WorldWideScience

Sample records for range water reducer

  1. Water neutral: reducing and ofsetting water footprints

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2008-01-01

    During the past few years the concept of the ‘water footprint’ has started to receive recognition within governments, non-governmental organizations, businesses and media as a useful indicator of water use. The increased interest in the water-footprint concept has prompted the question about what

  2. Impact of Reduced Diurnal Temperature Range (DTR) on Grassland Mesocosms

    Science.gov (United States)

    Gregg, J. W.; Phillips, C.; Wilson, J.

    2010-12-01

    There has been considerable variation in the magnitude of change in diel temperature range due to on-going global warming and ecological responses are poorly understood. We compared the effects of +3.5C higher temperatures distributed either symmetrically (SYM, continuously +3.5C) or asymmetrically (ASYM, +5C dawn Tmin ramped to +2C midday Tmax and back) on planted native perennial grassland communities in climate-controlled chambers (14 spp. including grasses/forbs, annuals/perennials, N-fixers/not). Here, we present an overview of NPP, phenology, community composition, and whole ecosystem gas exchange results. Biomass was greater for both SYM and ASYM treatments during the fall and winter in all three years (+28-70%). However, spring growth was truncated for the warmer treatments due to reduced soil moisture which provided several extra weeks growth for AMB treatments to ‘catch-up’ to that of SYM and ASYM. Peak spring production and flowering were shifted 1-3 weeks earlier for SYM and ASYM treatments, resulting in a concomitant decrease in water use efficiency concomitant with increased soil moisture as measured via δ13C and whole ecosystem gas exchange (CER)/ evapotranspiration. CER measurements also showed the shift in timing of production and no difference in annual C assimilation between AMB, SYM and ASYM treatments. However, annual net ecosystem production (NEP) was negative for SYM and ASYM treatments which pointed towards the likely importance of changes in stored SOM. Mortality was 70% greater for SYM and ASYM treatments in the first year and remained greater through the three years of treatment application resulting in a decline in species diversity. Differential mortality was most apparent in the forb functional group with 50% of species affected. Survival of graminoid species was generally higher with no significant differences between treatments, resulting in a shift in functional group density and LAI to favor grass species in both warming

  3. Joint product numerical range and geometry of reduced density matrices

    Science.gov (United States)

    Chen, Jianxin; Guo, Cheng; Ji, Zhengfeng; Poon, Yiu-Tung; Yu, Nengkun; Zeng, Bei; Zhou, Jie

    2017-02-01

    The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection Θ is convex in R3. The boundary ∂Θ of Θ may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced density matrices are known to be separable as a consequence of the quantum de Finetti's theorem. This allows us to identify the reduced density matrix geometry with joint product numerical range Π of the Hamiltonian interaction terms. We focus on the case where the interaction terms have certain structures, such that a ruled surface emerges naturally when taking a convex hull of Π. We show that, a ruled surface on ∂Θ sitting in Π has a gapless origin, otherwise it has a symmetry breaking origin. As an example, we demonstrate that a famous ruled surface, known as the oloid, is a possible shape of Θ, with two boundary pieces of symmetry breaking origin separated by two gapless lines.

  4. Joint product numerical range and geometry of reduced density matrices

    OpenAIRE

    Chen, Jianxin; Guo, Cheng; Ji, Zhengfeng; Poon, Yiu-Tung; Yu, Nengkun; Zeng, Bei; Zhou, Jie

    2016-01-01

    The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection $\\Theta$ is convex in $\\mathbb{R}^3$. The boundary $\\partial\\Theta$ of $\\Theta$ may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced d...

  5. Water chemistry of Rocky Mountain Front Range aquatic ecosystems

    Science.gov (United States)

    Robert C. Musselman; Laura Hudnell; Mark W. Williams; Richard A. Sommerfeld

    1996-01-01

    A study of the water chemistry of Colorado Rocky Mountain Front Range alpine/subalpine lakes and streams in wilderness ecosystems was conducted during the summer of 1995 by the USDA Forest Service Arapaho and Roosevelt National Forests and Rocky Mountain Forest and Range Experiment Station, and the University of Colorado Institute of Alpine and Arctic Research. Data...

  6. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  7. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  8. New approach to reducing water consumption in commercial kitchen hood

    Science.gov (United States)

    Asmuin, N.; Pairan, M. R.

    2017-09-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. The modern commercial kitchen hood ventilation system was adopted with the water mist nozzle technology as an additional tool to increase the filtration efficiency. However, low level of filtration effectiveness and high water consumption were the major problems among the Commercial Kitchen Ventilation expert. Therefore, this study aims to develop a new mist spray technology to replacing the conventional KSJB nozzle (KSJB is a nozzle’s name). At the same time, an appropriate recommended location to install the nozzle in kitchen hood system was suggested. An extensive simulation works were carried out to observe the spray characteristics, ANSYS (FLUENT) was used for simulation wise. In the case of nozzle studies, nozzles were tested at 1 bar pressure of water and air. In comparison with conventional nozzles configuration, this new approach suggested nozzle configuration was reduce up to 50% of water consumption, which by adopted 3 numbers of nozzles instead of 6 numbers of nozzles in the commercial kitchen hood system. Therefore, this nozzle will be used in industry for their benefits of water consumption, filtration efficiency and reduced the safety limitations.

  9. Measurement of soil water potential over an extended range by polymer tensiometers: comparison with other instruments

    Science.gov (United States)

    van der Ploeg, M. J.; Gooren, H. P.; Hoogendam, R. C.; Bakker, G.; Huiskes, C.; Koopal, L. K.; Kruidhof, H.; de Rooij, G. H.

    2007-12-01

    In water scarce areas, plant growth and productivity can be severely hampered by irregular precipitation and overall water shortage. Root water uptake is mainly driven by matric potential gradients, but measurement of soil water matric potential is limited by the measurement range of water-filled tensiometers (-0.085 MPa). Other measurement techniques indirectly measure soil water potential by converting soil water content with the use of the water retention curve. In dry soils, the water content measurements may become insensitive to small variations, and consequently this conversion may lead to large errors. We developed a polymer tensiometer (POT) that is able to measure matric potentials down to -2.0 MPa. The POT consists of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Hence, the water in the polymer tensiometer will cavitate at a much lower matric potential than the nearly pure water in a conventional tensiometer. Direct observation of the potential of soil water at different locations in the root-system will yield knowledge about the ability of a plant to take up the water under conditions of water shortage or salinity stress. With this knowledge it will be possible to adjust existing unsaturated flow models accounting for root water uptake. We tested 8 POTs in an experimental setup, where we compared matric potential measurements to TDR water content measurements, matric potentials derived from measured water contents, and matric potentials measured by water-filled tensiometers. The experimental setup consisted of two evaporation boxes, one filled with sand (97.6% sand, 1

  10. Least limiting water range for oil palm production in Amazon region, Brazil

    Directory of Open Access Journals (Sweden)

    Michel Keisuke Sato

    Full Text Available ABSTRACT In areas cultivated with oil palm, typically mechanized field operations using heavy vehicles may negatively affect soil physical properties and productivity. The aim of this study was to evaluate soil physical quality in an area cultivated with oil palm by monitoring the temporal variation of the soil water content and relating it to the critical limits of the least limiting water range. Soil bulk density (Bd, soil penetration resistance (SR, least limiting water range (LLWR, and water stress days (WSD were used to assess soil physical quality in planting rows (PR and the traffic zone (TZ at depths 0-20, 20-40, and 40-60 cm. The Bd was higher and the LLWR was reduced in TZ only at the surface layer. The effect of temporal variation in soil water content on the soil physical quality was higher in TZ, mainly in subsurface layers. Bd and LLWR did not affect the fresh fruit bunch production; however, WSD in TZ at 20-40 and 40-60 cm layers provided evidence of effects of temporal variation of soil water content on oil palm productivity.

  11. Water resources of the Marquette Iron Range area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Newport, Thomas Gwyn; Skinner, Earl L.

    1967-01-01

    Large quantities of water are needed in the beneficiation and pelletizing processes by which the ore mined from low-grade iron-formations is upgraded into an excellent raw material for the iron and steel industry. Extensive reserves of low-grade iron-formation available for development herald an intensification of the demands upon the area's water supplies. This study was designed to provide water facts for public and private agencies in planning orderly development and in guiding the management of the water resources to meet existing and new requirements. Inland lakes and streams are the best potential sources of water for immediate development. The natural flow available for 90 percent of the time in the Middle and East Branches of the Escanaba River, the Carp River, and the Michigamme River is about 190 cubic feet per second. Potential storage sites are identified, and their complete development could increase the available supply from the above streams to about 450 cubic feet per second. Outwash deposits are the best potential sources of ground water. Large supplies could be developed from extensive outwash deposits in the eastern part of the area adjacent to Goose Lake Outlet and the East Branch Escanaba River. Other areas of outwash occur in the vicinity of Humboldt, West Branch Creek, and along the stream valleys. Streamflow data were used to make rough approximations of the ground-water potential in some areas. In general, however, the available data were not sufficient to permit quantitative evaluation of the potential ground-water supplies. Chemical quality of the surface and ground waters of the area is generally acceptable for most uses. Suspended sediment in the form of mineral tailings in effluents from ore-processing plants is a potential problem. Existing plants use settling basins to effectively remove most of the suspended material. Available records indicate that suspended-sediment concentrations and loads in the receiving waters have not been

  12. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    Science.gov (United States)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  13. WATER SPOTTERS: Water, energy, isotopes and experiential learning in the Colorado Front Range

    Science.gov (United States)

    Noone, D. C.; Berkelhammer, M. B.; Raudzens Bailey, A.; Buhr, S. M.; Smith, L. K.

    2011-12-01

    Providing students with tangible examples of the two-way interaction between human society and the climate system is a pressing challenge. Water is at the core of many issues in environmental change from local to global scales. In climate research, there are significant uncertainties in the role water plays in the climate system. "Water" can also act as a central theme that provides opportunities for science education at all levels. WATER SPOTTERS takes advantage of the prominent agricultural landscape of the region, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. The centerpiece of this project is a 300m tower that is fully implemented with gas sampling lines and micrometeorological equipment to study the energy and water budgets of the region. Middle Schools that surround this site, many of which exist in visual contact with the tall tower, are provided with meteorological stations, which provide rainfall rates, temperature, humidity and radiation data. In coordination with the St Vrain Valley School District MESA (Math Engineering Science Achievement) program, students collect rain water samples that are analyzed and used as a core component of the research goals. The students use the weather stations as a way to directly explore their local climatology and provide data that is needed in research. We present an overview of the curriculum goals and associated physical infrastructure designed for middle school students in the Colorado Front Range to explore their local water cycle using water isotopes. The fixed infrastructure at the schools and tall tower are supplemented by mobile instruments such as an automated precipitation collector and snowflake photography system, which both fulfill science needs and provide

  14. Deflection range of water in heterogeneous permeable media | Alabi ...

    African Journals Online (AJOL)

    Knowledge of mode of transport of fluid in soil is the basis for soil environmental engineering especially in transport of contaminants in groundwater. The study investigates the possible minimum and maximum angle of deflection of water through media of different porosities for the purpose of environmental pollution control.

  15. Cooperative water network system to reduce carbon footprint.

    Science.gov (United States)

    Lim, Seong-Rin; Park, Jong Moon

    2008-08-15

    Much effort has been made in reducing the carbon footprint to mitigate climate change. However, water network synthesis has been focused on reducing the consumption and cost of freshwater within each industrial plant. The objective of this study is to illustrate the necessity of the cooperation of industrial plants to reduce the total carbon footprint of their water supply systems. A mathematical optimization model to minimize global warming potentials is developed to synthesize (1) a cooperative water network system (WNS) integrated over two plants and (2) an individual WNS consisting of two WNSs separated for each plant. The cooperative WNS is compared to the individual WNS. The cooperation reduces their carbon footprint and is economically feasible and profitable. A strategy for implementing the cooperation is suggested for the fair distribution of costs and benefits. As a consequence, industrial plants should cooperate with their neighbor plants to further reduce the carbon footprint.

  16. Effectiveness of the new water source intervention in reducing ...

    African Journals Online (AJOL)

    ... the new water supply system intervention in reducing diarrheal diseases in Ghindae community. Methods: Retrospective study was done base on the records of the Hospital. Results: The incidence of diarrhea decreased by 15% after the introduction of a new water distribution system. The decrease was 44% for giardiasis ...

  17. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    Science.gov (United States)

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  18. Reducing the Forward Operating Base Water Logistics Burden

    Science.gov (United States)

    2009-05-06

    Sensor Catalytic Converter Concept • Combustion of 1 gallon of Fuel produces 1 gallon of water • Capture water from any engine in the battlespace...approach” relying on total treatment efficacy of system rather than what each process was designed for. This philosophy causes reduced...and waterborne parasites in accordance with EPA’s ambient water quality criteria. • Cryptosporidium, Giardi, Ecoli, and Coliform • Senspex is

  19. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  20. A Scheduling Method to Reduce Waiting Time for Close-Range Broadcasting

    Directory of Open Access Journals (Sweden)

    Yusuke Gotoh

    2012-01-01

    Full Text Available Due to the recent popularization of digital broadcasting systems, close-range broadcasting using continuous media data, i.e. audio and video, has attracted great attention. For example, in a drama, after a user watches interesting content such as a highlight scene, he/she will watch the main program continuously. In close-range broadcasting, the necessary bandwidth for continuously playing the two types of data increases. Conventional methods reduce the necessary bandwidth by producing an effective broadcast schedule for continuous media data. However, these methods do not consider the broadcast schedule for two types of continuous media data. When the server schedules two types of continuous media data, waiting time that occurs from finishing the highlight scene to starting the main scene, may increase. In this paper, we propose a scheduling method to reduce the waiting time for close-range broadcasting. In our proposed method, by dividing two types of data and producing an effective broadcast schedule considering the available bandwidth, we can reduce the waiting time.

  1. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    Science.gov (United States)

    Grupstra, Carsten G. B.; Coma, Rafel; Ribes, Marta; Leydet, Karine Posbic; Parkinson, John Everett; McDonald, Kelly; Catllà, Marc; Voolstra, Christian R.; Hellberg, Michael E.; Coffroth, Mary Alice

    2017-09-01

    Zooxanthellate corals are threatened by climate change but may be able to escape increasing temperatures by colonizing higher latitudes. To determine the effect of host range expansion on symbiont genetic diversity, we examined genetic variation among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them on Oculina spp. samples from the western North Atlantic and the Mediterranean. We then used them to compare symbiont genotype diversity between an Iberian core and an expansion front population of O. patagonica. Only one multilocus S. psygmophilum genotype was identified at the expansion front, and it was shared with the core population, which harbored seven multilocus genotypes. This pattern suggests that O. patagonica range expansion is accompanied by reduced symbiont genetic diversity, possibly due to limited dispersal of symbionts or local selection.

  2. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes

    KAUST Repository

    Grupstra, Carsten G. B.

    2017-05-15

    Zooxanthellate corals are threatened by climate change but may be able to escape increasing temperatures by colonizing higher latitudes. To determine the effect of host range expansion on symbiont genetic diversity, we examined genetic variation among populations of Symbiodinium psygmophilum associated with Oculina patagonica, a range-expanding coral that acquires its symbionts through horizontal transmission. We optimized five microsatellite primer pairs for S. psygmophilum and tested them on Oculina spp. samples from the western North Atlantic and the Mediterranean. We then used them to compare symbiont genotype diversity between an Iberian core and an expansion front population of O. patagonica. Only one multilocus S. psygmophilum genotype was identified at the expansion front, and it was shared with the core population, which harbored seven multilocus genotypes. This pattern suggests that O. patagonica range expansion is accompanied by reduced symbiont genetic diversity, possibly due to limited dispersal of symbionts or local selection.

  3. Development of Range Design Elements and Quality Control/Quality Assurance Guidance to Reduce Maintenance Requirements on Training Ranges

    Science.gov (United States)

    2006-11-01

    Lignin based products (Lignosulfonates) • PAM (polyacrylamides) • Petroleum Emulsions • Resin Emulsions • Organic Oils • Enzymes • Watering...they do not contain any detectable polycyclic organic matter ( POM ) as defined by the Federal Clean Air Act section 112 (b). This includes

  4. Universal Long-Range Nanometric Bending of Water by Light

    Science.gov (United States)

    Verma, Gopal; Singh, Kamal P.

    2015-10-01

    Resolving mechanical effects of light on fluids has fundamental importance with wide applications. Most experiments to date on optofluidic interface deformation exploited radiation forces exerted by normally incident lasers. However, the intriguing effects of photon momentum for any configuration, including the unique total internal reflection regime, where an evanescent wave leaks above the interface, remain largely unexplored. A major difficulty in resolving nanomechanical effects has been the lack of a sensitive detection technique. Here, we devise a simple setup whereby a probe laser produces high-contrast Newton-ring-like fringes from a sessile water drop. The mechanical action of the photon momentum of a pump beam modulates the fringes, thus allowing us to perform a direct noninvasive measurement of a nanometric bulge with sub-5-nm precision. Remarkably, a <10 nm difference in the height of the bulge due to different laser polarizations and nonlinear enhancement in the bulge near total internal reflection is isolated. In addition, the nanometric bulge is shown to extend far longer, 100 times beyond the pump spot. Our high precision data validate the century-old Minkowski theory for a general angle and offer potential for novel optofluidic devices and noncontact nanomanipulation strategies.

  5. Establishing a Clearinghouse to Reduce Impediments to Water Quality Trading

    OpenAIRE

    O'Hara, Jeffrey K.; Walsh, Michael J.; Marchetti, Paul K.

    2012-01-01

    Pennsylvania adopted a water quality trading program to reduce Chesapeake Bay nutrient pollution. It is the first such program to provide regulated point sources the option of purchasing nutrient reduction credits via arms-length market transactions to achieve mitigation requirements. After the program initially experienced limited trading, the Pennsylvania Infrastructure Investment Authority designed a nutrient credit clearinghouse to reduce some of the transaction costs and risks that imped...

  6. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water : Surface Effects

    NARCIS (Netherlands)

    Mohd Amin, M.F.; Heijman, S.G.J.; Lopes, S.I.C.; Rietveld, L.C.

    2014-01-01

    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with

  7. Reducing the Risk of Water Pollution in Vulnerable Coastal ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Reducing the Risk of Water Pollution in Vulnerable Coastal Communities of Cartagena, Colombia: Responding to Climate Change. The coastal area of Cartagena, an important tourist destination in Colombia, is home to several poor communities that rely on artisanal fishing (small-scale, traditional fishing techniques) and ...

  8. Reducing the Risk of Water Pollution in Vulnerable Coastal ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Reducing the Risk of Water Pollution in Vulnerable Coastal Communities of Cartagena, Colombia: Responding to Climate Change. The coastal area of ... Amélioration de la capacité d'adaptation sociale et écologique aux changements climatiques dans le bassin versant du fleuve Orotoy, en Colombie. En Colombie, les ...

  9. Reduced mandibular range of motion in Duchenne Muscular Dystrophy: predictive factors.

    Science.gov (United States)

    van Bruggen, H W; Van Den Engel-Hoek, L; Steenks, M H; Bronkhorst, E M; Creugers, N H J; de Groot, I J M; Kalaykova, S I

    2015-06-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16.7 ± 7.7 years) and 23 controls were assessed using a questionnaire about mandibular function and impairments. All participants underwent a clinical examination of the masticatory system, including measurement of mandibular range of motion and variables related to mandibular movements. In all patients, quantitative ultrasound of the digastric muscle and the geniohyoid muscle and the motor function measure (MFM) scale were performed. The patients were divided into early and late ambulatory stage (AS), early non-ambulatory stage (ENAS) and late non-ambulatory stage (LNAS). All mandibular movements were reduced in the patient group (P mandibular movements compared to AS and ENAS (P Mandibular movements in DMD are significantly reduced and become more hampered with loss of motor function, including the sitting position, arm function, and neck and head control. We suggest that measurement of the aMMO becomes a part of routine care of patients with DMD. © 2015 John Wiley & Sons Ltd.

  10. Absorption properties of water-in-oil emulsions in the low THz frequency range

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    We use transmission THz spectroscopy to investigate the absorption properties of water-in-oil emulsions with water content varying in the 0-20% range, relevant for a range of food products. We find that at low frequencies the effective absorption coefficient of the emulsion is suppressed compared...

  11. Humans running in place on water at simulated reduced gravity.

    Directory of Open Access Journals (Sweden)

    Alberto E Minetti

    Full Text Available BACKGROUND: On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate appendages, and limited muscle power. However, if gravity is reduced to less than Earth's gravity, running on water should require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able to run on water. We test these predictions in the laboratory using a reduced gravity simulator. METHODOLOGY/PRINCIPAL FINDINGS: We adapted a model equation, previously used by Glasheen and McMahon to explain the dynamics of Basilisk lizard, to predict the body mass, stride frequency and gravity necessary for a person to run on water. Progressive body-weight unloading of a person running in place on a wading pool confirmed the theoretical predictions that a person could run on water, at lunar (or lower gravity levels using relatively small rigid fins. Three-dimensional motion capture of reflective markers on major joint centers showed that humans, similarly to the Basilisk Lizard and to the Western Grebe, keep the head-trunk segment at a nearly constant height, despite the high stride frequency and the intensive locomotor effort. Trunk stabilization at a nearly constant height differentiates running on water from other, more usual human gaits. CONCLUSIONS/SIGNIFICANCE: The results showed that a hydrodynamic model of lizards running on water can also be applied to humans, despite the enormous difference in body size and morphology.

  12. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James W. [Clemson Univ., SC (United States); Rodgers, John H. [Clemson Univ., SC (United States); Alley, Bethany [Clemson Univ., SC (United States); Beebe, Alex [Clemson Univ., SC (United States); Coffey, Ruthanne [Clemson Univ., SC (United States); Jurinko, Kristen [Clemson Univ., SC (United States); Pardue, Michael [Clemson Univ., SC (United States); Ritter, Tina [Clemson Univ., SC (United States); Spacil, Michael M. [Clemson Univ., SC (United States)

    2013-08-08

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  13. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James; Rodgers, John; Alley, Bethany; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  14. Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James; Rodgers, John; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  15. Benchmarking Water Quality from Wastewater to Drinking Waters Using Reduced Transcriptome of Human Cells.

    Science.gov (United States)

    Xia, Pu; Zhang, Xiaowei; Zhang, Hanxin; Wang, Pingping; Tian, Mingming; Yu, Hongxia

    2017-08-15

    One of the major challenges in environmental science is monitoring and assessing the risk of complex environmental mixtures. In vitro bioassays with limited key toxicological end points have been shown to be suitable to evaluate mixtures of organic pollutants in wastewater and recycled water. Omics approaches such as transcriptomics can monitor biological effects at the genome scale. However, few studies have applied omics approach in the assessment of mixtures of organic micropollutants. Here, an omics approach was developed for profiling bioactivity of 10 water samples ranging from wastewater to drinking water in human cells by a reduced human transcriptome (RHT) approach and dose-response modeling. Transcriptional expression of 1200 selected genes were measured by an Ampliseq technology in two cell lines, HepG2 and MCF7, that were exposed to eight serial dilutions of each sample. Concentration-effect models were used to identify differentially expressed genes (DEGs) and to calculate effect concentrations (ECs) of DEGs, which could be ranked to investigate low dose response. Furthermore, molecular pathways disrupted by different samples were evaluated by Gene Ontology (GO) enrichment analysis. The ability of RHT for representing bioactivity utilizing both HepG2 and MCF7 was shown to be comparable to the results of previous in vitro bioassays. Finally, the relative potencies of the mixtures indicated by RHT analysis were consistent with the chemical profiles of the samples. RHT analysis with human cells provides an efficient and cost-effective approach to benchmarking mixture of micropollutants and may offer novel insight into the assessment of mixture toxicity in water.

  16. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates

    DEFF Research Database (Denmark)

    Jiménez-Alfaro, Borja; Draper, David; Nogues, David Bravo

    2012-01-01

    and maximum entropy modeling to assess whether different sampling (expert versus systematic surveys) may affect AOO estimates based on habitat suitability maps, and the differences between such measurements and traditional coarse-grid methods. Fine-scale models performed robustly and were not influenced...... Area (MPA). As defined here, the potential AOO provides spatially-explicit measures of species ranges which are permanent in the time and scarcely affected by sampling bias. The overestimation of these measures may be reduced using higher thresholds of habitat suitability, but standard rules as the MPA...... by survey protocols, providing similar habitat suitability outputs with high spatial agreement. Model-based estimates of potential AOO were significantly smaller than AOO measures obtained from coarse-scale grids, even if the first were obtained from conservative thresholds based on the Minimal Predicted...

  17. Electrical and thermoelectric transport by variable range hopping in reduced graphene oxide

    Science.gov (United States)

    Park, Min; Hong, Sung Ju; Kim, Kyung Ho; Kang, Hojin; Lee, Minwoo; Jeong, Dae Hong; Park, Yung Woo; Kim, Byung Hoon

    2017-10-01

    This study investigated the transport properties of single-layer reduced graphene oxides (rGOs). The rGOs were prepared by the bubble deposition method followed by thermal reduction. The crossover of the transport mechanism from Efros-Shklovskii (ES) variable range hopping (VRH) between the localized states to Mott-VRH was observed near 70 K using the temperature-dependent conductance. The ES-VRH conduction below 70 K is apparent in the electric field dependence of the field-driven hopping transport in the high-electric field regime. We also figure out that the thermoelectric power is consistent with the 2D Mott VRH above 70 K. We argue that the VRH conduction results from the topological disorders of rGO as confirmed by Raman spectroscopy. This infers that the average distance between defects is approximately 2.0 nm.

  18. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    Science.gov (United States)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  19. Riparian ecosystem consequences of water redistribution along the Colorado Front Range

    Science.gov (United States)

    John D. Wiener; Kathleen A. Dwire; Susan K. Skagen; Robert R. Crifasi; David Yates

    2008-01-01

    Water has shaped the American West. Nowhere is this more evident than along the Front Range of Colorado. At the west end of the famous Great Plains rainfall gradient, the Front Range extends most of the length of Colorado and is one of the fastest growing metropolitan regions in the nation. Annual precipitation along the Front Range averages about 16 inches, and...

  20. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  1. Compatibility issues of cement with water reducing admixture in concrete

    Directory of Open Access Journals (Sweden)

    A.K. Shrivastava

    2016-09-01

    Full Text Available Multiple brand of cement and water reducing admixtures are available in the market, even though these cements and admixture comply with the respective codal provisions there performance are not same in the concrete for each and every brand of cement and water reducing admixture, even if quality and source of other ingredients of concrete is kept same. This has created a lot of confusion among the user about what type/brand of admixture is used with what type/brand of cement and what should be optimum dose of admixture. Common problem associated with incompatibility issue is flash setting, delayed setting, rapid slump loss, improper strength gain and cracking, these not only effect the strength of the concrete but also the durability of the structure. Hence, in the present study different brand/type of cement and water reducing admixture available in the market is used to find study the compatibility issue and optimum dose of admixture. To achieve this marsh cone test has been performed. Test results indicate that the optimum dose of admixture vary from 0.9 to 1.1% of the weight of cement with different type/brand of cement and type/brand of admixture.

  2. Least limiting water range in assessing compaction in a Brazilian Cerrado latosol growing sugarcane

    Directory of Open Access Journals (Sweden)

    Wainer Gomes Gonçalves

    2014-04-01

    Full Text Available In the south-central region of Brazil, there is a trend toward reducing the sugarcane inter-harvest period and increasing traffic of heavy harvesting machinery on soil with high water content, which may intensify the compaction process. In this study, we assessed the structural changes of a distroferric Red Latosol (Oxisol by monitoring soil water content as a function of the Least Limiting Water Range (LLWR and quantified its effects on the crop yield and industrial quality of the first ratoon crop of sugarcane cultivars with different maturation cycles. Three cultivars (RB 83-5054, RB 84-5210 and RB 86-7515 were subjected to four levels of soil compaction brought about by a differing number of passes of a farm tractor (T0 = soil not trafficked, T2 = 2 passes, T10 = 10 passes, and T20 = 20 passes of the tractor in the same place in a 3 × 4 factorial arrangement with three replications. The deleterious effects on the soil structure from the farm machinery traffic were limited to the surface layer (0-10 cm of the inter-row area of the ratoon crop. The LLWR dropped to nearly zero after 20 tractor passes between the cane rows. We detected differences among the cultivars studied; cultivar RB 86-7515 stood out for its industrial processing quality, regardless of the level of soil compaction. Monitoring of soil moisture in the crop showed exposure to water stress conditions, although soil compaction did not affect the production variables of the sugarcane cultivars. We thus conclude that the absence of traffic on the plant row maintained suitable soil conditions for plant development and may have offset the harmful effects of soil compaction shown by the high values for bulk density between the rows of the sugarcane cultivars.

  3. Determination of the water retention of peat soils in the range of the permanent wilting point.

    Science.gov (United States)

    Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang

    2017-04-01

    Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.

  4. Increasing hydro turbine operation range and efficiencies using water injection in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Francke, Haakon Hjort

    2010-09-15

    It is a well known fact that most Francis turbines, because of the fixed blade design, faces challenges when running at partial load operation. Especially in the operating range below approximately 50 % of the rated output, it is common to observe severe pressure pulsations and surge in the draft tube. These pressure fluctuations are believed to be related to the swirling flow exiting the runner. By using water jets in the draft tube cone directed towards the swirling flow, the swirl strength is believed to be reduced and thereby also the pressure fluctuations produced by the swirl. This system thus has a potential of increasing the turbine operating range. The system can be activated when needed, and will not affect the turbine when running at its best efficiency point.Based on the main hypothesis, a simplified swirl rig was designed and constructed in order to investigate the nozzle influence on the swirling flow and on the pressure pulsations in a simplified environment. To expand the understanding of the nozzle performance in a Francis turbine, experiments were conducted in a model turbine with a prototype of movable nozzles. To establish a link between laboratory nozzle measurements and full scale nozzle measurements, field measurements were carried out on full scale Francis turbines running at partial discharge. For this purpose the turbines installed at Skarsfjord Power Station and Skibotn Power Station were used, where full scale nozzle injection systems were installed. The test results suggested that the concept of water injection worked, but not unconditionally. A reduction in pressure fluctuations was achieved both in laboratory and field experiments, as well as a noticeable reduction regarding fluctuations in the shaft run-out at Skibotn. In addition, water injection gave a surprisingly positive effect at overload conditions in the model turbine, even though the nozzle angle was directed in the same direction as the overload swirl. Ideally, the results

  5. Neck arthritis pain is reduced and range of motion is increased by massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2014-11-01

    The literature on the effects of massage therapy on neck arthritis pain is mixed depending on the dose level, and it is also based on self-report. In the present study an attempt was made to enhance the effects of weekly massage therapy by having the participants massage themselves daily. And in addition to self-reports on pain, range of motion (ROM) and the associated ROM pain were assessed before and after the first massage session and pre-post the last session one month later. Staff and faculty members at a medical school who were eligible for the study if they had neck arthritis pain were randomly assigned to a massage or a waitlist control group (N = 24 per group). The massage group received moderate pressure massages weekly by a massage therapist plus daily self-massages. The waitlist control group received the same schedule massages one month after being control subjects. The massage group showed significant short-term reductions after the first and last day massages in self-reported pain and in ROM-associated pain as well as an increase in ROM. Comparisons between the massage group (N = 23) and the control group (N = 14) on the last versus the first day data suggested significantly different changes including increased ROM and reduced ROM-associated pain for the massage group and reduced ROM and increased ROM-associated pain for the control group. These changes occurred specifically for flexion and right and left lateral flexion motions. These data highlight the importance of designing massage therapy protocols that target the most affected neck muscle groups and then assessing range of motion and related pain before and after the massage therapy. Comparisons with other studies also suggest that moderate pressure may contribute to the massage effects, and the use of daily self-massages between sessions may sustain the effects and serve as a cost-effective therapy for individuals with neck arthritis pain. Copyright © 2014. Published by Elsevier Ltd.

  6. Knee arthritis pain is reduced and range of motion is increased following moderate pressure massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2015-11-01

    The literature on massage therapy effects on knee pain suggests that pain was reduced based on self-report, but little is known about range of motion (ROM) effects. Medical School staff and faculty who had knee arthritis pain were randomly assigned to a moderate pressure massage therapy or a waitlist control group (24 per group). Self-reports included the WOMAC (pain, stiffness and function) and the Pittsburgh Sleep Quality Index. ROM and ROM-related pain were assessed before and after the last sessions. The massage group showed an immediate post-massage increase in ROM and a decrease in ROM-associated pain. On the last versus the first day of the study, the massage group showed greater increases in ROM and decreases in ROM-related pain as well as less self-reported pain and sleep disturbances than the waitlist control group. These data highlight the effectiveness of moderate pressure massage therapy for increasing ROM and lessening ROM-related pain and long-term pain and sleep disturbances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  8. One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite

    Science.gov (United States)

    Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn

    2011-01-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  9. One-carbon (bio?)geochemistry in subsurface waters of the serpentinizing Coast Range Ophiolite

    Science.gov (United States)

    Hoehler, T. M.; McCollom, T.; Schrenk, M. O.; Kubo, M.; Cardace, D.

    2011-12-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  10. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  11. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome

    Directory of Open Access Journals (Sweden)

    Reiter Lawrence T

    2011-01-01

    Full Text Available Abstract Background Angelman syndrome (AS is a neurogenetic disorder characterized by severe developmental delay with mental retardation, a generally happy disposition, ataxia and characteristic behaviors such as inappropriate laughter, social-seeking behavior and hyperactivity. The majority of AS cases are due to loss of the maternal copy of the UBE3A gene. Maternal Ube3a deficiency (Ube3am-/p+, as well as complete loss of Ube3a expression (Ube3am-/p-, have been reproduced in the mouse model used here. Results Here we asked if two characteristic AS phenotypes - social-seeking behavior and hyperactivity - are reproduced in the Ube3a deficient mouse model of AS. We quantified social-seeking behavior as time spent in close proximity to a stranger mouse and activity as total time spent moving during exploration, movement speed and total length of the exploratory path. Mice of all three genotypes (Ube3am+/p+, Ube3am-/p+, Ube3am-/p- were tested and found to spend the same amount of time in close proximity to the stranger, indicating that Ube3a deficiency in mice does not result in increased social seeking behavior or social dis-inhibition. Also, Ube3a deficient mice were hypoactive compared to their wild-type littermates as shown by significantly lower levels of activity, slower movement velocities, shorter exploratory paths and a reduced exploratory range. Conclusions Although hyperactivity and social-seeking behavior are characteristic phenotypes of Angelman Syndrome in humans, the Ube3a deficient mouse model does not reproduce these phenotypes in comparison to their wild-type littermates. These phenotypic differences may be explained by differences in the size of the genetic defect as ~70% of AS patients have a deletion that includes several other genes surrounding the UBE3A locus.

  12. Removal of sulphates from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2002-03-01

    Full Text Available are present in almost all types of water, usually as a simple anion SO42-. The sulphates together with hydrogencarbonates and chlorides are principal anions in natural waters. In typical underground and surface waters, the concentration of sulphates is in the range from ten to hundreds milligrams per litre.Nowadays, the importance of the control of sulphate concentration in waste waters increases. According to the Slovak legislation the limit concentration of sulphates in surface and drinking waters is 250 mg.l-1 . In rivers the contents of sulphates increases mainly by the discharge of waste waters, which are coming mainly from chemical, textile, metallurgical, pharmaceutical, paper and mining industry. The concentration of sulphates in these waters is in the order of grams per litre.Many technologies for the sulphates removal from waste waters exist, including biologico-chemical processes. The principle of one of these methods is the reduction of sulphates by sulphate-reducing bacteria to hydrogen-sulphide.The objective of this work was to study the effect of initial sulphates concentration on the activity of anaerobic sulphate reducers as well as the kinetics of the anaerobic sulphate reduction. The batch reactor was used at temperature of 30°C and pH 7,5. Lactate was used as the carbon source.

  13. Effect of tillage practices on least limiting water range in Northwest India

    Science.gov (United States)

    Kahlon, Meharban S.; Chawla, Karitika

    2017-04-01

    Tillage practices affect mechanical and hydrological characteristics of soil and subsequently the least limiting water range. This quality indicator under the wheat-maize system of northwest India has not been studied yet. The treatments included four tillage modes, namely conventional tillage, no-tillage without residue, no-tillage with residue, and deep tillage as well as three irrigation regimes based on the irrigation water and pan evaporation ratio i.e. 1.2, 0.9, and 0.6. The experiment was conducted in a split plot design with three replications. At the end of cropping system, the mean least limiting water range (m3 m-3) was found to be highest in deep tillage (0.26) and lowest in notillage without residue (0.15). The field capacity was a limiting factor for the upper range of the least limiting water range beyond soil bulk density 1.41 Mg m-3 and after that 10% air filled porosity played a major role. However, for the lower range, the permanent wilting point was a critical factor beyond soil bulk density 1.50 Mg m-3 and thereafter, the penetration resistance at 2 MPa becomes a limiting factor. Thus, deep tillage under compaction and no-tillage with residue under water stress is appropriate practice for achieving maximum crop and water productivity.

  14. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    esiri

    2013-11-13

    Nov 13, 2013 ... This study investigates the presence of SRB in water, in a water pipeline and in ... Key words: Sulphate-reducing bacteria, corrosion, water pipeline, biocide. INTRODUCTION ...... tubercles in distribution pipelines. J. Am. Water ...

  15. Monitoring of water supply connections as an element to reduce apparent losses of water?

    Science.gov (United States)

    Gwoździej-Mazur, Joanna

    2017-11-01

    Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the right water meter in the operating conditions is not an easy issue. The problem has been further intensified by decrease of water consumption which began in the 90s of the twentieth century and continuing to the present day. As a result, there has changed the structure of water consumption in both the residential and industrial applications. In this situation, a right selection of the optimal water meter it is an important case. The article presents the results of research in the field of characteristic flows in the water supply connections in multi-family housing using modern monitoring systems. It has been presented the calculated inequality ratio of water consumption, which can be helpful when designing a plumbing systems. In addition, the structure of water consumption due to the typical flow ranges was determined.

  16. Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems.

    Science.gov (United States)

    Cerrato, José M; Falkinham, Joseph O; Dietrich, Andrea M; Knocke, William R; McKinney, Chad W; Pruden, Amy

    2010-07-01

    The interaction of chemical, physical and biological factors that affect the fate, transport and redox cycling of manganese in engineered drinking water systems is not clearly understood. This research investigated the presence of Mn-oxidizing and -reducing bacteria in conventional water treatment plants exposed to different levels of chlorine. Mn(II)-oxidizing and Mn(IV)-reducing bacteria, principally Bacillus spp., were isolated from biofilm samples recovered from four separate drinking water systems. Rates of Mn-oxidation and -reduction for selected individual isolates were represented by pseudo-first-order kinetics. Pseudo-first-order rate constants were obtained for Mn-oxidation (range: 0.106-0.659 days(-1)), aerobic Mn-reduction (range: 0.036-0.152 days(-1)), and anaerobic Mn-reduction (range: 0.024-0.052 days(-1)). The results indicate that microbial-catalyzed Mn-oxidation and -reduction (aerobic and anaerobic) can take place simultaneously in aqueous environments exposed to considerable oxygen and chlorine levels and thus affect Mn-release and -deposition in drinking water systems. This has important implications for Mn-management strategies, which typically assume Mn-reduction is not possible in the presence of chlorine and oxidizing conditions. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  18. Increased passive ankle stiffness and reduced dorsiflexion range of motion in individuals with diabetes mellitus.

    Science.gov (United States)

    Rao, Smita R; Saltzman, Charles L; Wilken, Jason; Yak, H John

    2006-08-01

    The purpose of our study was to compare ankle range of motion and stiffness in individuals with and without diabetes mellitus using a reliable and valid technique and to document the effect of knee flexion and severity of pathology on ankle range of motion and stiffness. Twenty-five individuals with diabetes mellitus and 64 nondiabetic individuals, similar in age and gender profile, participated in this study. Results revealed that individuals with diabetes mellitus had both significantly lower peak dorsiflexion range of motion (5.1 and 11.5 degrees, p range of motion and increased stiffness in the diabetes mellitus population seem clinically intuitive, as far as we know this is the first study to confirm the concurrent existence of both these findings in the plantarflexors in individuals with diabetes mellitus. We applied a reliable and valid technique, one that allowed control of confounding factors such as knee flexion position and differences in determination of end range of motion, and documented a mean 41% loss in dorsiflexion excursion. Changes in the muscle, stemming from underlying pathology, are hypothesized to account for a significant part of the lost range of motion. Changes in ankle range of motion and stiffness may have important implications in plantar loading and ulcer formation.

  19. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel

    2014-01-01

    curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... combined with the Kelvin equation (CS-K) produced better fits to dry-end SWRCs of soils dominated by 2:1 clays but provided poor fits for soils dominated by 1:1 clays. The shape parameter α of the Oswin model was dependent on clay mineral type, and approximate values of 0.29 and 0.57 were obtained...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  20. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    Science.gov (United States)

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. © 2013.

  1. Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces

    Science.gov (United States)

    Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz

    2017-07-01

    The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.

  2. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    Directory of Open Access Journals (Sweden)

    Mohamad Faiz Mohd Amin

    2014-01-01

    Full Text Available This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles’ classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.

  3. Reduced mandibular range of motion in Duchenne muscular dystrophy : Predictive factors

    NARCIS (Netherlands)

    van Bruggen, H. W.; Van Den Engel-Hoek, L.; Steenks, M. H.; Bronkhorst, E. M.; Creugers, N. H J; de Groot, I. J M; Kalaykova, S. I.

    2015-01-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16·7

  4. Reduced mandibular range of motion in Duchenne Muscular Dystrophy: predictive factors.

    NARCIS (Netherlands)

    Bruggen, H.W. van; Engel-Hoek, L. van den; Steenks, M.H.; Bronkhorst, E.M.; Creugers, N.H.J.; Groot, I.J.M. de; Kalaykova, S.I.

    2015-01-01

    Patients with Duchenne muscular dystrophy (DMD) experience negative effects upon feeding and oral health. We aimed to determine whether the mandibular range of motion in DMD is impaired and to explore predictive factors for the active maximum mouth opening (aMMO). 23 patients with DMD (mean age 16.7

  5. Spectral estimation of soil water content in visible and near infra-red range

    Directory of Open Access Journals (Sweden)

    Attila Nagy

    2014-08-01

    Full Text Available Soils can be examined on the basis of spectral data, using such methods with which the reflected radiation can be divided into a large number of (several hundreds small spectral channel (some nm. Based on the spectral characteristics of the soils, or the different index numbers calculated from hyperspectral data water content of soils can be well characterized. The examined soil samples were coming from different apple orchards of which soils had different physical characteristics (sandy loamy and clay. The goals of my experiments were the evaluation of spectral measurement method for soil content detection, and to carry out algorithms for fast field scale spectral evaluation of different soil water content. The spectral measuring was carried out by laboratory scale AvaSpec 2048 spectrometer at 400 – 1000 nm wavelength interval with 0.6 nm spectral resolutions and by ASD FieldSpec Junior at 350 – 2500 nm. After drying, dry soil samples were watered by 2.5 m/m% till maximal saturation, and each wetting was measured spectrally. Based on spectral properties, reflectances were decreased in the whole spectral range within the continuous wetting due to the high absorption characteristics of water. The most water sensitive spectral ranges were selected by principal component, and such algorithms were created, with which the water content can be detectable in the certain soil. The algorithms can facilitate farmers for irrigation scheduling of their orchards. These results can also be utilizable in precision water management, since it can be a basis for such integrated active sensors with LED or laser light source, measuring reflectance at the certain spectral range, which can facilitate real time water status assessment of orchards.

  6. Long-Range Hydrophilic Attraction between Water and Polyelectrolyte Surfaces in Oil.

    Science.gov (United States)

    Shi, Chen; Yan, Bin; Xie, Lei; Zhang, Ling; Wang, Jingyi; Takahara, Atsushi; Zeng, Hongbo

    2016-11-21

    The outstanding water wettability and the capability of polyelectrolyte surfaces to spontaneously clean oil fouling are determined by their wetting mechanism in the surrounding medium. Here, we have quantified the nanomechanics between three types of polyelectrolyte surfaces (i.e. zwitterionic, cationic, and anionic) and water or oil drops using an atomic force microscope (AFM) drop probe technique, and elucidated the intrinsic wetting mechanisms of the polyelectrolyte surfaces in oil and water media. The measured forces between oil drops and polyelectrolyte surfaces in water can be described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Surprisingly, strong long-range attraction was discovered between polyelectrolyte surfaces and water drops in oil, and the strongest interaction was measured for the polyzwitterion. This unexpected long-range "hydrophilic" attraction in oil could be attributed to a strong dipolar interaction because of the large dipole moment of the polyelectrolytes. Our results provide new nanomechanical insights into the development of novel polyelectrolyte-based materials and coatings for a wide range of engineering, bioengineering, and environmental applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cavity-ring-down spectroscopy on water vapor in the range 555-604 nm

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.M.G.; Levelt, P.F.; Polyansky, O.L.; Zobov, N.F.; Tennyson, J.

    2001-01-01

    The method of pulsed cavity-ring-down spectroscopy was employed to record the water vapor absorption spectrum in the wavelength range 555-604 nm. The spectrum consists of 1830 lines, calibrated against the iodine standard with an accuracy of 0.01 cm

  8. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Pedersen, Christian; Andersen, Peter E.

    2012-01-01

    Recently, the wavelength range around 1060 nm has become attractive for retinal imaging with optical coherence tomography (OCT), promising deep penetration into the retina and the choroid. The adjacent water absorption bands limit the useful bandwidth of broadband light sources, but until now...... sources for OCT....

  9. Swarming of Creseis acicula Rang (Pteropoda) in the coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Swarms of Creseis acicula Rang (Pteropoda) were observed in the coastal waters of Goa regularly in October, from 1976 to 1980. The highest biomass value obtained for this species was 494 ml/100 m@u3@@, forming 96% of zooplankton population...

  10. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    Science.gov (United States)

    Ebel, Brian A.

    2012-01-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  11. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels

    Science.gov (United States)

    Selbig, William R.

    2017-01-01

    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  12. Noradrenaline transmission reducing drugs may protect against a broad range of diseases.

    Science.gov (United States)

    Fitzgerald, P J

    2015-04-01

    1 A growing body of evidence suggests that the signalling molecule, noradrenaline (NA), plays a pathophysiological role in a broad range of psychiatric, neurological and peripheral disorders. Both preclinical and clinical data suggest that elevated NA signalling may be involved in the aetiology of major diseases such as depression, Alzheimer's disease and diabetes mellitus. 2 The molecular pathways by which NA may cause the manifestation of disease remain poorly understood, although they may include G protein-coupled receptor modulation of the Ras/MAP kinase, Stat3 and PI3K pathways, among others. In both individual animals and humans, NA tone may be elevated largely due to genetics, but also because of the exposure to marked psychological stress or trauma, or other environmental factors. 3 As NA is involved in the 'fight or flight' response by the sympathetic nervous system, this transmitter may be elevated in a large number of organisms due to evolutionary selection of enhancing responses to immediate environmental dangers. Likewise, acetylcholine signalling by the parasympathetic ('rest and digest') nervous system may be relatively diminished. This putative autonomic imbalance may result in diminished engagement in homeostatic processes, resulting in the emergence and progression of a number of diseases throughout the body. 4 In this scenario, a large number of individuals may benefit from chronic use of pharmacological agents - such as clonidine, guanfacine, propranolol or prazosin - that diminish NA signalling throughout the body. If so, NA transmission lowering drugs may protect against a wide range of diseases. © 2014 John Wiley & Sons Ltd.

  13. Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ▿ † ‡

    Science.gov (United States)

    Ellis, Crystal N.; Cooper, Vaughn S.

    2010-01-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121

  14. Electrochemically Reduced Water Protects Neural Cells from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Taichi Kashiwagi

    2014-01-01

    Full Text Available Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW was demonstrated to scavenge reactive oxygen species (ROS in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2 and nitric oxide (NO was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW.

  15. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters.

    Science.gov (United States)

    Wang, Wanfeng; Guo, Yanling; Yang, Qingxiang; Huang, Yao; Zhu, Chunyou; Fan, Jing; Pan, Feng

    2015-07-15

    Two biofilters were constructed using biological activated carbon (BAC) and nitrosamine-containing water from two drinking water treatment plants. The microbiome of each biofilter was characterized by 454 high-throughput pyrosequencing, and one nitrosamine-reducing bacterium was isolated. The results showed that nitrosamines changed the relative abundance at both the phylum and class levels, and the new genera were observed in the microbial communities of the two BAC filters after cultivation. As such, the genus Rhodococcus, which includes many nitrosamine-reducing strains reported in previous studies, was only detected in the BAC2 filter after cultivation. These findings indicate that nitrosamines can significantly affect the genus level in the microbial communities. Furthermore, the isolated bacterial culture Rhodococcus cercidiphylli A41 AS-1 exhibited the ability to reduce five nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodi-n-propylamine, N-nitrosopyrrolidine, and N-nitrosodi-n-butylamine) with removal ratios that ranged from 38.1% to 85.4%. The isolate exhibited a better biodegradation ability with nitrosamine as the carbon source when compared with nitrosamine as the nitrogen source. This study increases our understanding of the microbial community in drinking water biofilters with trace quantities of nitrosamines, and provides information on the metabolism of nitrosamine-reducing bacteria. Copyright © 2015. Published by Elsevier B.V.

  16. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range

    Science.gov (United States)

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.

    2003-01-01

    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  17. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    Science.gov (United States)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  18. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron

    Science.gov (United States)

    Lehrack, Sebastian; Assmann, Walter; Bertrand, Damien; Henrotin, Sebastien; Herault, Joel; Heymans, Vincent; Vander Stappen, Francois; Thirolf, Peter G.; Vidal, Marie; Van de Walle, Jarno; Parodi, Katia

    2017-09-01

    Proton ranges in water between 145 MeV to 227 MeV initial energy have been measured at a clinical superconducting synchrocyclotron using the acoustic signal induced by the ion dose deposition (ionoacoustic effect). Detection of ultrasound waves was performed by a very sensitive hydrophone and signals were stored in a digital oscilloscope triggered by secondary prompt gammas. The ionoacoustic range measurements were compared to existing range data from a calibrated range detector setup on-site and agreement of better than 1 mm was found at a Bragg peak dose of about 10 Gy for 220 MeV initial proton energy, compatible with the experimental errors. Ionoacoustics has thus the potential to measure the Bragg peak position with submillimeter accuracy during proton therapy, possibly correlated with ultrasound tissue imaging.

  20. A parallel unbalanced digitization architecture to reduce the dynamic range of multiple signals

    Science.gov (United States)

    Vallérian, Mathieu; HuÅ£u, Florin; Villemaud, Guillaume; Miscopein, Benoît; Risset, Tanguy

    2016-05-01

    Technologies employed in urban sensor networks are permanently evolving, and thus the gateways employed to collect data in such kind of networks have to be very flexible in order to be compliant with the new communication standards. A convenient way to do that is to digitize all the received signals in one shot and then to digitally perform the signal processing, as it is done in software-defined radio (SDR). All signals can be emitted with very different features (bandwidth, modulation type, and power level) in order to respond to the various propagation conditions. Their difference in terms of power levels is a problem when digitizing them together, as no current commercial analog-to-digital converter (ADC) can provide a fine enough resolution to digitize this high dynamic range between the weakest possible signal in the presence of a stronger signal. This paper presents an RF front end receiver architecture capable of handling this problem by using two ADCs of lower resolutions. The architecture is validated through a set of simulations using Keysight's ADS software. The main validation criterion is the bit error rate comparison with a classical receiver.

  1. Design of a fast echo matching algorithm to reduce crosstalk with Doppler shifts in ultrasonic ranging

    Science.gov (United States)

    Liu, Lei; Guo, Rui; Wu, Jun-an

    2017-02-01

    Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.

  2. The Ionization Constant of Water over Wide Ranges of Temperature and Density

    Science.gov (United States)

    Bandura, Andrei V.; Lvov, Serguei N.

    2006-03-01

    A semitheoretical approach for the ionization constant of water, KW, is used to fit the available experimental data over wide ranges of density and temperature. Statistical thermodynamics is employed to formulate a number of contributions to the standard state chemical potential of the ionic hydration process. A sorption model is developed for calculating the inner-shell term, which accounts for the ion-water interactions in the immediate ion vicinity. A new analytical expression is derived using the Bragg-Williams approximation that reproduces the dependence of a mean ion solvation number on the solvent chemical potential. The proposed model was found to be correct at the zero-density limit. The final formulation has a simple analytical form, includes seven adjustable parameters, and provides good fitting of the collected KW data, within experimental uncertainties, for a temperature range of 0-800 °C and densities of 0-1.2 g cm-3.

  3. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  4. Reducing water use for animal production through aquaculture

    NARCIS (Netherlands)

    Verdegem, M.C.J.; Bosma, R.H.; Verreth, J.A.J.

    2006-01-01

    Animals fed formulated diets indirectly consume large quantities of water. Globally, about 1.2 m3 of water is needed to produce 1 kg of grain used in animal feeds. Cattle in feedlots consume about 7 kg of feed concentrate to gain 1 kg in weight. For pigs this is close to 4 kg and for poultry

  5. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.

    Science.gov (United States)

    King, B J; Hoefel, D; Daminato, D P; Fanok, S; Monis, P T

    2008-05-01

    To determine the effect of solar radiation on Cryptosporidium parvum in tap and environmental waters. Outdoor tank experiments and a cell culture infectivity assay were used to measure solar inactivation of C. parvum oocysts in different waters. Experiments conducted on days with different levels of solar insolation identified rapid inactivation of oocysts in tap water (up to 90% inactivation within the first hour). Increased dissolved organic carbon content in environmental waters decreased solar inactivation. The role of solar ultraviolet (UV) in inactivation was confirmed by long-pass filter experiments, where UV-B was identified as the most germicidal wavelength. Reductions in oocyst infectivity following solar radiation were not related to a loss of excystation capacity. Solar UV can rapidly inactivate C. parvum in environmental waters. This is the first study to assess natural sunlight inactivation of C. parvum oocysts in surface waters and drinking water using an infectivity measure and determines the wavelengths of light responsible for the inactivation. The findings presented here provide valuable information for determining the relative risks associated with Cryptosporidium oocysts in aquatic environments and identify solar radiation as a critical process affecting the oocyst survival in the environment.

  6. Reducing phosphorus loading of surface water using iron-coated sand

    NARCIS (Netherlands)

    Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F.

    2013-01-01

    Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an

  7. 3Ts for Reducing Lead in Drinking Water: Telling

    Science.gov (United States)

    Lead in drinking water in schools or childcare facilities programs should include communicating with parents, teachers, and the public. Transparency and a communication strategy are a key piece to developing a lead testing program.

  8. 3Ts for Reducing Lead in Drinking Water: Training

    Science.gov (United States)

    It is important to train school officials to raise awareness of the potential occurrences, causes, and health effects of lead in drinking water; assist school officials in identifying potential areas where elevated lead may occur.

  9. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  10. Landfill disposal of unused medicines reduces surface water releases.

    Science.gov (United States)

    Tischler, Lial; Buzby, Mary; Finan, Douglas S; Cunningham, Virginia L

    2013-01-01

    The pharmaceutical industry is conducting research to evaluate the pathways and fate of active pharmaceutical ingredients from the consumer to surface waters. One potential pathway identified by the researchers is the disposal of unused pharmaceutical products that are discarded by consumers in household trash and disposed of in municipal solid waste landfills. This study was designed to evaluate relative amounts of surface water exposures through the landfill disposal pathway compared to patient use and flushing of unused medicine pathways. The estimated releases to surface water of 24 example active pharmaceutical ingredients (APIs) in landfill leachate were calculated for 3 assumed disposal scenarios: 5%, 10%, and 15% of the total annual quantity of API sold is discarded and unused. The estimated releases from landfills to surface waters, after treatment of the leachate, were compared to the total amount of each example API that would be released to surface waters from publicly owned treatment works, generated by patient use and excretion. This study indicates that the disposal of unused medications in municipal solid waste landfills effectively eliminates the unused medicine contribution of APIs to surface waters; greater than 99.9% of APIs disposed of in a landfill are permanently retained. Copyright © 2012 SETAC.

  11. Release of reduced inorganic selenium species into waters by the green fresh water algae Chlorella vulgaris.

    Science.gov (United States)

    Simmons, Denina Bobbie Dawn; Wallschläger, Dirk

    2011-03-15

    The common green fresh water algae Chlorella vulgaris was exposed to starting concentrations of 10 μg/L selenium in the form of selenate, selenite, or selenocyanate (SeCN(-)) for nine days in 10% Bold's basal medium. Uptake of selenate was more pronounced than that of selenite, and there was very little uptake of selenocyanate. Upon uptake of selenate, significant quantities of selenite and selenocyanate were produced by the algae and released back into the growth medium; no selenocyanate was released after selenite uptake. Release of the reduced metabolites after selenate exposure appeared to coincide with increasing esterase activity in solution, indicating that cell death (lysis) was the primary emission pathway. This is the first observation of biotic formation of selenocyanate and its release into waters from a nonindustrial source. The potential environmental implications of this laboratory observation are discussed with respect to the fate of selenium in impacted aquatic systems, the ecotoxicology of selenium bioaccumulation, and the interpretation of environmental selenium speciation data generated, using methods incapable of positively identifying reduced inorganic selenium species, such as selenocyanate.

  12. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range

    Directory of Open Access Journals (Sweden)

    Cristina Pulido

    2014-08-01

    Full Text Available Distribution of aquatic macrophytes in lakes is related to geographical, morphological, catchment and water chemistry variables as well as human impacts, which modify the original environment. Here, we aim at building statistical models to establish the ecological niches of 11 aquatic macrophytes (10 different phanerogams and the genus Nitella from oligotrophic soft-water lakes and infer their ecological requirements and environmental constraints at the southernmost limit of their distribution. Macrophyte occurrence and environmental variables were obtained from 86 non-exploited oligotrophic soft-water lakes from the Pyrenees (Southern Europe; 42º50´N, 1º00´E; macrophytes inhabited 55 of these lakes. Optimum ranges and macrophyte occurrence were predicted in relation to 18 geographical, morphological, catchment and water chemistry variables using univariate and multivariate logistic models. Lakes at low altitude, in vegetated catchments and with low water concentration of NO3- and SO4-2, were the most suitable to host macrophytes. In general, individual species of aquatic macrophytes showed clear patterns of segregation along conductivity and pH gradients, although the specific combination of variables selected in the best models explaining their occurrence differed among species.  Based on the species response to pH and conductivity, we found Isoetes lacustris have its optimum in waters with low conductivity and pH (i.e. negative monotonic response. In contrast, Callitriche palustris, Ranunculus aquatilis, Subularia aquatica, Nitella spp., and Myriophyllum alterniflorum showed an optimum at intermediate values (i.e. unimodal response, whereas Potamogeton berchtoldii, Potamogeton alpinus, and Ranunculus trichophyllus as species had their optimum at relatively high water pH and conductivity (i.e. positive monotonic response. This pattern has been observed in other regions for the same species, although with different optima and tolerance

  13. The relationship between joint range of motion, muscular strength, and race time for sub-elite flat water kayakers.

    Science.gov (United States)

    McKean, Mark R; Burkett, Brendan

    2010-09-01

    Upper body strength and flexibility are common training activities in elite flat water kayaking yet the relationship between joint range of motion, muscular strength, and race time is unclear. The aim of this research was to firstly quantify the flexibility and strength of sub-elite kayakers and then determine the relationship of this data to performance race times. Twenty-nine national standard kayak paddlers were assessed for shoulder and pelvic flexibility, upper body strength, and performance time. The shoulder internal and external rotation range of movement for kayak paddlers was reduced in comparison to other populations. For the female paddlers significant (p0.70) were found between shoulder flexion range of movement, shoulder strength, and strength endurance. Strength scores for kayak paddlers are reported for the first time showing the Pull:Push strength ratio for male kayak paddlers was 129%, and for females 147%. The strength ratio was significantly different (pkayaking appears to reduce the ROM about the shoulder joint.

  14. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    Science.gov (United States)

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. © 2016 John Wiley & Sons Ltd.

  15. Water Vapor Sorption Properties of Polyethylene Terephthalate over a Wide Range of Humidity and Temperature.

    Science.gov (United States)

    Dubelley, Florence; Planes, Emilie; Bas, Corine; Pons, Emmanuelle; Yrieix, Bernard; Flandin, Lionel

    2017-03-02

    The dynamic and equilibrium water vapor sorption properties of amorphous polyethylene terephthalate were determined via gravimetric analysis over a wide range of temperatures (23-70 °C) and humidities (0-90% RH). At low temperature and relative humidity, the dynamics of the sorption process was Fickian. Increasing the temperature or relative humidity induced a distinct up-swing effect, which was associated with a plasticization/clustering phenomenon. For high temperatures and relative humidity, a densification of the polymer was evidenced. In addition to the classical Fickian diffusion, a new parameter was introduced to express the structural modifications of PET. Finally, two partial pressures were defined as thresholds that control the transition between these three phases. A simplified state diagram was finally proposed. In addition, the thermal dependence of these sorption modes was also determined and reported. The enthalpy of Henry's water sorption and the activation energy of diffusion were independent of vapor pressure and followed an Arrhenius law.

  16. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.

    Science.gov (United States)

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M

    2015-02-01

    The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  17. Effectiveness of the new water source intervention in reducing ...

    African Journals Online (AJOL)

    Introduction. Diarrheal diseases are the major cause of morbidity and mortality among children in many developing countries, particularly in sub-Saharan Africa 1. One of the contributory factors predisposing children to diarrhea is the water and sanitation contamination vicious cycle2. In Eritrea, diarrhoeal disease is one of ...

  18. Dietary strategies for reduced phosphorus excretion and improved water quality

    NARCIS (Netherlands)

    Maguire, R.O.; Dou, Z.; Sims, J.T.; Brake, J.; Joern, B.C.

    2005-01-01

    Received for publication October 29, 2004. Cost effective feeding strategies are essential to deal with P surpluses associated with intensive animal agriculture and the consequent impact on water quality. Reduction of P overfeeding, use of feed additives to enhance dietary P utilization, and

  19. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  20. Coherent reverberation model based on adiabatic normal mode theory in a range dependent shallow water environment

    Science.gov (United States)

    Li, Zhenglin; Zhang, Renhe; Li, Fenghua

    2010-09-01

    Ocean reverberation in shallow water is often the predominant background interference in active sonar applications. It is still an open problem in underwater acoustics. In recent years, an oscillation phenomenon of the reverberation intensity, due to the interference of the normal modes, has been observed in many experiments. A coherent reverberation theory has been developed and used to explain this oscillation phenomenon [F. Li et al., Journal of Sound and Vibration, 252(3), 457-468, 2002]. However, the published coherent reverberation theory is for the range independent environment. Following the derivations by F. Li and Ellis [D. D. Ellis, J. Acoust. Soc. Am., 97(5), 2804-2814, 1995], a general reverberation model based on the adiabatic normal mode theory in a range dependent shallow water environment is presented. From this theory the coherent or incoherent reverberation field caused by sediment inhomogeneity and surface roughness can be predicted. Observations of reverberation from the 2001 Asian Sea International Acoustic Experiment (ASIAEX) in the East China Sea are used to test the model. Model/data comparison shows that the coherent reverberation model can predict the experimental oscillation phenomenon of reverberation intensity and the vertical correlation of reverberation very well.

  1. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2015-12-01

    Full Text Available Beijing is one of the most water-stressed regions in the world. Reducing agricultural water use has long been the basis of local policy for sustainable water use. In this article, the potential to reduce the life cycle (cradle to gate water footprints of wheat and maize that contribute to 94% of the local cereal production was assessed. Following ISO 14046, consumptive and degradative water use for the wheat-maize rotation system was modeled under different irrigation and nitrogen (N application options. Reducing irrigation water volume by 33.3% compared to current practice did not cause a significant yield decline, but the water scarcity footprint and water eutrophication footprint were decreased by 27.5% and 23.9%, respectively. Similarly, reducing the N application rate by 33.3% from current practice did not cause a significant yield decline, but led to a 52.3% reduction in water eutrophication footprint while maintaining a similar water scarcity footprint. These results demonstrate that improving water and fertilizer management has great potential for reducing the crop water footprints at the farm scale. This situation in Beijing is likely to be representative of the challenge facing many of the water-stressed regions in China, where a sustainable means of agricultural production must be found.

  2. Bearing splitting and near-surface source ranging in the direct zone of deep water

    Science.gov (United States)

    Wu, Jun-Nan; Zhou, Shi-Hong; Peng, Zhao-Hui; Zhang, Yan; Zhang, Ren-He

    2016-12-01

    Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a bearing-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz-360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The bearing-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations. Project supported by the Program of One Hundred Talented People of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  3. Pleistocene range shifts, refugia and the origin of widespread species in western Palaearctic water beetles.

    Science.gov (United States)

    García-Vázquez, David; Bilton, David T; Foster, Garth N; Ribera, I

    2017-09-01

    Quaternary glacial cycles drove major shifts in both the extent and location of the geographical ranges of many organisms. During glacial maxima, large areas of central and northern Europe were inhospitable to temperate species, and these areas are generally assumed to have been recolonized during interglacials by range expansions from Mediterranean refugia. An alternative is that this recolonization was from non-Mediterranean refugia, in central Europe or western Asia, but data on the origin of widespread central and north European species remain fragmentary, especially for insects. We studied three widely distributed lineages of freshwater beetles (the Platambus maculatus complex, the Hydraena gracilis complex, and the genus Oreodytes), all restricted to running waters and including both narrowly distributed southern endemics and widespread European species, some with distributions spanning the Palearctic. Our main goal was to determine the role of the Pleistocene glaciations in shaping the diversification and current distribution of these lineages. We sequenced four mitochondrial and two nuclear genes in populations drawn from across the ranges of these taxa, and used Bayesian probabilities and Maximum Likelihood to reconstruct their phylogenetic relationships, age and geographical origin. Our results suggest that all extant species in these groups are of Pleistocene origin. In the H. gracilis complex, the widespread European H. gracilis has experienced a rapid, recent range expansion from northern Anatolia, to occupy almost the whole of Europe. However, in the other two groups widespread central and northern European taxa appear to originate from central Asia, rather than the Mediterranean. These widespread species of eastern origin typically have peripherally isolated forms in the southern Mediterranean peninsulas, which may be remnants of earlier expansion-diversification cycles or result from incipient isolation of populations during the most recent Holocene

  4. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  5. Emergency response planning to reduce the impact of contaminated drinking water during natural disasters

    Science.gov (United States)

    Patterson, Craig L.; Adams, Jeffrey Q.

    2011-12-01

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water systems. Prior to an event, utilities and municipalities can use "What if"? scenarios to develop emergency operation, response, and recovery plans designed to reduce the severity of damage and destruction. Government agencies including the EPA are planning ahead to provide temporary supplies of potable water and small drinking water treatment technologies to communities as an integral part of emergency response activities that will ensure clean and safe drinking water.

  6. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.

    Science.gov (United States)

    Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu

    2017-11-01

    Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of the gaseous and liquid water content of the atmosphere on range delay and Doppler frequency

    Science.gov (United States)

    Flock, W. L.

    1981-01-01

    When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.

  8. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Alsanea, Fahed [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 (United States); Moskvin, Vadim [Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, RT 041, Indianapolis, Indiana 46202-5289 (United States); Stantz, Keith M., E-mail: kstantz@purdue.edu [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 and Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, Indiana 46202-5289 (United States)

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  9. Pseudomonad Swarming Motility Is Restricted to a Narrow Range of High Matric Water Potentials

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2012-01-01

    significances. Our results indicate that swarming motility is restricted to a narrow range of high matric water potentials in the three pseudomonads tested (Pseudomonas sp. DSS73, Pseudomonas syringae B728a, and Pseudomonas aeruginosa PA14). The threshold below which no swarming was observed was about –0.45 k......Using a novel experimental system that allows control of the matric potential of an agar slab, we explored the hydration conditions under which swarming motility is possible. If there is recognition that this physical parameter is a key determinant of swarming, it is usually neither controlled nor......Pa for the first and about –0.1 kPa for the latter two. Above the threshold, the expansion rate of DSS73 swarms increased exponentially with the matric potential. Mutants deficient in surfactant production were totally or partially unable to expand rapidly on the surface of the agar slab. Our results thus suggest...

  10. A simplified Excel® algorithm for estimating the least limiting water range of soils

    Directory of Open Access Journals (Sweden)

    Leão Tairone Paiva

    2004-01-01

    Full Text Available The least limiting water range (LLWR of soils has been employed as a methodological approach for evaluation of soil physical quality in different agricultural systems, including forestry, grasslands and major crops. However, the absence of a simplified methodology for the quantification of LLWR has hampered the popularization of its use among researchers and soil managers. Taking this into account this work has the objective of proposing and describing a simplified algorithm developed in Excel® software for quantification of the LLWR, including the calculation of the critical bulk density, at which the LLWR becomes zero. Despite the simplicity of the procedures and numerical techniques of optimization used, the nonlinear regression produced reliable results when compared to those found in the literature.

  11. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water.

    Science.gov (United States)

    Schlesinger, Daniel; Wikfeldt, K Thor; Skinner, Lawrie B; Benmore, Chris J; Nilsson, Anders; Pettersson, Lars G M

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  13. Density and Phonon-Stiffness Anomalies of Water and Ice in the Full Temperature Range.

    Science.gov (United States)

    Sun, Chang Q; Zhang, Xi; Fu, Xiaojian; Zheng, Weitao; Kuo, Jer-Lai; Zhou, Yichun; Shen, Zexiang; Zhou, Ji

    2013-10-03

    The specific-heat difference between the O:H van der Waals bond and the H-O polar-covalent bond and the Coulomb repulsion between electron pairs on adjacent oxygen atoms determine the angle-length-stiffness relaxation dynamics of the hydrogen bond (O:H-O), which is responsible for the density and phonon-stiffness oscillation of water ice over the full temperature range. Cooling shortens and stiffens the part of relatively lower specific-heat, and meanwhile lengthens and softens the other part of the O:H-O bond via repulsion. Length contraction/elongation of a specific part always stiffens/softens its corresponding phonon. In the liquid and in the solid phase, the O:H bond contracts more than the H-O elongates, hence, an O:H-O cooling contraction and the seemingly "regular" process of cooling densification take place. During freezing, the H-O contracts less than the O:H elongates, leading to an O:H-O elongation and volume expansion. At extremely low temperatures, the O:H-O angle stretching lowers the density slightly as the O:H and the H-O lengths change insignificantly. In ice, the O-O distance is longer than it is in water, resulting in a lower density, so that ice floats.

  14. Narrowing the range of water availability projections in China using the Budyko framework

    Science.gov (United States)

    Osborne, Joe; Lambert, Hugo

    2017-04-01

    There is a growing demand for reliable 21st-century projections of water availability at the regional scale. Used alone, global climate models (GCMs) are unsuitable for generating such projections at catchment scales in the presence of simulated aridity biases. This is because the Budyko framework dictates that the partitioning of precipitation into runoff and evapotranspiration scales as a non-linear function of aridity. Therefore, GCMs are typically used in tandem with global hydrological models (GHMs), but this process is computationally expensive. Here, considering a Chinese case study, we utilise the Budyko framework to make use of plentiful GCM output, without the need for GHMs. We first apply the framework to 20th-century observations to show that the significant declines in Yellow river discharge between 1951 and 2000 cannot be accounted for by modelled climate change alone, with human activities playing a larger but poorly quantified role. We further show that the Budyko framework can be used to narrow the range of water availability projections in the Yangtze and Yellow river catchments by 33% an 72%, respectively, in the 21st-century RCP8.5 business-as-usual emission scenario. In the Yellow catchment the best-guess end-of-21st-century change in runoff decreases from an increase of 0.09 mm/d in raw multi-model mean output to an increase of 0.04 mm/d in Budyko corrected multi-model mean output. While this is a valuable finding, we stress that these changes could be dwarfed by changes due to human activity in the 21st century, unless strict water management policies are implemented.

  15. Reducing water leakage into underground coal mines by aquifer dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J. P.

    1978-01-01

    Based on stratigraphic, structural, hydrogeologic, and mining data collected during a study in central Pennsylvania, a two-dimensional, finite-difference computer model was used to simulate groundwater flow in a sandstone unit (0.3 to 11 m thick) overlying an underground mine, and to evaluate the responses of the flow system and leakage rate into the mine when hypothetical dewatering wells are introduced into the system. Simulation of well dewatering, using 25 wells, showed that negligible reduction in leakage would occur if sandstone permeability was less than 0.30 m/day. When sandstone permeability equalled 3.0 m/day, 25 wells reduced leakage by 2.4 percent.

  16. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range.

    Science.gov (United States)

    Mulkern, Robert V; Barnes, Agnieszka Szot; Haker, Steven J; Hung, Yin P; Rybicki, Frank J; Maier, Stephan E; Tempany, Clare M C

    2006-06-01

    Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b

  17. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  18. Spectrophotometric determination of silica in water. Low range; Determinacion espectrofotometrica de silicio en aguas. Rango bajo

    Energy Technology Data Exchange (ETDEWEB)

    Acosta L, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: eal@nuclear.inin.mx

    1992-07-15

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 {mu}g/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  19. Ground based snow water equivalent versus remotely sensed snow water extent assimilation for medium range streamflow simulation

    Science.gov (United States)

    Schaner, N. A.; Voisin, N.; Lettenmaier, D. P.

    2011-12-01

    In general, it is difficult for snow data assimilation to produce improvements in seasonal streamflow forecasts made with a well calibrated hydrological model when forced (up to the forecast time) by high quality gridded station data, because the uncertainty in the seasonal climate forecasts heavily influences streamflow forecast accuracy. On the other hand, improvements should be realizable for short to medium range (up to about 15 days) forecasts where the initial hydrologic conditions have more influence. Ground-based snow water equivalent (SWE) is observed at many locations across the western U.S., and is a state variable in most hydrological models, hence in principle can be assimilated directly into hydrologic models. However the challenge in assimilating SWE lies in the spatial disaggregation of point-based measurements in complex terrain and with varying observation density network, to the spatial resolution of hydrological models, which typically represent basin-average or grid cell-average (possibly with elevation bands) conditions, rather than points. The station-based SWE assimilation approach we consider here is taken from the University of Washington's West-Wide Seasonal Forecast system and uses the NRCS SNOw TELemetry (SNOTEL) network of about 600 stations across the mountainous West. The approach relies on a disaggregation using spatial and elevation-based weights. Satellite-derived Snow Cover Extent (SCE), in contrast, defines the spatial extent of the snow coverage but must rely on an empirical SCE-SWE relationship to produce estimates of SWE, which can then be assimilated. The direct insertion of SCE has not lead to much improvement in streamflow forecasts at seasonal lead times in previous studies, but our results show more marked improvements for shorter lead times. We evaluate the differences in potential forecast error reductions in medium range streamflow simulations (perfect forecast) for both SWE and SCE assimilation over the Feather River

  20. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.

    Science.gov (United States)

    Fuller, Mark E; Schaefer, Charles E; Steffan, Robert J

    2009-11-01

    An evaluation of peat moss plus crude soybean oil (PMSO) for mitigation of explosive contamination of soil at military facilities was performed using large soil lysimeters under field conditions. Actual range soils were used, and two PMSO preparations with different ratios of peat moss:soybean oil (1:1, PO1; 1:2, PO2) were compared to a control lysimeter that received no PMSO. PMSO was applied as a 10 cm layer on top of the soil, and Composition B detonation residues from a 55-mm mortar round were applied at the surface of each of the lysimeters. Dissolution of the residues occurred during natural precipitation events over the course of 18 months. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) emanating from the Composition B residues were significantly reduced by the PO2 PMSO material compared to the untreated control. Soil pore water RDX concentrations and RDX fluxes were reduced over 100-fold compared to the control plots at comparable depths. Residual RDX in the soil profile was also significantly lower in the PMSO treated plots. PO1 PMSO resulted in lower reductions in RDX transport than the PO2 PMSO. The transport of the RDX breakdown product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was also greatly reduced by the PMSO materials. Results were in general agreement with a previously developed fate and transport model describing PMSO effectiveness. These results demonstrate the potential effectiveness of the inexpensive and environmentally benign PMSO technology for reducing the subsurface loading of explosives at training ranges and other military facilities.

  1. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  2. Increasing the Cruise Range and Reducing the Capital Cost of Electric Vehicles by Integrating Auxiliary Unit with the Traction Drive

    Directory of Open Access Journals (Sweden)

    N. Satheesh Kumar

    2016-01-01

    Full Text Available Poor cruise performance of Electric Vehicles (EVs continues to be the primary reason that impends their market penetration. Adding more battery to extend the cruise range is not a viable solution as it increases the structural weight and capital cost of the EV. Simulations identified that a vehicle spends on average 15% of its total time in braking, signifying an immense potential of the utilization of regenerative braking mechanism. Based on the analysis, a 3 kW auxiliary electrical unit coupled with the traction drive during braking events increases the recoverable energy by 8.4%. In addition, the simulation revealed that, on average, the energy drawn from the battery is reduced by 3.2% when traction drive is integrated with the air-conditioning compressor (an auxiliary electrical load. A practical design solution of the integrated unit is also included in the paper. Based on the findings, it is evident that the integration of an auxiliary unit with the traction drive results in enhancing the energy capturing capacity of the regenerative braking mechanism and decreases the power consumed from the battery. Further, the integrated unit boosts other advantages such as reduced material cost, improved reliability, and a compact and lightweight design.

  3. Reducing and verifying haloacetic acids in treated drinking water using a biological filter system.

    Science.gov (United States)

    Lou, Jie C; Chan, Hung Y; Yang, Chih Y; Tseng, Wei B; Han, Jia Y

    2014-01-01

    This study focused on reducing the haloacetic acid (HAA) concentrations in treated drinking water. HAA has been thought to be one possible nutrient supporting heterotrophic bacteria regrowth in drinking water. In this study, experiments were conducted using a pilot-scale system to evaluate the efficiency of biological filters (BF) for reducing excess HAA concentrations in water. The BF system reduced the total HAA concentration and the concentrations of five HAA species in the water. Dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) were the three main HAA5 species that were present in the treated drinking water in this investigation. Combined, these three species represent approximately 77% of the HAA5 in the finished water after BF. The verification of the empirical HAA equation for the outlet in the BF system indicated linear relationships with high correlation coefficients. The empirical equation for the HAA5 concentrations in the finished water was established by examining other nutrients (e.g., dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), and ammonia nitrogen) that can reduce pathogenic contamination. These findings may be useful for designing advanced processes for conventional water treatment plants or for managing water treatment and distribution systems for providing high-quality drinking water.

  4. [First results on the use of chloramines to reduce disinfection byproducts in drinking water].

    Science.gov (United States)

    Azara, Antonio; Muresu, Elena; Dettori, Marco; Ciappeddu, Pierluigi; Deidda, Antonio; Maida, Alessandro

    2010-01-01

    The presence of disinfection byproducts (DBP) in drinking water raises concerns about the safety of chlorination and is one of the problems inherent the use of surface water as a source of drinking water. In order to reduce the presence of DBP (in particular of chlorites), we evaluated the combined use of chlorine dioxide for primary disinfection and monochloramine for residual disinfection in a water purification plant and distribution system in Sardinia (Italy). The results are very encouraging. Disinfection byproducts were reduced and other parameters were found to be within the recommended standards, indicating further improvements of the purification process.

  5. PARTITION INFRARED METHOD FOR TOTAL GASOLINE RANGE ORGANICS IN WATER BASED ON SOLID PHASE MICROEXTRACTION. (R825343)

    Science.gov (United States)

    A new method is described for determining total gasoline-range organics (TGRO) in water that combines solid-phase microextraction (SPME) and infrared (IR) spectroscopy. In this method, the organic compounds are extracted from 250-mL of water into a small square (3....

  6. Changes in Upper Extremity Range of Motion and Efficiency in Multiple Sclerosis Patients Due to Water Activity.

    Science.gov (United States)

    Duthie, Pamela Rae

    To determine the effects of water exercise on the movements of multiple sclerosis patients, this study utilized tests to determine changes in the linear range of motion of the shoulder, elbow, and wrist after a 45-minute period of water activities and to determine if the movement became more effective. The test used was an overhead throw with a…

  7. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund; Kymäläinen, Maija; Rautkari, Lauri

    2018-01-01

    Water plays a central role in wood research, since it affects all material properties relevant to the performance of wood materials. Therefore, experimental techniques for characterising water within wood are an essential part of nearly all scientific investigations of wood materials. This review...... focuses on selected experimental techniques that can give deeper insights into various aspects of water in wood in the entire moisture domain from dry to fully water-saturated. These techniques fall into three broad categories: (1) gravimetric techniques that determine how much water is absorbed, (2......) fibre saturation techniques that determine the amount of water within cell walls, and (3) spectroscopic techniques that provide insights into chemical wood–water interactions as well as yield information on water distribution in the macro-void wood structure. For all techniques, the general measurement...

  8. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    Science.gov (United States)

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.

  9. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    Science.gov (United States)

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (peffectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

  10. Ballast water management that adapts to climate changes and reduces harmful bio-invasions in marine eco-systems

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2015-01-01

    in marine ecosystem of changed factors in the shipping sector, for instance change of number, size, and design of vessels as well as treatment technologies of ballast water. New areas for shipping due to climate changes are also included. Our study would contribute to improve decision support tools, usable......The shipping ballast water is defined as water taken on board a ship to control trim, cargo, draught, stability and stress of the ship. Alien bio-organisms in ballast water have a range of ecological impacts, for instance reducing native bio-diversity, altering habitat and potentially the overall...... food-webs and eco-systems. Economic impacts include reductions in fisheries production and algae blooms harmful for fish farms, tourism and human health. Due to the rising temperatures of the Oceans, organisms that prefer a warm climate may take roots in marine ecosystems that were previously too cold...

  11. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    Science.gov (United States)

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-09-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  12. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  13. Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage.

    Science.gov (United States)

    Avrani, Sarit; Lindell, Debbie

    2015-04-28

    Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.

  14. Bio-based coatings for reducing water sorption in natural fibre reinforced composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-10-01

    Full Text Available In this study, bio-based coatings were used for reducing water sorption of composites containing flame retardant treated natural fibres and phenolic resin. Two types of coatings; polyfurfuryl alcohol resin (PFA) and polyurethane (PU) were used...

  15. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park

    Science.gov (United States)

    James A. Lutz; Jan W. van Wagtendonk; Jerry F. Franklin

    2010-01-01

    Modelled changes in climate water deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and composition may accelerate in the future, with species responding individualistically to further declines in water availability. Declining water availability may disproportionately affect Pinus monticola...

  16. Kinetic analyses of plant water relocation using deuterium as tracer - reduced water flux of Arabidopsis pip2 aquaporin knockout mutants.

    Science.gov (United States)

    Da Ines, O; Graf, W; Franck, K I; Albert, A; Winkler, J B; Scherb, H; Stichler, W; Schäffner, A R

    2010-09-01

    Due to reduced evaporation and diffusion of water molecules containing heavier isotopes, leaf water possesses an elevated (18)O or (2)H steady-state content. This enrichment has been exploited in plant physiology and ecology to assess transpiration and leaf water relations. In contrast to these studies, in this work the (2)H content of the medium of hydroponically grown Arabidopsis thaliana was artificially raised, and the kinetics of (2)H increase in the aerial parts recorded during a short phase of 6-8 h, until a new equilibrium at a higher level was reached. A basic version of the enrichment models was modified to establish an equation that could be fitted to measured leaf (2)H content during uptake kinetics. The fitting parameters allowed estimation of the relative water flux q(leaf) into the Arabidopsis rosette. This approach is quasi-non-invasive, since plants are not manipulated during the uptake process, and therefore, offers a new tool for integrated analysis of plant water relations. The deuterium tracer method was employed to assess water relocation in Arabidopsis pip2;1 and pip2;2 aquaporin knockout plants. In both cases, q(leaf) was significantly reduced by about 20%. The organ and cellular expression patterns of both genes imply that changes in root hydraulic conductivity, as previously demonstrated for pip2;2 mutants, and leaf water uptake and distribution contributed in an integrated fashion to this reduced flux in intact plants.

  17. Germination of Winter Annual Grass Weeds under a Range of Temperatures and Water Potentials

    DEFF Research Database (Denmark)

    Scherner, Ananda; Melander, Bo; Jensen, Peter Kryger

    2017-01-01

    , and rattail fescue in multiple water potentials and temperature regimes. Temperature and water potential effects were similar between silky windgrass and rattail fescue, but differed from annual bluegrass. The three grass weeds were able to germinate under low water potential (−1.0 MPa), although water...... potentials ≤−0.25 MPa strongly delayed their germination. Silky windgrass and rattail fescue seeds were able to germinate at 1 C, while the minimum temperature for annual bluegrass germination was 5 C. Germination of silky windgrass and rattail fescue was very similar across temperature and water potentials...

  18. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.

    Science.gov (United States)

    Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah

    2014-11-15

    The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. Copyright © 2014 Elsevier B.V. All

  19. Reducing nitrogen leaching from fertilizers to surface waters: catchment specific indicators of economic benefits

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Levin, Gregor; Odgaard, Mette Vestergaard

    2018-01-01

    Monetization of benefits related to improving water quality is expected for a proportionality test under Article 4 of the EU’s Water Framework Directive (relating to benefits and costs of measures). Our pilot study explores with impact pathway methodology some basic economic benefits of reducing ...

  20. the performance of cassava flour as a water-reducing admixture for ...

    African Journals Online (AJOL)

    CHINYERE

    ABSTRACT. The performance of cassava flour as a water reducing admixture in concrete was investigated. Four concrete mixes of widely differing water/cement ratios were made and each of the mixes contained three different dosage levels of cassava flour as admixture. The properties tested include workability of the fresh ...

  1. A numerical shallow-water model for gravity currents for a wide range of density differences

    Science.gov (United States)

    Shimizu, Hiroyuki A.; Koyaguchi, Takehiro; Suzuki, Yujiro J.

    2017-12-01

    Gravity currents with various contrasting densities play a role in mass transport in a number of geophysical situations. The ratio of the density of the current, ρ c, to the density of the ambient fluid, ρ a, can vary between 100 and 103. In this paper, we present a numerical method of simulating gravity currents for a wide range of ρ c/ ρ a using a shallow-water model. In the model, the effects of varying ρ c/ ρ a are taken into account via the front condition (i.e., factors describing the balance between the driving pressure and the ambient resistance pressure at the flow front). Previously, two types of numerical models have been proposed to solve the front condition. These are referred to here as the Boundary Condition (BC) model and the Artificial Bed (AB) model. The front condition is calculated as a boundary condition at each time step in the BC model, whereas it is calculated by setting a thin artificial bed ahead of the front in the AB model. We assessed the BC and AB models by comparing their numerical results with the analytical results for a simple case of homogeneous currents. The results from the BC model agree well with the analytical results when ρ c/ ρ a≲102, but the model tends to overestimate the speed of the front position when ρ c/ρ a≳102. In contrast, the AB model generates good approximations of the analytical results for ρ c/ρ a≳ 102, given a sufficiently small artificial bed thickness, but fails to reproduce the analytical results when ρ c/ ρ a≲102. Therefore, we propose a numerical method in which the BC model is used for currents with ρ c/ ρ a≲102 and the AB model is used for currents with ρ c/ρ a≳ 102.

  2. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  3. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  4. Soil Water Retention and Relative Permeability for Full Range of Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2010-09-28

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

  5. Environmental monitoring using surface water, river sediments, and vegetation: A case study in the Famatina Range, La Rioja, NW Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Turiel, J.L.; Lopez-Soler, A.; Llorens, J.F. [Institute of Earth Sciences, Barcelona (Spain)] [and others

    1995-12-31

    This work discusses trace elements studied beneath the semiarid endorheic region of the Farnatina Range (La Rioja, NW Argentina). The results obtained in 27 control sites allow the determination of five distinct geochemical patterns in the Fainatina Range. Pattern I reflects the composition of underlying Paleozoic and Tertiary bedrock (background level: water pH, 7.5-9; specific conductance, 0.2-0.7 mS cm{sup -1}), which is influenced by mineralization. Pattern 2 exhibits water pH, 6; specific conductance, 0.7 mS cm{sup -1}; high contents of Cu, Cd, Rb, Zn, Sn, and Be in waters; and high contents of Cu, Cd, Zn, Pb, Cr, Sb, Ag, Be, Co, Ni, Bi, Rare Earth Elements (REE), Li, Ba, Cs, and Sr in sediments. Pattern 3 exhibits water pH, 3-4; specific conductance, 1.0 mS cm{sup -1}; high contents of Pb, Co, Be, Au, As, Cr, Hg, Th, Ba, Cs, Rb, Sb, Y, Zr, REE, and Hf in waters; high contents of Cd, Zn, Mo, and As in sediments. Pattern 3 is also modified by the input of elements from a source external to the Famatina Range. Pattern 4 exhibits water pH, 7-8; specific conductance, 1.5-2.3 mS cm{sup -1}; high contents of B, Li, Ba, Sr, and Zn in waters; high contents of Li, Cr, Sr, Ni, and Cs in sediments. Finally, Pattern 5 is developed on the red sandstones from De la Cuesta Formation (water pH, 8; specific conductance, 2.5-5.0 mS cm{sup -1}; high contents of Sr, Mo, U, B, Li, Rb, and Hf in waters; high contents of B, Ba, Cs, Li, and Rb in sediments). The mobility of above-mentioned elements is mainly related to water pH changes and evaporation processes.

  6. Earth Battery: An Approach for Reducing the Carbon and Water Intensity of Energy

    Science.gov (United States)

    Buscheck, T. A.; Bielicki, J. M.; Randolph, J.

    2016-12-01

    Mitigating climate change requires a range of measures, including increased use of renewable and low-carbon energy and reducing the CO2 intensity of fossil energy use. Our approach, called the Earth Battery, uses the storage of supercritical CO2, N2, or pressurized air to enable utility-scale energy storage needed for increased use of variable renewable energy and low-carbon baseload power. When deployed with CO2, the Earth Battery is designed to address the major deployment barriers to CO2 capture, utilization, and storage (CCUS) by managing overpressure and creating a business case for CO2 storage. We use the huge fluid and thermal storage capacity of the earth, together with overpressure driven by CO2, N2, or pressurized air storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, fossil) thermal resources, as well as excess energy from electric grids. The storage of CO2, N2, or air enables the earth to function as a low-carbon energy-system hub. Stored CO2, N2, or air plays three key roles: (1) as a supplemental fluid that creates pressure to efficiently recirculate working fluids that store and recover energy, (2) as a working fluid for efficient, low-water-intensity electricity conversion, and (3) as a shock absorber to allow diurnal and seasonal recharge/discharge cycles with minimal pressure oscillations, providing large pressure-storage capacity, with reduced risk of induced seismicity or leakage of stored CO2. To keep reservoir pressures in a safe range, a portion of the produced brine is diverted to generate water. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, N2/air, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and heated when power supply exceeds demand and depressurized when demand exceeds supply. The Earth Battery is designed for

  7. Blue Planet dialysis: novel water-sparing strategies for reducing dialysate flow.

    Science.gov (United States)

    Molano-Triviño, Alejandra; Wancjer, Benjamin; Neri, Mauro M; Karopadi, Akash N; Rosner, Mitchell; Ronco, Claudio

    2017-11-08

    Hemodialysis (HD) is an expensive therapy in economic and in ecological terms, owing to a high carbon footprint and significant consumption of natural sources, especially water. Our aim was to review strategies to diminish waste of water in maintenance dialysis, exploring previously described water reuse trends and less known strategies for reducing the dialysate flow. We conducted a systematic review of water-sparing strategies, including the reuse of reverse osmosis rejected water and the reduction of dialysate flux. We performed a search in Medline, Pubmed, Scielo, OVID and Biblioteca Redentor, using key words: Dialysate flow rate, Dialysate flux, and decrease; excluding: online, peritoneal, continuous, blood access, needle, hemodiafiltration, acute, pharmacokinetics, increase. We limited our search to adult humans or in vitro trials in English, Spanish, Italian and Portuguese, between January 1980 and June 2017. We found 816 trials. 37 articles were retrieved for review, and 11 articles were analyzed. Conservation of water in chronic HD should be considered an important responsibility of healthcare practitioners all over the world. We present a wider usage of dialysate flow rates, considering that it would lead to significant water conservation without much compromise on dialysis efficacy in small patients. We believe that further investigation into the utility of reduced dialysate flux in different populations is needed to broaden our understanding of how we can use these techniques in order to significantly reduce water consumption during chronic HD while still ensuring optimum efficacy and efficiency of the therapy.

  8. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    Science.gov (United States)

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern. © 2014 Society for Risk Analysis.

  9. Impact of the Microstructure of Polymer Drag Reducer on Slick-Water Fracturing

    Directory of Open Access Journals (Sweden)

    Zhi-yu Liu

    2017-01-01

    Full Text Available Many studies have focused on the drag reduction performance of slick-water, but the microdrag reduction mechanism remains unclear since the microstructure of the drag reducer and its effect on this mechanism have not been well studied. In this study, the microstructure of the drag reducer in slick-water was effectively characterized by transmission electron microscopy. The viscoelasticity and drag reduction performance of the drag reducer with different microstructures were then investigated. Further, the effects of the microstructure of the drag reducer on the viscoelasticity and drag reduction performance of slick-water were analyzed. The results demonstrated that the viscoelasticity of slick-water is governed by the microstructure of the drag reducer, which exhibits a network structure. In addition, the drag reduction performance is related to the viscoelasticity. At low flow rates, the drag reduction performance is dominantly influenced by viscosity, whereas, at high flow rates, it is governed mainly by elasticity. Furthermore, the drag reducer with a uniformly distributed network structure exhibits the most stable drag reduction performance. This drag reducer was used in a field test and the obtained results were consistent with those of a laboratory experiment.

  10. Can Mobile-Enabled Payment Methods Reduce Petty Corruption in Urban Water Provision?

    Directory of Open Access Journals (Sweden)

    Aaron Krolikowski

    2014-02-01

    Full Text Available Corruption in the urban water sector constrains economic growth and human development in low-income countries. This paper empirically evaluates the ability of novel mobile-enabled payment methods to reduce information asymmetries and mitigate petty corruption in the urban water sector’s billing and payment processes. Overcoming these barriers may promote improved governance and water service delivery. The case of Dar es Salaam is used to explore the role of mobile-enabled payment instruments through the use of a stratified random sample of 1097 water utility customers and 42 interviews with representatives from the water sector, the telecommunications industry, civil society, and banking institutions. Results show that mobile-enabled payment methods can reduce information asymmetries and the incidence of petty corruption to promote improved financial management by making payment data more transparent and limiting the availability of economic rents in the billing and payment process. Implications for African urban water services include wider availability and more effective use of human and financial resources. These can be used to enhance water service delivery and citizen participation in the production of urban water supplies. The use of mobile-enabled payment methods in the urban water sector represents an application of mobile communication technologies in a low-income country with proven potential for scalability that simultaneously supports the achievement of development objectives.

  11. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    Science.gov (United States)

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. © 2014 John Wiley & Sons Ltd.

  12. Effect of reduced water activity and reduced matric potential on the germination of xerophilic and non-xerophilic fungi.

    Science.gov (United States)

    Huang, Yang; Begum, Mariam; Chapman, Belinda; Hocking, Ailsa D

    2010-05-30

    Reduction in water activity (a(w)) is used as a microbiological hurdle to prevent food spoilage. To minimize the levels of salt and sugar, which are commonly used to reduce a(w), the potential of food structure as a microbiological hurdle needs to be assessed. The concept of matric potential (Psi(m)) is used to measure the effect of food structure on water movement. This study reports the effect of reduced a(w) and reduced Psi(m) on the germination of xerophilic fungi (represented by Eurotium herbariorum) and non-xerophilic fungi (represented by Aspergillus niger) on model glycerol agar media. Germination curves were plotted with the percentage of germinated spores against time. The germination time (t(G)), which is defined as the time at which 50% of the total viable spores have germinated, was estimated using the Gompertz model. Total viable spores was defined as those spores that were able to germinate under the optimum a(w) and Psi(m) conditions for each species, i.e. 0.95 a(w) and 2.5% agar for E. herbariorum and 0.98 a(w) and 2.5% agar for A. niger. As a(w) decreased from 0.90 to 0.85 a(w), t(G) increased significantly for both the xerophilic fungi and non-xerophilic species at equivalent matric potential values. When matric potential was reduced from -12 kPa (2.5% agar) to -38 kPa (12.5% agar), t(G) of A. niger was significantly extended at 0.90 a(w); however, t(G) remained the same for A. niger at 0.85 a(w), and for E. herbariorum at 0.80, 0.85 and 0.90 a(w). This study demonstrated that the germination time for non-xerophilic and xerophilic fungi was extended by reduced a(w), however the effect of reduced Psi(m) was limited. (c) 2010. Published by Elsevier B.V. All rights reserved.

  13. Long Range Marsh and Water Management Plan 1993: Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Seney National Wildlife Refuge (NWR) ecosystem is characterized by relatively infertile waters and a short growing season. Because so little is known about...

  14. Extending the range of supercritical fluid chromatography by use of water-rich modifiers.

    Science.gov (United States)

    Liu, Jinchu; Regalado, Erik L; Mergelsberg, Ingrid; Welch, Christopher J

    2013-08-14

    In this study we investigate the recently reported use of water-containing modifiers for separation and purification of hydrophilic compounds by supercritical fluid chromatography. Improved peak shape is obtained for a variety of glycosides and otherwise hydrophilic compounds when 5% water is added to the methanol co-solvent used in SFC separations, and examples of the use of this approach in preparative SFC purifications are presented.

  15. Fire and water: volcanology, geomorphology, and hydrogeology of the Cascade Range, central Oregon

    Science.gov (United States)

    Katharine V. Cashman; Natalia I. Deligne; Marshall W. Gannett; Gordon E. Grant; Anne. Jefferson

    2009-01-01

    This field trip guide explores the interactions among the geologic evolution, hydrology, and fluvial geomorphology of the central Oregon Cascade Range. Key topics include the geologic control of hydrologic regimes on both the wet and dry sides of the Cascade Range crest, groundwater dynamics and interaction between surface and groundwater in young volcanic arcs, and...

  16. Parameters of Drag Reducing Polymers and Drag Reduction Performance in Single-Phase Water Flow

    Directory of Open Access Journals (Sweden)

    A. Abubakar

    2014-07-01

    Full Text Available This study presents experimental investigation about the effect of polymer parameters on the performance of the drag reducing polymers in single-phase water flowing in a horizontal pipe of 30.6 mm ID. Master solutions (1000 ppm of ten high-molecular weight polymers were injected at different flow rates to achieve polymer concentrations in the range of 2–40 ppm in the test section. The drag reduction increased with polymer concentration up to 10 ppm, above which it reached a plateau value. While the drag reduction at the plateau value increases with polymer molecular weight, the maximum drag reduction was not affected by the increase in polymer charge density up to 13%. For instance, the maximum drag reduction for anionic polymers with molecular weight 6–8 million Da. and charge density between 5 and 13% was around 60%, which decreased to around 38% for the polymer with charge density of 25%. Ionic polymers provided more drag reduction than nonionic ones. The overall conclusion is that drag reduction depends on polymer ability to form intermolecular associations and/or its flexibility, which can be enhanced by increasing molecular weight, decreasing charge density, and selecting smaller side groups in the main polymer backbone.

  17. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants?

    Science.gov (United States)

    Newhauser, Wayne D.; Giebeler, Annelise; Langen, Katja M.; Mirkovic, Dragan; Mohan, Radhe

    2008-05-01

    Treatment planning calculations for proton therapy require an accurate knowledge of radiological path length, or range, to the distal edge of the target volume. In most cases, the range may be calculated with sufficient accuracy using kilovoltage (kV) computed tomography (CT) images. However, metal implants such as hip prostheses can cause severe streak artifacts that lead to large uncertainties in proton range. The purposes of this study were to quantify streak-related range errors and to determine if they could be avoided by using artifact-free megavoltage (MV) CT images in treatment planning. Proton treatment plans were prepared for a rigid, heterogeneous phantom and for a prostate cancer patient with a metal hip prosthesis using corrected and uncorrected kVCT images alone, uncorrected MVCT images and a combination of registered MVCT and kVCT images (the hybrid approach). Streak-induced range errors of 5-12 mm were present in the uncorrected kVCT-based patient plan. Correcting the streaks by manually assigning estimated true Hounsfield units improved the range accuracy. In a rigid heterogeneous phantom, the implant-related range uncertainty was estimated at hybrid planning approach yielded the best overall result. In this approach, the kVCT images provided good delineation of soft tissues due to high-contrast resolution, and the streak-free MVCT images provided smaller range uncertainties because they did not require artifact correction.

  18. Water metabolism of leaves of Quercus robur in antierosion stands in the south of its range

    Directory of Open Access Journals (Sweden)

    V. P. Bessonova

    2016-10-01

    Full Text Available We have investigated the main parameters of water exchange in leaves of Quercus robur L. which grow on the south-facing slope of the Viyskoviy ravine in a variety of water supply conditions. We established that the greatest intensity of transpiration of leaves of Q. robur occurred in the forest vegetation conditions of SG2, the smallest in SG1–0. In all study periods the largest amplitude of daily fluctuations in intensity of transpiration occurred in leaves of plants along the talweg, at other test sites the limits were much lower. The highest rates of transpiration were in September, which is connected with the high temperatures and lower relative air humidity compared with the days of measurement in July and May. We established that at the beginning of the growing season there was no difference in the total amount of water in the leaves of the trees that grow on the middle and upper parts of the slope, but that it was greater in plants along the talweg. In the following months the difference between the water content in the leaves of trees along the talweg and upper third of the slope increased. The leaves of trees that grow in the poorest conditions of water supply were characterized by the highest water-holding capacity, which is coordinated with their containing the highest content of hydrophilic colloids. The values for water deficit in May and in July fell within the maximum fluctuations for the species studied, but in early September they exceeded the maximum value in the leaves of trees on the upper third of the slope.

  19. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2017-11-08

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  20. Investigation of water washes suitable for very small meat plants to reduce pathogens on beef surfaces.

    Science.gov (United States)

    Yoder, Sally Flowers; Henning, William R; Mills, Edward W; Doores, Stephanie; Ostiguy, Nancy; Cutter, Catherine N

    2010-05-01

    Water washing with a handheld hose was performed on beef surfaces to ascertain the most effective combination of methods needed to remove potentially harmful microorganisms. For these experiments, beef brisket surfaces were experimentally inoculated with a fecal slurry containing Escherichia coli O157:H7, Salmonella Typhimurium, Campylobacter coli, and Campylobacter jejuni. In a pilot study, surfaces were washed with cold water (15 degrees C) at various water pressures, spray distances, application times, and drip times, and remaining bacterial populations were determined following the enumeration and isolation of pathogens and naturally occurring hygiene indicators (mesophilic aerobic bacteria, coliforms, and E. coli). The most efficacious combinations of these washing conditions were applied subsequently to artificially contaminated beef brisket surfaces in conjunction with hot (77 degrees C), warm (54 degrees C), and additional cold (15 degrees C) water washes. In the cold water washing pilot study, combinations of physical washing conditions significantly reduced all bacterial populations (P water washing; E. coli O157:H7 and Salmonella Typhimurium were reduced by 3.8 and 4.1 log CFU/cm(2), respectively. Overall, higher water temperature, longer application times, and shorter spray distances more effectively removed pathogens from inoculated beef surfaces. These findings will be used to formulate water washing recommendations for very small meat processing establishments.

  1. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  2. Increased water intake to reduce headache: Learning from a critical appraisal

    OpenAIRE

    Price, A.; Burls, A

    2015-01-01

    Clinical Bottom Line\\ud Water intake is a cost effective, non-invasive and low-risk intervention to reduce or prevent headache pain. Rationale: Chronic mild dehydration may trigger headache. Increased water intake could help. A small trial shows modest benefit; however, a larger methodologically sound randomized controlled trial is needed to confirm efficacy.\\ud \\ud Critically Appraised Paper\\ud Spigt, M., Weerkamp, N., Troost, J., van Schayck, C. P., & Knottnerus, J. A. (2012). ‘A randomized...

  3. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates

    Science.gov (United States)

    Background and Aims: Vulnerability of the leaf hydraulic pathway to water-stress-induced dysfunction is a key component of drought tolerance in plants and may be important in defining species’ climatic range. However, the generality of the association between leaf hydraulic vulnerability and climate...

  4. Water vapour flux patterns and precipitation at Sierra de Guadarrama mountain range (Spain)

    National Research Council Canada - National Science Library

    Durán, L; Rodríguez‐Fonseca, B; Yagüe, C; Sánchez, E

    2015-01-01

    .... Sierra de Guadarrama is a part of the Iberian Peninsula Central System (Spain), a mountain range located in the center of an extensive plateau, dominated by a continental Mediterranean climate but under a strong Atlantic influence...

  5. Experimental and Numerical Study of Water Entry Supercavity Influenced by Turbulent Drag-Reducing Additives

    Directory of Open Access Journals (Sweden)

    Chen-Xing Jiang

    2014-04-01

    Full Text Available The configurational and dynamic characteristics of water entry supercavities influenced by turbulent drag-reducing additives were studied through supercavitating projectile approach, experimentally and numerically. The projectile was projected vertically into water and aqueous solution of CTAC with weight concentrations of 100, 500, and 1000 ppm, respectively, using a pneumatic nail gun. The trajectories of the projectile and the supercavity configuration were recorded by a high-speed CCD camera. Besides, water entry supercavities in water and CTAC solution were numerically simulated based on unsteady RANS scheme, together with application of VOF multiphase model. The Cross viscosity model was adopted to represent the fluid property of CTAC solution. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical and experimental results all show that the length and diameter of supercavity in drag-reducing solution are larger than those in water, and the drag coefficient is smaller than that in water; the maintaining time of supercavity is longer in solution as well. The surface tension plays an important role in maintaining the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitation and drag reduction.

  6. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants?

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D; Giebeler, Annelise; Mirkovic, Dragan; Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, TX 77030 (United States); Langen, Katja M [M D Anderson Cancer Center Orlando, 1400 S Orange Avenue, Orlando, FL 32806 (United States)], E-mail: wnewhaus@mdanderson.org

    2008-05-07

    Treatment planning calculations for proton therapy require an accurate knowledge of radiological path length, or range, to the distal edge of the target volume. In most cases, the range may be calculated with sufficient accuracy using kilovoltage (kV) computed tomography (CT) images. However, metal implants such as hip prostheses can cause severe streak artifacts that lead to large uncertainties in proton range. The purposes of this study were to quantify streak-related range errors and to determine if they could be avoided by using artifact-free megavoltage (MV) CT images in treatment planning. Proton treatment plans were prepared for a rigid, heterogeneous phantom and for a prostate cancer patient with a metal hip prosthesis using corrected and uncorrected kVCT images alone, uncorrected MVCT images and a combination of registered MVCT and kVCT images (the hybrid approach). Streak-induced range errors of 5-12 mm were present in the uncorrected kVCT-based patient plan. Correcting the streaks by manually assigning estimated true Hounsfield units improved the range accuracy. In a rigid heterogeneous phantom, the implant-related range uncertainty was estimated at <3 mm for both the corrected kVCT-based plan and the uncorrected MVCT-based plan. The hybrid planning approach yielded the best overall result. In this approach, the kVCT images provided good delineation of soft tissues due to high-contrast resolution, and the streak-free MVCT images provided smaller range uncertainties because they did not require artifact correction.

  7. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people's attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio-cesium and -iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.

  8. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  9. The application of membrane technology for reuse of process water and minimisation of waste water in a textile washing range

    NARCIS (Netherlands)

    van t Hul, J.P.; Racz, I.G.; Reith, T.

    1997-01-01

    Recycling of process streams and reduction of waste disposal using membrane technology in a continuous textile washing process after dyeing with reactive dyes have been investigated theoretically. A mathematical process model of a conventional open-width washing range has been extended by membrane

  10. Novel Slightly Reduced Graphene Oxide Based Proton Exchange Membrane with Constructed Long-Range Ionic Nanochannels via Self-Assembling of Nafion.

    Science.gov (United States)

    Jia, Wei; Tang, Beibei; Wu, Peiyi

    2017-07-12

    A facile method to prepare high-performance Nafion slightly reduced graphene oxide membranes (N-srGOMs) via vacuum filtration is proposed. The long-range connected ionic nanochannels in the membrane are constructed via the concentration-dependent self-assembling of the amphiphilic Nafion and the hydrophilic-hydrophobic interaction between graphene oxide (GO) and Nafion in water. The obtained N-srGOM possesses high proton conductivity, and low methanol permeability benefitted from the constructed unique interior structures. The proton conductivity of N-srGOM reaches as high as 0.58 S cm-1 at 80 °C and 95%RH, which is near 4-fold of the commercialized Nafion 117 membrane under the same condition. The methanol permeability of N-srGOM is 2.0 × 10-9 cm2 s-1, two-magnitude lower than that of Nafion 117. This novel membrane fabrication strategy has proved to be highly efficient in overcoming the "trade-off" effect between proton conductivity and methanol resistance and displays great potential in DMFC application.

  11. Reducing SCADA System Nuisance Alarms in the Water Industry in Northern Ireland.

    Science.gov (United States)

    O'Donoghue, Nigel; Phillips, Debra H; Nicell, Ciaran

    2015-08-01

    The advancement of telemetry control for the water industry has increased the difficulty of managing large volumes of nuisance alarms (i.e., alarms that do not require a response). The aim of this study was to identify and reduce the number of nuisance alarms that occur for Northern Ireland (NI) Water by carrying out alarm duration analysis to determine the appropriate length of persistence (an advanced alarm management tool) that could be applied. All data were extracted from TelemWeb (NI Water's telemetry monitoring system) and analyzed in Excel. Over a 6-week period, an average of 40 000 alarms occurred per week. The alarm duration analysis, which has never been implemented before by NI Water, found that an average of 57% of NI Water alarms had a duration of <5 minutes. Applying 5-minute persistence, therefore, could prevent an average 26 816 nuisance alarms per week. Most of these alarms were from wastewater assets.

  12. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  13. Reducing exposure to high fluoride drinking water in Estonia-a countrywide study.

    Science.gov (United States)

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2014-03-14

    Fluoride is a naturally occurring contaminant in groundwater in Estonia. There are several regions in Estonia with fluoride contents in public water supplies as high as 7 mg/L. Long-term exposure to high-fluoride drinking water may have several adverse health effects, primarily dental fluorosis. The opportunities for exposure reduction rely highly on water treatment technologies. Since 2004 public water suppliers in Estonia have made efforts to diminish fluoride content in drinking water systems. A follow-up study on a country level was carried out in 2004-2012 to analyze the changes in population exposure to excessive (over 1.5 mg/L) fluoride in drinking water and to get information about the reduction methods applied by public water supplies (PWS) to optimize the fluoride levels in public water system. The results showed that bigger PWS have been more effective in fluoride reduction measures than small PWS. The main methods used to lower the fluoride content were reverse osmosis technology and replacement of water sources with new ones (new drilled wells). As a result of all the measures taken the overall high-fluoride exposure has been reduced substantially (82%).

  14. Reducing Exposure to High Fluoride Drinking Water in Estonia—A Countrywide Study

    Science.gov (United States)

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2014-01-01

    Fluoride is a naturally occurring contaminant in groundwater in Estonia. There are several regions in Estonia with fluoride contents in public water supplies as high as 7 mg/L. Long-term exposure to high-fluoride drinking water may have several adverse health effects, primarily dental fluorosis. The opportunities for exposure reduction rely highly on water treatment technologies. Since 2004 public water suppliers in Estonia have made efforts to diminish fluoride content in drinking water systems. A follow-up study on a country level was carried out in 2004–2012 to analyze the changes in population exposure to excessive (over 1.5 mg/L) fluoride in drinking water and to get information about the reduction methods applied by public water supplies (PWS) to optimize the fluoride levels in public water system. The results showed that bigger PWS have been more effective in fluoride reduction measures than small PWS. The main methods used to lower the fluoride content were reverse osmosis technology and replacement of water sources with new ones (new drilled wells). As a result of all the measures taken the overall high-fluoride exposure has been reduced substantially (82%). PMID:24637908

  15. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  16. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  17. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    Science.gov (United States)

    2015-09-30

    water and sediments at the ocean bottom. The attenuation in near-bottom ocean sediments may be very high. It may be high enough that perturbation...for oceanic T-wave generation," Frank et al., has been published. This article documents the incorporation of seismic -like sources into the PE...contribution to this were supported by this grant. Finally the paper “Traveling wave modal attenuation and interaction with a transversely isotropic

  18. Soak Feet Warm Water Therapy Effective To Reduce Blood Pressure In The Elderly

    Directory of Open Access Journals (Sweden)

    yessi harnani

    2017-12-01

    Full Text Available Hypertension is a heart and blood vessels disease that is manifested by rising blood pressure. Untreated hypertension will lead to complication such as stroke and heart failure. Soak feet warm water is one of the complementary therapy that can reduce blood pressure. The purpose of this research is to find out the effecveness of soak feet warm water therapy to reduce blood pressure in the elderly. This research was a quantave by using the pre-experimental design and pretest and posest approach. The Sample were elderly with hypertension in working area of Puskesmas Simpang Tiga Pekanbaru. The sampling technique was used purposive sampling. The data collection techniques were used observation and measuring blood pressure by using sphignomanometer. The data analyzed was used Wilcoxon test. The Results showed that generally elderly with hypertension were on stage II. Stasc result showed that mean blood pressure post soak feet warm water therapy was 74,00 and standard deviaon was 5, 026, with the sistolic P value was 0.000 (<0.05 and diastolic P value was 0.000 (<0.05. So, it could be stated that soak feet warm water therapy effecve to reduce blood pressure in elderly. It is recommended to elderly with hypertension to always controlling their blood pressure, if there is a rising of blood pressure they could using soak feet warm water therapy to treat hypertension as a complementary therapy, cheap and easy to do indenpendently.

  19. Effectiveness of unfertilized buffer strips for reducing nitrogen loads from agricultural lowland to surface waters

    NARCIS (Netherlands)

    Noij, I.G.A.M.; Heinen, M.; Heesmans, H.I.M.; Thissen, J.T.N.M.; Groenendijk, P.

    2012-01-01

    Unfertilized buffer strips (BS) are widely accepted to reduce nitrogen (N) loads from agricultural land to surface water. However, the relative reduction of N load or concentration (BS effectiveness, BSE), varies with management and local conditions, especially hydrogeology. We present novel

  20. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality

    DEFF Research Database (Denmark)

    Huser, Brian J; Egemose, Sara; Harper, Harvey

    2016-01-01

    114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment ef...

  1. the performance of cassava flour as a water-reducing admixture for ...

    African Journals Online (AJOL)

    CHINYERE

    to remove any chaff present in the flour. The processed flour was then stored in plastic bags. Chemical analysis of the cassava flour used in this study can be found ..... Straw Pulp Waste Liquor As A Water-. Reducing Admixture, Magazine of. Concrete Research, Vol. 47, No. 171,. 1995, pp. 113-118. 5. Chia, K. S. and Zhang, ...

  2. Options in European legislation to reduce water pollution in the Netherlands: cadmium as case study

    NARCIS (Netherlands)

    Vos JH; Poorter LRM de; SEC

    2007-01-01

    The RIVM has performed a study on European legislation useful for reducing cadmium pollution in Dutch surface waters. The Integrated Pollution Prevention Control Directive (IPPC) is an instrument that can impose restraints on one of the main sources of pollution, the industrial sector. However, for

  3. Effect of water hyacinth on distribution of sulphate-reducing bacteria ...

    African Journals Online (AJOL)

    The effect of the water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub, on the distribution of populations of sulphate-reducing bacteria (SRB) in sediments from various stations on the shores of Lake Victoria around Mwanza Municipality, Tanzania, was studied. Lactate-utilising SRB were observed to be the dominant ...

  4. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    determined. NRB and SRB were observed throughout these depths and did not relate to HB numbers. HB and NRB were recorded at 3 orders per ml and SRB at 2. High numbers of reducers were encountered in shallow depths as frequently as in deeper waters and did...

  5. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of w...

  6. Denitrifying Bioreactors – An Approach for Reducing Nitrate Loads to Receiving Waters

    Science.gov (United States)

    Low-cost and simple technologies are needed to reduce watershed export of excess nitrogen to sensitive aquatic ecosystems. Denitrifying bioreactors are an approach where solid carbon substrates are added into the flow path of contaminated water. These carbon substrates (often fragmented wood-product...

  7. Reduced CSF Water Influx in Alzheimer's Disease Supporting the β-Amyloid Clearance Hypothesis.

    Directory of Open Access Journals (Sweden)

    Yuji Suzuki

    Full Text Available To investigate whether water influx into cerebrospinal fluid (CSF space is reduced in Alzheimer's patients as previously shown in the transgenic mouse model for Alzheimer's disease.Ten normal young volunteers (young control, 21-30 years old, ten normal senior volunteers (senior control, 60-78 years old, MMSE ≥ 29, and ten Alzheimer's disease (AD patients (study group, 59-84 years old, MMSE: 13-19 participated in this study. All AD patients were diagnosed by neurologists specializing in dementia based on DSM-IV criteria. CSF dynamics were analyzed using positron emission tomography (PET following an intravenous injection of 1,000 MBq [15O]H2O synthesized on-line.Water influx into CSF space in AD patients, expressed as influx ratio, (0.755 ± 0.089 was significantly reduced compared to young controls (1.357 ± 0.185; p < 0.001 and also compared to normal senior controls (0.981 ± 0.253, p < 0.05. Influx ratio in normal senior controls was significantly reduced compared to young controls (p < 0.01.Water influx into the CSF is significantly reduced in AD patients. β-amyloid clearance has been shown to be dependent on interstitial flow and CSF production. The current study indicates that reduction in water influx into the CSF may disturb the clearance rate of β-amyloid, and therefore be linked to the pathogenesis of AD.UMIN Clinical Trials Registry UMIN000011939.

  8. Competition-Induced Reductions in Soil Water Availability Reduced Pine Root Extension Rates

    Science.gov (United States)

    K.H. Ludovici; L.A. Morris

    1997-01-01

    The relationship between soil water availability, root extension, and shoot growth of loblolly pine seedlings (Pinus taeda L.) was evaluated in a rhizotron sand mixture in the absence and presence of crabgrass (Digitaria spp.) competition. Heights and diameters of seedlings grown with crabgrass were reduced 33 and SO%, respectively, compared with...

  9. Water sorption properties of Dutch type semi-hard cheese edge in the range of common storing temperatures

    Directory of Open Access Journals (Sweden)

    Maria Carolina Soares Pereira

    2011-01-01

    Full Text Available Moisture sorption isotherms of Dutch type semi-hard cheese edge in the temperature range of 10–25 ºC and water activity (Aw from 0.11 to 0.98 were determined using manometric method. The sorption curves had a sigmoid shape. The equilibrium moisture content (EMC of cheese samples increased with an increase in Aw at a constant temperature both for water adsorption and desorption. An increase in temperature caused an increase in Aw for the same moisture content (MC and, if Aw was kept constant, an increase in temperature caused a decrease in the amount of absorbed water. Critical values of equilibrium moisture content, corresponding to the Aw = 0.6, were between 11 % MC (w.b. and 17 % MC (w.b. both for moisture adsorption and desorption. Values of sorption heat were calculated from moisture sorption isotherms by applying the Clausius-Clapeyron equation. Values of the heat of desorption are higher than those of adsorption and the difference increases with the MC decrease. Heat of sorption decreased from 48.5 kJ/mol (~5.5 % MC w.b. to the values approaching the heat of vaporization of pure water, free MC. The critical value for free water evaporation is about w = 27 % (w.b. for the range of temperature 10–25 ºC.

  10. Least Limiting Water Range and Load Bearing Capacity of Soil under Types of Tractor-Trailers for Mechanical Harvesting of Green Sugarcane

    Directory of Open Access Journals (Sweden)

    Antonio Higino Frederico Pereira

    2015-12-01

    Full Text Available ABSTRACT The expansion of the sugarcane industry in Brazil has intensified the mechanization of agriculture and caused effects on the soil physical quality. The purpose of this study was to evaluate the limiting water range and soil bearing capacity of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox under the influence of different tractor-trailers used in mechanical sugarcane harvesting. The experiment was arranged in a randomized block design with five replications. The treatments consisted of green sugarcane harvesting with: harvester without trailer (T1; harvester with two trailers with a capacity of 10 Mg each (T2; harvester with trailer with a capacity of 20 Mg (T3 and harvester and truck with trailer with a capacity of 20 Mg (10 Mg per compartment (T4. The least limiting water range and soil bearing capacity were evaluated. The transport equipment to remove the harvested sugarcane from the field (trailer at harvest decreased the least limiting water range, reducing the structural soil quality. The truck trailer caused the greatest impact on the soil physical properties studied. The soil load bearing capacity was unaffected by the treatments, since the pressure of the harvester (T1 exceeded the pre-consolidation pressure of the soil.

  11. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  12. Condensed tannins reduce browsing and increase grazing time of free-ranging goats in semi-arid savannas

    CSIR Research Space (South Africa)

    Mkhize, NR

    2015-08-01

    Full Text Available . While accounting for the effects of the time of the day and season, we tested the hypothesis that goats exposed to high levels of condensed tannins (i) spend less of their foraging time browsing, (ii) spend more time grazing, and (iii) reduce their total...

  13. Reduced cover of drifting macroalgae following nutrient reduction in Danish coastald waters

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Ribergaard; Dromph, Karsten Mikael; Göke, Cordula

    2015-01-01

    and eelgrass cover showed no significant trend, reflecting that eelgrass cover had not increased despite the reduced levels of nutrients and drifting algae. This ratio also showed no consistent relationship to water quality probably because different regulation mechanisms govern drifting algae and eelgrass......Based on a large dataset from the national Danish monitoring programme, we analysed the temporal variability of drifting algae cover in shallow (1–2 m) water during a period of reduced nutrient loadings. Algal cover was analysed both in absolute terms and relative to eelgrass, Zostera marina, cover...... to test the hypotheses that (1) the cover of drifting algae and the relative dominance of algae versus eelgrass in shallow waters have declined in parallel to reductions in nutrient levels during the last decades, and (2) spatio-temporal differences in algal cover can be related to differences in nutrient...

  14. Characterization of bromate-reducing bacterial isolates and their potential for drinking water treatment.

    Science.gov (United States)

    Davidson, Andrew N; Chee-Sanford, Joanne; Lai, Hoi Yi Mandy; Ho, Chi-hua; Klenzendorf, J Brandon; Kirisits, Mary Jo

    2011-11-15

    The objective of the current study was to isolate and characterize several bromate-reducing bacteria and to examine their potential for bioaugmentation to a drinking water treatment process. Fifteen bromate-reducing bacteria were isolated from three sources. According to 16S rRNA gene sequencing, the bromate-reducing bacteria are phylogenetically diverse, representing the Actinobacteria, Bacteroidetes, Firmicutes, and α-, β-, and γ-Proteobacteria. The broad diversity of bromate-reducing bacteria suggests the widespread capability for microbial bromate reduction. While the cometabolism of bromate via nitrate reductase and (per)chlorate reductase has been postulated, five of our bromate-reducing isolates were unable to reduce nitrate or perchlorate. This suggests that a bromate-specific reduction pathway might exist in some microorganisms. Bioaugmentation of activated carbon filters with eight of the bromate-reducing isolates did not significantly decrease start-up time or increase bromate removal as compared to control filters. To optimize bromate reduction in a biological drinking water treatment process, the predominant mechanism of bromate reduction (i.e., cometabolic or respiratory) needs to be assessed so that appropriate measures can be taken to improve bromate removal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Trophic State of a Shallow Lake with Reduced Inflow of Surface Water

    Directory of Open Access Journals (Sweden)

    Ejankowski Wojciech

    2014-12-01

    Full Text Available According to the general classification of shallow eutrophic lakes, two alternative types are distinguished: phytoplankton-dominated and macrophyte-dominated lakes. The latter type is rare and currently endangered by human activity. In order to determine the effect of reduced inflow of surface water by an earth dyke on the lake trophic state, certain biological and physico-chemical parameters were evaluated. This work focuses on two lakes of similar morphometric characteristics situated in the agricultural landscape. The effect of the earth dyke on the trophic state was positively verified. The lake situated in the catchment basin, in which the inflow of surface water was reduced, was defined as meso-eutrophic, with a small amount of phytoplankton and high water transparency. The reference lake was highly eutrophic, with low water transparency and a large amount of phytoplankton. The water body surrounded by the earth dyke was macrophytes dominated (65% of the lake area, whereas the reference lake was a phytoplankton-macrophyte type (42% of the lake area. The trophic evaluation of a lake can be underestimated because of a significant amount of biogenic compounds accumulated in plant tissues. Thus, the values of Carlson’s indices in macrophyte-dominated lakes may not account for the total amount of nutrients in the water body.

  16. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  17. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  18. Permanent water swelling effect in low temperature thermally reduced graphene oxide

    Science.gov (United States)

    Papamatthaiou, S.; Argyropoulos, D.-P.; Masurkar, A.; Cavallari, M. R.; Farmakis, F.; Kymissis, I.; Georgoulas, N.

    2017-06-01

    We demonstrate permanent water trapping in reduced graphene oxide after high relative humidity exposure. For this purpose, we grew graphene oxide films via spin-coating on glass substrates followed by thermal reduction. The electrical resistance of the planar device was then measured. We observed that resistance is significantly increased after water vapor exposure and remains stable even after 250 days in ambient conditions. Various techniques were applied to desorb the water and decrease (recover) the material's resistance, but it was achieved only with low temperature thermal annealing (180 °C) under forming gas (H2/N2 mixture). The permanent effect of water absorption was also detected by x-ray photoelectron spectroscopy.

  19. Cold Water and Pauses in Illumination Reduces Pain During Photodynamic Therapy: A Randomized Clinical Study

    DEFF Research Database (Denmark)

    Wiegell, S.R.; Haedersdal, M.; Wulf, H.C.

    2009-01-01

    Pain is the main acute adverse event during photodynamic therapy of skin lesions. The objective of this randomized study was to evaluate the pain-relieving effect of pauses and cooling during illumination. Twenty-four patients with actinic keratoses were treated with photodynamic therapy in two...... symmetrical areas and cooled with either cold-water-spray or cold-water-pack (Coo]Pack). Treatment areas were cooled during either the first or second period of illumination, which were separated by a 3-min pause in illumination. Pain intensity was scored from 0 to 10. Water-spray reduced the mean pain score...... by 1.2 points (p=0.030) and CoolPack by 1.3 points (p=0.007) during the first half of the illumination. Pain intensity decreased during the pause by 3.7 points in water-spray patients (p

  20. The Opposite Effect of Metal Ions on Short-/Long-Range Water Structure: A Multiple Characterization Study.

    Science.gov (United States)

    Ma, Kai; Zhao, Lin

    2016-04-25

    Inorganic electrolyte solutions are very important in our society as they dominate many biochemical and geochemical processes. Herein, an in-depth study was performed to illustrate the ion-induced effect on water structure by coupling NMR, viscometer, Raman and Molecular Dynamic (MD) simulations. The NMR coefficient (BNMR) and diffusion coefficient (D) from NMR, and viscosity coefficient (Bvis) from a viscometer all proved that dissolved metal ions are capable of enhancing the association degree of adjacent water molecules, and the impact on water structure decreased in the order of Cr(3+) > Fe(3+) > Cu(2+) > Zn(2+). This regularity was further evidenced by Raman analysis; however, the deconvoluted Raman spectrum indicated the decrease in high association water with salt concentration and the increase in low association water before 200 mmol·L(-1). By virtue of MD simulations, the opposite changing manner proved to be the result of the opposite effect on short-/long-range water structure induced by metal ions. Our results may help to explain specific protein denaturation induced by metal ions.

  1. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Rajeev Jain; Tuan Nguyen

    2003-11-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the first year of a three-year research program that is aimed at the understanding of the chemistry of gelation and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work has focused on a widely-applied system in field applications, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. The initial reaction between chromium acetate and one polymer is referred to as the uptake reaction. The uptake reaction was studied as functions of chromium and polymer concentrations and pH values. Experimental data were regressed to determine a rate equation that describes the uptake reaction of chromium by polyacrylamide. Pre-gel aggregates form and grow as the reactions between chromium acetate and polyacrylamide proceed. A statistical model that describes the growth of pre-gel aggregates was developed using the theory of branching processes. The model gives molecular weight averages that are expressed as functions of the conversion of the reactive sites on chromium acetate or on the polymer molecule. Results of the application of the model correlate well with experimental data of viscosity and weight-average molecular weight and gives insights into the gelation process. A third study addresses the flow of water and oil in rock material after a gel treatment. Previous works have shown that gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted to determine the effect of polymer and chromium concentrations on

  2. Environmental Characterization of Mine Countermeasure Test Ranges: Hydrography and Water Column Optics

    Science.gov (United States)

    2015-09-30

    looking ADCP and near-bottom CTD/optics moorings along a transect within the test range, 2) ship based underway surface measurements of physical...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Upward looking ADCP and near-bottom CTD/optics moorings We deployed two RD Instruments...measurements were obtained: 13 days of bottom mounted ADCP /CTD/optics records at ten minute intervals (two sites) 41 ac9/CTD profiles at main

  3. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Constitutive spectral EEG peaks in the gamma range: suppressed by sleep, reduced by mental activity and resistant to sensory stimulation

    Directory of Open Access Journals (Sweden)

    Tyler Samuel Grummett

    2014-11-01

    Full Text Available Objective: In a systematic study of gamma activity in neuro-psychiatric disease, we unexpectedly observed distinctive, apparently persistent, electroencephalogram (EEG spectral peaks in the gamma range (25-100 Hz. Our objective, therefore, was to examine the incidence, distribution and some of the characteristics of these peaks.Methods: High sample-rate, 128-channel, EEG was recorded in 603 volunteers (510 with neuropsychiatric disorders, 93 controls, whilst performing cognitive tasks, and converted to power spectra. Peaks of spectral power, including in the gamma range, were determined algorithmically for all electrodes. To determine if peaks were stable, 24-hour ambulatory recordings were obtained from 16 subjects with peaks. In 10 subjects, steady-state responses to stimuli at peak frequency were compared with off-peak-frequency stimulation to determine if peaks were a feature of underlying network resonances and peaks were evaluated with easy and hard versions of oddball tasks to determine if peaks might be influenced by mental effort.Results: 57 % of subjects exhibited peaks > 2 dB above trough power at or above 25 Hz. Larger peaks (> 5 dB were present in 13 % of subjects. Peaks were distributed widely over the scalp, more frequent centrally. Peaks were present through the day and were suppressed by slow-wave-sleep. Steady-state responses were the same with on- or off-peak sensory stimulation. In contrast, mental effort resulted in reductions in power and frequency of gamma peaks, although the suppression did not correlate with level of effort.Conclusions: Gamma EEG can be expressed constitutively as concentrations of power in narrow or wide frequency bands that play an, as yet, unknown role in cognitive activity.Significance: These findings expand the described range of rhythmic EEG phenomena. In particular, in addition to evoked, induced and sustained gamma band activity, gamma activity can be present constitutively in spectral peaks.

  5. Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water.

    Science.gov (United States)

    Chen, Yixing; Okur, Halil I; Gomopoulos, Nikolaos; Macias-Romero, Carlos; Cremer, Paul S; Petersen, Poul B; Tocci, Gabriele; Wilkins, David M; Liang, Chungwen; Ceriotti, Michele; Roke, Sylvie

    2016-04-01

    Electrolytes interact with water in many ways: changing dipole orientation, inducing charge transfer, and distorting the hydrogen-bond network in the bulk and at interfaces. Numerous experiments and computations have detected short-range perturbations that extend up to three hydration shells around individual ions. We report a multiscale investigation of the bulk and surface of aqueous electrolyte solutions that extends from the atomic scale (using atomistic modeling) to nanoscopic length scales (using bulk and interfacial femtosecond second harmonic measurements) to the macroscopic scale (using surface tension experiments). Electrolytes induce orientational order at concentrations starting at 10 μM that causes nonspecific changes in the surface tension of dilute electrolyte solutions. Aside from ion-dipole interactions, collective hydrogen-bond interactions are crucial and explain the observed difference of a factor of 6 between light water and heavy water.

  6. SU-F-T-218: Validation of An In-Vivo Proton Range Verification Method for Reducing the Risk of Permanent Alopecia in the Treatment of Pediatric Medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Lucconi, G [Department of Medical Physics, S. Orsola-Malpighi University Hospital, Bologna (Italy); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Bentefour, E; Janssens, G [Advanced Technology Group, Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Deepak, S [Department of Physics, Central University of Karnataka, Karnataka 585367 (India); Weaver, K; Moteabbed, M; Lu, H-M [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The clinical commissioning of a workflow for pre-treatment range verification/adjustment for the head treatment of pediatric medulloblastoma patients, including dose monitoring during treatment. Methods: An array of Si-diodes (DIODES Incorporated) is placed on the patient skin on the opposite side to the beam entrance. A “scout” SOBP beam, with a longer beam range to cover the diodes in its plateau, is delivered; the measured signal is analyzed and the extracted water equivalent path lengths (WEPL) are compared to the expected values, revealing if a range correction is needed. Diodes stay in place during treatment to measure dose. The workflow was tested in solid water and head phantoms and validated against independent WEPL measurements. Both measured WEPL and skin doses were compared to computed values from the TPS (XiO); a Markus chamber was used for reference dose measurements. Results: The WEPL accuracy of the method was verified by comparing it with the dose extinction method. It resulted, for both solid water and head phantom, in the sub-millimeter range, with a deviation less than 1% to the value extracted from the TPS. The accuracy of dose measurements in the fall-off part of the dose profile was validated against the Markus chamber. The entire range verification workflow was successfully tested for the mock-treatment of head phantom with the standard delivery of 90 cGy per field per fraction. The WEPL measurement revealed no need for range correction. The dose measurements agreed to better than 4% with the prescription dose. The robustness of the method and workflow, including detector array, hardware set and software functions, was successfully stress-tested with multiple repetitions. Conclusion: The performance of the in-vivo range verification system and related workflow meet the clinical requirements in terms of the needed WEPL accuracy for pretreatment range verification with acceptable dose to the patient.

  7. Exponentially increased thermal resistance ofSalmonellaandEnterococcus faeciumat reduced water activity.

    Science.gov (United States)

    Liu, Shuxiang; Tang, Juming; Tadapaneni, Ravi Kiran; Yang, Ren; Zhu, Mei-Jun

    2018-02-09

    Salmonella exhibited prolonged survivability and high tolerance to heat in low-moisture foods. Reported thermal resistance parameters of Salmonella spp. in low-moisture foods is unpredictable due to various factors. We report here that an external factor temperature-dependent water activity (a w, treatment temperature ) of bacterial cells plays an important role in the sharply increased thermal resistance of Salmonella Enteritidis PT 30 ( S Enteritidis) and its potential surrogate Enterococcus faecium NRRL B-2354 ( E. faecium ). In our study, silicon dioxide granules, as inert carriers, were separately inoculated with these two microorganisms and heated at 80°C with controlled relative humidity between 18-72% (result in corresponding a w,80°C of bacteria between 0.18 and 0.72) in custom-designed test cells. Inactivation kinetics of both microorganisms fitted a log-linear model (R 2 =0.83-0.97). Reduced a w,80°C of bacterial cells increased the D 80°C -values (the time needed to achieve 1 log reduction of a bacterial population at 80°C) exponentially for S Enteritidis and E. faecium on silicon dioxide. The log-linear relationship between D 80°C of both strains in silicon dioxide and a w,80°C also were verified for organic wheat flour. E. faecium showed consistently higher D 80°C values than S. Enteritidis over the tested a w,80°C range. The estimated z a w values (the a w,80°C needed to alter 1 log of D 80°C ) of S Enteritidis and E. faecium were 0.31 and 0.28, respectively. This study provides an insight into the interpretation of thermal resistances of Salmonella that could guide the development and validation of thermal processing of low-moisture foods. Importance In this paper, we established that thermal resistance of the pathogen Salmonella and its surrogate Enterococcus faecium , as reflected by D values at 80°C, increases sharply with reducing relative humidity in the environment. The log-linear relationship between D 80°C of both strains in

  8. The potential for energy savings when reducing the water consumption in a kraft pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Berntsson, Thore [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science; Stuart, Paul [Ecole Polytechnique, Montreal (Canada). Dept. of Chemical Engineering

    2004-05-01

    In this paper an existing pulp and paper mill has been studied in a systematic way regarding the reduction of water consumption, and the resulting increased potential for energy integration. It has been found that when the mill's hot water consumption is decreased, the live steam demand for the mill also decreases. Also when decreasing the hot water consumption, the quantity and temperature of available excess heat increases. This excess heat can be used for evaporation, thereby reducing the live steam demand further by up to 1.5 GJ/t. A pinch analysis was performed at an existing mill and it was found that if pinch violations are removed, the hot water consumption is not an important factor any more. Removing all the pinch violations and using the remaining excess heat for evaporation yields a significantly larger energy savings for the mill (4.0 GJ/t). From an economic optimum perspective it is probably most profitable to do a combination of reducing water consumption, removing pinch violations, and use the remaining excess heat for evaporation.

  9. Solar light irradiation significantly reduced cytotoxicity and disinfection byproducts in chlorinated reclaimed water.

    Science.gov (United States)

    Lv, Xiao-Tong; Zhang, Xue; Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying

    2017-11-15

    Chlorinated reclaimed water is widely used for landscaping and recreational purposes, resulting in human exposure to toxic disinfection byproducts. Although the quality of chlorinated reclaimed water might be affected by sunlight during storage, the effects of solar light irradiation on the toxicity remain unknown. This study investigated the changes in cytotoxicity and total organic halogen (TOX) of chlorinated reclaimed water exposed to solar light. Irradiation with solar light for 12 h was found to significantly reduce the cytotoxicity of chlorinated reclaimed water by about 75%, with ultraviolet light being responsible for the majority of this reduction. Chlorine residual in reclaimed water tended to increase the cytotoxicity, and the synergy between solar light and free chlorine could not enhance the reduction of cytotoxicity. Adding hydroxyl radical scavengers revealed that the contribution of hydroxyl radical to cytotoxicity reduction was limited. Solar light irradiation concurrently reduced TOX. The low molecular weight (1 kDa) fraction was probably caused by photoconversion from high toxic TOX to low toxic TOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar

    Directory of Open Access Journals (Sweden)

    Rose Mbugua

    2016-12-01

    Full Text Available The aim of this study was to develop Gum Acacia Karroo (GAK as set retarding-water reducing admixture in cement mortars. Retarding admixtures are used to counter effect the accelerated hydration of cement at elevated temperatures by slowing down the retarding process especially during the day when concreting work is done. However most retarding admixtures available in the market are expensive, thereby making them out of reach for small consumers of concrete in Africa are expensive and not readily available. GAK, which contains soluble sugars, was investigated as a set-retarding water reducing-admixture. Setting time was measured in cement pastes with different dosages of GAK and a commercial retarding agent (Tard CE. Compressive strength, bleeding and flow test were investigated on cement mortars with the control being cement mortar without admixture. GAK was found to increase final setting time by 6 h above control. Compressive strength increased when water cement ratio was reduced from 0.5 to 0.4. Thermogravimetric analysis revealed increased dosage of GAK reduced hydration rate.

  11. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  12. Characterization of ground-water flow between the Canisteo Mine Pit and surrounding aquifers, Mesabi Iron Range, Minnesota

    Science.gov (United States)

    Jones, Perry M.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, conducted a study to characterize ground-water flow conditions between the Canisteo Mine Pit, Bovey, Minnesota, and surrounding aquifers following mine abandonment. The objective of the study was to estimate the amount of steady-state, ground-water flow between the Canisteo Mine Pit and surrounding aquifers at pit water-level altitudes below the level at which surface-water discharge from the pit may occur. Single-well hydraulic tests and stream-hydrograph analyses were conducted to estimate horizontal hydraulic conductivities and ground-water recharge rates, respectively, for glacial aquifers surrounding the mine pit. Average hydraulic conductivity values ranged from 0.05 to 5.0 ft/day for sands and clays and from 0.01 to 121 ft/day for coarse sands, gravels, and boulders. The 15-year averages for the estimated annual recharge using the winter records and the entire years of record for defining baseflow recession rates were 7.07 and 7.58 in., respectively. These recharge estimates accounted for 25 and 27 percent, respectively, of the average annual precipitation for the 1968-82 streamflow monitoring period. Ground-water flow rates into and out of the mine pit were estimated using a calibrated steady-state, ground-water flow model simulating an area of approximately 75 mi2 surrounding the mine pit. The model residuals, or difference between simulated and measured water levels, for 15 monitoring wells adjacent to the mine pit varied between +28.65 and –3.78 ft. The best-match simulated water levels were within 4 ft of measured water levels for 9 of the 15 wells, and within 2 ft for 4 of the wells. The simulated net ground-water flow into the Canisteo Mine Pit was +1.34 ft3/s, and the net ground-water flow calculated from pit water levels measured between July 5, 1999 and February 25, 2001 was +5.4 ft3/s. Simulated water levels and ground-water flow to and from the mine

  13. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  14. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels.

    Science.gov (United States)

    Scown, Corinne D; Gokhale, Amit A; Willems, Paul A; Horvath, Arpad; McKone, Thomas E

    2014-01-01

    Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which corn stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ∼ 95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.

  15. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados.

    Science.gov (United States)

    Oxenford, Hazel A; Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world's coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future.

  16. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  17. Reduced bone breakage and increased bone strength in free range laying hens fed omega-3 polyunsaturated fatty acid supplemented diets.

    Science.gov (United States)

    Tarlton, John F; Wilkins, Lindsay J; Toscano, Michael J; Avery, Nick C; Knott, Lynda

    2013-02-01

    The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature

  18. Embedded ICT technology on sprayers in order to reduce water pollution; the Aware project

    OpenAIRE

    2009-01-01

    International audience; Various routes exist to reduce water pollution due to pesticide spray drift: decision aid systems for spraying when necessary, a better tuning of sprayers and more precise spraying combinations involving a sprayer and its nozzles, an active matter and an adjuvant. In the European project Aware, supported by a LIFE Environment program, the interest of ICT technologies is demonstrated at the different stages of the spraying process: before, during and after spraying. The...

  19. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods

    Directory of Open Access Journals (Sweden)

    Vorrada Loryuenyong

    2013-01-01

    Full Text Available This research studied the synthesis of graphene oxide and graphene via a low-cost manufacturing method. The process started with the chemical oxidation of commercial graphite powder into graphite oxide by modified Hummer’s method, followed by the exfoliation of graphite oxide in distilled water using the ultrasound frequency from a laboratory ultrasonic bath. Finally, the oxygen functional groups on exfoliated graphite oxide or graphene oxide were eliminated by stirring in hot distilled water at 95°C, as a replacement for highly toxic and dangerously unstable hydrazine. The results assured that stirring in hot distilled water could give the product of graphene or reduced graphene oxide. The samples were characterized by FTIR, XRD, TGA, Raman spectroscopy, SEM, and TEM methods.

  20. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  1. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  2. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    Science.gov (United States)

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  3. Water sorption isotherms of skimmed milk powder within the temperature range of 5–20 °C

    Directory of Open Access Journals (Sweden)

    Jitka Langová

    2012-01-01

    Full Text Available Moisture sorption isotherms (MSI’s of skimmed milk powder in the temperature range of 5–20 °C were determined using manometric method. MSI’s, which show the water content versus water activity (Aw at a constant temperature, are used to describe relationships between water content and equilibrium state relative vapour pressure (RVP. The equilibrium moisture content (EMC of skimmed milk powder samples is growing with an increase of Aw at a constant temperature both for water adsorption and desorption. Isotherms were found to be type II of Brunauer-Emmett-Teller classification. It is the type most common for foods. The shape of created isotherms was sigmoid. Structural modifications of crystals were observed during adsorption in the microscope, too. Critical value of EMC of tested samples corresponding to the Aw equal to 0.6 for adsorption was 6.50% MC (w.b. at temperature 5 °C, 9.15% MC (w.b. at temperature 10 °C, and 7.71% MC (w.b. at temperature 20 °C. These values determine optimal conditions for storage from the point of view microorganisms grow, Aw<0.6.

  4. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-05-01

    Reduced graphene oxide (rGO) has attracted considerable interest recently as the low cost and chemical stable derivative of pristine graphene with application in many applications such as energy storage, water purification and electronic devices. This dissertation thoroughly investigated stacked rGO membrane fabrication process by vacuum-driven filtration, discovered asymmetry of the two surfaces of the rGO membrane, explored application perspectives of the asymmetric rGO membrane in fog collection and microstructure patterning, and disclosed membrane compaction issue during water filtration and species rejection. In more details, this dissertation revealed that, with suitable pore size, the filtration membrane substrate would leave its physical imprint on the bottom surface of the rGO membrane in the form of surface microstructures, which result in asymmetric dynamic water wettability properties of the two surfaces of the rGO membrane. The asymmetric wettability of the rGO membrane would lead to contrasting fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux and rejection kinetics, which was related to the compaction of the rGO membrane under pressure in the process of water filtration.

  5. Increased food production and reduced water use through optimized crop distribution

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  6. Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment.

    Science.gov (United States)

    Anderson, Lindsay E; Krkošek, Wendy H; Stoddart, Amina K; Trueman, Benjamin F; Gagnon, Graham A

    2017-02-07

    This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.

  7. Evaluation of policy measures and methods to reduce diffuse water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ute; Doehler, Helmut; Eurich-Menden, Brigitte; Goemann, Horst; Jaeger, Peter; Kreins, Peter; Moeller, Christine; Prigge, Achim; Ristenpart, Erik; Schultheiss, Ute

    2006-11-15

    After considerable improvements of wastewater treatment, the loads of nutrients and plant protection agents, deriving from agriculture and heavy metals from urban drainages effluents as well as from erosion of agricultural soils are the main sources of nutrients and harmful substances in the loads of water bodies. The targets of the project were on the one hand the analysis of the political and legislative framework of both policy fields and on the other hand the evaluation of several, selected water protection measures with regard to their contribution to reduce water pollution, their economical effects as well as their political enforceability. The focus was laid on diffuse water pollution caused by agriculture. As main reasons for the diffuse water pollution stagnating at high level, the analysis of the political framework identified a lack of implementation discipline of water law, followed by the fragmented and insufficient water protection legislation itself and the previous design of the common agricultural policy slanted towards increasing productivity. For the future co-operation of agricultural and water authorities in implementation of their reforms and better definition of 'Good Farming Practice' are recommended. The second investigation level focuses on the analysis and assessment of selected measures to reduce the input of nutrients and plant protection agents. This part was done with help of calculation models focussing on the specific cost/benefit ratios for water protection. In detail the following measures have been analysed: decoupling of direct payments, coupling of livestock farming to areas, tax on mineral nitrogen, pesticide levy, buffer stripes alongside of watercourses, all season crop cover on arable land, soil cultivation procedures, changing the use of arable land, optimisation of animal nutrition, optimisation of manure storage and application, co-operative agreements, education and training. Co-operations and water protection

  8. Reduced risk estimations after remediation of lead (Pb) in drinking water at two US school districts.

    Science.gov (United States)

    Triantafyllidou, Simoni; Le, Trung; Gallagher, Daniel; Edwards, Marc

    2014-01-01

    The risk of students to develop elevated blood lead from drinking water consumption at schools was assessed, which is a different approach from predictions of geometric mean blood lead levels. Measured water lead levels (WLLs) from 63 elementary schools in Seattle and 601 elementary schools in Los Angeles were acquired before and after voluntary remediation of water lead contamination problems. Combined exposures to measured school WLLs (first-draw and flushed, 50% of water consumption) and home WLLs (50% of water consumption) were used as inputs to the Integrated Exposure Uptake Biokinetic (IEUBK) model for each school. In Seattle an average 11.2% of students were predicted to exceed a blood lead threshold of 5 μg/dL across 63 schools pre-remediation, but predicted risks at individual schools varied (7% risk of exceedance at a "low exposure school", 11% risk at a "typical exposure school", and 31% risk at a "high exposure school"). Addition of water filters and removal of lead plumbing lowered school WLL inputs to the model, and reduced the predicted risk output to 4.8% on average for Seattle elementary students across all 63 schools. The remnant post-remediation risk was attributable to other assumed background lead sources in the model (air, soil, dust, diet and home WLLs), with school WLLs practically eliminated as a health threat. Los Angeles schools instead instituted a flushing program which was assumed to eliminate first-draw WLLs as inputs to the model. With assumed benefits of remedial flushing, the predicted average risk of students to exceed a BLL threshold of 5 μg/dL dropped from 8.6% to 6.0% across 601 schools. In an era with increasingly stringent public health goals (e.g., reduction of blood lead safety threshold from 10 to 5 μg/dL), quantifiable health benefits to students were predicted after water lead remediation at two large US school systems. © 2013.

  9. Evaluating the effect of river restoration techniques on reducing the impacts of outfall on water quality

    Science.gov (United States)

    Mant, Jenny; Janes, Victoria; Terrell, Robert; Allen, Deonie; Arthur, Scott; Yeakley, Alan; Morse, Jennifer; Holman, Ian

    2015-04-01

    Outfalls represent points of discharge to a river and often contain pollutants from urban runoff, such as heavy metals. Additionally, erosion around the outfall site results in increased sediment generation and the release of associated pollutants. Water quality impacts from heavy metals pose risks to the river ecosystem (e.g. toxicity to aquatic habitats). Restoration techniques including establishment of swales, and the re-vegetation and reinforcement of channel banks aim to decrease outfall flow velocities resulting in deposition of pollutants and removal through plant uptake. Within this study the benefits of river restoration techniques for the removal of contaminants associated with outfalls have been quantified within Johnson Creek, Portland, USA as part of the EPSRC funded Blue-Green Cities project. The project aims to develop new strategies for protecting hydrological and ecological values of urban landscapes. A range of outfalls have been selected which span restored and un-restored channel reaches, a variety of upstream land-uses, and both direct and set-back outfalls. River Habitat Surveys were conducted at each of the sites to assess the level of channel modification within the reach. Sediment samples were taken at the outfall location, upstream, and downstream of outfalls for analysis of metals including Nickel, Lead, Zinc, Copper, Iron and Magnesium. These were used to assess the impact of the level of modification at individual sites, and to compare the influence of direct and set-back outfalls. Concentrations of all metals in the sediments found at outfalls generally increased with the level of modification at the site. Sediment in restored sites had lower metal concentrations both at the outfall and downstream compared to unrestored sites, indicating the benefit of these techniques to facilitate the effective removal of pollutants by trapping of sediment and uptake of contaminants by vegetation. However, the impact of restoration measures varied

  10. Measurements of the conduction of heat in water vapor, nitrogen and mixtures of these gases in an extended temperature range

    Science.gov (United States)

    Frohn, A.; Westerdorf, M.

    Experimental and analytical results are presented from trials with heat conduction in water vapor, nitrogen, and mixtures of the two in a cylindrical heat transfer cell. The pressures examined ranged from 100-0.01 mbar, corresponding to Knudsen numbers of 0.01-100. Formulations are defined for the continuum conditions, the free molecule conditions, the transition region, and the momentum equation solution. Experimentation with an instrumented configuration of an inner and outer cylinder over the temperature range 300-725 K is described, noting the use of a vacuum around the inner, gas-filled container in order to measure the radiative heat losses. The results are useful for predicting heat transfer in high altitude flight or among small droplets in natural fogs, cooling towers, and combustion chambers.

  11. How do low dispersal species establish large range sizes? The case of the water beetle Graphoderus bilineatus

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann; Rannap, Riinu; Thomsen, Philip Francis

    2013-01-01

    important than species phylogeny or local spatial attributes. In this study we used the water beetle Graphoderus bilineatus a philopatric species of conservation concern in Europe as a model to explain large range size and to support effective conservation measures for such species that also have limited...... systems and wetlands which used to be highly connected throughout the central plains of Europe. Our data suggest that a broad habitat niche can prevent landscape elements from becoming barriers for species like G. bilineatus. Therefore, we question the usefulness of site protection as conservation...... measures for G. bilineatus and similar philopatric species. Instead, conservation actions should be focused at the landscape level to ensure a long-term viability of such species across their range....

  12. Limited Effects of Water Absorption on Reducing the Accuracy of Leaf Nitrogen Estimation

    Directory of Open Access Journals (Sweden)

    Blowman J. Wang

    2017-03-01

    finally calculated. The results showed that chlorophyll, carotenoid, and water contents could be estimated with R2 of 0.75, 0.59, and 0.69, respectively, which were acceptable for fresh leaves. The dry matter was retrieved with a relatively lower accuracy because of the fixed absorption coefficients adopted by PROSPECT5. The performances of species-specific optimal indices using water-free spectra were comparable to or worse than the corresponding indices derived with measured or simulated spectra. Compared with measured spectra, ETP did not change much after the effects of water were removed, and the R2 between cross-species optimal spectral indices and area-based LNC for Sawtooth Oak and Sweetgum decreased while it remained almost the same for Maize, suggesting that the water-removed cross-species optimal indices were inferior to the corresponding optimal indices found without water removal. ETP was larger than 30% for all spectra, demonstrating the non-existence of common optimal NDSI or RSI for the three species. After water removal, the accuracy of PLSR for Sawtooth Oak and Sweetgum decreased and increased negligibly for Maize. The results suggest that water absorption has limited effects on reducing the accuracy of leaf nitrogen estimation. On the contrary, the accuracy may decrease due to the loss of spectral information caused by the removal of water-sensitive spectral regions.

  13. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete.

    Science.gov (United States)

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-28

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete.

  14. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete

    Directory of Open Access Journals (Sweden)

    Rose Mbugua

    2016-01-01

    Full Text Available Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete.

  15. Water cycle and its management for plant habitats at reduced pressures

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  16. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  17. Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kušnierová Mária

    2000-09-01

    Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms – microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called “sulfuretum”. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, Šobov locality and metallurgic plants (works

  18. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Kirk, Henrik; Fernandez-Lago, Helena

    2017-01-01

    PURPOSE: We investigated if 30 min of daily treadmill training with an incline for 6 weeks would reduce ankle joint stiffness and improve active range of movement in adults with cerebral palsy (CP). METHODS: The study was designed as a randomized controlled clinical trial including 32 adults...... with CP (GMFCS 1-3) aged 38.1 SD 12 years. The training group (n = 16) performed uphill treadmill training at home daily for 30 min for 6 weeks in addition to their usual activities. Passive and reflex mediated stiffness and range of motion (ROM) of the ankle joint, kinematic and functional measures...

  19. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  20. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  1. Integrating modeling, monitoring, and management to reduce critical uncertainties in water resource decision making.

    Science.gov (United States)

    Peterson, James T; Freeman, Mary C

    2016-12-01

    Stream ecosystems provide multiple, valued services to society, including water supply, waste assimilation, recreation, and habitat for diverse and productive biological communities. Managers striving to sustain these services in the face of changing climate, land uses, and water demands need tools to assess the potential effectiveness of alternative management actions, and often, the resulting tradeoffs between competing objectives. Integrating predictive modeling with monitoring data in an adaptive management framework provides a process by which managers can reduce model uncertainties and thus improve the scientific bases for subsequent decisions. We demonstrate an integration of monitoring data with a dynamic, metapopulation model developed to assess effects of streamflow alteration on fish occupancy in a southeastern US stream system. Although not extensive (collected over three years at nine sites), the monitoring data allowed us to assess and update support for alternative population dynamic models using model probabilities and Bayes rule. We then use the updated model weights to estimate the effects of water withdrawal on stream fish communities and demonstrate how feedback in the form of monitoring data can be used to improve water resource decision making. We conclude that investment in more strategic monitoring, guided by a priori model predictions under alternative hypotheses and an adaptive sampling design, could substantially improve the information available to guide decision-making and management for ecosystem services from lotic systems. Published by Elsevier Ltd.

  2. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    Science.gov (United States)

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.

  3. Preparation of Silica/Reduced Graphene Oxide Nanosheet Composites for Removal of Organic Contaminants from Water.

    Science.gov (United States)

    Li, Wen; Liu, Wei; Wang, Haifei; Lu, Wensheng

    2016-06-01

    Graphene-based composites open up new opportunities as effective adsorbents for the removal of organic contaminants from water. In this article, we report a novel and facile process to synthesize well-dispersed silica/reduced graphene oxide (SiO2/RGO) nanosheet composites. The SiO2/RGO nanosheet composites are prepared through a modified sol-gel process with in situ hydrolysis of tetraethoxysilane (TEOS) on graphene oxide (GO) nanosheet, followed by reduction of GO to graphene. In comparison with the RGO nanosheets, the as-prepared SiO2/RGO nanosheet composites have a larger surface area and good aqueous disperse ability. In addition, the application of SiO2/RGO nanosheet composites was demonstrated on removing organic dyes from water. The SiO2/RGO nanosheet composites show rapid and stable adsorption performance on removal of Methylene Blue (MB) and thionine (TH) from water. It is indicated that the resulting SiO2/RGO composites can be utilized as efficient adsorbents for the removal of organic contaminants from water.

  4. DEFICIT IRRIGATION TECHNIQUE FOR REDUCING WATER USE OF TOMATO UNDER POLYTUNNEL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Sladjana SAVIC

    2012-01-01

    Full Text Available The aim of paper was to asses the use of regulated deficit irrigation (RDI for production of two tomato cultivars (Cedrico and Abellus in polytunnels in Serbia. RDI plants received 60% of the water that was applied to FI plants and significant saving of water for irrigation and increased in irrigation water use efficiency (IWUE were achieved. Yield data for Cedrico cultivar showed no differences between RDI and FI, while due to the bigger sensitivity to drought, yield of Abellus was reduced under RDI. In general, fruit quality (soluble solids, titrable acidity was sustained or improved in both cultivars under RDI. Economic analyses showed that due to the current low prices of water and electricity in Serbia, the profit increase of Cedrico, similarly to the previously trialed cultivar Amati, was not high under RDI comparing to FI. Reduction of yield and consequent profit for Abellus, indicated that for future commercial growing of tomato under RDI should be used drought resistant cultivars.

  5. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming

    Science.gov (United States)

    Posch, Thomas; Köster, Oliver; Salcher, Michaela M.; Pernthaler, Jakob

    2012-11-01

    Anthropogenic-induced changes in nutrient ratios have increased the susceptibility of large temperate lakes to several effects of rising air temperatures and the resulting heating of water bodies. First, warming leads to stronger thermal stratification, thus impeding natural complete water turnover (holomixis), which compensates for oxygen deficits in the deep zones. Second, increased water temperatures and nutrient concentrations can directly favour the growth of harmful algae. Thus, lake-restoration programmes have focused on reducing nutrients to limit toxic algal blooms. Here we present evidence that the ubiquitous harmful cyanobacterium Planktothrix rubescens has become the dominant species in a large lake during the past four decades, although the phosphorus content of the ecosystem decreased fivefold. However, the nitrogen input was not diminished concomitantly, favouring this non-N2-fixing cyanobacterium owing to increased N:P ratios. P. rubescens contains gas vesicles that allow for buoyancy to accumulate within the depth of optimal irradiance. As the toxic cyanobacterium has low consumption by predators, water turnover represents the main mechanism of seasonal population control. Thus, unidirectional lake-restoration measures in parallel with recurrent absence of holomixis owing to lake warming may lead to similar undesired effects that have formerly emerged from fertilization.

  6. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  7. Water contamination reduces the tolerance of coral larvae to thermal stress.

    Directory of Open Access Journals (Sweden)

    Andrew P Negri

    Full Text Available Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

  8. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal.

    Science.gov (United States)

    Chandra, Vimlesh; Park, Jaesung; Chun, Young; Lee, Jung Woo; Hwang, In-Chul; Kim, Kwang S

    2010-07-27

    Magnetite-graphene hybrids have been synthesized via a chemical reaction with a magnetite particle size of approximately 10 nm. The composites are superparamagnetic at room temperature and can be separated by an external magnetic field. As compared to bare magnetite particles, the hybrids show a high binding capacity for As(III) and As(V), whose presence in the drinking water in wide areas of South Asia has been a huge problem. Their high binding capacity is due to the increased adsorption sites in the M-RGO composite which occurs by reducing the aggregation of bare magnetite. Since the composites show near complete (over 99.9%) arsenic removal within 1 ppb, they are practically usable for arsenic separation from water.

  9. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    Science.gov (United States)

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  11. Neutronic study on seed-blanket type reduced-moderation water reactor fuel assembly

    OpenAIRE

    Shelley, A.; 久語 輝彦; 嶋田 昭一郎; 大久保 努; 岩村 公道

    2004-01-01

    Neutronic study has been done for a PWR-type reduced-moderation water reactor with seed-blanket fuel assemblies to achieve a high conversion ratio, a negative void coefficient and a high burnup by using a MOX fuel. The results of the precise assembly burnup calculations show that the recommended numbers of seed and blanket layers are 15(S15) and 5(B5), respectively. By the optimization of axial configuration, the S15B5 assembly with the seed of 1000times2 mm high, internal blanket of 150 mm h...

  12. Identification and on-line monitoring of reduced sulphur species (RSS) by voltammetry in oxic waters.

    Science.gov (United States)

    Superville, Pierre-Jean; Pižeta, Ivanka; Omanović, Dario; Billon, Gabriel

    2013-08-15

    Based on automatic on-line measurements on the Deûle River that showed daily variation of a peak around -0.56V (vs Ag|AgCl 3M), identification of Reduced Sulphur Species (RSS) in oxic waters was performed applying cathodic stripping voltammetry (CSV) with the hanging mercury drop electrode (HMDE). Pseudopolarographic studies accompanied with increasing concentrations of copper revealed the presence of elemental sulphur S(0), thioacetamide (TA) and reduced glutathione (GSH) as the main sulphur compounds in the Deûle River. In order to resolve these three species, a simple procedure was developed and integrated in an automatic on-line monitoring system. During one week monitoring with hourly measurements, GSH and S(0) exhibited daily cycles whereas no consequential pattern was observed for TA. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Is allicin able to reduce Campylobacter jejuni colonization in broilers when added to drinking water?

    Science.gov (United States)

    Robyn, J; Rasschaert, G; Hermans, D; Pasmans, F; Heyndrickx, M

    2013-05-01

    Reducing Campylobacter shedding on the farm could result in a reduction of the number of human campylobacteriosis cases. In this study, we first investigated if allicin, allyl disulfide, and garlic oil extract were able to either prevent C. jejuni growth or kill C. jejuni in vitro. Allyl disulfide and garlic oil extract reduced C. jejuni numbers in vitro below a detectable level at a concentration of 50 mg/kg (no lower concentrations were tested), whereas allicin reduced C. jejuni numbers below a detectable level at a concentration as low as 7.5 mg/kg. In further experiments we screened for the anti-C. jejuni activity of allicin in a fermentation system closely mimicking the broiler cecal environment using cecal microbiota and mucus isolated from C. jejuni-free broilers. During these fermentation experiments, allicin reduced C. jejuni numbers below a detectable level after 24 h at a concentration of 50 mg/kg. In contrast, 25 mg/kg of allicin killed C. jejuni in the first 28 h of incubation, but anti-C. jejuni activity was lost after 48 h of incubation, probably due to the presence of mucin in the growth medium. This had been confirmed in fermentation experiments in the presence of broiler cecal mucus. Based on these results, we performed an in vivo experiment to assess the prevention or reduction of cecal C. jejuni colonization in broiler chickens when allicin was added to drinking water. We demonstrated that allicin in drinking water did not have a statistically significant effect on cecal C. jejuni colonization in broilers. It was assumed, based on in vitro experiments, that the activity of allicin was thwarted by the presence of mucin-containing mucus. Despite promising in vitro results, allicin was not capable of statistically influencing C. jejuni colonization in a broiler flock, although a trend toward lower cecal C. jejuni numbers in allicin-treated broilers was observed.

  14. Anti-obesity effect of alkaline reduced water in high fat-fed obese mice.

    Science.gov (United States)

    Ignacio, Rosa Mistica Coles; Kang, Tae-Young; Kim, Cheol-Su; Kim, Soo-Ki; Yang, Young-Chul; Sohn, Joon-Hyung; Lee, Kyu-Jae

    2013-01-01

    Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.

  15. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.

    Science.gov (United States)

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2010-07-15

    This study presents the effect of three different water-reducing admixtures (WRAs) on the rheological and mechanical properties of cemented paste backfill (CPB) samples. A 28-day strength of > or = 0.7 MPa and the maintenance of the stability (i.e. > or = 0.7 MPa) over 360 days of curing were desired as the design criteria. Ordinary Portland cement (OPC) and Portland composite cement (PCC) were used as binders at 5 wt.% dose. WRAs were initially tested to determine the dosage of a WRA for a required consistency of 7'' for CPB mixtures. A total of 192 CPB samples were then prepared using WRAs. The utilization of WRAs enhanced the flow characteristics of the CPB mixture and allowed to achieve the same consistency at a lower water-to-cement ratio. For OPC, the addition of WRAs appeared to improve the both short- and long-term performance of CPB samples. However, only polycarboxylate-based superplasticiser produced the desired 28-day strength of > or = 0.7 MPa when PCC was used as the binder. These findings suggest that WRAs can be suitably exploited for CPB of sulphide-rich tailings to improve the strength and stability in short and long terms allowing to reduce binder costs in a CPB plant. 2010 Elsevier B.V. All rights reserved.

  16. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    Science.gov (United States)

    Gorman, Phillip Michael

    possible to increase the amount of boron in the control blades by changing the assembly and core design. Nonetheless, the uncertainties in the multiplication factor due to nuclear data and void fraction uncertainty were assessed for the RBWR-SSH and the RBWR-TR, as well as for the RBWR-TB2. In addition, the uncertainty associated with the change in reactor states (such as the reactivity insertion in flooding the core) due to nuclear data uncertainties was quantified. The thorium RBWRs have much larger uncertainty of their DU-fueled counterparts as designed by Hitachi, as the fission cross section of 233U has very large uncertainty in the epithermal energy range. The uncertainty in the multiplication factor at reference conditions was about 1350 pcm for the RBWR-SSH, while it was about 900 pcm for the RBWR-TR. The uncertainty in the void coefficient of reactivity for both reactors is between 8 and 10 pcm/% void, which is on the same order of magnitude as the full core value. Finally, since sharp linear heat rate spikes were observed in the RBWR-TB2 simulation, the RBWR-TB2 unit cell was simulated using a much finer mesh than is possible using deterministic codes. It was found that the thermal neutrons reflecting back from the reflectors and the blankets were causing extreme spikes in the power density near the axial boundaries of the seeds, which were artificially smoothed out when using coarser meshes. It is anticipated that these spikes will cause melting in both seeds in the RBWR-TB2, unless design changes--such as reducing the enrichment level near the axial boundaries of the seeds--are made.

  17. The behaviour of a floating water bridge under reduced gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Elmar C; Agostinho, Luewton L F; Wexler, Adam; Wagterveld, R Martijn; Tuinstra, Jan [Wetsus, Center of Excellence for Sustainable Water Technology, Agora 1, 8900 CC Leeuwarden (Netherlands); Woisetschlaeger, Jakob, E-mail: elmar.fuchs@wetsus.nl [Institute for Thermal Turbomachinery and Machine Dynamics, Graz University of Technology, Inffeldgasse 25A, Graz (Austria)

    2011-01-19

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschlaeger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  18. Emergency Response Planning to Reduce the Impact of Contaminated Drinking Water during Natural Disasters

    Science.gov (United States)

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water system...

  19. Brushing teeth with purified water to reduce ventilator-associated pneumonia.

    Science.gov (United States)

    Yao, Li-Yin; Chang, Cheng-Kuei; Maa, Suh-Hwa; Wang, Charlotte; Chen, Cheryl Chia-Hui

    2011-12-01

    , toothbrushing twice daily with purified water reduces VAP and improves oral health and hygiene.

  20. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase.

    Science.gov (United States)

    Wexler, Margaret; Bond, Philip L; Richardson, David J; Johnston, Andrew W B

    2005-12-01

    Using DNA obtained from the metagenome of an anaerobic digestor in a waste water treatment plant, we constructed a gene library cloned in the wide host-range cosmid pLAFR3. One cosmid enabled Rhizobium leguminosarum to grow on ethanol as sole carbon and energy source, this being due to the presence of a gene, termed adhEMeta. The AdhEMeta protein most closely resembles the AdhE alcohol dehydrogenase of Clostridium acetobutylicum, where it catalyses the formation of ethanol and butanol in a two-step reductive process. However, cloned adhEMeta did not confer ethanol utilization ability to Escherichia coli or to Pseudomonas aeruginosa, even though it was transcribed in both these hosts. Further, cell-free extracts of E. coli and R. leguminosarum containing cloned adhEMeta had butanol and ethanol dehydrogenase activities when assayed in vitro. In contrast to the well-studied AdhE proteins of C. acetobutylicum and E. coli, the enzyme specified by adhEMeta is not inactivated by oxygen and it enables alcohol to be catabolized. Cloned adhEMeta did, however, confer one phenotype to E. coli. AdhE- mutants of E. coli fail to ferment glucose and introduction of adhEMeta restored the growth of such mutants when grown under fermentative conditions. These observations show that the use of wide host-range vectors enhances the efficacy with which metagenomic libraries can be screened for genes that confer novel functions.

  1. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  2. Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial waste-water treatment

    Science.gov (United States)

    Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar

    2016-01-01

    Abstract Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification. PMID:27877889

  3. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Don W. Green; Stan McCool; Min Cheng; Feiyan Chen

    2004-02-01

    The objectives of the research are to improve the effectiveness of polymer gels to increase volumetric sweep efficiency of fluid displacement processes and to reduce water production in production wells. The research is based on experimental data and conceptual and mathematical models developed from interpretation of experimental data. This report describes two types of mathematical models that were developed. One model type simulates the chemical reactions where polymer molecules are crosslinked to form a 3-dimensional network or gel. The model is based on statistical probabilities of reactions and yields molecular weights averages and distributions as functions of conversion. The second model type simulates the transport of chromium acetate, a common polymer crosslinker, through porous dolomite rock and includes the mechanisms of dolomite dissolution and chromium precipitation. The chromium transport model reasonably agreed with experimental data.

  4. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  5. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios.

    Science.gov (United States)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Ma, Lin

    2017-02-01

    Coastal waters of China are rich in nitrogen (N) and phosphorus (P) and thus often eutrophied. This is because rivers export increasing amounts of nutrients to coastal seas. Animal production and urbanization are important sources of nutrients in Chinese rivers. In this study we explored the future from an optimistic perspective. We present two optimistic scenarios for 2050 (OPT-1 and OPT-2) for China. Maximized recycling of manure on land in OPT-1 and OPT-2, and strict sewage control in OPT-2 (e.g., all sewage is collected and treated efficiently) are essential nutrient strategies in these scenarios. We also analyzed the effect of the current policy plans aiming at "Zero Growth in Synthetic Fertilizers after 2020" (the CP scenario). We used the MARINA (a Model to Assess River Inputs of Nutrients to seAs) model to quantify dissolved N and P export by Chinese rivers to the Bohai Gulf, Yellow Sea and South China Sea and the associated coastal eutrophication potential (ICEP). The Global Orchestration (GO) scenario of the Millennium Ecosystem Assessment was used as a basis. GO projects increases in river export of dissolved N and P (up to 90%) between 2000 and 2050 and thus a high potential for coastal eutrophication (ICEP>0). In contrast, the potential for coastal eutrophication is low in optimistic scenarios (ICEPseas are around their levels of 1970. Maximizing manure recycling can reduce nutrient pollution of Chinese seas considerably. Sewage control is effective in reducing P export by rivers from urbanized areas. The CP scenario, on the other hand, shows that current policy plans may not be sufficient to avoid coastal eutrophication in the future. Our study may help policy makers in formulating strategies to ensure clean coastal waters in China in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW

    Directory of Open Access Journals (Sweden)

    Marc Henry

    2013-12-01

    Full Text Available The consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Ministry of Health, Labour and Welfare for the cure of gastro-intestinal disorders. Today, these devices are freely available in several countries and can be easily purchased without reserve. The commercial information included with the device recommends the consumption of 1–1.5 L of water per day, not only for gastro-intestinal disorders but also for numerous other illnesses such as diabetes, cancer, inflammation, etc. Academic research in Japan on this subject has been undergoing since 1990 only but has established that the active ingredient is dissolved dihydrogen that eliminates the free radical HO• in vivo. In addition, it was demonstrated that degradation of the electrodes during functioning of the device releases very reactive nanoparticles of platinum, the toxicity of which has not yet been clearly proven. This report recommends alerting health authorities of the uncontrolled availability of these devices used as health products, but which generate drug substances and should therefore be sold according to regulatory requirements.

  7. Delays in reducing waterborne and water-related infectious diseases in China under climate change

    Science.gov (United States)

    Hodges, Maggie; Belle, Jessica H.; Carlton, Elizabeth J.; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy J.; Remais, Justin V.

    2014-12-01

    Despite China's rapid progress in improving water, sanitation and hygiene (WSH) access, in 2011, 471 million people lacked access to improved sanitation and 401 million to household piped water. As certain infectious diseases are sensitive to changes in both climate and WSH conditions, we projected impacts of climate change on WSH-attributable diseases in China in 2020 and 2030 by coupling estimates of the temperature sensitivity of diarrhoeal diseases and three vector-borne diseases, temperature projections from global climate models, WSH-infrastructure development scenarios, and projected demographic changes. By 2030, climate change is projected to delay China's rapid progress towards reducing WSH-attributable infectious disease burden by 8-85 months. This development delay summarizes the adverse impact of climate change on WSH-attributable infectious diseases in China, and can be used in other settings where a significant health burden may accompany future changes in climate even as the total burden of disease falls owing to non-climate reasons.

  8. Long-term impact of reduced tillage on water and pesticide flow in a drained context.

    Science.gov (United States)

    Dairon, R; Dutertre, A; Tournebize, J; Marks-Perreau, J; Carluer, N

    2017-03-01

    Influence of more than 20 years (1988-2010) of reduced tillage (RT) practices on water and pesticide balances and dynamics is analyzed and compared to results from a conventional tillage plot (CT). The field study soils are described as silty clay stagnic luvisol, developed on a low permeable schist layer. A drainage network was set up according to French criteria (0.9 m deep, 10 m space) to avoid soil winter waterlogging. Climate is temperate oceanic and drainage generally occurs from November to March. Data were analyzed at yearly, weekly (pesticides) and hourly (water) time steps. Over the long term, cumulated drainage decreases significantly on RT (3999 mm) compared to CT (5100 mm). This differentiation becomes significant from 1999, 10 years after plowing was stopped. Strikingly, hourly drainage peak flows are higher under RT, especially during the second period (2000-2010), associated with low or no base flow. These results suggest a strong influence of the macropore network under RT practice. In particular, drainage peaks are higher at the beginning of the drainage season (mid-October to December). Consistently, pesticides applied in late autumn, which are the most quantified on this site, are often significantly more exported under RT. For atrazine, applied in spring, fluxes are linked to cumulative flow and are de facto higher under CT. For others pesticides, losses appear to be heterogeneous, with generally low or null export rates for spring application. Generally speaking, higher concentrations are measured on RT plot and explain observed exportation rate differences. Finally, there is no clear evidence of correlation between pesticide losses and long-term impacts of RT on hydrodynamics, pointing the importance of studying the short-term effect of tillage on water and especially solute flow.

  9. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.

    Science.gov (United States)

    Cheng, Tao; Rivard, Benoit; Sánchez-Azofeifa, Arturo G; Féret, Jean-Baptiste; Jacquemoud, Stephane; Ustin, Susan L

    2012-08-15

    Leaf water content is an important variable for understanding plant physiological properties. This study evaluates a spectral analysis approach, continuous wavelet analysis (CWA), for the spectroscopic estimation of leaf gravimetric water content (GWC, %) and determines robust spectral indicators of GWC across a wide range of plant species from different ecosystems. CWA is both applied to the Leaf Optical Properties Experiment (LOPEX) data set and a synthetic data set consisting of leaf reflectance spectra simulated using the leaf optical properties spectra (PROSPECT) model. The results for the two data sets, including wavelet feature selection and GWC prediction derived using those features, are compared to the results obtained from a previous study for leaf samples collected in the Republic of Panamá (PANAMA), to assess the predictive capabilities and robustness of CWA across species. Furthermore, predictive models of GWC using wavelet features derived from PROSPECT simulations are examined to assess their applicability to measured data. The two measured data sets (LOPEX and PANAMA) reveal five common wavelet feature regions that correlate well with leaf GWC. All three data sets display common wavelet features in three wavelength regions that span 1732-1736 nm at scale 4, 1874-1878 nm at scale 6, and 1338-1341 nm at scale 7 and produce accurate estimates of leaf GWC. This confirms the applicability of the wavelet-based methodology for estimating leaf GWC for leaves representative of various ecosystems. The PROSPECT-derived predictive models perform well on the LOPEX data set but are less successful on the PANAMA data set. The selection of high-scale and low-scale features emphasizes significant changes in both overall amplitude over broad spectral regions and local spectral shape over narrower regions in response to changes in leaf GWC. The wavelet-based spectral analysis tool adds a new dimension to the modeling of plant physiological properties with

  10. Warfare Ecology on an Underwater Demolition Range: Acoustic Observations of Marine Life and Shallow Water Detonations in Hawai`i

    Science.gov (United States)

    Shannon, Lee H.

    Most studies investigating the effects of military-associated anthropogenic noise concentrate on deep sea or open ocean propagation of sonar and its effect on marine mammals. In littoral waters, U.S. military special operations units regularly conduct shallow water explosives training, yet relatively little attention has been given to the potential impact on nearshore marine ecosystems from these underwater detonations. This dissertation research focused on the Pu'uloa Underwater Detonation Range off the coast of O`ahu, and examined multiple aspects of the surrounding marine ecosystem and the effects of detonations using acoustic monitoring techniques. The soundscape of a nearshore reef ecosystem adjacent to the UNDET range was characterized through analysis of passive acoustic recordings collected over the span of 6 years. Snapping shrimp were the predominant source of noise, and a diel pattern was present, with increased sound energy during the night hours. Results revealed a difference of up to 7dB between two Ecological Acoustic Recorder locations 2.5km apart along the 60ft isobath. Passive acoustic recording files were searched visually and aurally for odontocete whistles. Whistles were detected in only 0.6% of files analyzed, indicating this area is not frequently transited by coastal odontocete emitting social sounds. The study also opportunistically captured a humpback whale singing during a detonation event, during which the animal showed no obvious alteration of its singing behavior. Four separate underwater detonation events were recorded using a surface deployed F-42C transducer, and the resulting analysis showed no measurable drop in the biologically produced acoustic energy in reaction to the explosive events. Coral reef fishes were recorded visually and acoustically during detonation events at a known distance and bearing from a known explosive sound source. Individual fish behavioral responses to the explosion varied, and a sharp uptick in fish

  11. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pagnanelli, F., E-mail: francesca.pagnanelli@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cruz Viggi, C., E-mail: carolina.cruzviggi@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cibati, A., E-mail: alessio.cibati@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy); Toro, L., E-mail: luigi.toro@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Palleschi, C., E-mail: claudio.palleschi@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). Black-Right-Pointing-Pointer Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). Black-Right-Pointing-Pointer Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L{sup -1}), ethanol (1.5 g L{sup -1}) and Cr(VI) (50 mg L{sup -1}). At steady state the column inoculated with SRB removed 65 {+-} 5% of sulphate and 95 {+-} 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  12. Enhancing Hematite Photoanode Activity for Water Oxidation by Incorporation of Reduced Graphene Oxide.

    Science.gov (United States)

    do Amaral Carminati, Saulo; Souza, Flavio L; Nogueira, Ana F

    2016-01-04

    Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor-blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm(-2) at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron-hole recombination rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  14. Shark Spotters: Successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa.

    Science.gov (United States)

    Engelbrecht, Tamlyn; Kock, Alison; Waries, Sarah; O'Riain, M Justin

    2017-01-01

    White sharks (Carcharodon carcharias) are apex predators that play an important role in the structure and stability of marine ecosystems. Despite their ecological importance and protected status, white sharks are still subject to lethal control to reduce the risk of shark bites for recreational water users. The Shark Spotters program, pioneered in Cape Town, South Africa, provides a non-lethal alternative for reducing the risk of human-shark conflict. In this study we assessed the efficacy of the Shark Spotters program in reducing overlap between water users and white sharks at two popular beaches in False Bay, South Africa. We investigated seasonal and diel patterns in water use and shark presence at each beach, and thereafter quantified the impact of different shark warnings from shark spotters on water user abundance. We also assessed the impact of a fatal shark incident on patterns of water use. Our results revealed striking diel and seasonal overlap between white sharks and water users at both beaches. Despite this, there was a low rate of shark-human incidents (0.5/annum) which we attribute partly to the success of the Shark Spotters program. Shark spotters use visual (coloured flags) and auditory (siren) cues to inform water users of risk associated with white shark presence in the surf zone. Our results showed that the highest risk category (denoted by a white flag and accompanying siren) caused a significant reduction in water user abundance; however the secondary risk category (denoted by a red flag with no siren) had no significant effect on water users. A fatal shark incident was shown to negatively impact the number of water users present for at least three months following the incident. Our results indicate that the Shark Spotters program effectively reduces spatial overlap between white sharks and water users when the risk of conflict is highest.

  15. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Science.gov (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda

    2017-06-01

    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  16. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco

    2017-06-01

    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  17. Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater.

    Science.gov (United States)

    Wu, Jianrong; Zhao, Hongyan; Chen, Rong; Pham-Huy, Chuong; Hui, Xuanhong; He, Hua

    2016-09-01

    A one-pot solvothermal synthesis method was developed to prepare reduced graphene oxide (RGO) supported ferrite hybrids using graphite oxide and metal ions (Fe(3+)) as starting materials. The as-prepared composites were characterized by transmission electron microscopy(TEM), Fourier transform infrared spectrophotometer (FT-IR), X-ray powder diffraction pattern(XRD) and vibrating sample magnetometer (VSM). It was shown that Fe3O4 nanoparticles with a uniform size of ∼35nm were anchored on RGO nanosheets. Importantly, the obtained nanocomposites are effective adsorbents for the determination of three sulfonamides in wastewater. Several parameters affecting the extraction efficiency were optimized, including amount of adsorbent, extraction time, pH and desorption conditions. Compared with other adsorbents, the as-prepared RGO-Fe3O4 showed the better extraction efficiencies for the SAS due to the large surface area of RGO. A linear range from 1 to 200ng/mL was obtained with a high correlation coefficient (R(2)>0.9987), and the limits of detection for three SAs ranged from 0.43 to 0.57ng/mL. This method was successfully applied to the analysis of SAs in environmental wastewater samples, the recoveries in different sample matrices were in the range from 89.1 and 101.7% with relative standard deviations less than 8.6%. It is believed that such composites will find wide applications in the water pretreatment area. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rogoznica Lake - a Conceptual Framework to Study Sulfate-reducing Bacteria Across a Wide Range of Anoxic/hypoxic Marine Environments

    Science.gov (United States)

    Cankovic, M.; Collins, G.; Petrić, I.; Ciglenečki, I.

    2016-02-01

    Today's oceans and seas are experiencing, among other changes, oxygen depletion, resulting in hypoxia/anoxia. Consequently, toxic H2S,generated by sulfate-reducing bacteria (SRB), is released. The prevalence of this type of environment has increased rapidly over the past decades, especially in costal zones. Rogoznica Lake (Croatia) is a typical, extreme euxinic, seawater system, with a permanently anoxic bottom water layer. As such, it represents a natural laboratory to study SRB. The objective of this study was to characterize the SRB community inhabiting the hypoxic/anoxic water column and sediment of Rogoznica Lake. The distribution, diversity, activity and abundance of SRB were investigated using different molecular techniques accompanied by physico-chemical and organic matter measurements. Results indicated seasonal variations in SRB diversity, abundance and activity, as well as variations between different samples. A complex and diverse distribution of SRB was revealed, supporting the idea that habitat-specific SRB communities are the main drivers of anaerobic degradation of organic matter, as well as cycling of sulfur and carbon species, in the Lake. Furthermore, low sequence homology to cultured SRB indicated presence of a specific SRB community in the Lake.While eutrophication is a leading cause of impairment of many freshwater and coastal marine ecosystems in the world, hypoxia and anoxia continue to threaten tourism and fisheries worldwide. In such circumstances better understanding of SRB spatio-temporal distribution and dynamics would be of ecological and economical importance.

  19. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2-150 kHz Frequency Range.

    Science.gov (United States)

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen

    2018-01-23

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.

  20. Rational synthesis of Pd nanoparticle-embedded reduced graphene oxide frameworks with enhanced selective catalysis in water

    Science.gov (United States)

    Liu, Jian; Hu, Guowen; Yang, Yanmei; Zhang, Haoli; Zuo, Wei; Liu, Weisheng; Wang, Baodui

    2016-01-01

    A three-dimensional (3D) Pd-reduced graphene oxide framework (Pd-rGOF) with hierarchical macro- and mesoporous structures has been developed via covalence- and coordination-assisted self-assembly approach. In this facile fabrication process, GO was first cross-linked with triethylene tetramine (TETA) to form 3D GOF, in which well-dispersed and ultrasmall Pd nanoparticles (NPs) in situ grew and embedded the framework. The obtained nanopores, 3D Pd-rGOF, can act as nanoreactors to help the reaction substrates thoroughly contact with the surface of Pd NPs, thereby exhibiting high activity and selectivity toward the Tsuji-Trost reaction in water, with 99% conversion and selectivity for most substrates. Moreover, the 3D Pd-rGOF catalyst can be reused more than ten times without significant loss of activity, rendering this catalyst long-term stability. The abovementioned observations make the rGOF a universal platform to coordinate other noble metal ions (NM) to construct desired NM-rGOF nanocatalysts with improved activity, selectivity, and durability that can be used in a broad range of practical applications.A three-dimensional (3D) Pd-reduced graphene oxide framework (Pd-rGOF) with hierarchical macro- and mesoporous structures has been developed via covalence- and coordination-assisted self-assembly approach. In this facile fabrication process, GO was first cross-linked with triethylene tetramine (TETA) to form 3D GOF, in which well-dispersed and ultrasmall Pd nanoparticles (NPs) in situ grew and embedded the framework. The obtained nanopores, 3D Pd-rGOF, can act as nanoreactors to help the reaction substrates thoroughly contact with the surface of Pd NPs, thereby exhibiting high activity and selectivity toward the Tsuji-Trost reaction in water, with 99% conversion and selectivity for most substrates. Moreover, the 3D Pd-rGOF catalyst can be reused more than ten times without significant loss of activity, rendering this catalyst long-term stability. The

  1. Effect of Soil Structure At Different Scales On The Water Infiltration. Consequences of Reduced Tillage

    Science.gov (United States)

    Cousin, I.; Vogel, H. J.

    The soil structure in the cultivated layer is strongly dependent of some human activ- ities (like traffic or ploughing) and its evolution results in modifications of the gas, water and solute properties of the soil. The conjoint study of the structure and the transport properties of cultivated soils may also give new arguments to adjust the hu- man actions toward the protection of soil resources. We have then studied the infiltra- tion characteristics of a cultivated soil, that has been let under fallow for 5 years. An infiltration experiment using a dye tracer was carried out in the field to investigate the influence of the structure of each soil horizon on the pattern of water flow and solute transport in the entire soil profile. At a smaller scale, soil cores (16 cm diameter, 10 cm high) were taken to analyse the structure within the different horizons. This was done by x-ray tomography at a resolution of 0.5 mm. The tracer distribution after an infiltration of 90 mm is homogeneous in the top layer (0-10cm) and is then focused to preferential flow paths in the compacted layer below so that the tracer front already reaches the bottom of the soil profile at 80 cm depth. This pattern can be explained by the structure of macropores which is found to be highly continuous in the top layer, as shown by CT analyses, while their continuity is lost in the compacted horizon where only a few earthworm burrows or root channels are active. Obviously, there is no re- generation of the soil structure within the formerly ploughed layer after 5 years of reduced tillage. The observed characteristics of solute transport cannot be reproduced by one dimensional models using homogeneous material properties for the different horizons. To predict the observed preferential flow an explicit consideration of the relevant structures is required.

  2. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-04-03

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the third year of a 42 month research program that is aimed at an understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work focused on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A mathematical model that describes uptake and crosslinking reactions as a function of time was derived. The model was probability based and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. A liquid chromatography apparatus to experimentally measure the size and molecular weight distributions of polymer samples was developed. The method worked well for polymer samples without the chromium crosslinker. Sample retention observed during measurements of gelant samples during the gelation process compromised the results. Other methods will be tested to measure size distributions of the pre-gel aggregates. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results.

  3. Hydrogen-bond network formation of water molecules and its effects on the glass transitions in the ethylene glycol aqueous solutions: failure of the Gordon-Taylor law in the water-rich range and absence of the T(g) = 115 K rearrangement process in bulk pure water.

    Science.gov (United States)

    Nagoe, Atsushi; Oguni, Masaharu

    2010-08-18

    Enthalpy relaxation processes proceeding in ethylene glycol (EG) aqueous solutions [(EG)(x)(H(2)O)(1 - x)] within silica-gel nanopores were studied by adiabatic calorimetry. While the x = 0.25 solution within pores with diameter of 52 nm showed a glass transition at T(g) = 139 K, ageing of the solution at 160 K caused a phase separation to reveal glass transitions at T(g) = 145 and 160 K for EG-rich and water-rich regions, respectively: the water molecules are understood to form a more developed hydrogen-bond network, and consequently force the EG molecules in between the water-rich regions. The T(g) = 160 K is in good agreement with the T(g) value of the internal (not interfacial) water confined within pores with thickness of 1.1 nm. The ageing further remarkably diminished the T(g) = 115 K glass transition. This indicates that, while the molecules responsible for the glass transition are the mobile water ones forming a lower number of hydrogen bonds than four, the fraction of such water molecules is reduced in association with the development of the network and the glass transition is absent in bulk pure water. When the same x = 0.25 solution was confined within 1.1- and 12 nm pores, the water molecules developed a hydrogen-bond network in the pore centre due to the presence of the pore wall and pushed the EG molecules onto the pore surface even at higher temperatures: the water-rich region gave T(g) = 155 K close to 160 K. It is concluded that the hydrogen-bond network inherent to water structure is developed/collapsed remarkably in the range near x = 0; consequently, the composition dependence of T(g) in the bulk system deviates sharply in the range from the Gordon-Taylor empirical law followed for large x > 0.2.

  4. A Fixed Ratio Combination of Insulin Degludec and Liraglutide (IDegLira) Reduces Glycemic Fluctuation and Brings More Patients with Type 2 Diabetes Within Blood Glucose Target Ranges

    DEFF Research Database (Denmark)

    King, Allen B; Philis-Tsimikas, Athena; Kilpatrick, Eric S

    2017-01-01

    BACKGROUND: Reducing glycemic fluctuation is important for optimal diabetes management. This post hoc analysis examined glycemic fluctuations and the proportion of subjects achieving recommended blood glucose targets with the fixed ratio combination of insulin degludec and liraglutide (IDeg......Lira) compared to insulin degludec (IDeg) and liraglutide alone. METHODS: We analyzed nine-point self-monitored blood glucose (SMBG) profiles from two randomized trials involving IDegLira in patients with type 2 diabetes (T2D), and continuous glucose monitoring (CGM) data from a subset of patients in one......). IDegLira also resulted in a greater reduction in the range of SMBG values over 24 h than IDeg (P ≤ 0.0001). CGM data showed that IDegLira provided greater reductions in interstitial glucose (IG) fluctuation (P = 0.0018) and postprandial IG increment (P = 0.0288) compared with IDeg. Compared...

  5. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  6. Decision support system to maximize economic value of irrigation water at the Egyptian governorates meanwhile reducing the national food gap

    Directory of Open Access Journals (Sweden)

    Inas K. El-Gafy

    2013-10-01

    Full Text Available The water resources and agricultural policies in Egypt tend to minimize the food gap, increase self-sufficiency, maximize the economic value of water, decrease the cultivated area of voracious crop water and optimize the water allocation and use. The main goal of the present study is developing a decision support system that can be utilized to assist in achiving these polices and stategies. The decision support system was applied to: (i analyze of the current situation of the consumed water and the cultivated areas by main crops and their net return, (ii calculate economic value of irrigation water for main crops at twenty two governorates in Egypt, and (iii solve a linear optimization problem where the objective function is maximizing the economic value of the irrigation water, and finally (iv propose an optimal cropping pattern at the Egyptian governorate level. The paper concludes that proposing a cropping pattern at the governorate level is essential where it provides a reliable and accurate view of the economic value of irrigation water rather than the national level. The proposed cropping pattern reduces the national food gap and the cultivated areas of voracious crops water, and saves the irrigation water. Alternatives to utilize the saved water due to the proposed cropping pattern are suggested.

  7. Quantitative evaluation on activated property-tunable bulk liquid water with reduced hydrogen bonds using deconvoluted Raman spectroscopy.

    Science.gov (United States)

    Chen, Hsiao-Chien; Mai, Fu-Der; Yang, Kuang-Hsuan; Chen, Liang-Yih; Yang, Chih-Ping; Liu, Yu-Chuan

    2015-01-06

    Interesting properties of water with distinguishable hydrogen-bonding structure on interfacial phase or in confined environment have drawn wide attentions. However, these unique properties of water are only found within the interfacial phase and confined environment, thus, their applications are limited. In addition, quantitative evaluation on these unique properties associating with the enhancement of water's physical and chemical activities represents a notable challenge. Here we report a practicable production of free-standing liquid water at room temperature with weak hydrogen-bonded structure naming Au nanoparticles (NPs)-treated (AuNT) water via treating by plasmon-induced hot electron transfer occurred on resonantly illuminated gold NPs (AuNPs). Compared to well-known untreated bulk water (deionized water), the prepared AuNT water exhibits many distinct activities in generally physical and chemical reactions, such as high solubilities to NaCl and O2. Also, reducing interaction energy within water molecules provides lower overpotential and higher efficiency in electrolytic hydrogen production. In addition, these enhanced catalytic activities of AuNT water are tunable by mixing with deionized water. Also, most of these tunable activities are linearly proportional to its degree of nonhydrogen-bonded structure (DNHBS), which is derived from the O-H stretching in deconvoluted Raman spectrum.

  8. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis Paul

    2013-12-06

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  9. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-10-01

    This is the seventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with lignite and Powder River Basin coals to determine the effects of inlet air moisture level on the equilibrium relationship between coal moisture and exit air relative humidity and temperature. The results show that, for lignite, there is a slight dependence of equilibrium moisture on inlet humidity level. However, the equilibrium relationship for PRB coal appears to be independent of inlet air humidity level. The specific equilibrium model used for computing lignite coal dryer performance has a significant effect on the prediction accuracy for exit air relative humidity; but its effects on predicted coal product moisture, exit air temperature and specific humidity are minimal. Analyses were performed to determine the effect of lignite product moisture on unit performance for a high temperature drying system. With this process design, energy for drying is obtained from the hot flue gas entering the air preheater and the hot circulating cooling water leaving the steam condenser. Comparisons were made to the same boiler operating with lignite which had been dried off-site.

  10. Research on the Preparation and Performance of Binary Modified Maltodextrin Water-Reducing Agent

    Directory of Open Access Journals (Sweden)

    Jingzhi Wu

    2016-01-01

    Full Text Available Using maltodextrin (MD of different dextrose equivalent (DE values, 1,3-propanesultone, and maleic anhydride as raw materials, a novel binary modified maltodextrin (BMMD was synthesized and further applied as a water-reducing agent. Its structure was characterized by Fourier transform infrared (FT-IR and UV. The rheological behavior of the sample solution and strengths for concrete were also determined and the adsorption was tested by TOC. The influence of the process parameters to degree of substitution (DS and the dosage on the fluidity of cement paste were investigated. The results show that the optimal conditions of sulfonation were the MD of DE 15, m (sulfonated agent/m (MD of 1.4, the catalyst amount of 1% by mass MD, and the reaction time of 12 h; the optimal conditions of esterification were m (esterified agent/m (SMD of 0.6, the reaction temperature of 90°C, and the reaction time of 4 h. The optimal dosages of sulfonated maltodextrin (SMD and BMMD were 0.475% and 0.45%, respectively. In this dosage, the main dispersion capacity of BMMD attributes to two kinds of anchoring groups (SO3-  &  COO- and the appropriate molecular weight of MD.

  11. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  12. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water.

    Science.gov (United States)

    Abildgaard, Lone; Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2006-05-01

    A novel alkalitolerant, sulphate-reducing bacterium (strain RT2T) was isolated from alkaline district heating water. Strain RT2T was a motile vibrio (0.5-0.8 microm wide and 1.4-1.9 microm long) and grew at pH 6.9-9.9 (optimum at pH 9.0-9.4) and at 16-47 degrees C (optimum at 43 degrees C). The genomic DNA G+C content was 64.7 mol%. A limited number of compounds were used as electron donors with sulphate as electron acceptor, including lactate, pyruvate, formate and hydrogen/acetate. Sulphite and thiosulphate also served as electron acceptors. Based on physiological and genotypic properties, the isolate was considered to represent a novel species of the genus Desulfovibrio, for which the name Desulfovibrio alkalitolerans sp. nov. is proposed. The type strain is RT2T (=DSM 16529T=JCM 12612T). The strain is the first alkali-tolerant member of the genus Desulfovibrio to be described.

  13. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production.

    Science.gov (United States)

    Liang, Jiezhen; Chen, Xiaopeng; Wang, Linlin; Wei, Xiaojie; Wang, Huasheng; Lu, Songzhou; Li, Yunhua

    2017-03-01

    The aim of present study was to obtain total reducing sugars (TRS) by hydrolysis in subcritical CO2-water from sugarcane bagasse pith (SCBP), the fibrous residue remaining after papermaking from sugarcane bagasse. The optimum hydrolysis conditions were evaluated by L16(4(5)) orthogonal experiments. The TRS yield achieved 45.8% at the optimal conditions: 200°C, 40min, 500rmin(-1), CO2 initial pressure of 1MPa and liquid-to-solid ratio of 50:1. Fourier transform infrared spectrometry and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance were used to characterize hydrolysis liquor, treated and untreated SCBP, resulting in the removal of hemicelluloses to mainly produce xylose, glucose and arabinose during hydrolysis. The severity factors had no correlation to TRS yield, indicating that the simple kinetic processes of biomass solubilisation cannot perfectly describe the SCBP hydrolysis. The first-order kinetic model based on consecutive reaction was used to obtain rate constants, activation energies and pre-exponential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus.

    Directory of Open Access Journals (Sweden)

    Courtney Waugh

    Full Text Available Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative at time of initial vaccination, or infected (C. pecorum positive at either urogenital (UGT and/or ocular sites (Oc, but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking, results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  15. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Hugo Caram; Zheng Yao; Gu Feng

    2004-01-01

    This is the fourth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. A description is given of the equipment, instrumentation and procedures being used for the fluidized bed drying experiments. Experimental data were obtained during this last quarter on the effects of particle size on drying rate for a North Dakota lignite. Other experiments looked at drying a PRB coal. The tests comparing drying rates with lignite particles of different diameters were carried out with particle top sizes from 2 to 9.5 mm and covered a range of air velocities. The results show that drying rate increased with air velocity, but that, within the accuracy of the data, the data for all four particle size distributions follow the same curve. This suggests the higher drying rates associated with the larger particles are due to higher air velocities and not to any inherently different drying rates due to particle size. The drying data with the PRB coal show qualitatively similar behavior to that observed with lignite. However, quantitative comparisons of the drying rate data obtained so far for the two coals show the PRB dried at rates which were 14 to 20 percent lower than the lignite, for comparable process conditions. The equilibrium relationship between relative humidity and coal moisture was refined using a correction for temperature. This reduced the scatter in the coal moisture versus relative humidity data and improved the predictions made with the first principle drying model.

  17. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  18. Linking economic and integrated hydrologic models to investigate the effects of reduced surface water deliveries on the aquifers of California’s Central Valley

    Science.gov (United States)

    Brush, C. F.; Dale, L. L.; Miller, N. L.; Dogrul, E. C.; Kadir, T.; Vicuna, S. D.; Chung, F. I.

    2009-12-01

    Predicted global mean temperature increases will change the rates and timing of mountain-front discharges and thus the availability of surface water supplies for agricultural and urban water consumers. California’s water supply and distribution system collects runoff from the Sierra Nevada Mountain range in the northeastern and eastern part of the state, and routes this to agricultural and urban consumers in the central, western and southern parts of the state. The surface water collection and distribution system relies heavily on the storage of winter precipitation as snow in the Sierra Nevada Mountains, with moderately-sized reservoirs collecting and releasing melt-water through the spring and summer months. Higher elevations of the Sierra Nevada have already experienced a 0.60C rise and 10% reduction in snowpack, and continued warming may reduce snowpack volume by 25% by 2050, with further reductions likely as lower-elevation precipitation increasingly falls as rain. Snowpack reductions, environmental restrictions and recurring droughts may significantly constrain surface water supplies. Agricultural water users have historically increased groundwater pumping to replace surface water during droughts, and groundwater levels have recovered in subsequent years of higher precipitation (and recharge) and surface water flows. Central Valley aquifers could be significantly impacted if reduced snowpack leads to sustained increases in groundwater pumping. These impacts are being studied using the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) and the Central Valley Production Model (CVPM). Multiple CVPM runs were conducted to simulate crop acreage changes in response to surface water reductions and groundwater depth increases, and were then converted to logit function parameters. C2VSIM was used to simulate three future levels of drought (corresponding to 30%, 50% and 70% reductions in precipitation) for periods of 10, 20, 30 and 60 years

  19. 3Ts for Reducing Lead in Drinking Water in Schools and Child Care Facilities

    Science.gov (United States)

    EPA’s 3Ts was developed to assist schools with lead in drinking water prevention programs. It is intended for use by school officials responsible for the maintenance and/or safety of school’s drinking water.

  20. Integrating Disease Control Strategies: Balancing Water Sanitation and Hygiene Interventions to Reduce Diarrheal Disease Burden

    National Research Council Canada - National Science Library

    Eisenberg, Joseph N.S; Scott, James C; Porco, Travis

    2007-01-01

    ... intervention.Results. We found that the benefits of a water quality intervention depend on sanitation and hygiene conditions. When sanitation conditions are poor, water quality improvements may have minimal impact regardless of amount of water contamination. If each transmission pathway alone is sufficient to maintain diarrheal disease, single-pathway ...

  1. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    This study investigates the presence of SRB in water, in a water pipeline and in the soil near the pipeline at a mining operation, under conditions that would be expected to be stable toward corrosion. Samples of water in pipes showed a high frequency of SRB. Cast iron coupons placed in pipes gave positive results for SRB ...

  2. POLYAMIDE WITH REDUCED CRYSTALLINITY

    NARCIS (Netherlands)

    HARINGS, JULES; DESHMUKH, YOGESH SHESHRAO; VINKEN, ESTHER; RASTOGI, SANJAY

    2009-01-01

    The invention relates to a novel process for making compositions comprising a polyamid, water and a salt, having reduced crystallinity, wherein the process comprising the steps of: a. mixing the polyamide, water and a salt b. heating the mixture to a temperature above 100°C in a range between 120°C

  3. Precipitable water and surface humidity over global oceans from special sensor microwave imager and European Center for Medium Range Weather Forecasts

    Science.gov (United States)

    Liu, W. T.; Tang, Wenqing; Wentz, Frank J.

    1992-01-01

    Global fields of precipitable water W from the special sensor microwave imager were compared with those from the European Center for Medium Range Weather Forecasts (ECMWF) model. They agree over most ocean areas; both data sets capture the two annual cycles examined and the interannual anomalies during an ENSO episode. They show significant differences in the dry air masses over the eastern tropical-subtropical oceans, particularly in the Southern Hemisphere. In these regions, comparisons with radiosonde data indicate that overestimation by the ECMWF model accounts for a large part of the differences. As a check on the W differences, surface-level specific humidity Q derived from W, using a statistical relation, was compared with Q from the ECMWF model. The differences in Q were found to be consistent with the differences in W, indirectly validating the Q-W relation. In both W and Q, SSMI was able to discern clearly the equatorial extension of the tongues of dry air in the eastern tropical ocean, while both ECMWF and climatological fields have reduced spatial gradients and weaker intensity.

  4. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

    Science.gov (United States)

    Bollati, Elena; Plimmer, Daniel; D’Angelo, Cecilia; Wiedenmann, Jörg

    2017-01-01

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments. PMID:28677653

  5. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals.

    Science.gov (United States)

    Bollati, Elena; Plimmer, Daniel; D'Angelo, Cecilia; Wiedenmann, Jörg

    2017-07-04

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments.

  6. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV.

    Science.gov (United States)

    Rahm, J M; Baek, W Y; Rabus, H; Hofsäss, H

    2014-07-21

    The stopping power of liquid water was measured for the first time for carbon ions in the energy range between 1 and 6 MeV using the inverted Doppler shift attenuation method. The feasibility study carried out within the scope of the present work shows that this method is well suited for the quantification of the controversial condensed phased effect in the stopping power for heavy ions in the intermediate energy range. The preliminary results of this work indicate that the stopping power of water for carbon ions with energies prevailing in the Bragg-peak region is significantly lower than that of water vapor. In view of the relatively high uncertainty of the present results, a new experiment with uncertainties less than the predicted difference between the stopping powers of both water phases is planned.

  7. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  8. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney.

    Science.gov (United States)

    Hirose, Yasuhiko; Yasui, Takahiro; Taguchi, Kazumi; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Okada, Atsushi; Kubota, Yasue; Kawai, Noriyasu; Itoh, Yasunori; Tozawa, Keiichi; Sasaki, Shoichi; Kohri, Kenjiro

    2013-08-01

    Renal tubular cell injury induced by oxalate plays an important role in kidney stone formation. Water containing oxygen nano-bubbles (nanometer-sized bubbles generated from oxygen micro-bubbles; ONB) has anti-inflammatory effects. Therefore, we investigated the inhibitory effects of ONB water on kidney stone formation in ethylene glycol (EG)-treated rats. We divided 60 rats, aged 4 weeks, into 5 groups: control, the water-fed group; 100 % ONB, the 100 % ONB water-fed group; EG, the EG treated water-fed group; EG + 50 % ONB and EG + 100 % ONB, water containing EG and 50 % or 100 % ONB, respectively. Renal calcium oxalate (CaOx) deposition, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG), and renal expression of inflammation-related proteins, oxidative stress biomarkers, and the crystal-binding molecule hyaluronic acid were compared among the 5 groups. In the control and 100 % ONB groups, no renal CaOx deposits were detected. In the EG + 50 % ONB and EG + 100 % ONB groups, ONB water significantly decreased renal CaOx deposits, urinary NAG excretion, and renal monocyte chemoattractant protein-1, osteopontin, and hyaluronic acid expression and increased renal superoxide dismutase-1 expression compared with the EG group. ONB water substantially affected kidney stone formation in the rat kidney by reducing renal tubular cell injury. ONB water is a potential prophylactic agent for kidney stones.

  9. Wetlands as a means to reduce the environmental impact of mine drainage waters

    OpenAIRE

    Sjöblom, Åsa

    2003-01-01

    In many mining regions of the world, pollution of surface water and groundwater by drainage water originating from mines aiming waste poses either a serious threat to the environment, or a severe environmental problem. During the last two and a half decades, treatment of mine drainage water in constructed and natural wetlands has emerged as an alternative to more conventional methods to handle the problem. In this thesis, the major biogeochemical processes behind metal immobilization in wetla...

  10. The Sonoma Water Evaluation Trial (SWET): A randomized drinking water intervention trial to reduce gastrointestinal illness in older adults

    Science.gov (United States)

    Objectives. We estimate the risk of highly credible gastrointestinal illness (HCGI) among adults 55 and older in a community drinking tap water meeting current U.S. standards. Methods. We conducted a randomized, triple-blinded, crossover trial in 714 households (988 indiv...

  11. Superheated Water Atomization: Some New Aspects of Control and Determining Disperse Characteristics of Atomization Plume in Micron and Submicron Ranges of Droplet Size*

    Science.gov (United States)

    Zalkind, V. I.; Zeigarnik, Yu. A.; Nizovskiy, V. L.; Nizovskiy, L. V.; Schigel, S. S.

    2017-11-01

    New experimental data on superheated water atomization is presented. It is shown that in contrast to the case of short cylindrical nozzles, which provide bimodal water-droplet sprays, the application of divergent nozzles makes it possible to obtain one-modal water atomization with droplets of about micron diameter being obtained. This fact is due to changes in the mechanism of superheated water jet fragmentation and it is very important for engineering applications. A modified experimental technique for processing integral monochromatic scattering indicatrix was developed and tested. In addition, a new calculation code was worked out for calculating atomized water drop-size distribution (on the basis of Mi theory) in micron and submicron ranges.

  12. Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency

    NARCIS (Netherlands)

    Katsoulas, N.; Sapounas, A.; Zwart, de H.F.; Dieleman, J.A.; Stanghellini, C.

    2015-01-01

    We explore an under-appreciated side effect of semi-closed greenhouses: the ability to recover transpired water, thereby increasing water use efficiency. Semi-closed greenhouses are fit with cooling equipment, to limit natural ventilation requirements for temperature and humidity control. We assess

  13. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the immediate changes ...

  14. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    Science.gov (United States)

    Avian influenza (AI) viruses are transmitted within wild aquatic bird populations through an indirect fecal-oral route involving fecal-contaminated water. In this study, the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water was examined. A single cla...

  15. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the imme...

  16. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    esiri

    2013-11-13

    Nov 13, 2013 ... Mining and industrial drainage con- taining sulphate and heavy metal negatively affects terres- ... processes, this chemically stabilizes the toxic metal ions as solid metal sulphides (Zagury et al., 2006). Furthermore, SRB ..... Pipeline water chemistry. The water in the pipeline at Sarcheshmeh mine was.

  17. Reduction of the applied load by prioritizing hot water production; Reducering av anslutningseffekten med hjaelp av VV-prioritering

    Energy Technology Data Exchange (ETDEWEB)

    Selinder, Patrik [ZW Energiteknik, Nykoeping (Sweden)

    2005-11-01

    The energy used in Swedish district heating networks is primarily used for heating purposes in buildings, whereas the energy used for heating the domestic hot water is a minor part - about 10 to 20 % - of the total energy used in district heating systems. However, as the involved heat capacity is concerned, both heating of hot water and heating of buildings are very often of comparable sizes. Although effect of simultaneity of hot water consumption reduces the total hot water heating capacity in the built environment, the behaviour pattern of the customers is such that the hot water use results in high hot water loads for a given building at certain hours of a day. The preparation of domestic hot water therefore makes large demands on the heating capacity of the district heating net in relation to the ability of repayment due to the energy consumption. However, a building exhibits in general a good possibility for decreasing the total heat load by involving its thermal mass and therefore borrowing under limited time a part of its house heating capacity for hot water heating purposes. The thermal mass of the building ensures that this 'capacity-borrowing' is not experienced as a decrease in comfort. The goal of this project was to develop and to test a control algorithm acting on the control system of a customer substation with the purpose of temporarily reduce the heat delivery when high hot water demands occur. This algorithm has then been tested in a residential building in Goeteborg, Sweden. The control principle was applied on a Swedish customer substation with two heat exchangers connected in parallel for both radiator heating and instantaneous domestic hot water preparation. The basic idea was to reduce the opening angle of the radiator valve when a larger demand of hot water occurs (indicated by opening of the hot water control valve). A control algorithm based on certain physical parameters calculates in this case the closing angle of the radiator

  18. D/H and Water Concentrations of Submarine MORB Glass Around the World: Analytical Aspects, Standardization, and (re)defining Mantle D/H Ranges

    Science.gov (United States)

    Bindeman, I. N.; Dixon, J. E.; Langmuir, C. H.; Palandri, J. L.

    2015-12-01

    The advent and calibration of the Thermal Combustion Element Analyzer (TCEA) continuous flow system coupled with the large-radius mass spectrometer MAT253 permits precise (±0.02 wt.% H2O, ±1-3‰ D/H) measurements in 1-10 mg of volcanic glass (0.1 wt.% H2O requires ~10 mg glass), which permits the targeting of small amounts of the freshest concentrate. This is a >100 factor reduction in sample size over conventional methods, four times over more common Delta series instruments. We investigated in triplicate 115 samples of submarine MORB glasses ranging from water-poor (0.1-0.2wt%) to water-rich (1.2-1.5wt%). These samples were previously investigated for major and trace elements, radiogenic isotopes; a large subset of these samples coming from the FAZAR expedition were studied previously by FTIR for water concentration. We also ran samples previously studied by the conventional off-line technique: MORB glass including those from the Easter Platform and the Alvin 526-1 standard (0.2wt% H2O). We observe excellent 1:1 correspondence (1.02x+0.02, R2=0.94) of wt% water by FTIR and TCEA suggesting complete extraction of water and no dependence on water concentration. We measure 51‰ total range in D/H that correlates with all other chemical and isotopic indicators of mantle enrichment, with the heaviest values occurring in the most enriched samples. When used uncorrected values of H2 gas run against H2 gas of known composition, this range agrees nicely with previous D/H range for MORB (-30 to -90‰), measured for samples run conventionally. Uncorrected analyses of Alvin glass 526-1 gives -66‰. When run against SMOW, SLAP and -41‰ water sealed in silver cups, the range is shifted by -15‰; when standardization is done by with three commonly used mica standards as is done most commonly in different labs, the range is shifted downward by -30-32‰. There are no isotopic offsets related to total water or D/H range requiring different slope or non-linear correction

  19. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water.

    Science.gov (United States)

    Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique

    2016-11-01

    Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase.

    Science.gov (United States)

    Ellison, Haley E; Estévez-Lao, Tania Y; Murphree, C Steven; Hillyer, Julián F

    2015-03-01

    Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effectiveness of buffer strips without added fertilizer to reduce phosphorus loads from flat fields to surface waters

    NARCIS (Netherlands)

    Noij, I.G.A.M.; Heinen, M.; Heesmans, H.I.M.; Thissen, J.T.N.M.; Groenendijk, P.

    2013-01-01

    Buffer strips with no added fertilizers are a mitigation measure to reduce P loads from agricultural land to surface water. However, the experimental evidence on their effectiveness (BSE) has been from sloping locations with shallow flow and surface runoff. The aim of this experimental study was to

  2. Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane emissions from rewetted peatlands

    DEFF Research Database (Denmark)

    Zak, Dominik; Goldhammer, Tobias; Cabezas, Alavaro

    2018-01-01

    1. A valid strategy to mitigate the eutrophication of water bodies due to non-point source phosphorus (P) pollution and to reduce the emissions of greenhouse gases is the rewetting of degraded peatlands. However, long-term drainage and intensive agricultural use make it unlikely that the original...

  3. Partial root zone drying (PRD) sustains yield of potatoes (Solanum tuberosum L.) at reduced water supply

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Andersen, Mathias Neumann; Liu, Fulai

    2008-01-01

    subsurface drip irrigation treatments ((1) Full Irrigation (FI) receiving 100% of evaporative demand; and (2) PRD receiving 70% water of FI) on potato yield, tuber size, leaf water relations and irrigation water use efficiency (IWUE). The PRD treatment was started just after the end of tuber initiation......Partial root zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Until now it has not been investigated in potatoes (Solanum tuberosum L.). A field experiment on sandy soil in Denmark was conducted under a mobile rainout shelter to study effects of two...... for two months during tuber bulking and maturing stage and was shifted from one side to the other side of the plants every 5-10 days when FI plants had used 20-25 mm. Compared to FI plants, stomatal conductance was generally lower in the PRD-treated plants, whereas leaf water potential tended to be lower...

  4. [Water consumption in Saharan nomads. A remarkably reduced and constant consumption].

    Science.gov (United States)

    Paque, C

    1976-10-02

    The writer has carried out two studies of the Western Sahara (Missions UNESCO-Institut Scientifique Cherifien 1961 and 1964) bearing upon the consumption of water by the Saharan nomads. In spite of their environment, the consumption appeared to be remarkably low and constant. Very strict dietary practices, the salinity of the water, and special behavioural customs seemed to be the basis of this strict economy of fluid intake. Genetic factors could also, of course, be partly responsible. The dietary practices are characterised essentially: 1) by a regime which in general contains the minimum of protein: milk foods, cereals, and sugars, and 2) by the habitual exclusion of salt in the preparation of meals; the sodium necessary for water/sodium balance deriving solely from the salinity of the water. Water with little or average salt content (total 2-3 g/l) seems to meet the normal needs of the body - there is no need for the salt pill - and, moreover, to quench the thirst more effectively than pure water (Paque, 1964) - presumably by making good the deficit (cf. Stricker, 1970). On the other hand, saltier water (total 4-8g/; Na 1 g/l or more) appears to pose more complex physiological problems for which the prime solution is to apply the Saharan rule, i.e. that no supplementary salt should be added to the diet (Paque, 1963). In desert life there are thus certain rules which must be obeyed. As for the matter of behavioural customs influencing water balance, they consist in the main of habitually limiting the frequency of water intake (often just twice daily, sometime only once daily) together with a careful choice of clothing and the wearing of the veil. Finally, genetic factor could result in a more efficiently controlled loss of water (and of salt?) VIA THE SKIN.

  5. Intervalo hídrico ótimo num nitossolo vermelho distroférrico irrigado Least limiting water range of an irrigated dystroferric red nitosol

    Directory of Open Access Journals (Sweden)

    Everton Blainski

    2009-04-01

    Full Text Available O manejo da irrigação tem-se baseado no controle do potencial da água no solo (Ψ como fator limitante do crescimento das plantas. Entretanto, outras variáveis podem influenciar a cultura mesmo que o Ψ não seja limitante. O Intervalo Hídrico Ótimo (IHO é um conceito de disponibilidade de água no solo que leva em consideração a porosidade de aeração e a resistência do solo à penetração em adição ao Ψ. O objetivo deste estudo foi quantificar o IHO num Nitossolo Vermelho distroférrico irrigado e utilizá-lo no estabelecimento de critérios para o manejo de água e do solo em áreas irrigadas. A resistência do solo à penetração foi a variável que limitou o IHO com maior frequência, diminuindo sua magnitude com o aumento da densidade do solo (Ds. Com o aumento da Ds, ocorreu redução na frequência com que θ manteve-se dentro dos limites do IHO. A Ds crítica (Dsc foi de 1,40 Mg m-3, indicando severa degradação física do solo para Ds > Dsc. Para Ds 2,0 MPa; para 1,28 -800 hPa visando ao controle da RP. Para áreas em que Ds > Dsc, medidas que visem a redução da Ds poderiam ser tomadas em função da severa degradação física do solo.The establishment of irrigation management has been based on the soil water potential (Ψ as a limiting factor for plant growth. However, other variables can affect crop growth even when Ψ is not limiting. The least limiting water range (LLWR is a concept of available water that take account the influence of aeration and soil resistance to penetration (SR in addition to Ψ. The objective of this study was to quantify the LLWR in an irrigated Dystroferric Red Nitosol and to use it to determine the soil and water management for irrigated areas. Soil penetration resistance limited LLRW most often, reducing its magnitude with the increase of soil bulk density (Bd. Therefore, the higher Bd, the less often θ was inside the limits of LLWR. The critical Bd (Bdc was 1.40 Mg m-3, indicating

  6. Reduced Deep Root Hydraulic Redistribution Due to Climate Change Impacts Carbon and Water Cycling in Southern US Pine Plantations

    Science.gov (United States)

    Domec, J.; Noormets, A.; King, J. S.; Sun, G.; McNulty, S.; Gavazzi, M. J.; Treasure, E.; Caldwell, P.

    2010-12-01

    It is well known that plants lose water from the canopy through transpiration, and also lose a portion of water drawn up at night from deep, moist soil layers through roots and deposited to shallow, dry soil layers. This process is termed hydraulic redistribution (HR). Deep root water uptake and HR have been a major discovery during the last 15 years, but little is known about the impact of future climatic and environmental conditions on deep root water uptake and its impact on water balance and carbon sequestration. We investigated the temporal variability of soil moisture dynamics in three AmeriFlux sites and used data from the Duke Free-Air CO2 Enrichment site to forecast future environmental impacts on HR and its impact on water cycling and carbon sequestration. Our results showed that HR played a critical role in delaying the drying of upper soil layers by replacing more than 25% of the water utilized during the day with water taken up by deep roots at night. Furthermore, HR mitigated the effects of soil drying in the understory and had important implications for net primary productivity and carbon sink potential of young plantations. A warming climate is associated with higher vapor pressure deficits, which will increase nighttime evapotranspiration and reduce HR because trees will act as a competitor with the upper soil for water. We predicted that increases in temperature, vapor pressure deficit and CO2 would reduce HR and limit shallow soil rewetting, thus decreasing net ecosystem productivity (NEP) especially in young and in shallow rooted forest plantations. Modeled carbon flux showed that in the absence of HR, gross ecosystem productivity (GEP) would be reduced by more than 30%, or 200 g C m-2 yr-1 and 750 g C m-2 yr-1 in a young and in a mid-rotation plantation, respectively. HR-induced decrease of GEP outweighed the decrease of ecosystem respiration, thus leading to a lower NEP. For these two types of managed forests, NEP would also be reduced by 100

  7. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    Science.gov (United States)

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) lead ions 1 order of magnitude higher than that of interfering ions) can be achieved for Pb 2+ measurements. The overall assay time (∼10 s) for background water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  8. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    OpenAIRE

    Cai, Q; Sun, Z.; J. Zheng; Bai, W; Y. Zhang; Y. Liu; Feng, L.; Feng, C.; Zhang, Z.; Yang, N.; Evers, J.B.; L. Zhang

    2017-01-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root...

  9. δ18O and δD of lake waters across the Coast Range and Cascades, central Oregon: Modern insights from hydrologically open lakes into the control of landscape on lake water composition in deep time

    Science.gov (United States)

    Finkelstein, D. B.; Curtin, T.

    2016-12-01

    Reconstructing the stable isotopic composition of paleolake water normally requires an assumption of paleotemperature. However, hydrologically open paleolakes with short water residence times may have recorded paleoprecipitation along topographic gradients that are independent of lake water temperature. To identify the environmental and geographic controls on the isotopic composition of lake water, we sampled 22 natural lakes and reservoirs along a longitudinal and elevation gradient from the Pacific Ocean up and over the Coast and Cascade Ranges of central Oregon to the High Lava Plains in 2013 and 2015. The transect spans lakes of different origins, 6 geomorphic regions and an elevation range of 2-1942 m absl. The Coast Range lakes are sand hosted whereas the remaining are bedrock (volcanic and sedimentary) hosted. The lakes are hydrologically open and dominated by meteoric recharge. The water residence time ranges from months to decades. Samples were analyzed for temperature, pH, and total dissolved solids (TDS) in the field, and alkalinity and major cations and anions and stable isotopes of D and O in the lab. The pH ranges from 7 to 9.8 and shows no systematic variation based on substrate type or elevation. The lakes are dilute (avg. TDS = 35.8 ppm) and have low alkalinties (18.9 mg/L CaCO3) except for those in the High Lava Plains (avg. TDS = 337 ppm, alk: 291.2 mg/L CaCO3). In the Coast Range, Na is the major cation on an equivalent basis, reflecting proximity to the ocean. The easternmost lakes within the Coast Range are dominated by Ca, reflecting different drainage basins and substrate type. Lakes in the Western and High Cascades are dominated by Ca. The dominant cation and stable isotopic analyses clearly differentiate waters from different geomorphic regions. The δ18O ranges from -5.7 to -9.3 ‰ (VSMOW), and δD ranges from -37.8 to -63.6 ‰ (VSMOW) in the Coast Range whereas the δ18O ranges from -9.7 to -12.1 ‰ (VSMOW) and δD ranges from -71

  10. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    Science.gov (United States)

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  11. Reducing water consumption in the paper mill; Paperitehtaan vedenkaeytoen vaehentaeminen (WACI) - EKY 02

    Energy Technology Data Exchange (ETDEWEB)

    Pekuri, T.; Pekkanen, A. [UPM-Kymmene Oyj, Valkeakoski (Finland)

    1998-12-31

    This WACI-project was divided into several subprojects, which were started with gathering of present knowledge and entering to laboratory and pilot tests. In some projects there were mill scale trials in water connections and internal purification systems. In the `Quality Demands of Water` subproject the process waters used in the printing paper machines of UPM-Kymmene were surveyed. Lab tests were made for the different applications like shower, washing, seal and dilution of internally purified circulation waters. In `Mechanical Pulp Washing` project the target was to study how the different water connections around the TMP washing press will affect the paper machine runnability. It was also started to develop separating technique for TMP fibre extractive. `Micro and Electroflotation` studies have been made mainly on pilot scale but also in new mill-scale unit. `Membrane Technology` research consisted of both lab, pilot and mill scale studies, where different membrane qualities with different process waters have been tested. `Evaporation` trials were made on pilot scale for different process waters and condensates and concentrates were analysed. Condensates were tested for different applications. The possibility to `Reuse Waste Water` concentrated mainly on how to remove the brown colour. `Simulations` were done to find out what will be the new dcs balance in different wet end processes after new water connections including so-called kidneys. In the `Paper Quality` subproject the effects of dcs on bonding ability of TMP fibres were studied on lab scale with artificial pitch component and also with circulation concentrates. This 2.5 year Tekes-project was completed at the end of April 1998. (orig.)

  12. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    Science.gov (United States)

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  13. Parameterization of a coarse-grained model with short-ranged interactions for modeling fuel cell membranes with controlled water uptake.

    Science.gov (United States)

    Lu, Jibao; Miller, Chance; Molinero, Valeria

    2017-07-21

    The design of polymer electrolyte membranes with controlled water uptake is of high importance for high-performance fuel cells, because the water content of the membranes modulates their conductivity, chemical stability and mechanical strength. The water activity aw controls the equilibrium water uptake of a system. Predicting aw of materials is currently a daunting challenge for molecular simulations, because calculations of water activity require grand canonical simulations that are extremely expensive even with classical non-polarizable force fields. Moreover, force fields do not generally reproduce aw of solutions. Here, we first present a general strategy to parameterize force fields that reproduce the experimental aw of solutions, and then implement that strategy to re-parameterize the interactions in FFcomp, a coarse-grained model for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes in which the TMA cation is attached to the PPO backbone and the Cl anion is in the mobile water nanophase. Coarse-grained models based on short-ranged potentials successfully model fuel cell membranes and other concentrated aqueous electrolyte solutions because electrostatic interactions are highly screened in these systems. The new force field, FFpvap, differs from the original FFcomp only in the parameters of the ion-ion interactions, yet it reproduces aw in TMACl solutions with accuracy within 0.5 and 3% of the experimental value in all the concentration range relevant to the operation of fuel cell membranes. We find that the heat needed to vaporize water in solutions with as little as five water molecules per ion pair is essentially the same as in pure water, despite the strong water-ion interactions and their impact on the water activity. We review the literature to demonstrate that this is independent of the model and a general feature of water solutions. FFpvap reproduces the radial distribution functions and captures well the relative

  14. Testosterone Reduces Knee Passive Range of Motion and Expression of Relaxin Receptor Isoforms via 5α-Dihydrotestosterone and Androgen Receptor Binding

    Directory of Open Access Journals (Sweden)

    Firouzeh Dehghan

    2014-03-01

    Full Text Available Ovarian steroids such as estrogen and progesterone have been reported to influence knee laxity. The effect of testosterone, however, remains unknown. This study investigated the effect of testosterone on the knee range of motion (ROM and the molecular mechanisms that might involve changes in the expression of relaxin receptor isoforms, Rxfp1 and Rxfp2 in the patella tendon and lateral collateral ligament of the female rat knee. Ovariectomized adult female Wistar rats received three days treatment with peanut oil (control, testosterone (125 and 250 μg/kg and testosterone (125 and 250 μg/kg plus flutamide, an androgen receptor blocker or finasteride, a 5α-reductase inhibitor. Duplicate groups received similar treatment however in the presence of relaxin (25 ng/kg. A day after the last drug injection, knee passive ROM was measured by using a digital miniature goniometer. Both tendon and ligament were harvested and then analysed for protein and mRNA expression for Rxfp1 and Rxfp2 respectively. Knee passive ROM, Rxfp1 and Rxfp2 expression were significantly reduced following treatment with testosterone. Flutamide or finasteride administration antagonized the testosterone effect. Concomitant administration of testosterone and relaxin did not result in a significant change in knee ROM as compared to testosterone only treatment; however this was significantly increased following flutamide or finasteride addition. Testosterone effect on knee passive ROM is likely mediated via dihydro-testosterone (DHT, and involves downregulation of Rxfp1 and Rxfp2 expression, which may provide the mechanism underlying testosterone-induced decrease in female knee laxity.

  15. Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice.

    Science.gov (United States)

    Smit, Wilbert J; Versluis, Jan; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J

    2018-02-26

    We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H 2 O and D 2 O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, both for water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.

  16. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.

    Science.gov (United States)

    McDonald, Michael B; Bruce, Jared P; McEleney, Kevin; Freund, Michael S

    2015-08-24

    The integration of light absorbers and catalysts for the water splitting process requires a membrane capable of both ion and electron management and product separation to realize efficient solar fuels systems. Bipolar membranes can maintain a pH gradient for optimal reaction conditions by the dissociation of water. Such membranes that contain graphene in the interfacial layer are fabricated by the chemical reduction of a uniformly deposited graphene oxide layer to convert sp(3) catalyst regions to sp(2) conductive regions. The resulting electrical and water dissociation properties are optimized by adjusting the exposure conditions, and treatments of less than 5 min render an interface that exceeds the conductivity requirements for integrated solar water splitting and increases the overpotential by graphene and Si microwires, and we found that efficient Ohmic junctions are possible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  18. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    Science.gov (United States)

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water

  19. Photosynthetic capacity and intrinsic water-use efficiency of Rhizophora mangle at its southernmost western Atlantic range

    Science.gov (United States)

    M.L.G. Soares; M.M.P. Tognella; E. Cuevas; E. Medina

    2015-01-01

    The southernmost presence of Rhizophora mangle in the western Atlantic coast occurs in coastal wetlands between 27 and 28ºS in the State of Santa Catarina, Brazil. We selected mangrove communities at the estuary of Rio Tavares, Florianopolis, and Sonho Beach, Palhosa, for measurement of photosynthetic performance and intrinsic water use efficiency of R. mangle and...

  20. Reducing the impact of summer cattle grazing on water quality in the Sierra Nevada Mountains of California: a proposal.

    Science.gov (United States)

    Derlet, Robert W; Goldman, Charles R; Connor, Michael J

    2010-06-01

    The Sierra Nevada Mountain range serves as an important source of drinking water for the State of California. However, summer cattle grazing on federal lands affects the overall water quality yield from this essential watershed as cattle manure is washed into the lakes and streams or directly deposited into these bodies of water. This organic pollution introduces harmful microorganisms and also provides nutrients such as nitrogen and phosphorus which increase algae growth causing eutrophication of otherwise naturally oligotrophic mountain lakes and streams. Disinfection and filtration of this water by municipal water districts after it flows downstream will become increasingly costly. This will be compounded by increasing surface water temperatures and the potential for toxins release by cyanobacteria blooms. With increasing demands for clean water for a state population approaching 40 million, steps need to be implemented to mitigate the impact of cattle on the Sierra Nevada watershed. Compared to lower elevations, high elevation grazing has the greatest impact on the watershed because of fragile unforgiving ecosystems. The societal costs from non-point pollution exceed the benefit achieved through grazing of relatively few cattle at the higher elevations. We propose limiting summer cattle grazing on public lands to lower elevations, with a final goal of allowing summer grazing on public lands only below 1,500 m elevation in the Central and Northern Sierra and 2,000 m elevation in the Southern Sierra.

  1. Proposing of an aerated water treatment plant for reducing water pollution problem in Losari Beach after reclamation

    Science.gov (United States)

    Suryani, Sri; Maharani, Hamzah, Muhammad Alimuddin

    2017-01-01

    Losari Beach is the most important site in Makassar. It lies at the west side of Makassar city. This place is known as the place where people are relaxed and gathering with friends or family after working, and now it becomes the icon of Makassar city. As the biggest city in eastern Indonesia, Makassar grows very fast. We can find constructions for building hospitals, shopping malls, bussines activities, and residences everywhere. The most important construction activities that will effect Losari Beach is the reclamation to build the Center Point of Indonesia that takes an area of 157 hectares and it is located at the west side of Losari Beach. In the last research presented in 9th International Conference on Marine Technology (October 2014) using surface-water modeling system (SMS) software showed that reclamation will significantly increase concentrations of BOD and COD (± 7 mg/L for BOD and 6.2 mg/L for COD). This condition will cause Losari Beach becomes very polluted. A probable solution to overcome this problem is to clean the wastewater before introducing to the sea. This paper will describe the type of the wastewater treatment plant that can be used to solve the water pollution problem in Losari Beach.

  2. Evapotranspiration from Upper Klamath Lake: Reducing Uncertainty in the Water Balance

    Science.gov (United States)

    Stannard, D. I.; Gannett, M. W.; Polette, D.; Cameron, J. M.; Spears, J. M.

    2009-12-01

    The Klamath River basin is a large (~40,600 km2) watershed that straddles the border between southern Oregon and northern California, USA, and drains into the Pacific Ocean. A wide variety of interests has led to intense competition over water allocation in the upper, semi-arid parts of the basin in recent decades. Myriad water impoundments and diversions, wetland drainage, and recent wetland restoration, have complicated the development of resource-management and restoration strategies. An overarching question is how to provide enough water for irrigated agriculture and still preserve adequate stream-flow and wetland habitat for threatened (e.g. coho salmon) and endangered (e.g. Lost River and shortnose suckers) species. In the Upper Klamath Lake region, this hotly debated topic has raised questions about evaporative losses from Upper Klamath Lake, and its wetland marshes. Currently, surface-water outflow from the lake is gauged, but not all of the surface-water inflows are gauged, and net ground-water inflow is estimated. Lake-level management is based on a simplified water budget: NETin - SWout = ΔS, where NETin = SWin + GWnet - ET (called “net inflow”), SWout is measured surface-water outflow, ΔS is measured change in lake storage, SWin is surface-water inflow, GWnet is net ground-water inflow, and ET is evapotranspiration from the lake. Partitioning of NETin is not done routinely, so little is known about magnitudes of the un-gauged inflows, or ET (GWnet is a small term). To help partition NETin into its components, ET has been measured at three locations in Upper Klamath Lake since April, 2008. Two eddy covariance (EC) sites are located in Upper Klamath National Wildlife Refuge, an extensive wetland marsh in the northwest corner of the lake, and one Bowen-ratio energy-balance site is in open water. One EC station is situated in bulrush and the other is in a mixed bulrush, wocus, cattail community. Wetland marsh area is about 1/3 that of open water. The

  3. Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Christiansen, Jesper Riis

    2015-01-01

    Forests contribute to improve water quality, affect drinking water resources, and therefore influence water supply on a regional level. The forest canopy structure affects the retention of precipitation (Pr) in the canopy and hence the amount of water transferred to the forest floor termed canopy...... throughfall (TF). We investigated the possibilities of estimating TF based on bulk Pr and canopy structure estimated from airborne light detection and ranging (LiDAR) data. Bulk Pr and TF fluxes combined with airborne LiDAR data from 11 locations representing the most common forest types (mono......-species broadleaf/coniferous and mixed forests) in Denmark were used to develop empirical models to estimate TF on a monthly, seasonal, and annual basis. This new approach offers the opportunity to greatly improve predictions of TF on catchment wide scales. Overall, results show that TF can be estimated by Pr...

  4. A Novel Nanodrag Reducer for Low Permeability Reservoir Water Flooding: Long-Chain Alkylamines Modified Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2016-01-01

    Full Text Available Chemical modification of graphene oxide (GO by grafting hydrophobic chains on the surface has drawn much attention nowadays in the academic world, and it was suggested that modified GO could lead to new functionalized materials with specific structure and different properties. In this paper, modified GO (M-GO were synthesized by chemically grafting alkylamines with varying chain lengths on the graphene oxide surface. Successful grafting of alkylamines was confirmed using Fourier transform infrared (FTIR spectra, X-ray diffraction (XRD, thermogravimetric analysis (TGA, scanning electron microscope (SEM, and Raman spectroscopy measurements. In addition, we investigated the properties of M-GO as nanodrag reducer in low permeability reservoir water flooding. Water contact angle (CA measurements revealed that the hydrophobic nature of GO depended on the chain length of the grafted alkylamines. And flooding experiments showed that the hexadecylamine- and octadecylamine-modified GO had an ability to reduce water injection pressure and improve water-phase permeability of the low permeability reservoirs during water flooding. So the M-GO would have potential applications in oilfield exploitation.

  5. Organic Agriculture and the Quest for the Holy Grail in Water-Limited Ecosystems: Managing Weeds and Reducing Tillage Intensity

    Directory of Open Access Journals (Sweden)

    Erik Lehnhoff

    2017-03-01

    Full Text Available Organic agricultural production has become a major economic and cultural force. However, in water-limited environments the tools used for weed control and nutrient supply, namely tillage and cover crops, may not be environmentally or economically sustainable as tillage damages soil and cover crops use valuable water. Thus, a major challenge has been finding appropriate ways to minimize tillage and terminate cover crops while still controlling weeds and obtaining cover crop ecosystem services. One approach to achieve this is through the economically viable integration of crop and livestock enterprises to manage weeds and terminate cover crops. In this article we (1 review research needs and knowledge gaps in organic agriculture with special focus on water-limited environments; (2 summarize research aimed at developing no-till and reduced tillage in organic settings; (3 assess approaches to integrate crop and livestock production in organic systems; and (4 present initial results from a project assessing the agronomic and weed management challenges of integrated crop-livestock organic systems aimed at reducing tillage intensity in a water-limited environment. The goal of eliminating tillage in water-limited environments remains elusive, and more research is needed to successfully integrate tactics, such as cover crops and livestock grazing to increase organic farm sustainability.

  6. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission

    Directory of Open Access Journals (Sweden)

    Jianchang Yang

    2017-04-01

    Full Text Available To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity, many water-saving regimes have been introduced in irrigated rice, such as an aerobic rice system, non-flooded mulching cultivation, and alternate wetting and drying (AWD. These regimes could substantially enhance water use efficiency (WUE by reducing irrigation water. However, such enhancements greatly compromise grain yield. Recent work has shown that moderate AWD, in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period, or plants are rewatered at a soil water potential of −10 to −15 kPa, or midday leaf potential is approximately −0.60 to −0.80 MPa, or the water table is maintained at 10 to 15 cm below the soil surface, could increase not only WUE but also grain yield. Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth; improved canopy structure and root growth; elevated hormonal levels, in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering; and enhanced carbon remobilization from vegetative tissues to grain. Moderate AWD could also improve rice quality, including reductions in grain arsenic accumulation, and reduce methane emissions from paddies. Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency. Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture.

  7. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics.

    Science.gov (United States)

    Das, Bappa; Sahoo, Rabi N; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K; Gupta, Vinod K; Dash, Sushanta K; Swain, Padmini

    2018-03-05

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A randomized, controlled trial of in-home drinking water intervention to reduce gastrointestinal illness.

    Science.gov (United States)

    Colford, John M; Wade, Timothy J; Sandhu, Sukhminder K; Wright, Catherine C; Lee, Sherline; Shaw, Susan; Fox, Kim; Burns, Susan; Benker, Anne; Brookhart, M Alan; van der Laan, Mark; Levy, Deborah A

    2005-03-01

    Trials have provided conflicting estimates of the risk of gastrointestinal illness attributable to tap water. To estimate this risk in an Iowa community with a well-run water utility with microbiologically challenged source water, the authors of this 2000-2002 study randomly assigned blinded volunteers to use externally identical devices (active device: 227 households with 646 persons; sham device: 229 households with 650 persons) for 6 months (cycle A). Each group then switched to the opposite device for 6 months (cycle B). The active device contained a 1-microm absolute ceramic filter and used ultraviolet light. Episodes of "highly credible gastrointestinal illness," a published measure of diarrhea, nausea, vomiting, and abdominal cramps, were recorded. Water usage was recorded with personal diaries and an electronic totalizer. The numbers of episodes in cycle A among the active and sham device groups were 707 and 672, respectively; in cycle B, the numbers of episodes were 516 and 476, respectively. In a log-linear generalized estimating equations model using intention-to-treat analysis, the relative rate of highly credible gastrointestinal illness (sham vs. active) for the entire trial was 0.98 (95% confidence interval: 0.86, 1.10). No reduction in gastrointestinal illness was detected after in-home use of a device designed to be highly effective in removing microorganisms from water.

  9. Are simple empirical crop coefficient approaches for determining pecan water use readily transferrable across a wide range of conditions?

    CSIR Research Space (South Africa)

    Taylor, NJ

    2017-02-01

    Full Text Available to easier parameterization and the requirements for fewer, more easily measured input parameters, they may not always be transferable across a wide range of conditions. As a result these models may not always give acceptably accurate ET values outside...

  10. Arbuscular mycorrhizae reducing water loss in maize plants under low temperature stress.

    Science.gov (United States)

    Zhu, Xian Can; Song, Feng Bin; Liu, Tie Dong; Liu, Sheng Qun

    2010-05-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic mycorrhizal symbiotic associations with the roots of approximately 80% of all terrestrial plant species while facilitate the uptake of soil mineral nutrients by plants and in exchange obtain carbohydrates, thus representing a large sink for photosynthetically fixed carbon. Also, AM symbiosis increase plants resistance to abiotic stress such as chilling. In a recent study we reported that AM fungi improve low temperature stress in maize plants via alterations in host water status and photosynthesis. Here, the influence of AM fungus, Glomus etunicatum, on water loss rate and growth of maize plants was studied in pot culture under low temperature stress. The results indicated that low temperature stress significantly decreases the total fresh weight of maize plants, and AM symbiosis alleviate the water loss in leaves of maize plants.

  11. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  12. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  13. Many-objective reservoir policy identification and refinement to reduce institutional myopia in water management

    Science.gov (United States)

    Giuliani, Matteo; Herman, Jonathan D.; Castelletti, Andrea; Reed, Patrick M.

    2014-05-01

    Current water reservoir operating policies are facing growing water demands as well as increasing uncertainties associated with a changing climate. However, policy inertia and myopia strongly limit the possibility of adapting current water reservoir operations to the undergoing change. Historical agreements and regulatory constraints limit the rate that reservoir operations are innovated and creates policy inertia, where water institutions are unlikely to change their current practices in absence of dramatic failures. Yet, no guarantee exists that historical management policies will not fail in coming years. In reference to policy myopia, although it has long been recognized that water reservoir systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, the broader understanding of the multi-objective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome both policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification, many-objective optimization under uncertainty, and visual analytics to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. The proposed framework initially uses available streamflow observations to implicitly identify the current but unknown operating policy of Conowingo Dam. The quality of the identified baseline

  14. Rising CO2 from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability.

    Science.gov (United States)

    Faralli, Michele; Grove, Ivan G; Hare, Martin C; Kettlewell, Peter S; Fiorani, Fabio

    2017-02-01

    The productivity of many important crops is significantly threatened by water shortage, and the elevated atmospheric CO2 can significantly interact with physiological processes and crop responses to drought. We examined the effects of three different CO2 concentrations (historical ~300 ppm, ambient ~400 ppm and elevated ~700 ppm) on physiological traits of oilseed rape (Brassica napus L.) seedlings subjected to well-watered and reduced water availability. Our data show (1) that, as expected, increasing CO2 level positively modulates leaf photosynthetic traits, leaf water-use efficiency and growth under non-stressed conditions, although a pronounced acclimation of photosynthesis to elevated CO2 occurred; (2) that the predicted elevated CO2 concentration does not reduce total evapotranspiration under drought when compared with present (400 ppm) and historical (300 ppm) concentrations because of a larger leaf area that does not buffer transpiration; and (3) that accordingly, the physiological traits analysed decreased similarly under stress for all CO2 concentrations. Our data support the hypothesis that increasing CO2 concentrations may not significantly counteract the negative effect of increasing drought intensity on Brassica napus performance. © 2016 John Wiley & Sons Ltd.

  15. Increasing water intake by 2 liters reduces crystallization risk indexes in healthy subjects.

    Science.gov (United States)

    de La Guéronnière, Viviane; Le Bellego, Laurent; Jimenez, Inmaculada Buendia; Dohein, Oriane; Tack, Ivan; Daudon, Michel

    2011-03-01

    The objective of the present study was to evaluate the effects of drinking 2 additional litres of water/day on several urinary risk factors for lithiasis in healthy subjects, through measurement of crystallization risk indices (Tiselius CRI). 48 healthy subjects, aged 25 to 50 were studied for urinary parameters including CRI in the laboratory ward, for 24 hours. After this first period, they were randomized either to a 2L/d additional water intake (treated group) or usual fluid consumption (control group) for a 6 days period, which ended by a second measurement period in the laboratory ward for 24 hours. Total additional water intake was actually 1.3L/d on average in treated subjects, because subjects decreased other usual sources of fluid intake. In 24 hour urine, Tiselius CRI varied differently among treated subjects and controls between the 2 periods; male controls subjects experienced much higher values (above 2 in average in first morning urine sample) in the second period (p = 0.05). Of interest, in a transversal analysis, we observed a positive relation between BMI or waist circumference on the one hand, and with 24 hour urea excretion or osmotic load on the other hand. These results show a beneficial effect of a final 1.3L additional water intake on Tiselius CRI in healthy subjects.

  16. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit

    Science.gov (United States)

    Hot water treatment (HWT) of fruit is an effective approach for managing postharvest decay of fruits and vegetables. In the present study, the effects of HWT (45 degrees C for 10 min) on the growth of Botrytis cinerea and Penicillium expansum in vitro, and gray (B. cinerea) and blue mold (P. expans...

  17. Future electricity: the challenge of reducing both carbon and water footprint

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2016-01-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the ‘greenest’ IEA scenario (with the smallest carbon footprint)

  18. Reduced coupling of water molecules near the surface of reverse micelles

    NARCIS (Netherlands)

    Bakulin, Artem A.; Pshenichnikov, Maxim S.

    2011-01-01

    We report on vibrational dynamics of water near the surface of AOT reverse micelles studied by narrow-band excitation, mid-IR pump-probe spectroscopy. Evidence of OH-stretch frequency splitting into the symmetric and asymmetric modes is clearly observed for the interfacial H2O molecules. The

  19. Effectiveness of breakpoint chlorination to reduce accelerated chemical chloramine decay in severely nitrified bulk waters.

    Science.gov (United States)

    Bal Krishna, K C; Sathasivan, Arumugam; Kastl, George

    2014-12-01

    Rectifying the accelerated chloramine decay after the onset of nitrification is a major challenge for water utilities that employ chloramine as a disinfectant. Recently, the evidence of soluble microbial products (SMPs) accelerating chloramine decay beyond traditionally known means was reported. After the onset of nitrification, with an intention to inactivate nitrifying bacteria and thus maintaining disinfectant residuals, breakpoint chlorination followed by re-chloramination is usually practiced by water utilities. However, what actually breakpoint chlorination does beyond known effects is not known, especially in light of the new finding of SMPs. In this study, experiments were conducted using severely nitrified chloraminated water samples (chloramine residuals 0.1 mg N L−1 and an order of magnitude higher chloramine decay rate compared to normal decay) obtained from two laboratory scale systems operated by feeding natural organic matter (NOM) containing and NOM free waters. Results showed that the accelerated decay of chloramine as a result of SMPs can be eliminated by spiking higher free chlorine residuals (about 0.92 ± 0.03 to 1.16 ± 0.12 mg Cl2 L−1) than the stoichiometric requirement for breakpoint chlorination and nitrite oxidation. Further, accelerated initial chlorine decay showed chlorine preferentially reacts with nitrite and ammonia before destroying SMPs. This study, clearly demonstrated there is an additional demand from SMPs that needs to be satisfied to effectively recover disinfection residuals in subsequent re-chloramination.

  20. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M.F.; Masci, A. [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  1. Subirrigation reduces water use, nitrogen loss, and moss growth in a container nursery

    Science.gov (United States)

    R. Kasten Dumroese; Jeremy R. Pinto; Douglass F. Jacobs; Anthony S. Davis; Baron Horiuchi

    2006-01-01

    With about half the amount of water, subirrigated Metrosideros polymorpha Gaud. (Myrtaceae) grown 9 mo in a greenhouse were similar to those irrigated with an existing fixed overhead irrigation system; moss growth was about 3X greater in the fixed overhead system after 3 mo. Moss growth was affected by the rate of preplant controlled release fertilizer added (more...

  2. Can cover crops reduce the hydrological connectivity in rainfed orchards with limited water availability?

    NARCIS (Netherlands)

    Meerkerk, A.; van Wesemael, B.; Cammeraat, L.H.

    2007-01-01

    Land degradation forms a severe problem in the extensive olive and almond plantations in Southeast Spain. Under rainfed conditions, the canopy cover of these systems is typically below 30%: the soil is frequently tilled to avoid competition for water between the tree crop and weeds and to increase

  3. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review.

    Science.gov (United States)

    Grimes, Jack E T; Croll, David; Harrison, Wendy E; Utzinger, Jürg; Freeman, Matthew C; Templeton, Michael R

    2015-03-13

    Schistosomiasis is a disease caused by infection with blood flukes of the genus Schistosoma. Transmission of, and exposure to, the parasite result from faecal or urinary contamination of freshwater containing intermediate host snails, and dermal contact with the same water. The World Health Assembly resolution 65.21 from May 2012 urges member states to eliminate schistosomiasis through preventive chemotherapy (i.e. periodic large-scale administration of the antischistosomal drug praziquantel to school-aged children and other high-risk groups), provision of water, sanitation and hygiene (WASH) and snail control. However, control measures focus almost exclusively on preventive chemotherapy, while only few studies made an attempt to determine the impact of upgraded access to safe water, adequate sanitation and good hygiene on schistosome transmission. We recently completed a systematic review and meta-analysis pertaining to WASH and schistosomiasis and found that people with safe water and adequate sanitation have significantly lower odds of a Schistosoma infection. Importantly though, the transmission of schistosomiasis is deeply entrenched in social-ecological systems, and hence is governed by setting-specific cultural and environmental factors that determine human behaviour and snail populations. Here, we provide a comprehensive review of the literature, which explores the transmission routes of schistosomes, particularly focussing on how these might be disrupted with WASH-related technologies and human behaviour. Additionally, future research directions in this area are highlighted.

  4. Assessing the utility of ultraviolet irradiation to reduce bacterial biofilms in fish hatchery well water supplies

    Science.gov (United States)

    The accumulation of bacterial biofilms and consequent clogging of screens, pipes, and heat exchanger equipment is problematic for water supply systems contaminated with iron bacteria and other slime forming bacteria. Despite the ubiquitous threat posed by iron bacteria contamination in groundwater s...

  5. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Ma, Lin

    2017-01-01

    Coastal waters of China are rich in nitrogen (N) and phosphorus (P) and thus often eutrophied. This is because rivers export increasing amounts of nutrients to coastal seas. Animal production and urbanization are important sources of nutrients in Chinese rivers. In this study we explored the

  6. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  7. Effect of rose water on structural, optical and electrical properties of composites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles

    Science.gov (United States)

    Kumar, Devender; Wadhwa, Heena; Mahendia, Suman; Chand, Fakir; Kumar, Shyam

    2017-02-01

    In this work, nanocomposites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles (rGO-PVA-Ag) were prepared in the absence and presence of rose water. The optical characterizations of prepared nanocomposites were done through UV-visible spectroscopy and Transmission Electron Microscopy (TEM) and Raman spectroscopy was employed for the surface characterization. The grafted silver (Ag) nanoparticles are found to be almost spherical in shape with reduction in their mean diameter from 47 nm to 26 nm after addition of rose water. The UV-visible absorption spectra of as-prepared rGO-PVA-Ag nanocomposites without and with rose water depicted surface plasmon resonance (SPR) peak at around 448 nm which coincides with the predicted spectra from simulation based on the Mie Theory. The electrical dc conductivity measurements as the function of temperature from room temperature to 55 °C were investigated. It has been found that use of rose water in synthesis process increases the electrical conductivity of the rGO-PVA-Ag. The mode of the electrical conduction in the composites can be explained using Efros-Shklovskii Variable Range Hopping mechanism (ES VRH).

  8. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  9. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms.

    Science.gov (United States)

    Xiao, Qian; Yu, Shuili; Li, Lei; Wang, Ting; Liao, Xinlei; Ye, Yubing

    2017-02-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated at a strict standard of 10μg/L in drinking water. Various techniques to eliminate BrO 3 - usually fall into three main categories: reducing bromide (Br - ) prior to formation of BrO 3 - , minimizing BrO 3 - formation during the ozonation process, and removing BrO 3 - from post-ozonation waters. However, the first two approaches exhibit low degradation efficiency and high treatment cost. The third workaround has obvious advantages, such as high reduction efficiency, more stable performance and easier combination with UV disinfection, and has therefore been widely implemented in water treatment. Recently, advanced reduction processes (ARPs), the photocatalysis of BrO 3 - , have attracted much attention due to improved performance. To increase the feasibility of photocatalytic systems, the focus of this work concerns new technological developments, followed by a summary of reducing agents, activation methods, operational parameters, and applications. The reaction mechanisms of two typical processes involving UV/sulfite homogeneous photocatalysis and UV/titanium dioxide heterogeneous photocatalysis are further summarized. The future research needs for ARPs to reach full-scale potential in drinking water treatment are suggested accordingly. Copyright © 2016. Published by Elsevier B.V.

  10. The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu.

    Science.gov (United States)

    Dai, Lichun; Pan, Gang

    2014-01-01

    A natural red soil and a lanthanum-modified soil (LMS) were tested to compare their phosphorus (P) adsorption capacities and their effectiveness in removing P from the water column and reducing P release from sediment. The equilibrium of P adsorption demonstrated that the maximum P adsorption for the soil was 1.29 and 2.22 mg g(-1) at pH 8.5 and 5.5, respectively, and for the LMS these were increased by 45.6 and 77.6% at pH 8.5 and 5.5, respectively, indicating that the soil was effective in P adsorption and the doping of lanthanum could substantially increase P adsorption. The sediment-water column incubation showed that, due to the P adsorption of the soil and LMS, the total P in the water column decreased by 58.5, 60.6, 68.2 and 77.2% for 180 g m(-2) soil, 900 g m(-2) soil, 180 g m(-2) LMS and 900 g m(-2) LMS treated systems, respectively, in a short time (6 h), and the capping layer substantially reduced the P release from sediment during column incubation, indicating that the soils were effective in reducing internal P load. However, considering the cost of LMS, the natural soil was suggested to be a cost-effective material to control internal P load.

  11. Optimal implementation of green infrastructure practices to reduce adverse impacts of urban areas on hydrology and water quality

    Science.gov (United States)

    Liu, Y.; Collingsworth, P.; Pijanowski, B. C.; Engel, B.

    2016-12-01

    Nutrient loading from Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. Although studies have explored strategies to reduce nutrient loading from agricultural areas in the Maumee River watershed, the nutrient loading in urban areas also needs to be reduced. Green infrastructure practices are popular approaches for stormwater management and useful for improving hydrology and water quality. In this study, the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to determine how different strategies for implementing green infrastructure practices can be optimized to reduce impacts on hydrology and water quality in an urban watershed in the upper Maumee River system. Community inputs, such as the types of green infrastructure practices of greatest interest and environmental concerns for the community, were also considered during the study. Based on community input, the following environmental concerns were considered: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx); green infrastructure practices of interest included rain barrel, cistern, green roof, permeable patio, porous pavement, grassed swale, bioretention system, grass strip, wetland channel, detention basin, retention pond, and wetland basin. Spatial optimization of green infrastructure practice implementation was conducted to maximize environmental benefits while minimizing the cost of implementation. The green infrastructure practice optimization results can be used by the community to solve hydrology and water quality problems.

  12. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available Electrochemically reduced water (ERW is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  13. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    Science.gov (United States)

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  14. Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water

    Science.gov (United States)

    Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong

    2014-01-01

    The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm2 active area create a serpentine flow-field on an active area of 100 cm2 and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums. PMID:24699531

  15. Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water.

    Science.gov (United States)

    Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong

    2014-04-04

    The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm(2) active area create a serpentine flow-field on an active area of 100 cm(2) and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums.

  16. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  17. Effect of reduced soil water availability on productivity of short rotation coppice

    Science.gov (United States)

    Orság, Matěj; Fischer, Milan; Mani Tripathi, Abhishek; Trnka, Miroslav

    2015-04-01

    "Wood, in fact, is the unsung hero of the technological revolution that has brought us from a stone and bone culture to our present age.'' Perlin and Journey (1991). Given its high-energy content and versatile use, biomass in a form of wood has been used for energy purposes since millennia and through times has been preferred source of biomass. Ever since, the production and use of woody biomass resources expands globally. Main drivers for its use as a source of energy are diversification and the mitigation of energy related greenhouse gas (GHG) emissions through partial substitution of fossil fuels. An alternative option for wood biomass sourcing from natural forests is short rotation woody coppice. Its productivity is largely dependent on the environment in terms of climatic conditions. Especially drought is the major constraint of woody biomass production involving serious economic consequences. In the central Europe, increased global radiation and air temperature together with decreased relative humidity increases the reference evapotranspiration resulting in an increased demand for soil water during growing season. For that reason, our field experiment was designed to evaluate impact of decreased soil water availability on productivity of poplar based short rotation coppice plantation during multiple growing seasons. Throughfall exclusion system based on plastic roof strips placed under the canopy was used to drain up to 70 % of the incoming rain water. Usual methods were used to assess the annual above ground biomass increment expressed in dry matter content. Not surprisingly our results show systematic decline in the productivity of plots subjected to decreased soil water availability but also considerable resilience of the drought-stressed trees which will be also discussed. This study was supported by project "Building up a multidisciplinary scientific team focused on drought", No. CZ.1.07/2.3.00/20.0248 and PASED - project supported by Czech program

  18. Cost and Performance Report Low Impact Technologies to Reduce Pollution from Storm Water Runoff SI-200405

    Science.gov (United States)

    2008-09-01

    Active Substance (MBAS) SM5540C EPA377.1 Nitrogen (Total) SM4500N Ammonia EPA350.2 Total Kjeldahl Nitrogen (TKN) EPA351.3 Nitrite...Prevention Ashore Program), NAVFAC ESC has conducted bench scale tests on 24 different adsorbent media to determine the combination that is the most...water passes through the media. Knowledge of hydraulic conductivity is needed to determine the required availability of hydraulic head for a known

  19. Water fluoridation in the Blue Mountains reduces risk of tooth decay.

    Science.gov (United States)

    Evans, R W; Hsiau, A C Y; Dennison, P J; Patterson, A; Jalaludin, B

    2009-12-01

    In April 1992, the fluoride concentration in the Blue Mountains water supply was adjusted to 1 mg/L. Baseline dmft/DMFT has been determined in children attending schools in the region and in the adjacent reference region of Hawkesbury, fluoridated since 1968. The aim of this study was to evaluate the effect of the water fluoridation programme in the Blue Mountains. In 2003, children attending the same schools were sampled. Residential history data were obtained by questionnaire and caries experience was assessed according to WHO guidelines. The analysis was restricted to lifelong resident children aged 5-11 years. The baseline and follow-up dmft scores for Blue Mountains children aged 5-8 years were 2.36 and 0.67, respectively. The age-adjusted decrease in odds of experiencing one or more dmft due to fluoridation was 0.26 (CI(95) 0.19, 0.37). The corresponding DMFT scores for Blue Mountains children aged 8-11 were 0.76 and 0.21 and the corresponding decrease in odds of experiencing one or more DMFT due to fluoridation was 0.25 (CI(95) 0.16, 0.40). Tooth decay reduction observed in the Blue Mountains corresponds to high rates reported elsewhere and demonstrates the substantial benefits of water fluoridation.

  20. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  1. Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

    Science.gov (United States)

    2015-01-01

    Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733

  2. Planning support for reducing risks related to flooding and water quality in the City of Stockholm

    Science.gov (United States)

    Mörtberg, Ulla; Lundgren, Kajsa; Kalantari, Zahra

    2017-04-01

    The urbanization trend during the last decades have several environmental impacts, particularly associated with increasing runoff and flood hazard, and decreasing water quality. These topics have been investigated all around the world, but relatively little is known about the impacts of urban development at the early stage of the urban planning in cities. This project aims to develop planning support tools for addressing impacts of different urbanization patterns in alternative planning scenarios on surface water within the City of Stockholm, the capital of Sweden. With the help of urban planners at the municipality, alternative future urban scenarios will be created and assessed from a hydro-meteorological risk assessment perspective. The scenarios will include alternative development patterns for buildings, infrastructure and supply of several regulating and cultural ecosystem services. For the water-related risk assessment, a hydrological model will be set up and validated using available data for a selected catchment that is affected by the scenarios. This will then be used to assess the impacts of the scenarios on the hydrological response and its implications. In the end, the results are expected to contribute to identifying how localization and type of different ecosystem services in the urban planning can be employed as nature-based solutions for hydro-meteorological risk reduction and climate adaptation.

  3. Dose-ranging pilot randomized trial of amino acid mixture combined with physical activity promotion for reducing abdominal fat in overweight adults

    Directory of Open Access Journals (Sweden)

    Sasai H

    2017-07-01

    Full Text Available Hiroyuki Sasai,1–3,* Keisuke Ueda,4,5,* Takehiko Tsujimoto,6,7 Hiroyuki Kobayashi,1 Chiaki Sanbongi,4 Shuji Ikegami,4 Yoshio Nakata1 1Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 2Japan Society for the Promotion of Science, Chiyoda, Tokyo, 3Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 4Food Science Research Laboratories, Meiji Co., Ltd., Odawara, Kanagawa, 5Graduate School of Comprehensive Human Sciences, 6Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 7Faculty of Human Sciences, Shimane University, Matsue, Shimane, Japan *These authors contributed equally to this work Objective: The objective of this study was to determine the effective dose of an amino acid mixture comprising arginine, alanine, and phenylalanine combined with physical activity promotion in reducing abdominal fat among overweight adults.Methods: A 12-week randomized, double-blind, placebo-controlled, dose-ranging, pilot trial was conducted in Mito, Japan, from January through April 2016, and the data were analyzed from May through November 2016. The study participants were 35 overweight adults, aged 20–64 years, with no regular exercise habit. Participants were randomly assigned to high-dose (3,000 mg/d, n=9, medium-dose (1,500 mg/d, n=9, low-dose (750 mg/d, n=8, or placebo (0 mg/d, n=9 groups, and the test beverage containing the amino acid mixture or placebo was administered for 12 weeks. All participants maintained a physically active lifestyle during the study period through monthly physical activity promotion sessions and smartphone-based self-monitoring with wearable trackers. Primary outcomes were changes in abdominal total, subcutaneous, and visceral fat areas, assessed by computed tomography.Results: Of the 35 enrolled participants, 32 completed the 12-week follow-up visit. The intention-to-treat analysis revealed that the changes in abdominal total fat

  4. Reduced nitrate concentrations in shallow ground water under a non-fertilised grass buffer strip.

    NARCIS (Netherlands)

    Beek, C.L.; Heinen, M.; Clevering, O.A.

    2007-01-01

    In this paper the suitability of a buffer strip to reduce nitrate concentrations in the upper groundwater was tested for a sandy arable soil in The Netherlands during two consecutive leaching seasons. The bufferstrip was a 3.5 m wide unfertilised grass strip adjacent to a ditch on an arable field.

  5. In-water supplementation of Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni colonization in broiler chickens

    Science.gov (United States)

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen colonizes the ceca thereby leading to contamination of the carcass during slaughter. Reducing C. jejuni cecal colonization could pot...

  6. Injection of Drag Reducing Additives Into Turbulent Water Flows: Results from Factorial Design

    Science.gov (United States)

    1984-04-01

    with edditive Injection was measured. The injection was then terminated and the "without- injsction" pressure drop was reoeitured. Finally the flow...result is of prime impetance in the optimization proceoe . Since the purpose of this studl Is to mazimie the drag- reducing performance of the

  7. Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements pH range from 4 to 12

    OpenAIRE

    Guichet, Xavier; Jouniaux, Laurence; Catel, Nicole

    2006-01-01

    The definitive version is available at www.blackwell-synergy.com; We acknowledge the Geophysical Journal International, the Royal Astronomical Society and Blackwell Publishing. Full bibliographic reference is : Guichet, X., L. Jouniaux, and N. Catel, Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements in the pH range from 4 to 12, Geophysical Journal International, 166, 445-460, doi:10.1111/j.1365-246X.2006.02922.x, 2006; Spontaneous...

  8. Reducing bromate formation with H(+)-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms.

    Science.gov (United States)

    Zhang, Tao; Hou, Pin; Qiang, Zhimin; Lu, Xiaowei; Wang, Qunhui

    2011-01-01

    This paper investigated the effect of H(+)-form high silica ZSM-5 (HZSM-5) zeolites on bromate formation. HZSM-5 zeolites with different Si/Al molar ratios (i.e., 25-300) were tested taking ozonation alone as control. The zeolites were more effective in reducing bromate formation for the filtered surface water than CeO₂, a former reported oxide that can reduce bromate formation at slightly acidic pH. The reduction efficiencies were not closely related to their Si/Al ratios. The HZSM-5 (Si/Al=300) selected for detailed studies effectively reduced bromate formation by 58% for the filtered water, and also enhanced the removal of dissolved organic carbon (DOC) during ozonation. The efficiency of the HZSM-5 in reducing bromate formation increased with ozone dose (0.38-1.16 mg O₃ mg⁻¹ DOC) and pH (6.6-9.3). The HZSM-5 adsorbed OBr⁻ (one of the critical intermediates in bromate formation) quickly with an adsorption capacity of 54 mg g⁻¹, but had no adsorption for ozone, Br⁻, HOBr and BrO₃⁻. It also significantly inhibited the formation of trace H₂O₂ which was generated from ozone decomposition and had been considered promoting bromate formation at low concentrations during ozonation. The reduction of bromate formation in O₃/HZSM-5 is possibly ascribed to the selective OBr⁻ adsorption in combination with the inhibited H₂O₂ formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

    OpenAIRE

    Bollati, Elena; Plimmer, Daniel; D'Angelo, Cecilia; Wiedenmann, J?rg

    2017-01-01

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion i...

  10. Purifying fluoride-contaminated water by a novel forward osmosis design with enhanced flux under reduced concentration polarization.

    Science.gov (United States)

    Pal, Madhubonti; Chakrabortty, Sankha; Pal, Parimal; Linnanen, Lassi

    2015-08-01

    For purifying fluoride-contaminated water, a new forward osmosis scheme in horizontal flat-sheet cross flow module was designed and investigated. Effects of pressure, cross flow rate, draw solution and alignment of membrane module on separation and flux were studied. Concentration polarization and reverse salt diffusion got significantly reduced in the new hydrodynamic regime. This resulted in less membrane fouling, better solute separation and higher pure water flux than in a conventional module. The entire scheme was completed in two stages-an upstream forward osmosis for separating pure water from contaminated water and a downstream nanofiltration operation for continuous recovery and recycle of draw solute. Synchronization of these two stages of operation resulted in a continuous, steady-state process. From a set of commercial membranes, two polyamide composite membranes were screened out for the upstream and downstream filtrations. A 0.3-M NaCl solution was found to be the best one for forward osmosis draw solution. Potable water with less than 1% residual fluoride could be produced at a high flux of 60-62 L m(-2) h(-1) whereas more than 99% draw solute could be recovered and recycled in the downstream nanofiltration stage from where flux was 62-65 L m(-2) h(-1).

  11. Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-03-01

    Full Text Available Information about the carbon cycle potentially constrains the water cycle, and vice versa. This paper explores the utility of multiple observation sets to constrain a land surface model of Australian terrestrial carbon and water cycles, and the resulting mean carbon pools and fluxes, as well as their temporal and spatial variability. Observations include streamflow from 416 gauged catchments, measurements of evapotranspiration (ET and net ecosystem production (NEP from 12 eddy-flux sites, litterfall data, and data on carbon pools. By projecting residuals between observations and corresponding predictions onto uncertainty in model predictions at the continental scale, we find that eddy flux measurements provide a significantly tighter constraint on continental net primary production (NPP than the other data types. Nonetheless, simultaneous constraint by multiple data types is important for mitigating bias from any single type. Four significant results emerging from the multiply-constrained model are that, for the 1990–2011 period: (i on the Australian continent, a predominantly semi-arid region, over half the water loss through ET (0.64 ± 0.05 occurs through soil evaporation and bypasses plants entirely; (ii mean Australian NPP is quantified at 2.2 ± 0.4 (1σ Pg C yr−1; (iii annually cyclic ("grassy" vegetation and persistent ("woody" vegetation account for 0.67 ± 0.14 and 0.33 ± 0.14, respectively, of NPP across Australia; (iv the average interannual variability of Australia's NEP (±0.18 Pg C yr−1, 1σ is larger than Australia's total anthropogenic greenhouse gas emissions in 2011 (0.149 Pg C equivalent yr–1, and is dominated by variability in desert and savanna regions.

  12. Changes in Federal Water Project Repayment Policies Can Reduce Federal Costs.

    Science.gov (United States)

    1981-08-07

    reservoirs on the Missouri River (Fort Peck, Sakakawea , Oahe, Sharpe, Francis Case, and Lewis and Clark) have more than 8 million acre-feet of water...available annually for interim M&I use at the Fort Peck, Sakakawea , and Oahe reservoirs. Currently, only 36,000 acre-feet of the 1 million acre-feet...17,000 10,000 1949 Missouri Dakota Fort Peck Montana - At least 1940 300,000 Sakakawea North 36,000 At least 1956 Dakota 300,000 Oahe South At least 1960

  13. Managing Water and Soils to Achieve Adaptation and Reduce Methane Emissions and Arsenic Contamination in Asian Rice Production

    Directory of Open Access Journals (Sweden)

    Dennis Wichelns

    2016-04-01

    Full Text Available Rice production is susceptible to damage from the changes in temperature and rainfall patterns, and in the frequency of major storm events that will accompany climate change. Deltaic areas, in which millions of farmers cultivate from one to three crops of rice per year, are susceptible also to the impacts of a rising sea level, submergence during major storm events, and saline intrusion into groundwater and surface water resources. In this paper, I review the current state of knowledge regarding the potential impacts of climate change on rice production and I describe adaptation measures that involve soil and water management. In many areas, farmers will need to modify crop choices, crop calendars, and soil and water management practices as they adapt to climate change. Adaptation measures at the local, regional, and international levels also will be helpful in moderating the potential impacts of climate change on aggregate rice production and on household food security in many countries. Some of the changes in soil and water management and other production practices that will be implemented in response to climate change also will reduce methane generation and release from rice fields. Some of the measures also will reduce the uptake of arsenic in rice plants, thus addressing an important public health issue in portions of South and Southeast Asia. Where feasible, replacing continuously flooded rice production with some form of aerobic rice production, will contribute to achieving adaptation objectives, while also reducing global warming potential and minimizing the risk of negative health impacts due to consumption of arsenic contaminated rice.

  14. Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India

    Science.gov (United States)

    Kumar, Prashant; Gopalan, Kaushik; Shukla, Bipasha Paul; Shyam, Abhineet

    2017-11-01

    Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November-December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ˜10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.

  15. A scenario analysis for reducing organic priority pollutants in receiving water using integrated dynamic urban fate models.

    Science.gov (United States)

    Gevaert, Veerle; Verdonck, Frederik; De Baets, Bernard

    2012-08-15

    The Water Framework Directive (WFD) has the objective of a catchment-oriented water quality protection for all European waters with the purpose of achieving a good ecological and chemical quality status by the year 2015. To that end, necessary measures should be identified and implemented, with the aim of progressively reducing pollution from priority substances. The objective of this paper is to demonstrate how a dynamic model of the integrated urban wastewater system (IUWS) can be used to test different emission reduction strategies for organic priority pollutants (PPs) in a semi-hypothetical case study on di(2-ethylhexyl)phthalate (DEHP). The IUWS is composed of coupled entities: sources, urban catchment surface (run-off/infiltration), sewer system, stormwater treatment unit, wastewater treatment plant (WWTP) including sludge handling, and receiving surface water (river). State-of-the-art dynamic fate models were selected from literature and extended with an organic pollutant fate sub-model. Dynamic DEHP release profiles were estimated using a dynamic model input generator and fed to the model to predict the fate and concentration of DEHP in each IUWS sub-system. The model was then used to test eight scenarios on environmental performance, namely (1) reduction of impervious urban area, (2) reduction of infiltration in the sewer system, (3) input reduction (excluding the main pollutant sources), (4) separating the combined sewer system, (5) treatment of stormwater by stormwater infiltration ponds (separate sewer systems), (6) placement of retention basins at main sewer junctions, (7) sand filtration of secondary effluent, and (8) pre-precipitation of phosphorous. The simulation results revealed that the most effective measure in terms of river water quality improvement for DEHP (annual average and spikiness reduction) and PP concentration in the disposed WWTP sludge, is reducing release of this substance into the environment, not surprisingly. In general, this

  16. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles.

    Science.gov (United States)

    Abdollahi, Mehdi; Alboofetileh, Mehdi; Behrooz, Rabi; Rezaei, Masoud; Miraki, Reza

    2013-03-01

    A bio-based nanocomposite was developed by incorporation of cellulose nanoparticles (CN) obtained from sulfuric acid hydrolysis into alginate biopolymer using solution casting method. The effect of CN loading content (1, 3, 5 and 10 wt%) on microstructural, physical, mechanical and optical properties of the nanocomposites were characterized. The results showed that water solubility and water vapor permeability of the nanocomposites decreased by about 40% and 17%, respectively, upon increasing the CN content to 10%. In addition, the crystalline structure of the CN increased surface hydrophobicity of the alginate film by about 98%. The tensile strength value of the composite films increased from 18.03 to 22.4 MPa with increasing NC content from 0 to 5%; but, it decreased with further increase of the filler content. Nevertheless, film transparency decreased with CN incorporation, especially in high level (10%), which suggested the occurrence of partial agglomeration of the fillers at 10% that coincided with microstructural and mechanical results. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Anthropogenic organochlorine compounds as potential tracers for regional water masses: A case study of estuarine plume, coastal eddy, wind-driven upwelling and long-range warm current.

    Science.gov (United States)

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-03-01

    Water masses are the crucial factor driving the terrigenous anthropogenic organochlorine compounds (OCs) migration from the coast to open sea. Therefore, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Northern South China Sea (NSCS), where different types of water masses are generated by the East Asian summer monsoon: Pearl River estuary plume (PREP), Guangdong offshore eddy (GDEC), South China Sea warm current (SCSWC) and wind-driven upwelling current (WDUC). No discrepant distributions of OC concentrations were found in these water masses (p > 0.05). However, compositions and diagnostic ratios of HCHs, DDTs, trans- or cis-chlordane and PCBs could reflect the discrepancies in the input, transport and transformation of OCs caused by the hydrological characteristics of water masses, therefore, this allowing them to serve as potential tracers of regional water masses. In detail, α/γ-HCH and β-HCH percentages could indicate the weathered residue in the GDEC, long-range transport in the SCSWC, rapid photodegradation in the surface WDUC and biodegradation in the deep WDUC, respectively. The predominance of o, p'-DDT and p, p'-DDT could indicate fresh input in the PREP, GDEC and WDUC. DDT/DDTs of ratios erosion in the PREP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vacuum evaporation, a technology for re-using water and reducing waste; La evaporacion al vacio una tecnologia para la reduccion de residuos y reutilizacion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Casas, O.; Sabate, E.; Casas, F.; Lopez, J.

    2009-07-01

    In order to improve companies sustain ability and environmental commitment, we have developed a concentration technology for reducing the volume of industrial waste water at low energy cost and recovering the water for various applications. The advantages of this system are recovery of the water, minimum maintenance without reagents and compactness with any type of waste water. Industrials Titan represents and example of the recycling of water by means of vacuum evaporation to solve a double problem: the conductivity of the water from the decalcified and the COD of the water from the painting process. (Author)

  19. Use of a passive bioreactor to reduce water-borne plant pathogens, nitrate, and sulfate in greenhouse effluent.

    Science.gov (United States)

    Gruyer, Nicolas; Dorais, Martine; Alsanius, Beatrix W; Zagury, Gérald J

    2013-01-01

    The goal of this study was to evaluate the use of passive bioreactors to reduce water-borne plant pathogens (Pythium ultimum and Fusarium oxysporum) and nutrient load (NO(-) 3 and SO(2-) 4) in greenhouse effluent. Sterilized and unsterilized passive bioreactors filled with a reactive mixture of organic carbon material were used in three replicates. After a startup period of 2 (sterilized) or 5 (unsterilized) weeks, the bioreactor units received for 14 weeks a reconstituted commercial greenhouse effluent composed of 500 mg L(-1) SO(2-) 4 and 300 mg L(-1) NO(-) 3 and were inoculated three times with P. ultimum and F. oxysporum (10(6) CFU mL(-1)). Efficacy in removing water-borne plant pathogens and nitrate reached 99.9% for both the sterilized and unsterilized bioreactors. However, efficacy in reducing the SO(2-) 4 load sharply decreased from 89% to 29% after 2 weeks of NO(-) 3-supply treatment for the unsterilized bioreactors. Although SO(2-) 4 removal efficacy for the sterilized bioreactors did not recover after 4 weeks of NO(-) 3-supply treatment, the unsterilized bioreactor nearly reached a similar level of SO(2-) 4 removal after 4 weeks of NO(-) 3-supply treatment compared with affluent loaded only with SO(2-) 4, where no competition for the carbohydrate source occurred between the denitrification process and sulfate-reducing bacteria activity. Performance differences between the sterilized and unsterilized bioreactors clearly show the predominant importance of sulfate-reducing bacteria. Consequently, when sulfate-reducing bacteria reach their optimal activity, passive bioreactors may constitute a cheap, low-maintenance method of treating greenhouse effluent to recycle wastewater and eliminate nutrient runoff, which has important environmental impacts.

  20. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  1. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes

    NARCIS (Netherlands)

    Pan, G.; Dai, L.; Li, L.; He, L.; Li, H.; Bi, L.; Gulati, R.D.

    2012-01-01

    The effect of simultaneously removing algal blooms from water and reducing the resuspension and nutrient release from the sediment was studied using modified local soil/sand flocculation-capping (MLS-capping) in simulated water-sediment systems. Twenty one sediment cores in situ with overlying water

  2. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  3. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  4. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates.

    Science.gov (United States)

    Caldeira, Maria C; Lecomte, Xavier; David, Teresa S; Pinto, Joaquim G; Bugalho, Miguel N; Werner, Christiane

    2015-10-13

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  5. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    Science.gov (United States)

    Molina-Kescher, Mario; Frank, Martin; Tapia, Raúl; Ronge, Thomas A.; Nürnberg, Dirk; Tiedemann, Ralf

    2016-06-01

    The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for ɛNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

  6. Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Brie, N., E-mail: nicolas.brie@edf.fr [EDF R and D, Département AMA, 1 avenue du général De Gaulle, 92140 Clamart (France)

    2013-09-15

    Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading.

  7. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    Science.gov (United States)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  8. Thermal Decomposition of Hydrocalumite over a Temperature Range of 400–1500°C and Its Structure Reconstruction in Water

    Directory of Open Access Journals (Sweden)

    Jiao Tian

    2014-01-01

    Full Text Available The thermal decomposition process and structure memory effect of hydrocalumite were investigated systematically for the first time over a wide temperature range of 400–1500°C. The calcined hydrocalumite samples and their rehydrated products were characterized by XRD, FT-IR, and SEM-EDX. The results show that the calcination products at temperatures ranging from 500 to 900°C are basically mayenite and lime, while one of the final products obtained by calcination at and above 1000°C is probably tricalcium aluminate (Ca3Al2O6. For the hydrocalumite samples calcined at temperatures below 1000°C, their lamellar structure can be completely recovered in deionized water at room temperature. However, the further increase of calcination temperature could impair the regeneration ability of hydrocalumite via contact with water. Upon calcination of hydrocalumite at 1000–1500°C followed by reaction with water, a stable compound tricalcium aluminate hexahydrate (Ca3Al2O6·6H2O was produced, which is the reason why less hydrocalumite could be regenerated.

  9. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system

    Science.gov (United States)

    Morey, G.B.

    1999-01-01

    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  10. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    Science.gov (United States)

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  11. Future electricity: The challenge of reducing both carbon and water footprint.

    Science.gov (United States)

    Mekonnen, Mesfin M; Gerbens-Leenes, P W; Hoekstra, Arjen Y

    2016-11-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit.

    Science.gov (United States)

    Chen, Huizhen; Cheng, Zhe; Wisniewski, Michael; Liu, Yongsheng; Liu, Jia

    2015-10-01

    Hot water treatment (HWT) of fruit is an effective approach for managing postharvest decay of fruits and vegetables. In the present study, the effects of HWT (45 °C for 10 min) on the growth of Botrytis cinerea and Penicillium expansum in vitro, and gray (B. cinerea) and blue mold (P. expansum) development in kiwifruit were investigated. HWT effectively inhibited spore germination and germ tube elongation of B. cinerea and P. expansum. Reactive oxygen species accumulation and protein impairment in the fungi triggered by HWT contributed to the inhibitory effect. Results of in vivo studies showed that HWT controlled gray and blue mold in kiwifruit stored at 4 and 25 °C. HWT induced a significant increase in the activity of antioxidant enzymes, including catalase and peroxidase, and the level of total phenolic compounds in kiwifruit. These findings indicate that the inhibition of postharvest decay in kiwifruit by HWT is associated with the inhibition of spore germination of both fungal pathogens and the elicitation of defense response in the kiwifruit host. Moreover, HWT used in this study did not impair fruit quality. HWT appears to represent a potential non-chemical alternative for the effective management of postharvest decay of kiwifruit.

  13. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water.

    Science.gov (United States)

    Li, Jingying; Han, Qiusen; Wang, Xinhuan; Yu, Ning; Yang, Lin; Yang, Rong; Wang, Chen

    2014-11-12

    A novel and convenient method to synthesize the nanocomposites combining graphene oxides (GO) with gold nanoparticles (AuNPs) is reported and their applications to modulate amyloid peptide aggregation are demonstrated. The nanocomposites produced by pulsed laser ablation (PLA) in water show good biocompatibility and solubility. The reduced aggregation of amyloid peptides by the nanocomposites is confirmed by Thioflavin T fluorescence and atomic force microscopy. The cell viability experiments reveals that the presence of the nanocomposites can significantly reduce the cytotoxicity of the amyloid peptides. Furthermore, the depolymerization of peptide fibrils and inhibition of their cellular cytotoxicity by GO/AuNPs is also observed. These observations suggest that the nanocomposites combining GO and AuNPs have a great potential for designing new therapeutic agents and are promising for future treatment of amyloid-related diseases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m{sup 3}. Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter.

  15. Effect of a single-session meditation training to reduce stress and improve quality of life among health care professionals: a "dose-ranging" feasibility study.

    Science.gov (United States)

    Prasad, Kavita; Wahner-Roedler, Dietlind L; Cha, Stephen S; Sood, Amit

    2011-01-01

    The primary aim of the study was to assess the feasibility of incorporating a single-session meditation-training program into the daily activities of healthy employees of a tertiary-care academic medical center. The study also assessed the most preferred duration of meditation and the effect of the meditation program on perceived stress, anxiety, and overall quality of life (QOL). Seventeen healthy clinic employees were recruited for this study. After an initial group instruction session covering basic information about meditation, Paced Breathing Meditation (PBM) was taught to the participants. Participants were instructed to self-practice meditation with the help of a DVD daily for a total of 4 weeks. The DVD had three different programs of 5, 15, and 30 minutes with a menu option to choose one of the programs. (1) Patient diary, (2) Perceived Stress Scale (PSS), (3) Linear Analogue Self-Assessment (LASA), (4) Smith Anxiety Scale (SAS). Primary outcome measures were compared using the paired t-test. All participants were female; median age was 48 years (range 33-60 y). The 5-minute meditation session was practiced by 14 participants a total of 137 times during the 4-week trial period, the 15-minute session by 16 participants a total of 223 times, and the 30-minute session by 13 participants 71 times. The median number of days practiced was 25 (range 10-28 d); the average total time practiced was 394 minutes (range 55-850 min). After 4 weeks of practice, the scores of the following instruments improved significantly from baseline: PSS (P stress, anxiety, and QOL.

  16. Dose distribution in water for monoenergetic photon point sources in the energy range of interest in brachytherapy: Monte Carlo simulations with PENELOPE and GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Almansa, Julio F. [Servicio de Radiofisica y Proteccion Radiologica, Hospital Universitario ' Puerta del Mar' , E-11009 Cadiz (Spain)]. E-mail: juliof.almansa.sspa@juntadeandalucia.es; Guerrero, Rafael [Servicio de Radiofisica, Hospital Universitario ' San Cecilio' , Avda. Dr. Oloriz, 16, E-18012 Granada (Spain)]. E-mail: rafael.guerrero.alcalde.sspa@juntadeandalucia.es; Al-Dweri, Feras M.O. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)]. E-mail: faldweri@ugr.es; Anguiano, Marta [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)]. E-mail: mangui@ugr.es; Lallena, Antonio M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)]. E-mail: lallena@ugr.es

    2007-05-15

    Monte Carlo calculations using the codes PENELOPE and GEANT4 have been performed to characterize the dosimetric properties of monoenergetic photon point sources in water. The dose rate in water has been calculated for energies of interest in brachytherapy, ranging between 10keV and 2MeV. A comparison of the results obtained using the two codes with the available data calculated with other Monte Carlo codes is carried out. A {chi}{sup 2}-like statistical test is proposed for these comparisons. PENELOPE and GEANT4 show a reasonable agreement for all energies analyzed and distances to the source larger than 1cm. Significant differences are found at distances from the source up to 1cm. A similar situation occurs between PENELOPE and EGS4.

  17. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    Science.gov (United States)

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  18. Drinking water to reduce alcohol craving? A randomized controlled study on the impact of ghrelin in mediating the effects of forced water intake in alcohol addiction.

    Science.gov (United States)

    Koopmann, Anne; Lippmann, Katharina; Schuster, Rilana; Reinhard, Iris; Bach, Patrick; Weil, Georg; Rietschel, Marcella; Witt, Stephanie H; Wiedemann, Klaus; Kiefer, Falk

    2017-11-01

    Recent data suggest that ghrelin is involved in the pathophysiology of alcohol use disorders, affecting alcohol self-administration and craving. Gastric ghrelin secretion is reduced by stomach distension. We now tested the hypothesis whether the clinically well-known effects of high-volume water intake on craving reduction in alcoholism is mediated by acute changes in ghrelin secretion. In this randomized human laboratory study, we included 23 alcohol-dependent male inpatient subjects who underwent alcohol cue exposure. Participants of the intervention group drank 1000ml of mineral water within 10min directly thereafter, compared to the participants of the control group who did not. Craving and plasma concentrations of acetylated ghrelin were measured ten times during the 120min following the alcohol cue exposure session. In the intervention group, a significant decrease in acetylated ghrelin in plasma compared to the control group was observed. This decrease was correlated to a reduction in patients' subjective level of craving. In the control group, no decrease of acetylated ghrelin in plasma and no association between alcohol craving and changes in plasma concentrations of acetylated ghrelin were observed. Our results present new evidence that the modulation in the ghrelin system by oral water intake mediates the effects of volume intake with craving reduction in alcohol use disorders. Hence, in addition to pharmacological interventions with ghrelin antagonists, the reduction of physiological ghrelin secretion might be a target for future interventions in the treatment of alcohol craving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Flow Patterns Transition Law of Oil-Water Two-Phase Flow under a Wide Range of Oil Phase Viscosity Condition

    OpenAIRE

    Wei Wang(College of William and Mary); Wei Cheng; Kai Li; Chen Lou; Jing Gong

    2013-01-01

    A systematic work on the prediction of flow patterns transition of the oil-water two-phase flows is carried out under a wide range of oil phase viscosities, where four main flow regimes are considered including stratified, dispersed, core-annular, and intermittent flow. For oil with a relatively low viscosity, VKH criterion is considered for the stability of stratified flow, and critical drop size model is distinguished for the transition of o/w and w/o dispersed flow. For oil with a high vis...

  20. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10-6 g m-2 day-1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  1. Implementing the Water Framework Directive: Contract Design and the Cost of Measures to Reduce Nitrogen Pollution from Agriculture

    Science.gov (United States)

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  2. Heavy Water Reduces GFP Expression in Prokaryotic Cell-Free Assays at the Translation Level While Stimulating Its Transcription

    Directory of Open Access Journals (Sweden)

    Luisa S. Hohlefelder

    2013-01-01

    Full Text Available The in vitro proliferation of prokaryotic and eukaryotic cells is remarkably hampered in the presence of heavy water (D2O. Impairment of gene expression at the transcription or translation level can be the base for this effect. However, insights into the underlying mechanisms are lacking. Here, we employ a cell-free expression system for the quantitative analysis of the effect of increasing percentages of D2O on the kinetics of in-vitro GFP expression. Experiments are designed to discriminate the rates of transcription, translation, and protein folding using pDNA and mRNA vectors, respectively. We find that D2O significantly stimulates GFP expression at the transcription level but acts as a suppressor at translation and maturation (folding in a linear dose-dependent manner. At a D2O concentration of 60%, the GFP expression rate was reduced to 40% of an undisturbed sample. We observed a similar inhibition of GFP expression by D2O in a recombinant Escherichia coli strain, although the inhibitory effect is less pronounced. These results demonstrate the suitability of cell-free systems for quantifying the impact of heavy water on gene expression and establish a platform to further assess the potential therapeutic use of heavy water as antiproliferative agent.

  3. Implementing the water framework directive: contract design and the cost of measures to reduce nitrogen pollution from agriculture.

    Science.gov (United States)

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  4. The Decision Support Matrix (DSM) Approach to Reducing Risk of Flooding and Water Pollution in Farmed Landscapes

    Science.gov (United States)

    Hewett, Caspar J. M.; Quinn, Paul; Wilkinson, Mark

    2014-05-01

    Intense farming plays a key role in contributing to problems such as increased flood risk, soil erosion and poor water quality. This means that there is great potential for agricultural practitioners to play a major part in reducing multiple risks through better land-use management. Greater understanding by farmers, land managers, practitioners and policy-makers of the ways in which farmed landscapes contribute to risks and the ways in which those risks might be mitigated can be an essential component in improving practice. The Decision Support Matrix (DSM) approach involves the development of a range of visualization and communication tools to help compare the risks associated with different farming practices and explore options to manage runoff. DSMs are simple decision support systems intended for use by the non-expert which combine expert hydrological evidence with local knowledge of runoff patterns. They are developed through direct engagement with stakeholders, ensuring that the examples and language used makes sense to end-users. A key element of the tools is that they show the current conditions of the land and describe extremes of land-use management within a hydrological and agricultural land-management context. The tools include conceptual models of a series of pre-determined runoff scenarios, providing the end-user with a variety of potential land management practices and runoff management options. Visual examples of different farming practices are used to illustrate the impact of good and bad practice on specific problems such as nutrient export or risk of flooding. These show both how current conditions cause problems downstream and how systems are vulnerable to changes in climate and land-use intensification. The level of risk associated with a particular land management option is represented by a mapping on a two- or three-dimensional matrix. Interactive spreadsheet-based tools are developed in which multiple questions allow the user to explore

  5. Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms

    Science.gov (United States)

    Pasanphan, Wanvimol; Rattanawongwiboon, Thitirat; Choofong, Surakarn; Güven, Olgun; Katti, Kattesh K.

    2015-01-01

    The idea of preparing water-soluble chitosan and observing its nanostructural morphology are proposed using irradiation process. The water-soluble chitosan nanoparticles (WSCS-NPs) properties were assessed for a possible use as an antioxidant and reducing agent for a green synthesis of gold nanoparticles (AuNPs). The characteristics of WSCS-NPs were verified using FT-IR, XRD, C H N analyzer and TGA. The nanostructural morphology was investigated using SEM and TEM. The number average molecular weight of WSCS-NPs was as low as 3800 g/mol with narrow polydispersity of 1.26. The average hydrodynamic diameter of WSCS-NPs was 15.40±0.47 nm. The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity of WSCS-NPs at 0.1 mg/mL was up to 80%, while the original CS exhibited no antioxidant activity. An effective concentration of WSCS-NPs to reduce DPPH free radicals (150 μM) by 50% is as low as 0.025 mg/mL. The in vitro cytotoxicity test by MTT assay demonstrated that WSCS-NPs are non-toxic with an IC50 of 2000 μg/mL. The WSCS-NPs are efficient reducing and stabilizing agent for producing stable colloidal AuNPs. The achievement of the WSCS-NPs and its ability to create AuNPs would be a part of growing interest of green nanotechnology in biomedicine.

  6. Effect of water exercise on atrophic muscles associated with limited range of motion in severe haemophilia A patients: A pilot study

    Directory of Open Access Journals (Sweden)

    Cigdem Ozdemir

    2014-06-01

    Results: Subjects displayed statistically significant increases in mid-thigh, upper thigh and calf circumference for right leg (42.0 +/- 2.4, 43.0 +/-2.1 ; 37.1 +/-1.9, 39.0 +/-1.8; 28.1 +/- 1.4, 28.9 +/-1.3 respectively (mean +/- SE in mid-thigh and upper thigh for left leg (36.9 +/- 1.5 , 38.9 +/- 1.5 ; 41.2 +/- 2.2 , 42.9 +/- 2 (p 0.05. Compared to pre-exercise values, leg extensor and flexor strength as well as range of motion were increased significantly (96.6 +/- 9 and #7506; vs 104.5+/- 8 and #7506;; before and after training for right knee, 98.5 +/- 7.6 and #7506; vs 104 +/- 7.9 and #7506; before and after training for left leg respectively (p 0.05. In addition to that, post training serum level of growth hormone was found to be significantly higher than the pertaining value (p 0.05. Conclusion: These results show that some easily performed exercise protocols such as water exercises can promote muscle development and increase range of motion of the knee joint. Our findings indicate that appropriately designed water exercise may prevent muscle atrophy and joint deformities in haemopliliac patients. [Cukurova Med J 2014; 39(3.000: 470-479

  7. Extreme Drought Event and Shrub Invasion Reduce Oak Trees Functioning and Resilience on Water-Limited Ecosystems

    Science.gov (United States)

    Caldeira, M. C.; Lobo-do-Vale, R.; Lecomte, X.; David, T. S.; Pinto, J. G.; Bugalho, M. N.; Werner, C.

    2016-12-01

    Extreme droughts and plant invasions are major drivers of global change that can critically affect ecosystem functioning. Shrub encroachment is increasing in many regions worldwide and extreme events are projected to increase in frequency and intensity, namely in the Mediterranean region. Nevertheless, little is known about how these drivers may interact and affect ecosystem functioning and resilience Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event in a Mediterranean oak woodland, we show that the combination of native shrub invasion and extreme drought reduced ecosystem transpiration and the resilience of the key-stone oak tree species. We established six 25 x 25 m paired plots in a shrub (Cistus ladanifer L.) encroached Mediterranean cork-oak (Quercus suber L.) woodland. We measured sapflow and pre-dawn leaf water potential of trees and shrubs and soil water content in all plots during four years. We determined the resilience of tree transpiration to evaluate to what extent trees recovered from the extreme drought event. From February to November 2011 we conducted baseline measurements for plot comparison. In November 2011 all the shrubs from one of all the paired plots were cut and removed. Ecosystem transpiration was dominated by the water use of the invasive shrub, which further increased after the extreme drought. Simultaneously, tree transpiration in invaded plots declined more sharply (67 ± 13 %) than in plots cleared from shrubs (31 ± 11%) relative to the pre-drought year (2011). Trees in invaded plots were not able to recover in the following wetter year showing lower resilience to the extreme drought event. Our results imply that in Mediterranean-type of climates invasion by water spending species coupled with the projected recurrent extreme droughts will cause critical drought tolerance thresholds of trees to be overcome, thus increasing the probability of tree mortality.

  8. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation.

    Science.gov (United States)

    Bichai, Françoise; Polo-López, M Inmaculada; Fernández Ibañez, Pilar

    2012-11-15

    Low-cost disinfection methods to allow safe use of recycled wastewater for irrigation can have important beneficial implications in the developing world. This study aims to assess the efficiency of solar disinfection to reduce microbial contamination of lettuce crops when solar-treated wastewater effluents are used for irrigation. The irrigation study was designed as a complete experimental loop, including (i) the production of irrigation water through solar disinfection of real municipal wastewater treatment plant effluents (WWTPE), (ii) the watering of cultivated lettuce crops at the end of solar treatment, and (iii) the detection of microbial contamination on the irrigated crops 24 h after irrigation. Solar disinfection was performed using two types of reactors: (i) 20-L batch borosilicate glass reactors equipped with CPC to optimize solar irradiation, and (ii) 1.5-L PET bottles, i.e. the traditional SODIS recipients commonly used for disinfection of drinking water in developing communities. Both solar and H(2)O(2)-aided solar disinfection processes were tested during ≤5 h exposure of WWTPE, and Escherichia coli inactivation was analysed. A presence/absence detection method was developed to analyse lettuce leaves sampled 24 h after watering for the detection of E. coli. Results of inactivation assays show that solar disinfection processes can bring down bacterial concentrations of >10(3)-10(4)E. coli CFU mL(-1) in real WWTPE to <2 CFU/mL (detection limit). The absence of E. coli on most lettuce samples after irrigation with solar-disinfected effluents (26 negative samples/28) confirmed an improved safety of irrigation practices due to solar treatment, while crops irrigated with raw WWTPE showed contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.

    Science.gov (United States)

    Baken, Stijn; Verbeeck, Mieke; Verheyen, Dries; Diels, Jan; Smolders, Erik

    2015-03-15

    Redox reactions involving iron (Fe) strongly affect the mobility of phosphorus (P) and its migration from agricultural land to freshwater. We studied the transfer of P from groundwater to open drainage ditches in an area where, due to Fe(II) rich groundwater, the sediments of these ditches contain accumulated Fe oxyhydroxides. The average P concentrations in the groundwater feeding two out of three studied drainage ditches exceeded environmental limits for freshwaters by factors 11 and 16, but after passing through the Fe-rich sediments, the P concentrations in the ditch water were below these limits. In order to identify the processes which govern Fe and P mobility in these systems, we used diffusive equilibration in thin films (DET) to measure the vertical concentration profiles of P and Fe in the sediment pore water and in the ditchwater. The Fe concentrations in the sediment pore water ranged between 10 and 200 mg L(-1) and exceeded those in the inflowing groundwater by approximately one order of magnitude, due to reductive dissolution of Fe oxyhydroxides in the sediment. The dissolved P concentrations only marginally increased between groundwater and sediment pore water. In the poorly mixed ditchwater, the dissolved Fe concentrations decreased towards the water surface due to oxidative precipitation of fresh Fe oxyhydroxides, and the P concentrations decreased more sharply than those of Fe. These observations support the view that the dynamics of Fe and P are governed by reduction reactions in the sediment and by oxidation reactions in the ditchwater. In the sediment, reductive dissolution of P-containing Fe oxyhydroxides causes more efficient solubilization of Fe than of P, likely because P is buffered by adsorption on residual Fe oxyhydroxides. Conversely, in the ditchwater, oxidative precipitation causes more efficient immobilization of P than of Fe, due to ferric phosphate formation. The combination of these processes yields a natural and highly

  10. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Catherine J., E-mail: cjwalsh@mote.org [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Butawan, Matthew, E-mail: mattbutawan@outlook.com [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Yordy, Jennifer, E-mail: jennifer.e.balmer@gmail.com [Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Ball, Ray, E-mail: Ray.Ball@lowryparkzoo.com [Lowry Park Zoo, 1101 W Sligh Ave, Tampa, FL 33604 (United States); Flewelling, Leanne, E-mail: Leanne.Flewelling@MyFWC.com [Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL 33701 (United States); Wit, Martine de, E-mail: Martine.deWit@MyFWC.com [Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, St. Petersburg, FL 33701 (United States); Bonde, Robert K., E-mail: rbonde@usgs.gov [U.S. Geological Survey, Sirenia Project, 7920 NE 71st Street, Gainesville, FL 32653 (United States)

    2015-04-15

    Highlights: • Sublethal brevetoxin exposure affects manatee immune function. • Plasma brevetoxin levels correlate with oxidative stress in rescued manatees. • Brevetoxin exposure affects lymphocyte proliferation in rescued manatees. • Plasma brevetoxin concentrations ranged from 0 to 19 ng PbTx-3 eq/mL. - Abstract: The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida’s southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p < 0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the

  11. Flow Patterns Transition Law of Oil-Water Two-Phase Flow under a Wide Range of Oil Phase Viscosity Condition

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available A systematic work on the prediction of flow patterns transition of the oil-water two-phase flows is carried out under a wide range of oil phase viscosities, where four main flow regimes are considered including stratified, dispersed, core-annular, and intermittent flow. For oil with a relatively low viscosity, VKH criterion is considered for the stability of stratified flow, and critical drop size model is distinguished for the transition of o/w and w/o dispersed flow. For oil with a high viscousity, boundaries of core-annular flow are based on criteria proposed by Bannwart and Strazza et al. and neutral stability law ignoring that the velocity of the viscous phase is introduced for stratified flow. Comparisons between predictions and quantities of available data in both low and high viscosity oil-water flow from literatures show a good agreement. The framework provides extensive information about flow patterns transition of oil-water two-phase flow for industrial application.

  12. Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-assisted pyrolysis.

    Science.gov (United States)

    Shi, Lingna; Wang, Lijun; Zhang, Tao; Li, Jianfa; Huang, Xiaoyi; Cai, Jing; Lü, Jinhong; Wang, Yue

    2017-10-01

    For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char. Specifically, the percentages of bioavailable Pb and leachable Pb in the chars obtained by phosphate-assisted pyrolysis at low temperatures were reduced to less than 5% and 7%, respectively. The sequential extraction test indicated the transformation of Pb into more stable fractions after phosphate-assisted pyrolysis, which was related to the formation of Pb phosphate minerals including pyromorphite and lead-substituted hydroxyapatite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    Science.gov (United States)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fepatterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that

  14. Solar drinking water disinfection (SODIS to reduce childhood diarrhoea in rural Bolivia: a cluster-randomized, controlled trial.

    Directory of Open Access Journals (Sweden)

    Daniel Mäusezahl

    2009-08-01

    Full Text Available Solar drinking water disinfection (SODIS is a low-cost, point-of-use water purification method that has been disseminated globally. Laboratory studies suggest that SODIS is highly efficacious in inactivating waterborne pathogens. Previous field studies provided limited evidence for its effectiveness in reducing diarrhoea.We conducted a cluster-randomized controlled trial in 22 rural communities in Bolivia to evaluate the effect of SODIS in reducing diarrhoea among children under the age of 5 y. A local nongovernmental organisation conducted a standardised interactive SODIS-promotion campaign in 11 communities targeting households, communities, and primary schools. Mothers completed a daily child health diary for 1 y. Within the intervention arm 225 households (376 children were trained to expose water-filled polyethyleneteraphtalate bottles to sunlight. Eleven communities (200 households, 349 children served as a control. We recorded 166,971 person-days of observation during the trial representing 79.9% and 78.9% of the total possible person-days of child observation in intervention and control arms, respectively. Mean compliance with SODIS was 32.1%. The reported incidence rate of gastrointestinal illness in children in the intervention arm was 3.6 compared to 4.3 episodes/year at risk in the control arm. The relative rate of diarrhoea adjusted for intracluster correlation was 0.81 (95% confidence interval 0.59-1.12. The median length of diarrhoea was 3 d in both groups.Despite an extensive SODIS promotion campaign we found only moderate compliance with the intervention and no strong evidence for a substantive reduction in diarrhoea among children. These results suggest that there is a need for better evidence of how the well-established laboratory efficacy of this home-based water treatment method translates into field effectiveness under various cultural settings and intervention intensities. Further global promotion of SODIS for general use

  15. Solar drinking water disinfection (SODIS) to reduce childhood diarrhoea in rural Bolivia: a cluster-randomized, controlled trial.

    Science.gov (United States)

    Mäusezahl, Daniel; Christen, Andri; Pacheco, Gonzalo Duran; Tellez, Fidel Alvarez; Iriarte, Mercedes; Zapata, Maria E; Cevallos, Myriam; Hattendorf, Jan; Cattaneo, Monica Daigl; Arnold, Benjamin; Smith, Thomas A; Colford, John M

    2009-08-01

    Solar drinking water disinfection (SODIS) is a low-cost, point-of-use water purification method that has been disseminated globally. Laboratory studies suggest that SODIS is highly efficacious in inactivating waterborne pathogens. Previous field studies provided limited evidence for its effectiveness in reducing diarrhoea. We conducted a cluster-randomized controlled trial in 22 rural communities in Bolivia to evaluate the effect of SODIS in reducing diarrhoea among children under the age of 5 y. A local nongovernmental organisation conducted a standardised interactive SODIS-promotion campaign in 11 communities targeting households, communities, and primary schools. Mothers completed a daily child health diary for 1 y. Within the intervention arm 225 households (376 children) were trained to expose water-filled polyethyleneteraphtalate bottles to sunlight. Eleven communities (200 households, 349 children) served as a control. We recorded 166,971 person-days of observation during the trial representing 79.9% and 78.9% of the total possible person-days of child observation in intervention and control arms, respectively. Mean compliance with SODIS was 32.1%. The reported incidence rate of gastrointestinal illness in children in the intervention arm was 3.6 compared to 4.3 episodes/year at risk in the control arm. The relative rate of diarrhoea adjusted for intracluster correlation was 0.81 (95% confidence interval 0.59-1.12). The median length of diarrhoea was 3 d in both groups. Despite an extensive SODIS promotion campaign we found only moderate compliance with the intervention and no strong evidence for a substantive reduction in diarrhoea among children. These results suggest that there is a need for better evidence of how the well-established laboratory efficacy of this home-based water treatment method translates into field effectiveness under various cultural settings and intervention intensities. Further global promotion of SODIS for general use should be

  16. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  17. Water filter provision and home-based filter reinforcement reduce diarrhea in Kenyan HIV-infected adults and their household members

    National Research Council Canada - National Science Library

    Pavlinac, Patricia B; Naulikha, Jaqueline M; Chaba, Linda; Kimani, Naomi; Sangaré, Laura R; Yuhas, Krista; Singa, Benson O; John-Stewart, Grace; Walson, Judd L

    2014-01-01

    .... We evaluated the effectiveness of provision and home-based reinforcement of a point-of-use water filtration device to reduce diarrhea among 361 HIV-infected adults in western Kenya by comparing...

  18. Short-range forecast of Shershnevskoie (South Ural) water-storage algal blooms: preliminary results of predictors' choosing and membership functions' construction

    Science.gov (United States)

    Gayazova, Anna; Abdullaev, Sanjar

    2014-05-01

    Short-range forecasting of algal blooms in drinking water reservoirs and other waterbodies is an actual element of water treatment system. Particularly, Shershnevskoie reservoir - the source of drinking water for Chelyabinsk city (South Ural region of Russia) - is exposed to interannual, seasonal and short-range fluctuations of blue-green alga Aphanizomenon flos-aquae and other dominant species abundance, which lead to technological problems and economic costs and adversely affect the water treatment quality. Whereas the composition, intensity and the period of blooms affected not only by meteorological seasonal conditions but also by ecological specificity of waterbody, that's important to develop object-oriented forecasting, particularly, search for an optimal number of predictors for such forecasting. Thereby, firstly fuzzy logic and fuzzy artificial neural network patterns for blue-green alga Microcystis aeruginosa (M. aeruginosa) blooms prediction in nearby undrained Smolino lake were developed. These results subsequently served as the base to derive membership functions for Shernevskoie reservoir forecasting patterns. Time series with the total lenght about 138-159 days of dominant species seasonal abundance, water temperature, cloud cover, wind speed, mineralization, phosphate and nitrate concentrations were obtained through field observations held at Lake Smolino (Chelyabinsk) in the warm season of 2009 and 2011 with time resolution of 2-7 days. The cross-correlation analysis of the data revealed the potential predictors of M. aeruginosa abundance quasi-periodic oscillations: green alga Pediastrum duplex (P. duplex) abundance and mineralization for 2009, P. duplex abundance, water temperature and concentration of nitrates for 2011. According to the results of cross-correlation analysis one membership function "P. duplex abundance" and one rule linking M. aeruginosa and P. duplex abundances were set up for database of 2009. Analogically, for database of 2011

  19. A Cluster Randomized Controlled Trial to Reduce Childhood Diarrhea Using Hollow Fiber Water Filter and/or Hygiene–Sanitation Educational Interventions

    OpenAIRE

    Lindquist, Erik D.; George, C. M.; Perin, Jamie; Neiswender de Calani, Karen J.; Norman, W. Ray; Davis, Thomas P.; Perry, Henry

    2014-01-01

    Safe domestic potable water supplies are urgently needed to reduce childhood diarrheal disease. In periurban neighborhoods in Cochabamba, Bolivia, we conducted a cluster randomized controlled trial to evaluate the efficacy of a household-level hollow fiber filter and/or behavior change communication (BCC) on water, sanitation, and hygiene (WASH) to reduce the diarrheal disease in children less than 5 years of age. In total, 952 households were followed for a period of 12 weeks post-distributi...

  20. Economic Feasibility of Irrigated Agricultural Land Use Buffers to Reduce Groundwater Nitrate in Rural Drinking Water Sources

    Directory of Open Access Journals (Sweden)

    Megan M. Mayzelle

    2014-12-01

    Full Text Available Agricultural irrigation leachate is often the largest source for aquifer recharge in semi-arid groundwater basins, but contamination from fertilizers and other agro-chemicals may degrade the quality of groundwater. Affected communities are frequently economically disadvantaged, and water supply alternatives may be too costly. This study aimed to demonstrate that, when addressing these issues, environmental sustainability and market profitability are not incompatible. We investigated the viability of two low impact crops, alfalfa and vineyards, and new recharge basins as an alternative land use in recharge buffer zones around affected communities using an integrated hydrologic, socio-geographic, and economic analysis. In the southern Central Valley, California, study area, alfalfa and vineyards currently constitute 30% of all buffer zone cropland. Economic analyses of alternative land use scenarios indicate a wide range of revenue outcomes. Sector output gains and potential cost saving through land use conversion and resulting flood control result in gains of at least $2.3 billion, as compared to costs of $0.3 to $0.7 billion for treatment options over a 20 year period. Buffer zones would maintain the economic integrity of the region and concur with prevailing policy options. Thus, managed agricultural recharge buffer zones are a potentially attractive option for communities facing financial constraint and needing to diversify their portfolio of policy and infrastructure approaches to meet drinking water quality objectives.

  1. Short range DFT combined with long-range local RPA within a range-separated hybrid DFT framework

    CERN Document Server

    Chermak, E; Mussard, Bastien; Angyan, Janos

    2015-01-01

    Selecting excitations in localized orbitals to calculate long-range correlation contributions to range-separated density-functional theory can reduce the overall computational effort significantly. Beyond simple selection schemes of excited determinants, the dispersion-only approximation, which avoids counterpoise-corrected monomer calculations, is shown to be particularly interesting in this context, which we apply to the random-phase approximation. The approach has been tested on dimers of formamide, water, methane and benzene.

  2. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs...

  3. Proton inelastic mean free path in a group of bioorganic compounds and water in 0.05-10 MeV range - Including higher-order corrections

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zhenyu, E-mail: tzy@sdu.edu.c [School of Electrical Engineering, Shandong University, Jinan 250061, Shandong (China); Xia Yueyuan; Zhao Mingwen; Liu Xiangdong [School of Physics, Shandong University, Jinan 250100, Shandong (China)

    2010-07-15

    The systematic calculations of the inelastic mean free paths (MFP) of 0.05-10 MeV protons in a group of eleven important bioorganic compounds, i.e. DNA, five bases, three fatty acids, cellulose and {beta}-carotene, have been performed. The expressions for the calculations are derived from the Ashley's optical-data model and from the higher-order correction terms in stopping power calculations. Especially, the Bloch correction for the inelastic MFP is proposed empirically in this work. The inelastic MFPs for energetic protons in water are also evaluated and compared with other theoretical calculations. The proton inelastic MFPs for these 11 bioorganic compounds in the energy range from 0.05 to 10 MeV are presented here for the first time, and might be useful for studies of various radiation effects in these materials.

  4. The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia.

    Science.gov (United States)

    Hillebrand, J J G; Heinsbroek, A C M; Kas, M J H; Adan, R A H

    2006-02-01

    Biochemical, genetic and imaging studies support the involvement of the serotonin (5-HT) system in anorexia nervosa. Activity-based anorexia (ABA) is considered an animal model of anorexia nervosa, and combines scheduled feeding with voluntary running wheel activity (RWA). We investigated the effect of d-fenfluramine (d-FEN) treatment on development and propagation of ABA. d-FEN is an appetite suppressant and acts on 5-HT(2C) receptors that are located on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. Since stimulation activation of the melanocortin system stimulates ABA, we hypothesized that d-FEN treatment enhances the development and propagation of ABA. Rats were exposed to the ABA model and chronically infused with d-FEN. Unexpectedly, d-FEN-treated ABA rats did not reduce food intake or increase wheel running as compared with vehicle-treated ABA rats. Furthermore d-FEN treatment did not affect body weight loss, hypothalamus-pituitary-adrenal axis activation, or starvation-induced hypothermia in ABA rats. POMC mRNA levels in d-FEN-treated rats were not different from vehicle-treated rats after one week of exposure to the ABA paradigm. However, d-FEN-treated ABA rats showed hypodypsia and increased plasma osmolality and arginine-vasopressin expression levels in the hypothalamus. We conclude that d-FEN treatment does not enhance ABA under the experimental conditions of this study, but strongly reduces water intake in ABA rats.

  5. Joint derivation method for determining optical properties based on steady-state spatially resolved diffuse reflectance measurement at small source-detector separations and large reduced albedo range: theory and simulation.

    Science.gov (United States)

    Shi, Zhenzhi; Fan, Ying; Zhao, Huijuan; Xu, Kexin

    2012-06-01

    Accurate determination of the optical properties (the absorption coefficient μ(a) and the reduced scattering coefficient μ(s) (')) of tissues is very important in a variety of diagnostic and therapeutic procedures. Optical diffusion theory is frequently used as the forward model for describing the photon transfer in media with large reduced albedos (a(')) and in large source-detector separations (SDS). Several other methods (PN approximation, hybrid diffusion-P3 approximation) have also been published that describe photon transfer in media with low a(') or small SDSs. We studied the theoretical models for the steady-state spatially resolved diffuse reflectance measurement to accurately determine μ(a) and μ(s) (') at large a(') range but small SDSs. Instead of using a single model, a joint derivation method is proposed. The developed method uses one of the best aforementioned theoretical methods separately in five ranges of a(') determined from several forward models. In the region of small SDSs (the range between 0.4 and 8 mm) and large a(') range (between 0.5 and 0.99), the best theoretical derivation model was determined. The results indicate that the joint derivation method can improve the derivation accuracy and that a(') range can be determined by the steady-state spatially resolved diffuse reflectance measurement.

  6. Palm vitamin E reduces catecholamines, xanthine oxidase activity and gastric lesions in rats exposed to water-immersion restraint stress

    Directory of Open Access Journals (Sweden)

    Mohd Fahami Nur Azlina

    2012-05-01

    Full Text Available Abstract Background This study examined the effects of Palm vitamin E (PVE and α-tocopherol (α-TF supplementations on adrenalin, noradrenalin, xanthine oxidase plus dehydrogenase (XO + XD activities and gastric lesions in rats exposed to water-immersion restraint stress (WIRS. Methods Sixty male Sprague–Dawley rats (200-250 g were randomly divided into three equal sized groups. The control group was given a normal diet, while the treated groups received the same diet with oral supplementation of PVE or α-TF at 60 mg/kg body weight. After the treatment period of 28 days, each group was further subdivided into two groups with 10 rats without exposing them to stress and the other 10 rats were subjected to WIRS for 3.5 hours. Blood samples were taken to measure the adrenalin and noradrenalin levels. The rats were then sacrificed following which the stomach was excised and opened along the greater curvature and examined for lesions and XO + XD activities. Results The rats exposed to WIRS had lesions in their stomach mucosa. Our findings showed that dietary supplementations of PVE and α-TF were able to reduce gastric lesions significantly in comparison to the stressed control group. WIRS increased plasma adrenalin and noradrenalin significantly. PVE and α-TF treatments reduced these parameters significantly compared to the stressed control. Conclusions Supplementations with either PVE or α-TF reduce the formation of gastric lesions. Their protective effect was related to their abilities to inhibit stress induced elevation of adrenalin and noradrenalin levels as well as through reduction in xanthine oxidase and dehydrogenase activities.

  7. Hot water treatment to reduce incidence of black foot pathogens in young grapevines grown in cool climates

    Directory of Open Access Journals (Sweden)

    Carolyn BLEACH

    2013-09-01

    Full Text Available Black foot disease causes death of infected grapevines but management of this soil-borne disease by preventative measures such as pre-planting fungicide dips has not been totally effective. Hot water treatment (HWT; 50°C for 30 min of young dormant grapevine plants has been shown to significantly reduce infection. However, it has been reported to cause unacceptable damage to young vines in cooler climate countries like New Zealand, so this study examined the effects of different HWT protocols on the New Zealand black foot isolates. In vitro testing of different HWT protocols was conducted on conidia, mycelium and detached, inoculated grapevine canes using three isolates each of the species I. liriodendri (“C”. liriodendri and the complexes, I. radicicola (“C”. destructans and I. macrodidyma (“C”. macrodidymum. Heat treatments greater than 40°C for 5 min killed all conidia (P<0.001, and treatments greater than 47°C for 30 min inhibited (P≤0.003 further growth of treated mycelium plugs for all but one isolate. Within cane pieces, infection by Ilyonectria (“Cylindrocarpon” isolates was significantly reduced (P<0.001 by 30 min at 48.5 and 50°C. Additionally, these studies showed different responses to the different treatments for the three isolates of each species complex and differences between species. In field trials, HWT of 48.5 and 50°C for 30 min significantly reduced disease incidence in dormant plants to 0% (P≤0.001. This study confirmed that HWT of 48.5°C for 30 min could be used to eliminate black foot disease in dormant nursery grapevines grown in New Zealand prior to their use for establishing new vineyards.

  8. Technical Note: VUV photodesorption rates from water ice in the 120–150 K temperature range – significance for Noctilucent Clouds

    Directory of Open Access Journals (Sweden)

    M. Yu. Kulikov

    2011-02-01

    Full Text Available Laboratory studies have been carried out with the aim to improve our understanding of physicochemical processes which take place at the water ice/air interface initiated by solar irradiation with a wavelength of 121.6 nm. It was intended to mimic the processes of ice particles characteristic of Noctilucent Clouds (NLCs. The experimental set-up used includes a high-vacuum chamber, a gas handling system, a cryostat with temperature controller, an FTIR spectrometer, a vacuum ultraviolet hydrogen lamp, and a microwave generator. We report the first results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase from thin (20–100 nm water ice samples kept in the temperature range of 120–150 K. The obtained results show that a flow of photoproducts into the gas phase is considerably lower than presumed in the recent study by Murray and Plane (2005. The experiments indicate that almost all photoproducts remain in the solid phase, and the principal chemical reaction between them is the recombination reaction H + OH → H2O which is evidently very fast. This means that direct photolysis of mesospheric ice particles seems to have no significant impact on the gas phase chemistry of the upper mesosphere.

  9. Finding the best combination of numerical schemes for 2-D SPH simulation of wedge water entry for a wide range of deadrise angles

    Directory of Open Access Journals (Sweden)

    Farsi Mohammad

    2014-09-01

    Full Text Available Main aim of this paper is to find the best combination of numerical schemes for 2-D SPH simulation of wedge water entry. Diffusion term is considered as laminar, turbulent, and artificial viscosity. Density filter that seriously affects the pressure distribution is investigated by adopting no filter, first order filter, and second order filter. Validation of the results indicates that turbulent model and first order density filter can lead to more reasonable solutions. This simulation was then conducted for wedge water entry with wide range of deadrise angles including 10 degrees, 20 degrees, 30 degrees, 45 degrees, 60 degrees and 81 degrees, with extreme deadrise angles of 10 degrees, 60 degrees and 81 degrees being considered. Comparison of SPH results with BEM solutions has displayed favorable agreement. In two particular cases where experimental data are available, the SPH results are shown to be closer to the experiments than BEM solution. While, accuracy of the obtained results for moderate deadrise angles is desirable, numerical findings for very small or very large deadrise angles are also very reasonable

  10. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures

    Science.gov (United States)

    Bishop, Kevin P.; Roy, Pierre-Nicholas

    2018-03-01

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  11. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Coyle; J. Blake; K. Britton; M.; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E.; D. Robison; R. Rummer; F. Sanchez; J.; B. Stokes; C. Trettin; J. Tuskan; L. Wright; S. Wullschleger

    2003-12-31

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  12. Whether Farmers are Willing to Financial Participation for Reducing the Adverse Environmental Effects of Contaminated Water? (A case study of Kashaf- Rood Basin in Mashhad

    Directory of Open Access Journals (Sweden)

    hannane aghasafari

    2016-05-01

    Full Text Available The purpose of this study is to evaluate financial participation of farmers to reduce the adverse environmental effects of contaminated water by using Contingent Valuation approach and Tobit model by Heckman's two stage. To achieve the desired goal, 100 questionnaires collected by a random sampling from farmers of Kashaf- rood basin in Mashhad city in 2014. Results showed that variables of age, index 3 (farmers agree with rural and urban sewage inflow into Kashaf-rood river, total amount annual consumption of chemical pesticides and variables of sex, total area under cultivation, index1 (farmers agree with benefits of preventing soil washing, index 4 (farmers agree with well being of available soil and water and index 5 (farmers agree with investments to protect the soil and water, experience in the use of soil and water conservation practices have a significant and positive and negative impact on farmers' decisions to participate in financial for reducing the adverse environment a effects of contaminated water, respectively. also, variables of age, type of agricultural activity, under cultivation crops,total amount annual consumption of fertilizer per year, total amount annual consumption of chemical pesticides, index 3 (farmers agree with rural and urban sewage inflow into Kashaf-rood river and variables of net savings of agriculture, land ownership status, experience in the use of soil and water conservation practices, total area under cultivation, index 4 (farmers agree with well being of available soil and water, sex have a significant and positive and negative impact on the amount of farmers financial participation for reducing the adverse environmental effects of contaminated water, respectively. Also study results showed that average of maximum amount farmers financial participation for reducing the adverse environmental effects of contaminated water per hectare in the five scenarios to be 134500, 179500, 225500, 271000and354500 rials

  13. Innovative computational tools for reducing exploration risk through integration of water-rock interactions and magnetotelluric surveys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States)

    2017-04-20

    Mapping permeability distributions in geothermal reservoirs is essential for reducing the cost of geothermal development. To avoid the cost and sampling bias of measuring permeability directly through drilling, we require remote methods of imaging permeability such as geophysics. Electrical resistivity (or its inverse, conductivity) is one of the most sensitive geophysical properties known to reflect long range fluid interconnection and thus the likelihood of permeability. Perhaps the most widely applied geophysical methods for imaging subsurface resistivity is magnetotellurics (MT) due to its relatively great penetration depths. A primary goal of this project is to confirm through ground truthing at existing geothermal systems that MT resistivity structure interpreted integratively is capable of revealing permeable fluid pathways into geothermal systems.

  14. The Effect of Vermicompost on Reducing the Adverse Effects of Water Stress on Growth and Chemical Composition of Corn in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    leila zare

    2017-01-01

    stress and vermicompost on the concentrations of shoot N and Cu were significant and both were incresead by simultanoeus application of vermicompost and levels of water stress. The applicaion of 30 g kg-1 vermicompost (about 60 ton ha-1 under 60% FC moisture level increased significantly dry matter yield and the concentrations of nitrogen, phosphorus, zinc, copper and iron in corn shoot by 29%,5.5%, 23, 110, 41 and 71 percent compared to the control, respectively. However, because of the antagonistic relationships,the iron or manganese concentrations were reduced, but were yet in the sufficiency range. The use of 30 g kg-1 vermicompost under 80% FC moisture level Also increased significantly the concentrations of nitrogen, phosphorus, zinc, iron and copper by 9, 23, 24, 59 and 43 percent compared to the control, respectively. Conclusion: The applicaion of 30 g kg-1 vermicompost increased significantly dry matter yield and the concentration of nitrogen, phosphorus, zinc, copper and iron in corn shoot under water stress treatments. In conclusion, the application of vermicompost mitigated the detrimental effects of water stress on corn dry matter yield and concentration of nutrients due to the positive effects of compost on physical, chemical and biological properties of the calcareous soil.

  15. Anticipating Central Asian Water Stress: Variation in River Flow Dependency on Melt Waters from Alpine to Plains in the Remote Tien Shan Range, Kyrgyzstan Using a Rapid Hydro Assessment Methodology

    Science.gov (United States)

    Hill, A. F.; Wilson, A. M.; Williams, M. W.

    2016-12-01

    The future of mountain water resources in High Asia is of high interest to water managers, development organizations and policy makers given large populations downstream reliant on snow and ice sourced river flow. Together with historical and cultural divides among ex-Soviet republics, a lack of central water management following the Soviet break-up has led to water stress as trans-boundary waters weave through and along borders. New upstream hydropower development, a thirsty downstream agricultural sector and a shrinking Aral Sea has led to increasing tension in the region. Despite these pressures and in contrast to eastern High Asia's Himalayan basins (Ganges, Brahmaputra), little attention has been given to western High Asia draining the Pamir and Tien Shan ranges (Syr Darya and Amu Darya basins) to better understand the hydrology of this vast and remote area. Difficult access and challenging terrain exacerbate challenges to working in this remote mountain region. As part of the Contributions to High Asia Runoff from Ice and Snow (CHARIS) project, we asked how does river flow source water composition change over an alpine-to-plains domain of Kyrgyzstan's Naryn River in the Syr Darya basin? In addition, what may the future hold for river flow in Central Asia given the differing responses of snow and ice to climate changes? Utilizing a Rapid Hydrologic Assessment methodology including a suite of pre-field mapping techniques we collected in situ water chemistry data at targeted, remote mountain sites over 450km of the Naryn River over an elevation gradient from glacial headwaters to the lower lying areas - places where people, hydropower and agriculture utilize water. Chemical and isotope tracers were used to separate stream flow to understand relative dependency on melt waters as the river moves downstream from glaciers and snow covered areas. This case study demonstrates a technique to acquire field data over large scales in remote regions that facilitates

  16. Integrating multiple lines of evidence to better understand the evolutionary divergence of humpback dolphins along their entire distribution range: a new dolphin species in Australian waters?

    Science.gov (United States)

    Mendez, Martin; Jefferson, Thomas A; Kolokotronis, Sergios-Orestis; Krützen, Michael; Parra, Guido J; Collins, Tim; Minton, Giana; Baldwin, Robert; Berggren, Per; Särnblad, Anna; Amir, Omar A; Peddemors, Vic M; Karczmarski, Leszek; Guissamulo, Almeida; Smith, Brian; Sutaria, Dipani; Amato, George; Rosenbaum, Howard C

    2013-12-01

    The conservation of humpback dolphins, distributed in coastal waters of the Indo-West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach-cast, remote-biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population-level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as-yet-unnamed species off northern Australia). © 2013 John Wiley & Sons Ltd.

  17. The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar.

    Science.gov (United States)

    Lawson, Tracy; Oxborough, Kevin; Morison, James I L; Baker, Neil R

    2003-07-01

    High resolution chlorophyll a fluorescence imaging was used to compare the photosynthetic efficiency of PSII electron transport (estimated by Fq'/Fm') in guard cell chloroplasts and the underlying mesophyll in intact leaves of six different species: Commelina communis, Vicia faba, Amaranthus caudatus, Polypodium vulgare, Nicotiana tabacum, and Tradescantia albifora. While photosynthetic efficiency varied between the species, the efficiencies of guard cells and mesophyll cells were always closely matched. As measurement light intensity was increased, guard cells from the lower leaf surfaces of C. communis and V. faba showed larger reductions in photosynthetic efficiency than those from the upper surfaces. In these two species, guard cell photosynthetic efficiency responded similarly to that of the mesophyll when either light intensity or CO2 concentration during either measurement or growth was changed. In all six species, reducing the O2 concentration from 21% to 2% reduced guard cell photosynthetic efficiency, even for the C4 species A. caudatus, although the mesophyll of the C4 species did not show any O2 modulation of photosynthetic efficiency. This suggests that Rubisco activity is significant in the guard cells of these six species. When C. communis plants were water-stressed, the guard cell photosynthetic efficiency declined in parallel with that of the mesophyll. It was concluded that the photosynthetic efficiency in guard cells is determined by the same factors that determine it in the mesophyll.

  18. The use of straw in vineyards and orchards to reduce soil and water losses in Eastern Spain.

    Science.gov (United States)

    Cerdà, Artemi; García-Díaz, Andrés; Rodrigo Comino, Jesús; Pereira, Paulo; Novara, Agata; Jordán, Antonio; Brevik, Eric

    2017-04-01

    Straw has been demonstrated to be a very efficient mulch to reduce soil losses. This has been found by different authors and in different regions such as the Mediterranean Region, where there is a need to reduce the non-sustainable soil and water losses caused by the compaction of soil, lack of vegetation and intense thunderstorms. The Soil Erosion and Degradation Research Team from the University of Valencia with the collaboration of other research areas is developing a holistic research program to understand how straw mulch can be introduced and applied with success in traditional rainfed and modern irrigated orchards and vineyards. The research is based on three approaches: i) the perception of the farmers; ii) the economic cost; iii) and the biophysical impact of the straw mulch on soils, runoff generation and soil erosion. Farmer perception has been researched by means of interviews and the results shows that farmers prefer a tidy and clean soil (if possible ploughed in the vineyards) rather than vegetation or straw cover. There is a need to inform the farmers about how important it is to protect the soil and to find the right covers. It is also important to find adequate subsidies to encourage this management. Without financial support most farmers will be not convinced to use catch-crops, mulches or chipped branches. The cost of the straw is about 0.05 € Kg-1, the transport is 0.02 € Kg-1 and the application 0.04 € Kg-1. The cost is affordable for farms that have high incomes and mechanization. The results of rainfall simulation experiments and measurements under plot conditions demonstrate a reduction of one order of magnitude in soil erosion rates and 30 % in runoff discharge when straw mulch is used. The straw reduces soil erodibility due to the protective cover, which reduces raindrop impact energy on the soil surface and slows runoff, encouraging infiltration. Acknowledgements This research was funded by the European Union Seventh Framework

  19. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    Science.gov (United States)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  20. Co-current air-water flow in downward sloping pipes : Transport of capacity reducing gas pockets in wastewater mains

    NARCIS (Netherlands)

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes

  1. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  2. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  3. Fissured Rocks and Water Reservoirs in Eastern Thessaly Mountain Range, Greece (Olympus, Ossa, Maurovouni and Pelion): The Role of Tectonic Deformation

    Science.gov (United States)

    Papanikolaou, I.; Migiros, G.; Stamatis, G.; Yoxas, G.

    2009-04-01

    The storage capacity of fractured hard rocks is lower than porous media and karst formations, though they can yield groundwater of sufficiently good quality for drinking purposes and may host important water resources, even if they are often of low permeability. In particular, for countries like Greece, where water needs for the local population and the tourist industry are excessive and waterfall limited, these reservoirs are of strategic importance. The mountain Range in Eastern Thessaly comprises an extensive nappe of metamorphic rocks, consisting of schists, gneisses, involving partly some ophiolithic rocks and marble intercalations. The thickness of the nappe exceeds 600 m in Ossa, whereas in the area of Pelion is estimated up to 3.000 m. This nappe rests on top of the Autochthonous Olympus- Ossa unit, which forms a massive Mesozoic carbonate sequence. Extensive fieldwork data supported by the analysis of the physical and chemical properties of a large number of springs and combined by the study of the geological structure both local and regional, resulted in important outcomes regarding the fissured rocks permeability, water flow and springs distribution. Schists are characterized by heterogeneity regarding their permeability features. They are divided into hard-rocks where quartz, epidote and amphiboles prevail, displaying higher permeability and soft-rocks where clay minerals prevail, exhibiting low permeability features, because the presence of clay blocks the fissures and prevent any infiltration process. The marbles are of high permeability, but are of limited extent. A few springs are located in marbles, but the vast majority of the springs are associated to the hard-rock schists, are scattered and characterized by high seasonal discharges. In the area of Ossa in particular, the most important reservoirs exist at the bordering zones of the metamorphic and the post-alpine formations due to the enrichment of the sedimentary post-alpine formations. In the

  4. Effects of Zinc and Phosphorus on Nutrients, Starch and Reducing Sugar Concentrations of Potato Tubers under with or without Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    rahim motalebifard

    2017-02-01

    range tests at p≤0.05 probability level was applied to compare the mean values of measured attributes. The Excel software was used to draw Figures. Results and Discussion: The results showed that water deficit significantly affected most of qualitative attributes and nutrients concentration of potato Tuber N, P and reducing sugar concentrations were significantly increased (p

  5. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  6. Ozonated water reduces susceptibility in tomato plants to Meloidogyne incognita by the modulation of the antioxidant system.

    Science.gov (United States)

    Veronico, Pasqua; Paciolla, Costantino; Sasanelli, Nicola; De Leonardis, Silvana; Melillo, Maria Teresa

    2017-05-01

    Few studies have been carried out on the effect of ozonated water (O3 wat) on the oxidative stress of root systems and, in particular, in combination with biotic stress. The aim of this study was to determine whether aqueous ozone is effective in the control of root-knot nematode (RKN) infection and to investigate the concomitant changes in the basal defence system. A tomato cultivar susceptible to Meloidogyne incognita was treated with O3 wat as a soil drench. No negative effects were seen following ozone application in comparison with the control under the exposure conditions used. The treatment reduced significantly the nematode infection rate and induced changes in the morphology of nematode feeding sites, some of which were characterized by visible symptoms of senescence. The antioxidant response, as well as parameters of oxidative damage, were examined in untreated and O3 wat-treated galls at 2, 4 and 7 days after inoculation and compared with uninfected roots. High levels of reactive oxygen species (ROS), H2 O2 and malondialdehyde were generated in galls in response to combined abiotic and biotic stresses. Throughout the experimental period, the activities and relative transcript levels of the antioxidant enzymes catalase, superoxide dismutase and ascorbate peroxidase produced different responses when exposed to ozone treatment and/or infection. The results demonstrate how O3 wat protects tomato against the RKN M. incognita through the modulation of basal defence mechanisms. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    Science.gov (United States)

    Li, Xingwen; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli; Murphy, Anthony B.

    2015-04-01

    The influence of copper vapor mixed in hot CO2 on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K-4000 K is numerically analyzed. First, the equilibrium composition of hot CO2 with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N)cr is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N)cr of the CO2-Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O2 from the thermal dissociation of CO2 contributes to the increase of (E/N)cr of CO2-Cu hot gas mixtures from about 2000 K to 3500 K.

  8. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  9. Evapotranspiration Rate Measurements of Vegetation Typical of Ground-Water Discharge Areas in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah, September 2005-August 2006

    Science.gov (United States)

    Moreo, Michael T.; Laczniak, Randell J.; Stannard, David I.

    2007-01-01

    Evapotranspiration was measured at six eddy-correlation sites for a 1-year period between September 1, 2005, and August 31, 2006. Five sites were in phreatophytic shrubland dominated by greasewood, and one site was in a grassland meadow. The measured annual evapotranspiration ranged from 10.02 to 12.77 inches at the shrubland sites and 26.94 inches at the grassland site. Evapotranspiration rates correlated to measured vegetation densities and to satellite-derived vegetation indexes. Evapotranspiration rates were greater at sites with denser vegetation. The primary water source supporting evapotranspiration was water derived from local precipitation at the shrubland sites, and ground water at the grassland site. Measured precipitation, ranging from 6.21 to 11.41 inches, was within 20 percent of the computed long-term annual mean. The amount of ground water consumed by phreatophytes depends primarily on local precipitation and vegetation density. The ground-water contribution to local evapotranspiration ranged from 6 to 38 percent of total evapotranspiration at the shrubland sites, and 70 percent of total evapotranspiration at the grassland site. Average depth to water ranged from 7.2 to 32.4 feet below land surface at the shrubland sites, and 3.9 feet at the grassland site. Water levels declined throughout the growing season and recovered during the non-growing season. Diurnal water-level fluctuations associated with evapotranspiration were evident at some sites but not at others.

  10. Support of Joint Function, Range of Motion, and Physical Activity Levels by Consumption of a Water-Soluble Egg Membrane Hydrolyzate.

    Science.gov (United States)

    Jensen, Gitte S; Lenninger, Miki R; Beaman, Joni L; Taylor, Robert; Benson, Kathleen F

    2015-09-01

    This study evaluated the effects of consumption of hydrolyzed water-soluble egg membrane (WSEM) on joint function in an otherwise healthy population experiencing chronic pain. A randomized, double-blind, placebo-controlled crossover study included two 4-week periods of placebo and WSEM consumption, separated by a 4-week washout period. Twenty-five study participants were randomized to either the "placebo-first" or "WSEM first" sequence in the crossover trial, and 22 participants completed the study requirements. Range of motion (ROM) was assessed using digital inclinometry for joints associated with vertical weight bearing from neck to knees and for shoulders. Pain at rest and when physically active was scored for the same anatomical areas using visual analog scales (VAS). Physical functioning was tracked using questionnaires with VAS. Consumption of WSEM was associated with improved ROM for neck, spine, hips, and knees, with ROM for the neck and right knee being significantly improved during WSEM consumption compared to placebo (P consumption (P consumption (P functioning as part of daily living improved. Subgroup analysis showed rapid improvement of lower back pain after 5 days of WSEM consumption compared to placebo consumption (P consumption of 450 mg WSEM was associated with improved joint function, comfort during daily activities, and increased physical activity.

  11. The Effect of Cholesterol on the Long-Range Network of Interactions Established among Sea Anemone Sticholysin II Residues at the Water-Membrane Interface

    Directory of Open Access Journals (Sweden)

    Sara García-Linares

    2015-03-01

    Full Text Available Actinoporins are α-pore forming proteins with therapeutic potential, produced by sea anemones. Sticholysin II (StnII from Stichodactyla helianthus is one of its most extensively characterized members. These proteins remain stably folded in water, but upon interaction with lipid bilayers, they oligomerize to form a pore. This event is triggered by the presence of sphingomyelin (SM, but cholesterol (Chol facilitates pore formation. Membrane attachment and pore formation require changes involving long-distance rearrangements of residues located at the protein-membrane interface. The influence of Chol on membrane recognition, oligomerization, and/or pore formation is now studied using StnII variants, which are characterized in terms of their ability to interact with model membranes in the presence or absence of Chol. The results obtained frame Chol not only as an important partner for SM for functional membrane recognition but also as a molecule which significantly reduces the structural requirements for the mentioned conformational rearrangements to occur. However, given that the DOPC:SM:Chol vesicles employed display phase coexistence and have domain boundaries, the observed effects could be also due to the presence of these different phases on the membrane. In addition, it is also shown that the Arg51 guanidinium group is strictly required for membrane recognition, independently of the presence of Chol.

  12. Storm surge and tidal range energy

    Science.gov (United States)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal