative approach can be used to encourage and establish other regional efforts throughout the country. Furthermore, this study will set the stage for future

  13. Spatial‑temporal variability of water balance components in the North area of the Zailiisky Alatau Range

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2016-01-01

    Full Text Available Analysis of changes in WB components (precipitation, evaporation, glacier runoff, dynamical water resources on the Northern slope of the Zailiisky Alatau was performed for the 1946–2005 time divided into two periods: 1946–1975 and 1976–2005. The territory under investigation included basins of the following rivers: Bolshaya Almatinka, Malaya Almatinka, Talgar, Turgen, Issyk, Chemolgan, Kaskelen, Kargalinka, Prohodnaya, and Uzunkargaly. Their total area down to the closing gauge points amounts to 2644 km2. Summarized glacier areas in these basins and annual runoff were equal, respectively, to: 306.6 km2 and 39.05 km3in 1946–1975, and 253.0 km2 and 38.35 km3 in 1975–2005. In 1946–2005, typical features of regional glaciation dynamics were increasing area of the moraine cover on glaciers and reducing area of bare ice that results in decreasing of the glacial runoff volume, all other factors being the same. The method to calculate the WB components consists of the following constituents: model of seasonal runoff from melted snow and ice in the areas of accumulation and ablation of glaciers; complex of formulas to calculate precipitation, air temperature and humidity, intensity of ice melting under the moraine, bare ice and evaporation within the height intervals corresponding to the main types of surfaces on the glaciers. On the basis of our method, we could reconstruct for the 1876–2015 period long‑term series of data on a runoff, separately annual values and sums for the vegetation periods. They can be used for regional scientific and applied analyses of the river stream discharges. The data on runoff in the Malaya Almatinka River basin and observational data on the meteorological station Almaty (Hydrometeorological Observatory had been quantitatively substantiated as the representative information for modeling and calculation of water resources on the Northern slope of the Zailiisky Alatau Range.

  14. Summary of the 3rd workshop on the reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  15. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  16. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika

    2016-01-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH_4"+ in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L"−"1, with an average of 12.5 ng L"−"1. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH_4"+. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH_4"+ was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  17. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  18. Least Limiting Water Range and Load Bearing Capacity of Soil under Types of Tractor-Trailers for Mechanical Harvesting of Green Sugarcane

    Directory of Open Access Journals (Sweden)

    Antonio Higino Frederico Pereira

    2015-12-01

    Full Text Available ABSTRACT The expansion of the sugarcane industry in Brazil has intensified the mechanization of agriculture and caused effects on the soil physical quality. The purpose of this study was to evaluate the limiting water range and soil bearing capacity of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox under the influence of different tractor-trailers used in mechanical sugarcane harvesting. The experiment was arranged in a randomized block design with five replications. The treatments consisted of green sugarcane harvesting with: harvester without trailer (T1; harvester with two trailers with a capacity of 10 Mg each (T2; harvester with trailer with a capacity of 20 Mg (T3 and harvester and truck with trailer with a capacity of 20 Mg (10 Mg per compartment (T4. The least limiting water range and soil bearing capacity were evaluated. The transport equipment to remove the harvested sugarcane from the field (trailer at harvest decreased the least limiting water range, reducing the structural soil quality. The truck trailer caused the greatest impact on the soil physical properties studied. The soil load bearing capacity was unaffected by the treatments, since the pressure of the harvester (T1 exceeded the pre-consolidation pressure of the soil.

  19. Effect of water hyacinth on distribution of sulphate-reducing bacteria ...

    African Journals Online (AJOL)

    The effect of the water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub, on the distribution of populations of sulphate-reducing bacteria (SRB) in sediments from various stations on the shores of Lake Victoria around Mwanza Municipality, Tanzania, was studied. Lactate-utilising SRB were observed to be the dominant ...

  20. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha; Saito, Tomonori; Yan, Jingling; Hickner, Michael; Cao, Xiaoxin; Huang, Xia; Logan, Bruce E.

    2010-01-01

    type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a

  1. The Use of Water-filled Bags to Reduce the Effects of Explosives

    Science.gov (United States)

    1994-08-01

    of Water-filled Bags to Reduce the Effects of Explosives. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Heery inc (and designed at Edinburgh University by Matthew Rea) is already in operation not far from here in the Disneyland ’Typhoon Lagoon’ at Orlando

  2. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenge associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of wh...

  3. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  4. Physiological response of Pseudomonas putida S12 subjected to reduced water activity.

    NARCIS (Netherlands)

    Kets, E.P.W.; Bont, de J.A.M.; Heipieper, H.J.

    1996-01-01

    The effect of osmotic stress, given as decreased water activity (aw), on growth and the accumulation of potassium and the compatible solute betaine by Pseudomonas putida S12 was investigated. Reduced aw was imposed by addition of sodium chloride, sucrose, glycerol or polyethylene glycol to the

  5. Competition-Induced Reductions in Soil Water Availability Reduced Pine Root Extension Rates

    Science.gov (United States)

    K.H. Ludovici; L.A. Morris

    1997-01-01

    The relationship between soil water availability, root extension, and shoot growth of loblolly pine seedlings (Pinus taeda L.) was evaluated in a rhizotron sand mixture in the absence and presence of crabgrass (Digitaria spp.) competition. Heights and diameters of seedlings grown with crabgrass were reduced 33 and SO%, respectively, compared with...

  6. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    Science.gov (United States)

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...

  7. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  8. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  9. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    Science.gov (United States)

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  10. SU-F-T-218: Validation of An In-Vivo Proton Range Verification Method for Reducing the Risk of Permanent Alopecia in the Treatment of Pediatric Medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Lucconi, G [Department of Medical Physics, S. Orsola-Malpighi University Hospital, Bologna (Italy); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Bentefour, E; Janssens, G [Advanced Technology Group, Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Deepak, S [Department of Physics, Central University of Karnataka, Karnataka 585367 (India); Weaver, K; Moteabbed, M; Lu, H-M [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The clinical commissioning of a workflow for pre-treatment range verification/adjustment for the head treatment of pediatric medulloblastoma patients, including dose monitoring during treatment. Methods: An array of Si-diodes (DIODES Incorporated) is placed on the patient skin on the opposite side to the beam entrance. A “scout” SOBP beam, with a longer beam range to cover the diodes in its plateau, is delivered; the measured signal is analyzed and the extracted water equivalent path lengths (WEPL) are compared to the expected values, revealing if a range correction is needed. Diodes stay in place during treatment to measure dose. The workflow was tested in solid water and head phantoms and validated against independent WEPL measurements. Both measured WEPL and skin doses were compared to computed values from the TPS (XiO); a Markus chamber was used for reference dose measurements. Results: The WEPL accuracy of the method was verified by comparing it with the dose extinction method. It resulted, for both solid water and head phantom, in the sub-millimeter range, with a deviation less than 1% to the value extracted from the TPS. The accuracy of dose measurements in the fall-off part of the dose profile was validated against the Markus chamber. The entire range verification workflow was successfully tested for the mock-treatment of head phantom with the standard delivery of 90 cGy per field per fraction. The WEPL measurement revealed no need for range correction. The dose measurements agreed to better than 4% with the prescription dose. The robustness of the method and workflow, including detector array, hardware set and software functions, was successfully stress-tested with multiple repetitions. Conclusion: The performance of the in-vivo range verification system and related workflow meet the clinical requirements in terms of the needed WEPL accuracy for pretreatment range verification with acceptable dose to the patient.

  11. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  12. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  13. Summary of the 4th workshop on the reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  14. Can Temperate-Water Immersion Effectively Reduce Rectal Temperature in Exertional Heat Stroke? A Critically Appraised Topic.

    Science.gov (United States)

    Truxton, Tyler T; Miller, Kevin C

    2017-09-01

    Clinical Scenario: Exertional heat stroke (EHS) is a medical emergency which, if left untreated, can result in death. The standard of care for EHS patients includes confirmation of hyperthermia via rectal temperature (T rec ) and then immediate cold-water immersion (CWI). While CWI is the fastest way to reduce T rec , it may be difficult to lower and maintain water bath temperature in the recommended ranges (1.7°C-15°C [35°F-59°F]) because of limited access to ice and/or the bath being exposed to high ambient temperatures for long periods of time. Determining if T rec cooling rates are acceptable (ie, >0.08°C/min) when significantly hyperthermic humans are immersed in temperate water (ie, ≥20°C [68°F]) has applications for how EHS patients are treated in the field. Are T rec cooling rates acceptable (≥0.08°C/min) when significantly hyperthermic humans are immersed in temperate water? T rec cooling rates of hyperthermic humans immersed in temperate water (≥20°C [68°F]) ranged from 0.06°C/min to 0.19°C/min. The average T rec cooling rate for all examined studies was 0.11±0.06°C/min. Clinical Bottom Line: Temperature water immersion (TWI) provides acceptable (ie, >0.08°C/min) T rec cooling rates for hyperthermic humans post-exercise. However, CWI cooling rates are higher and should be used if feasible (eg, access to ice, shaded treatment areas). Strength of Recommendation: The majority of evidence (eg, Level 2 studies with PEDro scores ≥5) suggests TWI provides acceptable, though not ideal, T rec cooling. If possible, CWI should be used instead of TWI in EHS scenarios.

  15. Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic modes in the low-frequency range

    OpenAIRE

    Arnoux , A.; Batou , Anas; Soize , Christian; Gagliardini , L.

    2012-01-01

    International audience; This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. An approach has recently been proposed ...

  16. Two factors influencing dose reconstruction in low dose range: the variability of BKG intensity on one individual and water content

    International Nuclear Information System (INIS)

    Zhang, Tengda; Zhang, Wenyi; Zhao, Zhixin; Zhang, Haiying; Ruan, Shuzhou; Jiao, Ling

    2016-01-01

    A fast and accurate retrospective dosimetry method for the triage is very important in radiation accidents. Electron paramagnetic resonance (EPR) fingernail dosimetry is a promising way to estimate radiation dose. This article presents two factors influencing dose reconstruction in low dose range: the variability of background signal (BKG) intensity on one individual and water content. Comparing the EPR spectrum of dried and humidified fingernail samples, it is necessary to add a procedure of dehydration before EPR measurements, so as to eliminate the deviation caused by water content. Besides, the BKGs of different fingers' nails are not the same as researchers thought previously, and the difference between maximum and minimum BKG intensities of one individual can reach 55.89 %. Meanwhile, the variability of the BKG intensity among individuals is large enough to impact precise dose reconstruction. Water within fingernails and instability of BKG are two reasons that cause the inaccuracy of radiation dose reconstruction in low-dosage level. (authors)

  17. Reduced range of the endangered crested capuchin monkey (Sapajus robustus) and a possible hybrid zone with Sapajus nigritus.

    Science.gov (United States)

    Martins, Waldney Pereira; Lynch Alfaro, Jessica; Rylands, Anthony B

    2017-10-01

    The crested capuchin monkey (Sapajus robustus) is an endangered species endemic to the highly fragmented Atlantic Forest of Brazil. Surveys for S. robustus were carried out over a 25-month period (2003-2005) to obtain more precise geographical limits for the western range of the species. Previously published localities for S. robustus were mapped, and each point was given a 25-km radius "buffer zone." The largest forest remnants in the buffer zones (>300 ha) in Minas Gerais were visited in order to interview the local people and/or survey the forests directly using playback recordings of S. robustus. Camera traps were used in key localities if interviews suggested the presence of capuchins but no animals were sighted during the surveys. Of 127 valid interviews, only 39 people reported the presence of Sapajus in nearby forest fragments. We confirmed the presence of Sapajus in only 19 of these. S. robustus occurred in four, and S. libidinosus, S. nigritus, S. xanthosternos, or S. robustus × S. nigritus (hybrids?) occurred in the remaining 15. Based on our study, the estimated geographical distribution of S. robustus is 119,654 km 2 , which represents a reduction of more than 70,000 km 2 when compared to its formerly described range. The geographical limits as defined in this study are: northeast-the Jequitinhonha River; northwest and west-the Jequitinhonha River; southwest-the Suaçuí Grande River and the Espinhaço mountains; southeast-the Doce River; east-the Atlantic Ocean. A probable hybrid zone where capuchin monkeys have morphological features of both S. nigritus and S. robustus was found between the Santo Antônio and the Suaçuí Grande rivers. The elucidation of the geographical distribution of S. robustus is important for its conservation, facilitating the delineation of priority areas for the creation of reserves and the initiation of studies of the species' ecology and behavior. © 2017 Wiley Periodicals, Inc.

  18. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  20. The potential for energy savings when reducing the water consumption in a kraft pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Berntsson, Thore [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science; Stuart, Paul [Ecole Polytechnique, Montreal (Canada). Dept. of Chemical Engineering

    2004-05-01

    In this paper an existing pulp and paper mill has been studied in a systematic way regarding the reduction of water consumption, and the resulting increased potential for energy integration. It has been found that when the mill's hot water consumption is decreased, the live steam demand for the mill also decreases. Also when decreasing the hot water consumption, the quantity and temperature of available excess heat increases. This excess heat can be used for evaporation, thereby reducing the live steam demand further by up to 1.5 GJ/t. A pinch analysis was performed at an existing mill and it was found that if pinch violations are removed, the hot water consumption is not an important factor any more. Removing all the pinch violations and using the remaining excess heat for evaporation yields a significantly larger energy savings for the mill (4.0 GJ/t). From an economic optimum perspective it is probably most profitable to do a combination of reducing water consumption, removing pinch violations, and use the remaining excess heat for evaporation.

  1. Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar

    Directory of Open Access Journals (Sweden)

    Rose Mbugua

    2016-12-01

    Full Text Available The aim of this study was to develop Gum Acacia Karroo (GAK as set retarding-water reducing admixture in cement mortars. Retarding admixtures are used to counter effect the accelerated hydration of cement at elevated temperatures by slowing down the retarding process especially during the day when concreting work is done. However most retarding admixtures available in the market are expensive, thereby making them out of reach for small consumers of concrete in Africa are expensive and not readily available. GAK, which contains soluble sugars, was investigated as a set-retarding water reducing-admixture. Setting time was measured in cement pastes with different dosages of GAK and a commercial retarding agent (Tard CE. Compressive strength, bleeding and flow test were investigated on cement mortars with the control being cement mortar without admixture. GAK was found to increase final setting time by 6 h above control. Compressive strength increased when water cement ratio was reduced from 0.5 to 0.4. Thermogravimetric analysis revealed increased dosage of GAK reduced hydration rate.

  2. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  3. Characteristics and long-term prognosis of patients with heart failure and mid-range ejection fraction compared with reduced and preserved ejection fraction

    DEFF Research Database (Denmark)

    Lauritsen, Josephine; Gustafsson, Finn; Abdulla, Jawdat

    2018-01-01

    AIMS: This study aimed to assess by a meta-analysis the clinical characteristics, all-cause and cardiovascular mortality, and hospitalization of patients with heart failure (HF) with mid-range ejection fraction (HFmrEF) compared with HF with reduced ejection fraction (HFrEF) and HF with preserved...

  4. Advanced concept of reduced-moderation water reactor (RMWR) for plutonium multiple recycling

    International Nuclear Information System (INIS)

    Okubo, T.; Iwamura, T.; Takeda, R.; Yamamoto, K.; Okada, H.

    2001-01-01

    An advanced water-cooled reactor concept named the Reduced-Moderation Water Reactor (RMWR) has been proposed to attain a high conversion ratio more than 1.0 and to achieve the negative void reactivity coefficient. At present, several types of design concepts satisfying both the design targets have been proposed based on the evaluation for the fuel without fission products and minor actinides. In this paper, the feasibility of the RMWR core is investigated for the plutonium multiple recycling under advanced reprocessing schemes with low decontamination factors as proposed for the FBR fuel cycle. (author)

  5. Vertical ground reaction force in stationary running in water and on land: A study with a wide range of cadences.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio

    2018-04-01

    The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

    2012-08-31

    One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

  7. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados

    Science.gov (United States)

    Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world’s coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377

  8. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  9. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels.

    Science.gov (United States)

    Scown, Corinne D; Gokhale, Amit A; Willems, Paul A; Horvath, Arpad; McKone, Thomas E

    2014-01-01

    Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which corn stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ∼ 95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.

  10. Strategies to Reduce Water Footprint in Palm Oil Production: A Case of PTP Mitra Ogan, Baturaja, South Sumatra

    Directory of Open Access Journals (Sweden)

    Dara Kospa Herda Sabriyah

    2017-01-01

    Full Text Available The massive expansion of palm oil industry in Indonesia has triggered environmental issues including water-related problems which have become an important concern. Regarding the issues, sustainable practice standard has been set up as a requirement for palm oil to enter global market. Inevitably, water consumption in this sector is very crucial to be analyzed. One of the methods that can be used as a tool for sustainable appropriation of fresh water resources is water footprint analysis. The primary aim of this study was to formulate the strategies to reduce the water footprint in the palm oil production based on the best practice criteria. Both quantitative and qualitative research was conducted to get the value blue water (volume of surface or groundwater evaporated and grey water (dilution volume to dilute pollutants according to agreed water quality standards. The values of water footprint in palm oil production obtained were used to represent the existing water use and were utilized as the basis for formulating strategies in reducing water use in the palm oil milling processes which was compared with the best practice criteria. The result showed that the blue water of CPO was 109.6 m3/ton and the grey water was 537.7 m3/ton, while the blue water of palm kernel was 62,4 m3/ton and grey water was 306,2 m3/ton. The value indicated that there was an inefficient use of water in the production of palm oil. The use of steam accumulator has been proposed to reduce the use of blue water by optimizing the steam supply. Besides, the reuse of water from fat-pit pond for pressing purposes, or recovery of condensate water as dilution water in the press unit which will affect the amount of wastewater discharged can be done as the strategies in reducing both blue and grey water, as well as reuse of cooling water turbines.

  11. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    Science.gov (United States)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  12. Elevated water temperature reduces the acute toxicity of the widely used herbicide diuron to a green alga, Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Tasmin, Rumana; Shimasaki, Yohei; Tsuyama, Michito; Qiu, Xuchun; Khalil, Fatma; Okino, Nozomu; Yamada, Naotaka; Fukuda, Shinji; Kang, Ik-Joon; Oshima, Yuji

    2014-01-01

    In the actual environment, temperatures fluctuate drastically through season or global warming and are thought to affects risk of pollutants for aquatic biota; however, there is no report about the effect of water temperature on toxicity of widely used herbicide diuron to fresh water microalgae. The present research investigated inhibitory effect of diuron on growth and photosynthetic activity of a green alga Pseudokirchneriella subcapitata at five different temperatures (10, 15, 20, 25, and 30 °C) for 144 h of exposure. As a result, effective diuron concentrations at which a 50% decrease in algal growth occurred was increased with increasing water temperature ranging from 9.2 to 20.1 μg L(-1) for 72 h and 9.4-28.5 μg L(-1) for 144 h. The photochemical efficiency of photosystem II (F v/F m ratio) was significantly reduced at all temperatures by diuron exposure at 32 μg L(-1) after 72 h. Inhibition rates was significantly increased with decreased water temperature (P diuron treatment groups and were about 2.5 times higher in diuron treatment groups than that of controls (P diuron in freshwater and should therefore be considered in environmental risk assessment.

  13. The relative cost of bent-hip bent-knee walking is reduced in water.

    Science.gov (United States)

    Kuliukas, Algis V; Milne, Nick; Fournier, Paul

    2009-01-01

    The debate about how early hominids walked may be characterised as two competing hypotheses: They moved with a fully upright (FU) gait, like modern humans, or with a bent-hip, bent-knee (BK) gait, like apes. Both have assumed that this bipedalism was almost exclusively on land, in trees or a combination of the two. Recent findings favoured the FU hypothesis by showing that the BK gait is 50-60% more energetically costly than a FU human gait on land. We confirm these findings but show that in water this cost differential is markedly reduced, especially in deeper water, at slower speeds and with greater knee flexion. These data suggest that the controversy about australopithecine locomotion may be eased if it is assumed that wading was a component of their locomotor repertoire and supports the idea that shallow water might have been an environment favourable to the evolution of early forms of "non-optimal" hominid bipedalism.

  14. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  15. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  16. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  17. Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH

    Directory of Open Access Journals (Sweden)

    J.-P. Gattuso

    2009-08-01

    Full Text Available The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic. Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea in 2007. The highest calcification rates were found in youngest polyps with up to 1% d−1 new skeletal growth and average rates of 0.11±0.02% d−1±S.E.. Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction than in older polyps (40% reduction. Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation even at an aragonite saturation state (Ωa below 1.

  18. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    Science.gov (United States)

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  19. Status of research and development on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    2002-01-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  20. Status of research and development on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  1. Water sorption isotherms of skimmed milk powder within the temperature range of 5–20 °C

    Directory of Open Access Journals (Sweden)

    Jitka Langová

    2012-01-01

    Full Text Available Moisture sorption isotherms (MSI’s of skimmed milk powder in the temperature range of 5–20 °C were determined using manometric method. MSI’s, which show the water content versus water activity (Aw at a constant temperature, are used to describe relationships between water content and equilibrium state relative vapour pressure (RVP. The equilibrium moisture content (EMC of skimmed milk powder samples is growing with an increase of Aw at a constant temperature both for water adsorption and desorption. Isotherms were found to be type II of Brunauer-Emmett-Teller classification. It is the type most common for foods. The shape of created isotherms was sigmoid. Structural modifications of crystals were observed during adsorption in the microscope, too. Critical value of EMC of tested samples corresponding to the Aw equal to 0.6 for adsorption was 6.50% MC (w.b. at temperature 5 °C, 9.15% MC (w.b. at temperature 10 °C, and 7.71% MC (w.b. at temperature 20 °C. These values determine optimal conditions for storage from the point of view microorganisms grow, Aw<0.6.

  2. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-05-01

    Reduced graphene oxide (rGO) has attracted considerable interest recently as the low cost and chemical stable derivative of pristine graphene with application in many applications such as energy storage, water purification and electronic devices. This dissertation thoroughly investigated stacked rGO membrane fabrication process by vacuum-driven filtration, discovered asymmetry of the two surfaces of the rGO membrane, explored application perspectives of the asymmetric rGO membrane in fog collection and microstructure patterning, and disclosed membrane compaction issue during water filtration and species rejection. In more details, this dissertation revealed that, with suitable pore size, the filtration membrane substrate would leave its physical imprint on the bottom surface of the rGO membrane in the form of surface microstructures, which result in asymmetric dynamic water wettability properties of the two surfaces of the rGO membrane. The asymmetric wettability of the rGO membrane would lead to contrasting fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux and rejection kinetics, which was related to the compaction of the rGO membrane under pressure in the process of water filtration.

  3. Increased food production and reduced water use through optimized crop distribution

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  4. Costs of reducing water use of concentrating solar power to sustainable levels: Scenarios for North Africa

    International Nuclear Information System (INIS)

    Damerau, Kerstin; Williges, Keith; Patt, Anthony G.; Gauche, Paul

    2011-01-01

    Concentrating solar power (CSP) has the potential to become a leading sustainable energy technology for the European electricity system. In order to reach a substantial share in the energy mix, European investment in CSP appears most profitable in North Africa, where solar potential is significantly higher than in southern Europe. As well as sufficient solar irradiance, however, the majority of today's CSP plants also require a considerable amount of water, primarily for cooling purposes. In this paper we examine water usage associated with CSP in North Africa, and the cost penalties associated with technologies that could reduce those needs. We inspect four representative sites to compare the ecological and economical drawbacks from conventional and alternative cooling systems, depending on the local environment, and including an outlook with climate change to the mid-century. Scaling our results up to a regional level indicates that the use of wet cooling technologies would likely be unsustainable. Dry cooling systems, as well as sourcing of alternative water supplies, would allow for sustainable operation. Their cost penalty would be minor compared to the variance in CSP costs due to different average solar irradiance values. - Highlights: → Scaling up CSP with wet cooling from ground water will be unsustainable in North Africa. → Desalination and alternative cooling systems can assure a sustainable water supply. → On large-scale, the cost penalties of alternative cooling technologies appear minor.

  5. Distinct germination response of endangered and common arable weeds to reduced water potential.

    Science.gov (United States)

    Rühl, A T; Eckstein, R L; Otte, A; Donath, T W

    2016-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land-use management are the main causes of their dramatic decline. However, besides the changes in land use, climate change may further challenge the adaptability of arable weeds. Therefore, we investigated the response pattern of arable weeds to different water potential and temperature regimes during the phase of germination. We expected that endangered arable weeds would be more sensitive to differences in water availability and temperature than common arable weeds. To this end, we set up a climate chamber experiment where we exposed seeds of five familial pairs of common and endangered arable weed species to different temperatures (5/15, 10/20 °C) and water potentials (0.0 to -1.2 MPa). The results revealed a significant relationship between the reaction of arable weed species to water availability and their Red List status. The effects of reduced water availability on total germination, mean germination time and synchrony were significantly stronger in endangered than in common arable weeds. Therefore, global climate change may present a further threat to the survival of endangered arable weed species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  7. Evaluation of policy measures and methods to reduce diffuse water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ute; Doehler, Helmut; Eurich-Menden, Brigitte; Goemann, Horst; Jaeger, Peter; Kreins, Peter; Moeller, Christine; Prigge, Achim; Ristenpart, Erik; Schultheiss, Ute

    2006-11-15

    After considerable improvements of wastewater treatment, the loads of nutrients and plant protection agents, deriving from agriculture and heavy metals from urban drainages effluents as well as from erosion of agricultural soils are the main sources of nutrients and harmful substances in the loads of water bodies. The targets of the project were on the one hand the analysis of the political and legislative framework of both policy fields and on the other hand the evaluation of several, selected water protection measures with regard to their contribution to reduce water pollution, their economical effects as well as their political enforceability. The focus was laid on diffuse water pollution caused by agriculture. As main reasons for the diffuse water pollution stagnating at high level, the analysis of the political framework identified a lack of implementation discipline of water law, followed by the fragmented and insufficient water protection legislation itself and the previous design of the common agricultural policy slanted towards increasing productivity. For the future co-operation of agricultural and water authorities in implementation of their reforms and better definition of 'Good Farming Practice' are recommended. The second investigation level focuses on the analysis and assessment of selected measures to reduce the input of nutrients and plant protection agents. This part was done with help of calculation models focussing on the specific cost/benefit ratios for water protection. In detail the following measures have been analysed: decoupling of direct payments, coupling of livestock farming to areas, tax on mineral nitrogen, pesticide levy, buffer stripes alongside of watercourses, all season crop cover on arable land, soil cultivation procedures, changing the use of arable land, optimisation of animal nutrition, optimisation of manure storage and application, co-operative agreements, education and training. Co-operations and water protection

  8. Iron Isotope Variations in Reduced Groundwater and in Drinking Water Supplies: A Case Study of Hanoi, Vietnam

    Science.gov (United States)

    Teutsch, N.; Berg, M.; von Gunten, U.; Halliday, A.

    2004-12-01

    In reduced groundwater iron is involved in biotic and abiotic transformation processes, both of which could lead to iron isotope fractionation. The reduced groundwater aquifers in the area of the Vietnamese capital of Hanoi are the main drinking water sources for the city. These groundwaters contain arsenic, which imposes a serious health threat to millions of people. Dissolved arsenic is related to the reducing conditions prevalent in the groundwater, and iron and arsenic contents are correlated in the sediments. We are employing iron isotope composition as a tool to better understand the processes leading to the transformation of iron in the groundwater and its role in various biogeochemical processes in reduced environments. Drinking water is supplied to the city of Hanoi from several water treatment plants (WTP) which pump the raw groundwater from a lower aquifer, while the rural surroundings pump untreated groundwater from an upper aquifer by private tubewells. Surface water from the Red River delta is the main source of recharge to these two aquifers. Due to high content of particulate natural organic matter (NOM) in the sediment leading to extensive microbial activity, the groundwaters are anoxic and rich in dissolved iron(II). The iron(II) removal in the WTPs is carried by a multi-step treatment including aeration, settling, filtration, and chlorination. We have collected natural groundwater samples for isotopic analysis from two aquifers at several locations, a groundwater depth profile and its corresponding sediment phases from the upper aquifer and the underlying aquitard, raw and treated water from several WTPs, as well as the corresponding iron(III) precipitates. The iron concentrations of groundwaters analysed in this study range from 3 to 28 mg/L and δ 57Fe (57/54 deviation from IRMM 014) values vary between -1.2 and +1.5 ‰ . The sediment depth profile has a δ 57Fe around +0.3 ‰ , which implies that the high values obtained in the groundwater

  9. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    International Nuclear Information System (INIS)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T.

    2013-01-01

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink R technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO TM automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the automated

  10. How do low dispersal species establish large range sizes? The case of the water beetle Graphoderus bilineatus

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann; Rannap, Riinu; Thomsen, Philip Francis

    2013-01-01

    important than species phylogeny or local spatial attributes. In this study we used the water beetle Graphoderus bilineatus a philopatric species of conservation concern in Europe as a model to explain large range size and to support effective conservation measures for such species that also have limited...... systems and wetlands which used to be highly connected throughout the central plains of Europe. Our data suggest that a broad habitat niche can prevent landscape elements from becoming barriers for species like G. bilineatus. Therefore, we question the usefulness of site protection as conservation...... measures for G. bilineatus and similar philopatric species. Instead, conservation actions should be focused at the landscape level to ensure a long-term viability of such species across their range....

  11. Comparison of Mercury in Water, Bottom Sediment, and Zooplankton in Two Front Range Reservoirs in Colorado, 2008-09

    Science.gov (United States)

    Mast, M. Alisa; Krabbenhoft, David P.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, conducted a study to investigate environmental factors that may contribute to the bioaccumulation of mercury in two Front Range reservoirs. One of the reservoirs, Brush Hollow Reservoir, currently (2009) has a fish-consumption advisory for mercury in walleye (Stizostedion vitreum), and the other, Pueblo Reservoir, which is nearby, does not. Water, bottom sediment, and zooplankton samples were collected during 2008 and 2009, and a sediment-incubation experiment was conducted in 2009. Total mercury concentrations were low in midlake water samples and were not substantially different between the two reservoirs. The only water samples with detectable methylmercury were collected in shallow areas of Brush Hollow Reservoir during spring. Mercury concentrations in reservoir bottom sediments were similar to those reported for stream sediments from unmined basins across the United States. Despite higher concentrations of fish-tissue mercury in Brush Hollow Reservoir, concentrations of methylmercury in sediment were as much as 3 times higher in Pueblo Reservoir. Mercury concentrations in zooplankton were at the low end of concentrations reported for temperate lakes in the Northeastern United States and were similar between sites, which may reflect the seasonal timing of sampling. Factors affecting bioaccumulation of mercury were assessed, including mercury sources, water quality, and reservoir characteristics. Atmospheric deposition was determined to be the dominant source of mercury; however, due to the proximity of the reservoirs, atmospheric inputs likely are similar in both study areas. Water-quality constituents commonly associated with elevated concentrations of mercury in fish (pH, alkalinity, sulfate, nutrients, and dissolved organic carbon) did not appear to explain differences in fish-tissue mercury concentrations between the reservoirs. Low methylmercury

  12. Reduced risk estimations after remediation of lead (Pb) in drinking water at two US school districts.

    Science.gov (United States)

    Triantafyllidou, Simoni; Le, Trung; Gallagher, Daniel; Edwards, Marc

    2014-01-01

    The risk of students to develop elevated blood lead from drinking water consumption at schools was assessed, which is a different approach from predictions of geometric mean blood lead levels. Measured water lead levels (WLLs) from 63 elementary schools in Seattle and 601 elementary schools in Los Angeles were acquired before and after voluntary remediation of water lead contamination problems. Combined exposures to measured school WLLs (first-draw and flushed, 50% of water consumption) and home WLLs (50% of water consumption) were used as inputs to the Integrated Exposure Uptake Biokinetic (IEUBK) model for each school. In Seattle an average 11.2% of students were predicted to exceed a blood lead threshold of 5 μg/dL across 63 schools pre-remediation, but predicted risks at individual schools varied (7% risk of exceedance at a "low exposure school", 11% risk at a "typical exposure school", and 31% risk at a "high exposure school"). Addition of water filters and removal of lead plumbing lowered school WLL inputs to the model, and reduced the predicted risk output to 4.8% on average for Seattle elementary students across all 63 schools. The remnant post-remediation risk was attributable to other assumed background lead sources in the model (air, soil, dust, diet and home WLLs), with school WLLs practically eliminated as a health threat. Los Angeles schools instead instituted a flushing program which was assumed to eliminate first-draw WLLs as inputs to the model. With assumed benefits of remedial flushing, the predicted average risk of students to exceed a BLL threshold of 5 μg/dL dropped from 8.6% to 6.0% across 601 schools. In an era with increasingly stringent public health goals (e.g., reduction of blood lead safety threshold from 10 to 5 μg/dL), quantifiable health benefits to students were predicted after water lead remediation at two large US school systems. © 2013.

  13. Evaluating the effect of river restoration techniques on reducing the impacts of outfall on water quality

    Science.gov (United States)

    Mant, Jenny; Janes, Victoria; Terrell, Robert; Allen, Deonie; Arthur, Scott; Yeakley, Alan; Morse, Jennifer; Holman, Ian

    2015-04-01

    Outfalls represent points of discharge to a river and often contain pollutants from urban runoff, such as heavy metals. Additionally, erosion around the outfall site results in increased sediment generation and the release of associated pollutants. Water quality impacts from heavy metals pose risks to the river ecosystem (e.g. toxicity to aquatic habitats). Restoration techniques including establishment of swales, and the re-vegetation and reinforcement of channel banks aim to decrease outfall flow velocities resulting in deposition of pollutants and removal through plant uptake. Within this study the benefits of river restoration techniques for the removal of contaminants associated with outfalls have been quantified within Johnson Creek, Portland, USA as part of the EPSRC funded Blue-Green Cities project. The project aims to develop new strategies for protecting hydrological and ecological values of urban landscapes. A range of outfalls have been selected which span restored and un-restored channel reaches, a variety of upstream land-uses, and both direct and set-back outfalls. River Habitat Surveys were conducted at each of the sites to assess the level of channel modification within the reach. Sediment samples were taken at the outfall location, upstream, and downstream of outfalls for analysis of metals including Nickel, Lead, Zinc, Copper, Iron and Magnesium. These were used to assess the impact of the level of modification at individual sites, and to compare the influence of direct and set-back outfalls. Concentrations of all metals in the sediments found at outfalls generally increased with the level of modification at the site. Sediment in restored sites had lower metal concentrations both at the outfall and downstream compared to unrestored sites, indicating the benefit of these techniques to facilitate the effective removal of pollutants by trapping of sediment and uptake of contaminants by vegetation. However, the impact of restoration measures varied

  14. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete.

    Science.gov (United States)

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-28

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete.

  15. UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water.

    Science.gov (United States)

    Guerrero-Latorre, Laura; Gonzales-Gustavson, Eloy; Hundesa, Ayalkibet; Sommer, Regina; Rosina, Girones

    2016-07-01

    Hepatitis E Virus (HEV) is a major cause of waterborne outbreaks in areas with poor sanitation. As safe water supplies are the keystone for preventing HEV outbreaks, data on the efficacy of disinfection treatments are urgently needed. Here, we evaluated the ability of UV radiation and flocculation-chlorination sachets (FCSs) to reduce HEV in water matrices. The HEV-p6-kernow strain was replicated in the HepG2/C3A cell line, and we quantified genome number using qRT-PCR and infectivity using an immunofluorescence assay (IFA). UV irradiation tests using low-pressure radiation showed inactivation kinetics for HEV of 99.99% with a UV fluence of 232J/m(2) (IC 95%, 195,02-269,18). Moreover, the FCSs preparations significantly reduced viral concentrations in both water matrices, although the inactivation results were under the baseline of reduction (4.5 LRV) proposed by WHO guidelines. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  17. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete

    Science.gov (United States)

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-01

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete. PMID:28787879

  18. Water cycle and its management for plant habitats at reduced pressures

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  19. Germination and Seedling Growth of Water Primroses: A Cross Experiment between Two Invaded Ranges with Contrasting Climates

    Directory of Open Access Journals (Sweden)

    Morgane Gillard

    2017-09-01

    Full Text Available Aquatic ecosystems are vulnerable to biological invasions, and will also be strongly impacted by climate change, including temperature increase. Understanding the colonization dynamics of aquatic invasive plant species is of high importance for preservation of native biodiversity. Many aquatic invasive plants rely on clonal reproduction to spread, but mixed reproductive modes are common. Under future climate changes, these species may favor a sexual reproductive mode. The aim of this study was to test the germination capacity and the seedling growth of two water primrose species, Ludwigia hexapetala and Ludwigia peploides, both invasive in Europe and in the United States. We performed a reciprocal transplant of seeds of L. hexapetala and L. peploides from two invasive ranges into experimental gardens characterized by Oceanic and Mediterranean-type climates. Our results showed that higher temperatures increased or maintained germination percentages and velocity, decreased survivorship of germinants, but increased their production of biomass. The origin of the seeds had low impact on L. hexapetala responses to temperature, but greatly influenced those of L. peploides. The invasiveness of water primroses in ranges with Oceanic climates might increase with temperature. The recruitment from seed banks by these species should be considered by managers to improve the conservation of native aquatic and wetland plant species.

  20. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  1. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    Science.gov (United States)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  2. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Kirk, Henrik; Fernandez-Lago, Helena

    2017-01-01

    of gait were obtained before and after the intervention/control period. Intervention subjects trained 31.4 SD 10.1 days for 29.0 SD 2.3 min (total) 15.2 h. RESULTS: Passive ankle joint stiffness was reduced (F = 5.1; p = 0.031), maximal gait speed increased (F = 42.8, p ...PURPOSE: We investigated if 30 min of daily treadmill training with an incline for 6 weeks would reduce ankle joint stiffness and improve active range of movement in adults with cerebral palsy (CP). METHODS: The study was designed as a randomized controlled clinical trial including 32 adults...... prior to heel strike increased (F = 5.3, p reduces ankle joint stiffness and increases active ROM during...

  3. Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kušnierová Mária

    2000-09-01

    Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms – microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called “sulfuretum”. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, Šobov locality and metallurgic plants (works

  4. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  5. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  6. DEFICIT IRRIGATION TECHNIQUE FOR REDUCING WATER USE OF TOMATO UNDER POLYTUNNEL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Sladjana SAVIC

    2012-01-01

    Full Text Available The aim of paper was to asses the use of regulated deficit irrigation (RDI for production of two tomato cultivars (Cedrico and Abellus in polytunnels in Serbia. RDI plants received 60% of the water that was applied to FI plants and significant saving of water for irrigation and increased in irrigation water use efficiency (IWUE were achieved. Yield data for Cedrico cultivar showed no differences between RDI and FI, while due to the bigger sensitivity to drought, yield of Abellus was reduced under RDI. In general, fruit quality (soluble solids, titrable acidity was sustained or improved in both cultivars under RDI. Economic analyses showed that due to the current low prices of water and electricity in Serbia, the profit increase of Cedrico, similarly to the previously trialed cultivar Amati, was not high under RDI comparing to FI. Reduction of yield and consequent profit for Abellus, indicated that for future commercial growing of tomato under RDI should be used drought resistant cultivars.

  7. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    Science.gov (United States)

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.

  8. Simulation of water management for fodder beet to reduce yield losses under late season drought

    Directory of Open Access Journals (Sweden)

    T. Noreldin

    2016-12-01

    Full Text Available The objectives of this study were to calibrate CropSyst model for fodder beet grown under full and late season drought and to use the simulation results to analyze the relationship between irrigation amount and yield, as well as in water management to reduce yield losses under full and late season drought. For this reason, two field experiments were implemented at El-Serw Agricultural Research Station in Demiatte governorate, during 2011/12 and 2012/13 growing seasons. Two irrigation treatments were studied: full irrigation and late season drought. The model was calibrated using the data obtained from the two seasons. Results indicated that the reduction in fodder beet yield under late season drought was 11 and 12% in 2011/12 and 2012/13 growing seasons, respectively. Calibration of CropSyst revealed that the percentage of difference between measured and predicted values were low in both growing seasons. The results also indicated that changing irrigation schedule after examining water stress index under full and late season drought led to increase in fodder beet yield, as well as water and land productivity. Thus, CropSyst model can give insight into when to apply irrigation water to minimize yield losses under late season drought.

  9. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  10. Water contamination reduces the tolerance of coral larvae to thermal stress.

    Directory of Open Access Journals (Sweden)

    Andrew P Negri

    Full Text Available Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

  11. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    Science.gov (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Defensive spending on tap water substitutes: the value of reducing perceived health risks.

    Science.gov (United States)

    Dupont, Diane P; Jahan, Nowshin

    2012-03-01

    We examine factors that explain consumer spending on tap water substitutes using information from a national survey undertaken with a representative set of Canadian respondents. We develop a model to predict the percentage of households that undertake such spending for the purpose of reducing perceived health risks from tap water consumption. Using results from the model we estimate the magnitude of defensive expenditures to be over half a billion dollars (2010 US$) per year for Canada, as a whole. This is equivalent to approximately $48 per household per year or about $19 per person per year. Residents of Ontario, the province in which an Escherichia coli incident took place in 2000, have the highest willingness-to-pay of approximately $60 per household per year.

  13. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  14. Reducing the 2, 4 D+MCPA Antagonism from Hard Spray Waters by Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Torabi

    2017-03-01

    Full Text Available Introduction: Water is the main carrier of herbicides (HC that its quality plays an important role in herbicide performance hard water has a high concentration of Ca++ and Mg++ and reviews have shown that calcium, manganese and zinc are the main factors reducing the effectiveness of weak acid herbicides. Weak acid herbicides such as glyphosate, paraquat, clethodim and 2, 4 D are compounds that release the H+ ions once dissolved in water, but just slightly. Therefore, herbicides that are weak acids partially dissociate. Herbicides not dissociated (the compound remains whole are more readily absorbed by plant foliage than those that dissociate. Dissociated herbicide molecules have a negative charge. After being dissociated, herbicides might remain as negatively charged molecules, or they might bind with other positively charged cations. Binding to some cations improves herbicide uptake and absorption, binding to others such as Ca++ and Mg++ antagonizes herbicide activity by decreasing absorption or activity in the cell. To correct such carriers, the use of adjuvants, such as ammonium sulphate (AMS, is recommended, which can reduce the use of herbicides and cause economic savings. The aim of this study was to investigate the simple effects and interactions between different amounts of AMS and carrier hardness (CH levels on 2, 4 D + MCPA herbicide efficacy in controlling white clover (Trifolium repens L. in turf grass. Materials and Methods: The experiment was laid out in a RCBD with three replications for each treatment during spring-summer 2013 in 10 years old mixed cold season turf grass (Festuca rubra + Poa pratensis + Poa pratensis dominated by white clover in Mashhad (Iran. The treatments were the factorial combination of four carrier hardness (CH rates (Deionized, 45, 90 and 180 ppm of Ca++ +Mg++ and three Ammonium Sulfate (AMS rates (0, 2, 3 and 4 Kg per100 L of carrier water were studied. The turf was sprayed with 2, 4 D + MCPA (67.5% SL at

  15. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    Science.gov (United States)

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  16. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality

    DEFF Research Database (Denmark)

    Huser, Brian J; Egemose, Sara; Harper, Harvey

    2016-01-01

    114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment...... (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment...

  17. Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data

    Science.gov (United States)

    Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo

    2011-02-01

    Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.

  18. Increased water intake to reduce headache: learning from a critical appraisal.

    Science.gov (United States)

    Price, Amy; Burls, Amanda

    2015-12-01

    Water intake is a cost effective, non-invasive and low-risk intervention to reduce or prevent headache pain. Chronic mild dehydration may trigger headache. Increased water intake could help. A small trial shows modest benefit; however, a larger methodologically sound randomized controlled trial is needed to confirm efficacy. Spigt, M., Weerkamp, N., Troost, J., van Schayck, C. P., & Knottnerus, J. A. (2012). 'A randomized trial on the effects of regular water intake in patients with recurrent headaches.' Family practice, 29(4), 370-5. Doi: 10.1093/fampra/cmr112 CLINICAL SCENARIO: Patients from primary care registered as 'headache', 'tension headache' and/or 'migraine' for more than one year who suffer at least two episodes of moderately intense headache or more than four mildly intense episodes of headache per month with a daily fluid intake of less than 2.5 litres per day. Patient/Problem = Headache > 1 year with 2 moderately intense or 4 mildly intense episodes per month Intervention = 1.5 litres water per day + stress control and sleep hygiene Comparison/Control = stress control and sleep hygiene Outcome = Reduce or eliminate headache Methodology = Therapy RCT Table 1: Final Search Terms TRIP Data Base: hits = 517 used filter Extended Primary research 4 found 1 paper applicable 'Water intake '[MeSH Terms] AND 'Headache '[All Fields]' Best match to PICO, (2012) RCT SELECTION CRITERION AND OVERALL RESULTS: 102 headache patients in16 primary care clinics were randomized into control (n = 50) and intervention groups (n = 52) Inclusion criteria = two > episodes of moderately intense headache or five > mildly intense headaches per month and total fluid intake > 2.5 litres per day, Follow-up @ 3 months. 79% intervention and 66% of controls completed RCT. Drinking more water resulted in a statistically significant improvement of 4.5 (confidence interval: 1.3-7.8) points on Migraine-Specific Quality of Life (MSQOL

  19. Subchannel analysis of 37-rod tight-lattice bundle experiments for reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Nakatsuka, Toru; Tamai, Hidesada; Akimoto, Hajime

    2005-01-01

    R and D project to investigate thermal-hydraulic performance of tight-lattice fuel bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in collaboration with utilities, reactor vendors and universities from 2002. The RMWR realizes a high conversion ratio larger than 0.1 for sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The reactor core comprises tight-lattice fuel assemblies with gap clearance of around 1.0 mm to reduce the water volume ratio to achieve the high conversion ratio. A problem of utmost importance from a thermal-hydraulic point of view is the coolability of the tight-lattice assembly with such a small gap width. JAERI has been carrying out experimental study to investigate the system parameter effects on the thermal-hydraulic performance and to confirm the feasibility of the core. In the present study, the subchannel analysis code NASCA was applied to 37-rod tight-lattice bundle experiments. The NASCA can give good predictions of critical power for the gap width of 1.3 mm while the prediction accuracy decreases for the gap width of 1.0 mm. To improve the prediction accuracy, the code will be modified to take the effect of film thickness distribution around fuel rods on boiling transition. (author)

  20. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.)

    Science.gov (United States)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.

    2017-12-01

    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  1. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    Science.gov (United States)

    Gorman, Phillip Michael

    possible to increase the amount of boron in the control blades by changing the assembly and core design. Nonetheless, the uncertainties in the multiplication factor due to nuclear data and void fraction uncertainty were assessed for the RBWR-SSH and the RBWR-TR, as well as for the RBWR-TB2. In addition, the uncertainty associated with the change in reactor states (such as the reactivity insertion in flooding the core) due to nuclear data uncertainties was quantified. The thorium RBWRs have much larger uncertainty of their DU-fueled counterparts as designed by Hitachi, as the fission cross section of 233U has very large uncertainty in the epithermal energy range. The uncertainty in the multiplication factor at reference conditions was about 1350 pcm for the RBWR-SSH, while it was about 900 pcm for the RBWR-TR. The uncertainty in the void coefficient of reactivity for both reactors is between 8 and 10 pcm/% void, which is on the same order of magnitude as the full core value. Finally, since sharp linear heat rate spikes were observed in the RBWR-TB2 simulation, the RBWR-TB2 unit cell was simulated using a much finer mesh than is possible using deterministic codes. It was found that the thermal neutrons reflecting back from the reflectors and the blankets were causing extreme spikes in the power density near the axial boundaries of the seeds, which were artificially smoothed out when using coarser meshes. It is anticipated that these spikes will cause melting in both seeds in the RBWR-TB2, unless design changes--such as reducing the enrichment level near the axial boundaries of the seeds--are made.

  2. Measuring the energy expenditure and water flux in free-ranging alpacas (Lama pacos) in the peruvian andes using the doubly labelled water technique.

    Science.gov (United States)

    Riek, Alexander; Van Der Sluijs, Leendert; Gerken, Martina

    2007-12-01

    Energy expenditure and water flux were measured in free-ranging alpacas Lama pacos, a South American camelid, on natural pastures of the Peruvian Andes (altitude: 4,400 m above sea level). Water influx rate (WIR) was estimated in 16 males (age 2 years, weight 48.5+/-8.6 kg) labelled with 2H. In addition, the field metabolic rate (FMR) was measured in four of these animals labelled with both an oxygen (18O) and a hydrogen (2H) isotope. The WIR averaged 3.62 L H2O/day and the mean total body water 33.1 kg, equal to 68.2% of body weight (BW). The FMR of the four doubly labelled animals was 14.05 MJ/day. New allometric equations were calculated describing the relationships between WIR or FMR and BW, respectively, including published data on ruminants and the present alpaca results. The regression equation indicates that daily WIR scales to a similar metabolic size (kilograms of BW(0.94)) in alpacas than in wild or domesticated ruminants and camelids originating from arid and semiarid habitats. The resulting regression equation for FMR explained over 99% of the variation and corresponded to the function FMR (kilojoules per day)=1079 (kilograms of BW0.668) (n=5, r2=0.995, Palpacas have similar energy expenditures on a metabolic weight basis as other wild ruminants living under harsh climatic conditions.

  3. Summary report of the 7th reduced-moderation water reactor workshop

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nabeshima, Kunihiko; Uchikawa, Sadao

    2005-08-01

    As a research on the future innovative water reactor, the development of Reduced-Moderation Water Reactors (RMWRs) has been performed in Japan Atomic Energy Research Institute (JAERI). The workshop on RMWRs is aiming at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors, and has been held every year since 1998. The 7th workshop was held on March 5, 2004 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The program of the workshop was composed of 5 lectures and an overall discussion time. The workshop started with the lecture by JAERI on the status and future program of PMWR research and development, followed by the two presentations by JAERI and Japan Nuclear Cycle Development Institute, respectively, on the investigation and evaluation of water cooled reactor in Feasibility Study Program on Commercialized Fast Reactor Systems. The lectures were also made on the Japan's nuclear fuel cycle and scenarios for RMWRs deployment by JAERI, and on the next generation reactor development activity by Hitachi, Ltd. The main subjects of the overall discussion time were Na cooled fast reactor, deployment effects of RMWRs and the future plan of the RMWR research and development. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as of the discussion time. In addition in the Appendices, there are included presentation handouts of each lecture, program of the workshop and the participants list. (author)

  4. Climate Change, Forests, and Water Supply: Managing to Reduce Vulnerability in Central Nova Scotia

    Science.gov (United States)

    Steenberg, J.; Duinker, P.

    2009-12-01

    Global climate change is increasingly relevant in managing Canada’s forests sustainably. Forest managers are faced with the necessity of incorporating climate change into forest management plans. The formulation and evaluation of potential management strategies to contend with expected impacts of climate change will be necessary to reduce forest sector vulnerability. The Halifax Regional Water Commission manages forest watersheds for the purpose of supplying clean water to much of the Halifax Regional Municipality. The purpose of this study is to characterize the future forest structure of the two principal watersheds supplying the Halifax Regional Municipality using simulation modelling and to develop a framework of adaptive forest management. A combination of uncertainty analysis, sensitivity analysis, and field data collection are used to refine, calibrate, and validate the spatially dynamic landscape disturbance model LANDIS-II prior to the incorporation of climate change scenarios into model simulations. Final model-based analysis will inform framework development dedicated to improving watershed resilience in the face of future climate change. This study is applicable to forest management under a changing climate, but also has further significance to water security, as watershed management and point-source protection are tightly linked to forest management.

  5. The behaviour of a floating water bridge under reduced gravity conditions

    Science.gov (United States)

    Fuchs, Elmar C.; Agostinho, Luewton L. F.; Wexler, Adam; Wagterveld, R. Martijn; Tuinstra, Jan; Woisetschläger, Jakob

    2011-01-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschläger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  6. The behaviour of a floating water bridge under reduced gravity conditions

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Agostinho, Luewton L F; Wexler, Adam; Wagterveld, R Martijn; Tuinstra, Jan; Woisetschlaeger, Jakob

    2011-01-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschlaeger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  7. The behaviour of a floating water bridge under reduced gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Elmar C; Agostinho, Luewton L F; Wexler, Adam; Wagterveld, R Martijn; Tuinstra, Jan [Wetsus, Center of Excellence for Sustainable Water Technology, Agora 1, 8900 CC Leeuwarden (Netherlands); Woisetschlaeger, Jakob, E-mail: elmar.fuchs@wetsus.nl [Institute for Thermal Turbomachinery and Machine Dynamics, Graz University of Technology, Inffeldgasse 25A, Graz (Austria)

    2011-01-19

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschlaeger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  8. The role of pioneers as indicators of biogeographic range expansion caused by global change in southern African coastal waters

    Science.gov (United States)

    Whitfield, Alan K.; James, Nicola C.; Lamberth, Stephen J.; Adams, Janine B.; Perissinotto, Renzo; Rajkaran, Anusha; Bornman, Thomas G.

    2016-04-01

    The South African coastline is just over 3000 km in length yet it covers three major biogeographic regions, namely subtropical, warm temperate and cool temperate. In this review we examine published information to assess the possible role of climate change in driving distributional changes of a wide variety of organisms around the subcontinent. In particular we focus on harmful algal blooms, seaweeds, eelgrass, mangroves, salt marsh plants, foraminiferans, stromatolites, corals, squid, zooplankton, zoobenthos, fish, birds, crocodiles and hippopotamus, but also refer to biota such as pathogens, coralline algae, jellyfish and otters. The role of pioneers or propagules as indicators of an incipient range expansion are discussed, with mangroves, zoobenthos, fishes and birds providing the best examples of actual and imminent distributional changes. The contraction of the warm temperate biogeographic region, arising from the intrusion of cool upwelled waters along the Western Cape shores, and increasingly warm Agulhas Current waters penetrating along the eastern parts of the subcontinent, are highlighted. The above features provide an ideal setting for the monitoring of biotic drivers and responses to global climate change over different spatial and temporal scales, and have direct relevance to similar studies being conducted elsewhere in the world. We conclude that, although this review focuses mainly on the impact of global climate change on South African coastal biodiversity, other anthropogenic drivers of change such as introduced alien invasive species may act synergistically with climate change, thereby compounding both short and long-term changes in the distribution and abundance of indigenous species.

  9. Synthesis of mesoscale, crumpled, reduced graphene oxide roses by water-in-oil emulsion approach

    Science.gov (United States)

    Sharma, Shruti; Pham, Viet H.; Boscoboinik, Jorge A.; Camino, Fernando; Dickerson, James H.; Tannenbaum, Rina

    2018-05-01

    Mesoscale crumpled graphene oxide roses (GO roses) were synthesized by using colloidal graphene oxide (GO) variants as precursors for a hybrid emulsification-rapid evaporation approach. This process produced rose-like, spherical, reduced mesostructures of colloidal GO sheets, with corrugated surfaces and particle sizes tunable in the range of ∼800 nm to 15 μm. Excellent reproducibility for particle size distribution is shown for each selected speed of homogenizer rotor among different sample batches. The morphology and chemical structure of these produced GO roses was investigated using electron microscopy and spectroscopy techniques. The proposed synthesis route provides control over particle size, morphology and chemical properties of the synthesized GO roses.

  10. Emergency Response Planning to Reduce the Impact of Contaminated Drinking Water during Natural Disasters

    Science.gov (United States)

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water system...

  11. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  12. Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water

    Science.gov (United States)

    Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

    2012-12-01

    Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21

  13. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  14. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  15. Numerical study of water entry supercavitating flow around a vertical circular cylinder influenced by turbulent drag-reducing additives

    International Nuclear Information System (INIS)

    Jiang, C X; Cheng, J P; Li, F C

    2015-01-01

    This paper attempts to introduce a numerical simulation procedure to simulate water-entry problems influenced by turbulent drag-reducing additives in a viscous incompressible medium. Firstly we performed a numerical investigation on water-entry supercavities in water and turbulent drag-reducing solution at the impact velocity of 28.4 m/s to confirm the accuracy of the numerical method. Based on the verification, projectile entering water and turbulent drag-reducing solution at relatively high velocity of 142.7 m/s (phase transition is considered) is simulated. The cross viscosity equation was adopted to represent the shear-thinning characteristic of aqueous solution of drag-reducing additives. The configuration and dynamic characteristics of water entry supercavity, flow resistance were discussed respectively. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical results show that the supercavity length in drag-reducing solution is larger than one in water and the velocity attenuates faster at high velocity than at low velocity; the influence of drag-reducing solution is more obvious at high impact velocity. Turbulent drag-reducing additives have the great potential for enhancement of supercavity

  16. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    Directory of Open Access Journals (Sweden)

    Caroline Schultealbert

    2018-03-01

    Full Text Available Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR. For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude for four different reducing gases (CO, H2, ammonia and benzene using randomized gas exposures.

  17. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    Science.gov (United States)

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  18. Pressure drop characteristics in tight-lattice bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Kureta, Masatoshi; Yoshida, Hiroyuki; Akimoto, Hajime

    2004-01-01

    The reduced-moderation water reactor (RMWR) consists of several distinctive structures; a triangular tight-lattice configuration and a double-flat core. In order to design the RMWR core from the point of view of thermal-hydraulics, an evaluation method on pressure drop characteristics in the rod bundles at the tight-lattice configuration is required. In this study, calculated results by the Martinelli-Nelson's and Hancox's correlations were compared with experimental results in 4 x 5 rod bundles and seven-rod bundles. Consequently, the friction loss in two-phase flows becomes smaller at the tight-lattice configuration with the hydraulic diameter less than about 3 mm. This reason is due to the difference of the configuration between the multi-rod bundle and the circular tube and due to the effect of the small hydraulic diameter on the two-phase multiplier. (author)

  19. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    Science.gov (United States)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  20. Redistributing environmental tax revenue to reduce poverty in South Africa: The cases of energy and water

    Directory of Open Access Journals (Sweden)

    JH Van Heerden

    2014-05-01

    Full Text Available South Africa, as an upper middle-income, resource-intensive developing country with an open economy, has to find innovative ways to combat poverty, promote economic growth and reduce the intensity of resource use, simultaneously.  One option is to explore the plausibility of achieving a double dividend by levying a tax on water and energy and recycling the revenue back to the economy by allowing for a reduction in other forms of taxation.  According to the double dividend theory it is possible, under some conditions, to achieve both environmental and economic objectives.  We investigated such a possibility in the South African economy using an integrated economy/environment CGE model and found that it is indeed possible to achieve such double dividend benefits.  Given the prevailing economic and environmental contexts, government should actively search for ways to achieve such dividends.

  1. Water extract of Acer tegmentosum reduces bone destruction by inhibiting osteoclast differentiation and function.

    Science.gov (United States)

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; An, Hyosun; Lee, Chung-Jo; Lee, Kwang Jin; Ma, Jin Yeul

    2014-04-01

    The stem of Acer tegmentosum has been widely used in Korea for the treatment of hepatic disorders. In this study, we investigated the bone protective effect of water extract of the stem of Acer tegmentosum (WEAT). We found that WEAT inhibits osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. In osteoclast precursor cells, WEAT inhibited RANKL-induced activation of JNK, NF-κB, and cAMP response element-binding protein, leading to suppression of the induction of c-Fos and nuclear factor of activated T cells cytoplasmic 1, key transcription factors for osteoclast differentiation. In addition, WEAT inhibited bone resorbing activity of mature osteoclasts. Furthermore, the oral administration of WEAT reduced RANKL-induced bone resorption and trabecular bone loss in mice. Taken together, our study demonstrates that WEAT possesses a protective effect on bone destruction by inhibiting osteoclast differentiation and function.

  2. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  3. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  4. Warfare Ecology on an Underwater Demolition Range: Acoustic Observations of Marine Life and Shallow Water Detonations in Hawai`i

    Science.gov (United States)

    Shannon, Lee H.

    Most studies investigating the effects of military-associated anthropogenic noise concentrate on deep sea or open ocean propagation of sonar and its effect on marine mammals. In littoral waters, U.S. military special operations units regularly conduct shallow water explosives training, yet relatively little attention has been given to the potential impact on nearshore marine ecosystems from these underwater detonations. This dissertation research focused on the Pu'uloa Underwater Detonation Range off the coast of O`ahu, and examined multiple aspects of the surrounding marine ecosystem and the effects of detonations using acoustic monitoring techniques. The soundscape of a nearshore reef ecosystem adjacent to the UNDET range was characterized through analysis of passive acoustic recordings collected over the span of 6 years. Snapping shrimp were the predominant source of noise, and a diel pattern was present, with increased sound energy during the night hours. Results revealed a difference of up to 7dB between two Ecological Acoustic Recorder locations 2.5km apart along the 60ft isobath. Passive acoustic recording files were searched visually and aurally for odontocete whistles. Whistles were detected in only 0.6% of files analyzed, indicating this area is not frequently transited by coastal odontocete emitting social sounds. The study also opportunistically captured a humpback whale singing during a detonation event, during which the animal showed no obvious alteration of its singing behavior. Four separate underwater detonation events were recorded using a surface deployed F-42C transducer, and the resulting analysis showed no measurable drop in the biologically produced acoustic energy in reaction to the explosive events. Coral reef fishes were recorded visually and acoustically during detonation events at a known distance and bearing from a known explosive sound source. Individual fish behavioral responses to the explosion varied, and a sharp uptick in fish

  5. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2013-03-01

    In ecotoxicology, appreciation is growing for the influence that ecological interactions have on the toxicity of contaminants, such as insecticides, to sensitive species. Most previous studies, however, have focused on factors that exacerbate insecticide effects on species, while factors that may mitigate these effects have been relatively ignored. In aquatic habitats, a small number of studies have shown that submersed macrophytes can remove some insecticides from the water column via sorption. Although examining sorption dynamics is important for understanding the environmental fate of insecticides, whether and to what extent macrophytes actually mitigate insecticide effects on aquatic species remains unknown. In the present study, the authors examined how much and how quickly several realistic densities of the macrophyte Elodea canadensis decreased the toxicity of the insecticide malathion to Daphnia magna, a keystone aquatic herbivore. To do this, the authors quantified Daphnia survival in outdoor test systems (0.95 L) exposed to a factorial combination of five Elodea densities crossed with five malathion concentrations. The authors discovered that malathion's lethality to Daphnia decreased with increasing Elodea density. Furthermore, the rate at which Elodea reduced malathion's toxicity in the water column increased with macrophyte density. These results provide strong evidence that submersed macrophytes can mitigate the ecological impacts of a popular insecticide and further support that ecological interactions can strongly influence contaminant environmental effects. Copyright © 2013 SETAC.

  6. Properties of experimental titanium cast investment mixing with water reducing agent solution.

    Science.gov (United States)

    Zhang, Zutai; Ding, Ning; Tamaki, Yukimichi; Hotta, Yasuhiro; Han-Cheol, Cho; Miyazaki, Takashi

    2012-01-01

    This study aimed to develop a dental investment for titanium casting. ZrO(2) and Al(2)O(3) were selected as refractory materials to prepare three investments (Codes: A-C) according to the quantity of Zr. Al(2)O(3) cement was used as a binder at a ratio of 15%, they were mixed with special mixing liquid. B1 was used as a control mixed with water. Fundamental examinations were statistically evaluated. A casting test was performed with investment B. Fluidities, setting times, and green strengths showed no remarkable differences; however, they were significantly different from those of B1. Expansion values for A, B, C, and B1 at 850°C were 1.03%±0.08%, 1.96%±0.17%, 4.35%±0.23%, and 1.50%±0.28%, respectively. Castings were covered by only small amounts of mold materials. The hardness test showed no significant differences between castings from B and the ones from commercial investments. The experimental special mixing liquid effectively reduced the water/powder ratio and improved the strength and thermal expansion.

  7. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW

    Directory of Open Access Journals (Sweden)

    Marc Henry

    2013-12-01

    Full Text Available The consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Ministry of Health, Labour and Welfare for the cure of gastro-intestinal disorders. Today, these devices are freely available in several countries and can be easily purchased without reserve. The commercial information included with the device recommends the consumption of 1–1.5 L of water per day, not only for gastro-intestinal disorders but also for numerous other illnesses such as diabetes, cancer, inflammation, etc. Academic research in Japan on this subject has been undergoing since 1990 only but has established that the active ingredient is dissolved dihydrogen that eliminates the free radical HO• in vivo. In addition, it was demonstrated that degradation of the electrodes during functioning of the device releases very reactive nanoparticles of platinum, the toxicity of which has not yet been clearly proven. This report recommends alerting health authorities of the uncontrolled availability of these devices used as health products, but which generate drug substances and should therefore be sold according to regulatory requirements.

  8. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    Science.gov (United States)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  9. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  10. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pagnanelli, F., E-mail: francesca.pagnanelli@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cruz Viggi, C., E-mail: carolina.cruzviggi@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cibati, A., E-mail: alessio.cibati@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy); Toro, L., E-mail: luigi.toro@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Palleschi, C., E-mail: claudio.palleschi@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). Black-Right-Pointing-Pointer Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). Black-Right-Pointing-Pointer Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L{sup -1}), ethanol (1.5 g L{sup -1}) and Cr(VI) (50 mg L{sup -1}). At steady state the column inoculated with SRB removed 65 {+-} 5% of sulphate and 95 {+-} 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  11. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    International Nuclear Information System (INIS)

    Pagnanelli, F.; Cruz Viggi, C.; Cibati, A.; Uccelletti, D.; Toro, L.; Palleschi, C.

    2012-01-01

    Highlights: ► Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). ► Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). ► Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L −1 ), ethanol (1.5 g L −1 ) and Cr(VI) (50 mg L −1 ). At steady state the column inoculated with SRB removed 65 ± 5% of sulphate and 95 ± 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  12. A critical review of measures to reduce radioactive doses from drinking water and consumption of freshwater foodstuffs

    International Nuclear Information System (INIS)

    Smith, J.T.; Voitsekhovitch, O.V.; Haakanson, L.; Hilton, J.

    2001-01-01

    Following a radioactive fallout event, there are a number of possible intervention measures to reduce radioactive doses to the public via the surface water pathway. We have critically reviewed the options available to decision-makers in the event of radioactive contamination of surface waters. We believe that the most effective and viable measures to reduce radioactivity in drinking water are those which operate at the water treatment and distribution stage. Intervention measures to reduce concentrations of radioactivity in rivers and reservoirs are expected to be much less viable and efficient at reducing doses via the drinking water pathway. Bans on consumption of freshwater fish can be effective, but there are few viable measures to reduce radioactivity in fish prior to the preparation stage. Lake liming and biomanipulation have been found to be ineffective for radiocaesium, although the addition of potassium to lakewaters appears promising in some situations. Lake liming may be effective in reducing radiostrontium in fish, though this has not, to our knowledge, been tested. De-boning fish contaminated by strontium is probably the most effective food preparation measure, but salting and freezing can also reduce radiocaesium concentrations in fish. The provision of accurate information to the public is highlighted as a key element of countermeasure implementation

  13. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  14. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  15. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  16. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  17. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  18. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    Science.gov (United States)

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  19. Research and development on reduced-moderation light water reactor with passive safety features (Contract research)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Akie, Hiroshi; Kugo, Teruhiko; Yonomoto, Taisuke; Kureta, Masatoshi; Ishikawa, Nobuyuki; Nagaya, Yasunobu; Araya, Fumimasa; Okajima, Shigeaki; Okumura, Keisuke; Suzuki, Motoe; Mineo, Hideaki; Nakatsuka, Toru

    2004-06-01

    The present report contains the achievement of 'Research and Development on Reduced-moderation Light Water Reactor with Passive Safety Features', which was performed by Japan Atomic Energy Research Institute (JAERI), Hitachi Ltd., Japan Atomic Power Company and Tokyo Institute of Technology in FY2000-2002 as the innovative and viable nuclear energy technology (IVNET) development project operated by the Institute of Applied Energy (IAE). In the present project, the reduced-moderation water reactor (RMWR) has been developed to ensure sustainable energy supply and to solve the recent problems of nuclear power and nuclear fuel cycle, such as economical competitiveness, effective use of plutonium and reduction of spent fuel storage. The RMWR can attain the favorable characteristics such as high burnup, long operation cycle, multiple recycling of plutonium (Pu) and effective utilization of uranium resources based on accumulated LWR technologies. Our development target is 'Reduced-moderation Light Water Reactor with Passive Safety Features' with innovative technologies to achieve above mentioned requirement. Electric power is selected as 300 MWe considering anticipated size required for future deployment. The reactor core consists of MOX fuel assemblies with tight lattice arrangement to increase the conversion ratio. Design targets of the core specification are conversion ratio more than unity, negative void reactivity feedback coefficient to assure safety, discharged burnup more than 60 GWd/t and operation cycle more than 2 years. As for the reactor system, a small size natural circulation BWR with passive safety systems is adopted to increase safety and reduce construction cost. The results obtained are as follows: As regards core design study, core design was performed to meet the goal. Sequence of startup operation was constructed for the RMWR. As the plant design, plant system was designed to achieve enhanced economy using passive safety system effectively. In

  20. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Culturable heterotrophic, nitrate reducing and sulfate reducing bacteria (HB, NRB and SRB) were enumerated from 25, 50, 100 and 200 m depths at 15 stations and their potential activities viz. Nitrate reducing (NRA) and Sulfate reducing (SRA) were...

  1. Shark Spotters: Successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa.

    Science.gov (United States)

    Engelbrecht, Tamlyn; Kock, Alison; Waries, Sarah; O'Riain, M Justin

    2017-01-01

    White sharks (Carcharodon carcharias) are apex predators that play an important role in the structure and stability of marine ecosystems. Despite their ecological importance and protected status, white sharks are still subject to lethal control to reduce the risk of shark bites for recreational water users. The Shark Spotters program, pioneered in Cape Town, South Africa, provides a non-lethal alternative for reducing the risk of human-shark conflict. In this study we assessed the efficacy of the Shark Spotters program in reducing overlap between water users and white sharks at two popular beaches in False Bay, South Africa. We investigated seasonal and diel patterns in water use and shark presence at each beach, and thereafter quantified the impact of different shark warnings from shark spotters on water user abundance. We also assessed the impact of a fatal shark incident on patterns of water use. Our results revealed striking diel and seasonal overlap between white sharks and water users at both beaches. Despite this, there was a low rate of shark-human incidents (0.5/annum) which we attribute partly to the success of the Shark Spotters program. Shark spotters use visual (coloured flags) and auditory (siren) cues to inform water users of risk associated with white shark presence in the surf zone. Our results showed that the highest risk category (denoted by a white flag and accompanying siren) caused a significant reduction in water user abundance; however the secondary risk category (denoted by a red flag with no siren) had no significant effect on water users. A fatal shark incident was shown to negatively impact the number of water users present for at least three months following the incident. Our results indicate that the Shark Spotters program effectively reduces spatial overlap between white sharks and water users when the risk of conflict is highest.

  2. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus.

    Directory of Open Access Journals (Sweden)

    Courtney Waugh

    Full Text Available Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative at time of initial vaccination, or infected (C. pecorum positive at either urogenital (UGT and/or ocular sites (Oc, but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking, results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  3. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  4. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  5. S-TiO2/S-reduced graphene oxide for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Elbakkay, Mohamed H.; El Rouby, Waleed M. A.; El-Dek, S. I.; Farghali, Ahmed A.

    2018-05-01

    Sulfur-doped titanium oxide on the surface of sulfur-doped reduced graphene oxide nanocomposites (S-TiO2/S-RGO) were successfully synthesized for the first time through a simple low cost solvothermal reaction process. The sulfur doping was detected in both TiO2 matrix and carbon framework structure of reduced graphene oxide using X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX). Cross-sectional AFM analysis of S-RGO nanosheets reveals a thickness of 0.51 nm which is much thinner than those previously reported of heteroatom doped-RGO, confirming the single-layer feature. When the as-prepared (S-TiO2/S-RGO) nanocomposites are utilized as photoanodes for photoelectrochemical (PEC) water splitting, they exhibited an enhanced photoelectrochemical performance and long-term stability. The photocurrent density of S-TiO2/S-RGO(0.2) photoanode revealed 3.36 mA/cm2 at 1 V vs Ag/AgCl which is considered 3 times compared to bare synthesized TiO2. This improvement in the photocurrent density was attributed to the increased separation rate of photogenerated electrons and holes and efficient visible light harvesting as a result of the successful combination of the S-TiO2 and the S-RGO in the same nanocomposite photoanode. This promising result presents a new approach for the synthesis of high-efficient future metal-free photoelectrocatalysts.

  6. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    Science.gov (United States)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  7. Environmental assessment for the natural fluctuation of water level in Par Pond and reduced water flow in Steel Creek below L-Lake at the Savannah River Site

    International Nuclear Information System (INIS)

    1995-08-01

    The Savannah River Operations Office Strategic Plan directs Savannah River Site (SRS) to find ways to reduce operating costs, and to determine what site infrastructure must be maintained and what infrastructure is surplus. Because of the mission change, L-Lake, Par Pond, and the river water system are no longer needed to support current missions and therefore provide an opportunity for operating cost reduction. If SRS determines that L-Lake, Par Pond, and the river water system are no longer needed to support future missions and are considered surplus, appropriate NEPA documentation will be prepared. The purpose of the proposed action in this Environmental Assessment is to begin an examination of the need for the Site's river water system by (1) developing data needed to evaluate the potential environmental impacts of further reducing or eliminating the flow demands from the Site's river water system and; (2) evaluating the potential of reducing operating costs by allowing the water level in Par Pond to fluctuate naturally through reduced pumping. This action also includes reducing the current flow rates from L-Lake to Steel Creek to natural stream flows while maintaining full pool. The recently approved Par Pond CERCLA Interim Action Proposed Plan (IAPP) committed to evaluate in a NEPA document the environmental consequences of this proposed action. This document evaluated the remediation of human health and ecological risks associated with the three year drawdown of Par Pond. Should any of the parameters sampled in the reservoir and streams (e.g., water quality, biota, etc.) exceed established threshold levels during the implementation of the proposed action, water would again be pumped into the reservoir to minimize any impacts by bringing the water level back to an appropriate level about 58.2 m (195 ft)

  8. Environmental assessment for the natural fluctuation of water level in Par Pond and reduced water flow in Steel Creek below L-Lake at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Savannah River Operations Office Strategic Plan directs Savannah River Site (SRS) to find ways to reduce operating costs, and to determine what site infrastructure must be maintained and what infrastructure is surplus. Because of the mission change, L-Lake, Par Pond, and the river water system are no longer needed to support current missions and therefore provide an opportunity for operating cost reduction. If SRS determines that L-Lake, Par Pond, and the river water system are no longer needed to support future missions and are considered surplus, appropriate NEPA documentation will be prepared. The purpose of the proposed action in this Environmental Assessment is to begin an examination of the need for the Site`s river water system by (1) developing data needed to evaluate the potential environmental impacts of further reducing or eliminating the flow demands from the Site`s river water system and; (2) evaluating the potential of reducing operating costs by allowing the water level in Par Pond to fluctuate naturally through reduced pumping. This action also includes reducing the current flow rates from L-Lake to Steel Creek to natural stream flows while maintaining full pool. The recently approved Par Pond CERCLA Interim Action Proposed Plan (IAPP) committed to evaluate in a NEPA document the environmental consequences of this proposed action. This document evaluated the remediation of human health and ecological risks associated with the three year drawdown of Par Pond. Should any of the parameters sampled in the reservoir and streams (e.g., water quality, biota, etc.) exceed established threshold levels during the implementation of the proposed action, water would again be pumped into the reservoir to minimize any impacts by bringing the water level back to an appropriate level about 58.2 m (195 ft).

  9. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    Prill, Dennis Paul

    2013-01-01

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  10. Research on the Preparation and Performance of Binary Modified Maltodextrin Water-Reducing Agent

    Directory of Open Access Journals (Sweden)

    Jingzhi Wu

    2016-01-01

    Full Text Available Using maltodextrin (MD of different dextrose equivalent (DE values, 1,3-propanesultone, and maleic anhydride as raw materials, a novel binary modified maltodextrin (BMMD was synthesized and further applied as a water-reducing agent. Its structure was characterized by Fourier transform infrared (FT-IR and UV. The rheological behavior of the sample solution and strengths for concrete were also determined and the adsorption was tested by TOC. The influence of the process parameters to degree of substitution (DS and the dosage on the fluidity of cement paste were investigated. The results show that the optimal conditions of sulfonation were the MD of DE 15, m (sulfonated agent/m (MD of 1.4, the catalyst amount of 1% by mass MD, and the reaction time of 12 h; the optimal conditions of esterification were m (esterified agent/m (SMD of 0.6, the reaction temperature of 90°C, and the reaction time of 4 h. The optimal dosages of sulfonated maltodextrin (SMD and BMMD were 0.475% and 0.45%, respectively. In this dosage, the main dispersion capacity of BMMD attributes to two kinds of anchoring groups (SO3-  &  COO- and the appropriate molecular weight of MD.

  11. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    Science.gov (United States)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  12. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  13. Intelligent Pressure Management to Reduce Leakage in Urban Water Supply Networks, A Case Study of Sarafrazan District, Mashhad

    Directory of Open Access Journals (Sweden)

    Mohammad Soltani Asl

    2009-09-01

    Full Text Available Water losses are inevitable in urban water distribution systems. The two approaches adopted nowadays to combat this problem include management of hydraulic parameters such as pressure and leakage detection in the network. Intellitgent pressure management is a suitable technique for controlling leakage and reducing damages due to high operating pressures in a network. This paper aims to investigate the effects of pressure reduction on leakage. The EPANET 2.10 software is used to simulate the water distribution network in the Sarafrazan District,Mashhad, assuming leakage from network nodes. The results are then used to develop a pressure variation program based on the patterns obtained from the simulation, which is applied to the pressure reducing valve. The results show that pressure management can reduce nightly leakage by up to 35% while maintaining a more uniform pressure distribution. Implementation of the time-dependent pressure pattern by applying programmable pressure reducing valves in a real urban water distribution network is feasible and plays a key role in reducing water losses to leakage.

  14. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  15. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-08

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  16. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  18. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    International Nuclear Information System (INIS)

    Minamikawa, Kazunori; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito; Takahashi, Masayoshi

    2015-01-01

    A remarkable feature of nanobubbles (<10 –6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH 4 ), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH 4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH 4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0–5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0–5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH 4 emission (r = –0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH 4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils. (letter)

  19. Subsidized Sachet Water to Reduce Diarrheal Disease in Young Children: A Feasibility Study in Accra, Ghana.

    Science.gov (United States)

    Wright, James; Dzodzomenyo, Mawuli; Fink, Günther; Wardrop, Nicola A; Aryeetey, Genevieve C; Adanu, Richard M; Hill, Allan G

    2016-07-06

    Use of drinking water sold in plastic bags (sachet water) is growing rapidly in west Africa. The impact on water consumption and child health remains unclear, and a debate on the taxation and regulation of sachet water is ongoing. This study assessed the feasibility of providing subsidized sachet water to low-income urban households in Accra and measured the resultant changes in water consumption. A total of 86 children, 6-36 months of age in neighborhoods lacking indoor piped water, were randomized to three study arms. The control group received education about diarrhea. The second arm received vouchers for 15 L/week/child of free water sachets (value: $0.63/week) plus education. The third arm received vouchers for the same water sachet volume at half price plus education. Water consumption was measured at baseline and followed for 4 months thereafter. At baseline, 66 of 81 children (82%) drank only sachet water. When given one voucher/child/week, households redeemed an average 0.94 vouchers/week/child in the free-sachet-voucher arm and 0.82 vouchers/week/child in the half-price arm. No change in water consumption was observed in the half-price arm, although the study was not powered to detect such differences. In the free-sachet-voucher arm, estimated sachet water consumption increased by 0.27 L/child/day (P = 0.03). The increase in sachet water consumption by children in the free-sachet-voucher arm shows that provision of fully subsidized water sachets might improve the quality of drinking water consumed by children. Further research is needed to quantify this and any related child health impacts. © The American Society of Tropical Medicine and Hygiene.

  20. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    This study investigates the presence of SRB in water, in a water pipeline and in the soil near the pipeline at a mining operation, under conditions that would be expected to be stable toward corrosion. Samples of water in pipes showed a high frequency of SRB. Cast iron coupons placed in pipes gave positive results for SRB ...

  1. Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles

    International Nuclear Information System (INIS)

    Dhara, Keerthy; Thiagarajan, Ramachandran; Thekkedath, Gopalakrishnan Satheesh Babu; Nair, Bipin G.

    2015-01-01

    A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was drop cast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM −1 ∙cm −2 ) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum. (author)

  2. Fundamentals of the spatially distributed simulation of the water balance of forest sites in a low-range mountain area

    Directory of Open Access Journals (Sweden)

    K. Schwärzel

    2007-05-01

    Full Text Available For a sustainable forest management, a site-specific knowledge on the water balance is a prerequisite. A simple and popular field method for assessing the water balance of forest sites is based on overlaying relief and soil information. Furthermore, climatic influence on the water balance is often restricted to longtime average values of precipitation and air temperature (whole year and/or growing season. However, the impacts of climate change and climatic extremes, as well as silvicultural changes, are inadequately considered. To overcome these short-comings, we integrated the 1D-SVAT model BROOK90 and a radiation model in a GIS to simulate the spatially distributed components of water balance of forest sites. In this paper, we present the model concept and show an approach to describe the influence of a complex terrain on parameters controlling the spatial distribution of energy and water fluxes.

  3. The preparation of solid acid and acid water reducing agent for slag is prepared by adsorption method

    Science.gov (United States)

    Zhao, Su; Wang, Jinpeng; Zhu, Xitong

    2018-03-01

    Solid polycarboxylate superplasticizer can not only solve the problems caused by water reducing agent in storage and transportation, but also meet the needs of some special projects. We can choose to use the mineral slag, which is larger than surface area and has stronger adsorption, as adsorbent to absorb liquid polycarboxylate superplasticizer and absorb its moisture, and then makes solid polycarboxylate superplasticizer after drying. It determines the solid-liquid ratio to prepare the solid polycarboxylate superplasticizer to be 3:1. The temperature change within 100°C will not cause changes in the functional group and structure of the water reducing agent molecule. The application of the solid polycarboxylate superplasticizer was basically unchanged compared with its liquid water reducing agent.

  4. Precipitable water and surface humidity over global oceans from special sensor microwave imager and European Center for Medium Range Weather Forecasts

    Science.gov (United States)

    Liu, W. T.; Tang, Wenqing; Wentz, Frank J.

    1992-01-01

    Global fields of precipitable water W from the special sensor microwave imager were compared with those from the European Center for Medium Range Weather Forecasts (ECMWF) model. They agree over most ocean areas; both data sets capture the two annual cycles examined and the interannual anomalies during an ENSO episode. They show significant differences in the dry air masses over the eastern tropical-subtropical oceans, particularly in the Southern Hemisphere. In these regions, comparisons with radiosonde data indicate that overestimation by the ECMWF model accounts for a large part of the differences. As a check on the W differences, surface-level specific humidity Q derived from W, using a statistical relation, was compared with Q from the ECMWF model. The differences in Q were found to be consistent with the differences in W, indirectly validating the Q-W relation. In both W and Q, SSMI was able to discern clearly the equatorial extension of the tongues of dry air in the eastern tropical ocean, while both ECMWF and climatological fields have reduced spatial gradients and weaker intensity.

  5. Intelligent Pressure Management to Reduce Leakage in Urban Water Supply Networks, A Case Study of Sarafrazan District, Mashhad

    OpenAIRE

    Mohammad Soltani Asl; Mahmoud Faghfour Maghrebi

    2009-01-01

    Water losses are inevitable in urban water distribution systems. The two approaches adopted nowadays to combat this problem include management of hydraulic parameters such as pressure and leakage detection in the network. Intellitgent pressure management is a suitable technique for controlling leakage and reducing damages due to high operating pressures in a network. This paper aims to investigate the effects of pressure reduction on leakage. The EPANET 2.10 software is used to simulate the w...

  6. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV

    International Nuclear Information System (INIS)

    Rahm, J M; Baek, W Y; Rabus, H; Hofsäss, H

    2014-01-01

    The stopping power of liquid water was measured for the first time for carbon ions in the energy range between 1 and 6 MeV using the inverted Doppler shift attenuation method. The feasibility study carried out within the scope of the present work shows that this method is well suited for the quantification of the controversial condensed phased effect in the stopping power for heavy ions in the intermediate energy range. The preliminary results of this work indicate that the stopping power of water for carbon ions with energies prevailing in the Bragg-peak region is significantly lower than that of water vapor. In view of the relatively high uncertainty of the present results, a new experiment with uncertainties less than the predicted difference between the stopping powers of both water phases is planned. (paper)

  7. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2013-07-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust or dust/biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust/biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a 40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  8. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2014-01-01

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and the Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model in order to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases (from the CalWater 2011 field campaign) with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02). In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by a few percent due to increased snow formation when dust is present, but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology, including cloud dynamics and the strength of the Sierra Barrier Jet. This study further underscores the importance of the interactions between local pollution, dust, and environmental

  9. Habituation of Salmonella spp. at Reduced Water Activity and Its Effect on Heat Tolerance

    Science.gov (United States)

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    The effect of habituation at reduced water activity (aw) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to aw 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21°C for up to a week prior to heat challenge at 54°C. In addition, the effects of different aws and heat challenge temperatures were investigated. Habituation at aw 0.95 resulted in increased heat tolerance at 54°C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (aw 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D54 values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54°C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (aw 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-aw ingredients. PMID:11055944

  10. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.

    Science.gov (United States)

    Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A

    2017-11-15

    Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. DFD-01 Reduces Transepidermal Water Loss and Improves Skin Hydration and Flexibility.

    Science.gov (United States)

    Jackson, J Mark; Grove, Gary L; Allenby, Kent; Houser, Tim

    2017-12-01

    In plaque psoriasis, the benefit of topical steroids is well established. The vehicle formulation of topical steroids may also provide benefit in addition to the effects of the steroid itself. DFD-01 (betamethasone dipropionate spray, 0.05%) is a formulation composed of a topical steroid in an emollient-like vehicle that enhances penetration to the target site of inflammation in the skin. The aim of this study was to assess the effect of DFD-01 and its vehicle on skin hydration and barrier function in compromised skin and to evaluate its effect on flexibility in healthy skin. Eighteen healthy white volunteers were enrolled in each of two studies. In Study 1, dry shaving of volar forearms created a compromised skin barrier, through which transepidermal water loss (TEWL) was measured using an evaporimeter. Capacitance, a measure of epidermal hydration, was also measured at baseline and at 1, 2 and 4 h after application of DFD-01 or its vehicle formulation. In Study 2, intact skin flexibility was tested with a cutometer before and at 1, 2 and 4 h after application of DFD-01 or vehicle. In Study 1, both DFD-01 and its vehicle were effective at reducing TEWL through the compromised stratum corneum. Capacitance measurements confirmed this finding; razor-chafed skin treated with either DFD-01 or vehicle exhibited levels of skin hydration similar to unshaved control skin. Study 2 found softening and greater flexibility of normal skin treated with either DFD-01 or vehicle compared with nontreated control skin samples. These tests suggest that the DFD-01 formulation and its vehicle are each effective at retaining moisture within a damaged skin barrier and for softening and increasing the flexibility of intact skin. Dr. Reddy's Laboratories.

  12. Decreasing soil water Ca2+ reduces DOC adsorption in mineral soils: implications for long-term DOC trends in an upland forested catchment in southern Ontario, Canada.

    Science.gov (United States)

    Kerr, Jason Grainger; Eimers, M Catherine

    2012-06-15

    Positive trends in dissolved organic carbon (DOC) concentration have been observed in surface waters throughout North America and northern Europe. Although adsorption in mineral soils is an important driver of DOC in upland streams, little is known about the potential for changes in DOC adsorption to contribute to these trends. We hypothesized that long-term declines in soil water Ca(2+) levels, in response to declining acid deposition, might influence DOC adsorption and that this could contribute to long-term DOC trends in an upland forested catchment in south-central Ontario, Canada. Between 1987 and 2009, DOC concentrations increased significantly (pDOC concentration (DOC(np)), which is a measure of the soil water DOC concentration at equilibrium with the soil, ranged from 1.27 to 3.75 mg L(-1) in B horizon soils. This was similar to the mean DOC concentrations of B horizon soil water (2.04-6.30 mg L(-1)) and stream water (2.20 mg L(-1)), indicating that soil and stream water DOC concentrations are controlled by equilibrium processes at the soil-water interface. Adsorption experiments using variable Ca(2+) concentrations demonstrated that as Ca(2+) decreased the DOC(np) increased (1.96 to 4.74 mg L(-1)), which was consistent with the observed negative correlation between DOC and Ca(2+) in B horizon soil water (pDOC adsorption (p>0.05), indicating that changes in DOC adsorption might be related to cation bridging. We conclude that declines in soil water Ca(2+) concentration can contribute to increasing DOC trends in upland streams by reducing DOC adsorption in mineral soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Are simple empirical crop coefficient approaches for determining pecan water use readily transferrable across a wide range of conditions?

    CSIR Research Space (South Africa)

    Taylor, NJ

    2017-02-01

    Full Text Available , such as the United States of America, Mexico, South Africa and Australia (INC, 2011), the majority of pecan research has been conducted in the USA. Studies conducted in New Mexico suggest that seasonal crop evapotranspiration (ET) of flood irrigated... coefficient modelling approach to estimate water use of pecans Evapotranspiration was estimated using a pecan specific model from New Mexico (Samani et al., 2011) which relates crop coefficients and orchard water use to canopy cover as follows...

  14. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  15. Forage Options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia

    Directory of Open Access Journals (Sweden)

    Mary-Jane Rogers

    2017-12-01

    Full Text Available The dairy industry in the southern Murray Darling Basin region of Australia is a major consumer of irrigation water because rainfall is low relative to evapotranspiration and the industrys relies heavily on irrigated temperate pastures and fodder crops. Water reforms, and potential climate change scenarios for this region suggest that there will be an overall decline in rainfall and water available for irrigation in the future. For the irrigated dairy industry to remain economically viable, there is a need for dairy farmers to improve the water productivity (WP of their forage systems and to be able to respond to year-to-year, and within year, variation in water availability. Researchers and dairy farmers are evaluating strategies to increase WP. These include: (i selecting better-adapted species for current and predicted climatic conditions; (ii using species that can survive and still be productive under reduced irrigation and then recover when full irrigation is restored; (iii modifying irrigation strategies to reduce water use whilst maintaining WP; and (iv grazing management strategies that facilitate the survival during, and recovery after, periods of moisture stress. This review will examine these strategies and discusses their potential to optimise forage production from irrigation water inputs so that the dairy industry in the southern Murray Darling Basin remains viable in the future.

  16. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the immediate changes...... in cerebral blood flow velocity (Vmean) during cold-water immersion since cold shock induced hyperventilation may diminish Vmean and lead to syncope and drowning....

  17. Reducing Volatile Disinfection By-Products in Treated Drinking Water Using Aeration Technologies (WaterRF Report 4441)

    Science.gov (United States)

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  18. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  19. Water savings from reduced alfalfa cropping in California's Upper San Joaquin Valley

    Science.gov (United States)

    Singh, K. K.; Gray, J.

    2017-12-01

    Water and food and forage security are inextricably linked. In fact, 90% of global freshwater is consumed for food production. Food demand increases as populations grow and diets change, making water increasingly scarce. This tension is particularly acute, contentious, and popularly appreciated in California's Central Valley, which is one of the most important non-grain cropping areas in the United States. While the water-intensive production of tree nuts like almonds and pistachios has received the most popular attention, it is California's nation-leading alfalfa production that consumes the most water. Alfalfa, the "Queen of Forages" is the preferred feedstock for California's prodigious dairy industry. It is grown year-round, and single fields can be harvested more than four times a year; a practice which can require in excess of 1.5 m of irrigation water. Given the water scarcity in the region, the production of alfalfa is under increasing scrutiny with respect to long-term sustainability. However, the potential water savings associated with alternative crops, and various levels of alfalfa replacement have not been quantified. Here, we address that knowledge gap by simulating the ecohydrology of the Upper San Joaquin's cropping system under various scenarios of alfalfa crop replacement with crops of comparable economic value. Specifically, we use the SWAT model to evaluate the water savings that would be realized at 33%, 66%, and 100% alfalfa replacement with economically comparable, but more water efficient crops such as tomatoes. Our results provide an important quantification of the potential water savings under alternative cropping systems that, importantly, also addresses the economic concerns of farmers. Results like these provide critical guidance to farmers and land/water decision makers as they plan for a more sustainable and productive agricultural future.

  20. Development of water scrubbers to reduce fine dust emission from poultry houses

    NARCIS (Netherlands)

    Ogink, N.W.M.; Aarnink, A.J.A.; Harn, van J.; Melse, R.W.; Cambra-Lopez, M.

    2010-01-01

    Poultry housings with litter are a major contributor to fine dust emissions (PM10/PM2.5) in the Netherlands. Poultry producers are in need of dust mitigation options that are cost effective. Such an option could be provided by adequately designed water scrubbers. Catchment of dust particles by water

  1. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was

  2. Extending to seasonal scales the current usage of short range weather forecasts and climate projections for water management in Spain

    Science.gov (United States)

    Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel

    2016-04-01

    This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.

  3. Intervalo hídrico ótimo num nitossolo vermelho distroférrico irrigado Least limiting water range of an irrigated dystroferric red nitosol

    Directory of Open Access Journals (Sweden)

    Everton Blainski

    2009-04-01

    Full Text Available O manejo da irrigação tem-se baseado no controle do potencial da água no solo (Ψ como fator limitante do crescimento das plantas. Entretanto, outras variáveis podem influenciar a cultura mesmo que o Ψ não seja limitante. O Intervalo Hídrico Ótimo (IHO é um conceito de disponibilidade de água no solo que leva em consideração a porosidade de aeração e a resistência do solo à penetração em adição ao Ψ. O objetivo deste estudo foi quantificar o IHO num Nitossolo Vermelho distroférrico irrigado e utilizá-lo no estabelecimento de critérios para o manejo de água e do solo em áreas irrigadas. A resistência do solo à penetração foi a variável que limitou o IHO com maior frequência, diminuindo sua magnitude com o aumento da densidade do solo (Ds. Com o aumento da Ds, ocorreu redução na frequência com que θ manteve-se dentro dos limites do IHO. A Ds crítica (Dsc foi de 1,40 Mg m-3, indicando severa degradação física do solo para Ds > Dsc. Para Ds 2,0 MPa; para 1,28 -800 hPa visando ao controle da RP. Para áreas em que Ds > Dsc, medidas que visem a redução da Ds poderiam ser tomadas em função da severa degradação física do solo.The establishment of irrigation management has been based on the soil water potential (Ψ as a limiting factor for plant growth. However, other variables can affect crop growth even when Ψ is not limiting. The least limiting water range (LLWR is a concept of available water that take account the influence of aeration and soil resistance to penetration (SR in addition to Ψ. The objective of this study was to quantify the LLWR in an irrigated Dystroferric Red Nitosol and to use it to determine the soil and water management for irrigated areas. Soil penetration resistance limited LLRW most often, reducing its magnitude with the increase of soil bulk density (Bd. Therefore, the higher Bd, the less often θ was inside the limits of LLWR. The critical Bd (Bdc was 1.40 Mg m-3, indicating

  4. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the imme......INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored...... cerebral artery (MCA) was measured together with ventilatory parameters and heart rate before, during, and after immersion. RESULTS: Within seconds after immersion in ice water, heart rate increased from 74 +/- 16 to 107 +/- 18 bpm (mean +/- SD; p elevation...

  5. Partial root zone drying (PRD) sustains yield of potatoes (Solanum tuberosum L.) at reduced water supply

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Andersen, Mathias Neumann; Liu, Fulai

    2008-01-01

    Partial root zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Until now it has not been investigated in potatoes (Solanum tuberosum L.). A field experiment on sandy soil in Denmark was conducted under a mobile rainout shelter to study effects of two...... subsurface drip irrigation treatments ((1) Full Irrigation (FI) receiving 100% of evaporative demand; and (2) PRD receiving 70% water of FI) on potato yield, tuber size, leaf water relations and irrigation water use efficiency (IWUE). The PRD treatment was started just after the end of tuber initiation...... for two months during tuber bulking and maturing stage and was shifted from one side to the other side of the plants every 5-10 days when FI plants had used 20-25 mm. Compared to FI plants, stomatal conductance was generally lower in the PRD-treated plants, whereas leaf water potential tended to be lower...

  6. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    Science.gov (United States)

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  7. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    Science.gov (United States)

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  8. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    International Nuclear Information System (INIS)

    Fukaya, Y.; Okubo, T.; Uchikawa, S.

    2008-01-01

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the 241 Pu content in the initial fuel, and the decay heat mainly depends on 238 Pu and 244 Cm. The contribution of 244 Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum. In addition, from

  9. Optimization of seed-blanket type fuel assembly for reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shelley, Afroza; Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi

    2003-10-01

    Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40-50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mmx2, internal blanket of 150 mm and axial blanket of 400 mmx2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in (seed+internal blanket+outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mmx2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature

  10. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)], E-mail: fukaya.yuji@jaea.go.jp; Okubo, T.; Uchikawa, S. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)

    2008-07-15

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the {sup 241}Pu content in the initial fuel, and the decay heat mainly depends on {sup 238}Pu and {sup 244}Cm. The contribution of {sup 244}Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum

  11. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida).

    Science.gov (United States)

    Mangione, Antonio M; Dearing, M Denise; Karasov, William H

    2004-07-01

    Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.

  12. Research of the Landscape Structure of the Water Balance of the Trialeti Range Northern Slope according to the Natural Recreation Resources

    International Nuclear Information System (INIS)

    Beritashvili, B.; Meskhia, R.; Savishvili, N.; Kartvelishvili, L.; Mikautadze, D.; Chikhladze, N.

    2006-01-01

    The work deals with the landscape-differentiated analysis of the water balance elements of the rivers on the Northern slope of the Trialeti Range using the 1961-2000 years observation data. Regularities of their variation are given according to the altitude. (author)

  13. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    Science.gov (United States)

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  14. Reducing water consumption in the paper mill; Paperitehtaan vedenkaeytoen vaehentaeminen (WACI) - EKY 02

    Energy Technology Data Exchange (ETDEWEB)

    Pekuri, T; Pekkanen, A [UPM-Kymmene Oyj, Valkeakoski (Finland)

    1999-12-31

    This WACI-project was divided into several subprojects, which were started with gathering of present knowledge and entering to laboratory and pilot tests. In some projects there were mill scale trials in water connections and internal purification systems. In the `Quality Demands of Water` subproject the process waters used in the printing paper machines of UPM-Kymmene were surveyed. Lab tests were made for the different applications like shower, washing, seal and dilution of internally purified circulation waters. In `Mechanical Pulp Washing` project the target was to study how the different water connections around the TMP washing press will affect the paper machine runnability. It was also started to develop separating technique for TMP fibre extractive. `Micro and Electroflotation` studies have been made mainly on pilot scale but also in new mill-scale unit. `Membrane Technology` research consisted of both lab, pilot and mill scale studies, where different membrane qualities with different process waters have been tested. `Evaporation` trials were made on pilot scale for different process waters and condensates and concentrates were analysed. Condensates were tested for different applications. The possibility to `Reuse Waste Water` concentrated mainly on how to remove the brown colour. `Simulations` were done to find out what will be the new dcs balance in different wet end processes after new water connections including so-called kidneys. In the `Paper Quality` subproject the effects of dcs on bonding ability of TMP fibres were studied on lab scale with artificial pitch component and also with circulation concentrates. This 2.5 year Tekes-project was completed at the end of April 1998. (orig.)

  15. Reducing water consumption in the paper mill; Paperitehtaan vedenkaeytoen vaehentaeminen (WACI) - EKY 02

    Energy Technology Data Exchange (ETDEWEB)

    Pekuri, T.; Pekkanen, A. [UPM-Kymmene Oyj, Valkeakoski (Finland)

    1998-12-31

    This WACI-project was divided into several subprojects, which were started with gathering of present knowledge and entering to laboratory and pilot tests. In some projects there were mill scale trials in water connections and internal purification systems. In the `Quality Demands of Water` subproject the process waters used in the printing paper machines of UPM-Kymmene were surveyed. Lab tests were made for the different applications like shower, washing, seal and dilution of internally purified circulation waters. In `Mechanical Pulp Washing` project the target was to study how the different water connections around the TMP washing press will affect the paper machine runnability. It was also started to develop separating technique for TMP fibre extractive. `Micro and Electroflotation` studies have been made mainly on pilot scale but also in new mill-scale unit. `Membrane Technology` research consisted of both lab, pilot and mill scale studies, where different membrane qualities with different process waters have been tested. `Evaporation` trials were made on pilot scale for different process waters and condensates and concentrates were analysed. Condensates were tested for different applications. The possibility to `Reuse Waste Water` concentrated mainly on how to remove the brown colour. `Simulations` were done to find out what will be the new dcs balance in different wet end processes after new water connections including so-called kidneys. In the `Paper Quality` subproject the effects of dcs on bonding ability of TMP fibres were studied on lab scale with artificial pitch component and also with circulation concentrates. This 2.5 year Tekes-project was completed at the end of April 1998. (orig.)

  16. Photosynthetic capacity and intrinsic water-use efficiency of Rhizophora mangle at its southernmost western Atlantic range

    Science.gov (United States)

    M.L.G. Soares; M.M.P. Tognella; E. Cuevas; E. Medina

    2015-01-01

    The southernmost presence of Rhizophora mangle in the western Atlantic coast occurs in coastal wetlands between 27 and 28ºS in the State of Santa Catarina, Brazil. We selected mangrove communities at the estuary of Rio Tavares, Florianopolis, and Sonho Beach, Palhosa, for measurement of photosynthetic performance and intrinsic water use efficiency of R. mangle and...

  17. Access to warm drinking water prevents rumen temperature drop without affecting in situ NDF disappearance in grazing winter range cows

    Science.gov (United States)

    Ingestion of large quantities of cold water or frozen forage may result in changes in temperature of ruminal contents. Rumen microorganisms may be sensitive to temperature changes in the ruminal environment. Therefore, this study was conducted to assess the variability in ruminal temperature and e...

  18. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  19. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria; Livi, Sebastien; Hayrapetyan, Suren; Wang, Yue; Estevez, Luis; Vittoria, Vittoria; Giannelis, Emmanuel P.

    2013-01-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged

  20. Efficacy of Odor Scavengers in Reducing Odor Compounds in Water, Milk, and Soymilk

    OpenAIRE

    Norton, Jenny Lynn

    2003-01-01

    Odor detection thresholds of hexanal, 2-heptenal, 2-pentanone, and 2,4-nonadienal were determined in spring water, high temperature short time (HTST) 2% fat milk, and extended shelf life soymilk. The efficacy of odor scavenger's beta-cyclodextrin, D-sorbitol, and nylon 6 in removing these odors was also determined. The odor thresholds of the different odor and media combinations were as follows: hexanal in spring water, milk, and soymilk were 585, 339, and 536 ppb respectively; 2-heptenal ...

  1. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  2. Changes in Federal Water Project Repayment Policies Can Reduce Federal Costs.

    Science.gov (United States)

    1981-08-07

    a reimburs - able purpose, the users should share in cost recovery. RECOMMENDATIONS To provide for equitable cost reimbursement on underutilized...Department of the Interior’s Bureau of Reclamation that do not ensure fair and timely recovery of water projects’ reimbursable costs. We made this...such costs for reimbursable project purposes and considering them in future water price determinations, agencies often reas- signed them to

  3. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    Science.gov (United States)

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water

  4. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  5. Is It Safe to Reduce Water Intake in the Overactive Bladder Population? A Systematic Review.

    Science.gov (United States)

    Wood, Lauren N; Markowitz, Melissa A; Parameshwar, Pooja S; Hannemann, Alex J; Ogawa, Shellee L; Anger, Jennifer T; Eilber, Karyn S

    2018-03-01

    Overactive bladder imposes a significant socioeconomic burden on the health care system. It is a commonly held belief that increased fluid intake (8 glasses of water per day) is beneficial for health. However, increased fluid intake exacerbates overactive bladder symptoms. Thus, it is imperative that clinicians appropriately educate patients for whom increased water intake may be detrimental (women with overactive bladder), in contrast to patients with comorbidities that necessitate increased water intake (nephrolithiasis). We systematically reviewed the literature to determine the potential health advantages of increased water intake and identify specific subpopulations that need increased hydration. We systematically reviewed published articles from 1972 through 2017 on PubMed® and the Cochrane Library. The data were reviewed independently by 2 individuals. Studies were included if they explored water intake in relation to the risk of a particular disease. Level 1 evidence supported increased fluid intake in patients with nephrolithiasis. There was no available evidence to support increased fluid intake in patients with cardiovascular disease, constipation, venous thromboembolism, headaches, cognitive function or bladder cancer. Dehydration may exacerbate some conditions, specifically chronic constipation and headache intensity. Increased fluid intake may have a role in preventing stroke recurrence but not in preventing primary stroke. The available reviewed literature suggests no benefit to drinking 8 glasses of water per day in patients without nephrolithiasis. Also, excess fluid intake can exacerbate symptoms of overactive bladder. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    Science.gov (United States)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  7. Fibre-tree network for water-surface ranging using an optical time-domain reflectometry technique

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamabayashi

    2014-10-01

    Full Text Available To monitor water level at long distance, a fibre-based time-domain reflectometry network is proposed. A collimator at each fibre end of a tree-type network retrieves 1.55 μm wavelength pulses that are reflected back from remote surfaces. Since this enables a power-supply-free sensor network with non-metal media, this system is expected to be less susceptible to lightning strikes and power cuts than conventional systems that use electrically powered sensors and metal cables. In the present Letter, a successful simultaneous monitoring experiment of two water levels in the laboratory, as well as a trial for detecting a disturbed surface by beam-expanding is reported.

  8. A system for fertigation management in soilless culture of tomato to reduce water consumption and nitrogen discharge [Lycopersicon esculentum Mill.

    International Nuclear Information System (INIS)

    Bacci, L.; Battista, P.; Rapi, B.; Pardossi, A.; Incrocci, L.; Carmassi, G.

    2005-01-01

    In Italy, most greenhouse growers apply fertigation in open-loop system (free drainage), but recent laws on environmental pollution are forcing them to introduce new management approaches, namely the recirculation of drain water (closed-loop). The development of a specific support system (SGx) is in progress in order to aid the growers in selecting low impact growing systems and in reducing water use. Currently, the software integrates three models for the simulation of tomato growth, transpiration and nutrient concentration in the fertigation water. The system can run both in real time, using meteorological and water consumption data automatically collected by sensors located in the greenhouse, and off-line, using data sets archived in the database. Choosing real time option, SGx follows plant growth and the modifications of nutrients in the recycling solution, suggesting the most effective practices for water and nutrient management. The off-line option allows the comparison between different productive strategies from different viewpoints: production, water and nutrient consumption, radiation and water use efficiency, environmental impact [it

  9. Proposing of an aerated water treatment plant for reducing water pollution problem in Losari Beach after reclamation

    Science.gov (United States)

    Suryani, Sri; Maharani, Hamzah, Muhammad Alimuddin

    2017-01-01

    Losari Beach is the most important site in Makassar. It lies at the west side of Makassar city. This place is known as the place where people are relaxed and gathering with friends or family after working, and now it becomes the icon of Makassar city. As the biggest city in eastern Indonesia, Makassar grows very fast. We can find constructions for building hospitals, shopping malls, bussines activities, and residences everywhere. The most important construction activities that will effect Losari Beach is the reclamation to build the Center Point of Indonesia that takes an area of 157 hectares and it is located at the west side of Losari Beach. In the last research presented in 9th International Conference on Marine Technology (October 2014) using surface-water modeling system (SMS) software showed that reclamation will significantly increase concentrations of BOD and COD (± 7 mg/L for BOD and 6.2 mg/L for COD). This condition will cause Losari Beach becomes very polluted. A probable solution to overcome this problem is to clean the wastewater before introducing to the sea. This paper will describe the type of the wastewater treatment plant that can be used to solve the water pollution problem in Losari Beach.

  10. Reducing fluxes of faecal indicator compliance parameters to bathing waters from diffuse agricultural sources: The Brighouse Bay study, Scotland

    International Nuclear Information System (INIS)

    Kay, D.; Aitken, M.; Crowther, J.; Dickson, I.; Edwards, A.C.; Francis, C.; Hopkins, M.; Jeffrey, W.; Kay, C.; McDonald, A.T.; McDonald, D.; Stapleton, C.M.; Watkins, J.; Wilkinson, J.; Wyer, M.D.

    2007-01-01

    The European Water Framework Directive requires the integrated management of point and diffuse pollution to achieve 'good' water quality in 'protected areas'. These include bathing waters, which are regulated using faecal indicator organisms as compliance parameters. Thus, for the first time, European regulators are faced with the control of faecal indicator fluxes from agricultural sources where these impact on bathing water compliance locations. Concurrently, reforms to the European Union (EU) Common Agricultural Policy offer scope for supporting on-farm measures producing environmental benefits through the new 'single farm payments' and the concept of 'cross-compliance'. This paper reports the first UK study involving remedial measures, principally stream bank fencing, designed to reduce faecal indicator fluxes at the catchment scale. Considerable reduction in faecal indicator flux was observed, but this was insufficient to ensure bathing water compliance with either Directive 76/160/EEC standards or new health-evidence-based criteria proposed by WHO and the European Commission. - Diffuse microbiological pollution from farming activities can be reduced by protected riparian zones

  11. Water-washable ink system reduces printers' hazardous emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kratch, K.

    1994-08-01

    Printing industry solvents contain large quantities of volatile organic compounds (VOCs), a major contributor to air pollution in that industry. Because most printing inks contain non-water-soluble petroleum, organic solvents have been necessary to clean presses using those inks. However, under proposed control technique guidelines for lithographic printers issued by the Environmental Protection Agency (EPA), printing-press wash solutions could contain no more than 30% VOCs. Deluxe Corp., a St. Paul, Minn.-based lithographic printer, recognized that stiffer emissions rules could mean harsh penalties for non-compliance and, in 1990, began developing a water-based press wash that would meet the guidelines. Deluxe last year introduced a 100% vegetable oil-based ink that becomes water-washable when exposed to the company's water-based press-wash solution. The solvent-free system eliminates VOCs and hazardous wastes associated with printing, contains no chemicals considered hazardous by EPA, uses no non-renewable resources, and works with existing printing equipment and processes. The system also eliminates water and soil contamination risks associated with laundering or landfilling solvent-saturated shop towels, saves money by eliminating the need to pay for hazardous waste disposal and provides relief to employees who complain about the strong odors of traditional press-wash solvents.

  12. Grazing by sheep Ovis aries reduces island populations of water voles Arvicola amphibius

    Directory of Open Access Journals (Sweden)

    Karl Frafjord

    2014-12-01

    Full Text Available The population of water voles Arvicola amphibius was surveyed on 21 islands in the Solvær archipelago, northern Norway, in August 2012; 11 islands with semi-wild domestic sheep Ovis aries and 10 islands without sheep. Signs from water voles are very easy to detect and were used as a measure of the population (on a scale 0-10, and the numbers of sheep were counted. The ranking of signs on islands with and without sheep was compared, and a significant difference was found. Islands with sheep had, with one exception, only very small and fragmented populations of water voles, the one exception being a fairly large Carex swamp that was not grazed by the sheep and where a moderate-sized population of voles was found. Islands without sheep had much larger populations of water voles, giving a ranking about four times higher. One reason for the devastating effect of sheep on water voles is probably the fact that the sheep are living year-round on these islands with no supplemental food.

  13. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  14. Water table lowering to improve excavation performance and to reduce acid mine drainage

    International Nuclear Information System (INIS)

    Koppe, J.C.; Costa, J.F.; Laurent, O. Jr.

    1995-01-01

    This paper analyses the water table level fluctuations using wells located adjacent to the stripping cuts at the Butia-Leste coal mine, southernmost of Brazil. Piezometers monitored the water table fluctuations. Geological mapping provided additional information aiding the interpretation of the results. A contouring software was also used as tool to aid the interpretation of the data and the results visualisation. The parameters necessary in selecting the location of the wells and pumping volumes were calculated from the data obtained in the water table lowering tests. The results were used to minimise two main problems: the generation of acid mine drainage and the reduction of the excavation performance of the fleet used in overburden removal. 7 refs., 5 figs., 3 tabs

  15. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  16. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    Science.gov (United States)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  17. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  18. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  19. Dose-ranging pilot randomized trial of amino acid mixture combined with physical activity promotion for reducing abdominal fat in overweight adults

    Directory of Open Access Journals (Sweden)

    Sasai H

    2017-07-01

    Full Text Available Hiroyuki Sasai,1–3,* Keisuke Ueda,4,5,* Takehiko Tsujimoto,6,7 Hiroyuki Kobayashi,1 Chiaki Sanbongi,4 Shuji Ikegami,4 Yoshio Nakata1 1Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 2Japan Society for the Promotion of Science, Chiyoda, Tokyo, 3Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 4Food Science Research Laboratories, Meiji Co., Ltd., Odawara, Kanagawa, 5Graduate School of Comprehensive Human Sciences, 6Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 7Faculty of Human Sciences, Shimane University, Matsue, Shimane, Japan *These authors contributed equally to this work Objective: The objective of this study was to determine the effective dose of an amino acid mixture comprising arginine, alanine, and phenylalanine combined with physical activity promotion in reducing abdominal fat among overweight adults.Methods: A 12-week randomized, double-blind, placebo-controlled, dose-ranging, pilot trial was conducted in Mito, Japan, from January through April 2016, and the data were analyzed from May through November 2016. The study participants were 35 overweight adults, aged 20–64 years, with no regular exercise habit. Participants were randomly assigned to high-dose (3,000 mg/d, n=9, medium-dose (1,500 mg/d, n=9, low-dose (750 mg/d, n=8, or placebo (0 mg/d, n=9 groups, and the test beverage containing the amino acid mixture or placebo was administered for 12 weeks. All participants maintained a physically active lifestyle during the study period through monthly physical activity promotion sessions and smartphone-based self-monitoring with wearable trackers. Primary outcomes were changes in abdominal total, subcutaneous, and visceral fat areas, assessed by computed tomography.Results: Of the 35 enrolled participants, 32 completed the 12-week follow-up visit. The intention-to-treat analysis revealed that the changes in abdominal total fat

  20. Historical water supply to The Monastery of El Paular: a “qanat” in the Guadarrama mountain range (Madrid, Spain)

    International Nuclear Information System (INIS)

    López Vera, F.; López-Camacho, B.

    2017-01-01

    The “qanat” is an ingenious system of collecting and conducting groundwater to a supply point. Its origin dates back to 3000 years ago in the area known today as Armenia, and it had spread widely throughout Persia by 600 BC. The expansion of Islam spread this technique from China to the Iberian Peninsula, where it has received various local names. In Madrid, the technique was widely used for water supply from the ninthcentury until the mid-twentieth century, and in recent centuries received the name “Viajes de agua”. However, the geological and socio-economic environment of the Sierra de Guadarrama in Madrid is not, and has never been, appropriate for the implementation of this type of water catchment. This is why the qanat supply of the former Charterhouse of Santa María de El Paular (Rascafría), which shows a very similar typology to the “Viajes de agua”, modified or constructed in Madrid between the 17th and 19th centuries, is so original. Three “capirotes” (hoods) and a “distribution ark” have been located “in situ” in the vicinity of the Monastery and another “capirote” is used as an ornamental element in the courtyard of the old Hotel El Paular. In this paper we present the results obtained in the field study and files on this “Viaje de agua”, its context within the old Monastery supply, its water quality and various hydrological and hydraulic considerations. [es

  1. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature.

    Science.gov (United States)

    Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P

    2018-07-15

    The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.

  2. The association of uranium with organic matter in peat and peat water in a wetland from the Carson Range, Nevada

    International Nuclear Information System (INIS)

    Orem, W.; Zielinski, R.; Otton, J.; Lerch, H.

    1992-01-01

    Uranium has a high affinity for organic matter and is frequently found in high concentrations in coal and peat beds. The nature of the U/organic matter association was investigated in peat from cores obtained from a small wetland (Upper Zephyr Fen) near Lake Tahoe, NV. The peat contains U concentrations of up to 0.5% dry weight, supplied by surface and ground water weathering the U-rich granodiorite rocks of the surrounding mountains. Uranium concentrations are highly correlated with both organic C and N contents, but show no apparent relationship to specific organic moieties such as carboxyl or phenolic functional groups. Sieve studies of the peat show the U is concentrated in the 2,000--250 um size fraction. This fraction also has the lowest atomic C/N ratio, suggesting a possible role of N-containing organic compounds in U complexation. In peat pore waters, dissolved U is primarily associated with high molecular weight dissolved organic matter, as shown by equilibrium models and experimental data

  3. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes

    NARCIS (Netherlands)

    Geest, van G.J.; Coops, H.; Roijackers, R.M.M.; Buijse, A.D.; Scheffer, M.

    2005-01-01

    In recent years, interest has grown in restoring floodplain function of regulated rivers. Successful rehabilitation of riparian systems requires knowledge of how regulation of river flow affects biodiversity and ecosystem function. The effects of changes in the river's low water-level regime on

  4. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes

    NARCIS (Netherlands)

    Van Geest, G.J.; Coops, H.; Roijackers, R.; Buijse, A.D.; Scheffer, M.

    2005-01-01

    1. In recent years, interest has grown in restoring floodplain function of regulated rivers. Successful rehabilitation of riparian systems requires knowledge of how regulation of river flow affects biodiversity and ecosystem function. The effects of changes in the river's low water-level regime on

  5. Bio-based coatings for reducing water sorption in natural fibre reinforced composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-10-01

    Full Text Available on the composites and compared with a water resistant market product. Uncoated and coated samples were conditioned at 90 °C and relative humidity of 90% for three days and the relative moisture content and mechanical properties after conditioning were analysed...

  6. Assessing the utility of ultraviolet irradiation to reduce bacterial biofilms in fish hatchery well water supplies

    Science.gov (United States)

    The accumulation of bacterial biofilms and consequent clogging of screens, pipes, and heat exchanger equipment is problematic for water supply systems contaminated with iron bacteria and other slime forming bacteria. Despite the ubiquitous threat posed by iron bacteria contamination in groundwater s...

  7. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M F; Masci, A [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  8. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Ma, Lin

    2017-01-01

    Coastal waters of China are rich in nitrogen (N) and phosphorus (P) and thus often eutrophied. This is because rivers export increasing amounts of nutrients to coastal seas. Animal production and urbanization are important sources of nutrients in Chinese rivers. In this study we explored the

  9. Future electricity: the challenge of reducing both carbon and water footprint

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2016-01-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the ‘greenest’ IEA scenario (with the smallest carbon footprint)

  10. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-01-01

    fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux

  11. The real cost of desalted water and how to reduce it further

    International Nuclear Information System (INIS)

    Nisan, S.; Blank, J.E.; Tusel, G.F.

    2007-01-01

    Freshwater scarcity on a worldwide level is now a burning problem, widely discussed in media inter-views and in major newspapers. In this context, the majority of the media are underlining the importance of seawater desalination as an attractive and logical alternative source to fight the freshwater scarcity. Unfortunately the majority of all these discussions are providing a totally wrong picture of the real cost of freshwater production from seawater. Figures for desalted water costs from below 0.25 Euro/m 3 to over 0.6 Euro/m 3 for large-scale realisation are frequently quoted. In some media, however, the costs given for desalted water production are too prohibitive for large-scale applications. Many so-called experts are enhancing the confusion with incorrect or in incomplete statements. Even simple considerations, such as water cost ex desalination plant vs. water cost at consumer tap, are neglected. Yet another neglected point is that freshwater of any kind is either highly subsidized or overpriced to finance costs which are not water-related costs. Even in the EU Commission the real cost of seawater desalination is sometimes incorrectly perceived. In principle, the calculation of specific freshwater cost is simple and based on a few clear parameters such as investment cost for a given desalting capacity, energy cost, cost for distribution, amortization period and concept, financing cost, inflation rate, operation and maintenance cost and, last but not least, plant availability and lifetime. A typical example to illustrate the reigning confusion is the primary energy cost. Today, the barrel of crude oil costs in the world market approximately 70 US dollars or more. However, many tenders or BOT projects compare the water and energy cost on a 5 US dollars/barrel level. With this energy cost level and other unrealistic conditions even old-fashioned, low-GOR MSF plant can produce freshwater for a nominal cost of 0.60 Euro/m 3 . With today's world-market prices

  12. Reduced European emissions of S and N - Effects on air concentrations, deposition and soil water chemistry in Swedish forests

    Energy Technology Data Exchange (ETDEWEB)

    Pihl Karlsson, Gunilla, E-mail: gunilla.pihl.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Akselsson, Cecilia, E-mail: cecilia.akselsson@nateko.lu.se [Department of Earth and Ecosystem Sciences, Lund University, Soelvegatan 12, SE-223 62 Lund (Sweden); Hellsten, Sofie, E-mail: sofie.hellsten@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Karlsson, Per Erik, E-mail: pererik.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden)

    2011-12-15

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO{sub 2} and NO{sub 2}, have decreased. The SO{sub 4}-deposition has decreased in parallel with the European emission reductions. Soil water SO{sub 4}-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO{sub 3}-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters. - Highlights: > S deposition to Swedish forests has decreased in parallel with European emissions. > Soil water pH, ANC and inorganic Al-concentrations indicated a slow recovery. > The bulk deposition of inorganic nitrogen over Sweden has not decreased. > Continued N deposition to Swedish forests may cause leaching of N to surface waters. - Reduced European emissions have led to decreased acidic deposition and a slow recovery of soil water but nitrogen deposition remains the same in Swedish forests.

  13. On the detection and monitoring of reduced water content in plants using spectral responses in the visible domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.

    2016-05-01

    The water status of cultivated plants can have a significant impact not only on food production, but also on the appropriate usage of increasingly scarce freshwater supplies. Accordingly, the cost-effective detection and monitoring of changes in their water content are longstanding remote sensing goals. Existing procedures employed to achieve these goals are largely based on the spectral responses of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. Recently, it has been suggested that such procedures could be implemented using spectral responses, more specifically spectral subsurface reflectance to transmittance ratios, obtained in the visible domain. The basis for this proposition resides on the premise that a reduced water content (RWC) can result in histological changes whose effects on the foliar optical properties may not be limited to the infrared domain. However, the experiments leading to this proposition were performed on detached leaves, which were not influenced by the whole plant's adaptation mechanisms to water stress. In this work, we investigate whether the spectral responses of living plant leaves in the visible domain can lead to reliable RWC estimations. We employ measured biophysical data and predictive light transport simulations in order to extend qualitatively and quantitatively the scope of previous studies in this area. Our findings indicate that the living specimens' physiological responses to water stress should be taken into account in the design of new procedures for the cost-effective RWC estimation using visible subsurface reflectance to transmittance ratios.

  14. In Situ Analysis of the Li-O2 Battery with Thermally Reduced Graphene Oxide Cathode: Influence of Water Addition

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Christensen, Mathias Kjærgård; Younesi, Reza

    2016-01-01

    The Li-O2 battery technology holds the promise to deliver a battery with significantly increased specific energy compared to today's Li-ion batteries. As a cathode support material, reduced graphene oxide has received increasing attention in the Li-O2 battery community due to the possibility...... of increased discharge capacity, increased battery cyclability, and decreased, charging, overpotential. In this. article we investigate the effect of water on a thermally, redircedigraphene, oxide cathode in a Li-O2 battery. Differential electrochemical mass spectrciscnieveals a, decreased electron count......-of-the cathode and not only on addition of water to the electrolyte as demonstrated by the solution-based mechanism In situ synchrotron X-ray diffraction experiment using a new design of a capillary-based Li-O2 cell with a thermally reduced graphene oxide cathode shows formation of LiOH along with Li2O2....

  15. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  16. Germination response of Hylocereus setaceus (Salm-Dyck ex DC: ) Ralf Bauer (Cactaceae) seeds to temperature and reduced water potentials.

    Science.gov (United States)

    Simão, E; Takaki, M; Cardoso, V J M

    2010-02-01

    The germination response of Hylocereus setaceus seeds to isothermic incubation at different water potentials was analysed by using the thermal time and hydrotime models, aiming to describe some germination parameters of the population and to test the validity of the models to describe the response of the seeds to temperature and water potential. Hylocereus setaceus seeds germinated relatively well in a wide range of temperatures and the germination was rate limited from 11 to 20 degrees C interval and beyond 30 degrees C until 40 degrees C, in which the germination rate respectively shifts positively and negatively with temperature. The minimum or base temperature (T(b)) for the germination of H. setaceus was 7 degrees C, and the ceiling temperature varied nearly from 43.5 to 59 degrees C depending on the percent fraction, with median set on 49.8 degrees C. The number of degrees day necessary for 50% of the seeds to germinate in the infra-optimum temperature range was 39.3 degrees C day, whereas at the supra-optimum interval the value of theta = 77 was assumed to be constant throughout. Germination was sensitive to decreasing values of psi in the medium, and both the germinability and the germination rate shift negatively with the reduction of psi, but the rate of reduction changed with temperature. The values of base water potential (psi(b)) shift to zero with increasing temperatures and such variation reflects in the relatively greater effect of low psi on germination in supra optimum range of T. In general, the model described better the germination time courses at lower than at higher water potentials. The analysis also suggest that Tb may not be independent of psi and that psi(b(g)) may change as a function of temperature at the infra-otimum temperature range.

  17. Effect of rose water on structural, optical and electrical properties of composites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles

    Science.gov (United States)

    Kumar, Devender; Wadhwa, Heena; Mahendia, Suman; Chand, Fakir; Kumar, Shyam

    2017-02-01

    In this work, nanocomposites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles (rGO-PVA-Ag) were prepared in the absence and presence of rose water. The optical characterizations of prepared nanocomposites were done through UV-visible spectroscopy and Transmission Electron Microscopy (TEM) and Raman spectroscopy was employed for the surface characterization. The grafted silver (Ag) nanoparticles are found to be almost spherical in shape with reduction in their mean diameter from 47 nm to 26 nm after addition of rose water. The UV-visible absorption spectra of as-prepared rGO-PVA-Ag nanocomposites without and with rose water depicted surface plasmon resonance (SPR) peak at around 448 nm which coincides with the predicted spectra from simulation based on the Mie Theory. The electrical dc conductivity measurements as the function of temperature from room temperature to 55 °C were investigated. It has been found that use of rose water in synthesis process increases the electrical conductivity of the rGO-PVA-Ag. The mode of the electrical conduction in the composites can be explained using Efros-Shklovskii Variable Range Hopping mechanism (ES VRH).

  18. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  19. Range extension and morphological characterization of rhodolith-forming species (Corallinales, Rhodophyta) from shallow water in the Mexican South Pacific

    Science.gov (United States)

    Peralta-García, Edith Concepción; Rosas-Alquicira, Edgar Francisco

    2014-12-01

    Living rhodolith beds are widely distributed along the Eastern Pacific ocean. Despite their widespread distribution, little is known about the rhodolith-forming species from shallow water in the Mexican South Pacific. Many taxonomic and morphological studies about rhodoliths have been carried out in the Gulf of California, where the forming species belong to the Hapalidiaceae and Corallinaceae families. This paper is the first report on the occurrence of the rhodolith-forming Hapalidiaceae species Lithothamnion muelleri and Phymatolithon repandum at three sites in the Mexican South Pacific. The branch density, maximum length and sphericity were measured for each determined species. Rhodoliths were distributed between 4 and 6 m depth, but differences in the branch density between species and sites were not found. Finally, the present record of L. muelleri fills the gap in the species distribution along the Eastern Pacific ocean, while the record of P. repandum is the first of the species in the region.

  20. Many-Objective Reservoir Policy Identification and Refinement to Reduce Institutional Myopia in Water Management

    Science.gov (United States)

    Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P. M.

    2013-12-01

    Institutional inertia strongly limits our ability to adapt water reservoir operations to better manage growing water demands as well as their associated uncertainties in a changing climate. Although it has long been recognized that these systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, our broader understanding of the multiobjective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification and many-objective optimization under uncertainty to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Initially our proposed framework uses available streamflow observations to implicitly identify the Conowingo Dam's current but unknown operating policy. This baseline policy is identified by fitting radial basis functions to existing system dynamics. Our assumption in the baseline policy is that the dam operator is represented as a rational agent seeking to maximize primary operational objectives (i.e., guaranteeing the public water supply and maximizing the hydropower revenue). The quality of the identified baseline policy is evaluated by its ability to replicate historical release dynamics. Once identified, the historical baseline policy then provides a means of representing

  1. Steam versus hot-water scalding in reducing bacterial loads on the skin of commercially processed poultry.

    Science.gov (United States)

    Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E

    1972-04-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.

  2. Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2017-04-01

    Full Text Available Reduction of leakages in a water distribution system (WDS is one of the major concerns of water industries. Leakages depend on pressure, hence installing pressure reducing valves (PRVs in the water network is a successful techniques for reducing leakages. Determining the number of valves, their locations, and optimal control setting are the challenges faced. This paper presents a new algorithm-based rule for determining the location of valves in a WDS having a variable demand pattern, which results in more favorable optimization of PRV localization than that caused by previous techniques. A multiobjective genetic algorithm (NSGA-II was used to determine the optimized control value of PRVs and to minimize the leakage rate in the WDS. Minimum required pressure was maintained at all nodes to avoid pressure deficiency at any node. Proposed methodology is applied in a benchmark WDS and after using PRVs, the average leakage rate was reduced by 6.05 l/s (20.64%, which is more favorable than the rate obtained with the existing techniques used for leakage control in the WDS. Compared with earlier studies, a lower number of PRVs was required for optimization, thus the proposed algorithm tends to provide a more cost-effective solution. In conclusion, the proposed algorithm leads to more favorable optimized localization and control of PRV with improved leakage reduction rate.

  3. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms.

    Science.gov (United States)

    Xiao, Qian; Yu, Shuili; Li, Lei; Wang, Ting; Liao, Xinlei; Ye, Yubing

    2017-02-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated at a strict standard of 10μg/L in drinking water. Various techniques to eliminate BrO 3 - usually fall into three main categories: reducing bromide (Br - ) prior to formation of BrO 3 - , minimizing BrO 3 - formation during the ozonation process, and removing BrO 3 - from post-ozonation waters. However, the first two approaches exhibit low degradation efficiency and high treatment cost. The third workaround has obvious advantages, such as high reduction efficiency, more stable performance and easier combination with UV disinfection, and has therefore been widely implemented in water treatment. Recently, advanced reduction processes (ARPs), the photocatalysis of BrO 3 - , have attracted much attention due to improved performance. To increase the feasibility of photocatalytic systems, the focus of this work concerns new technological developments, followed by a summary of reducing agents, activation methods, operational parameters, and applications. The reaction mechanisms of two typical processes involving UV/sulfite homogeneous photocatalysis and UV/titanium dioxide heterogeneous photocatalysis are further summarized. The future research needs for ARPs to reach full-scale potential in drinking water treatment are suggested accordingly. Copyright © 2016. Published by Elsevier B.V.

  4. A new, rapid and reliable method for the determination of reduced sulphur (S2-) species in natural water discharges

    International Nuclear Information System (INIS)

    Montegrossi, Giordano; Tassi, Franco; Vaselli, Orlando; Bidini, Eva; Minissale, Angelo

    2006-01-01

    The determination of reduced S species in natural waters is particularly difficult due to their high instability and chemical and physical interferences in the current analytical methods. In this paper a new, rapid and reliable analytical procedure is presented, named the Cd-IC method, for their determination as ΣS 2- via oxidation to SO 4 2- after chemical trapping with an ammonia-cadmium solution that allows precipitation of all the reduced S species as CdS. The S 2- -SO 4 is analysed by ion-chromatography. The main advantages of this method are: low cost, high stability of CdS precipitate, absence of interferences, low detection limit (0.01mg/L as SO 4 for 10mL of water) and low analytical error (about 5%). The proposed method has been applied to more than 100 water samples from different natural systems (water discharges and cold wells from volcanic and geothermal areas, crater lakes) in central-southern Italy

  5. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  6. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review

    OpenAIRE

    Grimes, Jack ET; Croll, David; Harrison, Wendy E; Utzinger, J?rg; Freeman, Matthew C; Templeton, Michael R

    2015-01-01

    Schistosomiasis is a disease caused by infection with blood flukes of the genus Schistosoma. Transmission of, and exposure to, the parasite result from faecal or urinary contamination of freshwater containing intermediate host snails, and dermal contact with the same water. The World Health Assembly resolution 65.21 from May 2012 urges member states to eliminate schistosomiasis through preventive chemotherapy (i.e. periodic large-scale administration of the antischistosomal drug praziquantel ...

  7. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  8. Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold.

    Science.gov (United States)

    Gomez-Mestre, Ivan; Touchon, Justin C; Warkentin, Karen M

    2006-10-01

    Water molds attack aquatic eggs worldwide and have been associated with major mortality events in some cases, but typically only in association with additional stressors. We combined field observations and laboratory experiments to study egg stage defenses against pathogenic water mold in three temperate amphibians. Spotted salamanders (Ambystoma maculatum) wrap their eggs in a protective jelly layer that prevents mold from reaching the embryos. Wood frog (Rana sylvatica) egg masses have less jelly but are laid while ponds are still cold and mold growth is slow. American toad (Bufo americanus) eggs experience the highest infection levels. They are surrounded by thin jelly and are laid when ponds have warmed and mold grows rapidly. Eggs of all three species hatched early when infected, yielding smaller and less developed hatchlings. This response was strongest in B. americanus. Precocious hatching increased vulnerability of wood frog hatchlings to invertebrate predators. Finally, despite being potential toad hatchling predators, R. sylvatica tadpoles can have a positive effect on B. americanus eggs. They eat water mold off infected toad clutches, increasing their hatching success.

  9. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    OpenAIRE

    L. Campo; A. B. Monteagudo; B. Salleres; P. Castro; J. Moreno-Gonzalez

    2013-01-01

    The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS) to predict non-structural carbohydrates (NSC), water soluble carbohydrates (WSC), in vitro organic dry matter digestibility (IVOMD), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. ...

  10. Meteoric water circulation and rolling-hinge detachment faulting: Example of the Northern Snake Range core complex, Nevada

    Science.gov (United States)

    Gébelin, Aude; Teyssier, Christian; Heizler, Matthew T.; Andreas, Mulch

    2014-05-01

    The Northern Snake Range metamorphic core complex developed as a consequence of Oligo-Miocene extension of the Basin and Range Province and is bounded by an arched detachment that separates the cold, brittle upper crust from the ductile middle crust. On the western and eastern limbs of the arch, the detachment footwall displays continuous sections of muscovite-bearing quartzite and schist from which we report new microfabrics, δD values, and 40Ar/39Ar ages. Results indicate that the two limbs record distinct stages of the metamorphic and kinematic Cenozoic events, including Eocene collapse of previously overthickned crust in the west, and one main Oligo-Miocene extensional event in the east. Quartzite from the western part of the range preserves Eocene fabrics (~49-45 Ma) that developed during coaxial deformation in the presence of metamorphic fluids. In contrast, those from the east reveal a large component of non coaxial strain, Oligo-Miocene ages (27-21 Ma) and contain recrystallized muscovite grains indicating that meteoric fluids sourced at high elevation (low-δD) infiltrated the brittle-ductile transition zone during deformation. Percolation of meteoric fluids down to the mylonitic detachment footwall was made possible by the development of an east-dipping rolling-hinge detachment system that controlled the timing and location of active faulting in the brittle upper crust and therefore the pathway of fluids from the surface to the brittle-ductile transition. Oligo-Miocene upper crustal extension was accommodated by a fan-shaped fault pattern that generated shear and tension fractures and channelized surface fluids, while top-to-the-east ductile shearing and advection of hot material in the lower plate allowed the system to be progressively exhumed. As extension proceeded, brittle normal faults active in the wedge of the hanging wall gradually rotated and translated above the detachment fault where, became inactive and precluded the circulation of fluids

  11. Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil-Gas-Water Three-Phase Flow

    Science.gov (United States)

    Zhao, An; Jin, Ning-de; Ren, Ying-yu; Zhu, Lei; Yang, Xia

    2016-01-01

    In this article we apply an approach to identify the oil-gas-water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil-gas-water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil-gas-water three-phase flows.

  12. Measuring the Efficacy of an Energy and Environmental Awareness Campaign to Effectively Reduce Water Consumption

    Science.gov (United States)

    Miller, Laura Little

    2010-01-01

    Increased energy costs and a move toward environmental stewardship are driving many organizations, including universities, to engage in awareness efforts to reduce both energy consumption and their carbon footprint. The purpose of this paper is to determine whether organizational programs aimed at energy and environmental awareness have a…

  13. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available Electrochemically reduced water (ERW is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  14. Partial molar volumes of (acetonitrile + water) mixtures over the temperature range (273.15 to 318.15) K

    International Nuclear Information System (INIS)

    Yeow, Y. Leong; Leong, Yee-Kwong

    2007-01-01

    Isothermal molar volume data of (acetonitrile + water) mixtures, between T = 273.15 K and T = 318.15 K, extracted from different sources are combined and treated as a single set to even out minor differences between sources and to increase the number of data points for each temperature. Tikhonov regularization is applied to compute the isothermal first and second derivatives of these data with respect to molar composition. For the reference temperature of 298.15 K, this computation is extended to the third derivative. Generalized Cross Validation is used to guide the selection of the regularization parameter that keeps noise amplification under control. The resulting first derivatives are used to construct the partial molar volume curves which are then checked against published results. Properties of the partial molar volumes are analysed by examining their derivatives. Finally the general shape of the second derivative curve of molar volume is explained qualitatively in terms of tripartite segmentation of the molar composition interval but quantitative comparisons are required to confirm this explanation

  15. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.

    Science.gov (United States)

    Malmaeus, J M; Karlsson, O M

    2010-01-01

    This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined. We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50t each, and costs of euro7 to euro11 kg(-1)yr(-1). The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242t. If the most expensive measures are excluded (>euro1000 kg(-1)yr(-1)) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr(-1). This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr(-1).

  16. Purifying fluoride-contaminated water by a novel forward osmosis design with enhanced flux under reduced concentration polarization.

    Science.gov (United States)

    Pal, Madhubonti; Chakrabortty, Sankha; Pal, Parimal; Linnanen, Lassi

    2015-08-01

    For purifying fluoride-contaminated water, a new forward osmosis scheme in horizontal flat-sheet cross flow module was designed and investigated. Effects of pressure, cross flow rate, draw solution and alignment of membrane module on separation and flux were studied. Concentration polarization and reverse salt diffusion got significantly reduced in the new hydrodynamic regime. This resulted in less membrane fouling, better solute separation and higher pure water flux than in a conventional module. The entire scheme was completed in two stages-an upstream forward osmosis for separating pure water from contaminated water and a downstream nanofiltration operation for continuous recovery and recycle of draw solute. Synchronization of these two stages of operation resulted in a continuous, steady-state process. From a set of commercial membranes, two polyamide composite membranes were screened out for the upstream and downstream filtrations. A 0.3-M NaCl solution was found to be the best one for forward osmosis draw solution. Potable water with less than 1% residual fluoride could be produced at a high flux of 60-62 L m(-2) h(-1) whereas more than 99% draw solute could be recovered and recycled in the downstream nanofiltration stage from where flux was 62-65 L m(-2) h(-1).

  17. How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications

    Science.gov (United States)

    McMillan, Hilary; Seibert, Jan; Petersen-Overleir, Asgeir; Lang, Michel; White, Paul; Snelder, Ton; Rutherford, Kit; Krueger, Tobias; Mason, Robert; Kiang, Julie

    2017-07-01

    Streamflow data are used for important environmental and economic decisions, such as specifying and regulating minimum flows, managing water supplies, and planning for flood hazards. Despite significant uncertainty in most flow data, the flow series for these applications are often communicated and used without uncertainty information. In this commentary, we argue that proper analysis of uncertainty in river flow data can reduce costs and promote robust conclusions in water management applications. We substantiate our argument by providing case studies from Norway and New Zealand where streamflow uncertainty analysis has uncovered economic costs in the hydropower industry, improved public acceptance of a controversial water management policy, and tested the accuracy of water quality trends. We discuss the need for practical uncertainty assessment tools that generate multiple flow series realizations rather than simple error bounds. Although examples of such tools are in development, considerable barriers for uncertainty analysis and communication still exist for practitioners, and future research must aim to provide easier access and usability of uncertainty estimates. We conclude that flow uncertainty analysis is critical for good water management decisions.

  18. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed

    Science.gov (United States)

    Rodriguez, Hector German; Popp, Jennie; Maringanti, Chetan; Chaubey, Indrajeet

    2011-01-01

    An increased loss of agricultural nutrients is a growing concern for water quality in Arkansas. Several studies have shown that best management practices (BMPs) are effective in controlling water pollution. However, those affected with water quality issues need water management plans that take into consideration BMPs selection, placement, and affordability. This study used a nondominated sorting genetic algorithm (NSGA-II). This multiobjective algorithm selects and locates BMPs that minimize nutrients pollution cost-effectively by providing trade-off curves (optimal fronts) between pollutant reduction and total net cost increase. The usefulness of this optimization framework was evaluated in the Lincoln Lake watershed. The final NSGA-II optimization model generated a number of near-optimal solutions by selecting from 35 BMPs (combinations of pasture management, buffer zones, and poultry litter application practices). Selection and placement of BMPs were analyzed under various cost solutions. The NSGA-II provides multiple solutions that could fit the water management plan for the watershed. For instance, by implementing all the BMP combinations recommended in the lowest-cost solution, total phosphorous (TP) could be reduced by at least 76% while increasing cost by less than 2% in the entire watershed. This value represents an increase in cost of 5.49 ha-1 when compared to the baseline. Implementing all the BMP combinations proposed with the medium- and the highest-cost solutions could decrease TP drastically but will increase cost by 24,282 (7%) and $82,306 (25%), respectively.

  19. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    OpenAIRE

    Caroline Schultealbert; Tobias Baur; Andreas Schütze; Tilman Sauerwald

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can ...

  20. Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies

    International Nuclear Information System (INIS)

    Batou, A.; Soize, C.; Brie, N.

    2013-01-01

    Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading

  1. Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Brie, N., E-mail: nicolas.brie@edf.fr [EDF R and D, Département AMA, 1 avenue du général De Gaulle, 92140 Clamart (France)

    2013-09-15

    Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading.

  2. Effect of temperature and water activity on heat transfer in parsley leaves in the  range of temperatures 10–30 °C

    Directory of Open Access Journals (Sweden)

    Jiří Štencl

    2007-01-01

    Full Text Available The equilibrium moisture contents of parsley leaves were measured by the gravimetric dynamic method with continuous recording of changes in sample weight. Consequently water activity values were determined. Henderson equation was found to be a good model both for moisture adsorption and desorption. Isosteric heat of sorption was defined and determined in the temperature range of 10–30 °C. Clausius-Clapeyron equation was used to calculate the isosteric heat of sorption since no dependence on temperature in the analysed range was observed. The isosteric heats of sorption (qnst were indicated graphic in the form qnst versus moisture content. Values for isosteric heat of sorption ranged from 54.41 to 46.85 kJ/mol.

  3. [Production of a carp-based hamburger-like product by reducing the water activity].

    Science.gov (United States)

    Santillán, M; Morales, L J

    1992-06-01

    The experimental conditions were determined in order to conserve lean fish by means of combined factors based on Aw and pH reduction as well as the addition of an antifungal. Theoretical Aw was determined in formulas containing fish, sodium chloride, glycerol and sorbitol applying a mathematic model. From the results of the prediction, 4 formulas were prepared experimentally with (Cyprinus carpio). Phosphoric acid was added to the products in order to obtain a 5.5-6.0 pH. The final formulas were packed in plastic bags and stored with a control product (100% carp pulp) at 25 +/- 2 degrees C and 38 +/- 3% R.H. during one month. Aw, water content and pH determinations were carried at weekly intervals. Results indicated a slight but significative (P < 0.025) lowering of Aw, water content and pH. Microbiological analysis showed an increase in MAB count with no growth of pathogens. A control product (100% carp pulp) was deteriorated in a five day period. Sensory evaluation of the products indicated a slight acceptance among an inexperienced panel.

  4. Reducing Water Sensitivity of Chitosan Biocomposite Films Using Gliadin Particles Made by In Situ Method

    Directory of Open Access Journals (Sweden)

    Dajian Huang

    2017-11-01

    Full Text Available In order to sustain rapid expansion in the field of biocomposites, it is necessary to develop novel fillers that are biodegradable, and easy to disperse and obtain. In this work, gliadin particles (GPs fabricated through an in situ method have been reported as fillers for creating chitosan (CS-based biocomposite films. In general, the particles tend to agglomerate in the polymer matrix at high loading (approximately >10% in the biopolymer/particles composites prepared by the traditional solution-blending method. However, the micrographs of biocomposites confirmed that the GPs are well dispersed in the CS matrix in all CS/GPs composites even at a high loading of 30% in this study. It was found that the GPs could improve the mechanical properties of the biocomposites. In addition, the results of moisture uptake and solubility in water of biocomposites showed that water resistance of biocomposites was enhanced by the introduction of GPs. These results suggested that GPs fabricated through an in situ method could be a good candidate for use in biopolymer-based composites.

  5. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    Science.gov (United States)

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p chocolate group (104.1 ± 2.9 % of pre-dive values, p chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  6. Multiple Ceratocystis smalleyi infections associated with reduced stem water transport in bitternut hickory.

    Science.gov (United States)

    Park, J-H; Juzwik, J; Cavender-Bares, J

    2013-06-01

    Hundreds of cankers caused by Ceratocystis smalleyi are associated with hickory bark beetle-attacked bitternut hickory exhibiting rapid crown decline in the north-central and northeastern United States. Discolored sapwood colonized by the fungus commonly underlies the cankers. Field studies were conducted to test the hypothesis that C. smalleyi infections cause vascular system dysfunction in infected trees. Fifty C. smalleyi inoculations made at 1.8 to 3.8 m in height on stems of healthy bitternut hickory trees (13 to 28 cm in diameter at 1.4 m in height) resulted in extensive canker formation and sapwood discoloration 12 to 14 months after treatment compared with water-inoculated and noninoculated controls. Sap flow velocity (midday) was significantly lower in the infected trees compared with that in the controls. Sap flow velocity also was inversely correlated with the proportion of bark area with cankered tissues and with tylose abundance in the youngest two growth rings. Tylose formation in current-year vessels associated with C. smalleyi infections is likely responsible for much of the water transport disruption. It is hypothesized that multiple stem infections of C. smalleyi and the resulting xylem dysfunction contribute to crown wilt development in bitternut hickory exhibiting rapid crown decline.

  7. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.

    Science.gov (United States)

    Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos

    2018-08-15

    This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Briquetting of Egyptian ilmenite ore with different organic binder and reduced its in hydrogen in temperature range 800-1200°C

    Directory of Open Access Journals (Sweden)

    Abd El-Gawad H.H.

    2014-01-01

    Full Text Available Ilmenite ore fine was briquetted with different amounts of molasses or pitch pressed under different pressure was studied in this investigation. The results show at optimum amount of molasses added was 1.5 % and pitch, the pressure was 294.3 M.Pa.. Also the characterizations of raw materials were studied by different methods of analyses such as Xray and screen analyses. The produced briquettes were reduced by different amounts of hydrogen at different temperatures, and the reduction kinetics was determined.

  9. Electrical charging characteristics of the hetero layer film for reducing water-borne paint contamination in electrostatic rotary atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Imanishi, T.; Yoshida, O.; Mizuno, A. [ABB Japan, Tokyo (Japan)

    2010-07-01

    The electrostatic rotary atomizer is the most efficient of all liquid spray painting methods. Its use minimizes the waste of paint and reduces emissions of volatile organic compounds (VOCs). Water-borne painting processes which use water-soluble paint also reduce VOC emissions, but the atomizer body is easily contaminated by the paint mists. The Institute of Electrical and Electronics Engineers (IEEE) considered the causes of water-borne paint contamination and presented the experimental results of a contamination proof system in which the atomizer is surrounded by the repelling film that is charged and repels the incoming paint droplets. Among the key factors for repelling film were electrical properties, such as low capacitance and high insulation to keep high surface potential. Charging uniformity was found to be among the most important characteristic to avoid contamination. The pulse electro-acoustic (PEA) method was used to check these features using space charge measurements inside the repelling film. It was concluded that hetero layer films have more uniform charging characteristics than single layer films.

  10. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2000-01-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  11. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  12. Vacuum evaporation, a technology for re-using water and reducing waste; La evaporacion al vacio una tecnologia para la reduccion de residuos y reutilizacion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Casas, O.; Sabate, E.; Casas, F.; Lopez, J.

    2009-07-01

    In order to improve companies sustain ability and environmental commitment, we have developed a concentration technology for reducing the volume of industrial waste water at low energy cost and recovering the water for various applications. The advantages of this system are recovery of the water, minimum maintenance without reagents and compactness with any type of waste water. Industrials Titan represents and example of the recycling of water by means of vacuum evaporation to solve a double problem: the conductivity of the water from the decalcified and the COD of the water from the painting process. (Author)

  13. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    OpenAIRE

    J. Fan; L. R. Leung; P. J. DeMott; J. M. Comstock; B. Singh; D. Rosenfeld; J. M. Tomlinson; A. White; K. A. Prather; P. Minnis; J. K. Ayers; Q. Min

    2013-01-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical mode...

  14. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    OpenAIRE

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2014-01-01

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and the Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical mod...

  15. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    Science.gov (United States)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  16. CHF experiments of tight pitch lattice rod bundles under PWR pressure condition for development of reduced moderation water reactor

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Nakatsuka, Toru; Yoritsune, Tsutomu

    2002-10-01

    In order to improve plutonium utilization, design studies of reduced moderation water reactors which have hard neutron energy spectrum have been carried out at Division of Energy System Research of Japan Atomic Energy Research Institute (JAERI). At present, triangle, tight pitch lattice cores with about 1 mm gap width between fuel rods have been focused in the neutronic core design. Since a degradation of the heat removal from the fuel rods is worried, an evaluation of heat removal capability i.e. critical heat flux becomes one of important evaluation items in the feasibility study. However, any of published data base, which can be applicable to the evaluation on such narrow gap width cores, does not exist. Therefore, in the present study, in order to accumulate applicable data and to confirm applicability of an evaluation methodology of critical heat flux, basic experiments on the critical heat flux were performed using the test sections consisted of 7 heater rods bundles with the gap widths of 1.5, 1.0 and 0.6 mm under the PWR pressure conditions. The present report describes the experimental apparatus, experimental conditions and accumulated data. Analysis results of the data and the applicability of the evaluation methodology used for the design work are also discussed in this report. As the results of the experiment, it was found that the critical heat flux increased as the mass flux and the inlet subcooling increased. In the region of the mass flux less than about 2,000 kg/m 2 /s, the critical heat flux decreased as the gap width decreased. In the larger mass flux region, obvious trend of effects of the gap width on critical heat flux were not observed due to data scatterings. The flow-area-averaged thermal-equilibrium quality at the CHF position was in the higher ranges from 0.3 to 0.8 in the cases of gap widths of 1.0 and 0.6 mm, and 0.1 to 0.3 in the 1.5 mm case. Based on the experimental results such that the CHFs occurred in the higher quality range and

  17. The synthesis and characterization of water-reducible nanoscale Colloidal Unimolecular Polymer (CUP) particles

    Science.gov (United States)

    Riddles, Cynthia Jeannette

    The coatings industry has adapted to more stringent guidelines in paint formulations. Current VOC (volatile organic compound) limits placed by the federal government have pushed the industry toward the development of paint formulations which have very little to no VOC's. The development of Colloidal Unimolecular Polymer (CUP) particles is a step in the direction of providing a resin system which exists in zero VOC aqueous dispersion. The CUP particles are a part of the polymer field of Single Chain Nano Particles (SCNP) and ranged in diameters of 3-9 nm. The research presented in this dissertation describes the synthesis and design of these particles along with the various means of instrumentation used to gain insight into the structure and nature of these particles when suspended in aqueous medium.

  18. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition.

    Science.gov (United States)

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-04-10

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO 2 (atm. CO 2 ) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO 2 concentration, and SO 4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO 2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO 2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.

  19. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  20. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.

    Science.gov (United States)

    Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H

    2011-10-01

    Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.

  1. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  2. Characterization of the Bacterial and Sulphate Reducing Community in the Alkaline and Constantly Cold Water of the Closed Kotalahti Mine

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2015-07-01

    Full Text Available Drainage from metal-sulphide rich rocks may cause considerable environmental stress in the form of elevated sulphate and heavy metal contamination of the environment. Mine draining effects from closed mines may be abated using indigenous and introduced microbial communities for sulphate reduction and metal precipitation at the mining site. Here we characterized the general and sulphate reducing bacterial (SRB community of Kotalahti Mine (Finland. The mine was flooded after closure and sulphate reduction and metal precipitation was induced by addition of pig manure sludge into the Vehkankuilu shaft. Water was sampled from Vehkankuilu and Ollinkuilu shafts from depths −10, −30, −70 and −100 m 15 years after the treatment. The water in the shafts differed from each other biologically and geochemically. The shafts are not directly connected except by some fracture zones, and the Ollinkuilu shaft is used as a reference for environmental monitoring. The detected bacterial communities from both shafts contained methylotrophic γ-Proteobacteria, hydrogenotrophic and methylotrophic β-Proteobacteria and fermenting bacterial clades. The concentration of SRB was low, at most 4.0 × 103 dsrB genes·mL−1, and the SRB affiliated with Desulfobulbus and Thermoanaerobacteriales clades. Despite the obvious success of the mine as an in situ bioreactor for increasing water pH and removing sulphate and heavy metals by induced sulphate reduction under suboptimal temperature, only a small portion, less than 0.5%, of the bacterial population in the mine water was SRB.

  3. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Science.gov (United States)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  4. Volume reducing and modifying of neutralized sludge from acid waste water treatment of uranium ore heap leaching

    International Nuclear Information System (INIS)

    Zhong Pingru; Ding Tongsen; Gu Jianghan

    1997-01-01

    A process is worked out on the basis of traditional lime neutralization, viz. acid waste water from uranium ore heap leaching is treated by limestone and lime double neutralizing-sludge recycling. First, the waste water is reacted with cheaper limestone to precipitate some metal ions, such as Fe and Al, which form hydroxides at lower pH, and neutralize strong acid, then neutralized with lime to required pH value. The formed precipitate as sludge is steadily recycled in the process. The principal advantage of the process over lime neutralization process is that reagent cost saved by 1/3 and formed sludge volume decreased by 2/3. Besides, the performances of sludge filtrating and settling are improved. The mechanism of sludge volume reducing and modification is also investigated

  5. A plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

    International Nuclear Information System (INIS)

    Shimada, Shoichiro; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tutomu; Usui, Shuji; Shirakawa, Toshihisa; Iwamura, Takamiti; Kugo, Teruhiko; Ishikawa, Nobuyuki

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors which aim at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. Critical Experiments performed so far in Eualope and Japan were reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modificati