WorldWideScience

Sample records for range grassland plots

  1. How to Create and Manipulate Radar Range-Doppler Plots

    Science.gov (United States)

    2014-12-01

    TYPE OF REPORT Technical Note 7. DOCUMENT DATE December 2014 8. FILE NUMBER 2012/1057198/1 9. TASK NUMBER 07/139 10. TASK SPONSOR DMO/MEWSPO 11. No. OF...not straightforward. But there is some latitude in the definition of a spectrum’s bandwidth, given that technically each plot in Figure 11 has infinite... localised near its peak at −102 m/s. 46 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1386 10.2 Series of Chirped Rectangular Pulses with Doppler Windowing The

  2. Organic manures and grasslands | AW | African Journal of Range ...

    African Journals Online (AJOL)

    On the basis of the nitrogen balance in fertile, highly stocked grassland, the author discusses the improvement of less productive grasslands in lower rainfall areas. Suggested measures for improvement include subsoiling, surface treatment for better water penetration and seedbed preparation. The introduction of legumes ...

  3. Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Württemberg (SW Germany).

    Science.gov (United States)

    Franzaring, Jürgen; Holz, Ingo; Zipperle, Jürgen; Fangmeier, Andreas

    2010-01-01

    Environmental monitoring of pollutants in international or local programmes has enabled authorities to evaluate the success of political measures over time. Strict environmental legislation and the introduction of cleaner technologies have already led to significant improvements of the air and water quality in many countries. Still, the discharge and deposition of anthropogenic long-range transported pollutants often remain above the critical thresholds and long-term targets defined for terrestrial and aquatic ecosystems even in EU countries. In order to determine the spatial and temporal variation of pollutant and nutrient loads in different environmental media a unique ecological response cadastre (Okologisches Wirkungskataster, OKWI) was set up in the Land of Baden-Württemberg (SW Germany) in the mid 1980s. As a part of the program a state-wide bioindicator network was established in 64 forest and 18 permanent grassland ecosystems, in which selected chemical elements were measured over time. Here, we report on the results of these analyses and discuss the general spatio-temporal trends in pollution loads. Sixty-four forest and 18 permanent grassland plots were established in state-owned forest and nature conservation areas of SW Germany representing different landscapes and geologies of the State of Baden-Württemberg. Apart from performing vegetation relevées in marked plots of either the grassland or forest sites, plant samples were collected in intervals of 2 to 3 years following a standardised protocol. To be able to compare the different monitoring sites, four common species were chosen as indicator species in the grasslands. Later on, also bulk grassland samples were taken regardless of the species. In the forests, foliage of the dominant tree species (Fagus sylvatica, Abiea alba or Fraxinus excelsior) was sampled in the crown of marked trees and from the same species in the herb layer. The elements analysed in the plant material were the essential plant

  4. Impact of Reduced Diurnal Temperature Range (DTR) on Grassland Mesocosms

    Science.gov (United States)

    Gregg, J. W.; Phillips, C.; Wilson, J.

    2010-12-01

    There has been considerable variation in the magnitude of change in diel temperature range due to on-going global warming and ecological responses are poorly understood. We compared the effects of +3.5C higher temperatures distributed either symmetrically (SYM, continuously +3.5C) or asymmetrically (ASYM, +5C dawn Tmin ramped to +2C midday Tmax and back) on planted native perennial grassland communities in climate-controlled chambers (14 spp. including grasses/forbs, annuals/perennials, N-fixers/not). Here, we present an overview of NPP, phenology, community composition, and whole ecosystem gas exchange results. Biomass was greater for both SYM and ASYM treatments during the fall and winter in all three years (+28-70%). However, spring growth was truncated for the warmer treatments due to reduced soil moisture which provided several extra weeks growth for AMB treatments to ‘catch-up’ to that of SYM and ASYM. Peak spring production and flowering were shifted 1-3 weeks earlier for SYM and ASYM treatments, resulting in a concomitant decrease in water use efficiency concomitant with increased soil moisture as measured via δ13C and whole ecosystem gas exchange (CER)/ evapotranspiration. CER measurements also showed the shift in timing of production and no difference in annual C assimilation between AMB, SYM and ASYM treatments. However, annual net ecosystem production (NEP) was negative for SYM and ASYM treatments which pointed towards the likely importance of changes in stored SOM. Mortality was 70% greater for SYM and ASYM treatments in the first year and remained greater through the three years of treatment application resulting in a decline in species diversity. Differential mortality was most apparent in the forb functional group with 50% of species affected. Survival of graminoid species was generally higher with no significant differences between treatments, resulting in a shift in functional group density and LAI to favor grass species in both warming

  5. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Directory of Open Access Journals (Sweden)

    David Spencer

    2017-01-01

    Full Text Available Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1 document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population from the 1950s to 2013 using remotely sensed data and (2 assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful

  6. Conservation Reserve Program mitigates grassland loss in the lesser prairie-chicken range of Kansas

    Science.gov (United States)

    Haukos, David A.; Spencer, David; Hagen, Christian A.; Daniels, Melinda D.; Goodin, Doug

    2017-01-01

    Since the beginning of the 20th century, the overall occupied range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has declined by 84% commensurate with population trends. Much of this decline has been attributed to the loss and fragmentation of native grasslands throughout the lesser prairie-chicken range. However, quantification of changes in land cover in the distribution of the lesser prairie-chicken is lacking. Our objectives were to (1) document changes in the areal extent and connectivity of grasslands in the identified lesser prairie-chicken range in Kansas, USA, (>60% of extant lesser prairie-chicken population) from the 1950s to 2013 using remotely sensed data and (2) assess the potential of the Conservation Reserve Program (U.S. Department of Agriculture Program converting cropland to permanent cover; CRP) to mitigate grassland loss. Digital land cover maps were generated on a decadal time step through spectral classification of LANDSAT images and visual analysis of aerial photographs (1950s and 1960s). Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. With the exception of a single regional portion of the range, nearly all of the grassland converted to cropland in the lesser prairie-chicken range of Kansas occurred prior to the 1950s. Prior to the implementation of CRP, the amount of grassland decreased 3.6% between the 1950s and 1985 from 18,455 km2 to 17,788 km2. Since 1985, the overall amount of grassland in the lesser prairie-chicken range has increased 11.9% to 19,898 km2 due to implementation of CRP, although the area of grassland decreased between 1994 and 2013 as CRP contracts were not renewed by landowners. Since 1986 grassland in Kansas became more connected and less fragmented in response to the CRP. While the CRP has been successful in

  7. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    Science.gov (United States)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1977-01-01

    A network of sampling sites throughout the annual grassland region was established to correlate plant growth in stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. Data were analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site, and changing growth conditions.

  8. Effects of land use/land cover on diurnal temperature range in the temperate grassland region of China.

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui; Lu, Xianguo

    2017-01-01

    As a fragile ecological zone, the temperate grassland region of China has experienced dramatic land use/land cover (LULC) changes due to human disturbances. So far, the impacts of LULC change on climate especially the diurnal temperature range (DTR) in this region are still not well understood. Based on the OMR (observation minus reanalysis) method, this study investigated the effects of LULC on DTR in the temperate grassland region of China. Considering the possible uncertainty of the results due to spatial resolution of the reanalysis dataset, two reanalysis datasets with different spatial resolutions were utilized. Results showed that LULC generally contributed to the decline of DTR in the temperate grassland region of China during 1980 to 2005. Due to different warming effects on monthly maximum temperature (Tmax) and minimum temperature (Tmin), grassland and forest tend to slightly decrease monthly DTR (approximately -0.053 to -0.050°C/decade and approximately -0.059 to -0.055°C/decade, respectively), while bare land has a slightly positive effect on DTR (approximately 0.018-0.021°C/decade). By contrast, cropland and urban tend to slightly decrease Tmax, obviously increase Tmin and thus result in a rapid decline of DTR (approximately -0.556 to -0.503°C/decade and approximately -0.617 to -0.612°C/decade, respectively). In the temperate grassland region of China, grassland vegetation changes due to human disturbances can have some effects on DTR mainly by changing the Tmax. Conversion from grassland to cropland could decrease the DTR by slowing down the increase of Tmax. But the conversion from grassland to bare land, as well as the reduction of grassland vegetation cover will increase Tmax, and consequently the DTR. The results suggest that grassland degradation is likely to result in daylight warming and increased DTR in the temperate grassland region of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. NPP Grassland: Central Plains Experimental Range (SGS), USA, 1939-1990, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set records the productivity of a semiarid shortgrass prairie steppe located in the Central Plains Experimental Reserve (CPER)/Pawnee National Grassland in...

  10. Animal production off grassland. | J.E. | African Journal of Range ...

    African Journals Online (AJOL)

    Potential grassland constitutes 37% of South Africa, 45% and 55% of this being sweet and sour respectively. The major factors limiting animal production in the sweetveld are a reduction in the grazing capacity of the veld through veld deterioration, and the fact that the stocking rates applied are in excess of the current ...

  11. Modeling Short-Range Soil Variability and its Potential Use in Variable-Rate Treatment of Experimental Plots

    Directory of Open Access Journals (Sweden)

    A Moameni

    2011-02-01

    Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics

  12. Impacts of diurnal temperature range on ecosystem carbon balance: an experimental test in grassland mesocosms

    Science.gov (United States)

    Phillips, C. L.; Gregg, J. W.; Wilson, J. K.; Pangle, L. A.; Bailey, D.

    2009-12-01

    Although extensive research has determined ecosystem responses to equal increases in day and night temperatures, current temperature increases have generally been asymmetrical, with increases in minimum temperature (Tmin) exceeding increases in maximum temperature (Tmax), or vice versa, depending on location. We conducted an ecosystem warming experiment in a perennial grassland to determine the effects of asymmetrically elevated diel temperature profiles using precision climate-controlled sunlit environmental chambers. Asymmetrically warmed chambers (+5/+2°C, Tmin/Tmax) were compared with symmetrically warmed (+3.5°C continuously) and control chambers (ambient). We tested three alternative hypotheses comparing the carbon balance under symmetric (SYM) and asymmetric (ASYM) warming: H1) SYM ASYM, because warmer nights in the ASYM treatment increase respiration more then photosynthesis, reducing plant growth; H3) SYM = ASYM, due to a combination of effects. Results from the third growing season support H3, that carbon balance is the same under the two elevated diel temperature profiles. During the early part of the growing season, asymmetric warming resulted in higher nighttime respiratory losses than symmetric warming, but these greater loses were compensated by increased early morning photosynthesis. As a result, carbon balance was not different in the two warming treatments at daily time steps. Furthermore, declines in soil moisture over the growing season may have important modulating impacts on the temperature sensitivity of carbon fluxes. As soils dried, carbon fluxes became less sensitive to diel temperature fluctuations, and more similar in the symmetric and asymmetric treatments.

  13. OUTBREAK OF HEMORRHAGIC SEPTICEMIA IN FREE RANGE BUFFALO AND CATTLE GRAZING AT RIVERSIDE GRASSLAND IN MURSHIDABAD DISTRICT, WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Joyjit Mitra

    2013-12-01

    Full Text Available An outbreak of Haemorrhegic Septicaemia among free ranging buffaloes and cattle reared at the natural grassland at the embankment and surrounding area of Bhagirathi river in 3 blocks of Murshidabad district of West Bengal, India was diagnosed by clinical symptoms, postmortem examination, bacteriological study and biochemical tests. Among 154 affected animals (2.16% of total animals at risk buffalo were 85.71% and cattle were 14.28%. A total of 52 affected animals (33.76% died before starting treatment. Among the dead animals, 86.53% was buffalo and 13.46% was cattle. The ailing animals were successfully treated with antibiotic, analgesic and corticosteroid. The epidemic was finally controlled by vaccination, restriction of animal movement and proper disposal of carcasses.

  14. Poaceae Pollen From Southern Brazil: Distinguishing Grasslands (Campos From Forests by Analyzing a Diverse Range of Poaceae Species

    Directory of Open Access Journals (Sweden)

    Jefferson Nunes Radaeski

    2016-12-01

    Full Text Available This aim of this study was to distinguish grasslands from forests in southern Brazil by analyzing Poaceae pollen grains. Through light microscopy analysis, we measured the size of the pollen grain, pore, and annulus from 68 species of Rio Grande do Sul. Measurements were recorded of 10 forest species and 58 grassland species, representing all tribes of the Poaceae in Rio Grande do Sul. We measured the polar, equatorial, pore, and annulus diameter. Results of statistical tests showed that arboreous forest species have larger pollen grain sizes than grassland and herbaceous forest species, and in particular there are strongly significant differences between arboreous and grassland species. Discriminant analysis identified three distinct groups representing each vegetation type. Through the pollen measurements we established three pollen types: larger grains (>46 µm, from the Bambuseae pollen type, medium-sized grains (46–22µm, from herbaceous pollen type, and small grains (<22 µm, from grassland pollen type. The results of our compiled Poaceae pollen dataset may be applied to the fossil pollen of Quaternary sediments.

  15. Plot 3

    DEFF Research Database (Denmark)

    Lund, Inger-Lise; Gjessing, Susanne; Hermansen, Anne-Mette

    Plot 3 er første udgivelse af et alsidigt dansksystem til mellemtrinnet, hvor digitale medier er integreret i den daglige undervisning.......Plot 3 er første udgivelse af et alsidigt dansksystem til mellemtrinnet, hvor digitale medier er integreret i den daglige undervisning....

  16. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 100-600 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in the entire mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  17. Plot showing ATLAS limits on Standard Model Higgs production in the mass range 110-150 GeV

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    The combined upper limit on the Standard Model Higgs boson production cross section divided by the Standard Model expectation as a function of mH is indicated by the solid line. This is a 95% CL limit using the CLs method in in the low mass range. The dotted line shows the median expected limit in the absence of a signal and the green and yellow bands reflect the corresponding 68% and 95% expected

  18. Plot 4

    DEFF Research Database (Denmark)

    Lund, Inger-Lise; Hermansen, Anne-Mette; Ferdinand, Trine

    Danskfaglig vejledning informerer om de tanker, der ligger til grund for Plot 4, og beskriver danskfaget ud fra nyere forskning inden for fagets mange delområder. Kapitelvejledning introducerer bogens tekster, forklarer hensigten med kapitlernes opgaver, giver forslag til undervisningen og brugen...

  19. Plot 5

    DEFF Research Database (Denmark)

    Lund, Inger-Lise; Hermansen, Anne-Mette; Ferdinand, Trine

    Danskfaglig vejledning informerer om de tanker, der ligger til grund for Plot 5, og beskriver danskfaget ud fra nyere forskning inden for fagets mange delområder. Kapitelvejledning introducerer bogens tekster, forklarer hensigten med kapitlernes opgaver, giver forslag til undervisningen og brugen...

  20. Patterns and drivers of phytodiversity in steppe grasslands of Central Podolia (Ukraine)

    DEFF Research Database (Denmark)

    Kuzemko, Anna; Steinbauer, Manuel; Becker, Thomas

    2016-01-01

    We asked: (i) Which environmental factors determine the level of α-diversity at several scales and β-diversity in steppic grasslands? (ii) How do the effects of environmental factors on α- and β-diversity vary between the different taxonomic groups (vascular plants, bryophytes, lichens)? We sampled...... nested-plot series ranging from 0.0001 to 100 m2 and additional 10-m2 plots, covering different vegetation types and management regimes in steppes and semi-natural dry grasslands of Central Podolia (Ukraine). We recorded all terricolous taxa and used topographic, soil, land-use and climatic variables...... intermediate compared to those known from similar grasslands throughout the Palaearctic, but for 1 cm2 we found seven species of vascular plants, a new world record. Heat index was the most important factor for vascular plants and bryophytes (negative relation), while lichen diversity depended mainly on stone...

  1. Fire And Dynamics Of Granivory On A California Grasslands Forb

    Energy Technology Data Exchange (ETDEWEB)

    Espeland, E; Carlsen, T; Macqueen, D

    2003-10-02

    This study examines the effects of burning and granivory on the reproductive success of the rare plant Amsinckia grandiflora (Boraginaceae). Fire is often used in California grasslands as a means of exotic species control, but the indirect effects of these controls on the reproductive ecology of a native plants are rarely assessed. The interaction of fire with granivory of A. grandiflora seeds was examined in California grasslands over five years (1998-2002). In 1998 and 1999, both burned and unburned plots had bird-exclusion (netted) and no-exclusion (open) treatments. Predation rates were high (51-99%) and final predation rates did not differ among treatments. In 2000, granivory rates in the unburned, open plots were lower than in previous years (14%), and rodent trapping yielded only a single animal. Low granivory rates were observed in 2001 for unburned, open plots (47%). In 2001, burned/open plots experienced significantly more granivory (87%) than either burned/netted plots (37%) or unburned/open plots (47%). In 2002, every seed was taken from burned, open plots. Granivory was highly variable, ranging from 4% to 100% per plot over a three-week period. Nearly all plots were discovered (>10% predation) by granivores in all trials in all years. When data from all treatments were combined, significant differences in granivory rates occurred among years, indicating stronger inter-year effects than within-year effects due to burning or bird exclusion. Fire affects granivory when overall predation rates are low, but when predation levels are high (as they were in 1998 and 1999), fire may not affect granivory occurring within the same year. Models extending seed survivorship through the dry summer indicate that most seeds are eaten, even when granivory rates are low.

  2. Runoff and soil erosion of field plots in a subtropical mountainous region of China

    Science.gov (United States)

    Fang, N. F.; Wang, L.; Shi, Z. H.

    2017-09-01

    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  3. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  4. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Frank, D.A. [Syracuse Univ., NY (United States). Biological Research Labs.; Groffman, P.M. [Inst. of Ecosystem Studies, Millbrook, NY (United States)

    1998-10-01

    Within large grassland ecosystems, climatic and topographic gradients are considered the primary controls of soil processes. Ungulates also can influence soil dynamics; however the relative contribution of large herbivores to controlling grassland soil processes remains largely unknown. In this study, the authors compared the effects of native migratory ungulates and variable site (landscape) conditions, caused by combined climatic and topographic variability, on grassland of the northern winter range of Yellowstone National Park by determining soil C and N dynamics inside and outside 33--37 yr exclosures at seven diverse sites. Sites included hilltop, slope, and slope bottom positions across a climatic gradient and represented among the driest and wettest grasslands on the northern winter range. The authors performed two experiments: (1) a 12-mo in situ net N mineralization study and (2) a long-term (62-wk) laboratory incubation to measure potential N mineralization and microbial respiration. Results from the in situ experiment indicated that average net N mineralization among grazed plots was double that of fenced, ungrazed plots (1.9 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}). Mean grazer enhancement of net N mineralization across sites (1.9 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}), approached the maximum difference in net N mineralization among fenced plots (2.2 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}), i.e., the greatest landscape effect observed. Furthermore, ungulates substantially increased between-site variation in mineralization; grazed grassland, 1 SD = 2.2 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}, fenced grassland, 1 SD = 0.85 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}.

  5. Energy potential of biomass from conservation grasslands in Minnesota, USA.

    Science.gov (United States)

    Jungers, Jacob M; Fargione, Joseph E; Sheaffer, Craig C; Wyse, Donald L; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha(-1). May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg(-1) and the concentration of plant N was 7.1 g kg(-1), both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic

  6. Grazing depletes forb species diversity in the mesic grasslands of ...

    African Journals Online (AJOL)

    Forbs constitute over 80% of the species richness of mesic grassland but their response to grazing is largely unknown. The influence of grazing on the forb composition, richness and diversity of two species-rich grasslands in the coastal hinterland and midlands of KwaZulu-Natal, South Africa was examined in plots subject ...

  7. Multiple hypothesis clustering in radar plot extraction

    NARCIS (Netherlands)

    Huizing, A.G.; Theil, A.; Dorp, Ph. van; Ligthart, L.P.

    1995-01-01

    False plots and plots with inaccurate range and Doppler estimates may severely degrade the performance of tracking algorithms in radar systems. This paper describes how a multiple hypothesis clustering technique can be applied to mitigate the problems involved in plot extraction. The measures of

  8. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits...... in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites...... of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands...

  9. Fine-scale species associations in alvar limestone grasslands

    NARCIS (Netherlands)

    Diekmann, M; Dupre, C; van der Maarel, E

    2004-01-01

    To examine the importance of positive or negative interactions of plant species on a micro-scale, species associations were studied in 38 1 m(2) - plots in alvar limestone grasslands on Oland, Sweden. Each plot was assumed to be homogeneous as to its environmental conditions and spatial distribution

  10. Prevention of natural grassland invasion by Eragrostis plana Nees using ecological management practices

    Directory of Open Access Journals (Sweden)

    Telmo Focht

    2012-08-01

    Full Text Available The objective of this research was to evaluate the effects of different types of disturbance on the ability of the natural grassland to avoid the invasion of Eragrostis plana Nees (South African lovegrass. The experiment was carried out in Dom Pedrito, Rio Grande do Sul, Brazil, in an area free of South African lovegrass, from Feb. 2004 to Apr. 2007. The treatments were: 1 grassland management regimes: exclusion; low grazing intensity (rotational grazing, ±10 cm; and high grazing intensity (continuous grazing, ±5 cm; 2 initial levels of soil disturbance: high grassland, ±10 cm; low grassland, ±5 cm height; and low grassland with scarified soil; 3 fertilization regimes: without fertilization; phosphorus; and nitrogen. The experimental design was a split-split-plot type in complete blocks, with three replicates. Three winter cultivated species - Trefoil repens L., Lotus corniculatus L., Lolium multiflorum Lam. and South African lovegrass -were sown in 54 split-splitplots (split-plots: low grassland, and low grassland with scarified soil. The other 27 split-split-plots (split-plots: high grassland were sown only with South African lovegrass. The grassland height, plant number of South African lovegrass, grassland dry mass and photosynthetic active radiation intercepted (FARint at the soil level were recorded. The fertilization regimes did not influence the South African lovegrass plant number. The initial levels of soil disturbance and grassland management regimes influenced the invasion of South African lovegrass. The invasion was favored by the lower grassland height and lower forage mass, higher intensity of the soil disturbance, and higher FARint due to the continuous grazing. On the contrary, higher grassland height, higher forage mass, lower soil disturbance and lower FARint, associated with rotational grazing or exclusion, showed higher potential to control the invasion of South African lovegrass in the natural grassland.

  11. GlobPlot

    DEFF Research Database (Denmark)

    Linding, Rune; Russell, Robert B; Neduva, Victor

    2003-01-01

    are important for protein function. We present here a new tool for discovery of such unstructured, or disordered regions within proteins. GlobPlot (http://globplot.embl.de) is a web service that allows the user to plot the tendency within the query protein for order/globularity and disorder. We show examples...... with known proteins where it successfully identifies inter-domain segments containing linear motifs, and also apparently ordered regions that do not contain any recognised domain. GlobPlot may be useful in domain hunting efforts. The plots indicate that instances of known domains may often contain additional...... N- or C-terminal segments that appear ordered. Thus GlobPlot may be of use in the design of constructs corresponding to globular proteins, as needed for many biochemical studies, particularly structural biology. GlobPlot has a pipeline interface--GlobPipe--for the advanced user to do whole proteome...

  12. Difference and ratio plots

    DEFF Research Database (Denmark)

    Svendsen, Anders Jørgen; Holmskov, U; Bro, Peter

    1995-01-01

    hitherto unnoted differences between controls and patients with either rheumatoid arthritis or systemic lupus erythematosus. For this we use simple, but unconventional, graphic representations of the data, based on difference plots and ratio plots. Differences between patients with Burkitt's lymphoma...... and systemic lupus erythematosus from another previously published study (Macanovic, M. and Lachmann, P.J. (1979) Clin. Exp. Immunol. 38, 274) are also represented using ratio plots. Our observations indicate that analysis by regression analysis may often be misleading....

  13. The Effects of Land-Use Change from Grassland to Miscanthus x giganteus on Soil N2O Emissions

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-09-01

    Full Text Available A one year field trial was carried out on three adjacent unfertilised plots; an 18 year old grassland, a 14 year old established Miscanthus crop, and a 7 month old newly planted Miscanthus crop. Measurements of N2O, soil temperature, water filled pore space (WFPS, and inorganic nitrogen concentrations, were made every one to two weeks. Soil temperature, WFPS and NO3− and NH4+ concentrations were all found to be significantly affected by land use. Temporal crop effects were also observed in soil inorganic nitrogen dynamics, due in part to C4 litter incorporation into the soil under Miscanthus. Nonetheless, soil N2O fluxes were not significantly affected by land use. Cumulative yearly N2O fluxes were relatively low, 216 ± 163, 613 ± 294, and 377 ± 132 g·N·ha−1·yr−1 from the grassland, newly planted Miscanthus, and established Miscanthus plots respectively, and fell within the range commonly observed for unfertilised grasslands dominated by perennial ryegrass (Lolium perenne. Higher mean cumulative fluxes were measured in the newly planted Miscanthus, which may be linked to a possible unobserved increase immediately after establishment. However, these differences were not statistically significant. Based on the results of this experiment, land-use change from grassland to Miscanthus will have a neutral impact on medium to long-term N2O emissions.

  14. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands.

    Science.gov (United States)

    Soussana, J F; Tallec, T; Blanfort, V

    2010-03-01

    Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that

  15. Effects of leafy spurge infestation on grassland birds

    Science.gov (United States)

    Scheiman, D.M.; Bollinger, E.K.; Johnson, D.H.

    2003-01-01

    Grassland bird populations are declining. Invasive plant species may be contributing to these declines by altering habitat quality. However, the effects of invasive plants on grassland birds are largely unknown. Leafy spurge (Euphorbia esula) is an exotic, invasive weed in the northern Great Plains. We examined the effects of leafy spurge infestation on densities of breeding birds, nest-site selection, and nest success in grasslands on the Sheyenne National Grassland (SNG), North Dakota, USA, 1999-2000. We categorized spurge-infested grasslands into 3 groups (low, medium, high), based on the area covered by spurge patches. We surveyed 75 100-m-radius circular points (25 in each group), and searched for nests in 6 16-ha plots (2 in each group). Grasshopper sparrow (Ammodramus savannarum) and savannah sparrow (Passerculus sandwichensis) densities were lower on high-spurge points than on low- and medium-spurge points. Bobolink (Dolichonyx oryzivorus) and western meadowlark (Sturnella neglecta) densities were not significantly different among spurge cover groups. Spurge cover did not appear to be an important factor in nest-site selection. However, western meadowlark nest success was positively associated with spurge cover. Vegetation structure is an important indicator of habitat quality and resource availability for grassland birds. Changes in vegetation structure caused by introduced plant species, such as spurge, can alter resource availability and hence affect bird community composition. Managers of spurge-infested grasslands should continue current spurge control measures to help prevent further declines in grassland habitat quality and grassland bird populations.

  16. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

    Science.gov (United States)

    Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

    2015-01-01

    Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  17. Distributed plot-making

    DEFF Research Database (Denmark)

    Jensen, Lotte Groth; Bossen, Claus

    2016-01-01

    different socio-technical systems (paper-based and electronic patient records). Drawing on the theory of distributed cognition and narrative theory, primarily inspired by the work done within health care by Cheryl Mattingly, we propose that the creation of overview may be conceptualised as ‘distributed plot......-making’. Distributed cognition focuses on the role of artefacts, humans and their interaction in information processing, while narrative theory focuses on how humans create narratives through the plot construction. Hence, the concept of distributed plot-making highlights the distribution of information processing...... between different social actors and artefacts, as well as the filtering, sorting and ordering of such information into a narrative that is made coherent by a plot. The analysis shows that the characteristics of paper-based and electronic patient records support or obstruct the creation of overview in both...

  18. BoxPlot++

    OpenAIRE

    Azmeh, Zeina; Hamoui, Fady; Huchard, Marianne

    2011-01-01

    We propose the BoxPlot++ as an extension of Tukey's boxplot. We improve the resulting data values distribution by removing the repeated values and by calculating distances between the points and the nearest median.

  19. Multiple plots in R

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon

    2012-01-01

    In this chapter I will investigate how to combine multiple plots into a single. The scenario is a dataset of a series of measurements, on three samples in three situations. There are many ways we can display this, e.g. 3d graphs or faceting. 3d graphs are not good for displaying static data so we...... will not go there. Faceting is strictly speaking for plotting all variable / classes against each other....

  20. Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Thomas Möckel

    2014-08-01

    Full Text Available Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of Öland (Sweden and the functional properties of the plant species recorded in the plots were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg indicator values. Plots were assigned to three different grassland age-classes, representing 5–15, 16–50 and >50 years of grazing management. Partial least squares discriminant analysis models were used to compare classifications based on aerial hyperspectral data with the age-class classification. The remote sensing data successfully classified the plots into age-classes: the overall classification accuracy was higher for a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77 than one using the full set of wavebands (77%, Kappa statistic value = 0.65. Our results show that nutrient availability and grass cover differences between grassland age-classes are detectable by spectral imaging. These techniques may potentially be used for mapping the spatial distribution of grassland habitats at different successional stages.

  1. Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales

    Science.gov (United States)

    de Blécourt, Marleen; Corre, Marife D.; Paudel, Ekananda; Harrison, Rhett D.; Brumme, Rainer; Veldkamp, Edzo

    2017-08-01

    Presently, the lack of data on soil organic carbon (SOC) stocks in relation to land-use types and biophysical characteristics prevents reliable estimates of ecosystem carbon stocks in montane landscapes of mainland SE Asia. Our study, conducted in a 10 000 ha landscape in Xishuangbanna, SW China, aimed at assessing the spatial variability in SOC concentrations and stocks, as well as the relationships of SOC with land-use types, soil properties, vegetation characteristics and topographical attributes at three spatial scales: (1) land-use types within a landscape (10 000 ha), (2) sampling plots (1 ha) nested within land-use types (plot distances ranging between 0.5 and 12 km), and (3) subplots (10 m radius) nested within sampling plots. We sampled 27 one-hectare plots - 10 plots in mature forests, 11 plots in regenerating or highly disturbed forests, and 6 plots in open land including tea plantations and grasslands. We used a sampling design with a hierarchical structure. The landscape was first classified according to land-use types. Within each land-use type, sampling plots were randomly selected, and within each plot we sampled within nine subplots. SOC concentrations and stocks did not differ significantly across the four land-use types. However, within the open-land category, SOC concentrations and stocks in grasslands were higher than in tea plantations (P soil properties, vegetation characteristics, and topographical attributes varied across spatial scales. Variability in SOC within plots was determined by litter layer carbon stocks (P tree basal area (P effects on SOC need an appropriate sampling design reflecting the controlling factors of SOC so that land-use effects will not be masked by the variability between and within sampling plots.

  2. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen

    2012-01-01

    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor....... There was a tendency towards increased biomass in the large root fraction with increasing herb content. The experiment indicated increased CO2 evolution following cultivation of multispecies grasslands...

  3. Density Distribution Sunflower Plots

    Directory of Open Access Journals (Sweden)

    William D. Dupont

    2003-01-01

    Full Text Available Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional scatter plot. Each bin with from l to d observations contains a light sunflower. Other bins contain a dark sunflower. In a light sunflower each petal represents one observation. In a dark sunflower, each petal represents k observations. (A dark sunflower with p petals represents between /2-pk k and /2+pk k observations. The user can control the sizes and colors of the sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers, plots can be obtained that give both the overall sense of the data density distribution as well as the number of data points in any given region. The use of this graphic is illustrated with data from the Framingham Heart Study. A documented Stata program, called sunflower, is available to draw these graphs. It can be downloaded from the Statistical Software Components archive at http://ideas.repec.org/c/boc/bocode/s430201.html . (Journal of Statistical Software 2003; 8 (3: 1-5. Posted at http://www.jstatsoft.org/index.php?vol=8 .

  4. Fifth International Symposium on Recurrence Plot

    CERN Document Server

    Riley, Michael; Giuliani, Alessandro; Webber, Charles; Jr, Jr; Translational Recurrences : From Mathematical Theory to Real-World Applications

    2014-01-01

    This book features 13 papers presented at the Fifth International Symposium on Recurrence Plots, held August 2013 in Chicago, IL. It examines recent applications and developments in recurrence plots and recurrence quantifi cation analysis (RQA) with special emphasis on biological and cognitive systems and the analysis of coupled systems using cross-recurrence methods. Readers will discover new applications and insights into a range of systems provided by recurrence plot analysis and new theoretical and mathematical developments in recurrence plots. Recurrence plot based analysis is a powerful tool that operates on real-world complex systems that are nonlinear, non-stationary, noisy, of any statistical distribution, free of any particular model type, and not particularly long. Quantitative analyses promote the detection of system state changes, synchronized dynamical regimes, or classifi cation of system states. Th e book will be of interest to an interdisciplinary audience of recurrence plot users and researc...

  5. Secondary succession after fire in Imperata grasslands of East Kalimantan Indonesia

    NARCIS (Netherlands)

    Yassir, I.; Kamp, van der J.; Buurman, P.

    2010-01-01

    Regeneration of grassland areas is becoming increasingly important, not only to create new secondary forest and recover the original biodiversity, but also recover for agriculture. We studied an early succession in Imperata grasslands in East Kalimantan, Indonesia, using plots that last burned 3

  6. Estimation and Prediction of Grassland Cover in Western Mongolia Using MODIS-Derived Vegetation Indices

    National Research Council Canada - National Science Library

    Mikhail Yu Paltsyn; James P Gibbs; Liza V Iegorova; Giorgos Mountrakis

    2017-01-01

    ...) sensor, for estimating grassland cover measured at ground level on ninety-two 1 x 1 km blocks distributed from semidesert to high montane grasslands in the Sailugem Range of western Mongolia, where...

  7. Southwestern Grassland Ecology

    Science.gov (United States)

    Paulette L. Ford; Deborah U. Potter; Rosemary Pendleton; Burton Pendleton; Wayne A. Robbie; Gerald J. Gottfried

    2004-01-01

    This chapter provides a brief overview, and selected in-depth coverage, of the factors and processes that have formed, and continue to shape, our Southwestern grasslands. In general, this chapter looks at how distributions of grasslands are regulated by soils and climate, and modified by disturbance (natural and/or anthropogenic). The attendant ecological components of...

  8. Plot Description (PD)

    Science.gov (United States)

    Robert E. Keane

    2006-01-01

    The Plot Description (PD) form is used to describe general characteristics of the FIREMON macroplot to provide ecological context for data analyses. The PD data characterize the topographical setting, geographic reference point, general plant composition and cover, ground cover, fuels, and soils information. This method provides the general ecological data that can be...

  9. Enhancing the diversity of breeding invertebrates within field margins of intensively managed grassland: Effects of alternative management practices.

    Science.gov (United States)

    Fritch, Rochelle A; Sheridan, Helen; Finn, John A; McCormack, Stephen; Ó hUallacháin, Daire

    2017-11-01

    Severe declines in biodiversity have been well documented for many taxonomic groups due to intensification of agricultural practices. Establishment and appropriate management of arable field margins can improve the diversity and abundance of invertebrate groups; however, there is much less research on field margins within grassland systems. Three grassland field margin treatments (fencing off the existing vegetation "fenced"; fencing with rotavation and natural regeneration "rotavated" and; fencing with rotavation and seeding "seeded") were compared to a grazed control in the adjacent intensively managed pasture. Invertebrates were sampled using emergence traps to investigate species breeding and overwintering within the margins. Using a manipulation experiment, we tested whether the removal of grazing pressure and nutrient inputs would increase the abundance and richness of breeding invertebrates within grassland field margins. We also tested whether field margin establishment treatments, with their different vegetation communities, would change the abundance and richness of breeding invertebrates in the field margins. Exclusion of grazing and nutrient inputs led to increased abundance and richness in nearly all invertebrate groups that we sampled. However, there were more complex effects of field margin establishment treatment on the abundance and richness of invertebrate taxa. Each of the three establishment treatments supported a distinct invertebrate community. The removal of grazing from grassland field margins provided a greater range of overwintering/breeding habitat for invertebrates. We demonstrate the capacity of field margin establishment to increase the abundance and richness in nearly all invertebrate groups in study plots that were located on previously more depauperate areas of intensively managed grassland. These results from grassland field margins provide evidence to support practical actions that can inform Greening (Pillar 1) and agri

  10. Observations on north-west European limestone grassland communities. V, a. An experimental approach to the study of species diversity and above-ground biomass in chalk grassland

    NARCIS (Netherlands)

    Willems, J.H.

    1980-01-01

    In 1971 a number of permanent plots were established in an abandoned Dutch calcareous grassland, then belonging to the association Arrhenatheretum elatioris with some elements of Mesobrometum erecti and Poo-Lolietum. A part of the plots was treated with fertilizer of varying N.P.K.-content. Another

  11. Distributed plot-making

    DEFF Research Database (Denmark)

    Jensen, Lotte Groth; Bossen, Claus

    2016-01-01

    similar and distinct ways. In the light of the current move towards electronic patient records, we explore the ways in which the benefits of paper records may be carried over into the electronic patient record as well as the ways in which the possibilities afforded by digital artefacts may be exploited...... different socio-technical systems (paper-based and electronic patient records). Drawing on the theory of distributed cognition and narrative theory, primarily inspired by the work done within health care by Cheryl Mattingly, we propose that the creation of overview may be conceptualised as ‘distributed plot...... between different social actors and artefacts, as well as the filtering, sorting and ordering of such information into a narrative that is made coherent by a plot. The analysis shows that the characteristics of paper-based and electronic patient records support or obstruct the creation of overview in both...

  12. Plot til lyst

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    Den velfungerende krimi faciliterer denne dobbelte plotlæsning ved at muliggøre en særlig form for legende og udforskende interaktion mellem læser og plot: Ved at lægge spor ud og holde tolkningsmuligheder og løsningsmuligheder åbne får vi mulighed for at påtage os og udføre opklaringsarbejdet side......, der inviterer os med ind i selve handlingens rum og forløb og giver os forskellige handlingsmuligheder i forhold til disse. I bogen omtales denne særlige form for plot for forlystelsesplot med henvisning til forlystelsesparken og den særlige form for interaktiv fortælleform, som vi finder der: en...

  13. The Half-Half Plot

    NARCIS (Netherlands)

    Einmahl, J.H.J.; Gantner, M.

    2009-01-01

    The Half-Half (HH) plot is a new graphical method to investigate qualitatively the shape of a regression curve. The empirical HH-plot counts observations in the lower and upper quarter of a strip that moves horizontally over the scatter plot. The plot displays jumps clearly and reveals further

  14. Grassland Management Plan [Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This grassland management plan is for Bear River Migratory Bird Refuge in Utah. It includes a summary of the refuge, special considerations for endangered species,...

  15. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands.

    Science.gov (United States)

    Wen, Ding; He, Nianpeng; Zhang, Jinjing

    2016-01-01

    Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250-2000 μm], microaggregates [53-250 μm], and mineral fraction [soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P soil aggregates (F = 371.3, P soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China.

  16. matplotlib plotting cookbook

    CERN Document Server

    Devert, Alexandre

    2014-01-01

    This book follows a cookbook style approach that puts orthogonal and non-redundant recipes in your hands. Rather than rehashing the user manual, the explanations expose the underlying logic behind Matplotlib. If you are an engineer or scientist who wants to create great visualizations with Python, rather than yet another specialized language, this is the book for you. While there are several very competent plotting packages, Matplotlib is ""just"" a Python module. Thus, if you know some Python already, you will feel at home from the first steps on. In case you are an application writer, you wo

  17. Plotting Gothic: A Paradox

    Directory of Open Access Journals (Sweden)

    Stephen Murray

    2014-06-01

    Full Text Available The paradox of the title is that while most historians of medieval architecture agree that a combination of geometric and arithmetic methods was generally used to lay out a medieval church, there has been little consensus on the specifics of the process in relation to the design of any particular edifice. I begin by identifying four premises which underlie the debate. I then ask whether the new technologies — laser scanning and computer assisted design/drafting applications — can help. A case study uses newly generated point cloud data from a laser scan of the choir of Beauvais Cathedral. Finally, the notion of ‘plotting’ introduces essential sociological, anthropological and rhetorical dimensions. In the spirit of Roland Barthes ('Le plaisir du texte' and Peter Brooks ('Reading for the Plot', we can understand the urgency with which the architectural historian may seek to unscramble the hidden codes of the building as compulsive ‘reading for the plot’.

  18. The half-half plot

    NARCIS (Netherlands)

    Einmahl, J.H.J.; Gantner, M.

    2012-01-01

    The Half-Half (HH) plot is a new graphical method to investigate qualitatively the shape of a regression curve. The empirical HH-plot counts observations in the lower and upper quarter of a strip that moves horizontally over the scatterplot. The plot displays jumps clearly and reveals further

  19. Effect of Sheep Urine Deposition on the Bacterial Community Structure in an Acidic Upland Grassland Soil†

    Science.gov (United States)

    Rooney, Deirdre; Kennedy, Nabla; Deering, Louise; Gleeson, Deirdre; Clipson, Nicholas

    2006-01-01

    The effect of the addition of synthetic sheep urine (SSU) and plant species on the bacterial community composition of upland acidic grasslands was studied using a microcosm approach. Low, medium, and high concentrations of SSU were applied to pots containing plant species typical of both unimproved (Agrostis capillaris) and agriculturally improved (Lolium perenne) grasslands, and harvests were carried out 10 days and 50 days after the addition of SSU. SSU application significantly increased both soil pH (P < 0.005), with pH values ranging from pH 5.4 (zero SSU) to pH 6.4 (high SSU), and microbial activity (P < 0.005), with treatment with medium and high levels of SSU displaying significantly higher microbial activity (triphenylformazan dehydrogenase activity) than treatment of soil with zero or low concentrations of SSU. Microbial biomass, however, was not significantly altered by any of the SSU applications. Plant species alone had no effect on microbial biomass or activity. Bacterial community structure was profiled using bacterial automated ribosomal intergenic spacer analysis. Multidimensional scaling plots indicated that applications of high concentrations of SSU significantly altered the bacterial community composition in the presence of plant species but at different times: 10 days after application of high concentrations of SSU, the bacterial community composition of L. perenne-planted soils differed significantly from those of any other soils, whereas in the case of A. capillaris-planted soils, the bacterial community composition was different 50 days after treatment with high concentrations of SSU. Canonical correspondence analysis also highlighted the importance of interactions between SSU addition, plant species, and time in the bacterial community structure. This study has shown that the response of plants and bacterial communities to sheep urine deposition in grasslands is dependent on both the grass species present and the concentration of SSU

  20. Two-dimensional box plot

    OpenAIRE

    Phattrawan Tongkumchum

    2005-01-01

    In this paper we propose a two-dimensional box plot, a simple bivariate extension of the box plot and the scatter plot. This plot comprises a pair of trapeziums oriented in the direction of a fitted straight line, with symbols denoting extreme values. The choice for the fitted straight resistant line showing the relationship between the two variables is Tukey’s resistance line. The main components of the plot are an inner box containing 50% of the projection points of the observations on the ...

  1. BPMO HISTOS plots

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.; Williams, S.

    1983-08-23

    Early experience (1981-1982) with jittery position measurements in the CID (Collider Injector Development) and Sector 1 BPM (beam position monitor) system led us to ask whether the source of the observed noise was in the beam or in the BPM electronics. Prior to July, 1983, the signal from each BPM strip was individually processed. It occurred to us that the signal from each strip, when normalized by the sum of the signals from the two adjacent strips, made possible two independent measurements of the beam position in the plane containing the strip. When a single parameter is measured twice, one can look at the correlation of the measurements over a statistical sample of events. This will allow one to distinguish real parameter variations from measurement errors. In this case, a strong correlation in the two measurements from a given strip indicates beam jitter, whereas a lack of correlation indicates either that there is beam jitter in the normalizing plane or that the processing electronics is noisy in at least one channel. The five possible cases are illustrated. These plots are interpreted.

  2. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size.

    Science.gov (United States)

    Zuckerberg, Benjamin; Ribic, Christine A; McCauley, Lisa A

    2018-02-06

    Grassland birds are declining faster than any other guild of bird species across North America. Shrinking ranges and population declines have been attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land-use practices that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have experienced disproportionally faster rates of climate change compared to other terrestrial biomes. Grassland bird distributions and abundances often correlate with gradients in climate, but few studies have explored the consequences of weather on the demography of multiple grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates for a dozen grassland bird species comprising 21,000 nests from 81 individual studies across North America. We found that higher amounts of precipitation in the preceding year (bioyear) were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. In terms of temperature, extreme cold and hot springs were associated with lower rates of nesting success. Notably, the direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of bioyear precipitation on nesting success were strongest for birds occupying smaller grassland patches, with little effect in larger grasslands. Conversely, warmer spring temperatures reduced nesting success in small grassland patches, but increased nesting success in the larger grasslands. Mechanisms underlying these differences may be patch-size induced variation in microclimates and predator activity. While the exact cause is not clear, large grassland patches, the most common metric of grassland conservation, appears to moderate the consequences of weather on grassland bird demography and could

  3. Greenhouse gas fluxes over Central European grasslands

    Science.gov (United States)

    Hörtnagl, L. J.; Bahn, M.; Barthel, M.; Eugster, W.; Klumpp, K.; Ladreiter-Knauss, T.; Merbold, L.; Wohlfahrt, G.; Buchmann, N. C.

    2014-12-01

    The uptake of carbon dioxide (CO2) by grassland ecosystems can be offset by the concurrent emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in terms of CO2-equivalents. As a consequence, CH4 and N2O emissions can contribute to an increase of the global warming potential (GWP) of the respective study site. For a full assessment of the climatic impact of grassland ecosystems it is therefore necessary to quantify fluxes of these two compounds in combination with CO2 exchange. Since agricultural management practices and land use change at a given site can have a strong impact on annual CH4 and N2O budgets, both compounds are a frequent topic of discussion when planning GHG mitigation strategies.Here we present an overview of the GHG exchange of eight managed Central European grassland sites along a gradient of elevation and land use intensity. Fluxes of the three major GHGs CO2, CH4 and N2O were quantified using the eddy covariance or chamber technique. The grasslands differed with regard to the amount of fertilizer input, frequency of cuts and grazing duration and intensity, ranging from more intensively managed to very lightly managed and abandoned grassland. In this presentation we focus on time periods when measurements of all three compounds were available for all sites. We investigate common features among observed CH4 and N2O exchange patterns at the different grassland sites in relation to management activities and concurrently measured biotic / abiotic parameters. In addition, we evaluate the impact of CH4 and N2O fluxes on the annual GWP of field sites for which long-term measurements are available.

  4. Grassland: a global resource

    National Research Council Canada - National Science Library

    McGilloway, D. A

    2005-01-01

    ... and discussions on more specialised topics of worldwide significance. Grasslands: a Global Resource draws together contributions from leading researchers, educators, policy makers and farmers from around the world, to espouse current knowledge and understanding of this complex ecosystem, the ways in which it can be enhanced and utilised an...

  5. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

    Directory of Open Access Journals (Sweden)

    Rowan D. Buhrmann

    2016-11-01

    Full Text Available Background: Tropical and subtropical Africa is predicted to experience a rise in temperature. The effects of rising temperatures on temperate grasslands have been studied using open-top chambers (OTCs but reports for tropical/subtropical grasslands are scarce. This study used OTCs to investigate the effects of elevated temperatures on a threatened subtropical grassland type, namely KwaZulu-Natal Sandstone Sourveld (KZNSS.Objectives: To assess the effects of OTCs on selected abiotic parameters and plant productivity within KZNSS.Methods: Five OTC and control plots were randomly distributed at the same altitude within a patch of KZNSS. Air and soil temperature, relative humidity (RH, soil moisture content and light intensity were monitored in all plots in spring, summer, autumn and winter. Biomass production and plant density were measured in each season, for each life form (graminoid, forb and shrub, separately and combined.Results: The OTCs resulted in a rise in average, maximum and minimum day and night, air and soil temperatures. This increase, the degree of which differed across seasons, was accompanied by a decline in RH and soil moisture content. Elevated temperatures led to a significant increase in combined, graminoid and shrub above-ground productivity (AGP and a decrease in forb density, but in certain seasons only. Below-ground biomass production was unaffected by elevated temperatures.Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

  6. Exacerbated degradation and desertification of grassland in Central Asia

    Science.gov (United States)

    Zhang, G.; Xiao, X.; Biradar, C. M.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R. J.

    2016-12-01

    Grassland desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies generally did not separate the two components and analyzed them based on time series vegetation indices, which however cannot provide a clear and comprehensive picture for desertification. Here we proposed a desertification zone classification-based grassland degradation strategy to detect the grassland desertification process in Central Asia. First, annual spatially explicit maps of grasslands and deserts were generated to track the conversion between grasslands and deserts. The results showed that 13 % of grasslands were converted to deserts from 2000 to 2014, with an increasing desertification trend northward in the latitude range of 43-48°N. Second, a fragile and unstable Transitional zone was identified in southern Kazakhstan based on desert frequency maps. Third, gradual vegetation dynamics during the thermal growing season (EVITGS) were investigated using linear regression and Mann-Kendall approaches. The results indicated that grasslands generally experienced widespread degradation in Central Asia, with an additional hotspot identified in the northern Kazakhstan. Finally, attribution analyses of desertification were conducted by correlating vegetation dynamics with three different drought indices (Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), and Drought Severity Index (DSI)), precipitation, and temperature, and showed that grassland desertification was exacerbated by droughts, and persistent drought was the main factor for grassland desertification in Central Asia. This study provided essential information for taking practical actions to prevent the further desertification and targeting right spots for better intervention to combat the land degradation in the region.

  7. Traditional cattle grazing in a mosaic alkali landscape: effects on grassland biodiversity along a moisture gradient.

    Directory of Open Access Journals (Sweden)

    Péter Török

    Full Text Available Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i How does cattle grazing affect species composition and diversity of the grasslands? (ii What are the effects of grazing on short-lived and perennial noxious species? (iii Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands was sampled from 2006-2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable

  8. Drought Experiment of a Mongolian Grassland Ecosystem

    Science.gov (United States)

    Shinoda, M.; Tsunekawa, A.; Nemoto, M.; Nachinshonhor, G. U.; Nakano, T.; Tamura, K.; Asano, M.; Erdenetsetseg, D.

    2006-12-01

    Recent large-scale climate change including global warming has likely been manifested as frequent and/or intensive drought occurrences in inland, arid Asia such as Mongolia. In order to investigate the response of a Mongolian grassland ecosystem to such a drought, an artificial drought experiment was conducted at Bayan Unjuul (105.95E, 47.04N) in the Mongolian typical steppe region during the growing season of 2005. The climatological (1995-2004) annul precipitation is 172.9mm, concentrated on the summer months of May- August, while the annual mean temperature is 0.1degC, with soil freezing during the winter. This study site is codominated by perennial grasses such as Stipa krylovii, Agropyron cristatum, and Cleistogenes squarrosa and annual forbs such as Artemisia adamsii and Chenopodium album. An area of 300m w300m in size was surrounded by a fence for protecting this area from grazing. The plots inside and outside of the area are referred to as no-grazing (NG) and grazing (G) plots, respectively. In the NG plot, two plots of 30m w30m with drought (D plot) and mowing (M plot) manipulations are allocated in the southwest part of the NG plot. The drought manipulation was conducted using a rainout shelter with a transparent polyethylene roof, open on all sides during the major growing season from late May to early August 2005. The total precipitation of 60.3mm in the annual total of 96.9mm (that is, a severe drought year) was excluded from the D plot. Thus, natural severe drought and artificial very severe drought conditions were produced in this year. To study the vegetation impact on thermal and moisture conditions at the ground surface, the mowing has been carried out on a monthly basis during the growing season. The initial conditions for each plot were examined during the late growing seasons of 2003 and 2004, showing no significant difference in terms of vegetation (above-/below-ground biomass and species diversity) and physical and chemical soil properties

  9. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh

    2016-02-01

    storm basis using the collection tanks. The collected runoff from each plot was then mixed thoroughly and a sample was taken for determining sediment concentration by weight. The per-storm soil loss was then obtained. Results and Discussion: A wide range of rainfall characteristics were observed during the study period.The results indicated that the maximum amount of coefficients of variation (CVs for runoff and soil loss from replicated plots were 60 and 80 percent, respectively, which were considerably higher than the variability of soil characteristics from these plots. CV of runoff and soil loss data among the replicates decreased as a power function of mean runoff (R2= 0.661, P

  10. Box-and-Whisker Plots.

    Science.gov (United States)

    Larsen, Russell D.

    1985-01-01

    Box-and-whisker plots (which give rapid visualization of batches of data) can be effectively used to present diverse collections of data used in traditional first-year chemistry courses. Construction of box-and-whisker plots and their use with bond energy data and data on heats of formation and solution are discussed. (JN)

  11. S2PLOT: Three-dimensional (3D) Plotting Library

    Science.gov (United States)

    Barnes, D. G.; Fluke, C. J.; Bourke, P. D.; Parry, O. T.

    2011-03-01

    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.

  12. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  13. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  14. Trellis plots as visual aids for analyzing split plot experiments

    DEFF Research Database (Denmark)

    Kulahci, Murat; Menon, Anil

    2017-01-01

    The analysis of split plot experiments can be challenging due to a complicated error structure resulting from restrictions on complete randomization. Similarly, standard visualization methods do not provide the insight practitioners desire to understand the data, think of explanations, generate...... hypotheses, build models, or decide on next steps. This article demonstrates the effective use of trellis plots in the preliminary data analysis for split plot experiments to address this problem. Trellis displays help to visualize multivariate data by allowing for conditioning in a general way. They can...

  15. Estimating grassland biomass using SVM band shaving of hyperspectral data

    OpenAIRE

    Clevers, J G P W; van Der Heijden, G.W.A.M.; Verzakov, S; Schaepman, M. E.

    2007-01-01

    In this paper, the potential of a band shaving algorithm based on support vector machines (SVM) applied to hyperspectral data for estimating biomass within grasslands is studied. Field spectrometer data and biomass measurements were collected from a homogeneously managed grassland field. The SVM band shaving technique was compared with a partial least squares (PLS) and a stepwise forward selection analysis. Using their results, a range of vegetation indices was used as predictors for grasslan...

  16. Numerical computation of Pop plot

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparison of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.

  17. Box Plots: Basic and Advanced.

    Science.gov (United States)

    Mullenex, James L.

    1990-01-01

    Describes a five-number summary which is a display of the minimum value, lower quartile, median, upper quartile, and maximum value. Indicates how to draw box plots as graphical representations of a five-number summary. (YP)

  18. Plotting Orbital Trajectories For Maneuvers

    Science.gov (United States)

    Brody, Adam R.

    1991-01-01

    Interactive Orbital Trajectory Planning Tool (EIVAN) computer program is forward-looking interactive orbit-trajectory-plotting software tool for use with proximity operations (operations occurring within 1-km sphere of space station) and other maneuvers. Developed to plot resulting trajectories, to provide better comprehension of effects of orbital mechanics, and to help user develop heuristics for planning missions on orbit. Program runs with Microsoft's Excel for execution on MacIntosh computer running MacIntosh OS.

  19. Effects of Vegetation Type and Management Practice on Soil Respiration of Grassland in Northern Japan

    Directory of Open Access Journals (Sweden)

    Minaco Adachi

    2013-01-01

    Full Text Available Soil respiration rate in two types of grassland dominated with Zoysia japonica and Miscanthus sinensis, respectively, and under two management practices (undisturbed and intentionally burned for the M. sinensis grassland was investigated for understanding the effects of grassland vegetation type and management practices on the relationship between soil temperature and soil respiration in northern Japan. Soil temperatures at depth of 1 cm in the Z. japonica (ZJ and burned M. sinensis (MSb plots had a larger temporal variation than that in the control M. sinensis (MSc plot prior to early July. However, the coefficient of temperature sensitivity ( values, based on soil respiration rates and soil temperatures at 5 cm depth in the ZJ and MSb plots, were 1.3 and 2.9. These rates were lower than that in the MSc plot (4.3, meaning that soil respiration showed lower activity to an increase in soil temperature in the ZJ and MSb plots. In addition, monthly carbon fluxes from soil in these plots were smaller than that in the MSc plot. These results suggested that artificial disturbance would decrease soil microbial or/and plant root respiration, and it would contribute to the plant productivity. Future studies should examine the effects of the intensity and period of management on the soil respiration rate.

  20. Normal probability plots with confidence.

    Science.gov (United States)

    Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang

    2015-01-01

    Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches

    Directory of Open Access Journals (Sweden)

    Alessandra Capolupo

    2015-12-01

    Full Text Available Grassland ecosystems cover around 40% of the entire Earth’s surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partial least squares regression (PLSR and narrow vegetation indices, for estimating the structural and biochemical grassland traits from UAV-acquired hyperspectral images. Moreover, the influence of fertilizers on plant traits for grasslands was analyzed. Hyperspectral data were collected from an experimental field at the farm Haus Riswick, near Kleve in Germany, for two different flight campaigns in May and October. The collected image blocks were geometrically and radiometrically corrected for surface reflectance. Spectral signatures extracted for the plots were adopted to derive grassland traits by computing PLSR and the following narrow vegetation indices: the MERIS Terrestrial Chlorophyll Index (MTCI, the ratio of the Modified Chlorophyll Absorption in Reflectance and Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI modified by Wu, the Red-edge Chlorophyll Index (CIred-edge, and the Normalized Difference Red Edge (NDRE. PLSR showed promising results for estimating grassland structural traits and gave less satisfying outcomes for the selected chemical traits (crude ash, crude fiber, crude protein, Na, K, metabolic energy. Established relations are not influenced by the type and the amount of fertilization, while they are affected by the grassland health status. PLSR is found to be the best strategy, among the approaches analyzed in this paper, for exploring structural and biochemical features of grasslands. Using UAV-based hyperspectral sensing allows for the highly detailed assessment of grassland experimental plots.

  2. Relationships between aboveground biomass and plant cover at two spatial scales and their determinants in northern Tibetan grasslands.

    Science.gov (United States)

    Jiang, Yanbin; Zhang, Yangjian; Wu, Yupeng; Hu, Ronggui; Zhu, Juntao; Tao, Jian; Zhang, Tao

    2017-10-01

    The relationships between cover and AGB for the dominant and widely distributed alpine grasslands on the northern Tibetan Plateau is still not fully examined. The objectives of this study are to answer the following question: (1) How does aboveground biomass (AGB) of alpine grassland relate to plant cover at different spatial scales? (2) What are the major biotic and abiotic factors influencing on AGB-cover relationship? A community survey (species, cover, height, and abundance) was conducted within 1 m × 1 m plots in 70 sites along a precipitation gradient of 50-600 m. Ordinary linear regression was employed to examine AGB-cover relationships of both community and species levels at regional scale of entire grassland and landscape scale of alpine meadow, alpine steppe, and desert steppe. Hierarchical partitioning was employed to estimate independent contributions of biotic and abiotic factors to AGB and cover at both scales. Partial correlation analyses were used to discriminate the effects of biotic and abiotic factors on AGB-cover relationships at two spatial scales. AGB and community cover both exponentially increased along the precipitation gradient. At community level, AGB was positively and linearly correlated with cover for all grasslands except for alpine meadow. AGB was also linearly correlated with cover of species level at both regional and landscape scales. Contributions of biotic and abiotic factors to the relationship between AGB and cover significantly depended on spatial scales. Cover of cushions, forbs, legumes and sedges, species richness, MAP, and soil bulk density were important factors that influenced the AGB-cover relationship at either regional or landscape scale. This study indicated generally positive and linear relationships between AGB and cover are at both regional and landscape scales. Spatial scale may affect ranges of cover and modify the contribution of cover to AGB. AGB-cover relationships were influenced mainly by species

  3. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  4. Difficulties of biomass estimation over natural grassland

    Science.gov (United States)

    Kertész, Péter; Gecse, Bernadett; Pintér, Krisztina; Fóti, Szilvia; Nagy, Zoltán

    2017-04-01

    Estimation of biomass amount in grasslands using remote sensing is a challenge due to the high diversity and different phenologies of the constituting plant species. The aim of this study was to estimate the biomass amount (dry weight per area) during the vegetation period of a diverse semi-natural grassland with remote sensing. A multispectral camera (Tetracam Mini-MCA 6) was used with 3 cm ground resolution. The pre-processing method includes noise reduction, the correction for the vignetting effect and the calculation of the reflectance using an Incident Light Sensor (ILS). Calibration was made with ASD spectrophotometer as reference. To estimate biomass Partial Least Squares Regression (PLSR) statistical method was used with 5 bands and NDVI as input variables. Above ground biomass was cut in 15 quadrats (50×50 cm) as reference. The best prediction was attained in spring (r2=0.94, RMSE: 26.37 g m-2). The average biomass amount was 167 g m-2. The variability of the biomass is mainly determined by the relief, which causes the high and low biomass patches to be stable. The reliability of biomass estimation was negatively affected by the appearance of flowers and by the senescent plant parts during the summer. To determine the effects of flower's presence on the biomass estimation, 20 dominant species with visually dominant flowers in the area were selected and cover of flowers (%) were estimated in permanent plots during measurement campaigns. If the cover of flowers was low (0,9), while at higher cover of flowers (>30%), the estimation failed (r2 effect restricts the usage of the remote sensing method to the spring - early summer period in diverse grasslands.

  5. North American Grasslands & Biogeographic Regions

    Science.gov (United States)

    North American grasslands are the product of a long interaction among land, people, and animals. Covering over one billion hectares across Canada, the United States, and Mexico, a defining trait of the realm is its vast surface area. From subtropical grasslands interspersed with wetlands in the sout...

  6. Soil phosphorus constrains biodiversity across European grasslands.

    Science.gov (United States)

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization. © 2014 John Wiley & Sons Ltd.

  7. Nesting ecology of grassland birds following a wildfire in the southern Great Plains

    Science.gov (United States)

    Roberts, Anthony J.; Boal, Clint W.; Whitlaw, Heather A.

    2017-01-01

    We studied the response of nesting grassland birds occupying short-grass and mixed-grass prairie sites 2 and 3 y following two, large-scale wildfires that burned ≥360,000 ha in the Texas Panhandle in March 2006. Nest success was greater on burned plots compared to unburned plots, though this varied by species and year. Woody vegetation cover was greater around nests on unburned plots compared to burned plots for Cassin's sparrow (Peucaea cassinii) and lark sparrow (Chondestes grammacus). Cassin's sparrows and lark sparrows nested in more-woody vegetation than did grasshopper sparrows (Ammodramus savannarum), and woody vegetation was reduced following the wildfires. The wildfires appear to have had few if any negative influences on the avian community 3 years postfire. This may be due to grassland breeding birds being adapted to landscapes in which, historically, periodic disturbance (e.g., wildfire, intensive grazing by bison [Bison bison]) resulted in vegetation heterogeneity.

  8. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP: A Case Study in the Xilingol Grassland of Northern China

    Directory of Open Access Journals (Sweden)

    Fen Zhao

    2014-06-01

    Full Text Available The precise and rapid estimation of grassland biomass is an important scientific issue in grassland ecosystem research. In this study, based on a field survey of 1205 sites together with biomass data of the Xilingol grassland for the years 2005–2012 and the “accumulated” MODIS productivity starting from the beginning of growing season, we built regression models to estimate the aboveground biomass of the Xilingol grassland during the growing season, then further analyzed the overall condition of the grassland and the spatial and temporal distribution of the aboveground biomass. The results are summarized as follows: (1 The unitary linear model based on the field survey data and “accumulated” MODIS productivity data is the optimum model for estimating the aboveground biomass of the Xilingol grassland during the growing period, with the model accuracy reaching 69%; (2 The average aboveground biomass in the Xilingol grassland for the years 2005–2012 was estimated to be 14.35 Tg, and the average aboveground biomass density was estimated to be 71.32 g∙m−2; (3 The overall variation in the aboveground biomass showed a decreasing trend from the eastern meadow grassland to the western desert grassland; (4 There were obvious fluctuations in the aboveground biomass of the Xilingol grassland for the years 2005–2012, ranging from 10.56–17.54 Tg. Additionally, several differences in the interannual changes in aboveground biomass were observed among the various types of grassland. Large variations occurred in the temperate meadow-steppe and the typical grassland; whereas there was little change in the temperate desert-steppe and temperate steppe-desert.

  9. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  10. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie

    OpenAIRE

    Reinhart, Kurt O.; Vermeire, Lance T.

    2016-01-01

    Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observe...

  11. Action Between Plot and Discourse

    DEFF Research Database (Denmark)

    Grünbaum, Thor

    2007-01-01

    , these narrated actions disrupt the theoretical divisions, on the one hand, between the narrated story and the narrating discourse, and on the other hand, between plot-narratology and discourse-narratology. As narrated actions, they seem to belong to the domain of plot-narratology, but insofar as they serve...... an important visualizing function, these narrated actions have a communicative function and, as such, they can be said to belong to the domain of discourse-narratology. In the first part of the article, I argue that a certain type of plot-narratology, due to its retrospective epistemology and abstract...... definition of action, is unable to conceive of this visualizing function. In the second part, I argue that discourse-narratology fares no better since the visualizing function is independent of voice and focalization. In the final part, I sketch a possible account of the visualizing function of simple...

  12. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland

    DEFF Research Database (Denmark)

    Schnoor, Tim Krone; Lekberg, Ylva; Rosendahl, Søren

    2011-01-01

    While the effect of disturbance on overall abundance and community composition of arbuscular mycorrhizal (AM) fungi has been researched in agricultural fields, less is known about the impact in semi-natural grasslands. We sampled two AM plant species, Festuca brevipila and Plantago lanceolata, from...... an ongoing grassland restoration experiment that contained replicated plowed and control plots. The AM fungal community in roots was determined using nested PCR and LSU rDNA primers. We identified 38 phylotypes within the Glomeromycota, of which 29 belonged to Glomus A, six to Glomus B, and three...... the control or disturbed plots. We found no evidence of host preference in this system, except for one phylotype that preferentially seemed to colonize Festuca. Our results show that disturbance imposed a stronger structuring force for AM fungal communities than did host plants in this semi-natural grassland....

  13. Nitrate leaching and nitrous oxide flux in urban forests and grasslands

    Science.gov (United States)

    Peter M. Groffman; Candiss O. Williams; Richard V. Pouyat; Lawrence E. Band; Ian D. Yesilonis

    2009-01-01

    Urban landscapes contain a mix of land-use types with different patterns of nitrogen (N) cycling and export. We measured nitrate (NO3-) leaching and soil:atmosphere nitrous oxide (N2O) flux in four urban grassland and eight forested long-term study plots in the Baltimore, Maryland metropolitan area....

  14. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning

    Science.gov (United States)

    Anderson, Kyle E.; Glenn, Nancy F.; Spaete, Lucas P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2018-01-01

    Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that leverages TLS collections with machine learning techniques to model and map canopy cover and biomass of several classes of short-stature vegetation across large plots. We collected high-definition TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. We used the Random Forests machine learning algorithm to develop decision tree models predicting the biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground heights of TLS points. Manual measurements of vegetation characteristics collected within each plot served as training and validation data. Models based on five or fewer TLS descriptors of vegetation heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models explained much of the variability between predictions and manual measurements, and yet we expect that future applications could produce even better results by reducing some of the methodological sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend manual measurement of vegetation characteristics from small to large plots in grasslands and shrublands, with potential application to other similarly structured ecosystems. Our method shows that vegetation structural characteristics can be modeled without classifying and delineating individual plants, a challenging and time-consuming step common in previous

  15. MatrixPlot: visualizing sequence constraints

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Stærfeldt, Hans Henrik; Lund, Ole

    1999-01-01

    MatrixPlot: visualizing sequence constraints. Sub-title Abstract Summary : MatrixPlot is a program for making high-quality matrix plots, such as mutual information plots of sequence alignments and distance matrices of sequences with known three-dimensional coordinates. The user can add information...... about the sequences (e.g. a sequence logo profile) along the edges of the plot, as well as zoom in on any region in the plot. Availability : MatrixPlot can be obtained on request, and can also be accessed online at http://www. cbs.dtu.dk/services/MatrixPlot. Contact : gorodkin@cbs.dtu.dk...

  16. Guide to the literature on research in the grassland biome of South Africa

    CSIR Research Space (South Africa)

    Tainton, MN

    1984-12-01

    Full Text Available Research into the management of grassland communities in South Africa spans a period of more than 50 years. The work has covered a wide range of topics relating to the form and function of grassland communities, and has had as its main objective...

  17. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    Science.gov (United States)

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2017-12-02

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVITGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVITGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change

  18. Grassland productivity in response to nutrient additions and herbivory is scale-dependent

    Directory of Open Access Journals (Sweden)

    Erica A.H. Smithwick

    2016-12-01

    Full Text Available Vegetation response to nutrient addition can vary across space, yet studies that explicitly incorporate spatial pattern into experimental approaches are rare. To explore whether there are unique spatial scales (grains at which grass response to nutrients and herbivory is best expressed, we imposed a large (∼3.75 ha experiment in a South African coastal grassland ecosystem. In two of six 60 × 60 m grassland plots, we imposed a scaled sampling design in which fertilizer was added in replicated sub-plots (1 × 1 m, 2 × 2 m, and 4 × 4 m. The remaining plots either received no additions or were fertilized evenly across the entire area. Three of the six plots were fenced to exclude herbivory. We calculated empirical semivariograms for all plots one year following nutrient additions to determine whether the scale of grass response (biomass and nutrient concentrations corresponded to the scale of the sub-plot additions and compared these results to reference plots (unfertilized or unscaled and to plots with and without herbivory. We compared empirical semivariogram parameters to parameters from semivariograms derived from a set of simulated landscapes (neutral models. Empirical semivariograms showed spatial structure in plots that received multi-scaled nutrient additions, particularly at the 2 × 2 m grain. The level of biomass response was predicted by foliar P concentration and, to a lesser extent, N, with the treatment effect of herbivory having a minimal influence. Neutral models confirmed the length scale of the biomass response and indicated few differences due to herbivory. Overall, we conclude that interpretation of nutrient limitation in grasslands is dependent on the grain used to measure grass response and that herbivory had a secondary effect.

  19. The Box-Percentile Plot

    OpenAIRE

    Esty, Warren W.; Jeff Banfield

    2003-01-01

    A variant of the boxplot is proposed in which the sides contain the information of a percentile plot (which is equivalent to the empirical cumulative distribution function). Unlike boxplots, there is no question about how long to draw the whiskers, nor is there loss of information due to grouping. Side-by-side comparisons of distributions are especially effective. In spite of including more detail, the impact on statistically-untrained readers remains similar to that of traditional boxplots.

  20. Convergence of Place and Plot

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2010-01-01

    efterladt sig en række mærker og spor som kan læses og fortolkes. Blodspor, rester af negle, hår udgør forskellige (DNA)koder som kan dekrypteres og dechifreres på samme måde som krudtslam, skudhuller, fysiske skader er tegn som skal læses og fortolkes. Som sådan rummer stedet et plot (en fortælling) som...

  1. Soil properties and perceived disturbance of grasslands subjected to mechanized military training: Evaluation of an index

    Science.gov (United States)

    Althoff, Donald P.; Althoff, P.S.; Lambrecht, N.D.; Gipson, P.S.; Pontius, J.S.; Woodford, P.B.

    2007-01-01

    Mechanized maneuver training impacts the landscape by creating depressions, compacting soils, producing bare ground areas, transporting seeds of invasive plants, and crushing vegetation. We measured 3 physical, 13 chemical, and 2 biological soil properties and used a disturbance index (DI) based on perceptions of soil conditions on a military installation to assess the condition of 100 ?? 100 m plots (1 ha): 10 in 2002 and 10 in 2004. Potential DI scores range from 0 (no appreciable evidence of disturbance) to 1 (>95 per cent of the plot disturbed). Bulk density, porosity (%), and water content (%) - all at 5-1-10-0cm depth, and nematode family richness (NFR) were significantly, negatively correlated (Spearman coefficients, rs) with the DI of both years. The strong negative correlation (rs., = -0.69 in 2002, -0.79 in 2004) of NFR with the DI appears to reflect the status of nematode diversity and, therefore, may serve as a useful, inexpensive approach to rapidly assessing grasslands subjected to mechanized military training. Copyright ?? 2007 John Wiley & Sons, Ltd.

  2. The forest inventory and analysis plot design

    Science.gov (United States)

    William Bechtold; Charles T. Scott

    2005-01-01

    This chapter describes the prescribed core plot2 design currently used by Forest Inventory and Analysis (FIA) for Phase 2 and Phase 3 ground sampling. FIA ground plots relate to the sampling frame discussed in the previous chapter as follows: One plot has been randomly located within each 6,000-acre hexagon. Each plot has been assigned to one of five panels as...

  3. Chiral Ramachandran Plots I: Glycine.

    Science.gov (United States)

    Baruch-Shpigler, Yael; Wang, Huan; Tuvi-Arad, Inbal; Avnir, David

    2017-10-24

    Ramachandran plots (RPs) map the wealth of conformations of the polypeptide backbone and are widely used to characterize protein structures. A limitation of the RPs is that they are based solely on two dihedral angles for each amino acid residue and provide therefore only a partial picture of the conformational richness of the protein. Here we extend the structural RP analysis of proteins from a two-dimensional (2D) map to a three-dimensional map by adding the quantitative degree of chirality-the continuous chirality measure (CCM)-of the amino acid residue at each point in the RP. This measure encompasses all bond angles and bond lengths of an amino acid residue. We focus in this report on glycine (Gly) because, due to its flexibility, it occupies a large portion of the 2D map, thus allowing a detailed study of the chirality measure, and in order to evaluate the justification of classically labeling Gly as the only achiral amino acid. We have analyzed in detail 4366 Gly residues extracted from high resolution crystallographic data of 160 proteins. This analysis reveals not only that Gly is practically always conformationally chiral, but that upon comparing with the backbone of all amino acids, the quantitative chirality values of Gly are of similar magnitudes to those of the (chiral) amino acids. Structural trends and energetic considerations are discussed in detail. Generally we show that adding chirality to Ramachandran plots creates far more informative plots that highlight the sensitivity of the protein structure to minor conformational changes.

  4. Visualising disease progression on multiple variables with vector plots and path plots

    Directory of Open Access Journals (Sweden)

    Michell Andrew W

    2009-05-01

    Full Text Available Abstract Background It is often desirable to observe how a disease progresses over time in individual patients, rather than graphing group averages; and since multiple outcomes are typically recorded on each patient, it would be advantageous to visualise disease progression on multiple variables simultaneously. Methods A variety of vector plots and a path plot have been developed for this purpose, and data from a longitudinal Huntington's disease study are used to illustrate the utility of these graphical methods for exploratory data analysis. Results Initial and final values for three outcome variables can be easily visualised per patient, along with the change in these variables over time. In addition to the disease trajectory, the path individual patients take from initial to final observation can be traced. Categorical variables can be coded with different types of vectors or paths (e.g. different colours, line types, line thickness and separate panels can be used to include further categorical or continuous variables, allowing clear visualisation of further information for each individual. In addition, summary statistics such as mean vectors, bivariate interquartile ranges and convex polygons can be included to assist in interpreting trajectories, comparing groups, and detecting multivariate outliers. Conclusion Vector and path plots are useful graphical methods for exploratory data analysis when individual-level information on multiple variables over time is desired, and they have several advantages over plotting each variable separately.

  5. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  6. Birds of Southwestern grasslands: Status, conservation, and management

    Science.gov (United States)

    Michele Merola-Zwartjes

    2005-01-01

    In the Southwestern United States, the grassland avifauna is collectively composed of a mixture of species found primarily in desert grasslands, shortgrass steppe, wet meadows, and alpine tundra (as used here, desert grasslands incorporate both arid grasslands and desert shrub grasslands). Of these habitats, desert grasslands and shortgrass steppe are the most...

  7. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  8. AUTOMATED TECHNIQUE FOR CREATING LITHOLOGIC LOG PLOTS

    Directory of Open Access Journals (Sweden)

    Kristijan Posavec

    2006-12-01

    Full Text Available Paper presents automated technique for creating lithologic log plots. Technique is based on three computer tools: Microsoft (MS Access program, LogPlot program, and Visual Basic (VB macros for MS Excel. MS Access ensures professional storage of lithologic data which can be in that way easier and faster entered, searched, updated, and also used for different purposes, while LogPlot provides tools for creating lithologic log plots. VB macros enable transfer of lithologic data from MS Access to LogPlot. Data stored in MS Access are exported in ASCII files which are later used by LogPlot for creation of lithologic log plots. Presented concept facilitates creation of lithologic log plots, and automated technique enables processing of a large number of data i.e. creation of lareg number lithologic log plots in a short period of time (the paper is published in Croatian.

  9. NPP Grassland: Charleville, Australia, 1973-1974

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Above and below ground productivity of a native C3 grassland and an introduced C4 grassland were studied from 1973-1974 near Charleville in Southern...

  10. Nitrogen deposition threatens species richness of grasslands across Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C.J. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Gowing, D.J.G. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Dupre, C.; Diekmann, M. [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Dorland, E. [Section of Landscape Ecology, Department of Geobiology, Utrecht University, P.O. Box 80084, 3508 TB Utrecht (Netherlands); Gaudnik, C.; Alard, D.; Corcket, E. [University of Bordeaux 1. UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Bleeker, A. [Department of Air Quality and Climate Change, Energy Research Centre of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands); Bobbink, R. [B-WARE Research Centre, Radboud University, P.O. Box 9010, 6525 ED Nijmegen (Netherlands); Fowler, D. [NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Mountford, J.O. [NERC Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Vandvik, V. [Department of Biology, University of Bergen, Box 7800, N-5020 Bergen (Norway); Aarrestad, P.A. [Norwegian Institute for Nature Research, NO-7485 Trondheim (Norway); Muller, S. [Laboratoire des Interactions Ecotoxicologie, Biodiversite et Ecosystemes LIEBE, UMR CNRS 7146, U.F.R. Sci. F.A., Campus Bridoux, Universite Paul Verlaine, Avenue du General Delestraint, F-57070 Metz (France); Dise, N.B. [Department of Environmental and Geographical Science, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2010-09-15

    Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2-44 kg N ha{sup -1} yr{sup -1}) species richness showed a curvilinear response, with greatest reductions in species richness when deposition increased from low levels. This has important implications for conservation policies, suggesting that to protect the most sensitive grasslands resources should be focussed where deposition is currently low. Soil pH is also an important driver of species richness indicating that the acidifying effect of nitrogen deposition may be contributing to species richness reductions. The results of this survey suggest that the impacts of nitrogen deposition can be observed over a large geographical range. Atmospheric nitrogen deposition is reducing biodiversity in grasslands across Europe.

  11. African Journal of Range and Forage Science

    African Journals Online (AJOL)

    The African Journal of Range & Forage Science (previously known as Proceedings of the Grassland Society of Southern Africa and Journal of the Grassland Society of Southern Africa) is the leading rangeland and pastoral journal in Africa, and serves as an important reference for anyone interested in the management and ...

  12. Ammonia emission from a permanent grassland on volcanic soil after the treatment with dairy slurry and urea

    Science.gov (United States)

    Salazar, F.; Martínez-Lagos, J.; Alfaro, M.; Misselbrook, T.

    2014-10-01

    Ammonia (NH3) is an air pollutant largely emitted from agricultural activities including the application of livestock manures and fertilizers to grassland. This gas has been linked with important negative impacts on natural ecosystems. In southern Chile, the use of inorganic and organic fertilizers (e.g. slurries) has increased in cattle production systems over recent years, heightening the risk of N losses to the wider environment. The objectives of this study were to evaluate on permanent grasslands on a volcanic ash soil in southern Chile: 1) the N loss due to NH3 volatilization following surface application of dairy slurry and urea fertilizer; and 2) the effect of a urease inhibitor on NH3 emissions from urea fertilizer application. Small plot field experiments were conducted over spring, fall, winter and summer seasons, using a system of wind tunnels to measure ammonia emissions. Ammonia losses ranged from 1.8 (winter) to 26.0% (fall) and 3.1 (winter) to 20.5% (summer) of total N applied for urea and slurry, respectively. Based on the readily available N applied (ammoniacal N for dairy slurry and urea N for urea fertilizer), losses from dairy slurry were much greater, at 16.1 and 82.0%, for winter and summer, respectively. The use of a urease inhibitor proved to be an effective option to minimize the N loss due NH3 volatilization from urea fertilizer, with an average reduction of 71% across all seasons. The results of this and other recent studies regarding N losses suggest that ammonia volatilization is the main pathway of N loss from grassland systems in southern Chile on volcanic ash soils when urea and slurry are used as an N source. The use of good management practices, such as the inclusion of a urease inhibitor with urea fertilizer could have a beneficial impact on reducing N losses due NH3 volatilization and the environmental and economic impact of these emissions.

  13. Appreciation of grassland functions by European stakeholders

    NARCIS (Netherlands)

    Pol, van den A.; Golinski, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L.

    2014-01-01

    In order to promote sustainable and competitive ruminant production systems, the European Multisward project was aimed at improving farmer trust in grassland and grassland mixtures. A questionnaire on grassland functions was submitted in eight languages, in order to better understand the importance

  14. CFD Extraction Tool for TecPlot From DPLR Solutions

    Science.gov (United States)

    Norman, David

    2013-01-01

    This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.

  15. Evaluating Plot Designs for the Tropics

    Science.gov (United States)

    Paul C. van Deusen; Bruce Bayle

    1991-01-01

    Theory and procedures are reviewed for determining the best type of plot for a given forest inventory. A general methodology is given that clarifies the relationship between different plot designs and the associated methods to produce the inventory estimates.

  16. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes

    National Research Council Canada - National Science Library

    Platt, William J; Orzell, Steve L; Slocum, Matthew G

    2015-01-01

    ... (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida...

  17. Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands.

    Science.gov (United States)

    Henry, Jason; Aherne, Julian

    2014-02-01

    High resolution nitrogen (N) deposition maps were developed to assess the exceedance of empirical critical loads of nutrient N for grasslands in Ireland. Nitrogen emissions have remained relatively constant during the past 20 yrs and are projected to remain constant under current legislation. Total N deposition (estimated as wet nitrate [NO3(-)] and ammonium [NH4(+)] plus dry NO× and NH3) ranged from 2 to 22 kg Nha(-1)yr(-1) (mean=12 kg Nha(-1)yr(-1)) to grasslands. Empirical critical loads for nutrient N were set at 15 kg Nha(-1)yr(-1) for both acid and calcareous grasslands; exceedance was observed for ~35% (~2,311 km(2)) of mapped acid grasslands. In contrast, only ~9% of calcareous grasslands (~35 km(2)) received N deposition in excess of the critical load. Reduced N deposition (primarily dry NH3) represented the dominant form to grasslands (range 55-90%) owing to significant emissions associated with livestock (primarily cattle). The extent of exceedance in acid grasslands suggests that N deposition to this habitat type may lead to adverse impacts such as a decline in plant species diversity and soil acidification. Further, given that elevated N deposition was dominated by NH3 associated with agricultural emissions rather than long-range transboundary sources, future improvements in air quality need to be driven by national policies. © 2013.

  18. Soil microbial responses to temporal variations of moisture and temperature in a chihuahuan desert grassland.

    Science.gov (United States)

    Bell, Colin; McIntyre, Nancy; Cox, Stephen; Tissue, David; Zak, John

    2008-07-01

    Global climate change models indicate that storm magnitudes will increase in many areas throughout southwest North America, which could result in up to a 25% increase in seasonal precipitation in the Big Bend region of the Chihuahuan Desert over the next 50 years. Seasonal precipitation is a key limiting factor regulating primary productivity, soil microbial activity, and ecosystem dynamics in arid and semiarid regions. As decomposers, soil microbial communities mediate critical ecosystem processes that ultimately affect the success of all trophic levels, and the activity of these microbial communities is primarily regulated by moisture availability. This research is focused on elucidating soil microbial responses to seasonal and yearly changes in soil moisture, temperature, and selected soil nutrient and edaphic properties in a Sotol Grassland in the Chihuahuan Desert at Big Bend National Park. Soil samples were collected over a 3-year period in March and September (2004-2006) at 0-15 cm soil depth from 12 3 x 3 m community plots. Bacterial and fungal carbon usage (quantified using Biolog 96-well micro-plates) was related to soil moisture patterns (ranging between 3.0 and 14%). In addition to soil moisture, the seasonal and yearly variability of soil bacterial activity was most closely associated with levels of soil organic matter, extractable NH(4)-N, and soil pH. Variability in fungal activity was related to soil temperatures ranging between 13 and 26 degrees C. These findings indicate that changes in soil moisture, coupled with soil temperatures and resource availability, drive the functioning of soil-microbial dynamics in these desert grasslands. Temporal patterns in microbial activity may reflect the differences in the ability of bacteria and fungi to respond to seasonal patterns of moisture and temperature. Bacteria were more able to respond to moisture pulses regardless of temperature, while fungi only responded to moisture pulses during cooler seasons with

  19. Grassland management impacts on soil carbon stocks: a new synthesis.

    Science.gov (United States)

    Conant, Richard T; Cerri, Carlos E P; Osborne, Brooke B; Paustian, Keith

    2017-03-01

    Grassland ecosystems cover a large portion of Earths' surface and contain substantial amounts of soil organic carbon. Previous work has established that these soil carbon stocks are sensitive to management and land use changes: grazing, species composition, and mineral nutrient availability can lead to losses or gains of soil carbon. Because of the large annual carbon fluxes into and out of grassland systems, there has been growing interest in how changes in management might shift the net balance of these flows, stemming losses from degrading grasslands or managing systems to increase soil carbon stocks (i.e., carbon sequestration). A synthesis published in 2001 assembled data from hundreds of studies to document soil carbon responses to changes in management. Here we present a new synthesis that has integrated data from the hundreds of studies published after our previous work. These new data largely confirm our earlier conclusions: improved grazing management, fertilization, sowing legumes and improved grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates ranging from 0.105 to more than 1 Mg C·ha(-1) ·yr(-1) . The new data include assessment of three new management practices: fire, silvopastoralism, and reclamation, although these studies are limited in number. The main area in which the new data are contrary to our previous synthesis is in conversion from native vegetation to grassland, where we find that across the studies the average rate of soil carbon stock change is low and not significant. The data in this synthesis confirm that improving grassland management practices and conversion from cropland to grassland improve soil carbon stocks. © 2016 by the Ecological Society of America.

  20. Grassland biodiversity bounces back from long-term nitrogen addition.

    Science.gov (United States)

    Storkey, J; Macdonald, A J; Poulton, P R; Scott, T; Köhler, I H; Schnyder, H; Goulding, K W T; Crawley, M J

    2015-12-17

    The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to 'bounce back' in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.

  1. Grassland rehabilitation (Rehabilitacion de Pastizales)

    Science.gov (United States)

    Mario Royo

    2006-01-01

    The main goal of grassland rehabilitation is to reestablish vegetation, with the objectives of reducing soil erosion, incorporating more rainwater into the soil and aquifer, maintaining biodiversity, restoring scenic beauty, and attaining a site's forage potential, as well as maintaining and reproducing the native fauna. Pastures can be rehabilitated naturally by...

  2. Monitoring in South African grasslands

    CSIR Research Space (South Africa)

    Mentis, MT

    1984-12-01

    Full Text Available The main purpose of this document is to propose how ecological monitoring might be developed in the Grassland Biome of South Africa. Monitoring is defined as the maintenance of regular surveillance to test the null hypothesis of no change...

  3. Soil organic matter chemistry changes upon secondary succession in Imperata Grasslands , Indonesia: A pyrolysis - GC/MS study

    NARCIS (Netherlands)

    Yassir, I.; Buurman, P.

    2012-01-01

    The chemical composition of soil organic matter (SOM) following secondary succession in Imperata grassland was investigated by Pyrolysis-Gas Chromatography/Mass Spectrometry (GC/MS). We studied 46 samples from different stages of succession using plots that last burned 3 and 9 years previously,

  4. Estimating forest-grassland dynamics using soil phytolith assemblages and δ13C of soil organic matter

    Science.gov (United States)

    Becky K. Kerns; Margeret M. Moore; Stephen C. Hart

    2001-01-01

    Our objectives were to examine the relationship between contemporary vegetation and surface soil phytolith assemblages, and use phytoliths and δ13C of soil organic matter (SOM) to explore forest-grassland vegetation dynamics. We established plots within three canopy types (open, old-growth, and dense young pine) with different grass species compositions in a...

  5. Commonness and Rarity: Theory and Application of a New Model to Mediterranean Montane Grasslands

    Directory of Open Access Journals (Sweden)

    José M. Rey Benayas

    1999-06-01

    Full Text Available We examined patterns of commonness and rarity among plant species in montane wet grasslands of Iberia. This examination is set within two contexts. First, we expanded on an earlier scheme for classifying species as common or rare by adding a fourth criterion, the ability of that species to occupy a larger or smaller fraction of its potential suitable habitats, i.e., habitat occupancy. Second, we explicated two theories, the superior organism theory and the generalist/specialist trade-off theory. The data consisted of 232 species distributed among 92 plots. The species were measured for mean local abundance, size of environmental volume occupied, percentage of volume occupied, range within Iberia, and range in Europe and the Mediterranean basin. In general, all measures were positively correlated, in agreement with the superior organism theory. However, specialist species were also found. Thus, patterns of commonness and rarity may be due to a combination of mechanisms. Analyses such as ours can also be used as a first step in identifying habitats and species that may be endangered.

  6. Harvesting as an Alternative to Burning for Managing Spinifex Grasslands in Australia

    Directory of Open Access Journals (Sweden)

    Harshi K. Gamage

    2014-01-01

    Full Text Available Sustainable harvesting of grasslands can buffer large scale wildfires and the harvested biomass can be used for various products. Spinifex (Triodia spp. grasslands cover ≈30% of the Australian continent and form the dominant vegetation in the driest regions. Harvesting near settlements is being considered as a means to reduce the occurrence and intensity of wildfires and to source biomaterials for sustainable desert living. However, it is unknown if harvesting spinifex grasslands can be done sustainably without loss of biodiversity and ecosystem function. We examined the trajectory of plant regeneration of burned and harvested spinifex grassland, floristic diversity, nutrient concentrations in soil and plants, and seed germination in controlled ex situ conditions. After two to three years of burning or harvesting in dry or wet seasons, species richness, diversity, and concentrations of most nutrients in soil and leaves of regenerating spinifex plants were overall similar in burned and harvested plots. Germination tests showed that 20% of species require fire-related cues to trigger germination, indicating that fire is essential for the regeneration of some species. Further experimentation should evaluate these findings and explore if harvesting and intervention, such as sowing of fire-cued seeds, allow sustainable, localised harvesting of spinifex grasslands.

  7. Local-scale habitat associations of grassland birds in southwestern Minnesota

    Science.gov (United States)

    Elliott, Lisa H.; Johnson, Douglas H.

    2017-01-01

    Conservation of obligate grassland species requires not only the protection of a sufficiently large area of habitat but also the availability of necessary vegetation characteristics for particular species. As a result land managers must understand which habitat characteristics are important for their target species. To identify the habitat associations of eight species of grassland birds, we conducted bird and vegetation surveys on 66 grassland habitat patches in southwestern Minnesota in 2013 and 2014. Species of interest included sedge wren (Cistothorus platensis), Savannah sparrow (Passerculus sandwichensis), grasshopper sparrow (Ammodramus savannarum), Henslow's sparrow (Ammodramus henslowii), dickcissel (Spiza americana), bobolink (Dolichonyx oryzivorus), and western meadowlark (Sturnella neglecta). We calculated correlation coefficients between vegetation variables and species density as measures of linear association. We assessed curvilinear relationships with loess plots. We found grassland birds on 95.5% of surveyed sites, indicating remnant prairie in southwestern Minnesota is used by grassland birds. In general individual species showed different patterns of association and most species were tolerant of a wide variety of habitat conditions. The most consistent pattern was a negative association with both the quantity and proximity of trees. Our findings that individual species have different habitat preferences suggest that prairie resource managers may need to coordinate management efforts in order to create a mosaic of habitat types to support multiple species, though tree control will be an important and ongoing management activity at the individual site level.

  8. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem

    Directory of Open Access Journals (Sweden)

    G. Sun

    2011-11-01

    Full Text Available Human activities and climate change are important factors that affect grassland ecosystems. A new optimization approach, the approach of conditional nonlinear optimal perturbation (CNOP related to initial and parameter perturbations, is employed to explore the nonlinearly combined impacts of human activities and climate change on a grassland ecosystem using a theoretical grassland model. In our study, it is assumed that the initial perturbations and parameter perturbations are regarded as human activities and climate change, respectively. Numerical results indicate that the climate changes causing the maximum effect in the grassland ecosystem are different under disparate intensities of human activities. This implies the pattern of climate change is very critical to the maintenance or degradation of grassland ecosystem in light of high intensity of human activities and that the grassland ecosystem should be rationally managed when the moisture index decreases. The grassland ecosystem influenced by the nonlinear combination of human activities and climate change undergoes abrupt change, while the grassland ecosystem affected by other types of human activities and climate change fails to show the abrupt change under a certain range of perturbations with the theoretical model. The further numerical analyses also indicate that the growth of living biomass and the evaporation from soil surface shaded by the wilted biomass may be crucial factors contributing to the abrupt change of the grassland equilibrium state within the theoretical model.

  9. Consequences of artichoke thistle invasion and removal on carbon and water cycling in a Mediterranean grassland

    Science.gov (United States)

    Potts, D. L.; Harpole, W. S.; Suding, K. N.; Goulden, M. L.

    2006-12-01

    Changes in vegetation structure and composition may interact with management activities to influence biosphere-atmosphere exchanges of mass and energy in unforeseen ways. Increases in the distribution and density of artichoke thistle (Cynara cardunculus), a perennial, non-native forb in Californian coastal grasslands, may alter seasonal dynamics of ecosystem C-assimilation and evapotranspiration (ET). During spring and summer 2006, we compared midday net ecosystem CO2 exchange (NEE) and ET among adjacent grassland plots where thistle was present and where it was absent. Estimates of NEE supported the prediction that deeply-rooted thistles increase ecosystem C-assimilation. Measurements of midday ecosystem respiration demonstrated that increases in ecosystem C-assimilation were associated with increased ecosystem photosynthesis rather than declines in respiration. Furthermore, the presence of C. cardunculus increased midday ET but did not influence shallow soil moisture or ecosystem water use efficiency. Following the initial sampling in late April, we removed C. cardunculus from half the thistle- containing plots with spot applications of herbicide. Three weeks later, fluxes in thistle-removal plots were indistinguishable from those in plots where thistles were never present, suggesting additive rather than interactive effects of thistles on grassland CO2 exchange and ET. Similar to woody-encroachment in some semi-arid ecosystems, C. cardunculus invasion in Californian grasslands increases ecosystem CO2 assimilation. Moreover, our results suggest that herbicide removal of C. cardunculus may be accompanied by few legacy effects. Future research should focus on the effects of C. cardunculus on early-growing season fluxes and belowground C-storage, and the interaction between the spread of non-native species and climate variability on biosphere-atmosphere exchanges of carbon and water.

  10. Nitrous oxide emissions and nitrogen cycling in managed grassland in Southern Hokkaido, Japan

    OpenAIRE

    Shimizu, Mariko; Marutani, Satoru; Desyatkin, Alexey R.; Jin, Tao; Nakano, Kunihiko; Hata, Hiroshi; Hatano, Ryusuke

    2010-01-01

    Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for two years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43-44 Mg fresh matter (236-310 kg N) ha^[-1] year^[-1], and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fer...

  11. A FLORISTIC INVENTORY OF THE CIMARRON NATIONAL GRASSLAND (KANSAS) AND THE COMANCHE NATIONAL GRASSLAND (COLORADO)

    National Research Council Canada - National Science Library

    Bernadette Kuhn; B.E. Nelson; Ronald L. Hartman

    2011-01-01

    ... Cimarrón National Grassland, Comanche National Grassland, and adjacent private lands. Our study area, spread over Baca, Las Animas, and Otero counties in Colorado and Morton County in Kansas, encompasses 567,300 acres...

  12. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  13. An Excel macro for generating trilinear plots.

    Science.gov (United States)

    Shikaze, Steven G; Crowe, Allan S

    2007-01-01

    This computer note describes a method for creating trilinear plots in Microsoft Excel. Macros have been created in MS Excel's internal language: Visual Basic for Applications (VBA). A simple form has been set up to allow the user to input data from an Excel worksheet. The VBA macro is used to convert the triangular data (which consist of three columns of percentage data) into X-Y data. The macro then generates the axes, labels, and grid for the trilinear plot. The X-Y data are plotted as scatter data in Excel. By providing this macro in Excel, users can create trilinear plots in a quick, inexpensive manner.

  14. Omitted Variable Sensitivity Analysis with the Annotated Love Plot

    Science.gov (United States)

    Hansen, Ben B.; Fredrickson, Mark M.

    2014-01-01

    The goal of this research is to make sensitivity analysis accessible not only to empirical researchers but also to the various stakeholders for whom educational evaluations are conducted. To do this it derives anchors for the omitted variable (OV)-program participation association intrinsically, using the Love plot to present a wide range of…

  15. Spatial distribution of grassland productivity and land use in Europe

    NARCIS (Netherlands)

    Smit, H.J.; Metzger, M.J.; Ewert, F.

    2008-01-01

    Grasslands are an important land use in Europe with essential functions for feed and ecosystem service supply. Impact assessment modelling of European agriculture and the environment needs to consider grasslands and requires spatially explicit information on grassland distribution and productivity,

  16. Net ecosystem productivity of temperate grasslands in northern China: An upscaling study

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Jia, Gensuo; Wylie, Bruce; Gilmanov, Tagir; Howard, Daniel M.; Ji, Lei; Xiao, Jingfeng; Li, Jing; Yuan, Wenping; Zhao, Tianbao; Chen, Shiping; Zhou, Guangsheng; Kato, Tomomichi

    2014-01-01

    Grassland is one of the widespread biome types globally, and plays an important role in the terrestrial carbon cycle. We examined net ecosystem production (NEP) for the temperate grasslands in northern China from 2000 to 2010. We combined flux observations, satellite data, and climate data to develop a piecewise regression model for NEP, and then used the model to map NEP for grasslands in northern China. Over the growing season, the northern China's grassland had a net carbon uptake of 158 ± 25 g C m−2 during 2000–2010 with the mean regional NEP estimate of 126 Tg C. Our results showed generally higher grassland NEP at high latitudes (northeast) than at low latitudes (central and west) because of different grassland types and environmental conditions. In the northeast, which is dominated by meadow steppes, the growing season NEP generally reached 200–300 g C m−2. In the southwest corner of the region, which is partially occupied by alpine meadow systems, the growing season NEP also reached 200–300 g C m−2. In the central part, which is dominated by typical steppe systems, the growing season NEP generally varied in the range of 100–200 g C m−2. The NEP of the northern China's grasslands was highly variable through years, ranging from 129 (2001) to 217 g C m−2 growing season−1 (2010). The large interannual variations of NEP could be attributed to the sensitivity of temperate grasslands to climate changes and extreme climatic events. The droughts in 2000, 2001, and 2006 reduced the carbon uptake over the growing season by 11%, 29%, and 16% relative to the long-term (2000–2010) mean. Over the study period (2000–2010), precipitation was significantly correlated with NEP for the growing season (R2 = 0.35, p-value < 0.1), indicating that water availability is an important stressor for the productivity of the temperate grasslands in semi-arid and arid regions in northern China. We conclude that northern temperate grasslands have the potential to

  17. Effects of 10-year management regimes on the soil seed bank in saline-alkaline grassland.

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K J

    2015-01-01

    beneficial for the restoration of dominant species in a wide range of degraded grassland ecosystems.

  18. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  19. Mycorrhizal Productivity Following Woody Plant Invasion of Grassland

    Science.gov (United States)

    Boutton, T. W.; Rowe, H. I.; Ariza, M. C.; Miller, R. M.; Filley, T. R.

    2008-12-01

    Mycorrhizal fungi play an important role in soil carbon storage and dynamics through the production of recalcitrant organic compounds (e.g., glomalin and chitin), and through the production of hyphae which entangle and enmesh soil particles to form aggregates which physically protect organic matter from decomposer organisms. Despite these important functions, little is known regarding rates of mycorrhizal productivity and how these rates might be influenced by changes in plant community composition. We quantified mycorrhizal production in a subtropical savanna parkland in southern Texas where woody plants have invaded areas that were once open grassland. Mycorrhizal ingrowth bags (3 x 10 cm) were made from 50 μm nylon mesh, filled with sterile sand (200-600 μm particle size), and deployed in the field in triplicate in remnant grasslands (n=15), and in woody plant stands (n=13) ranging in age from 15 to 86 yrs. Ingrowth bags were installed in May and harvested in Oct 2007 after 156 days. Hyphae were isolated by flotation/filtration, cleaned thoroughly to remove sand, freeze-dried, and weighed. Microscopic examination indicated that nearly all hyphae recovered from ingrowth bags were from arbuscular mycorrhizal fungi. During the ingrowth period, nearly 4X more hyphal biomass accumulated in wooded areas (9.00 ± 3.84 g m- 2) compared to remnant grasslands (2.35 ± 0.56 g m-2). Hyphal productivity rates increased linearly with woody plant stand age (r = 0.89) from 15 ± 4 mg m-2 day-1 in grasslands (time 0) up to 58-98 mg m-2 day-1 in wooded areas >65 yrs old. When these productivity rates are annualized, we find that hyphal productivity represents approximately 4% of aboveground net primary productivity (ANPP) in wooded areas, and 2% of ANPP in remnant grasslands. These observations are consistent with concurrent studies showing that glomalin concentrations and chitinase enzyme activity both increase in soils with time following woody encroachment into grassland

  20. Emotional characters for automatic plot creation

    NARCIS (Netherlands)

    Theune, Mariet; Rensen, S.; op den Akker, Hendrikus J.A.; Heylen, Dirk K.J.; Nijholt, Antinus; Göbel, S.; Spierling, U.; Hoffmann, A.; Iurgel, I.; Schneider, O.; Dechau, J.; Feix, A.

    The Virtual Storyteller is a multi-agent framework for automatic story generation. In this paper we describe how plots emerge from the actions of semi-autonomous character agents, focusing on the influence of the characters’ emotions on plot development.

  1. Box Plots in the Australian Curriculum

    Science.gov (United States)

    Watson, Jane M.

    2012-01-01

    This article compares the definition of "box plot" as used in the "Australian Curriculum: Mathematics" with other definitions used in the education community; describes the difficulties students experience when dealing with box plots; and discusses the elaboration that is necessary to enable teachers to develop the knowledge…

  2. Digital data collection in forest dynamics plots

    Science.gov (United States)

    Faith Inman-Narahari; Christian Giardina; Rebecca Ostertag; Susan Cordell; Lawren Sack

    2010-01-01

    Summary 1. Computers are widely used in all aspects of research but their application to in-field data collection for forest plots has rarely been evaluated. 2. We developed digital data collection methods using ESRI mapping software and ruggedized field computers to map and measure ~30 000 trees in two 4-ha forest dynamics plots in wet and dry...

  3. The Heuristic Interpretation of Box Plots

    Science.gov (United States)

    Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim

    2013-01-01

    Box plots are frequently used, but are often misinterpreted by students. Especially the area of the box in box plots is often misinterpreted as representing number or proportion of observations, while it actually represents their density. In a first study, reaction time evidence was used to test whether heuristic reasoning underlies this…

  4. Corrections for Cluster-Plot Slop

    Science.gov (United States)

    Harry T. Valentine; Mark J. Ducey; Jeffery H. Gove; Adrian Lanz; David L.R. Affleck

    2006-01-01

    Cluster-plot designs, including the design used by the Forest Inventory and Analysis program of the USDA Forest Service (FIA), are attended by a complicated boundary slopover problem. Slopover occurs where inclusion zones of objects of interest cross the boundary of the area of interest. The dispersed nature of inclusion zones that arise from the use of cluster plots...

  5. Reaction Order Ambiguity in Integrated Rate Plots

    Science.gov (United States)

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  6. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    Science.gov (United States)

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management

  7. Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value.

    Directory of Open Access Journals (Sweden)

    Agnès Cornu

    Full Text Available Besides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements. Measurements were made over two periods of three consecutive days at the beginning of grazing, and just after the cows had left the plots. Volatile compounds were trapped using solid-phase microextraction (SPME fibers exposed eight hours a day in three exclosures per plot, and then analyzed by gas-chromatography-mass spectrometry (GC-MS. Insects were trapped using pan traps and a net, sorted and counted. The open air SPME method yielded volatile compound profiles that were richer than maize field profiles, comprising the common green leaf volatiles (GLV and more specific ones. Differences between the odorscapes of the two grasslands were found, but they were not as marked as expected from their botanical composition. By contrast, there were sharp differences between the two periods, resulting from the combined effects of changes in weather conditions, plant phenological stage and grazing progress. Several correlations between insect counts and volatile compounds were found. Although their correlation coefficients were low, some of them were confirmed when tested by Spearman rank correlation, and could be logically explained. This method of grassland odorscape deserves to be developed because it can provide information on many aspects of grassland function and on the stresses that grassland plants undergo.

  8. Environmental gradients and grassland trait variation: Insight into the effects of climate change

    Science.gov (United States)

    Tardella, Federico M.; Piermarteri, Karina; Malatesta, Luca; Catorci, Andrea

    2016-10-01

    The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.

  9. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    Science.gov (United States)

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  10. Grassland management affects belowground carbon allocation in mountain grasslands and its resistance and resilience to drought

    Science.gov (United States)

    Karlowsky, Stefan; Augusti, Angela; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael; Gleixner, Gerd

    2015-04-01

    leaves and followed by a stable phase. In microbial biomass, tracer dynamics generally reflect the root 13C enrichment and consequently show a more pronounced effect of drought in meadow treatments. Nevertheless, at the second labelling, 13C incorporation in leaves as well as 13C allocation to roots fully recovered to control level, in both, abandoned and meadow treatments. Accordingly, we assume that the C transfer to soil microbial biomass also should have been restored at that time (analyses in progress). Furthermore, the 13C analysis of individual microbial biomarker lipids will give us a more detailed view on the molecular mechanisms underpinning resistance and resilience of mountain grasslands. Additionally, we also analysed the 13C composition of CO2 respired by roots, to study how much and how fast newly assimilated C is respired at the root level. Our results show, that already 24 hours after labelling the canopy, newly formed C has been translocated and respired at the root level. We don't have enough data to show a difference in drought resistance between the two different land uses. However, preliminary results from labelling the rewetted plots indicate that the flux of newly formed CO2 from roots, both in abandoned and meadow treatments, recovers completely from drought with non-significant difference among the land use treatments (in accordance with bulk phytomass analyses). Moreover, data on the compound specific 13C composition in above- and below-ground biomass will highlight the relationship between C allocation in grassland species and the C respired by roots as CO2 as well as the C transferred to the microbial community in the rhizosphere.

  11. Nitrous oxide emission from intensively managed grasslands

    NARCIS (Netherlands)

    Velthof, G.L.

    1997-01-01

    The aims of this thesis are to quantify nitrous oxide (N 2 O) emission from intensively managed grasslands in the Netherlands, to increase the insight in the factors controlling N 2 O emission from intensively managed grasslands and to explore

  12. Changes in productivity of grassland with ageing

    NARCIS (Netherlands)

    Hoogerkamp, M.

    1984-01-01

    The productivity of grassland may change greatly with ageing. Frequently, a productive ley period, occurring in the first time after (re)seeding, is followed by a period in which productivity decreases. Under conditions favourable to grassland this may be temporary. A production level

  13. Effects of forest expansion on mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco

    2014-01-01

    Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient...

  14. Effects of herbivores on grassland plant diversity.

    NARCIS (Netherlands)

    Olff, H.; Ritchie, M.E.

    1998-01-01

    The role of herbivores in controlling plant species richness is a critical issue in the conservation and management of grassland biodiversity. Numerous field experiments in grassland plant communities show that herbivores often, but not always, increase plant diversity. Recent work suggests that the

  15. Management of water resources for grasslands

    Science.gov (United States)

    Grasslands support essential food and fiber production, biodiversity, and water function. In general, urban areas and cropland occupies the most fertile, flattest, and humid lands, while planted or native grasslands are located on drier, steeper, or less fertile areas of any region. With continuin...

  16. Spatial heterogeneity increases diversity and stability in grassland bird communities.

    Science.gov (United States)

    Hovick, Torre J; Elmore, R Dwayne; Fuhlendorf, Samuel D; Engle, David M; Hamilton, Robert G

    2015-04-01

    Grasslands are inherently dynamic in space and time, evolving with frequent disturbance from fire and herbivores. As a consequence of human actions, many remaining grasslands have become homogenous, which has led to reduced ecosystem function, biodiversity loss, and decreased ecological services. Previous research has shown that restoring inherent heterogeneity to grasslands can increase avian diversity, but the amount of heterogeneity (i.e., number of patches or fire return interval) and the impact on avian community stability have yet to be investigated. We used a unique landscape-level design to examine avian response to interacting fire and grazing across multiple experimental landscapes that represented a gradient of fire- and grazing-dependent heterogeneity. We used seven landscapes (430-980 ha; x = 627 ha) with varying levels of patchiness ranging from annually burned (one single patch) with spring-only fires to a four-year fire return interval with spring and summer fires (eight patches). This design created a range of heterogeneity as a result of pyric herbivory, an ecological process in which fire and grazing are allowed to interact in space and time. We found that greater heterogeneity across experimental landscapes resulted in increased avian diversity and stability over time. An index of bird community change, quantified as the sum of the range of detrended correspondence analysis axis site scores, was nearly four times greater in the most homogenous experimental landscape when compared to the most heterogeneous experimental landscape. Species responses were consistently positively associated with increased heterogeneity at the landscape scale, and within-experimental-landscape responses were most often related to litter cover, litter accumulation, and vegetation height. We conclude that increased fire- and grazig-dependent heterogeneity can result in high variability in the bird community at finer, transect scales, but increased diversity and

  17. Summary of Cackling Canada goose nesting plot data for the 1984 Yukon Delta NWR Flyway report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Forty sample plots ranging in size from 81-311 acres (total:7041 acres) were located throughout the Yukon Delta CacklingCanada Goose (CCG) nesting range in areas...

  18. Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales

    Directory of Open Access Journals (Sweden)

    M. de Blécourt

    2017-08-01

    Full Text Available Presently, the lack of data on soil organic carbon (SOC stocks in relation to land-use types and biophysical characteristics prevents reliable estimates of ecosystem carbon stocks in montane landscapes of mainland SE Asia. Our study, conducted in a 10 000 ha landscape in Xishuangbanna, SW China, aimed at assessing the spatial variability in SOC concentrations and stocks, as well as the relationships of SOC with land-use types, soil properties, vegetation characteristics and topographical attributes at three spatial scales: (1 land-use types within a landscape (10 000 ha, (2 sampling plots (1 ha nested within land-use types (plot distances ranging between 0.5 and 12 km, and (3 subplots (10 m radius nested within sampling plots. We sampled 27 one-hectare plots – 10 plots in mature forests, 11 plots in regenerating or highly disturbed forests, and 6 plots in open land including tea plantations and grasslands. We used a sampling design with a hierarchical structure. The landscape was first classified according to land-use types. Within each land-use type, sampling plots were randomly selected, and within each plot we sampled within nine subplots. SOC concentrations and stocks did not differ significantly across the four land-use types. However, within the open-land category, SOC concentrations and stocks in grasslands were higher than in tea plantations (P < 0.01 for 0–0.15 m, P = 0.05 for 0.15–0.30 m, P = 0.06 for 0–0.9 m depth. The SOC stocks to a depth of 0.9 m were 177.6 ± 19.6 (SE Mg C ha−1 in tea plantations, 199.5 ± 14.8 Mg C ha−1 in regenerating or highly disturbed forests, 228.6 ± 19.7 Mg C ha−1 in mature forests, and 236.2 ± 13.7 Mg C ha−1 in grasslands. In this montane landscape, variability within plots accounted for more than 50 % of the overall variance in SOC stocks to a depth of 0.9 m and the topsoil SOC concentrations. The

  19. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes: e0116952

    National Research Council Canada - National Science Library

    William J Platt; Steve L Orzell; Matthew G Slocum

    2015-01-01

    ... (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida...

  20. Experimental Garden Plots for Botany Lessons

    Science.gov (United States)

    Gorodnicheva, V. V.; Vasil'eva, E. I.

    1976-01-01

    Discussion of the botany lessons used at two schools points out the need for fifth and sixth grade students to be taught the principles of plant life through observations made at an experimental garden plot at the school. (ND)

  1. Plant diversity effects on root decomposition in grasslands

    Science.gov (United States)

    Chen, Hongmei; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Gessler, Arthur; Scherer-Lorenzen, Michael; Wirth, Christian; Weigelt, Alexandra

    2016-04-01

    Loss of plant diversity impairs ecosystem functioning. Compared to other well-studied processes, we know little about whether and how plant diversity affects root decomposition, which is limiting our knowledge on biodiversity-carbon cycling relationships in the soil. Plant diversity potentially affects root decomposition via two non-exclusive mechanisms: by providing roots of different substrate quality and/or by altering the soil decomposition environment. To disentangle these two mechanisms, three decomposition experiments using a litter-bag approach were conducted on experimental grassland plots differing in plant species richness, functional group richness and functional group composition (e.g. presence/absence of grasses, legumes, small herbs and tall herbs, the Jena Experiment). We studied: 1) root substrate quality effects by decomposing roots collected from the different experimental plant communities in one common plot; 2) soil decomposition environment effects by decomposing standard roots in all experimental plots; and 3) the overall plant diversity effects by decomposing community roots in their 'home' plots. Litter bags were installed in April 2014 and retrieved after 1, 2 and 4 months to determine the mass loss. We found that mass loss decreased with increasing plant species richness, but not with functional group richness in the three experiments. However, functional group presence significantly affected mass loss with primarily negative effects of the presence of grasses and positive effects of the presence of legumes and small herbs. Our results thus provide clear evidence that species richness has a strong negative effect on root decomposition via effects on both root substrate quality and soil decomposition environment. This negative plant diversity-root decomposition relationship may partly account for the positive effect of plant diversity on soil C stocks by reducing C loss in addition to increasing primary root productivity. However, to fully

  2. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  3. Carbon storage of Mediterranean grasslands

    Directory of Open Access Journals (Sweden)

    Corona, Piermaria

    2016-06-01

    Full Text Available Secondary grasslands are one of the most common vegetation types worldwide. In Europe, and in the Mediterranean basin, human activities have transformed many woodlands into secondary grasslands. Despite their recognized role in the global carbon cycle, very few data are available for estimating the biomass of Mediterranean grasslands. We developed linear regression models in order to predict the biomass of two native Mediterranean grasses (Ampelodesmos mauritanicus and Hyparrhenia hirta and an invasive alien grass (Pennisetum setaceum. Ampelodesmos mauritanicus is very common throughout the Mediterranean basin, mostly on north-facing slopes, H. hirta characterizes thermo-xeric grasslands, while P. setaceum is an alien species that is rapidly spreading along coastal areas. The measured morphometric attributes of individual plants as potential predictors were considered. The validation results corroborate the ability of the established models to predict above ground and total biomass of A. mauritanicus and P. setaceum. We also evaluated the total biomass per hectare for each species. The highest biomass per hectare was found for A. mauritanicus, whereas biomass was higher for H. hirta than for P. setaceum. The replacement of H. hirta by P. setaceum may reduce the total carbon storage in the ecosystem; however, P. setaceum allocates more resources to the roots, thus increasing the more stable and durable pool of carbon in grasslands.Los pastizales secundarios son uno de los tipos de vegetación más comunes en todo el mundo. En Europa y en la cuenca mediterránea, las actividades humanas han transformado muchos bosques en pastizales secundarios. A pesar de su reconocido papel en el ciclo global del carbono, hay muy pocos datos disponibles para la estimación de la biomasa de los pastizales mediterráneos. Hemos desarrollado modelos de regresión lineal con el fin de predecir la biomasa de dos gramíneas nativas del Mediterráneo (Ampelodesmos

  4. Key challenges and priorities for modelling European grasslands under climate change.

    Science.gov (United States)

    Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni

    2016-10-01

    Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research

  5. Impact of weather on dynamics of plant functional groups in an abandoned limestone grassland

    Directory of Open Access Journals (Sweden)

    Zbigniew Dzwonko

    2011-12-01

    Full Text Available We examined to what extend the rate and direction of changes in unmanaged grassland depend on fluctuations in climatic conditions. Vegetation data from permanent plots in a semi-natural grassland in southern Poland collected over 12 years were used. Relations between weather variables, time, and the cover of 41 more frequent species and 14 plant functional groups were analysed. The greatest effect on the dynamics of species and functional groups had precipitation in spring and/or early summer, particularly in the current year. The majority of plant groups were significantly affected also by the temperature in spring and early summer in one of the three previous years. During 12 years, the cover of annuals and biennials, short plants, and plants with small leaves decreased, while the cover of taller plants, plants with larger leaves, and with vegetative spread increased. The analyses suggest that these successional changes were not directly associated with climatic conditions but were affected by them indirectly through interspecific competition. The fluctuations in climatic conditions, chiefly precipitation, had a significant effect on both the composition and the rate of changes in abandoned grassland. The increase in the cover of tall perennial species with broad leaves hindered succession towards woodland despite of the presence of woods in the closed vicinity. It can be expected that during drier periods colonisation of grassland by later successional species could be easier.

  6. Effects of grassland succession on communities of orb-weaving spiders.

    Science.gov (United States)

    Richardson, M L; Hanks, L M

    2009-12-01

    Native grasslands are among the most imperiled of the North American ecosystems, but abandoned agricultural areas may provide suitable habitat for animal taxa that are endemic to grasslands. We studied how species diversity of orb-weaving spiders was influenced by secondary succession of a grassland plant community by monitoring the abundance and species diversity in study plots that were cultivated at 6-yr intervals and left uncultivated in the interim. We tested the hypothesis that local abundance and species diversity of spiders would be positively associated with time since cultivation because plant communities in older habitats would be more architecturally complex. Local abundance of spiders in general was not associated with time since cultivation, but abundance of Mangora gibberosa (Hentz) was positively associated with the abundance of perennial plants. Species richness and diversity of spiders also were positively associated with the abundance of perennial plants and reached a threshold a few years after cultivation. Species diversity of orb-weaving spiders seems to be strongly influenced by species composition of the plant community. Therefore, effective restoration of the structure and function of endemic communities of orb-weaving spiders may depend on preserving endemic grassland plant communities.

  7. Using Elemental Budgets to Determine Effects of Simulated Climate Change on Phosphorus Cycling in a Grassland Ecosystem

    Science.gov (United States)

    Yoo, S.; Paytan, A.; Mellett, T.

    2013-12-01

    The purpose of the Jasper Ridge Global Change Experiment is to find out the effects of climate change on a terrestrial grassland ecosystem. The different treatments include increased carbon dioxide, nitrogen deposition, temperature, and precipitation. A portion of the above ground biomass of each plot was harvested, and an abundant species chosen to analyze. The goal of this project was to investigate the effects of climate change on phosphorus cycling in the grassland vegetation. Total phosphorus content of each sample was determined by combustion and acid digestion along with optical emission spectrometry. Total nitrogen and carbon was determined via flash combustion in an isotope ratio mass spectrometer. This information was combined to evaluate the limitation of phosphorus in each treatment and better understand how climate change may affect phosphorus cycling in terrestrial grasslands.

  8. Evapotranspiration flux partitioning using an Iso-SPAC model in a temperate grassland ecosystem

    Science.gov (United States)

    Wang, P.

    2014-12-01

    To partition evapotranspiration (ET) into soil evaporation and vegetation transpiration (T), a new numerical Iso-SPAC (coupled heat, water with isotopic tracer in Soil-Plant-Atmosphere-Continuum) model was developed and applied to a temperate-grassland ecosystem in central Japan. Several models of varying complexity have been tested with the aim of obtaining the close to true value for the isotope composition of leaf water and transpiration flux. The agreement between the model predictions and observations demonstrates that the Iso-SPAC model with a steady-state assumption for transpiration flux can reproduce seasonal variations of all the surface energy balance components,leaf and ground surface temperature as well as isotope data (canopy foliage and ET flux). This good performance was confirmed not only at diurnal timescale but also at seasonal timescale. Thus, although the non-steady-state behavior of isotope budget in a leaf and isotopic diffusion between leaf and stem or root is exactly important, the steady-state assumption is practically acceptable for seasonal timescale as a first order approximation. Sensitivity analysis both in physical flux part and isotope part suggested that T/ET is relatively insensitive to uncertainties/errors in assigned model parameters and measured input variables, which illustrated the partitioning validity. Estimated transpiration fractions using isotope composition in ET flux by Iso-SPAC model and Keeling plot are generally in good agreement, further proving validity of the both approaches. However, Keeling plot approach tended to overestimate the fraction during an early stage of glowing season and a period just after clear cutting. This overestimation is probably due to insufficient fetch and influence of transpiration from upwind forest. Consequently, Iso-SPAC model is more reliable than Keeling plot approach in most cases.The T/ET increased with grass growth, and the sharp reduction caused by clear cutting was well

  9. Molt and aging criteria for four North American grassland passerines

    Science.gov (United States)

    Pyle, Peter; Jones, Stephanie L.; Ruth, Janet M.

    2008-01-01

    Prairie and grassland habitats in central and western North America have declined substantially since settlement by Europeans (Knopf 1994) and many of the birds and other organisms that inhabit North American grasslands have experienced steep declines (Peterjohn and Sauer 1999; Johnson and Igl 1997; Sauer, Hines, and Fallon 2007). The species addressed here, Sprague’s Pipit (Anthus spragueii), Grasshopper (Ammodramus savannarum) and Baird’s (A. bairdii) sparrows, and Chestnut-collared Longspurs (Calcarius ornatus), are grassland birds that are of special conservation concern throughout their ranges due to declining populations and the loss of the specific grassland habitats required on both their breeding and wintering ranges (Knopf 1994, Davis and Sealy 1998, Davis 2003, Davis 2004, Jones and Dieni 2007). Population-trend data on grassland birds, while clearly showing declines, provides no information on the causes of population declines. Without demographic information (i.e., productivity and survivorship), there are no means to determine when in their life cycle the problems that are creating these declines are occurring, or to determine to what extent population trends are driven by factors that affect birth rates, death rates, or both (DeSante 1995). For migratory birds, population declines may be driven by factors on breeding grounds, during migration, and/or on wintering grounds. Lack of data on productivity and survivorship thus impedes the formulation of effective management and conservation strategies to reverse population declines (DeSante 1992). Furthermore, if deficiencies in survivorship are revealed, management strategies may need to address habitats on both breeding and non-breeding grounds, as well as along migratory pathways. One technique that helps inform management strategies is the biochemical analysis of isotopes and genetic markers, from the sampling of individual feathers from live birds (Smith et al. 2003, Pérez and Hobson 2006

  10. Plotting equation for gaussian percentiles and a spreadsheet program for generating probability plots

    Science.gov (United States)

    Balsillie, J.H.; Donoghue, J.F.; Butler, K.M.; Koch, J.L.

    2002-01-01

    Two-dimensional plotting tools can be of invaluable assistance in analytical scientific pursuits, and have been widely used in the analysis and interpretation of sedimentologic data. We consider, in this work, the use of arithmetic probability paper (APP). Most statistical computer applications do not allow for the generation of APP plots, because of apparent intractable nonlinearity of the percentile (or probability) axis of the plot. We have solved this problem by identifying an equation(s) for determining plotting positions of Gaussian percentiles (or probabilities), so that APP plots can easily be computer generated. An EXCEL example is presented, and a programmed, simple-to-use EXCEL application template is hereby made publicly available, whereby a complete granulometric analysis including data listing, moment measure calculations, and frequency and cumulative APP plots, is automatically produced.

  11. Land use affects the resistance and resilience of carbon dynamics of mountain grassland to extreme drought

    Science.gov (United States)

    Ingrisch, Johannes; Karlowsky, Stefan; Hasibeder, Roland; Anadon-Rosell, Alba; Augusti, Angela; Scheld, Sarah; König, Alexander; Gleixner, Gerd; Bahn, Michael

    2015-04-01

    uptake (meadow 60%, abandoned grassland 25%). After the drought gross primary productivity reached values of control plots within 9 days and 17 days at the meadow and the abandoned site, respectively, resulting in distinctly higher recovery rates at the meadow. From our study we conclude that the managed meadow had a smaller resistance but a higher resilience to extreme drought compared to the abandoned grassland.

  12. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  13. Multitrophic effects of nutrient addition in upland grassland.

    Science.gov (United States)

    Fountain, M T; Brown, V K; Gange, A C; Symondson, W O C; Murray, P J

    2008-06-01

    Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N+L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N+L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N+L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots.The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N+L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence

  14. 6th International Symposium on Recurrence Plots

    CERN Document Server

    Jr, Jr; Ioana, Cornel; Marwan, Norbert

    2016-01-01

    The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems. The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time...

  15. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites

    DEFF Research Database (Denmark)

    Soussana, J.E.; Allard, V.; Pilegaard, Kim

    2007-01-01

    grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems...... a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots...... was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1...

  16. Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment

    Energy Technology Data Exchange (ETDEWEB)

    St. Clair, S.B.; Sudderth, E.; Fischer, M.L.; Torn, M.S.; Stuart, S.; Salve, R.; Eggett, D.; Ackerly, D.

    2009-03-15

    Variability in the magnitude and timing of precipitation is predicted to change under future climate scenarios. The primary objective of this study was to understand how variation in precipitation patterns consisting of soil moisture pulses mixed with intermittent dry down events influence ecosystem gas fluxes. We characterized the effects of precipitation amount and timing, N availability, and plant community composition on whole ecosystem and leaf gas exchange in a California annual grassland mesocosm study system that allowed precise control of soil moisture conditions. Ecosystem CO2 and fluxes increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10 day dry down period following 11 days of variable precipitation inputs strongly depressed net ecosystem CO2 exchange (NEE) across a range of season precipitation totals, and plant community types. Ecosystem respiration (Re), evapotranspiration (ET) and leaf level photosynthesis (Amax) showed greatest sensitivity to dry down periods in low precipitation plots. Nitrogen additions significantly increased NEE, Re and Amax, particularly as water availability was increased. These results demonstrate that N availability and intermittent periods of soil moisture deficit (across a wide range of cumulative season precipitation totals) strongly modulate ecosystem gas exchange.

  17. Aquifer test interpretation using derivative analysis and diagnostic plots

    Science.gov (United States)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  18. Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands.

    Science.gov (United States)

    Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M; Weisser, Wolfgang W; Wilcke, Wolfgang; Schmid, Bernhard

    2010-10-13

    The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.

  19. NPP Grassland: Hays, USA, 1970, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). Two files contain above- and below-ground biomass and productivity data for a mixed prairie grassland, one...

  20. Grassland Management Plan : Necedah National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan summarizes grassland management on Necedah NWR. A description, objectives, desired habitat conditions, management plans, and an evaluation are provided for...

  1. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  2. Increasing biomass in Amazonian forest plots.

    OpenAIRE

    Baker, Timothy R; Phillips, Oliver L; Malhi, Yadvinder; Almeida, Samuel; Arroyo, Luzmila; Di Fiore, Anthony; Erwin, Terry; Higuchi, Niro; Killeen, Timothy J; Laurance, Susan G; Laurance, William F; Lewis, Simon L; Monteagudo, Abel; Neill, David A; Vargas, Percy Núñez

    2004-01-01

    A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has i...

  3. Displaying New Measurements on WDS Orbit Plots

    Science.gov (United States)

    Buchheim, Robert

    2017-04-01

    Students who observe and measure a visual double star often want to see how their measurement compares with the historical record and with the orbit (if one has been determined). This paper describes how PowerPoint’s graphical tools can display a newly-measured data point on the orbit plot from USNO’s 6th Orbit Catalog, and how a simple spreadsheet can transform measurements expressed as (rho,theta) into a Cartesian plot of the sky positions (E, N). This information is presented as a resource for future students.

  4. A Study of Plot in Siavash Story

    OpenAIRE

    Jafari, A.(Université Catholique de Louvain, Louvain-la-Neuve, Belgium)

    2012-01-01

    Plot is the main element of a story based on a temporal chain and causality. Although Siavash story is an epic story, there are some structural elements on the basis of which we should call the first episode of this story âfrom Siavash birth till his emigrationâ a âDramatic storyâ and its second episode âfrom his emigration till being killedâ a âTragic storyâ. Analysing the plot of this story, we can summarize it in three sequences. Every sequence consists of three to five functions and ev...

  5. Half a century of Ramachandran plots.

    Science.gov (United States)

    Carugo, Oliviero; Djinovic-Carugo, Kristina

    2013-08-01

    On the occasion of their fiftieth birthday, it is opportune to review the first half century of Ramachandran plots. In the present review, some of the most relevant aspects of this fifty-year history are summarized, from the original ideas of Gopalasamudram Narayana Ramachandran to subsequent revisions and to applications in structural biology. This will not be a guided walk through five decades of Ramachandran plots, but a commented summary of the lines along which the original ideas evolved and continue to develop, and of their applications.

  6. Problems of Comparative Plotting of The Ship's Position

    Science.gov (United States)

    Stateczny, Andrzej

    In recent years the problem of position plotting in navigation has been dominated by satellite systems, the GPS in particular. These systems are used both at sea (maritime navigation) and in the air (aerial navigation) as well as on land (terrestrial navigation). With the application of satellite systems the position can be plotted within very short spaces of time, in the range of a few or a dozen seconds. Relying exclusively on satellite systems, however, exposes to the danger of losing information in case of average, intentional switch-off, disturbance and possible encoding of informat ion reaching the user. This results in the necessity of having yet another, autonomous system at one's disposal (independent of external information sources) making possible the plotting of position in an autonomous way. These requirements are met by methods of comparative navigation. The object of interest of comparative navigation is plotting the ship's position by comparing a dynamically registered image with a pattern image. The pattern images can be numeric radar charts, sonar or aerial, suitably prepared for comparison with respectively radar, sonar or aerial images. Yet the most frequently registered images at sea will be radar images; the pattern, on the other hand, will be a numeric radar chart generated on the basis of topographic and hydrometeorological data or previous radar observation. The following elements go to make up the process of plotting the ship's position by comparative methods based on radar observation: -transforming the radar image into a shape comparable with the chart, -adapting the sea chart for comparison with the radar image. This aim can be attained by generating a radar chart, -the application of a suitable matching algorithm. The aim of matching algorithms is the designation of the best fitting of the images, in this case of the numeric navigational sea chart and the radar image, -suitable plotting of the ship's position so as to ensure maximum

  7. Does drought legacy alter the recovery of grassland carbon dynamics from drought?

    Science.gov (United States)

    Bahn, Michael; Hasibeder, Roland; Fuchslueger, Lucia; Ingrisch, Johannes; Ladreiter-Knauss, Thomas; Lair, Georg; Reinthaler, David; Richter, Andreas; Kaufmann, Rüdiger

    2017-04-01

    Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Isotopic pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing

  8. Abundance of diurnal raptors on open space grasslands in an urbanized landscape

    Science.gov (United States)

    Berry, M.E.; Bock, C.E.; Haire, S.L.

    1998-01-01

    We conducted point counts of diurnal raptors on Boulder, Colorado, grasslands for three winters and summers, and compared results to landscape features of the count areas. Four wintering species were scarce on plots that included significant amounts of urban habitat, with a critical landscape threshold at about 5-7% urbanization: Bald Eagle (Haliaeetus leucocephalus), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (B. lagopus), and Prairie Falcon (Falco mexicanus). Counts of the first three species also were positively correlated with proximity of the count plots to the nearest colony of black-tailed prairie dogs (Cynomys ludovicianus). Two breeding species, the Red-tailed Hawk (B. jamaicensis) and Swainson's Hawk (B. swainsoni), were more abundant on plots dominated by lowland hayfields and tallgrass prairies, as opposed to upland mixed and shortgrass prairies. They, along with the ubiquitous American Kestrel (Falco sparverius), were not sensitive to the amounts of urbanization (up to 30%) that occurred in the landscapes sampled. Results of this study suggest that urban open space grasslands can support sizable populations of most diurnal raptors, as long as prey populations persist, but that some species are highly sensitive to landscape urbanization.

  9. Phasor plots of luminescence decay functions

    Energy Technology Data Exchange (ETDEWEB)

    Berberan-Santos, Mário N., E-mail: berberan@tecnico.ulisboa.pt

    2015-03-01

    Highlights: • First complete study of the phasor plots of a sum of two exponentials (2E). • The existence of a 2E limiting curve (outer boundary) is demonstrated. • A generalization of the lever rule is presented. • Virtual phasor concept. • Study of several decay laws displaying a diversity of patterns. - Abstract: Luminescence decay functions describe the time dependence of the intensity of radiation emitted by electronically excited species. Decay phasor plots (plots of the Fourier sine transform vs. the Fourier cosine transform, for one or several angular frequencies) are being increasingly used in fluorescence, namely in lifetime imaging microscopy (FLIM). In this work, a detailed study of the sum of two exponentials decay function is carried out revealing that sub-exponential, super-exponential and unimodal decays have different phasor signatures. A generalization of the lever rule is obtained, and the existence of an outermost phasor curve corresponding to intermediate-like decays is demonstrated. A study of the behavior of more complex decay functions (sum of three exponentials, stretched and compressed exponentials, phosphorescence with reabsorption and triplet–triplet annihilation, fluorescence with quantum beats) allows concluding that a rich diversity of phasor plot patterns exists. In particular, super-exponential decays can present complex shapes, spiraling at high frequencies. The concept of virtual phasor is also introduced.

  10. Purging Plot from Film and Literature Courses.

    Science.gov (United States)

    Peavler, Terry J.

    1983-01-01

    Argues that film and literature courses must get beyond discussions of plot to explorations of narrative perspective and structure, communication techniques, and critical methodologies in order to give students an awareness of the inherent natures, limitations, and possibilities of film and literature. (DMM)

  11. Comparing Box Plot Distributions: A Teacher's Reasoning

    Science.gov (United States)

    Pfannkuch, Maxine

    2006-01-01

    Drawing conclusions from the comparison of datasets using informal statistical inference is a challenging task since the nature and type of reasoning expected is not fully understood. In this paper a secondary teacher's reasoning from the comparison of box plot distributions during the teaching of a Year 11 (15-year-old) class is analyzed. From…

  12. Activities: Exploring Data with Box Plots.

    Science.gov (United States)

    Bryan, Elizabeth H.

    1988-01-01

    This set of activity sheets requires students to organize and display data with a box-and-whiskers graph. Students use the plot as a summary display to detect patterns and to highlight the important features of the data for purposes of comparison. (PK)

  13. Historical growth plots in the Pacific Southwest

    Science.gov (United States)

    Lawrence A. Rabin; William W. Oliver; Robert F. Powers; Martin W. Ritchie; Matt D. Busse; Eric E. Knapp

    2009-01-01

    In the past, researchers from the Pacific Southwest Research Station (PSW) undertook forest growth studies to evaluate how best to manage timber resources. However, historical and future data collected at PSW growth plots also have the potential to increase our understanding of the ecological processes occurring in our forests and shed light on national issues of...

  14. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  15. Weed abundance is positively correlated with native plant diversity in grasslands of southern Australia.

    Science.gov (United States)

    Martín-Forés, Irene; Guerin, Greg R; Lowe, Andrew J

    2017-01-01

    Weeds are commonly considered a threat to biodiversity, yet interactions between native and exotic species in grasslands are poorly understood and reported results vary depending on the spatial scale of study, the factors controlled for and the response variables analysed. We tested whether weed presence and abundance is related to declines in biodiversity in Australian grasslands. We employed existing field data from 241 plots along a disturbance gradient and correlated species richness, cover and Shannon diversity for natives and exotics, controlling for seasonal rainfall, climatic gradients and nutrient status. We found no negative relationships in terms of emergent diversity metrics and occupation of space, indeed, many positive relationships were revealed. When split by land-use, differences were found along the disturbance gradient. In high-moderately disturbed grasslands associated with land-uses such as cropping and modified pastures, positive associations were enhanced. Tolerance and facilitation mechanisms may be involved, such as complementary roles through different life history strategies: the exotic flora was dominated mainly by annual grasses and herbs whereas the native flora represented more diverse growth-forms with a higher proportion of perennials. The positive relationships existing between native and exotic plant species in high-moderately disturbed grasslands of South Australia are most likely due to facilitation through different strategies in occupation of space given that the effect of habitat suitability was controlled for by including environmental and disturbance factors. Consequently, although particular weeds may negatively impact biodiversity, this cannot be generalised and management focusing on general weed eradication in grasslands might be ineffectual.

  16. Tiller dynamics and self-thinning in grassland habitats.

    Science.gov (United States)

    Lonsdale, W M; Watkinson, A R

    1983-12-01

    The tiller dynamics and weight-density relationships of grasses were investigated in sown monocultures and in an established grassland both in full light and under shade. Monocultures of Festuca pratensis and Lolium perenne sown at high densities conformed to the-3/2 Power Law during establishment, but once the maximum standing had been reached the trajectory of the thinning line switched to a slope of approximately-1 when weight was plotted against density on logarithmic scales. Subsequently the populations showed a cyclical pattern of tiller weight and density bound by a line related to the maximum standing crop but also close to the-3/2 thinning line.The natural populations also showed a cyclical pattern of tiller weight and density at combinations very similar to those in the sown monocultures and close to a thinning line with an intercept (log c) of 4.4-4.7 assuming the generality of the -3/2 Power Law as w=cN -3/2. Tiller dynamics were very similar on all the plots despite differences in the species composition of each plot. The greatest seasonal variation in tiller number occurred under the shade of birch trees, perhaps due to resource depletion caused by the tree canopy during late summer and the presence of tree litter during the winter. The artificial shade treatment had little effect on plant yield but caused a significant change in the composition of the vegetation. It is suggested that mixed populations of grasses behave in essentially the same fashion as monocultures and that vegetational change might be analysed as a multispecies participation in a mutual cyclical proces of tiller death and regeneration.

  17. Woody plant encroachment into grasslands: spatial patterns of functional group distribution and community development.

    Science.gov (United States)

    Liu, Feng; Archer, Steven R; Gelwick, Frances; Bai, Edith; Boutton, Thomas W; Wu, Xinyuan Ben

    2013-01-01

    Woody plant encroachment into grasslands has been globally widespread. The woody species invading grasslands represent a variety of contrasting plant functional groups and growth forms. Are some woody plant functional types (PFTs) better suited to invade grasslands than others? To what extent do local patterns of distribution and abundance of woody PFTs invading grasslands reflect intrinsic topoedaphic properties versus plant-induced changes in soil properties? We addressed these questions in the Southern Great Plains, United States at a subtropical grassland known to have been encroached upon by woody species over the past 50-100 years. A total of 20 woody species (9 tree-statured; 11 shrub-statured) were encountered along a transect extending from an upland into a playa basin. About half of the encroaching woody plants were potential N2-fixers (55% of species), but they contributed only 7% to 16 % of the total basal area. Most species and the PFTs they represent were ubiquitously distributed along the topoedaphic gradient, but with varying abundances. Overstory-understory comparisons suggest that while future species composition of these woody communities is likely to change, PFT composition is not. Canonical correspondence analysis (CCA) ordination and variance partitioning (Partial CCA) indicated that woody species and PFT composition in developing woody communities was primarily influenced by intrinsic landscape location variables (e.g., soil texture) and secondarily by plant-induced changes in soil organic carbon and total nitrogen content. The ubiquitous distribution of species and PFTs suggests that woody plants are generally well-suited to a broad range of grassland topoedaphic settings. However, here we only examined categorical and non-quantitative functional traits. Although intrinsic soil properties exerted more control over the floristics of grassland-to-woodland succession did plant modifications of soil carbon and nitrogen concentrations, the latter

  18. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  19. Some insights on grassland health assessment based on remote sensing.

    Science.gov (United States)

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  20. Some Insights on Grassland Health Assessment Based on Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dandan Xu

    2015-01-01

    Full Text Available Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  1. Prescribed burning supports grassland biodiversity - A multi-species study

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2017-04-01

    During ancient times, fire was an important factor shaping European landscapes. Nowadays, prescribed burning can be one of the most effective conservation tools for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. In a prescribed burning experiment, we studied the effects of fire on dry alkaline grasslands. We tested whether autumn prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in Hungary: in three sites, prescribed burning was applied in November 2011, while three sites remained unburnt. We studied the effects of fire on soil characteristics, plant biomass and on the vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soluble salt content increased significantly in the burnt sites, but soil pH, organic matter, potassium and phosphorous did not change. We found that prescribed fire had several positive effects from the nature conservation viewpoint. Diversity and the number of flowering shoots were higher, and the cover of the dominant grass was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control ones. Our findings suggest that prescribed burning fire did not harm arthropods; species-level analyses showed that out of the most abundant invertebrate species, the abundance of ten was not affected, one decreased and one increased after burning. Our findings highlight that mosaic prescribed fire is a viable management tool in open landscapes, because it supports plant diversity and does not threaten arthropods.

  2. An exploratory drilling exhaustion sequence plot program

    Science.gov (United States)

    Schuenemeyer, J.H.; Drew, L.J.

    1977-01-01

    The exhaustion sequence plot program computes the conditional area of influence for wells in a specified rectangular region with respect to a fixed-size deposit. The deposit is represented by an ellipse whose size is chosen by the user. The area of influence may be displayed on computer printer plots consisting of a maximum of 10,000 grid points. At each point, a symbol is presented that indicates the probability of that point being exhausted by nearby wells with respect to a fixed-size ellipse. This output gives a pictorial view of the manner in which oil fields are exhausted. In addition, the exhaustion data may be used to estimate the number of deposits remaining in a basin. ?? 1977.

  3. Can the box plot be improved?

    OpenAIRE

    Chamnein Choonpradub; Don McNeil

    2005-01-01

    Invented by Spear in 1952 and popularized by Tukey in 1977, the box plot is widely used for displaying and comparing samples of continuous observations. Despite its popularity, it is less effective for showing shape behaviour of distributions, particularly bimodality. Using robust estimators of data skewness and kurtosis to classify the distribution into categories, we suggest a simple enhancement for indicating bimodality, central peakedness, and skewness. We also suggest a new graphical met...

  4. Madagascar's grasses and grasslands: anthropogenic or natural?

    Science.gov (United States)

    Besnard, Guillaume; Forest, Félix; Malakasi, Panagiota; Moat, Justin; Clayton, W. Derek; Ficinski, Paweł; Savva, George M.; Nanjarisoa, Olinirina P.; Razanatsoa, Jacqueline; Randriatsara, Fetra O.; Kimeu, John M.; Luke, W. R. Quentin; Kayombo, Canisius; Linder, H. Peter

    2016-01-01

    Grasses, by their high productivity even under very low pCO2, their ability to survive repeated burning and to tolerate long dry seasons, have transformed the terrestrial biomes in the Neogene and Quaternary. The expansion of grasslands at the cost of biodiverse forest biomes in Madagascar is often postulated as a consequence of the Holocene settlement of the island by humans. However, we show that the Malagasy grass flora has many indications of being ancient with a long local evolutionary history, much predating the Holocene arrival of humans. First, the level of endemism in the Madagascar grass flora is well above the global average for large islands. Second, a survey of many of the more diverse areas indicates that there is a very high spatial and ecological turnover in the grass flora, indicating a high degree of niche specialization. We also find some evidence that there are both recently disturbed and natural stable grasslands: phylogenetic community assembly indicates that recently severely disturbed grasslands are phylogenetically clustered, whereas more undisturbed grasslands tend to be phylogenetically more evenly distributed. From this evidence, it is likely that grass communities existed in Madagascar long before human arrival and so were determined by climate, natural grazing and other natural factors. Humans introduced zebu cattle farming and increased fire frequency, and may have triggered an expansion of the grasslands. Grasses probably played the same role in the modification of the Malagasy environments as elsewhere in the tropics. PMID:26791612

  5. Grassland habitat monitoring plan [Sand Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Sand Lake National Wildlife Refuge Grassland Habitat Management Plan provides vision and specific guidance on managing grassland habitats for resources of...

  6. 2009 Field Season : Annual Grassland Vegetation Monitoring : Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An annual grassland monitoring plan was initiated on the grassland units at Bear River Migratory Bird Refuge during the 2009 field season. The annual monitoring plan...

  7. Grassland Management Plan Union Slough National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Northern Tallgrass Prairie is an endangered ecosystem, and in turn, grassland dependent birds and some forbs are in serious peril. The Grassland Management Plan...

  8. Grassland Management Plan : Swan Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Grassland Management Plan for Swan Lake National Wildlife Refuge provides an overview of the Refuge, a list of special considerations affecting grassland...

  9. Ecosystem impacts of compost and manure applications to California grazed grassland soils

    Science.gov (United States)

    DeLonge, M. S.; Silver, W. L.

    2012-12-01

    Organic matter amendments, such as compost and manure, are often applied to grasslands to improve soil conditions and enhance net primary productivity. It has been proposed that this land management strategy can sequester carbon (C) in soils and may therefore contribute to climate change mitigation. However, the net mitigation potential of organic amendments depends in part on the ecosystem response following land-application, which is likely to vary with the amendment chemical quality (C, N, C:N). To investigate the differences in ecosystem response to soil amendments of various qualities, we established research plots on three grazed annual grasslands in northern California. The study sites were sampled for soil chemical and physical properties (bulk density, temperature, and moisture), plant community composition, and peak season net primary productivity prior to and following treatment applications. In October 2011, before the rainy season, we applied a thin layer of organic amendments to the study plots. At each site, three replicate plots were treated with fresh manure (1.2 % N, 15.8 % C, C:N = 13.5), three plots were treated with a commercial plant-waste compost (2.4 % N, 26.6 % C, C:N = 11.1), and three plots were left untreated as controls. At one site, 3 additional plots received a thin layer of compost with a lower N concentration and a higher C:N ratio (1.9 % N, 27.4 % C, C:N = 14.5). All plots were sampled for greenhouse gas emissions (N2O, CH4, and CO2, n=3 per plot) using vented chambers shortly after the organic matter was applied, and then intensively following three rain events throughout the rainy season. Results showed that dry amendments were associated with negligible trace gas fluxes, but that these fluxes increased after rain events. Nitrous oxide emissions increased slightly after the first rain event and reached peak levels (approximately 20 ng N cm-1 h-1 for the manure and high N compost only) after three days, following second rain event

  10. The plant communities and species richness of the Alepidea longifolia- Monocymbium ceresiiforme High-altitude Grassland of northern KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    H.C. Eckhardt

    1996-02-01

    Full Text Available As part of a vegetation survey of the grasslands of northern KwaZulu-Natal, this survey was conducted within the Alepidea longifolia-Monocymbium ceresiiforme grassland of high altitudes. Releves were compiled in 156 stratified random sample plots. The data set was classified using TWINSPAN. Subsequent refinement by Braun-Blanquet procedures produced 15 plant communities. Species richness was determined for each community. According to naturalness and species richness two communities were selected as being of conservation importance. An ordination algorithm (DECORANA was also applied to describe the relationships between the vegetation units and the physical environment.

  11. Black-tailed prairie dogs, cattle, and the conservation of North America's arid grasslands.

    Directory of Open Access Journals (Sweden)

    Rodrigo Sierra-Corona

    Full Text Available Prairie dogs (Cynomys spp. have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.

  12. Selected Bibliography On Southern Range Management

    Science.gov (United States)

    R. S. Campbell; L. K. Halls; H. P. Morgan

    1963-01-01

    The purpose of this bibliography is to list important publications relating directly to southern ranges, the domestic livestock and wildlife produced thereon, and the management of these lands, livestock, and wildlife. Range is defined as natural grassland, savannah, or forest that supports native grasses, forbs, or shrubs suitable as forage for livestock and game....

  13. 9 CFR 108.3 - Preparation of plot plans.

    Science.gov (United States)

    2010-01-01

    ... on the plot plan the use of immediate adjacent properties such as, residential area, pasture, box... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Preparation of plot plans. 108.3... LICENSED ESTABLISHMENTS § 108.3 Preparation of plot plans. Plot plans shall show all of the buildings on a...

  14. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe

    NARCIS (Netherlands)

    Flechard, C.; Ambus, P.; Skiba, U.; Rees, R.M.; Hensen, A.; Amstel, van A.R.; Pol, van den A.; Soussana, J.F.; Jones, M.; Clifton-Brown, J.C.; Rachi, A.; Horvath, L.; Neftel, A.; Jocher, M.; Ammann, C.R.; Leifeld, J.; Fuhrer, J.; Calanca, P.; Thalman, E.; Pilegaard, K.; Marco, Di G.S.; Campbell, C.; Nemitz, E.; Hargreaves, K.J.; Levy, P.E.; Ball, B.; Jones, S.K.; Bulk, van de W.C.M.; Groot, T.; Blom, M.; Domingues, R.; Kasper, G.J.; Allard, V.; Ceschia, E.; Cellier, P.; Laville, P.; Henault, C.; Bizouard, F.; Abdalla, M.; Williams, M.; Baronti, S.; Berretti, F.; Grosz, B.

    2007-01-01

    Soil/atmosphere exchange fluxes of nitrous oxide were monitored for a 3-year period at 10 grassland sites in eight European countries (Denmark, France, Hungary, Ireland, Italy, The Netherlands, Switzerland and United Kingdom), spanning a wide range of climatic, environmental and soil conditions.

  15. The quantification of rangeland condition in a semi-arid grassland of ...

    African Journals Online (AJOL)

    The degradation gradient technique was used to quantify rangeland .condition in areas ranging from poor, trampled areas close to watering points to well managed areas in a semi-arid. sweet grassland of southern Africa. Ecological values were linked to species by means of their individual positions on the degradation ...

  16. Nesting success of grassland and savanna birds on reclaimed surface coal mines of the midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Galligan, E.W.; DeVault, T.L.; Lima, S.L. [Indiana State University, Terre Haute, IN (United States)

    2006-12-15

    Reclaimed surface coal mines in southwestern Indiana support many grassland and shrub/savanna bird species of conservation concern. We examined the nesting success of birds on these reclaimed mines to assess whether such 'unnatural' places represent productive breeding habitats for such species. We established eight study sites on two large, grassland-dominated mines in southwestern Indiana and classified them into three categories (open grassland, shrub/savanna, and a mixture of grassland and shrub/savanna) based on broad vegetation and landscape characteristics. During the 1999 and 2000 breeding seasons, we found and monitored 911 nests of 31 species. Daily nest survival for the most commonly monitored grassland species ranged from 0.903 (Dickcissel, Spiza americana) to 0.961 (Grasshopper Sparrow, Ammodramus savannarum). Daily survival estimates for the dominant shrub/savanna nesting species ranged from 0.932 (Brown Thrasher, Toxostoma rufum) to 0.982 (Willow Flycatcher, Empidonax traillii). Vegetation and landscape effects on nesting success were minimal, and only Eastern Meadowlarks (Sturnella magna) showed a clear time-of-season effect, with greater nesting success in the first half of the breeding season. Rates of Brown-headed Cowbird (Molothrus ater) parasitism were only 2.1% for grassland species and 12.0% for shrub/savanna species. The nesting success of birds on reclaimed mine sites was comparable to that in other habitats, indicating that reclaimed habitats on surface mines do not necessarily represent reproductive traps for birds.

  17. Bird communities and biomass yields in potential bioenergy grasslands.

    Science.gov (United States)

    Blank, Peter J; Sample, David W; Williams, Carol L; Turner, Monica G

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  18. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  19. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren

    2011-01-01

    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... and sub-plot by whole-plot interactions from the rest. Further we show how to construct split-plot designs of projectivity P≥3. We also introduce a new class of split-plot designs with mirror image pairs constructed from non-geometric Plackett–Burman designs. The design properties of such designs are very...

  20. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  1. Grassland renovation in the Netherlands; agronomic, environmetal and economic issues

    NARCIS (Netherlands)

    Schils, R.L.M.; Aarts, H.F.M.; Bussink, D.W.; Conijn, J.G.; Corre, V.J.; Dam, van A.M.; Hoving, I.E.; Meer, van der H.G.; Velthof, G.L.

    2007-01-01

    Experimental studies into the effects of grassland renovation on environmental and agronomic parameters are scarce in the Netherlands. The effects of grassland renovation have been estimated for the three cases of permanent grassland on sand, clay and peat soil, and an additional case for a

  2. Appreciation of the functions of grasslands by Irish stakeholders

    NARCIS (Netherlands)

    Hennessy, D.; Pol-van Dasselaar, van den A.

    2014-01-01

    The European project MultiSward studied the appreciation of different functions of grasslands by European stakeholders. This paper describes the importance of grasslands for stakeholders in Ireland. Ireland currently has approximately 4.6 million ha of grassland, which is 90% of the total utilized

  3. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  4. Predation drives nesting success in moist highland grasslands: the ...

    African Journals Online (AJOL)

    By focusing on process-oriented data rather than inventory-type data, this study provides a robust understanding of the effects of agricultural management on grassland bird reproductive output in the moist highland grasslands (MHGs) of South Africa. Four-hundred and four nests of 12 grassland-breeding bird species were ...

  5. Negative global phosphorus budgets challenge sustainable intensification of grasslands

    NARCIS (Netherlands)

    Sattari, S.Z.; Bouwman, A.F.|info:eu-repo/dai/nl/090428048; Rodríquez, R. Martinez; Beusen, A.H.W.|info:eu-repo/dai/nl/109357302; van Ittersum, M.K.

    2016-01-01

    Grasslands provide grass and fodder to sustain the growing need for ruminant meat and milk. Soil nutrients in grasslands are removed through withdrawal in these livestock products and through animal manure that originates from grasslands and is spread in croplands. This leads to loss of soil

  6. Negative global phosphorus budgets challenge sustainable intensification of grasslands

    NARCIS (Netherlands)

    Sattari, S.Z.; Bouwman, A.F.; Martinez Rodríguez, R.; Beusen, A.H.W.; Ittersum, Van M.K.

    2016-01-01

    Grasslands provide grass and fodder to sustain the growing need for ruminant meat and milk. Soil nutrients in grasslands are removed through withdrawal in these livestock products and through animal manure that originates from grasslands and is spread in croplands. This leads to loss of soil

  7. Effects of compost and manure additions on the greenhouse gas dynamics of managed grasslands

    Science.gov (United States)

    DeLonge, M. S.; Silver, W. L.

    2013-12-01

    Grasslands cover approximately 30% of the terrestrial land surface, and have significant potential to increase soil C storage and thus lower atmospheric CO2 concentrations. Organic matter amendments (e.g., compost, manure) have been shown to be effective at increasing grassland soil C both through direct addition and by increasing net primary productivity. However, organic matter additions can also increase N2O and CH4 fluxes. The effects of organic matter amendments on both soil C and greenhouse gas emissions are dependent on their physical and chemical qualities. To explore the impacts of organic matter amendments of different chemical and physical qualities on soil C and greenhouse gas emissions we established research plots on three managed annual grasslands in California. Three replicate blocks were established at each site and included an untreated control, a manure treatment, and a compost treatment. At one site, an additional compost with a lower nitrogen content was also tested. In October 2011, a 1 cm layer of the designated amendment was added to each plot. All plots were sampled for soil (C and N, bulk density, temperature, moisture) and plant (community, aboveground biomass) properties, prior to and for two years following treatment. Plots were also sampled intensively for N2O, CH4, and CO2 fluxes using static chambers on over 35 days throughout the two rainy seasons, where sampling days were selected to target pulses following rain events. Results show that the amendments differentially affected soil C and greenhouse gases among the treatments. One year after treatment, C concentrations in the top 10 cm of soils had increased at all three sites by a mean of 0.5-1% on plots that received either compost treatment, but not on those that received manure. Lower in the profile (10-30 cm), C concentrations were increased by a smaller amount (<0.3%) and only in two of the sites. The untreated grassland soils were a small source of N2O during the first few

  8. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species...

  9. COENOLOGICAL SHIFT FOLLOWING FERTILIZATION IN MEDITERRANEAN GRASSLAND

    Directory of Open Access Journals (Sweden)

    ALESSANDRO SERAFINI SAULI

    2006-05-01

    Full Text Available In Rome both meadows of CentraI-European affinity and Mediterranean dry grasslands are presento We studied a site (Parco Regionale Urbano de] Pineto in Rome with very diverse vegetation, where species belonging to both coenologica] groups oceur. Wc fertilized a grassland with a combination of phosphorus (P and nitrogen (N. After fertilization diagDostie species of Helianthemetea guttati (Thcrophytes dccrease while species of MolinioArrhenatheretea (Hemicriptophytes increase. In a climate as that of Rome, transition between Mediterranean (with summer drought and Central European (without summer drought, nutrients availability modulates the distribution of vegetation Classes with respectively Mediterranean or Central-Europe affinities.

  10. Arthropod fauna on grassland-heathland associations under different grazing managements with domestic ruminants.

    Science.gov (United States)

    Rosa García, Rocío; Ocharan, Francisco José; García, Urcesino; Osoro, Koldo; Celaya, Rafael

    2010-03-01

    The effects of two grazer species (cattle or sheep) and two flock types (single or mixed with goats) on vegetation and arthropod fauna were studied in a factorial design on eight plots which comprised two thirds of mechanically cleared heathland and one third of improved ryegrass-clover grassland. After six grazing seasons, the shrubland areas were dominated by gorse (Ulex gallii) in all treatments. Herbaceous cover was higher under mixed than under single grazing, and under sheep than under cattle grazing. Higher captures of Opiliones, Julida, Lithobiomorpha, Microcoryphia and Carabidae were recorded in shrublands than in grasslands, while the reverse was observed for Linyphiidae, Lycosidae and Hemiptera. Within shrublands, fauna responded to the flock type but not to the grazer species. More arthropod groups favoured the patchier areas with higher herbaceous biomass generated by mixed herds with goats. Within grasslands, species-specific responses to the grazer species were observed. Mixed grazing schemes which include goats within partially improved heathlands could contribute to maintain higher biodiversity levels in these marginal areas. Copyright 2009 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Can the box plot be improved?

    Directory of Open Access Journals (Sweden)

    Chamnein Choonpradub

    2005-05-01

    Full Text Available Invented by Spear in 1952 and popularized by Tukey in 1977, the box plot is widely used for displaying and comparing samples of continuous observations. Despite its popularity, it is less effective for showing shape behaviour of distributions, particularly bimodality. Using robust estimators of data skewness and kurtosis to classify the distribution into categories, we suggest a simple enhancement for indicating bimodality, central peakedness, and skewness. We also suggest a new graphical method for displaying confidence intervals when comparing several samples of continuous data.

  12. The potential of small-Unmanned Aircraft Systems for the rapid detection of threatened unimproved grassland communities using an Enhanced Normalized Difference Vegetation Index

    Science.gov (United States)

    Strong, Conor J.; Llewellyn, Dan

    2017-01-01

    The loss of unimproved grassland has led to species decline in a wide range of taxonomic groups. Agricultural intensification has resulted in fragmented patches of remnant grassland habitat both across Europe and internationally. The monitoring of remnant patches of this habitat is critically important, however, traditional surveying of large, remote landscapes is a notoriously costly and difficult task. The emergence of small-Unmanned Aircraft Systems (sUAS) equipped with low-cost multi-spectral cameras offer an alternative to traditional grassland survey methods, and have the potential to progress and innovate the monitoring and future conservation of this habitat globally. The aim of this article is to investigate the potential of sUAS for rapid detection of threatened unimproved grassland and to test the use of an Enhanced Normalized Difference Vegetation Index (ENDVI). A sUAS aerial survey is undertaken at a site nationally recognised as an important location for fragmented unimproved mesotrophic grassland, within the south east of England, UK. A multispectral camera is used to capture imagery in the visible and near-infrared spectrums, and the ENDVI calculated and its discrimination performance compared to a range of more traditional vegetation indices. In order to validate the results of analysis, ground quadrat surveys were carried out to determine the grassland communities present. Quadrat surveys identified three community types within the site; unimproved grassland, improved grassland and rush pasture. All six vegetation indices tested were able to distinguish between the broad habitat types of grassland and rush pasture; whilst only three could differentiate vegetation at a community level. The Enhanced Normalized Difference Vegetation Index (ENDVI) was the most effective index when differentiating grasslands at the community level. The mechanisms behind the improved performance of the ENDVI are discussed and recommendations are made for areas of future

  13. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  14. GHG Fluxes in semi-natural grasslands in the Pyrenees

    Science.gov (United States)

    Debouk, Haifa; Altimir, Nuria; Ribas, Angela; Ibañez, Mercedes; Sebastià, Teresa

    2015-04-01

    Mountain areas are identified by the IPCC report (2013) as particularly sensitive to climate change. The need to understand mountain grasslands is crucial since these ecosystems can act as both sinks and sources of CO2. Investigating CH4 and N2O fluxes is important because they can offset potential CO2 sequestration. While most studies have been focusing on CO2, the knowledge on the temporal and spatial variability of CH4 and N2O, particularly in semi-natural mountain grasslands, is scarce. This study describes the magnitude and range of variability of the fluxes of CO2, N2O, and CH4 from four semi-natural pastures in the Pyrenees across an altitudinal gradient (1026 to 2436 m a.s.l.) during the growth period in 2012 and 2013. We measured GHG fluxes of the grassland during both light and dark conditions in the study sites using a photoacoustic field gas-monitor (INNOVA 1412, LumaSense Technologies). After completing the GHG measurements, we collected vegetation samples for the estimation of above-ground and below-ground biomass and separated them into functional groups and species. We present here the analysis of the relationship between GHG fluxes and above-ground biomass including the contribution of the relative abundance of plant functional types. Our preliminary results showed a clear seasonal pattern of GHG fluxes. We observed a negative impact of the summer period on the GHG fluxes, which was mostly pronounced in the CO2. We will further elaborate in-depth the effect of the temporal and spatial variability on the fluxes of CO2, N2O and CH4. Also, we will present the relationship between the GHG fluxes and the contribution of the vegetation in terms of the relative abundance of different plant functional types.

  15. Holey buckets! Monitoring plot-scale runoff

    Science.gov (United States)

    Rupp, D. E.; Stewart, R. D.; Abou Najm, M. R.; Selker, J. S.; Selker, F.; Van De Giesen, N.

    2011-12-01

    Measurement of plot-scale surface runoff is commonly achieved by diverting flow through a flume or tipping bucket system, or into a storage tank, such as bucket. The principle advantages of the "bucket method" are relative simplicity and low cost. The principle drawback is that the bucket requires frequent emptying during heavy runoff, unless the bucket volume is very large. As a solution to the problem of emptying the bucket while still retaining the properties of simplicity and economy, we used a holey bucket. Our "bucket" is vertical 4"-diameter ABS pipe, sealed at the bottom, and with holes along the side of the pipe. A screen in the pipe catches debris that could block the holes. The holes' diameters and locations were chosen to capture both low (100 L min-1) flows. Runoff is diverted into the top of the pipe. The runoff rate is determined from the water level and the rate of change in water level: the water level gives the flow rate out of the submerged holes (using Torricelli's Law) and the change in water level gives the rate of change in storage in the pipe. The runoff is calculated as the sum of the hole discharge and the rate of change in storage. A calibration parameter is applied to account for departures from assumptions of the theory. The design is currently being utilized to monitor runoff from experimental plots on a rural hillslope in Chile.

  16. Breeding biology and nest-site selection of red-tailed hawks in an altered desert grassland

    Science.gov (United States)

    Hobbs, R.J.; DeStefano, S.; Halvorson, W.L.

    2006-01-01

    Red-tailed Hawks (Buteo jamaicensis) have expanded their range as trees have invaded formerly-open grasslands. Desert grasslands of southern Arizona have been invaded by mesquite trees (Prosopis velutina) since Anglo-American settlement and now support a large population of Red-tailed Hawks. We studied a population of Red-tailed Hawks in an altered desert grassland in southern Arizona. Our objectives were to determine what environmental characteristics influence Red-tailed Hawk habitat selection in mesquite-invaded desert grasslands and to evaluate the habitat quality of these grasslands for Red-tailed Hawks based on nesting density, nest success, and productivity. Red-tailed Hawks had 86% (95% C.I. = 73-99) nest success and 1.82 young per breeding pair (95% C.I. = 1.41-2.23). Nesting density was 0.15 (95% CI = 0.08-0.21) breeding pairs/km2 and the mean nearest-neighbor distance was 1.95 km (95% C.I. = 1.74-2.16). Red-tailed Hawks selected nest-sites with taller nest-trees and greater tree height and cover than were available at random. Mesquite trees in desert grasslands provide abundant potential nesting structures for Red-tailed Hawks. ?? 2006 The Raptor Research Foundation, Inc.

  17. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass.

    Science.gov (United States)

    Vescovo, Loris; Wohlfahrt, Georg; Balzarolo, Manuela; Pilloni, Sebastian; Sottocornola, Matteo; Rodeghiero, Mirco; Gianelle, Damiano

    2012-04-10

    This article examines the possibility of exploiting ground reflectance in the near-infrared (NIR) for monitoring grassland phytomass on a temporal basis. Three new spectral vegetation indices (infrared slope index, ISI; normalized infrared difference index, NIDI; and normalized difference structural index, NDSI), which are based on the reflectance values in the H25 (863-881 nm) and the H18 (745-751 nm) Chris Proba (mode 5) bands, are proposed. Ground measurements of hyperspectral reflectance and phytomass were made at six grassland sites in the Italian and Austrian mountains using a hand-held spectroradiometer. At full canopy cover, strong saturation was observed for many traditional vegetation indices (normalized difference vegetation index (NDVI), modified simple ratio (MSR), enhanced vegetation index (EVI), enhanced vegetation index 2 (EVI 2), renormalized difference vegetation index (RDVI), wide dynamic range vegetation index (WDRVI)). Conversely, ISI and NDSI were linearly related to grassland phytomass with negligible inter-annual variability. The relationships between both ISI and NDSI and phytomass were however site specific. The WinSail model indicated that this was mostly due to grassland species composition and background reflectance. Further studies are needed to confirm the usefulness of these indices (e.g. using multispectral specific sensors) for monitoring vegetation structural biophysical variables in other ecosystem types and to test these relationships with aircraft and satellite sensors data. For grassland ecosystems, we conclude that ISI and NDSI hold great promise for non-destructively monitoring the temporal variability of grassland phytomass.

  18. Evidence of physiological decoupling from grassland ecosystem drivers by an encroaching woody shrub.

    Directory of Open Access Journals (Sweden)

    Jesse B Nippert

    Full Text Available Shrub encroachment of grasslands is a transformative ecological process by which native woody species increase in cover and frequency and replace the herbaceous community. Mechanisms of encroachment are typically assessed using temporal data or experimental manipulations, with few large spatial assessments of shrub physiology. In a mesic grassland in North America, we measured inter- and intra-annual variability in leaf δ(13C in Cornus drummondii across a grassland landscape with varying fire frequency, presence of large grazers and topographic variability. This assessment of changes in individual shrub physiology is the largest spatial and temporal assessment recorded to date. Despite a doubling of annual rainfall (in 2008 versus 2011, leaf δ(13C was statistically similar among and within years from 2008-11 (range of -28 to -27‰. A topography*grazing interaction was present, with higher leaf δ(13C in locations that typically have more bare soil and higher sensible heat in the growing season (upland topographic positions and grazed grasslands. Leaf δ(13C from slopes varied among grazing contrasts, with upland and slope leaf δ(13C more similar in ungrazed locations, while slopes and lowlands were more similar in grazed locations. In 2011, canopy greenness (normalized difference vegetation index - NDVI was assessed at the centroid of individual shrubs using high-resolution hyperspectral imagery. Canopy greenness was highest mid-summer, likely reflecting temporal periods when C assimilation rates were highest. Similar to patterns seen in leaf δ(13C, NDVI was highest in locations that typically experience lowest sensible heat (lowlands and ungrazed. The ability of Cornus drummondii to decouple leaf physiological responses from climate variability and fire frequency is a likely contributor to the increase in cover and frequency of this shrub species in mesic grassland and may be generalizable to other grasslands undergoing woody encroachment.

  19. Resistance and resilience of soil respiration to recurring summer drought in temperate mountain grassland

    Science.gov (United States)

    Ladreiter-Knauss, Thomas; Walter, Eric; Gruber, Verena; Schmitt, Michael; Ingrisch, Johannes; Hasibeder, Roland; Bahn, Michael

    2013-04-01

    Mountain grasslands are highly sensitive to climatic changes and soil respiration (Rs) is their largest source for CO2 emissions. As a contribution to the EU-project Carbo-Extreme and a national (FWF) project we studied how experimental summer drought and subsequent rewetting affects soil respiration over five subsequent years. The study site was a temperate mountain meadow at 1820m in the Austrian Central Alps. Drought was simulated with rain-out-shelters keeping off precipitation over a period of ca. 2 months of each year, which reduced the soil water content in the main rooting horizon to less than 20%vol (i.e. 20-30% relative extractable water). Rs measurements were performed with automated chambers and were complemented by episodic manual measurements on shallow and deep collars. Rs and its temperature sensitivity decreased at a soil moisture threshold of 20 - 30%vol, with the threshold increasing to higher values from the first to the last year of drought. Soil CO2 efflux was strongly stimulated after rainfall following drought, where Rs exceeded the flux rates of the control plots. Post-rewetting Rs remained enhanced for weeks in the first three years of the experiment. In the fourth and fifth year rewetting caused only a short pulse of soil CO2 emissions, after which Rs decreased below values in control plots for weeks. We conclude that recurring summer drought may alter the resistance and resilience of soil respiration in temperate grassland, with implications for its annual carbon balance.

  20. Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering.

    Directory of Open Access Journals (Sweden)

    Jessica Hullman

    Full Text Available Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs, that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity.

  1. Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering.

    Science.gov (United States)

    Hullman, Jessica; Resnick, Paul; Adar, Eytan

    2015-01-01

    Many visual depictions of probability distributions, such as error bars, are difficult for users to accurately interpret. We present and study an alternative representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical background required to interpret many static representations of distributions, HOPs require relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer properties of the distribution using mental processes like counting and integration. We conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people made much more accurate judgments about plots of two and three quantities. Accuracy was similar with all three representations for most questions about distributions of a single quantity.

  2. On the stability of mixed grasslands

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2001-01-01

    Recent years have seen a renewed interest in the use of white clover (Trifolium repens) in grasslands, as a more sustainable alternative to fertiliser nitrogen inputs. However, mixtures of grasses and white clover have frequently been associated with unstable and hence unreliable herbage

  3. Protecting Mongolia's grassland steppes | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-13

    Jul 13, 2011 ... For centuries, Mongolia's herders were nomadic, roaming what is the world's biggest natural grassland in search of pastures for their animals — an approach that was environmentally sustainable. There was common access to land, and the herders lived in harmony with nature in this fragile and dry ...

  4. Structure and Processes in Temperate Grassland Vegetation

    DEFF Research Database (Denmark)

    Ejrnæs, R.

    In Denmark, the grass greens in late March. Perhaps that is the reason why early spring is so well suited to classify grasslands according to conservation value by their colour. When there is no interference by summer drought and autumn litter, a marked difference can be observed between the unif......In Denmark, the grass greens in late March. Perhaps that is the reason why early spring is so well suited to classify grasslands according to conservation value by their colour. When there is no interference by summer drought and autumn litter, a marked difference can be observed between...... the uniform bluish green colour of a monotonous rye grass sward with white clover and scattered weeds and the yellowish green colour of seminatural grasslands covered in pleurocarpic mosses and harbouring a diverse array of plant, fungi and insect species. Later, you will maybe also discover how to find...... the rare species belonging to the fungal genera of Hygrocybe, Entoloma and Clavaria. These occur almost exclusively in the yellowish green, unimproved grasslands, but not everywhere so. In the summer, it is often possible to see that the grass is greener in some parts of a slope or in a hollow...

  5. Environmental modifications for improved grassland production ...

    African Journals Online (AJOL)

    The most important environmental limitations to grassland production are set by the moisture regime, the physiography, soil conditions, temperature, vegetation present, entomological and microbiological factors of the environment. The significant features of these factors are discussed. Modification which can be applied to ...

  6. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    Science.gov (United States)

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  7. Integrated Response of Grassland Biomass Along Co-varying Gradients of Climate and Grazing Management Using an Eco-hydrologic Model

    Science.gov (United States)

    Reyes, J. J.; Tague, N.; Kruger, C. E.; Johnson, K.; Adam, J. C.

    2015-12-01

    Grasses in rangeland ecosystems cover a large portion of the contiguous United States and are used to support the production of livestock. These grasslands experience a wide range of precipitation and temperature regimes, as well as management activities like grazing. Assessing the coupled response of biomass to both climatic change and human activities is important to decision makers to ensure the sustainable management of their lands. The objective of this study is to examine the sensitivity of biomass under co-varying conditions of climate and grazing management. For this, we used the Regional Hydro-ecologic Simulation System (RHESSys), a physically-based model that simulates coupled water and biogeochemical processes. We selected representative grassland sites using the Köppen-Geiger climate classification system and information on major grass species. Historical data on precipitation, temperature, and grazing patterns (intensity, frequency, duration) were incrementally perturbed to simulate climatic change and possible changes in management. To visualize this multi-dimensional parameter space, we created surface response plots of varying climate and grazing factors for the mean and variance of both aboveground and belowground biomass, as well as the ratio between the two. Mean biomass generally increased with warmer temperatures and decreased with more intense grazing. The sensitivity of biomass (i.e. variance) increased with more extreme perturbations in climate and intense types of grazing management. However, co-varying climate conditions with either grazing intensity, frequency, or duration revealed different biomass responses and tradeoffs. For example, some changes in grazing duration could be reversed by changes in climate. Effects of high intensity grazing could be buffered depending on the timing of grazing (i.e. start/end date). Using simple perturbations with process-based modeling provides useful information for land managers for future planning.

  8. Mean age of carbon in fine roots from temperate forests and grasslands with different management

    Directory of Open Access Journals (Sweden)

    E. Solly

    2013-07-01

    Full Text Available Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27 than in forests 3.1 ± 0.5 g (n = 27 (p p r = 0.65 and with the number of perennial species (r = 0.77. Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9 on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9 and 2.6 ± 0.3 (n = 9 in central and southern Germany (p < 0.05. This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.

  9. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Science.gov (United States)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  10. iTagPlot: an accurate computation and interactive drawing tool for tag density plot.

    Science.gov (United States)

    Kim, Sung-Hwan; Ezenwoye, Onyeka; Cho, Hwan-Gue; Robertson, Keith D; Choi, Jeong-Hyeon

    2015-07-15

    Tag density plots are very important to intuitively reveal biological phenomena from capture-based sequencing data by visualizing the normalized read depth in a region. We have developed iTagPlot to compute tag density across functional features in parallel using multicores and a grid engine and to interactively explore it in a graphical user interface. It allows us to stratify features by defining groups based on biological function and measurement, summary statistics and unsupervised clustering. http://sourceforge.net/projects/itagplot/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Carbon sink activity of managed grasslands

    Science.gov (United States)

    Klumpp, Katja; Chabbi, Abad; Gastal, Francois; Senapati, Nimai; Charrier, Xavier; Darsonville, Olivier; Creme, Alexandra

    2017-04-01

    In agriculture, a large proportion of GHG emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities however, often questioned the existence of C storing grasslands, as uncertainty surrounding estimates are often larger than the sink itself. Besides climate, key components of the carbon sink activity in grasslands are type and intensity of management practices. Here, we analysed long term data on C flux and soil organic carbon stocks for two long term (>13yrs) national observation sites in France (SOERE-ACBB). These sites comprise a number of grassland fields and managements options (i.e. permanent, sowing, grazing, mowing, and fertilization) offering an opportunity to study carbon offsets (i.e. compensation of CH4 and N2O emissions), climatic-management interactions and trade-offs concerning ecosystem services (e.g. production). Furthermore, for some grassland fields, the carbon sink activity was compared using two methods; repeated soil inventory and estimation of the ecosystem C budget by continuous measurement of CO2 exchange (i.e. eddy covariance) in combination with quantification of other C imports and exports, necessary to estimate net C storage. In general grasslands, were a potential sink of C (i.e. net ecosystem exchange, NEE), where grazed sites had lower NEE compared the cut site. However, when it comes to net C storage (NCS), mowing reduced markedly potential sink leading to very low NCS compared to grazed sites. Including non-CO2 fluxes (CH4 and N2O emission) in the budget, revealed that GHG emissions were offset by C sink activity.

  12. Does plant diversity affect the water balance of established grassland systems?

    Science.gov (United States)

    Leimer, Sophia; Bischoff, Sebastian; Blaser, Stefan; Boch, Steffen; Busch, Verena; Escher, Peter; Fischer, Markus; Kaupenjohann, Martin; Kerber, Katja; Klaus, Valentin; Michalzik, Beate; Prati, Daniel; Schäfer, Deborah; Schmitt, Barbara; Schöning, Ingo; Schwarz, Martin T.; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang

    2017-04-01

    The water cycle drives nutrient cycles and plant productivity. The impact of land use on the water cycle has been extensively studied and there is experimental evidence that biodiversity modifies the water cycle in grasslands. However, the combined influences of land-use and associated biodiversity on the water cycle in established land-use systems are unclear. Therefore, we investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from experiments where plant diversity was manipulated. In three Central European regions ("Biodiversity Exploratories"), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region) from 2010 to 2015. The land-use types cover pasture, mown pasture, and meadow in at least triplicate per region. On each plot, we measured soil water contents, meteorological data (hourly resolution), cumulative precipitation (biweekly), plant species richness, the number of plants in the functional groups of grasses, herbs, and legumes (annually), and root biomass (once). Potential evapotranspiration (ETp) was calculated from meteorological data per plot. Missing data points of ETp and soil water contents were estimated with Bayesian hierarchical models. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. The model is based on changes in soil water storage between subsequent observation dates and ETp, which was partitioned between soil layers according to root distribution. Water fluxes in annual resolution were statistically analyzed for land-use and biodiversity effects using repeated-measures analysis of variance (ANOVA). Land-use type did not affect water fluxes. Species richness did not influence DF and CR. DF from topsoil was higher on plots with more grass species, which is opposite to the results from a manipulative

  13. Correlation analysis of respiratory signals by using parallel coordinate plots.

    Science.gov (United States)

    Saatci, Esra

    2018-01-01

    The understanding of the bonds and the relationships between the respiratory signals, i.e. the airflow, the mouth pressure, the relative temperature and the relative humidity during breathing may provide the improvement on the measurement methods of respiratory mechanics and sensor designs or the exploration of the several possible applications in the analysis of respiratory disorders. Therefore, the main objective of this study was to propose a new combination of methods in order to determine the relationship between respiratory signals as a multidimensional data. In order to reveal the coupling between the processes two very different methods were used: the well-known statistical correlation analysis (i.e. Pearson's correlation and cross-correlation coefficient) and parallel coordinate plots (PCPs). Curve bundling with the number intersections for the correlation analysis, Least Mean Square Time Delay Estimator (LMS-TDE) for the point delay detection and visual metrics for the recognition of the visual structures were proposed and utilized in PCP. The number of intersections was increased when the correlation coefficient changed from high positive to high negative correlation between the respiratory signals, especially if whole breath was processed. LMS-TDE coefficients plotted in PCP indicated well-matched point delay results to the findings in the correlation analysis. Visual inspection of PCB by visual metrics showed range, dispersions, entropy comparisons and linear and sinusoidal-like relationships between the respiratory signals. It is demonstrated that the basic correlation analysis together with the parallel coordinate plots perceptually motivates the visual metrics in the display and thus can be considered as an aid to the user analysis by providing meaningful views of the data. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Tracker Alignment Performance Plots after Commissioning

    CERN Document Server

    CMS Collaboration

    2017-01-01

    During the LHC shutdown in Winter 2016/17, the CMS pixel detector, the inner component of the CMS Tracker, was replaced by the Phase-1 upgrade detector. Among others improvements, the new pixel detector consists of four instead of three layers in the central barrel region (BPIX) and three instead of two disks in the endcap regions (FPIX). In this report, performance plots of pixel detector alignment results are presented, which were obtained with both cosmic-ray and pp collision data acquired at the beginning of the 2017 LHC operation. Alignment constants have been derived for each data-taking period to the level of single module positions in both the pixel and the strip detectors. The complete understanding of the alignment and biases was derived by using two algorithms, Millepede-II and HipPy. The results confirm each other.

  15. Herbivores and nutrients control grassland plant diversity via light limitation.

    Energy Technology Data Exchange (ETDEWEB)

    Borer, Elizabeth T. [Department of Ecology, Evolution, and Behavior, University of Minnesota; et al, et al

    2014-01-01

    Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  16. Microsatellite primers for the gynodioecious grassland perennial Saxifraga granulata (Saxifragaceae).

    Science.gov (United States)

    van der Meer, Sascha; Van Houdt, Jeroen K J; Maes, Gregory E; Hellemans, Bart; Jacquemyn, Hans

    2014-09-01

    Nine polymorphic and 12 monomorphic microsatellite loci (simple sequence repeats [SSRs]) were isolated and characterized for the gynodioecious grassland perennial Saxifraga granulata. • Based on genomic screening of leaf material of four individuals from four populations, a total of 21 microsatellite primer pairs were designed for S. granulata. Nine loci were polymorphic and were optimized into two PCR multiplex reactions and tested on 100 individuals from five riparian populations from central Belgium. The number of alleles of the polymorphic loci ranged from three to 18, and gametic heterozygosity ranged from 0.26 to 0.94. • The markers that are presented here are the first microsatellite markers reported for S. granulata and will be used to assess how river systems shape the spatial genetic structure and diversity of riparian populations of this species.

  17. Microsatellite Primers for the Gynodioecious Grassland Perennial Saxifraga granulata (Saxifragaceae

    Directory of Open Access Journals (Sweden)

    Sascha van der Meer

    2014-08-01

    Full Text Available Premise of the study: Nine polymorphic and 12 monomorphic microsatellite loci (simple sequence repeats [SSRs] were isolated and characterized for the gynodioecious grassland perennial Saxifraga granulata. Methods and Results: Based on genomic screening of leaf material of four individuals from four populations, a total of 21 microsatellite primer pairs were designed for S. granulata. Nine loci were polymorphic and were optimized into two PCR multiplex reactions and tested on 100 individuals from five riparian populations from central Belgium. The number of alleles of the polymorphic loci ranged from three to 18, and gametic heterozygosity ranged from 0.26 to 0.94. Conclusions: The markers that are presented here are the first microsatellite markers reported for S. granulata and will be used to assess how river systems shape the spatial genetic structure and diversity of riparian populations of this species.

  18. Heterogeneous Molecular Catalysis of Electrochemical Reactions: Volcano Plots and Catalytic Tafel Plots.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-14

    We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.

  19. Small-scale experimental habitat fragmentation reduces colonization rates in species-rich grasslands.

    Science.gov (United States)

    Joshi, Jasmin; Stoll, Peter; Rusterholz, Hans-Peter; Schmid, Bernhard; Dolt, Claudine; Baur, Bruno

    2006-05-01

    Habitat fragmentation is one of the most important threats to biodiversity. Decreasing patch size may lead to a reduction in the size of populations and to an increased extinction risk of remnant populations. Furthermore, colonization rates may be reduced in isolated patches. To investigate the effects of isolation and patch size on extinction and colonization rates of plant species, calcareous grasslands at three sites in the Swiss Jura Mountains were experimentally fragmented into patches of 0.25, 2.25, and 20.25 m2 by frequent mowing of the surrounding area from 1993 to 1999. Species richness in the fragment plots and adjacent control plots of the same sizes was recorded during these 7 years. In agreement with the theory of island biogeography, colonization rate was reduced by 30% in fragments versus non-isolated controls, and extinction increased in small versus large plots. Habitat specialists, in contrast to generalists, were less likely to invade fragments. In the last 4 years of the experiment, extinction rates tended to be higher in fragment than in control plots at two of the three sites. Despite reduced colonization rates and a tendency of increased extinction rates in fragments, fragmented plots had only marginally fewer species than control plots after 7 years. Hence, rates were a more sensitive measure for community change than changes in species richness per se. From a conservation point of view, the detected reduced colonization rates are particularly problematic in small fragments, which are more likely to suffer from high extinction rates in the long run.

  20. Greater sage-grouse winter habitat use on the eastern edge of their range

    Science.gov (United States)

    Christopher C. Swanson; Mark A. Rumble; Nicholas W. Kaczor; Robert W. Klaver; Katie M. Herman-Brunson; Jonathan A. Jenks; Kent C. Jensen

    2013-01-01

    Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this...

  1. FERMI/GLAST Integrated Trending and Plotting System Release 5.0

    Science.gov (United States)

    Ritter, Sheila; Brumer, Haim; Reitan, Denise

    2012-01-01

    An Integrated Trending and Plotting System (ITPS) is a trending, analysis, and plotting system used by space missions to determine performance and status of spacecraft and its instruments. ITPS supports several NASA mission operational control centers providing engineers, ground controllers, and scientists with access to the entire spacecraft telemetry data archive for the life of the mission, and includes a secure Web component for remote access. FERMI/GLAST ITPS Release 5.0 features include the option to display dates (yyyy/ddd) instead of orbit numbers along orbital Long-Term Trend (LTT) plot axis, the ability to save statistics from daily production plots as image files, and removal of redundant edit/create Input Definition File (IDF) screens. Other features are a fix to address invalid packet lengths, a change in naming convention of image files in order to use in script, the ability to save all ITPS plot images (from Windows or the Web) as GIF or PNG format, the ability to specify ymin and ymax on plots where previously only the desired range could be specified, Web interface capability to plot IDFs that contain out-oforder page and plot numbers, and a fix to change all default file names to show yyyydddhhmmss time stamps instead of hhmmssdddyyyy. A Web interface capability sorts files based on modification date (with newest one at top), and the statistics block can be displayed via a Web interface. Via the Web, users can graphically view the volume of telemetry data from each day contained in the ITPS archive in the Web digest. The ITPS could be also used in nonspace fields that need to plot data or trend data, including financial and banking systems, aviation and transportation systems, healthcare and educational systems, sales and marketing, and housing and construction.

  2. The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    S. Yi

    2016-11-01

    Full Text Available There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika on alpine grassland on the Qinghai-Tibet Plateau (QTP. On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ∼  m2, our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ∼  1000 m2 by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1 the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2 pika consumed 8–21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.

  3. Evaluation of the improvement in sensitivity of nested frequency plots to vegetational change by summation

    Science.gov (United States)

    Smith, Stuart D.; Bunting, Stephen C.; Hironaka, M.

    1987-01-01

    At four sites in Idaho, frequency was measured separately with three different-sized plots (10 x 25, 15 x 33.5, and 20 x 50 cm) arranged in a nested configuration. These individual frequency values were added together to create a summed “frequency.” This summed value was compared to the original frequency values generated by each individual plot size in respect to its ability to detect range trend. The summation procedure consistently detected smaller changes in frequency than any individual plot size. In addition, the summed values detected a significant change in more species at each site. Summing the frequency values usually detected changes at a lower alpha level than did any single plot (0.10 vs. 0.20).

  4. Relative Efficiency of Split-plot Design (SPD) to Randomized ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Datafield Logistics ..... k level of the poultry manure (split-plot treatments);. ( )jk. AB is the interaction effect of the th j level of the phosphorus (whole-plot treatments) and th k level of the poultry manure (split-plot treatments); ijkl e.

  5. Worm plot to diagnose fit in quantile regression

    NARCIS (Netherlands)

    Buuren, S. van

    2007-01-01

    The worm plot is a series of detrended Q-Q plots, split by covariate levels. The worm plot is a diagnostic tool for visualizing how well a statistical model fits the data, for finding locations at which the fit can be improved, and for comparing the fit of different models. This paper shows how

  6. Worm plot to diagnose fit in quantile regression

    NARCIS (Netherlands)

    Buuren, S. van

    2007-01-01

    The worm plot is a series of detrended Q-Q plots, split by covariate levels. The worm plot is a diagnostic tool for visualizing how well a statistical model fits the data, for finding locations at which the fit can be improved, and for comparing the fit of different models. This paper shows how the

  7. Landscape patterns and the optimal utilization of alpine grassland based on RS and GIS approach: a case study in TianZhu alpine grassland, Gansu Province, China

    Science.gov (United States)

    Zhao, Jun; Wei, Wei; Feng, Cui-qin; Wang, Xu-feng; Zheng, Jia-jia

    2008-10-01

    habitat batches and big landscapes must be joined together to keep species continuance and bio-diversity increasing. Through advanced study, the number of landscape of the study area is simplex and integrated. The residentindustrial land and plantation landscape are separated and fragmentized. The matrix of grassland is preponderant. These results show that the study area has been disturbed by human being activities at present, but still in the safe range. We compared the study results with the field survey results, and found out that in the total of nineteen villages and towns, there are nine villages and towns in the range of safety area. The area is 358600 hm2, which occupies 50.16% of the total study area. About five villages and towns are in the range of critical safety area. The area is 187500 hm2, which occupies 26.23%. Other villages and towns are in the range of insecure area. The area is 168800 hm2, which occupies 23.61%. The results also indicate that the study area is safe as a whole, but the incertitude and insecurity areas have occupied 1/4 of the total. The ecological safety problem is extremely urgent and must be paid attention to and dealed with at once. The critical secure villages and towns are the easiest areas where can turn to insecurity from less safety. In addition, these critical secure villages and towns have larger areas than other types. So they must be prearranged and protected as a pivot. As the financial increasing in the alpine grassland area, its livestock and population have increased a lot in recent years. The pressure on the ecology and the environment will become more serious. So the inconsistency of the alpine grassland resources between their using and protection should be solved in time. How to accelerate the alpine grassland areas' sustainable using is the most important problem we have to resolve. In the process of analyzing, using pattern optimizing method, we have analyzed their relationships, whole landscape spatial structures

  8. Land tenure reform and grassland degradation in Inner Mongolia, China

    Science.gov (United States)

    Liu, Min; Dries, Liesbeth; Heijman, Wim; Huang, Jikun; Zhu, Xueqin; Deng, Xiangzheng

    2017-04-01

    Since the start of the land tenure reform in the pastoral areas of China in the 1980s, grassland use rights have increasingly been assigned to individual households and subsequently more grasslands have been in private use. However, in the same period, most of the grasslands in China have experienced degradation. The question that this paper tries to address is whether the land tenure reform plays a significant role in grassland degradation. It is answered by an empirical analysis of the impact of land tenure reform on the changes in grassland condition, using data from 60 counties in Inner Mongolia between 1985 and 2008. Grassland condition is presented by grassland quantity and quality using spatial information based on remote sensing. The timing of the assignment of grassland use rights and the timing of the actual adoption of private use by households differ among counties. These timing differences and differences in grassland condition among counties allow disentangling the impact of the land tenure reform. A fixed effects model is used to control for climate, agricultural activity and the time-invariant heterogeneity among counties. The model results show that the private use of grasslands following the land tenure reform has had significantly negative effects on grassland quality and quantity in Inner Mongolia. Moreover, the negative effects did not disappear even after several years of experience with private use. In conclusion, our analysis reveals that the land tenure reform, namely privatisation of grassland use rights, is a significant driver of grassland degradation in Inner Mongolia in a long term, which presents "a tragedy of privatisation", as opposed to the well-known "tragedy of the commons".

  9. Long-term grassland management effects on soil Phosphorus status on rewetted Histosols

    Science.gov (United States)

    Heller, Sebastian; Müller, Jürgen; Kayser, Manfred

    2017-04-01

    Since the Neolithic Period, the cultivation of wetlands has played a significant role for the settlement of Humans northwest Germany. A continuing drainage of the wetlands over the centuries and an intensified soil cultivation during the last decades has caused irreversible peat degradation and led to fundamental changes in the landscape. Nowadays, almost 70 % of the 4345 km2 peatland of Lower Saxony is altered by agriculture. For the revitalization of wetland ecosystems, permanent rewetting is an integral component to preserve the functions of organic soils and achieve resilient, speciesrich wetlands. However, permanent rewetting measures are not always feasible. In our study area at the Osterfeiner Moor, a fen located in the Dümmer lowlands near Osnabrück, intensive forage cropping areas were converted into extensive permanent grasslands accompanied by temporary rewetting during winter. This management practice combined with zero fertilization and a low mowing and grazing intensity aims at mitigating mineralisation of peat layers and creating a habitat for endangered meadow bird species. In this semi-natural ecosystem soil phosphorus (P) dynamics play a crucial role. However, longterm research results on P availability of degraded and rewetted fens are still lacking. Thus, we investigated the interaction of different grassland uses and P dynamics in the soil. We described P depletion of the topsoil over a time scale of 17 years after the implementation of restoration measures. Our study site comprises of 180 ha protected grassland divided into 52 management plots. According to the management system, we divided the plots into meadows, pastures and combinations of cutting and grazing. The soils in our study area can be characterised as drained organic soils, WRB: Rheic Sapric Histosols (Drainic), with drastic degradation properties through moorsh forming processes. Plant-available P (double lactate extraction method: PDL) was analysed from representative topsoil

  10. The influence of management on GHG fluxes over Central European grasslands

    Science.gov (United States)

    Hoertnagl, Lukas; Bahn, Michael; Buchmann, Nina; Dias-Pinez, Eugenio; Eugster, Werner; Kiese, Ralf; Klumpp, Katja; Thomas, Ladreiter-Knauss; Lu, Haiyan; Wohlfahrt, Georg; Zeeman, Matthias; Merbold, Lutz

    2016-04-01

    Central European grasslands are characterized by a wide range of different agricultural practices along an altitudinal and management gradient, reaching from low pastures and meadows up to high alpine grasslands above the tree line. In the future, the intensification of already available agricultural land as a consequence of increased demand for feed and food will play an important role because of the scarcity of unused, productive land. The land use intensity strongly affects the exchange of trace gases between the biosphere and atmosphere. Therefore, the greenhouse gas (GHG) reduction potential for different farming strategies needs to be quantified before effective greenhouse gas mitigation strategies can be introduced. Direct measurements of long-term grassland GHG exchange at ecosystem scale along altitudinal and management gradients can help in identifying key processes that lead to GHG emissions. In this synthesis we investigated GHG fluxes with a focus on N2O and CH4 from 15 grassland sites, quantified by means of the eddy covariance or chamber technique. Grasslands were a source of N2O, with the exception of one abandoned site, while they were a source or small sink for CH4. The predictive power of soil temperature and water-filled pore space for N2O and CH4 flux patterns during snow-free time periods in-between management events was generally low but varied considerably across the year. However, setting fluxes in relation to classes of the two soil parameters revealed favorable conditions ('sweet spots') for N2O and CH4 emissions for some sites. In addition, fertilization had a clear impact on N2O and CH4 fluxes, with emission peaks on the day of fertilization or one day later. N2O-N emission factors at fertilized sites were found to be slightly higher than the IPCC Tier 1 approach, ranging between 1.31 and 1.53 %, depending on the gap-filling method to calculate yearly cumulative N2O emissions.

  11. Earthworm effects on native grassland root system dynamics under natural and increased rainfall.

    Science.gov (United States)

    Arnone, John A; Zaller, Johann G

    2014-01-01

    Earthworms (EWs) can modify soil structure and nutrient availability, and hence alter conditions for plant growth through their burrowing and casting activities. However, few studies have specifically quantified EW effects by experimentally manipulating earthworm densities (EWDs). In an earlier field study in native grassland ecosystems exposed to ambient and experimentally elevated rainfall (+280 mm year(-1), projected under some climate change scenarios), we found no effects of EWDs (37, 114, 169 EW m(-2)) and corresponding EW activity on aboveground net primary productivity (ANPP), even though soil nutrient availability likely increased with increasing EWDs. The lack of effects of EWDs on ANPP suggested that EWs may have adversely affected root systems in that study in some way. The objective of the present study was to quantify responses of root length density (RLD), using data collected from the same grassland plots during the earlier study. RLDs were highest in plots with low EWDs and decreased in plots with higher EWDs. Elevated rainfall primarily increased RLDs in the low EWD treatment (by almost +40%). Reductions in RLDs resulting from increased EWDs did not affect ANPP. Our results indicate that elevating EWDs above ambient levels may limit root growth through large increases in soil bioturbation, but concurrent increases in cast production and nutrient availability may compensate for the suppression of root nutrient absorbing surface area leaving ANPP unchanged, but with shifts in growth (biomass) allocation toward shoots. Similarly, reductions in EWDs appeared to promote higher RLDs that increased soil nutrient foraging in soil with lower amounts of nutrients because of reduced casting activity. Amplified responses observed when rainfall during the growing season was increased suggest that EWDs may mainly affect RLDs and above- vs. belowground growth (biomass) allocation under climate changes that include more frequent wetter-than-average growing

  12. Earthworm effects on native grassland root system dynamics under natural and increased rainfall

    Directory of Open Access Journals (Sweden)

    John A. Arnone

    2014-04-01

    Full Text Available Earthworms (EWs can modify soil structure and nutrient availability, and hence alter conditions for plant growth through their burrowing and casting activities. However, few studies have specifically quantified EW effects by experimentally manipulating EW densities (EWDs. In an earlier field study in native grassland ecosystems exposed to ambient and experimentally elevated rainfall (+280 mm year-1, projected under some climate change scenarios, we found no effects of EWDs (37, 114, 169 EW m-2 and corresponding EW activity on aboveground net primary productivity (ANPP, even though soil nutrient availability likely increased with increasing EWDs. The lack of effects of EWDs on ANPP suggested that EWs may have adversely affected root systems in that study in some way. The objective of the present study was to quantify responses of root length density (RLD, using data collected from the same grassland plots during the earlier study. RLDs were highest in plots with low EWDs and decreased in plots with higher EWDs. Elevated rainfall primarily increased RLDs in the low EWD treatment (by almost +40%. Reductions in RLDs resulting from increased EWDs did not affect ANPP. Our results indicate that elevating EWDs above ambient levels may limit root growth through large increases in soil bioturbation, but concurrent increases in cast production and nutrient availability may compensate for the suppression of root nutrient absorbing surface area leaving ANPP unchanged, but with shifts in growth (biomass allocation toward shoots. Similarly, reductions in EWDs appeared to promote higher RLDs that increased soil nutrient foraging in soil with lower amounts of nutrients because of reduced casting activity. Amplified responses observed when rainfall during the growing season was increased suggest that EWDs may mainly affect RLDs and above- vs. belowground growth (biomass allocation under climate changes that include more frequent wetter-than-average growing

  13. Spatial heterogeneity confounded ozone-exposure experiment in semi-natural grassland.

    Science.gov (United States)

    Stampfli, Andreas; Fuhrer, Jürg

    2010-02-01

    Interpretation of observations from manipulative experiments is often complicated by a multitude of uncontrolled processes operating at various spatial and temporal scales. As such processes may differ among experimental plots there is a risk that effects of experimental treatments are confounded. Here we report on a free-air ozone-exposure experiment in permanent semi-natural grassland that suggested strong ozone effects on community productivity after 5 years. We tested ozone effects and investigated the potential of confounding due to changes in nutrient management. Repeated-measure ANOVA revealed mainly negative temporal trends for frequency of abundant productive plant species. Constrained ordination additionally showed converging trajectories of species compositions for ozone and control treatments with time. Yields sampled prior to the start of the experiment and soil nitrogen concentrations revealed that spatial heterogeneity in the soil nutrient status was not accounted for by the random allocation of treatments to plots with a bias towards less productive patches in the elevated-ozone plots. Re-analysis of yield data using repeated-measure ANOVA with a covariable to account for productivity prior to the start of fumigation revealed effects on the temporal changes in total yield and yield of legumes that cannot be separated between ozone and pre-treatment nutrient status. Changes in species composition favour an ecological interpretation with spatial heterogeneity as the major cause of different yield declines. Although elevated ozone may cause subtle physiological changes with longer term implications, our new results suggest that species-rich mature grassland such as the one studied at Le Mouret may be less sensitive to elevated ozone than previously assumed. In this experiment a confounded design was hidden at the start by transitory effects of a prior change in nutrient treatments.

  14. Differential sensitivity to regional-scale drought in six central US grasslands.

    Science.gov (United States)

    Knapp, Alan K; Carroll, Charles J W; Denton, Elsie M; La Pierre, Kimberly J; Collins, Scott L; Smith, Melinda D

    2015-04-01

    Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.

  15. Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities.

    Science.gov (United States)

    Purschke, Oliver; Sykes, Martin T; Poschlod, Peter; Michalski, Stefan G; Römermann, Christine; Durka, Walter; Kühn, Ingolf; Prentice, Honor C

    2014-03-01

    Plant communities and their ecosystem functions are expected to be more resilient to future habitat fragmentation and deterioration if the species comprising the communities have a wide range of dispersal and persistence strategies. However, the extent to which the diversity of dispersal and persistence traits in plant communities is determined by the current and historical characteristics of sites and their surrounding landscape has yet to be explored.Using quantitative information on long-distance seed dispersal potential by wind and animals (dispersal in space) and on species' persistence/longevity (dispersal in time), we (i) compared levels of dispersal and persistence trait diversity (functional richness, FRic, and functional divergence, FDiv) in seminatural grassland plant communities with those expected by chance, and (ii) quantified the extent to which trait diversity was explained by current and historical landscape structure and local management history - taking into account spatial and phylogenetic autocorrel.Null model analysis revealed that more grassland communities than expected had a level of trait diversity that was lower or higher than predicted, given the level of species richness. Both the range (FRic) and divergence (FDiv) of dispersal and persistence trait values increased with grassland age. FDiv was mainly explained by the interaction between current grazing intensity and the amount of grassland habitat in the surrounding landscape in 1938. Synthesis . The study suggests that the variability of dispersal and persistence traits in grassland plant communities is driven by deterministic assembly processes, with both history and current management (and their interactions), playing a major role as determinants of trait diversity. While a long continuity of grazing management is likely to have promoted the diversity of dispersal and persistence traits in present-day grasslands, communities in sites that are well grazed at the present day, and were

  16. Multiscale recurrence quantification analysis of order recurrence plots

    Science.gov (United States)

    Xu, Mengjia; Shang, Pengjian; Lin, Aijing

    2017-03-01

    In this paper, we propose a new method of multiscale recurrence quantification analysis (MSRQA) to analyze the structure of order recurrence plots. The MSRQA is based on order patterns over a range of time scales. Compared with conventional recurrence quantification analysis (RQA), the MSRQA can show richer and more recognizable information on the local characteristics of diverse systems which successfully describes their recurrence properties. Both synthetic series and stock market indexes exhibit their properties of recurrence at large time scales that quite differ from those at a single time scale. Some systems present more accurate recurrence patterns under large time scales. It demonstrates that the new approach is effective for distinguishing three similar stock market systems and showing some inherent differences.

  17. Pepperweed invasion increases nitrogen cycling rates in irrigated grassland

    Science.gov (United States)

    Portier, E. F.; Yang, W. H.; Silver, W. L.

    2011-12-01

    -dominated plots and 81.5 ± 15.3 μg g-1 d-1 in pepperweed-dominated plots while NH4+ concentrations averaged 8.4 ± 4.3 μg g-1 in grass-dominated plots and 27.3 ± 4.4 μg g-1 in pepperweed-dominated plots. Gross mineralization rates were also positively correlated to soil O2 concentrations (R2 = 0.36), which ranged from 14.4 % to 20.0 % across all plots and depths. Our results suggest that pepperweed increases gross mineralization rates to alter N cycling in invaded soils.

  18. iCanPlot: visual exploration of high-throughput omics data using interactive Canvas plotting.

    Directory of Open Access Journals (Sweden)

    Amit U Sinha

    Full Text Available Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis--which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression.

  19. Effects of recurring summer droughts on ecosystem photosynthesis and respiration in a mountain grassland

    Science.gov (United States)

    Schmitt, Michael; Ingrisch, Johannes; Sturm, Patrick; Ladreiter-Knauss, Thomas; Hasibeder, Roland; Bramboeck, Peter; Berger, Vanessa; Bahn, Michael

    2013-04-01

    Climatic changes in mountain regions play a key role in current and future grassland ecosystem processes. It is currently expected that droughts and heatwaves will become more frequent in a changing climate. All around the world mountain regions have been labelled as sensitive zones, where declining water availability and increasing temperature are expected to increase the vulnerability of these ecosystems. However, the effects of such extreme events on ecosystem carbon (C) fluxes and their coupling in temperate and so far non-water limited Alpine grasslands are not yet well understood. We studied effects of recurring summer drought on the C dynamics of a mountain meadow at 1820 m and an abandoned grassland at 2000 m in the Austrian Central Alps. The aim of the study was (1) to analyse the multiannual effect of drought on net ecosystem CO2 exchange (NEE) and its major component processes, i.e. gross primary productivity (GPP) and ecosystem respiration (Reco), and (2) to trace drought effects on the use of recent C in soil respiration. We tested the hypothesis that drought reduces NEE, GPP and Reco and the ratio of GPP / Reco and causes a reduction in the use of recent photoassimilates in belowground respiration. At each study site, exclusion of rainfall was achieved by establishing rain-out shelters for a period of two months (June, July), while control plots remained exposed to natural precipitation. To trace the fate of recent C from assimilation to respiration 13CO2 pulse-labelling was carried out at the meadow site, and the carbon isotope composition of soil respired CO2 was continuously monitored with an open dynamic-chamber system coupled with a quantum cascade laser. Our results showed that at both sites NEE, GPP and Reco showed a consistent reduction with reduction in soil water level. Drought reduced ecosystem respiration to a lesser extent than photosynthesis. We observed memory effects on all flux processes after 3 years of recurring drought on the

  20. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2010-11-01

    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  1. SOWING GRASSLANDS – EFFICIENT SOLUTION FOR ZOOTEHNICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    VALENTINA OFELIA ROBESCU

    2008-05-01

    Full Text Available Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as sub alpine grasslands. For this reasons it is very important to improve the grassland. In this paper we study the interaction among milk production, fertilizations and flower composition in sub alpine grasslands. The agrochemical indicators are important because they influence the pasture value and at the final the milk production.

  2. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India

    Science.gov (United States)

    Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind

    2015-01-01

    The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the

  3. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data

    Science.gov (United States)

    Pitkänen, T. P.; Käyhkö, N.

    2017-08-01

    Mapping structural changes in vegetation dynamics has, for a long time, been carried out using satellite images, orthophotos and, more recently, airborne lidar acquisitions. Lidar has established its position as providing accurate material for structure-based analyses but its limited availability, relatively short history, and lack of spectral information, however, are generally impeding the use of lidar data for change detection purposes. A potential solution in respect of detecting both contemporary vegetation structures and their previous trajectories is to combine lidar acquisitions with optical remote sensing data, which can substantially extend the coverage, span and spectral range needed for vegetation mapping. In this study, we tested the simultaneous use of a single low-density lidar data set, a series of Landsat satellite frames and two high-resolution orthophotos to detect vegetation succession related to grassland overgrowth, i.e. encroachment of woody plants into semi-natural grasslands. We built several alternative Random Forest models with different sets of variables and tested the applicability of respective data sources for change detection purposes, aiming at distinguishing unchanged grassland and woodland areas from overgrown grasslands. Our results show that while lidar alone provides a solid basis for indicating structural differences between grassland and woodland vegetation, and orthophoto-generated variables alone are better in detecting successional changes, their combination works considerably better than its respective parts. More specifically, a model combining all the used data sets reduces the total error from 17.0% to 11.0% and omission error of detecting overgrown grasslands from 56.9% to 31.2%, when compared to model constructed solely based on lidar data. This pinpoints the efficiency of the approach where lidar-generated structural metrics are combined with optical and multitemporal observations, providing a workable framework to

  4. Forage herbs improve mineral composition of grassland herbage

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Søegaard, Karen; Jensen, Henning Høgh

    2011-01-01

    Provision of an adequate mineral supply in the diets of ruminants fed mainly on grassland herbage can present a challenge if mineral concentrations are suboptimal for animal nutrition. Forage herbs may be included in grassland seed mixtures to improve herbage mineral content, although there is li......Provision of an adequate mineral supply in the diets of ruminants fed mainly on grassland herbage can present a challenge if mineral concentrations are suboptimal for animal nutrition. Forage herbs may be included in grassland seed mixtures to improve herbage mineral content, although...

  5. Spatiotemporal variability of increasing temperature impacts on grassland vegetation along an elevation transect in the Alps

    Science.gov (United States)

    Niedrist, Georg; Obojes, Nikolaus; Bertoldi, Giacomo; Della Chiesa, Stefano; Tasser, Erich; Tappeiner, Ulrike

    2013-04-01

    Different manipulative approaches have been developed to study and quantify impacts of temperature increase on grassland ecosystems. Many of them share the problem of unwanted effects on the surrounding microclimatic conditions. Transplantation of grassland mesocosms along elevation gradients can be a realistic alternative, although with some restrictions. Here we present 3 years of data from a double-transplant-experiment, were 70*70*20cm grassland turves were transplanted at two elevations from 2000m to 1500m a.s.l. and from 1500m to 1000m a.s.l. respectively, along an inner-alpine elevation gradient in the Vinschgau Valley (South Tyrol, I). All donor and receiving sites are comparable regarding land use (meadows), soil conditions or exposition and are located within a few km's distance ensuring comparable weather conditions apart from the intended air temperature (0.54°K/100m) and annual precipitation (20mm/100m) lapse rate. Phytodiversity and above ground net primary production (ANPP) of the transplanted mesocosms were assessed and compared with locally transplanted monoliths of the respective donor site. Furthermore, growth dynamics was continuously observed throughout the vegetation season with a non-destructive method based on measurement of light (photosynthetic active radiation) extinction within the canopy. After 3 years no significant changes in absolute species numbers has been detected at all, whereas slight variations have been observed regarding species composition. Those shifts could be differentiated both to transplantation artifacts and effects of the elevated temperature. Total aboveground phytomass, unsurprisingly, showed higher values on transplanted (lower) mesocosms, however: data from single cuts and growth rate analysis reveal differing effects between the two transplantation steps as well as over the course of the vegetation period. Transplanted plots from 2000m to 1500m showed continuously higher productivity from spring to autumn

  6. WCPP-THE WOLF PLOTTING AND CONTOURING PACKAGE

    Science.gov (United States)

    Masaki, G. T.

    1994-01-01

    The WOLF Contouring and Plotting Package provides the user with a complete general purpose plotting and contouring capability. This package is a complete system for producing line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The package has been designed to be highly flexible and easy to use. Any plot from a quick simple plot (which requires only one call to the package) to highly sophisticated plots (including motion picture plots) can be easily generated with only a basic knowledge of FORTRAN and the plot commands. Anyone designing a software system that requires plotted output will find that this package offers many advantages over the standard hardware support packages available. The WCPP package is divided into a plot segment and a contour segment. The plot segment can produce output for any combination of line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The line printer plots allow the user to have plots available immediately after a job is run at a low cost. Although the resolution of line printer plots is low, the quick results allows the user to judge if a high resolution plot of a particular run is desirable. The SC4020 and SD4060 provide high speed high resolution cathode ray plots with film and hard copy output available. The Gerber and Calcomp plotters provide very high quality (of publishable quality) plots of good resolution. Being bed or drum type plotters, the Gerber and Calcomp plotters are usually slow and not suited for large volume plotting. All output for any or all of the plotters can be produced simultaneously. The types of plots supported are: linear, semi-log, log-log, polar, tabular data using the FORTRAN WRITE statement, 3-D perspective linear, and affine transformations. The labeling facility provides for horizontal labels, vertical labels, diagonal labels, vector characters of a requested size (special character fonts are easily implemented), and rotated letters. The gridding routines label the grid lines according to

  7. Storytelling in Earth sciences: The eight basic plots

    Science.gov (United States)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  8. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought

    Science.gov (United States)

    Bowling, David R.; Bethers-Marchetti, S.; Lunch, C.K.; Grote, E.E.; Belnap, J.

    2010-01-01

    The net exchanges of carbon dioxide, water vapor, and energy were examined in a perennial Colorado Plateau grassland for 5 years. The study began within a multiyear drought and continued as the drought ended. The grassland is located near the northern boundary of the influence of the North American monsoon, a major climatic feature bringing summer rain. Following rain, evapotranspiration peaked above 8 mm d-1 but was usually much smaller (2-4 mm d-1). Net productivity of the grassland was low compared to other ecosystems, with peak hourly net CO2 uptake in the spring of 4 (mu or u)mol m-2 s-1 and springtime carbon gain in the range of 42 + or - 11 g C m-2 (based on fluxes) to 72 + or - 55 g C m-2 (based on carbon stocks; annual carbon gain was not quantified). Drought decreased gross ecosystem productivity (GEP) and total ecosystem respiration, with a much larger GEP decrease. Monsoon rains led to respiratory pulses, lasting a few days at most, and only rarely resulted in net CO2 gain, despite the fact that C4 grasses dominated plant cover. Minor CO2 uptake was observed in fall following rain. Spring CO2 uptake was regulated by deep soil moisture, which depended on precipitation in the prior fall and winter. The lack of CO2 uptake during the monsoon and the dependence of GEP on deep soil moisture are in contrast with arid grasslands of the warm deserts. Cold desert grasslands are most likely to be impacted by future changes in winter and not summer precipitation.

  9. Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands

    Science.gov (United States)

    Liu, Yuan; He, Nianpeng

    2017-04-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  10. Black-Tailed Prairie Dogs, Cattle, and the Conservation of North America?s Arid Grasslands

    OpenAIRE

    Sierra?Corona, Rodrigo; Davidson, Ana; Fredrickson, Ed L.; Luna-Soria, Hugo; Suzan-Azpiri, Humberto; Ponce-Guevara, Eduardo; Ceballos, Gerardo

    2015-01-01

    Prairie dogs (Cynomys spp.) have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic ...

  11. Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics.

    Science.gov (United States)

    Collins, Scott L; Ladwig, Laura M; Petrie, Matthew D; Jones, Sydney K; Mulhouse, John M; Thibault, James R; Pockman, William T

    2017-03-01

    Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long-term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning-caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre- and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem

  12. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    Science.gov (United States)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  13. Some algorithmic problems of plotting codes for unstructured grids

    Science.gov (United States)

    Loehner, Rainald; Parikh, Paresh; Gumbert, Clyde

    1989-01-01

    Some algorithmic problems encountered during the development of unstructured grid plotting codes are described. Chief among them are the interpolation of three-dimensional data on planes, the plotting of a three-dimensional surface with a constant value for a given unknown, and the calculation of particle and oil-flow paths. Some special features of the unstructured grid plotting code, FEPLOT3D, are also described.

  14. Cross plotting of Rock Properties for Fluid and Lithology ...

    African Journals Online (AJOL)

    Cross plotting of Rock Properties for Fluid and Lithology Discrimination using Well Data in a Niger Delta Oil Field. ... Cross plotting was carried out and the plots with most outstanding results were Vp/Vs versus AI, λρ Versus Vp/Vs, μρ against Density and λρ versus μρ. For the two wells considered, two reservoirs were ...

  15. Precipitation alters interactions in a grassland ecological community.

    Science.gov (United States)

    Deguines, Nicolas; Brashares, Justin S; Prugh, Laura R

    2017-03-01

    Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological

  16. Leaf dry matter content predicts herbivore productivity, but its functional diversity is positively related to resilience in grasslands.

    Science.gov (United States)

    Pakeman, Robin J

    2014-01-01

    This paper addresses whether the ecosystem service of animal production from grasslands depends upon plant functional identity, plant functional diversity or if the resilience of production is a function of this diversity. Using the results of nine grazing experiments the paper shows that productivity is highly dependent on one leaf trait, leaf dry matter content, as well as rainfall. Animal (secondary) productivity is not dependent on plant functional diversity, but the variability in productivity of grasslands is related to the functional diversity of leaf dry matter content. This and a range of independent studies have shown that functional diversity is reduced at high levels of grassland productivity, so it appears that there is a trade-off between productivity and the resilience of productivity in the face of environmental variation.

  17. Leaf dry matter content predicts herbivore productivity, but its functional diversity is positively related to resilience in grasslands.

    Directory of Open Access Journals (Sweden)

    Robin J Pakeman

    Full Text Available This paper addresses whether the ecosystem service of animal production from grasslands depends upon plant functional identity, plant functional diversity or if the resilience of production is a function of this diversity. Using the results of nine grazing experiments the paper shows that productivity is highly dependent on one leaf trait, leaf dry matter content, as well as rainfall. Animal (secondary productivity is not dependent on plant functional diversity, but the variability in productivity of grasslands is related to the functional diversity of leaf dry matter content. This and a range of independent studies have shown that functional diversity is reduced at high levels of grassland productivity, so it appears that there is a trade-off between productivity and the resilience of productivity in the face of environmental variation.

  18. Effects of grassland management on the emission of methane from intensively managed grasslands on peat soil.

    NARCIS (Netherlands)

    Pol-van Dasselaar, van den A.; Beusichem, van M.L.; Oenema, O.

    1997-01-01

    Methane (CH4) is the most important greenhouse gas next to CO2 and as such it contributes to the enhanced greenhouse effect. Peat soils are often considered as sources of CH4. Grasslands on the other hand are generally considered to be a net sink for atmospheric CH4. The aim of this study was

  19. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites

    NARCIS (Netherlands)

    Soussana, J.F.; Allard, V.; Pilegaard, K.; Ambus, P.; Amman, C.; Campbell, C.; Ceschia, E.; Clifton-Brown, J.; Czobel, S.; Domingues, R.; Flechard, C.; Fuhrer, J.; Hensen, A.; Horvath, L.; Jones, M.; Kasper, G.J.; Martin, C.; Nagy, Z.; Neftel, A.; Raschi, A.; Baronti, S.

    2007-01-01

    The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed

  20. The VATO project: Development and validation of a dynamic transfer model of tritium in grassland ecosystem.

    Science.gov (United States)

    Le Dizès, S; Aulagnier, C; Maro, D; Rozet, M; Vermorel, F; Hébert, D; Voiseux, C; Solier, L; Godinot, C; Fievet, B; Laguionie, P; Connan, O; Cazimajou, O; Morillon, M

    2017-05-01

    In this paper, a dynamic compartment model with a high temporal resolution has been investigated to describe tritium transfer in grassland ecosystems exposed to atmospheric 3H releases from nuclear facilities under normal operating or accidental conditions. TOCATTA-χ model belongs to the larger framework of the SYMBIOSE modelling and simulation platform that aims to assess the fate and transport of a wide range of radionuclides in various environmental systems. In this context, the conceptual and mathematical models of TOCATTA-χ have been designed to be relatively simple, minimizing the number of compartments and input parameters required. In the same time, the model achieves a good compromise between easy-to-use (as it is to be used in an operational mode), explicative power and predictive accuracy in various experimental conditions. In the framework of the VATO project, the model has been tested against two-year-long in situ measurements of 3H activity concentration monitored by IRSN in air, groundwater and grass, together with meteorological parameters, on a grass field plot located 2 km downwind of the AREVA NC La Hague nuclear reprocessing plant, as was done in the past for the evaluation of transfer of 14C in grass. By considering fast exchanges at the vegetation-air canopy interface, the model correctly reproduces the observed variability in TFWT activity concentration in grass, which evolves in accordance with spikes in atmospheric HTO activity concentration over the previous 24 h. The average OBT activity concentration in grass is also correctly reproduced. However, the model has to be improved in order to reproduce punctual high concentration of OBT activity, as observed in December 2013. The introduction of another compartment with a fast kinetic (like TFWT) - although outside the model scope - improves the predictions by increasing the correlation coefficient from 0.29 up to 0.56 when it includes this particular point. Further experimental

  1. Fear in grasslands: the effect of Eurasian kestrels on skylark abundances

    Science.gov (United States)

    Martínez-Padilla, Jesús; Fargallo, Juan A.

    2008-05-01

    Predation has received considerable theoretical and empirical support in population regulation. The effect of predators, however, could be achieved in direct (killing) or indirect effects (such as displacement). In this paper, we explored the relationship between Eurasian kestrels Falco tinnunculus and skylarks Alauda arvensis in Mediterranean grasslands. First, we analysed the presence of skylarks in the kestrel diet over 9 years. We also compared a grassland area of experimentally increased kestrel density and a second grassland as control area to evaluate the direct or indirect effect on skylark abundance. We also considered two different habitats, grazed and ungrazed plots. If skylark abundance decreased as the kestrel breeding season progressed in high-density kestrel area compared with the control area, it would suggest a direct effect (predator hypothesis). If skylark abundance remains constant in both areas of contrasting kestrel density, it would suggest that skylarks avoid kestrels (avoidance hypothesis). We found that skylark abundance decreased in the kestrel area from the beginning of kestrel nest-box installation to recent years. The rate of skylark consumption decreased in a 9-year period as kestrel abundance increased, although the total amount skylark consumption did not show a decreasing trend. In addition, skylarks were more abundant in the kestrel-free area than in the kestrel area. Finally, we found that skylark abundance did not change through the kestrel breeding period in relation to grazing. We suggest that an increased breeding density of kestrels during their breeding period may force the skylarks to breed in other areas, which may explain the decline of their abundance.

  2. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  3. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    Rainfall and temperature are the direct driving factors that affect grassland ecosystem evolution. The study constructed the assessment model of the driving factors, temperature and rainfall, that exerted influence on the primary productivities of the grassland ecosystems in headwater areas, and used the model to ...

  4. Influence of density on the seasonal utilization of broad grassland ...

    African Journals Online (AJOL)

    We monitored seasonal use of grassland types by white rhinos at two sites within the Hluhluwe iMfolozi Park (HiP). Thirty-two rhinos were removed from one site to reduce rhino density. Seasonal use of grassland types was similar at both sites, but differed to what a previous study reported. This was likely due to higher food ...

  5. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

      Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  6. Wooded grasslands as part of the European agricultural heritage

    NARCIS (Netherlands)

    Centeri, C.; Renes, J.; Roth, M.; Kruse, A.; Eiter, S.; Kapfer, J.; Santoro, A.; Agnoletti, M.; Emanueli, , F.; Sigura, M.; Dobrovodska, M.; Štefunková, D.; Kučera, Zdeněk; Saláta, D.; Varga, Anna; Villacreces, S.; Dreer, J.; Slámová, M.

    2016-01-01

    Wooded grasslands have always played an important role in rural life with changing issues: They are of high importance for questions of biodiversity, soil, and water resources and in preserving agricultural heritage, but their maintenance is labor intensive. Abandoned wooded grasslands undergo

  7. Considering Forest and Grassland Carbon in Land Management

    Science.gov (United States)

    M. Janowiak; W.J. Connelly;   K. Dante-Wood; G.M. Domke; C. Giardina; Z. Kayler; K. Marcinkowski; T. Ontl;   C. Rodriguez-Franco; C. Swanston; C.W. Woodall; M. Buford

    2017-01-01

    Forest and grassland ecosystems in the United States play a critical role in the global carbon cycle, and land management activities influence their ability to absorb and sequester carbon. These ecosystems provide a critical regulating function, offsetting about 12 to 19 percent of the Nation’s annual greenhouse gas emissions. Forests and grasslands are managed for...

  8. Estimating grassland biomass using SVM band shaving of hyperspectral data

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Heijden, van der G.W.A.M.; Verzakov, S.; Schaepman, M.E.

    2007-01-01

    In this paper, the potential of a band shaving algorithm based on support vector machines (SVM) applied to hyperspectral data for estimating biomass within grasslands is studied. Field spectrometer data and biomass measurements were collected from a homogeneously managed grassland field. The SVM

  9. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... the impact mechanism model of climatic changes on the primary production potentials of grassland ecosystems in the headwater areas, and thus using the model to quantitatively examine how the temperature and rainfall variations affected the grassland ecosystem evolutions in the headwater areas.

  10. Andean grasslands are as productive as tropical cloud forests

    NARCIS (Netherlands)

    Oliveras Menor, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.

    2014-01-01

    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning

  11. Composition, pattern and diversity of some Transkeian grasslands ...

    African Journals Online (AJOL)

    Species composition, pattern and diversity of selected grassland communities were determined by using point samples, transects and quadrats. The continuously grazed grasslands of Dohne Sourveld generally had the richer species composition, the highest diversity and the most variable intra-community pattern.

  12. Porosity variabilities along a forest – grassland mosaic in Ibeku ...

    African Journals Online (AJOL)

    Variation existed in the porosity characteristics of pedons located on forestland and grassland. Percent coefficient of variation (CV) was greater in forest soils for both bulk density and porosity (% CV = 29.99 and 13.2) than as found in grassland soils (% CV = 2.6 and. 4.1). These results were explained by wide variations in ...

  13. Opening Address: Grassland research and extension: present and ...

    African Journals Online (AJOL)

    It is indeed a great honour to be invited to give the opening address at this Twenty-third Congress of the Grassland Society. It seems pertinent to review briefly grassland research, its impact on the farmer, and consider where we should be going in the future. Veld management research in Southern Africa has a proud history ...

  14. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...

  15. To what extent does urbanisation affect fragmented grassland functioning?

    Science.gov (United States)

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  16. Effects of management practices on grassland birds: Merlin

    Science.gov (United States)

    Konrad, Paul M.

    2004-01-01

    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 5,500 published and unpublished papers. A range map is provided to indicate the breeding, year-round, and nonbreeding ranges in the United States and southern Canada. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and

  17. OPUS/PlotOPUS: An ORIGEN-S Post-Processing Utility and Plotting Program for SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-03-08

    The OPUS utility program produces an output file that can be used for making a variety of plots from output produced by the ORIGEN-S code that computes reactor fuel depletion, activation and fission- product buildup, and the corresponding photon and neutron source spectra. Tables containing individual and total nuclide or element concentrations, in 14 different units, may be generated as a function of time. Three classes of plot data may be produced by OPUS: (1) dominant or selected isotopes or elements, (2) photon and neutron source spectra, and (3) comparisons of selected quantities (totals or individual nuclides) between different ORIGEN-S cases. The input is designed for ease of use with self-explanatory parameter names, free-form input, and commonly used default values. The formatted output data produced by OPUS is designed to be used directly by the PlotOPUS graphics-plotting program. PlotOPUS is an interactive Visual Basic program designed for Windows 9x, 2000, and NT computers. PlotOPUS reads the formatted output data file produced by OPUS, plots the data, and will generate Windows metafile (WMF), JPEG bitmap (JPG), or Windows bitmap (BMP) files for saving the plot images. Even though it is designed to interface with PlotOPUS, the formatted OPUS output file can be easily read by other graphics packages for data visualization.

  18. Effects of Simulated Climate Conditions on Phosphorus Cycling in an Annual Grassland

    Science.gov (United States)

    Mellett, T.; Defforey, D.; Paytan, A.

    2012-12-01

    The Jasper Ridge Global Change Experiment is a long-term study of the effects of simulated climate change conditions on an annual grassland. The different treatments consist of elevated atmospheric CO2 levels, enhanced nitrate deposition, as well as higher temperatures and precipitation rates. The above ground vegetation from each plot is harvested and separated by species, with the dominant species being selected for analysis. The aim of this study is to investigate the effects of different climate conditions on the phosphorus content and phosphorus cycling in terrestrial plants. Phosphorus content in grass samples is determined using the colorimetric reaction (soluble reactive phosphorus content), as well as combustion and acid digestion (total phosphorus content). Since phosphorus only has one stable isotope, the δ18O signature in phosphate is used as a proxy to investigate phosphorus cycling in this ecosystem. These three tools will be combined and evaluated as indicators for phosphorus limitation in each respective treatment site and provide a better understanding of phosphorus cycling in annual grasslands and the potential effects of climate change on phosphorus cycling.

  19. Estimating mapped-plot forest attributes with ratios of means

    Science.gov (United States)

    S.J. Zarnoch; W.A. Bechtold

    2000-01-01

    The mapped-plot design utilized by the U.S. Department of Agriculture (USDA) Forest Inventory and Analysis and the National Forest Health Monitoring Programs is described. Data from 2458 forested mapped plots systematically spread across 25 States reveal that 35 percent straddle multiple conditions. The ratio-of-means estimator is developed as a method to obtain...

  20. Precise FIA plot registration using field and dense LIDAR data

    Science.gov (United States)

    Demetrios Gatziolis

    2009-01-01

    Precise registration of forest inventory and analysis (FIA) plots is a prerequisite for an effective fusion of field data with ancillary spatial information, which is an approach commonly employed in the mapping of various forest parameters. Although the adoption of Global Positioning System technology has improved the precision of plot coordinates obtained during...

  1. A Guided Inquiry on Hubble Plots and the Big Bang

    Science.gov (United States)

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  2. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat

    2011-01-01

    Split-plot designs are commonly used in industrial experiments when there are hard-to-change and easy-to-change factors. Due to the number of factors and resource limitations, it is more practical to run a fractional factorial split-plot (FFSP) design. These designs are variations of the fraction...

  3. Plotting Rates of Photosynthesis as a Function of Light Quantity.

    Science.gov (United States)

    Dean, Rob L.

    1996-01-01

    Discusses methods for plotting rates of photosynthesis as a function of light quantity. Presents evidence that suggests that empirically derived conversion factors, which are used to convert foot candles to photon fluence rates, should be used with extreme caution. Suggests how rate data are best plotted when any kind of light meter is not…

  4. Probability plots based on student’s t-distribution

    NARCIS (Netherlands)

    Hooft, R.W.W.|info:eu-repo/dai/nl/109722213; Straver, L.H.; Spek, A.L.|info:eu-repo/dai/nl/156517566

    2009-01-01

    The validity of the normal distribution as an error model is commonly tested with a (half) normal probability plot. Real data often contain outliers. The use of t-distributions in a probability plot to model such data more realistically is described. It is shown how a suitable value of the parameter

  5. Development of gnuplot plotting package for MAD-X

    CERN Document Server

    Romero Leiro, Freddy Jose

    2015-01-01

    MAD-X is a general purpose software for charged-particle optics design and it needs a visualisation tool to be able to show the data in a more manageable way, this visualisation tools being already in MAD-X are the PLOT and SETPLOT commands. Nonetheless issues like compatibility and the desire of having alternative ways to show the plots in a more portable way have lead to explore the use of open source available software to reproduce the same results. The purpose of this project is to create a package compatible with the MAD-X output format, capable of generating publication quality plots, mainly lattice beamline plots and scatter plots by using the Gnuplot for creating plots. This software must support the same options as the PLOT and SETPLOT commands from MAD-X but additions or improvement over the present version are more than welcome. The main purpose of the program is to pre-process the data in order to be ready for Gnuplot to read it and plot it .This report is mostly a description of the development o...

  6. Estimation of Optimal Size of Plots for Experiments with Radiometer ...

    African Journals Online (AJOL)

    An experimental error can lead to rework and, consequently, to the loss of financial and human resources. One way to reduce this problem is the estimation of the optimum size of experimental plot to carry out the treatments. The objective of this study was to estimate the optimal size of plots for reflectance measurements in ...

  7. Instrumentation for full-year plot-scale runoff monitoring

    Science.gov (United States)

    Replicated 0.34 ha cropping systems plots have been in place since 1991 at the USDA-ARS Goodwater Creek Experimental Watershed in central Missouri. Recently, instrumentation has been installed at 18 of those plots for continuous runoff water quality and quantity monitoring. That installation require...

  8. Effects of plot size on forest-type algorithm accuracy

    Science.gov (United States)

    James A. Westfall

    2009-01-01

    The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...

  9. Some environmental aspects of grassland cultivation; the effects of ploughing depth, grassland age, and nitrogen demand of subsequent crops

    NARCIS (Netherlands)

    Velthof, G.L.; Meer, van der H.G.; Aarts, H.F.M.

    2002-01-01

    The Netherlands has submitted a derogation under the Nitrate Directives to the European Union (EU) in 2000. In the final opinion by a group of experts about the Dutch derogation, recommendations on ploughing of grasslands were included dealing with the depth of ploughing of permanent grassland, the

  10. Method and timing of grassland renovation affects herbage yield, nitrate leaching, and nitrous oxide emission in intensively managed grasslands

    NARCIS (Netherlands)

    Velthof, G.L.; Hoving, I.E.; Dolfing, J.; Smit, A.; Kuikman, P.J.; Oenema, O.

    2010-01-01

    Managed grasslands are occasionally ploughed up and reseeded in order to maintain or increase the sward productivity. It has been reported that this renovation of grassland is associated with a flush of soil organic nitrogen (N) mineralization and with a temporary increase in soil mineral N

  11. Factors associated with grassland bird species richness: The relative roles of grassland area, landscape structure, and prey

    Science.gov (United States)

    Tammy L. Hamer; Curtis H. Flather; Barry R. Noon

    2006-01-01

    The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We...

  12. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Bingzhen Du

    2016-12-01

    Full Text Available Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998 a series of grassland conservation and management policies that restrict the use of grasslands. To ease the impact on the residents’ livelihoods, the national and regional governments have offered a series of top-down arrangements to stimulate sustainable use of the grasslands. Simultaneously, local households spontaneously developed bottom-up countermeasures. To determine the effects of these processes, we interviewed members of 135 households using a mix of qualitative and quantitative methods. We analyzed the effects on household dependence on local grasslands and on perceptions of the future of grassland use. Our findings show that the implementation of the grassland conservation policies significantly affected household livelihoods, which in turn affected household use of natural assets (primarily the land, their agricultural assets (farming and grazing activities and their financial assets (income and consumption, resulting in fundamental transformation of their lifestyles. The households developed adaptation measures to account for the dependence of their livelihood on local ecosystems by initializing strategies, such as seeking off-farm work, leasing pasture land, increasing purchases of fodder for stall-fed animals and altering their diet and fuel consumption to compensate for their changing livelihoods.

  13. Habitat change and plant demography: assessing the extinction risk of a formerly common grassland perennial.

    Science.gov (United States)

    Schleuning, Matthias; Matthies, Diethart

    2009-02-01

    An important aim of conservation biology is to understand how habitat change affects the dynamics and extinction risk of populations. We used matrix models to analyze the effect of habitat degradation on the demography of the declining perennial plant Trifolium montanum in 9 calcareous grasslands in Germany over 4 years and experimentally tested the effect of grassland management. Finite population growth rates (lambda) decreased with light competition, measured as leaf-area index above T. montanum plants. At unmanaged sites lambda was plants. Nevertheless, in stochastic simulations, extinction of unmanaged populations of 100 flowering plants was delayed for several decades. Clipping as a management technique rapidly increased population growth because of higher survival and flowering probability of large plants in managed than in unmanaged plots. Transition-matrix simulations from these plots indicated grazing or mowing every second year would be sufficient to ensure a growth rate > or =1 if conditions stayed the same. At frequently grazed sites, the finite growth rate was approximately 1 in most populations of T. montanum. In stochastic simulations, the extinction risk of even relatively small grazed populations was low, but about half the extant populations of T. montanum in central Germany are smaller than would be sufficient for a probability of survival of >95% over 100 years. We conclude that habitat change after cessation of management strongly reduces recruitment and survival of established individuals of this perennial plant. Nevertheless, our results suggest extinction processes may take a long time in perennial plants, resulting in an extinction debt. Even if management is frequent, many remnant populations of T. montanum may be at risk because of their small size, but even a slight increase in size could considerably reduce their extinction risk.

  14. Grassland communities of urban open spaces in Bloemfontein, Free State, South Africa

    Directory of Open Access Journals (Sweden)

    Mamokete N.V. Dingaan

    2013-02-01

    Full Text Available Natural vegetation in urban environments is greatly impacted by human activities and it is in constant threat of degradation and destruction as a result of urbanisation. This vegetation, although fragmented, serves an important ecological function and needs to be properly managed and conserved. Studies on urban vegetation are lacking in South Africa, with only a handful having been carried out since the end of the last century. This study was initiated to identify, classify and describe the grassland communities of the urban open spaces in Bloemfontein. Relevés were compiled in 61 sample plots, where species present and habitat information were recorded. Care was taken to restrict sample plots to vegetation in pristine condition, wherever possible, and severely degraded stands were avoided. A two-way indicator species analysis (TWINSPAN classification, refined by Braun-Blanquet procedures, revealed two distinct major communities, seven communities and four sub-communities. Both detrended and canonical correspondence analyses indicated the vegetation units to be associated with soil texture and pH, although biotic factors such as overgrazing, burning and mowing also influence the composition of the vegetation. The proper management and conservation of urban open spaces requires in-depth knowledge of the spatial distribution, floristic, structural and functional compositions within the major vegetation types in this environment. The present study further contributed towards formulating ways for the proper management, utilisation and functioning of the open spaces within the Bloemfontein area.Conservation implications: The Grassland Biome of South Africa is poorly conserved, mainly because of its status as an agricultural hub of the country. The preservation of natural and semi-natural forms of urban vegetation is important because such vegetation, although often disturbed and degraded, could form dispersal corridors between peri-urban and rural

  15. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Directory of Open Access Journals (Sweden)

    Chelsea J Carey

    2015-05-01

    Full Text Available Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing, plant invasion + nitrogen (N fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N and microbial functioning (nitrification and denitrification potentials were also measured and showed treatment-induced shifts, including altered NO3- availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

  16. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Science.gov (United States)

    Carey, Chelsea J.; Beman, J. Michael; Eviner, Valerie T.; Malmstrom, Carolyn M.; Hart, Stephen C.

    2015-01-01

    Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing), plant invasion + nitrogen (N) fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5–6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N) and microbial functioning (nitrification and denitrification potentials) were also measured and showed treatment-induced shifts, including altered NO−3 availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes. PMID:26042104

  17. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  18. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Parton, W.J.; Ojima, D.S.; Kirchner, T. (Colorado State Univ., Ft. Collins, CO (United States)); Scurlock, J.M.O. (Kings College, London (United Kingdom)); Gilmanov, T.G. (Moscow State Univ. (Russian Federation)); Scholes, R.J. (Forestek, Prestoria (South Africa)); Schimel, D.S. (Climate System Modelling Program, Boulder, CO (United States)); Menaut, J.C. (Ecole Normal Superieure, Paris (France)); Seastedt, T. (Univ. of Colorado, Boulder, CO (United States)); Moya, E.G. (Centro de Botanica, Chapingo (Mexico)) (and others)

    1993-12-01

    The Century model for plant-soil ecosystems, developed under a Scientific Committee on Problems of the Environment (SCOPE) project, has been modified by a grasslands modelling group so it can be applied to a wide range of tempeate and tropical grasslands worldwide. This study was developed to meet the overall aims of the SCOPE project to review and identify models with wide application and predictive ability, in order to link plant ans soil responses to the large scale modelling of global change. The Century model is reviewed and compared with other models. The model simulated differences between wet and dry years well, but was unable to simulate more subtle differences between years with similar precipitation. The model substantially underestimated live biomass for unusually high production years. 44 refs., 15 figs., 2 tabs.

  19. Effects of assimilate supply on root and microbial components of soil respiration in a mountain grassland.

    Science.gov (United States)

    Schmitt, M.; Siegwolf, R.; Ekblad, A.; Pfahringer, N.; Bahn, M.

    2012-04-01

    Soil respiration is the main source of carbon emitted from terrestrial ecosystems. Soil CO2 originates from multiple processes, comprising respiration by plant roots, mycorrhizae and microbes in the rhizosphere, as well as respiration due to soil organic matter (SOM) decomposition. Thus, components of soil respiration have different controls and show varying responses to changing environmental conditions and to the supply of fresh assimilates from photosynthesis. For grasslands there is still little information available as to what extent root and microbial respiration respond to reduced or enhanced assimilate supply. The aim of this study was to assess effects of assimilate supply on root and microbial components of soil respiration in a temperate mountain grassland. Root and microbial components were separated and quantified by applying the Substrate Induced Respiration method (SIR) in situ using a δ13C labelled sucrose solution, and analysing δ13C of the subsequently respired CO2. Assimilate supply was modified by clipping and shading treatments, which strongly reduced photosynthetic C supply, and by applying a sucrose solution 8 days after clipping and shading. We tested the hypotheses that (1) due to a reduction of assimilate supply, soil respiration would be lower in the clipped and shaded than in the control treatment, that (2) the microbial contribution to soil respiration would be lower in the assimilate-limited than in the control treatments, and that (3) priming effects following the addition of sucrose would be stronger in shaded and mowed treatments than in control plots. Our results showed that clipping and shading reduced soil respiration significantly. Whilst the microbial contribution to soil respiration was 61% in control plots, it amounted to only 50-48% in clipped and shaded plots, respectively. Sucrose application did not affect root respiration in any of the plots, but generally stimulated microbial respiration. The measured priming effect

  20. Prognostic value of Poincare plot as nonlinear parameter of chaos theory in patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Milovanović Branislav

    2007-01-01

    Full Text Available Introduction: There are different proofs about association of autonomic nervous system dysfunction, especially nonlinear parameters, with higher mortality after myocardial infarction. Objective The objective of the study was to determine predictive value of Poincare plot as nonlinear parameter and other significant standard risk predictors: ejection fraction of the left ventricle, late potentials, ventricular arrhythmias, and QT interval. Method The study included 1081 patients with mean follow up of 28 months (ranging fom 0-80 months. End-point of the study was cardiovascular mortality. The following diagnostic methods were used during the second week: ECG with commercial software Schiller AT-10: short time spectral analysis of RR variability with analysis of Poincare plot as nonlinear parameter and late potentials; 24-hour ambulatory ECG monitoring: QT interval, RR interval, QT/RR slope, ventricular arrhythmias (Lown >II; echocardiography examinations: systolic disorder (defined as EF<40 %. Results There were 103 (9.52% cardiovascular deaths during the follow-up. In univariate analysis, the following parameters were significantly correlated with mortality: mean RR interval < 800 ms, QT and RR interval space relationship as mean RR interval < 800 ms and QT interval > 350 ms, positive late potentials, systolic dysfunction, Poincare plot as a point, ventricular arrhythmias (Lown > II. In multivariate analysis, the significant risk predictors were: Poincare plot as a point and mean RR interval lower than 800 ms. Conclusion Mean RR interval lower than 800 ms and nonlinear and space presentation of RR interval as a point Poincare plot were multivariate risk predictors.

  1. Response of soil carbon dioxide efflux to fire disturbance in a long-term grassland global change experiment

    Science.gov (United States)

    Strong, A. L.; Chiariello, N.; Tobeck, T.; Field, C. B.

    2012-12-01

    How terrestrial biosphere-atmosphere carbon dioxide exchange responds to global change is an important component to understanding global feedbacks of the carbon cycle. Soils represent a global store of organic carbon on the order of 3000 Pg C. Increased carbon dioxide release from increased respiration of soil C in response to climate warming and other direct and indirect anthropogenic factors could create a positive carbon cycle feedback to climate change. Numerous studies have demonstrated that soil respiration increases under experimental warming and elevated CO2, although the long-term, multi-year dynamics of this feedback remain poorly constrained. Punctuated disturbances, such as fire, are also likely to affect soil C responses, and understanding how fire and other global change factors interact in their influence on soil respiration is important in order to fully characterize climate-carbon cycle feedbacks. Previous studies have found that fire disturbance in semi-arid grasslands reduces soil CO2. The Jasper Ridge Global Change Experiment is a thirteen-year continuous full-factorial global change manipulation (elevated carbon dioxide, temperature, precipitation, and nitrogen deposition) located in a clay-loam soil grassland in central coastal California. In summer 2011, an additional treatment condition -- a controlled burn -- was applied to half the experimental plots to provide a fire treatment, and in the following growing season, soil carbon dioxide effluxes were measured at peak aboveground plant biomass (April 2012) and after summer senescence (June 2012) using a LiCOR-6400 soil respiration chamber and infrared gas analyzer. Across all plots and other treatments, CO2 fluxes were greater in burned grassland soils than in non-burned grassland soils (p 0.10). Neither soil temperature, nor soil moisture appeared to be correlated with soil CO2 efflux (p > 0.10). By June 2012, after senescence and dry-out, all soil CO2 effluxes were lower than in April, and

  2. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  3. Resilience of belowground carbon allocation dynamics after drought in a mountain grassland

    Science.gov (United States)

    Fuchslueger, Lucia; Bahn, Michael; Fritz, Karina; Hasibeder, Roland; Kienzl, Sandra; Schmitt, Michael; Watzka, Margarete; Richter, Andreas

    2014-05-01

    Drought periods, which have been projected to become more frequent in many European regions, can severely affect plant and microbial carbon (C) turnover. Drought has been shown to decrease plant C uptake, affect plant belowground C allocation, and may alter the accessibility of recent plant derived C for soil microbes, thus shifting the active microbial community composition in soils. It is however still not clear how plant belowground allocation dynamics and the transfer of recent C from plants to microbial communities recover after an extreme drought. To address this question we conducted a 13CO2-pulse labelling experiment on a mountain meadow that had been exposed to 10 weeks of rain-exclusion, had been mown at the end of the drought treatment and, after rewetting, had returned to similar soil moisture conditions as in control plots. We traced the 13C label from plant shoots to fine roots and fine root respiration, as well as to the extractable soil organic carbon pool, and into the soil microbial biomass (by phospholipid fatty acids analysis, PLFA). Although plant biomass and plant C during regrowth were not affected by the precedent drought treatment, plant 13C uptake and belowground 13C allocation were decreased compared to control plots that had not experienced drought. Microbial biomass and community composition, which had changed during drought, differed no longer between drought and control plots 2 weeks after rewetting. Nonetheless, 13C uptake of plant derived C into microbial groups was slower in plots that had been exposed to drought. We conclude that effects of drought on plant C allocation dynamics and its consequences for microbial uptake of plant-derived C may persist even after a drought has ceased, while the microbial community is highly resilient to an extreme drought in mountain grassland.

  4. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Directory of Open Access Journals (Sweden)

    Brigitte Braschler

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice in 12 small (1.5 m * 1.5 m and 12 large (4.5 m * 4.5 m fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in

  5. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Science.gov (United States)

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to

  6. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups

    Science.gov (United States)

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species’ preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related

  7. Woody Plant Invasion of Grassland: Storage and Turnover of Carbon in Soil Physical Fractions

    Science.gov (United States)

    Liao, J. D.; Boutton, T. W.; Jastrow, J. D.

    2003-12-01

    Woody plant encroachment is common in many grassland and savanna regions around the world. In the Rio Grande Plains of southern Texas, subtropical thorn woodlands dominated by C3 trees and shrubs (d13C = -27 o/oo) have largely replaced C4 grasslands (d13C = -14 o/oo) over the past 150 y. This vegetation change has resulted in increased soil organic carbon (SOC) storage. To elucidate mechanisms of SOC sequestration and turnover in this system, we separated soil organic matter into specific physical (size, density) fractions and determined natural d13C values of carbon in these fractions. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10-130 y. The free light-fraction (density less than 1 g/cm3) increased from 1 o/o of whole-soil weight in grasslands to 2-4 o/o of whole-soil weight in wooded landscape elements. The macroaggregate fraction (greater than 250 um) of soil in the 0-15 cm depth increment increased from less than 10 o/o of whole-soil dry weight in grasslands to more than 30 o/o of whole-soil weight in older woodlands. In contrast, the microaggregate fraction (53-250 um) decreased from 80 o/o of whole-soil weight in grasslands to 60 o/o of whole-soil weight after 80-130 y of woodland development. The decrease in microaggregates with increasing stand age likely reflects their incorporation into the macroaggregate fraction. Carbon contents (g C within a fraction per kg of whole soil) of all soil physical fractions (except free silt and clay) increased linearly with increasing woodland age, and were greatest in macroaggregates. Based on changes in natural C-13 abundance, mean residence times (1/k) for microaggregate carbon (326 y) were significantly greater than those for macroaggregate carbon (76 y), indicating that the older carbon associated with microaggregates is biochemically recalcitrant and/or physically protected. These results indicate that the interactions between

  8. Contribution of urine and dung patches from grazing sheep to methane and carbon dioxide fluxes in an inner mongolian desert grassland.

    Science.gov (United States)

    Jiang, Yuanyuan; Tang, Shiming; Wang, Chengjie; Zhou, Pei; Tenuta, Mario; Han, Guodong; Huang, Ding

    2012-02-01

    The effects of sheep urine and dung patches on methane (CH4) and carbon dioxide (CO2) fluxes were investigated during the summer-autumn in 2010, to evaluate their contribution to climate change in a desert grassland in Inner Mongolia, China. Results indicate that the cumulative CH4 emissions for dung patches, urine patches and control plots were - -0.076, -0.084, and -0.114 g/m(2) and these were net CH4 sinks during the measured period. The level of CH4 intake from urine and dung plots decreased 25.7%, and 33.3%, respectively, compared with a control plot. CO2 fluxes differed (psheep excrement weakened CH4 intake and increased CO2 emissions.

  9. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    Directory of Open Access Journals (Sweden)

    Alexander Ač

    2012-01-01

    Full Text Available We explored ability of reflectance vegetation indexes (VIs related to chlorophyll fluorescence emission (686/630, 740/800 and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (531−570/(531−570 to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (MAX was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(686/630 of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to MAX (2=0.51. In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP, Net Ecosystem Exchange (NEE, and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index 686/630 with NEE and GPP.

  10. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula

    Science.gov (United States)

    Palpurina, Salza; Chytrý, Milan; Tzonev, Rossen; Danihelka, Jiří; Axmanová, Irena; Merunková, Kristina; Duchoň, Mário; Karakiev, Todor

    2015-02-01

    Fine-scale plant species richness varies across habitats, climatic and biogeographic regions, but the large-scale context of this variation is insufficiently explored. The patterns at the borders between biomes harbouring rich but different floras are of special interest. Dry grasslands of the eastern Balkan Peninsula, situated in the Eurasian forest-steppe zone and developed under Mediterranean influence, are a specific case of such biome transition. However, there are no studies assessing the patterns of fine-scale species richness and their underlying factors across the eastern Balkans. To explore these patterns, we sampled dry and semi-dry grasslands (phytosociological class Festuco-Brometea) across Bulgaria and SE Romania. In total, 172 vegetation plots of 10 × 10 m2 were sampled, in which all vascular plant species were recorded, soil depth was measured, and soil samples were collected and analysed in a laboratory for pH and plant-available nutrients. Geographic coordinates were used to extract selected climatic variables. Regression trees and linear regressions were used to quantify the relationships between species richness and environmental variables. Climatic factors were identified as the main drivers of species richness: (1) Species richness was strongly positively correlated with the mean temperature of the coldest month: sub-Mediterranean areas of S and E Bulgaria, characterized by warmer winters, were more species-rich. (2) Outside the sub-Mediterranean areas, species richness strongly increased with annual precipitation, which was primarily controlled by altitude. (3) Bedrock type and soil pH also significantly affected dry grassland richness outside the sub-Mediterranean areas. These results suggest that fine-scale species richness of dry grasslands over large areas is driven by processes at the regional level, especially by the difference in the species pools of large regions, in our case the Continental and Mediterranean biogeographic regions

  11. Evaluation of a Smartphone App for Forest Sample Plot Measurements

    Directory of Open Access Journals (Sweden)

    Mikko Vastaranta

    2015-04-01

    Full Text Available We evaluated a smartphone app (TRESTIMATM for forest sample plot measurements. The app interprets imagery collected from the sample plots using the camera in the smartphone and then estimates forest inventory attributes, including species-specific basal areas (G as well as the diameter (DgM and height (HgM of basal area median trees. The estimates from the smartphone app were compared to forest inventory attributes derived from tree-wise measurements using calipers and a Vertex height measurement device. The data consist of 2169 measured trees from 25 sample plots (32 m × 32 m, dominated by Scots pine and Norway spruce from southern Finland. The root-mean-square errors (RMSEs in the basal area varied from 19.7% to 29.3% and the biases from 11.4% to 18.4% depending on the number of images per sample plot and image shooting location. DgM measurement bias varied from −1.4% to 3.1% and RMSE from 5.2% to 11.6% depending on the tree species. Respectively, HgM bias varied from 5.0% to 8.3% and RMSE 10.0% to 13.6%. In general, four images captured toward the center of the plot provided more accurate results than four images captured away from the plot center. Increasing the number of captured images per plot to the analyses yielded only marginal improvement to the results.

  12. Plotting the Course of Well-Being

    Directory of Open Access Journals (Sweden)

    Frances Wilby

    2016-05-01

    Full Text Available Persons above age 80 comprise the fastest growing segment of the U.S. population, and it is estimated that one in four will need long-term care due to increased disabilities and illness. A major concern for residents, families, and providers is to ensure care that “allows the resident to maintain or attain their highest practicable physical, mental and psychosocial well-being.” The challenge is measuring a subjective concept such as well-being. The Eden Alternative is a current initiative aimed at improving the quality of life and well-being of long-term care residents. The initiative consists of providing long-term care environments that emphasize person-directed decision making and well-being. The purpose of this study was to explore the psychometric properties of the Eden Alternative Well-Being Assessment Tool (EAWBAT. There are three assessment tools designed to measure the well-being of elders (residents, family members of residents, and employees working in the long-term care environments. The sample consisted of 237 residents, 430 employees, and 134 family members from seven Eden Alternative organizations throughout the United States. Factor analysis was completed to identify the underlying structure in these data for elders, employees, and families. Reliability statistics were computed for each scale. Reliability statistics ranged from .876 (employee assessment tool to .949 (family assessment tool, indicating the potential of the EAWBAT to measure the well-being of residents residing in long-term care environments, employees supporting them, and their family members.

  13. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  14. The importance of grasslands for animal production and other functions: a review on management and methodological progress in the tropics.

    Science.gov (United States)

    Boval, M; Dixon, R M

    2012-05-01

    grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.

  15. Surging wildfire activity in a grassland biome

    Science.gov (United States)

    Donovan, Victoria M.; Wonkka, Carissa L.; Twidwell, Dirac

    2017-06-01

    Rapid changes in wildfire patterns are documented globally, increasing pressure to identify regions that may experience increases in wildfire in future decades. Temperate grassland and savanna biomes were some of the most frequently burned regions on Earth; however, large wildfires have been largely absent from the Great Plains of North America over the last century. In this paper, we conduct an in-depth analysis of changes in large wildfire (>400 ha) regime characteristics over a 30 year period across the Great Plains. For the entire biome, (i) the average number of large wildfires increased from 33.4 ± 5.6 per year from 1985 to 1994 to 116.8 ± 28.8 wildfires per year from 2005 to 2014, (ii) total area burned by large wildfires increased 400%, (iii) over half the ecoregions had greater than a 70% probability of a large wildfire occurring in the last decade, and (iv) seasonality of large wildfires remained relatively similar.

  16. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change

    Science.gov (United States)

    McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin

    2017-01-01

    ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.

  17. Economic valuation of plant diversity storage service provided by Brazilian rupestrian grassland ecosystems.

    Science.gov (United States)

    Resende, F M; Fernandes, G W; Coelho, M S

    2013-11-01

    The rupestrian grassland ecosystems provide various goods and services to society and support a significant amount of biological diversity. Notably the rich plant diversity has high levels of endemism and a variety of uses among the local communities and general society. Despite the socio-ecological importance of these ecosystems, they are subjected to significant anthropogenic pressures. The goal of this study is to perform economic valuation of the plant diversity storage service provided by rupestrian grassland ecosystems to provide grounds for the development of conservation policies and encourage sustainable practices in these ecosystems. Given the intense human disturbances and unique flora, the Serra do Cipó (southern portion of the Espinhaço Range in southeast Brazil) was selected for the study. We estimate the monetary value related to the plant diversity storage service provided by the study area using the maintenance costs of native plants in the living collections of the botanical garden managed by the Zoobotanical Foundation - Belo Horizonte (located 97 km from Serra do Cipó). The plant diversity storage value provided by Serra do Cipó ecosystems is significant, reaching US$25.26 million year-1. This study contributes to the development of perspectives related to the conservation of rupestrian grassland ecosystems as well as others threatened tropical ecosystems with high biodiversity.

  18. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  19. In-situ polymerization PLOT columns I: divinylbenzene

    Science.gov (United States)

    Shen, T. C.

    1992-01-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.

  20. A framework for plot control in interactive story systems

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, N.M.; Papakonstantinou, G.; Tsanakas, P. [National Technical Univ. of Athens, Zographou Campus (Greece)

    1996-12-31

    This paper presents a framework for plot control in interactive story systems. In this framework, the user takes the place of the main character of the story, the protagonist. The rest of the cast consists of discrete characters, each playing a specific role in the story. A separate module in this system, the plot manager, controls the behavior of the cast and specifies what the protagonist can do. The story plot is dynamically shaped by the interference between cast members and their social interactions. The system accepts as input a story map which provides the main metaphor for organizing the plot and localizes the interaction of the protagonist with the rest of the cast. We are implementing this framework in PEGASUS, an interactive travel story environment for Greek mythology.

  1. Experts’ Misinterpretation of Box Plots – a Dual Processing Approach

    National Research Council Canada - National Science Library

    Stephanie Lem; Patrick Onghena; Lieven Verschaffel; Wim Van Dooren

    2014-01-01

    Recent studies have shown that students often misinterpret the area of the box in box plots as representing the frequency or proportion of observations in that interval, while it actually represents density...

  2. Generalized box-plot for root growth ensembles

    National Research Council Canada - National Science Library

    Vad, Viktor; Cedrim, Douglas; Busch, Wolfgang; Filzmoser, Peter; Viola, Ivan

    2017-01-01

    .... We use the generalized box plot concept with a new formulation of data depth. In addition to spatial distributions, we created a visual representation to encode temporal distributions associated with the development of root individuals...

  3. Field Plot Points for Voyageurs National Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — A total of 191 vegetation field plot samples were collected at Voyageurs National Park and environs to support vegetation classification development. Teams of...

  4. Graphical interpretation of confidence curves in rankit plots

    DEFF Research Database (Denmark)

    Hyltoft Petersen, Per; Blaabjerg, Ole; Andersen, Marianne

    2004-01-01

    A well-known transformation from the bell-shaped Gaussian (normal) curve to a straight line in the rankit plot is investigated, and a tool for evaluation of the distribution of reference groups is presented. It is based on the confidence intervals for percentiles of the calculated Gaussian...... distribution and the percentage of cumulative points exceeding these limits. The process is to rank the reference values and plot the cumulative frequency points in a rankit plot with a logarithmic (In=log(e)) transformed abscissa. If the distribution is close to In-Gaussian the cumulative frequency points...... presentation, however, makes it easy to disclose deviations from In-Gaussianity, and to make other interpretations of the distributions, e.g., comparison to non-Gaussian distributions in the same plot, where the cumulative frequency percentage can be read from the ordinate. A long list of examples of In...

  5. Field Plot Points for Wupatki National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This spatial dataset in ESRI Coverage format maps field releve plot locations for the vegetation classification and descriptions of the vegetation map at Wupatki...

  6. The master plot in the audiovisual narrative. The western case.

    Directory of Open Access Journals (Sweden)

    José Félix GONZÁLEZ SÁNCHEZ

    2015-05-01

    Full Text Available A plot provides us the story that it offers a hyphen and later a film. Plots are limited, however possibilities, argument them that these offer music infinite. At the same time, we can say that all cultures avail themselves of some plots and similar arguments to structure their mythical stories. In addition, United States is the modern nation where better a dialectic relation between the myth and story keeps. At this nation, the significance of the event has been shown and you have gotten free through the myth. We will see through this article how the western is the kind of American cinema what else and better answer for the folkloric traditional story to the cánones, because your plots have been taken directly of the classical legends.

  7. Vegetation-plot data and databases in Europe: an overview

    NARCIS (Netherlands)

    Schaminée, J.H.J.; Hennekens, S.M.; Chytrý, M.; Rodwell, J.S.

    2009-01-01

    During the last decade many electronic databases of vegetation plots, mainly phytosociological relevés, were established in different European countries. These databases contain information which is extremely valuable for both testing various macroecological hypotheses and for nature conservation

  8. Casa Grande Ruins National Monument Vegetation Mapping Project - Plot Locations

    Data.gov (United States)

    National Park Service, Department of the Interior — This layer contains spatial information for 25 plots sampled during vegetation mapping and classification efforts at Casa Grande Ruins NM, AZ. Data was collected by...

  9. The Effect of Plot Size on Some Pratylenchus Penetrans ...

    African Journals Online (AJOL)

    Pratylenchus penetrans counts obtained from a rose field, sampled sequentially by decreasing the plot sizes were computed to obtain the respective sample means, variance and k-value of the negative binomial distribution. Plots 21 m x 80 m, 3.6 m x 3.6 m and 0.6 m x 0.6 m were sampled for the nematode. It is reported ...

  10. Oriented Spatial Box Plot, a New Pattern for Points Clusters

    OpenAIRE

    Etienne, Laurent; Devogele, Thomas; McArdle, Gavin

    2014-01-01

    Nowadays, an abundance of sensors are used to collect very large datasets containing spatial points which can be mined and analyzed to extract meaningful patterns and information. This article examines patterns which describe the dispersion of 2D data around a central tendency. Several state of the art patterns for point cluster analysis are presented and critiqued before a new pattern, the Oriented Spatial Box Plot, is defined. The Oriented Spatial Box Plot extends the clas...

  11. A summary of eight traits of Coleoptera, Hemiptera, Orthoptera and Araneae, occurring in grasslands in Germany

    Science.gov (United States)

    Gossner, Martin M; Simons, Nadja K; Achtziger, Roland; Blick, Theo; Dorow, Wolfgang H.O; Dziock, Frank; Köhler, Frank; Rabitsch, Wolfgang; Weisser, Wolfgang W

    2015-01-01

    Analyses of species traits have increased our understanding of how environmental drivers such as disturbances affect the composition of arthropod communities and related processes. There are, however, few studies on which traits in the arthropod community are affected by environmental changes and which traits affect ecosystem functioning. The assembly of arthropod traits of several taxa is difficult because of the large number of species, limited availability of trait databases and differences in available traits. We sampled arthropod species data from a total of 150 managed grassland plots in three regions of Germany. These plots represent the spectrum from extensively used pastures to mown pastures to intensively managed and fertilized meadows. In this paper, we summarize information on body size, dispersal ability, feeding guild and specialization (within herbivores), feeding mode, feeding tissue (within herbivorous suckers), plant part (within herbivorous chewers), endophagous lifestyle (within herbivores), and vertical stratum use for 1,230 species of Coleoptera, Hemiptera (Heteroptera, Auchenorrhyncha), Orthoptera (Saltatoria: Ensifera, Caelifera), and Araneae, sampled by sweep-netting between 2008 and 2012. We compiled traits from various literature sources and complemented data from reliable internet sources and the authors’ experience. PMID:25977817

  12. A summary of eight traits of Coleoptera, Hemiptera, Orthoptera and Araneae, occurring in grasslands in Germany

    Science.gov (United States)

    Gossner, Martin M.; Simons, Nadja K.; Achtziger, Roland; Blick, Theo; Dorow, Wolfgang H. O.; Dziock, Frank; Köhler, Frank; Rabitsch, Wolfgang; Weisser, Wolfgang W.

    2015-03-01

    Analyses of species traits have increased our understanding of how environmental drivers such as disturbances affect the composition of arthropod communities and related processes. There are, however, few studies on which traits in the arthropod community are affected by environmental changes and which traits affect ecosystem functioning. The assembly of arthropod traits of several taxa is difficult because of the large number of species, limited availability of trait databases and differences in available traits. We sampled arthropod species data from a total of 150 managed grassland plots in three regions of Germany. These plots represent the spectrum from extensively used pastures to mown pastures to intensively managed and fertilized meadows. In this paper, we summarize information on body size, dispersal ability, feeding guild and specialization (within herbivores), feeding mode, feeding tissue (within herbivorous suckers), plant part (within herbivorous chewers), endophagous lifestyle (within herbivores), and vertical stratum use for 1,230 species of Coleoptera, Hemiptera (Heteroptera, Auchenorrhyncha), Orthoptera (Saltatoria: Ensifera, Caelifera), and Araneae, sampled by sweep-netting between 2008 and 2012. We compiled traits from various literature sources and complemented data from reliable internet sources and the authors’ experience.

  13. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.

    Science.gov (United States)

    Reinhart, Kurt O; Vermeire, Lance T

    2016-01-01

    Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0-10 or 0-30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.

  14. Response of soil respiration to experimental warming and precipitation manipulation in a northern Great Plains grassland

    Science.gov (United States)

    Flanagan, L. B.; Sharp, E. J.; Letts, M. G.

    2012-12-01

    The interacting effects of altered temperature and precipitation are expected to have significant consequences for ecosystem net carbon storage. Here we report the results of an experiment that evaluated the effects of elevated temperature and altered precipitation, alone and in combination, on plant biomass production and soil respiration rates in a northern Great Plains grassland, near Lethbridge, Alberta Canada. Open-top chambers and rain shelters were used to establish an experiment with two temperature treatments (warmed and control), each combined with three precipitation treatments (minus 50%, ambient (no manipulation), and plus 50%). Our objectives were to determine the sensitivity of plant biomass production and soil respiration to temperature and moisture manipulations, and to test for direct and indirect effects of the environmental changes on soil respiration rates. The experimental manipulations resulted primarily in a significant increase in air temperature in the warmed treatment. There were no significant treatment effects on soil moisture content. Aboveground biomass was not significantly affected by the experimental manipulations, but the warmed plots of the ambient precipitation treatment showed an increase in root biomass relative to the control plots. The warmed treatment increased the cumulative loss of carbon in soil respiration by approximately 400 g C m-2 compared to the control during July-September. This higher soil respiration rate was not directly caused by differences among treatments in soil temperature or soil moisture, but was likely an indirect result of increased carbon substrate availability in the warmed relative to the control treatment.

  15. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.

    Directory of Open Access Journals (Sweden)

    Kurt O Reinhart

    Full Text Available Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot variation in grassland community composition, plant (aboveground biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia. However, variation in total root biomass (0-10 or 0-30 cm depths was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.

  16. NPP Grassland: Jornada, USA, 1970-1972, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). Two files contain above- and below-ground biomass and productivity data for a desert grassland in the Jornada...

  17. Grassland Management Plan Wertheim National Wildlife Refuge 1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This grassland management plan for Wertheim National Wildlife Refuge is presented as an interim document to provide refuge staff in 1989 with management guidelines...

  18. Shawangunk Grasslands National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Shawangunk Grasslands NWR for the next 15 years. This plan outlines the Refuge vision...

  19. Effects of Habitat Manipulation on Grassland Bird Populations

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Because of continuing concern over the decline of grassland bird populations in the Northeast, and the fact that many management activities designed to increase...

  20. Grasslands Wildlife Management Area : Annual narrative report : Calendar year 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Grasslands WMA outlines Refuge accomplishments during the 1991 calendar year. The report begins with a summary of the year's...

  1. Effects of fire on belowground biomass in Chihuahuan desert grassland

    National Research Council Canada - National Science Library

    Burnett, Shayla A; Hattey, Jeffory A; Johnson, Jennifer E; Swann, Amaris L; Moore, Douglas I; Collins, Scott L

    2012-01-01

    .... eriopoda -dominated grassland in Central New Mexico, USA. At one site, we quantified belowground standing crop and net primary production in burned and unburned areas during the first full growing season following wildfire the previous summer...

  2. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties....... Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy...

  3. New taxa of Entoloma from grasslands in Drenthe, The Netherlands

    NARCIS (Netherlands)

    Arnolds, E.J.M.; Noordeloos, M.E.

    1979-01-01

    Fourteen new species and three new variaties of Entoloma from grassland vegetations in the province of Drenthe, The Netherlands, are described: E. acidophilum, E. argenteostriatum, E. calthionis, E. chlorinosum, E. cryptocystidiatum, E. cuniculorum. E. defibulatum, E. farinogustus, E.

  4. NPP Grassland: Bridger, USA, 1970-1973, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII text files for the Bridger grassland study site in the Rocky Mountains (45.78 N, -110.78 W, Elevation 2,340 m). Two files contain...

  5. Grassland Management Plan Erie National Wildlife Refuge 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This management plan provides well defined guidelines to accomplish the following goals at Erie National Wildlife Refuge : 1) to manage existing grasslands, 2)...

  6. Grassland bird survey protocol : Kulm Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial Survey Instructions for the grassland bird survey at Kulm Wetland Management District. This survey occurs between May 15th and July 15th annually. All...

  7. Optimising stocking rate and grazing management to enhance environmental and production outcomes for native temperate grasslands

    Science.gov (United States)

    Badgery, Warwick; Zhang, Yingjun; Huang, Ding; Broadfoot, Kim; Kemp, David; Mitchell, David

    2015-04-01

    Stocking rate and grazing management can be altered to enhance the sustainable production of grasslands but the relative influence of each has not often been determined for native temperate grasslands. Grazing management can range from seasonal rests through to intensive rotational grazing involving >30 paddocks. In large scale grazing, it can be difficult to segregate the influence of grazing pressure from the timing of utilisation. Moreover, relative grazing pressure can change between years as seasonal conditions influence grassland production compared to the relative constant requirements of animals. This paper reports on two studies in temperate native grasslands of northern China and south eastern Australia that examined stocking rate and regionally relevant grazing management strategies. In China, the grazing experiment involved combinations of a rest, moderate or heavy grazing pressure of sheep in spring, then moderate or heavy grazing in summer and autumn. Moderate grazing pressure at 50% of the current district average, resulted in the better balance between maintaining productive and diverse grasslands, a profitable livestock system, and mitigation of greenhouse gases through increased soil carbon, methane uptake by the soil, and efficient methane emissions per unit of weight gain. Spring rests best maintained a desirable grassland composition, but had few other benefits and reduced livestock productivity due to lower feed quality from grazing later in the season. In Australia, the grazing experiment compared continuous grazing to flexible 4- and 20-paddock rotational grazing systems with sheep. Stocking rates were adjusted between systems biannually based on the average herbage mass of the grassland. No treatment degraded the perennial pasture composition, but ground cover was maintained at higher levels in the 20-paddock system even though this treatment had a higher stocking rate. Overall there was little difference in livestock production (e.g. kg

  8. Tracking Changes in Cardiac Output: Statistical Considerations on the 4-Quadrant Plot and the Polar Plot Methodology

    National Research Council Canada - National Science Library

    Saugel, Bernd; Grothe, Oliver; Wagner, Julia Y

    2015-01-01

    When comparing 2 technologies for measuring hemodynamic parameters with regard to their ability to track changes, 2 graphical tools are omnipresent in the literaturethe 4-quadrant plot and the polar...

  9. Selenium contamination of the Grasslands, a major California waterfowl area

    Science.gov (United States)

    Ohlendorf, H.M.; Hothem, R.L.; Aldrich, T.W.; Krynitsky, A.J.

    1987-01-01

    In a recent study at Kesterson Reservoir in California, selenium was shown to cause mortality and deformities in embryos of aquatic birds. The present study was conducted to determine if selenium or other contaminants in agricultural drainwater used for marsh management were likely to cause similar adverse effects in the nearby Grasslands area. Selenium concentrations were elevated (greater than 15 ppm, dry-weight) in livers of some birds of all species collected from the Grasslands. Mean selenium concentrations in all species sampled in the South Grasslands were significantly higher (P less than 0.05) than those from the 'control site', the Volta Wildlife Area. Mean selenium levels in black-necked stilts (Himantopus mexicanus) from the South Grasslands (35.6 ppm) were similar (P greater than 0.05) to levels in stilts from Kesterson (46.4 ppm), but means for American avocets (Recurvirostra americana) from the South Grasslands (67.3 ppm) were higher (P less than 0.05) than those from Kesterson (28.4 ppm). Bird eggs and fish from the Grasslands also contained elevated levels of selenium. Concentrations of eight heavy metals in fish generally reflected those patterns previously found in water entering the study areas. Of the organochlorines detected in fish, only DDE occurred at concentrations potentially harmful to birds (6.1 and 3.0 ppm, wet weight, at two South Grassland sites). The effect on avian health or reproduction of the other contaminants, singly or in combination, could not be determined. However, selenium levels were apparently sufficiently elevated in 1984 to have caused adverse effects on avian reproduction in the South Grasslands.

  10. Seasonal methane dynamics in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Schäfer, Carolyn; Elsgaard, Lars; Hoffmann, Carl Christian

    2012-01-01

    Background and Aims Drained peatlands are considered to be insignificant CH4 sources, but the effect of drainage on CH4 dynamics has not been extensively studied. We investigated seasonal dynamics of CH4 in two fen peat soils and one bog peat soil under permanent grassland in Denmark. Methods Soil...... of aerenchymous plants should be considered before dismissing grasslands on peat as CH4 sources....

  11. The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques

    KAUST Repository

    Wang, Lixin

    2013-06-01

    The proportion of transpiration (T) in total evapotranspiration (ET) is an important parameter that provides insight into the degree of biological influence on the hydrological cycles. Studies addressing the effects of climatic warming on the ecosystem total water balance are scarce, and measured warming effects on the T/ET ratio in field experiments have not been seen in the literature. In this study, we quantified T/ET ratios under ambient and warming treatments in a grassland ecosystem using a stable isotope approach. The measurements were made at a long-term grassland warming site in Oklahoma during the May-June peak growing season of 2011. Chamber-based methods were used to estimate the δ2H isotopic composition of evaporation (δE), transpiration (δT) and the aggregated evapotranspiration (δET). A modified commercial conifer leaf chamber was used for δT, a modified commercial soil chamber was used for δE and a custom built chamber was used for δET. The δE, δET and δT were quantified using both the Keeling plot approach and a mass balance method, with the Craig-Gordon model approach also used to calculate δE. Multiple methods demonstrated no significant difference between control and warming plots for both δET and δT. Though the chamber-based estimates and the Craig-Gordon results diverged by about 12‰, all methods showed that δE was more depleted in the warming plots. This decrease in δE indicates that the evaporation flux as a percentage of total water flux necessarily decreased for δET to remain constant, which was confirmed by field observations. The T/ET ratio in the control treatment was 0.65 or 0.77 and the ratio found in the warming treatment was 0.83 or 0.86, based on the chamber method and the Craig-Gordon approach. Sensitivity analysis of the Craig-Gordon model demonstrates that the warming-induced decrease in soil liquid water isotopic composition is the major factor responsible for the observed δE depletion and the temperature

  12. Plotting positions via maximum-likelihood for a non-standard situation

    Directory of Open Access Journals (Sweden)

    D. A. Jones

    1997-01-01

    Full Text Available A new approach is developed for the specification of the plotting positions used in the frequency analysis of extreme flows, rainfalls or similar data. The approach is based on the concept of maximum likelihood estimation and it is applied here to provide plotting positions for a range of problems which concern non-standard versions of annual-maximum data. This range covers the inclusion of incomplete years of data and also the treatment of cases involving regional maxima, where the number of sites considered varies from year to year. These problems, together with a not-to-be-recommended approach to using historical information, can be treated as special cases of a non-standard situation in which observations arise from different statistical distributions which vary in a simple, known, way.

  13. Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps.

    Science.gov (United States)

    Leitinger, Georg; Ruggenthaler, Romed; Hammerle, Albin; Lavorel, Sandra; Schirpke, Uta; Clement, Jean-Christophe; Lamarque, Pénélope; Obojes, Nikolaus; Tappeiner, Ulrike

    2015-12-01

    This study analyzes the impact of droughts, compared with average climatic conditions, on the supporting ecosystem service water provision in sub-watersheds in managed alpine grasslands in two climatically different regions of the Alps, Lautaret (French Alps) and Stubai (Austrian Alps). Soil moisture was modelled in the range of 0-0.3 m. At both sites, current patterns showed that the mean seasonal soil moisture was (1) near field capacity for grasslands with low management intensity and (2) below field capacity for grasslands with higher land-use intensity. Soil moisture was significantly reduced by drought at both sites, with lower reductions at the drier Lautaret site. At the sub-watershed scale, soil moisture spatial heterogeneity was reduced by drought. Under drought conditions, the evapotranspiration to precipitation ratios at Stubai was slightly higher than those at Lautaret, indicating a dominant 'water spending' strategy of plant communities. Regarding catchment water balance, deep seepage was reduced by drought at Stubai more strongly than at Lautaret. Hence, the observed 'water spending' strategy at Stubai might have negative consequences for downstream water users. Assessing the water provision service for alpine grasslands provided evidence that, under drought conditions, evapotranspiration was influenced not only by abiotic factors but also by the water-use strategy of established vegetation. These results highlight the importance of 'water-use' strategies in existing plant communities as predictors of the impacts of drought on water provision services and related ecosystem services at both the field and catchment scale.

  14. Sensitivity of temperate grassland species to elevated atmospheric CO2 and the interaction with temperature and water stress

    Directory of Open Access Journals (Sweden)

    M.B. JONES

    2008-12-01

    Full Text Available The annual cycle of growth of many temperate grasses is limited by low temperatures during the winter and spring and water stress during the summer. Climate change, induced by increase in the concentration of greenhouse gases in the atmosphere, can affect the growth and community structure of temperate grasslands in two ways. The first is directly through changes in atmospheric concentration of CO2 and the second is indirectly through changes in temperature and rainfall. At higher latitudes, where growth is largely temperature limited, it is probable that the direct effects of enhanced CO2 will be less than at low latitudes. However, interactions with increasing temperature and water stress are complex. Temperate grasslands range from intensively managed monocultures of sown species to speciesrich natural and semi-natural communities whose local distributions are controlled by variations in soil type and drainage. The different species can show marked differences in their responses to increasing CO2 concentrations, rising temperatures and water stress. This will probably result in major alterations in the community structure of temperate grasslands in the future. In addition to impacts on primary productivity and community structure, a long-term effect of elevated CO2 on grasslands is likely to be a significant increase in soil carbon storage. However, this may be counteracted by increases in temperature.;

  15. Grassland breeding bird use of managed grasslands on National Wildlife Refuges in Region 5 of the Fish and Wildlife Service

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The overall purpose of this project is to understand the likely capacity of Fish and Wildlife Service land managers to affect grassland bird populations in Region 5....

  16. Short-term effects of biogas digestate and cattle slurry application on greenhouse gas emissions affected by N availability from grasslands on drained fen peatlands and associated organic soils

    Science.gov (United States)

    Eickenscheidt, T.; Freibauer, A.; Heinichen, J.; Augustin, J.; Drösler, M.

    2014-11-01

    A change in German energy policy has resulted in a strong increase in the number of biogas plants in Germany. As a consequence, huge amounts of nutrient-rich residues, the by-products of the fermentative process, are used as organic fertilizers. Drained peatlands are increasingly used to satisfy the huge demand for fermentative substrates (e.g., energy crops, grass silage) and the digestate is returned to the peatlands. However, drained organic soils are considered as hot spots for nitrous oxide (N2O) emissions and organic fertilization is additionally known to increase N2O emissions from managed grasslands. Our study addressed the questions (a) to what extent biogas digestate and cattle slurry application increase N2O and methane (CH4) fluxes as well as the mineral nitrogen use efficiency (NUEmin) and grass yield, and (b) how different soil organic matter contents (SOMs) and nitrogen contents promote the production of N2O. In addition NH3 volatilization was determined at one application event to obtain first clues with respect to the effects of soil and fertilizer types. The study was conducted at two sites within a grassland parcel, which differed in their soil organic carbon (SOC) and N contents. At each site (named Corg-medium and Corg-high) three plots were established: one was fertilized five times with biogas digestate, one with cattle slurry, and the third served as control plot. On each plot, fluxes of N2O and CH4 were measured on three replicates over 2 years using the closed chamber method. For NH3 measurements we used the calibrated dynamic chamber method. On an annual basis, the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry and additionally increased the plant N-uptake and NUEmin. Furthermore, N2O fluxes from the Corg-high treatments significantly exceeded N2O fluxes from the Corg-medium treatments. Annual cumulative emissions ranged from 0.91 ± 0.49 to 3.14 ± 0.91 kg N ha-1 yr-1

  17. Estimation of Alcohol Concentration of Red Wine Based on Cole-Cole Plot

    Science.gov (United States)

    Watanabe, Kota; Taka, Yoshinori; Fujiwara, Osamu

    To evaluate the quality of wine, we previously measured the complex relative permittivity of wine in the frequency range from 10 MHz to 6 GHz with a network analyzer, and suggested a possibility that the maturity and alcohol concentration of wine can simultaneously be estimated from the Cole-Cole plot. Although the absolute accuracy has not been examined yet, this method will enable one to estimate the alcohol concentration of alcoholic beverages without any distillation equipment simply. In this study, to investigate the estimation accuracy of the alcohol concentration of wine by its Cole-Cole plots, we measured the complex relative permittivity of pure water and diluted ethanol solution from 100 MHz to 40 GHz, and obtained the dependence of the Cole-Cole plot parameters on alcohol concentration and temperature. By using these results as calibration data, we estimated the alcohol concentration of red wine from the Cole-Cole plots, which was compared with the measured one based on a distillation method. As a result, we have confirmed that the estimated alcohol concentration of red wine agrees with the measured results in an absolute error by less than 1 %.

  18. Automatic extraction of plots from geo-registered UAS imagery of crop fields with complex planting schemes

    Science.gov (United States)

    Hearst, Anthony A.

    Complex planting schemes are common in experimental crop fields and can make it difficult to extract plots of interest from high-resolution imagery of the fields gathered by Unmanned Aircraft Systems (UAS). This prevents UAS imagery from being applied in High-Throughput Precision Phenotyping and other areas of agricultural research. If the imagery is accurately geo-registered, then it may be possible to extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. Future work will focus on further enhancing the plot extraction accuracy through additional image processing techniques so that it becomes sufficiently accurate for all practical purposes in agricultural research and potentially other areas of research.

  19. Projected Changes of Grassland Productivity along the Representative Concentration Pathways during 2010–2050 in China

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2013-01-01

    Full Text Available The grassland is an important land use type that plays an important role in the ecosystem services supply in China. It is of great significance to the grassland management to determine the changing trend of grassland productivity and its response to climate change. Firstly, the relationship between grassland productivity and climate change, geographical conditions, and human activities was analyzed with the panel data of the whole China during 1980–2010 in this study. The result indicated that the temperature and precipitation were very important to grassland productivity at the national scale. Secondly, the grassland in China was divided into 7 grassland ecological-economic zones according to the ecosystem service function and climate characteristics. The relationship between grassland productivity and climate change was further analyzed at the regional scale. The result indicated that the temperature is more beneficial to the increase of the grassland productivity in the Qinghai-Tibet Plateau and the Southwest Karst shrubland region. Thirdly, the increase of the temperature and precipitation can increase the grassland productivity and consequently relieve the pressure according to the climate factors of simulation with the community climate system model v4.0 (CCSM. However, the simulation result indicates that the human pressure on grasslands is still severe under the four RCPs scenarios and the grassland area would reduce sharply due to the conversion from the grassland to the cultivated land. What is more, there is still a great challenge to the increase of total grassland productivity in China.

  20. The nutritive value of Valjevac grassland - Zasavica reservation

    Directory of Open Access Journals (Sweden)

    Grdović Svetlana

    2013-01-01

    Full Text Available Valjevac pasture of Zasavica reservation with its area of 300 ha presents a significant area for grazing cattle. In order to evaluate its potential for livestock production, the botanical and chemical composition of hay in three different time periods was observed (spring, summer and autumn. The determined plants species confirmed the richness of Zasavica grasslands, as well as the presence of dry, moist and forest habitat plants. The analyzed plants mostly belong to the Poaceae, Fabaceae, Asteraceae and Plantaginaceae families. Chemical analysis determined that the protein content decreased (P<0.01 from April (17.22±0.40 % to October (10.30±0.16 %, and cellulose content increased (P<0.01 (from 19.07±0.38 % in April to 21.65±0.41 % in October. The calculated energy density of hay samples ranged from 0.425 Starch Units (SU in October, 0.443 SU in April to 0.448 SU in June. The Valjevac pasture with its numerous plant species is of great importance in upkeeping biodiversity and also presents a solid base for livestock production. The determined levels of manganese and copper point out to the need of copper supplementation especially during the late summer and autumn periods. [Projekat Ministarstva nauke Republike Srbije, br. III46002

  1. Effect of stocking rate and supplementation on performance of dairy cows grazing native grassland in small-scale systems in the highlands of central Mexico.

    Science.gov (United States)

    Sainz-Sánchez, Pedro Alan; López-González, Felipe; Estrada-Flores, Julieta Gertrudis; Martínez-García, Carlos Galdino; Arriaga-Jordán, Carlos Manuel

    2017-01-01

    The use and management of native grassland for dairy production during the rainy season was studied on two small-scale dairy farms in the highlands of central Mexico. Two stocking rates (2 and 4 cows/ha) and two levels of supplementation with commercial concentrate (4 and 6 kg/cow/day) under grazing were given to 12 milking Holstein cows in a 4 × 4 Latin square design replicated three times in a factorial arrangement. Net herbage accumulation (NHA), sward height, chemical composition, and in vitro digestibility of organic matter were recorded for the grassland, as well as vegetation cover and herbage mass 12 weeks post experiment. Animal performance variables were milk yield and composition, live weight, and body condition score. A partial budget analysis of feeding costs, returns, and margins was calculated. There were no differences between periods for NHA and herbage height and between plots for chemical composition (P > 0.05). However, there were highly significant differences among periods (P  0.05) between treatments for milk yield, chemical composition of milk, live weight, or body condition score. Post-experimental vegetation cover was 72 % for both stocking rates, indicating there was no degradation of the grassland. Lower feeding costs were for the low supplementation treatments. It is concluded that a high stocking rate in studied native grasslands of 4 cows/ha with moderate concentrate supplementation supports a mean milk yield of 11.9 kg/cow/day during the rainy season without deleterious effects on the grassland.

  2. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer

    2013-09-01

    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  3. Atrial fibrillation detection by heart rate variability in Poincare plot

    Directory of Open Access Journals (Sweden)

    Jeon Moongu

    2009-12-01

    Full Text Available Abstract Background Atrial fibrillation (AFib is one of the prominent causes of stroke, and its risk increases with age. We need to detect AFib correctly as early as possible to avoid medical disaster because it is likely to proceed into a more serious form in short time. If we can make a portable AFib monitoring system, it will be helpful to many old people because we cannot predict when a patient will have a spasm of AFib. Methods We analyzed heart beat variability from inter-beat intervals obtained by a wavelet-based detector. We made a Poincare plot using the inter-beat intervals. By analyzing the plot, we extracted three feature measures characterizing AFib and non-AFib: the number of clusters, mean stepping increment of inter-beat intervals, and dispersion of the points around a diagonal line in the plot. We divided distribution of the number of clusters into two and calculated mean value of the lower part by k-means clustering method. We classified data whose number of clusters is more than one and less than this mean value as non-AFib data. In the other case, we tried to discriminate AFib from non-AFib using support vector machine with the other feature measures: the mean stepping increment and dispersion of the points in the Poincare plot. Results We found that Poincare plot from non-AFib data showed some pattern, while the plot from AFib data showed irregularly irregular shape. In case of non-AFib data, the definite pattern in the plot manifested itself with some limited number of clusters or closely packed one cluster. In case of AFib data, the number of clusters in the plot was one or too many. We evaluated the accuracy using leave-one-out cross-validation. Mean sensitivity and mean specificity were 91.4% and 92.9% respectively. Conclusions Because pulse beats of ventricles are less likely to be influenced by baseline wandering and noise, we used the inter-beat intervals to diagnose AFib. We visually displayed regularity of the inter

  4. Atrial fibrillation detection by heart rate variability in Poincare plot.

    Science.gov (United States)

    Park, Jinho; Lee, Sangwook; Jeon, Moongu

    2009-12-11

    Atrial fibrillation (AFib) is one of the prominent causes of stroke, and its risk increases with age. We need to detect AFib correctly as early as possible to avoid medical disaster because it is likely to proceed into a more serious form in short time. If we can make a portable AFib monitoring system, it will be helpful to many old people because we cannot predict when a patient will have a spasm of AFib. We analyzed heart beat variability from inter-beat intervals obtained by a wavelet-based detector. We made a Poincare plot using the inter-beat intervals. By analyzing the plot, we extracted three feature measures characterizing AFib and non-AFib: the number of clusters, mean stepping increment of inter-beat intervals, and dispersion of the points around a diagonal line in the plot. We divided distribution of the number of clusters into two and calculated mean value of the lower part by k-means clustering method. We classified data whose number of clusters is more than one and less than this mean value as non-AFib data. In the other case, we tried to discriminate AFib from non-AFib using support vector machine with the other feature measures: the mean stepping increment and dispersion of the points in the Poincare plot. We found that Poincare plot from non-AFib data showed some pattern, while the plot from AFib data showed irregularly irregular shape. In case of non-AFib data, the definite pattern in the plot manifested itself with some limited number of clusters or closely packed one cluster. In case of AFib data, the number of clusters in the plot was one or too many. We evaluated the accuracy using leave-one-out cross-validation. Mean sensitivity and mean specificity were 91.4% and 92.9% respectively. Because pulse beats of ventricles are less likely to be influenced by baseline wandering and noise, we used the inter-beat intervals to diagnose AFib. We visually displayed regularity of the inter-beat intervals by way of Poincare plot. We tried to design an

  5. Intraguild interactions between spiders and ants and top-down control in a grassland food web.

    Science.gov (United States)

    Sanders, Dirk; Platner, Christian

    2007-01-01

    In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis ((15)N and (13)C). Adult wandering spiders were more enriched in (15)N relative to (14)N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed delta(15)N ratios just one trophic level above those of Collembola, and they had similar delta(13)C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces.

  6. Demographic inference through approximate-Bayesian-computation skyline plots.

    Science.gov (United States)

    Navascués, Miguel; Leblois, Raphaël; Burgarella, Concetta

    2017-01-01

    The skyline plot is a graphical representation of historical effective population sizes as a function of time. Past population sizes for these plots are estimated from genetic data, without a priori assumptions on the mathematical function defining the shape of the demographic trajectory. Because of this flexibility in shape, skyline plots can, in principle, provide realistic descriptions of the complex demographic scenarios that occur in natural populations. Currently, demographic estimates needed for skyline plots are estimated using coalescent samplers or a composite likelihood approach. Here, we provide a way to estimate historical effective population sizes using an Approximate Bayesian Computation (ABC) framework. We assess its performance using simulated and actual microsatellite datasets. Our method correctly retrieves the signal of contracting, constant and expanding populations, although the graphical shape of the plot is not always an accurate representation of the true demographic trajectory, particularly for recent changes in size and contracting populations. Because of the flexibility of ABC, similar approaches can be extended to other types of data, to multiple populations, or to other parameters that can change through time, such as the migration rate.

  7. sPlot: a statistical tool to unfold data distributions

    CERN Document Server

    Pivk, Muriel

    2005-01-01

    A novel method called sPlot, painless to implement, is presented. It projects out the signal and background distributions from a data sample for a variable that is used or not in the original likelihood fit. In each bin of that variable, optimal use is made of the existing information present in the whole event sample, in contrast to the case of the usual likelihood-ratio-cut projection plots. The thus reduced uncertainties in the low statistics bins, for the variable under consideration, makes it possible to detect small size biases such as pdf/data mismatches for a given species, and/or presence of an unexpected background contamination, that was not taken into account in the fit and therefore was biasing it. After presenting pedagogical examples, a brief application to Dalitz plots and measurements of branching ratios is given. A comparison with the projection plots shows the interest of the method. Finally are given the differents steps to implement the sPlot tool in an analysis.

  8. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    Science.gov (United States)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  9. Response of grassland ecosystems to prolonged soil moisture deficit

    Science.gov (United States)

    Ross, Morgan A.; Ponce-Campos, Guillermo E.; Barnes, Mallory L.; Hottenstein, John D.; Moran, M. Susan

    2014-05-01

    Soil moisture is commonly used for predictions of plant response and productivity. Climate change is predicted to cause an increase in the frequency and duration of droughts over the next century, which will result in prolonged periods of below-normal soil moisture. This, in turn, is expected to impact regional plant production, erosion and air quality. In fact, the number of consecutive months of soil moisture content below the drought-period mean has recently been linked to regional tree and shrub mortality in the southwest United States. This study investigated the effects of extended periods of below average soil moisture on the response of grassland ANPP to precipitation. Grassland ecosystems were selected for this study because of their ecological sensitivity to precipitation patterns. It has been postulated that the quick ecological response of grasslands to droughts can provide insight to large scale functional responses of regions to predicted climate change. The study sites included 21 grassland biomes throughout arid-to-humid climates in the United States with continuous surface soil moisture records for 2-13 years during the drought period from 2000-2013. Annual net primary production (ANPP) was estimated from the 13-year record of NASA MODIS Enhanced Vegetation Index extracted for each site. Prolonged soil moisture deficit was defined as a period of at least 10 consecutive months during which soil moisture was below the drought-period mean. ANPP was monitored before, during and after prolonged soil moisture deficit to quantify shifts in the functional response of grasslands to precipitation, and in some cases, new species assemblages that included invasive species. Preliminary results indicated that when altered climatic conditions on grasslands led to an increase in the duration of soil water deficit, then the precipitation-to-ANPP relation became non-linear. Non-linearity was associated with extreme grassland dieback and changes in the historic

  10. A comparison of some range condition assessment techniques used ...

    African Journals Online (AJOL)

    Techniques currently used to assess range condition in the grassland biome of Southern Africa are reviewed. These indices were then used to evaluate each method in terms of sensitivity, index interpretation and efficiency, bearing in mind the objectives of each technique. The weighted key species method and ...

  11. Split-plot Experiments with Unusual Numbers of Subplot Runs

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2007-01-01

    In many experimental situations, it may not be feasible or even possible to run experiments in a completely randomized fashion as usually recommended. Under these circumstances, split-plot experiments in which certain factors are changed less frequently than the others are often used. Most...... of the literature on split-plot designs is based on 2-level factorials. For those designs, the number of subplots is a power of 2. There may however be some situations where for cost purposes or physical constraints, we may need to have unusual number of subplots such as 3, 5, 6, etc. In this article, we explore...... this issue and provide some examples based on the Plackett and Burman designs. Also algorithmically constructed D-optimal split-plot designs are compared to those based on Plackett and Burman designs....

  12. Chicken farming in grassland increases environmental sustainability and economic efficiency.

    Science.gov (United States)

    Liu, Meizhen; Wang, Bingxue; Osborne, Colin P; Jiang, Gaoming

    2013-01-01

    Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities. A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m(-2) for grazing sheep to 84 g m(-2) for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (ptraditional sheep grazing, chicken farming significantly improved soil surface water content (0-10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0-10 cm soil layer by 35% of the control (ptraditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities. Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China.

  13. Informing agricultural management - The challenge of modelling grassland phenology

    Science.gov (United States)

    Calanca, Pierluigi

    2017-04-01

    Grasslands represent roughly 70% of the agricultural land worldwide, are the backbone of animal husbandry and contribute substantially to agricultural income. At the farm scale a proper management of meadows and pastures is necessary to attain a balance between forage production and consumption. A good hold on grassland phenology is of paramount importance in this context, because forage quantity and quality critically depend on the developmental stage of the sward. Traditionally, empirical rules have been used to advise farmers in this respect. Yet the provision of supporting information for decision making would clearly benefit from dedicated tools that integrate reliable models of grassland phenology. As with annual crops, in process-based models grassland phenology is usually described as a linear function of so-called growing degree days, whereby data from field trials and monitoring networks are used to calibrate the relevant parameters. It is shown in this contribution that while the approach can provide reasonable estimates of key developmental stages in an average sense, it fails to account for the variability observed in managed grasslands across sites and years, in particular concerning the start of the growing season. The analysis rests on recent data from western Switzerland, which serve as a benchmark for simulations carried out with grassland models of increasing complexity. Reasons for an unsatisfactory model performance and possibilities to improve current models are discussed, including the necessity to better account for species composition, late season management decisions, as well as plant physiological processes taking place during the winter season. The need to compile existing, and collect new data doe managed grasslands is also stressed.

  14. Grazing-induced BVOC fluxes from a managed grassland

    Science.gov (United States)

    Mozaffar, Ahsan; Schoon, Niels; Bachy, Aurelie; Digrado, Anthony; Heinesch, Bernard; Aubinet, Marc; Fauconnier, Marie-laure; Delaplace, Pierre; Dujardin, Patrick; Amelynck, Crist

    2017-04-01

    Grassland ecosystems cover one fourth of the Earth's land surface and are both sources and sinks of Biogenic Volatile Organic Compounds (BVOCs) which play an important role in atmospheric chemistry and air pollution. The use of grassland for cattle breeding is a common practice in many parts of the world. As it has been widely demonstrated that plants emit large bursts of BVOCs when they are mechanically damaged, grass tearing and trampling during grazing are expected to induce large BVOC emissions as well. Nevertheless, to the best of our knowledge, no study has been performed on BVOC fluxes from grazed grassland yet. Therefore investigations were performed using automated dynamic chambers in a managed grassland in Belgium over the 2015 and 2016 growing season. BVOC fluxes, together with carbon dioxide (CO2) and water vapor (H2O) fluxes from grazed and undisturbed grassland were followed simultaneously using PTR-MS (Proton Transfer Reaction-Mass Spectrometry) and a LI-840 non-dispersive IR gas analyzer. In addition, air in the chamber was sampled occasionally for GC-MS (Gas Chromatography-Mass Spectrometry) analysis to assist compound identification. Significant differences between grazed and undisturbed grassland patches were observed in terms of BVOC, CO2 and H2O vapor fluxes. Grazing by cows was found to result in enhanced emissions of several BVOCs such as methanol, acetaldehyde, acetone, acetic acid and Green Leaf Volatiles (GLVs), and induced BVOC emissions generally lasted for around 5 days following a grazing event. Quantitative data on the impact of grazing on BVOC, CO2 and H2O exchange between grassland and the atmosphere will be presented, and correlations between BVOC fluxes and environmental conditions will be discussed.

  15. Comparison of combinations of sighting devices and target objects for establishing circular plots in the field

    Science.gov (United States)

    Sylvio Mannel; Mark A. Rumble; Maribeth Price; Thomas M. Juntti; Dong Hua

    2006-01-01

    Many aspects of ecological research require measurement of characteristics within plots. Often, the time spent establishing plots is small relative to the time spent collecting and recording data. However, some studies require larger numbers of plots, where the time spent establishing the plot is consequential to the field effort. In open habitats, circular plots are...

  16. Volcano plots in hydrogen electrocatalysis – uses and abuses

    OpenAIRE

    Paola Quaino; Fernanda Juarez; Elizabeth Santos; Wolfgang Schmickler

    2014-01-01

    Summary Sabatier’s principle suggests, that for hydrogen evolution a plot of the rate constant versus the hydrogen adsorption energy should result in a volcano, and several such plots have been presented in the literature. A thorough examination of the data shows, that there is no volcano once the oxide-covered metals are left out. We examine the factors that govern the reaction rate in the light of our own theory and conclude, that Sabatier’s principle is only one of several factors that det...

  17. On the Nature of Earth-Mars Porkchop Plots

    Science.gov (United States)

    Woolley, Ryan C.; Whetsel, Charles W.

    2013-01-01

    Porkchop plots are a quick and convenient tool to help mission designers plan ballistic trajectories between two bodies. Parameter contours give rise to the familiar 'porkchop' shape. Each synodic period the pattern repeats, but not exactly, primarily due to differences in inclination and non-zero eccentricity. In this paper we examine the morphological features of Earth-to-Mars porkchop plots and the orbital characteristics that create them. These results are compared to idealistic and optimized transfers. Conclusions are drawn about 'good' opportunities versus 'bad' opportunities for different mission applications.

  18. Probability plots based on Student's t-distribution.

    Science.gov (United States)

    Hooft, Rob W W; Straver, Leo H; Spek, Anthony L

    2009-07-01

    The validity of the normal distribution as an error model is commonly tested with a (half) normal probability plot. Real data often contain outliers. The use of t-distributions in a probability plot to model such data more realistically is described. It is shown how a suitable value of the parameter nu of the t-distribution can be determined from the data. The results suggest that even data that seem to be modeled well using a normal distribution can be better modeled using a t-distribution.

  19. Geopolitical location and plot in The Night Manager

    DEFF Research Database (Denmark)

    Agger, Gunhild

    2017-01-01

    The primary aim of the article is to contribute to developing concepts for the analysis of location and plot in visual fiction. The secondary aim is to assess which strategies the Danish director Susanne Bier uses in her approach to an international production such as the British-American TV serial...... The Night Manager. Three perspectives are tested in combining the analysis of location with the development of the plot: the general concepts of universal and real geography; the idea of being located inside or outside a given context; and the associated notion of centre-periphery opposition. A geopolitical...

  20. PlotXY: A High Quality Plotting System for the Herschel Interactive Processing Environment (HIPE) and the Astronomical Community

    Science.gov (United States)

    Panuzzo, P.; Li, J.; Caux, E.

    2012-09-01

    The Herschel Interactive Processing Environment (HIPE) was developed by the European Space Agency (ESA) in collaboration with NASA and the Herschel Instrument Control Centres, to provide the astronomical community a complete environment to process and analyze the data gathered by the Herschel Space Observatory. One of the most important components of HIPE is the plotting system (named PlotXY) that we present here. With PlotXY it is possible to produce easily high quality publication-ready 2D plots. It provides a long list of features, with fully configurable components, and interactive zooming. The entire code of HIPE is written in Java and is open source released under the GNU Lesser General Public License version 3. A new version of PlotXY is being developed to be independent from the HIPE code base; it is available to the software development community for the inclusion in other projects at the URL google.com/p/jplot2d/'>http://code.google.com/p/jplot2d/.

  1. Mobile, outdoor continuous-flow isotope-ratio mass spectrometer system for automated high-frequency 13C- and 18O-CO2 analysis for Keeling plot applications.

    Science.gov (United States)

    Schnyder, Hans; Schäufele, Rudi; Wenzel, Richard

    2004-01-01

    A continuous-flow isotope-ratio mass spectrometer (CF-IRMS, custom-made GasBenchII and Delta(plus)Advantage, ThermoFinnigan) was installed on a grassland site and interfaced with a closed-path infrared gas analyser (IRGA). The CF-IRMS and IRGA were housed in an air-conditioned travel van. Air was sampled at 1.5 m above the 0.07-m tall grassland canopy, drawn through a 17-m long PTFE tube at a rate of 0.25 L s(-1), and fed to the IRGA and CF-IRMS in series. The IRMS was interfaced with the IRGA via a stainless steel capillary inserted 0.5 m into the sample air outlet tube of the IRGA (forming an open split), a gas-tight pump, and a sample loop attached to the eight-port Valco valve of the continuous-flow interface. Air was pumped through the 0.25-mL sample loop at 10 mL s(-1) (a flushing frequency of 40 Hz). Air samples were analysed at intervals of approx. 2.8 min. Whole system precision was tested in the field using air mixed from pure CO2 and CO2-free air by means of mass flow controllers. The standard deviation of repeated single measurements was 0.21-0.07 per thousand for delta13C and 0.34-0.14 per thousand for delta18O of CO2 in air with mixing ratios ranging between 200-800 micromol mol(-1). The CO2 peak area measured by the IRMS was proportional to the CO2 mixing ratio (r2 = 1.00), allowing estimation of sample air CO2 mixing ratio from IRMS data. A 1-day long measurement cycle of CO2, delta13C and delta18O of air sampled above the grassland canopy was used to test the system for Keeling plot applications. Delta18O exhibited a clear diurnal cycle (4 per thousand range), but short-term (1-h interval) variability was small (average SD 0.38 per thousand). Yet, the correlation between delta18O and CO2 mixing ratio was relatively weak, and this was true for both the whole data set and 1-h subsets. Conversely, the delta13C of all 541 samples measured during the 25.2-h interval fitted well the Keeling regression (r2 = 0.99), yielding an intercept of -27.40 per

  2. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Huaiyong, E-mail: huaiyongshao@163.com [Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of China, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Center for Global Change and Earth Observations, Michigan State University, East Lansing 48823, MI (United States); Sun, Xiaofei; Wang, Haoxue; Zhang, Xiaoxue [Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of China, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Xiang, Zhiying [School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang (China); Tan, Rui; Chen, Xuanyi [Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of China, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Xian, Wei [College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan (China); Qi, Jiaguo [Center for Global Change and Earth Observations, Michigan State University, East Lansing 48823, MI (United States)

    2016-01-15

    The Chinese government has conducted the Returning Grazing Land to Grassland Project (RGLGP) across large portions of grasslands from western China since 2003. In order to explore and understand the impact in the grassland's eco-environment during the RGLGP, we utilized Projection Pursuit Model (PPM) and Geographic Information System (GIS) to develop a spatial assessment model to examine the ecological vulnerability of the grassland. Our results include five indications: (1) it is practical to apply the spatial PPM on ecological vulnerability assessment for the grassland. This methodology avoids creating an artificial hypothesis, thereby providing objective results that successfully execute a multi-index assessment process and analysis under non-linear systems in eco-environments; (2) the spatial PPM is not only capable of evaluating regional eco-environmental vulnerability in a quantitative way, but also can quantitatively demonstrate the degree of effect in each evaluation index for regional eco-environmental vulnerability; (3) the eco-environment of the Xianshui River Basin falls into the medium range level. The normalized difference vegetation index (NDVI) and land use cover and change (LUCC) crucially influence the Xianshui River Basin's eco-environmental vulnerability. Generally, in the Xianshui River Basin, regional eco-environmental conditions improved during 2000 and 2010. The RGLGP positively affected NDVI and LUCC structure, thereby promoting the enhancement of the regional eco-environment; (4) the Xianshui River Basin divides its ecological vulnerability across different levels; therefore our study investigates three ecological regions and proposes specific suggestions for each in order to assist in eco-environmental protection and rehabilitation; and lastly that (5) the spatial PPM established by this study has the potential to be applied on all types of grassland eco-environmental vulnerability assessments under the RGLGP and under the

  3. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on {sup 13}C natural abundances

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, Valentin H., E-mail: v.klaus@uni-muenster.de [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Hölzel, Norbert [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Prati, Daniel; Schmitt, Barbara [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Schöning, Ingo; Schrumpf, Marion; Solly, Emily F. [Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena (Germany); Hänsel, Falk [University Marburg, Environmental Informatics, Faculty of Geography, Deutschhausstr. 12, 35037 Marburg (Germany); Fischer, Markus [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Kleinebecker, Till [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany)

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ{sup 13}C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier {sup 13}C due to closing stomata leading to an enrichment of {sup 13}C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ{sup 13}C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ{sup 13}C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ{sup 13}C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future

  4. Prescribed fire as an alternative measure in European grassland conservation

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Török, Péter; Tóthmérész, Béla

    2015-04-01

    There are contrasting opinions on the perspectives of prescribed burning management in European grasslands. One hand, prescribed burning can be effectively used with relatively low implementation costs for the management of open landscapes, the reduction of accumulated litter or for decreasing the chance of wildfires. On the other hand burning can also have serious detrimental impacts on grassland ecosystems by promoting the dominance of some problem species (e.g. some competitors or invasive species) and by threatening endangered plant and animal species, especially invertebrates, thus, inappropriate burning can result in a loss of biodiversity in the long run. Our goal was to review the publications on the application of prescribed burning in European grasslands considering general (e.g. timing, frequency and duration) and specific (e.g. types of grasslands, effects on endangered species) circumstances. Even prescribed burning forms an integral part of the North-American grassland management practice, it is rarely applied in Europe, despite the fact that uncontrolled burning occurs frequently in some regions. According to the North-American experiences prescribed burning can be a viable solution for biodiversity conservation and can be a feasible solution for several nature conservation problems. We reviewed prescribed burning studies from Europe and North-America to identify findings which might be adapted to the European grassland conservation strategy. We found that not only the application of fire management is scarce in Europe but there is also a lack of published studies on this topic. European studies - contrary to the North-American practice - usually used yearly dormant-season burning, and concluded that this burning type solely is not feasible to preserve and maintain species-rich grasslands. In North-American grasslands, application of burning has a stronger historical, practical and scientific background; it is fine-tuned in terms of timing, frequency

  5. Effects of management of ecosystem carbon pools and fluxes in grassland ecosystems

    Science.gov (United States)

    Ryals, R.; Silver, W. L.

    2010-12-01

    Grasslands represent a large land-use footprint and have considerable potential to sequester carbon (C) in soil. Climate policies and C markets may provide incentives for land managers to pursue strategies that optimize soil C storage, yet we lack robust understanding of C sequestration in grasslands. Previous research has shown that management approaches such as organic amendments or vertical subsoiling can lead to larger soil C pools. These management approaches can both directly and indirectly affect soil C pools. We used well-replicated field experiments to explore the effects of these management strategies on ecosystem C pools and fluxes in two bioclimatic regions of California (Sierra Foothills Research and Extension Center (SFREC) and Nicasio Ranch). Our treatments included an untreated control, compost amendments, plowed (vertical subsoil), and compost + plow. The experiment was conducted over two years allowing us to compare dry (360 mm) and average (632 mm) rainfall conditions. Carbon dioxide (CO2) fluxes were measured weekly using a LI-8100 infrared gas analyzer. Methane (CH4) and nitrous oxide (N2O) fluxes were measured monthly using static flux chambers. Aboveground and belowground biomass were measured at the end of the growing season as an index of net primary productivity (NPP) in the annual plant dominated system. Soil moisture and temperature were measured continuously and averaged on hourly and daily timescales. Soil organic C and N concentrations were measured prior to the application of management treatments and at the ends of each growing season. Soils were collected to a 10 cm depth in year one and at four depth increments (0-10, 10-30, 30-50, and 50-100 cm) in year two. Soil C and N concentrations were converted to content using bulk density values for each plot. During both growing seasons, soil respiration rates were higher in the composted plots and lower in the plowed plots relative to controls at both sites. The effects on C loss via

  6. Modeling and validating tritium transfer in a grassland ecosystem in response to {sup 3}H releases

    Energy Technology Data Exchange (ETDEWEB)

    Le Dizes, S.; Maro, D.; Rozet, M.; Hebert, D.; Solier, L.; Nicoulaud, V. [Institut de radioportection et de surete nucleaire - IRSN (France); Vermorel, F.; Aulagnier, C. [Electricite de France - EDF (France)

    2014-07-01

    Tritium ({sup 3}H) is a major radionuclide released in several forms (HTO, HT) by nuclear facilities under normal operating conditions. In terrestrial ecosystems, tritium can be found under two forms: tritium in tissue free water (TFWT) following absorption of tritiated water by leaves or roots and Organically Bound Tritium (OBT) resulting from TFWT incorporation by the plant organic matter during photosynthesis. In order to study transfers of tritium from atmospheric releases to terrestrial ecosystem such as grasslands, an in-situ laboratory has been set up by IRSN on a ryegrass field plot located 2 km downwind the AREVA NC La Hague nuclear reprocessing plant (North-West of France), as was done in the past for the assessment of transfer of radiocarbon in grasslands. The objectives of this experimental field are: (i) to better understand the OBT formation in plant by photosynthesis, (ii) to evaluate transfer processes of tritium in several forms (HT, HTO) from the atmosphere (air and rainwater) to grass and soil, (iii) to develop a modeling allowing to reproduce the dynamic response of the ecosystem to tritium atmospheric releases depending of variable environmental conditions. For this purpose, tritium activity measurements will be carried out in grass (monthly measurements of HTO, OBT), in air, rainwater, soil (daily measurements of HT, HTO) and CO{sub 2}, H{sub 2}O fluxes between soil and air compartments will be carried out. Then, the TOCATTA-c model previously developed to simulate {sup 14}C transfers to pasture on a hourly time-step basis will be adapted to take account for processes specific to tritium. The model will be tested by a comparison between simulated results and measurements. The objectives of this presentation are (1) to present the organization of the experimental design of the VATO study (Validation of TOCATTA) dedicated to transfers of tritium in a grassland ecosystem, (2) to document the major assumptions, conceptual modelling and

  7. An African grassland responds similarly to long-term fertilization to the Park Grass experiment.

    Science.gov (United States)

    Ward, David; Kirkman, Kevin; Tsvuura, Zivanai

    2017-01-01

    We compared the results of a long-term (65 years) experiment in a South African grassland with the world's longest-running ecological experiment, the Park Grass study at Rothamsted, U.K. The climate is warm and humid in South Africa and cool and temperate in England. The African grassland has been fertilized with two forms of nitrogen applied at four levels, phosphorus and lime in a crossed design in 96 plots. In 1951, about 84% of plant cover consisted of Themeda triandra, Tristachya leucothrix and Setaria nigrirostris. Currently, the dominant species are Panicum maximum, Setaria sphacelata and Eragrostis curvula, making up 71% of total biomass. As in the Park Grass experiment, we found a significant (additive) interaction effect on ANPP of nitrogen and phosphorus, and a (marginally significant) negative correlation between ANPP and species richness. Unlike the Park Grass experiment, there was no correlation between ANPP and species richness when pH was included as a covariate. There was also a significant negative effect of nitrogen amount and nitrogen form and a positive effect of lime on species richness and species diversity. Soil pH had an important effect on species richness. Liming was insufficient to balance the negative effects on species richness of nitrogen fertilization. There was a significant effect of pH on biomass of three abundant species. There were also significant effects of light on the biomass of four species, with only Panicum maximum having a negative response to light. In all of the abundant species, adding total species richness and ANPP to the model increased the amount of variance explained. The biomass of Eragrostis curvula and P. maximum were negatively correlated with species richness while three other abundant species increased with species richness, suggesting that competition and facilitation were active. Consistent with the results from the Park Grass and other long-term fertilization experiments of grasslands, we found a

  8. An African grassland responds similarly to long-term fertilization to the Park Grass experiment

    Science.gov (United States)

    Kirkman, Kevin; Tsvuura, Zivanai

    2017-01-01

    We compared the results of a long-term (65 years) experiment in a South African grassland with the world’s longest-running ecological experiment, the Park Grass study at Rothamsted, U.K. The climate is warm and humid in South Africa and cool and temperate in England. The African grassland has been fertilized with two forms of nitrogen applied at four levels, phosphorus and lime in a crossed design in 96 plots. In 1951, about 84% of plant cover consisted of Themeda triandra, Tristachya leucothrix and Setaria nigrirostris. Currently, the dominant species are Panicum maximum, Setaria sphacelata and Eragrostis curvula, making up 71% of total biomass. As in the Park Grass experiment, we found a significant (additive) interaction effect on ANPP of nitrogen and phosphorus, and a (marginally significant) negative correlation between ANPP and species richness. Unlike the Park Grass experiment, there was no correlation between ANPP and species richness when pH was included as a covariate. There was also a significant negative effect of nitrogen amount and nitrogen form and a positive effect of lime on species richness and species diversity. Soil pH had an important effect on species richness. Liming was insufficient to balance the negative effects on species richness of nitrogen fertilization. There was a significant effect of pH on biomass of three abundant species. There were also significant effects of light on the biomass of four species, with only Panicum maximum having a negative response to light. In all of the abundant species, adding total species richness and ANPP to the model increased the amount of variance explained. The biomass of Eragrostis curvula and P. maximum were negatively correlated with species richness while three other abundant species increased with species richness, suggesting that competition and facilitation were active. Consistent with the results from the Park Grass and other long-term fertilization experiments of grasslands, we found a

  9. An African grassland responds similarly to long-term fertilization to the Park Grass experiment.

    Directory of Open Access Journals (Sweden)

    David Ward

    Full Text Available We compared the results of a long-term (65 years experiment in a South African grassland with the world's longest-running ecological experiment, the Park Grass study at Rothamsted, U.K. The climate is warm and humid in South Africa and cool and temperate in England. The African grassland has been fertilized with two forms of nitrogen applied at four levels, phosphorus and lime in a crossed design in 96 plots. In 1951, about 84% of plant cover consisted of Themeda triandra, Tristachya leucothrix and Setaria nigrirostris. Currently, the dominant species are Panicum maximum, Setaria sphacelata and Eragrostis curvula, making up 71% of total biomass. As in the Park Grass experiment, we found a significant (additive interaction effect on ANPP of nitrogen and phosphorus, and a (marginally significant negative correlation between ANPP and species richness. Unlike the Park Grass experiment, there was no correlation between ANPP and species richness when pH was included as a covariate. There was also a significant negative effect of nitrogen amount and nitrogen form and a positive effect of lime on species richness and species diversity. Soil pH had an important effect on species richness. Liming was insufficient to balance the negative effects on species richness of nitrogen fertilization. There was a significant effect of pH on biomass of three abundant species. There were also significant effects of light on the biomass of four species, with only Panicum maximum having a negative response to light. In all of the abundant species, adding total species richness and ANPP to the model increased the amount of variance explained. The biomass of Eragrostis curvula and P. maximum were negatively correlated with species richness while three other abundant species increased with species richness, suggesting that competition and facilitation were active. Consistent with the results from the Park Grass and other long-term fertilization experiments of grasslands

  10. Contribution of Urine and Dung Patches from Grazing Sheep to Methane and Carbon Dioxide Fluxes in an Inner Mongolian Desert Grassland

    Directory of Open Access Journals (Sweden)

    Yuanyuan Jiang

    2012-02-01

    Full Text Available The effects of sheep urine and dung patches on methane (CH4 and carbon dioxide (CO2 fluxes were investigated during the summer-autumn in 2010, to evaluate their contribution to climate change in a desert grassland in Inner Mongolia, China. Results indicate that the cumulative CH4 emissions for dung patches, urine patches and control plots were − −0.076, −0.084, and −0.114 g/m2 and these were net CH4 sinks during the measured period. The level of CH4 intake from urine and dung plots decreased 25.7%, and 33.3%, respectively, compared with a control plot. CO2 fluxes differed (p<0.01 in urine plots, with an average of 569.20 mg/m2/h compared with control plots (357.62 mg/m2/h across all sampling days. Dung patches have cumulative CO2 emissions that were 15.9% higher compared with the control during the 55-d period. Overall, sheep excrement weakened CH4 intake and increased CO2 emissions.

  11. Grassland ecology and population growth: striking a balance.

    Science.gov (United States)

    Hou, D; Duan, C; Zhang, D

    2000-06-01

    Degradation of forest and grasslands in western China attributes to the soil erosion and desertification in the country. Researchers have established that the primary reason for the degradation of grasslands is overgrazing, which in turn is caused by a number of factors, including over-population and over-reliance on animal husbandry. In addition, the existing administrative system has also proved ineffective in ensuring sustainable development. On contrary, many local governments even encourage exploitative development of grassland; thus, localities opened up grassland for growing crops in an effort to increase income. According to estimates, degraded grassland accounts for more than one-third of utilizable acreage and another one-third suffers from a profusion of rats and pests. To redress the situation, central government should implement strategies in achieving sustainable development, such as providing banking and tax incentives for the development of the secondary and tertiary industries, and supporting education and training of youths from herding areas. Moreover, government should increase spending on infrastructural construction and ecological preservation. Finally, the family planning program needs to be enforced to control population growth and improve the quality of peoples¿ lives.

  12. Area sensitivity in North American grassland birds: Patterns and processes

    Science.gov (United States)

    Ribic, C.A.; Koford, Rolf R.; Herkert, J.R.; Johnson, D.H.; Niemuth, N.D.; Naugle, D.E.; Bakker, K.K.; Sample, D.W.; Renfrew, R.B.

    2009-01-01

    Grassland birds have declined more than other bird groups in North America in the past 35-40 years (Vickery and Herkert 2001, Sauer et al. 2008), prompting a wide variety of research aimed at understanding these declines, as well as conservation programs trying to reverse the declines (Askins et al. 2007). Area sensitivity, whereby the pattern of a species’ occurrence and density increases with patch area (Robbins et al. 1989), has been invoked as an important issue in grassland-bird conservation, and understanding the processes that drive area sensitivity in grassland birds is a major conservation need (Vickery and Herkert 2001). Here, we review the literature on North American grassland bird species that is relevant to the following questions: (1) What is the evidence for area sensitivity in grassland birds? (2) What are the historical explanations for area sensitivity? (3) What ecological processes could produce area sensitivity? And (5) what are the conservation implications of knowing the processes behind area sensitivity? Because of space limitations, we could not cite every paper we reviewed; the cited papers are given as examples of the literature in this field

  13. plotKML: Scientific Visualization of Spatio-Temporal Data

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    2015-02-01

    Full Text Available plotKML is an R package that provides methods for writing the most common R spatial classes into KML files. It builds up on the existing XML parsing functionality (XML package, and provides similar plotting functionality as the lattice package. Its main objective is to provide a simple interface to generate KML files with a small number of arguments, and allows users to visually explore spatio-temporal data available in R: points, polygons, gridded maps, trajectory-type data, vertical profiles, ground photographs, time series vector objects or raster images, along with the results of spatial analysis such as geostatistical mapping, spatial simulations of vector and gridded objects, optimized sampling designs, species distribution models and similar. A generic plotKML( function automatically determines the parsing order and visualizes data directly from R; lower level functions can be combined to allow for new user-created visualization templates. In comparison to other packages writing KML, plotKML seems to be more object oriented, it links more closely to the existing R classes for spatio-temporal data (sp, spacetime and raster packages than the alternatives, and provides users with the possibility to create their own templates.

  14. Tracking forest resource condition through Permanent sample plots ...

    African Journals Online (AJOL)

    This paper presents efforts by Tanzania Forestry Research Institute (TAFORI) to establish Permanent Sample Plots (PSPs) as a means of setting baseline information on forest resources condition and eventual assessment of the impact of decentralization policy for Bukombe- Mbogwe Local Authority Forest Reserve ...

  15. Developing Box Plots While Navigating the Maze of Data Representations

    Science.gov (United States)

    Duncan, Bruce; Fitzallen, Noleine

    2013-01-01

    The learning sequence described in this article was developed to provide students with a demonstration of the development of box plots from authentic data as an illustration of the advantages gained from using multiple forms of data representation. The sequence follows an authentic process that starts with a problem to which data representations…

  16. Box-and-Whisker Plots Applied to Food Chemistry

    Science.gov (United States)

    Ferreira, Joao E. V.; Miranda, Ricardo M.; Figueiredo, Antonio F.; Barbosa, Jardel P.; Brasil, Edykarlos M.

    2016-01-01

    Box-and-whisker plots or simply boxplots are powerful graphical representations that give an overview of a data set. In this work five different examples illustrate the applications of boxplots in food chemistry. The examples involve relative sweetness of sugars and sugar alcohols with respect to sucrose, the potassium content of fruits and…

  17. Temporal MDS Plots for Analysis of Multivariate Data.

    Science.gov (United States)

    Jäckle, Dominik; Fischer, Fabian; Schreck, Tobias; Keim, Daniel A

    2016-01-01

    Multivariate time series data can be found in many application domains. Examples include data from computer networks, healthcare, social networks, or financial markets. Often, patterns in such data evolve over time among multiple dimensions and are hard to detect. Dimensionality reduction methods such as PCA and MDS allow analysis and visualization of multivariate data, but per se do not provide means to explore multivariate patterns over time. We propose Temporal Multidimensional Scaling (TMDS), a novel visualization technique that computes temporal one-dimensional MDS plots for multivariate data which evolve over time. Using a sliding window approach, MDS is computed for each data window separately, and the results are plotted sequentially along the time axis, taking care of plot alignment. Our TMDS plots enable visual identification of patterns based on multidimensional similarity of the data evolving over time. We demonstrate the usefulness of our approach in the field of network security and show in two case studies how users can iteratively explore the data to identify previously unknown, temporally evolving patterns.

  18. Surveillance of Site A and Plot M, Report for 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.

    2010-04-21

    The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for Calendar Year 2009 are presented. Based on the results of the 1976-1978 radiological characterization of the site, a determination was made that a surveillance program be established. The characterization study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current surveillance program began in 1980 and consists of sample collection and analysis of surface and subsurface water. The results of the analyses are used to monitor the migration pathway of hydrogen-3 contaminated water from the burial ground (Plot M) to the hand-pumped picnic wells and monitor for the presence of radioactive materials in the environment of the area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continue to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site, using the picnic area, or living in the vicinity.

  19. Surveillance of Site A and Plot M report for 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W. (ESQ)

    2011-05-31

    The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for Calendar Year 2010 are presented. Based on the results of the 1976-1978 radiological characterization of the site, a determination was made that a surveillance program be established. The characterization study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current surveillance program began in 1980 and consists of sample collection and analysis of surface and subsurface water. The results of the analyses are used to monitor the migration pathway of hydrogen-3 contaminated water from the burial ground (Plot M) to the hand-pumped picnic wells and monitor for the presence of radioactive materials in the environment of the area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continue to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site, using the picnic area, or living in the vicinity.

  20. The Brazilian national system of forest permanent plots

    Science.gov (United States)

    Yeda Maria Malheiros de Oliveira; Maria Augusta Doetzer Rosot; Patricia Povoa de Mottos; Joberto Veloso de Freitas; Guilherme Luis Augusto Gomide; < i> et al< /i>

    2009-01-01

    The Brazilian National System of Forest Permanent Plots (SisPP) is a governmental initiative designed and being implemented in partnership by the Ministry of Environment (MMA), represented by the National Forest Programme (PNF) and the Brazilian Forest Service (SFB) and the Embrapa Forestry (a research center of the Brazilian Agricultural Research Corporation - Embrapa...

  1. A precision nutrient variability study of an experimental plot in ...

    African Journals Online (AJOL)

    The spatial soil fertility status of a 2.5 ha experimental plot was generated by mapping the soil nutrient concentration and fertility status using GIS kriging technique. The research was conducted in Mukono Zonal Agricultural Research and Development Institute, Mukono, Uganda in October 2013. Soil samples across the ...

  2. Estimation of optimum plot dimensions and replication number for ...

    African Journals Online (AJOL)

    Resultant basic unit grain yields were combined to simulate different plot sizes and shapes, and Smith's empirical model and subsequent derivations were used to estimate soil heterogeneity. The broadcast sown trials generally resulted in lower estimates of soil heterogeneity, higher coefficients of variation, and higher ...

  3. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular

  4. Nest defense- Grassland bird responses to snakes

    Science.gov (United States)

    Ellison, Kevin S.; Ribic, Christine

    2012-01-01

    Predation is the primary source of nest mortality for most passerines; thus, behaviors to reduce the impacts of predation are frequently quantified to study learning, adaptation, and coevolution among predator and prey species. Video surveillance of nests has made it possible to examine real-time parental nest defense. During 1999-2009, we used video camera systems to monitor 518 nests of grassland birds. We reviewed video of 48 visits by snakes to 34 nests; 37 of these visits resulted in predation of active nests. When adult birds encountered snakes at the nest (n = 33 visits), 76% of the encounters resulted in a form of nest defense (nonaggressive or aggressive); in 47% of the encounters, birds physically struck snakes. When defending nests, most birds pecked at the snakes; Eastern Meadowlarks (Sturnella magna) and Bobolinks (Dolichonyx oryzivorus) pecked most frequently in anyone encounter. Also, two Eastern Meadowlarks ran around snakes, frequently with wings spread, and three Bobolinks struck at snakes from the air. Nest defense rarely appeared to alter snake behavior; the contents of seven nests defended aggressively and two nests defended nonaggressively were partially depredated, whereas the contents of six nests defended each way were consumed completely. One fledgling was produced at each of three nests that had been aggressively defended. During aggressive defense, one snake appeared to be driven away and one was wounded. Our findings should be a useful starting point for further research. For example, future researchers may be able to determine whether the behavioral variation we observed in nest defense reflects species differences, anatomic or phylogenetic constraints, or individual differences related to a bird's prior experience. There appears to be much potential for studying nest defense behavior using video recording of both real and simulated encounters. 

  5. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance

    Directory of Open Access Journals (Sweden)

    Jinfeng Chang

    2017-05-01

    Full Text Available Abstract Background Europe has warmed more than the global average (land and ocean since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071–2100 is predicted to be 1–5.5 °C higher than that for 1971–2000. Climate change and elevated CO2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change. Results Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO2. The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C. Conclusions This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their

  6. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance.

    Science.gov (United States)

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Soussana, Jean-François; Klumpp, Katja; Sultan, Benjamin

    2017-12-01

    Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071-2100 is predicted to be 1-5.5 °C higher than that for 1971-2000. Climate change and elevated CO2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change. Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO2. The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C. This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon balance

  7. Interactive effects of elevated CO2 and warming on soil respiration in a mountain grassland

    Science.gov (United States)

    Reinthaler, David; Gstir, Claudia; Herndl, Markus; Pötsch, Erich; Bahn, Michael

    2017-04-01

    Soil respiration is the largest source of CO2 emitted from terrestrial ecosystems to the atmosphere. In grasslands, which cover over 30% of the global land area and around 70% of the world's agricultural acreage, the contribution of soil respiration to total ecosystem respiration is particularly high. The ClimGrass experiment aims to understand individual and combined effects of multi-level changes in temperature and atmospheric CO2 concentrations and of extreme drought on the biogeochemical cycles of a managed C3 grassland typical for European mountain regions. The ClimGrass experiment, based at AREC Raumberg Gumpenstein in Central Austria, comprises a total of 54 plots subjected to different combinations of experimental warming (ambient, +1.5°C, +3°C) and elevated CO2 (ambient, +150°C, +300 ppm), as well as extreme drought and heatwave. Here, we present first results concerning the interactive effects of warming and elevated CO2 on soil respiration. For this study we combined measurements of an automated system (LiCor 8100) with manual measurements of soil respiration (PP-Systems EGM4), in plots exposed to ambient and elevated CO2, both under ambient temperature conditions and +3°C warming. Our results from the first year of treatment indicate a significant increase of soil CO2 efflux caused by warming and a decrease under elevated CO2, with a strong interactive effect leading to a dampened warming effect under elevated CO2. Interestingly, elevated CO2 had stronger indirect than direct effects on soil respiration, mediated by altered soil moisture under elevated CO2. In the second and third year, however, all treatments increased soil CO2 efflux, with higher flux rates under elevated CO2 than under warming. Overall, elevated CO2 and warming had additive effects on soil moisture, but non-additive effects on soil respiration. Analyses of isotopic signatures of soil respired CO2, of the contribution of the heterotrophic component to total soil respiration and of

  8. A tool to determine crown and plot canopy transparency for forest inventory and analysis phase 3 plots using digital photographs

    Science.gov (United States)

    Matthew F. Winn; Philip A. Araman

    2012-01-01

    The USDA Forest Service Forest Inventory and Analysis (FIA) program collects crown foliage transparency estimates for individual trees on Phase 3 (P3) inventory plots. The FIA crown foliage estimate is obtained from a pair of perpendicular side views of the tree. Researchers with the USDA Forest Service Southern Research Station have developed a computer program that...

  9. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  10. Bird productivity and nest predation in agricultural grasslands

    Science.gov (United States)

    Ribic, Christine; Guzy, Michael J.; Anderson, Travis J.; Sample, David W.; Nack, Jamie L.

    2012-01-01

    Effective conservation strategies for grassland birds in agricultural landscapes require understanding how nesting success varies among different grassland habitats. A key component to this is identifying nest predators and how these predators vary by habitat. We quantified nesting activity of obligate grassland birds in three habitats [remnant prairie, cool-season grass Conservation Reserve Program (CRP) fields, and pastures) in southwest Wisconsin, 2002-2004. We determined nest predators using video cameras and examined predator activity using track stations. Bobolink (Dolichonyx oryzivorus) and Henslow's Sparrow (Ammodramus henslowii) nested primarily in CRP fields, and Grasshopper Sparrow (A. savannarum) in remnant prairies. Eastern Meadowlark (Sturnella magna) nested evenly across all three habitats. Daily nest survival rate for Eastern Meadowlark varied by nesting stage alone. Daily nest survival rate for Grasshopper Sparrow varied by nest vegetation and distance to the nearest woody edge; nest survival was higher near woody edges. In CRP fields, most predators were grassland-associated, primarily thirteen-lined ground squirrels (Ictidomys tridecemlineatus). In pastures, one-third of the nest predators were grassland-associated (primarily thirteen-lined ground squirrels) and 56% were associated with woody habitats (primarily raccoons, Procyon lotor). Raccoon activity was greatest around pastures and lowest around prairies; regardless of habitat, raccoon activity along woody edges was twice that along non-woody edges. Thirteen-lined ground squirrel activity was greater along prairie edges than pastures and was greater along nonwoody edges compared to woody edges. In CRP fields, raccoon activity was greater along edges compared to the interiors; for ground squirrels these relationships were reversed. Using video camera technology to identify nest predators was indispensable in furthering our understanding of the grassland system. The challenge is to use that

  11. Contribution of radar images for grassland management identification

    Science.gov (United States)

    Dusseux, P.; Gong, X.; Corpetti, T.; Hubert-Moy, L.; Corgne, S.

    2012-09-01

    This paper is concerned with the identification of grassland management using both optical and radar data. In that context, grazing, mowing and a mix of these two managements are commonly used by the farmers on grassland fields. These practices and their intensity of use have different environmental impact. Thus, the objectives of this study are, firstly, to identify grassland management practices using a time series of optical and radar imagery at high spatial resolution and, secondly, to evaluate the contribution of radar data to improve identification of farming practices on grasslands. Because of cloud coverage and revisit frequency of satellite, the number of available optical data is limited during the vegetation period. Thus, radar data can be considered as an ideal complement. The present study is based on the use of SPOT, Landsat and RADARSAT-2 data, acquired in 2010 during the growing period. After a pre-processing step, several vegetation indices, biophysical variables, backscattering coefficients and polarimetric discriminators were computed on the data set. Then, with the help of some statistics, the most discriminating variables have been identified and used to classify grassland fields. In addition, to take into account the temporal variation of variables, dedicated indexes as first and second order derivatives were used. Classification process was based on training samples resulting from field campaigns and computed according six methods: Decision Trees, K-Nearest Neighbor, Neural Networks, Support Vector Machines, the Naive Bayes Classifier and Linear Discriminant Analysis. Results show that combined use of optical and radar remote sensing data is not more efficient for grassland management identification.

  12. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Science.gov (United States)

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  13. The paradox of the individual household responsibility system in the grasslands of the Tibetan Plateau, China

    Science.gov (United States)

    Camille Richard; Yan Zhaoli; Du Guozhen

    2006-01-01

    Grasslands of the Tibetan plateau are commonly believed to be degrading as a result of unsustainable grazing practices. In response, the Grassland Law attempts to allocate grasslands based on the Individual Household Responsibility System model that has worked in the agricultural areas of China. However, the actual tenure scenario in the rangelands of Tibet is not as...

  14. Towards place-based borderlands grassland conservation (Hacia la conservacion de pastizales en tierras fronterizas)

    Science.gov (United States)

    Diana Hadley; Xavier Basurto

    2006-01-01

    When European explorers first observed the vast grasslands of the American continent, they viewed a series of interconnected, intact grassland ecosystems flourishing with an enormous diversity of flora and an abundance of wildlife. The term "sea of grass" appears frequently in descriptions of the vast prairie grasslands that extended from Canada to central...

  15. Resilience and stability of the grasslands of the Transkei | B | African ...

    African Journals Online (AJOL)

    In spite of very high stocking rates the grasslands of Transkei still have in many areas a high cover and many climax species. The concepts of resilience and stability are used in an attempt to explain dynamics of the grasslands. Keywords: resiliences|stabilities|grasslands|Transkei|stocking rates|basal covers|grass ...

  16. Impacts of climate change on net primary productivity of grasslands in Inner Mongolia

    NARCIS (Netherlands)

    Li, Q.; Tuo Debao,; Zhang, L.; Wei, X.; Wei, Y.; Yang, N.; Xu, Y.; Anten, N.P.R.; Pan, X.

    2014-01-01

    Net primary productivity (NPP) of grasslands is a key variable for characterising carbon cycles in grassland ecosystems. The prediction of NPP in Inner Mongolia is important for adaptation to future climate change, food security and sustainable use of the grassland resources. The output from two

  17. Influence of Fire and other anthropogenic practices on grassland and shrubland birds in New England

    Science.gov (United States)

    Peter D. Vickery; Benjamin Zuckerburg; Andrea L. Jones; W. Gregory Shriver; Andrew P. Weik

    2005-01-01

    Since 1966, many species of grassland and shrubland birds have declined substantially in New England (Askins 2000). The extent of grassland and shrubland habitat in New England has changed dramatically over the past 400 years. Presently, grassland and shrubland habitat in New England are created and maintained primarily as a result of four types of habitat management:...

  18. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity

    Science.gov (United States)

    Grassland productivity is regulated by both temperature and the amount and timing of precipitation. Future climate change is therefore expected to influence grassland phenology and growth, with consequences for ecosystems and economies. However, the potential response of grasslands to climate change...

  19. The effect of grassland shifts on the avifauna of a South African ...

    African Journals Online (AJOL)

    Two distinct grassland types occur within Hluhluwe-iMfolozi Park (HiP): short stoloniferous grazing lawns and tall, tussocklike 'bunch' grasslands. Grazing lawns are maintained by grazing mammals, among which White Rhinoceros Ceratotherium simum is of major importance. By contrast, tall bunch grasslands are ...

  20. Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan Desert grasslands and shrublands.

    Science.gov (United States)

    Moffet, C A; Zartman, R E; Wester, D B; Sosebee, R E

    2005-01-01

    Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.

  1. The effect of grassland management on enchytraeids (Oligochaeta) communities

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Christensen, Bent Tolstrup

    2012-01-01

    Enchytraeids (small white earthworms between 3 to 35 mm) are important regulators of nitrogen turnover in grasslands, as their activities accelerate the decomposition and nutrient recycling processes. In this study, the effect of management on species composition, abundance and biomass of the enc......Enchytraeids (small white earthworms between 3 to 35 mm) are important regulators of nitrogen turnover in grasslands, as their activities accelerate the decomposition and nutrient recycling processes. In this study, the effect of management on species composition, abundance and biomass...

  2. Lightning detection and ranging

    Science.gov (United States)

    Lennon, C. L.; Poehler, H. A.

    1982-01-01

    A lightning detector and ranging (LDAR) system developed at the Kennedy Space Center and recently transferred to Wallops Island is described. The system detects pulsed VHF signals due to electrical discharges occurring in a thunderstorm by means of 56-75 MHz receivers located at the hub and at the tips of 8 km radial lines. Incoming signals are transmitted by wideband links to a central computing facility which processes the times of arrival, using two independent calculations to determine position in order to guard against false data. The results are plotted on a CRT display, and an example of a thunderstorm lightning strike detection near Kennedy Space Center is outlined. The LDAR correctly identified potential ground strike zones and additionally provided a high correlation between updrafts and ground strikes.

  3. Burkholderia megalochromosomata sp. nov., isolated from grassland soil.

    Science.gov (United States)

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Lee, Kihyun; Park, Sang-Cheol; Yi, Hana; Chun, Jongsik

    2015-03-01

    A Gram-stain negative, rod-shaped, non-spore-forming, obligate aerobic bacterial strain, JC2949(T), was isolated from grassland soil in Gwanak Mountain, Seoul, Republic of Korea. Phylogenetic analysis, based on 16S rRNA sequences, indicated that strain JC2949(T) belongs to the genus Burkholderia, showing highest sequence similarities with Burkholderia grimmiae R27(T) (98.8 %), Burkholderia cordobensis LMG 27620(T) (98.6 %), Burkholderia jiangsuensis MP-1T(T) (98.6 %), Burkholderia zhejiangensis OP-1(T) (98.5 %), Burkholderia humi LMG 22934(T) (97.5 %), Burkholderia terrestris LMG 22937(T) (97.3 %), Burkholderia telluris LMG 22936(T) (97.2 %) and Burkholderia glathei ATCC 29195(T) (97.0 %). The major fatty acids of strain JC2949(T) were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Its predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown amino phospholipid. The dominant isoprenoid quinone was ubiquinone Q-8. The pairwise average nucleotide identity values between strain JC2949(T) and the genomes of 30 other species of the genus Burkholderia ranged from 73.4-90.4 %, indicating that the isolate is a novel genomic species within this genus. Based on phenotypic and chemotaxonomic comparisons, it is clear that strain JC2949(T) represents a novel species of the genus Burkholderia. We propose the name for this novel species to be Burkholderia megalochromosomata sp. nov. The type strain is JC2949(T) ( = KACC 17925(T) = JCM 19905(T)). © 2015 IUMS.

  4. Variability in spectral characteristics of trampled high-mountain grasslands

    Directory of Open Access Journals (Sweden)

    Kycko Marlena

    2014-06-01

    Full Text Available The goal of the paper is a presentation of field remote sensing methods for the analysis of the trampled plants of a highly protected mountain meadow ecosystem (M&B UNESCO Reserve and one of the most important Polish National Parks. The research area covers a core part of the Western Tatras - the Gąsienicowa Valley and Kasprowy Wierch summit, which are among the most visited destinations of the Polish Tatras. The research method is based on field hyperspectral measurements, using the ASD FieldSpec 3 spectrometer, on the dominant plant species of alpine swards. Sampling sites were located on trampled areas (next to trails and reference plots, with the same species, but located more than 10 m from the trail (where the probability of trampling was very low, but the same composition of analysed plants. In each case, homogenous plots with a domination of one plant species were investigated. Based on the hyperspectral measurements, spectral characteristics as well as vegetation indices were analysed with the ANOVA statistical test. This indicated a varied resistance to trampling of the studied plant species. The analysis of vegetation indices enabled the selection of those groups which are the most useful for research into mountain vegetation condition: the broadband greenness group; the narrowband greenness group, measuring chlorophyll content and cell structure; and the canopy water content group. The results of the analyses show that vegetation of the High Tatras is characterised by optimal ranges of remote sensing indices. Only plants located nearest to the trails were in a worse condition (chlorophyll and water content was lower for the reference targets. These differences are statistically significant, but the measured values indicate a good condition of vegetation along trampled trails, within the range of optimum plant characteristics.

  5. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    Directory of Open Access Journals (Sweden)

    Dongliang Wang

    2017-01-01

    Full Text Available Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV discrete light detection and ranging (lidar was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1 the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE = 81.89 g·m−2, and relative error of 14.1%. The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2 Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m. These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  6. Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing

    NARCIS (Netherlands)

    Guzik, P.; Piskorski, J.; Krauze, T.; Schneider, R.; Wesseling, K.H.; Wykrȩtowicz, A.; Wysocki, H.

    2007-01-01

    Aim: To analyze the correlation of the Poincaré plot descriptors of RR intervals with standard measures of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS). A physiological model of changing respiratory rates from 6 to 15 breaths/min provided a wide range of RR intervals for

  7. Interactive Effects of Black-Tailed Prairie Dogs and Cattle on Shrub Encroachment in a Desert Grassland Ecosystem

    Science.gov (United States)

    Davidson, Ana; Sierra-Corona, Rodrigo; Ceballos, Gerardo

    2016-01-01

    The widespread encroachment of woody plants throughout the semi-arid grasslands in North America has largely resulted from overgrazing by domestic livestock, fire suppression, and loss of native large and small mammalian herbivores. Burrowing-herbivorous mammals, such as prairie dogs (Cynomys spp.), help control shrub encroachment through clipping of shrubs and consumption of their seedlings, but little is known about how this important ecological role interacts with and may be influenced by co-existing large herbivores, especially domestic livestock. Here, we established a long-term manipulative experiment using a 2 × 2 factorial design to assess the independent and interactive effects of black-tailed prairie dogs (Cynomys ludovicianus) and cattle (Bos taurus) on honey mesquite (Prosopis glandulosa) abundance and structure. We found that, after five years, mesquite abundance was three to five times greater in plots where prairie dogs were removed compared to plots where they occurred together or alone, respectively. While both prairie dogs and cattle reduced mesquite cover, the effect of prairie dogs on reducing mesquite abundance, cover, and height was significantly greater than that by cattle. Surprisingly, cattle grazing enhanced prairie dog abundance, which, in turn, magnified the effects of prairie dogs on mesquite shrubs. Mesquite canopy cover per hectare was three to five times greater where prairie dogs and cattle were absent compared to where they occurred together or by themselves; whereas, cumulative mesquite height was two times lower on sites where prairie dog and cattle occurred together compared to where they occurred alone or where neither occurred. Data from our experimental study demonstrate that prairie dogs and moderate grazing by cattle can suppress mesquite growth, and, when their populations are properly managed, they may interact synergistically to significantly limit mesquite encroachment in desert grasslands. PMID:27144274

  8. Status and trend of tree growth and mortality rate at the CONECOFOR plots, 1997-2004

    Directory of Open Access Journals (Sweden)

    Gianfranco Fabbio

    2013-11-01

    Full Text Available The circumference of trees in the CONECOFOR permanent monitoring plots (PMPs were measured by three surveys carried out in 1997, 2000 and 2005. Plots were arranged into forest types according to tree species, management system and stand structure: beech (Fagus sylvatica L. and spruce (Picea abies K. high forests, aged coppice forests and transitory crops (deciduous, evergreen oaks and beech. Diameter distribution, basal area, basal area increment, tree mortality rate and in-growth were calculated per layer (dominant, intermediate, dominated within each PMP, to point out relative contributions and changes. A range in relative annual growth was detected both within and between types over the monitored period, but an obvious reduction of annual increment was found in two/thirds of plots over 2000-04 as compared to 1997-99. Current mortality, mostly allocated into the dominated and intermediate layers, can be explained as “regular” due to overstocking and high inter-tree competition in almost all of the observed case-studies. Opposite patterns were found to occur as for stand growth vs. mortality rate between coppice forests and the other types owing to the different dynamics of tree competition in progress. Drought 2003 is the likely large-scale factor determining the reduced annual growth course over the second period.

  9. Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Ashwini Rahul Akkineni

    2016-04-01

    Full Text Available In tissue engineering, additive manufacturing (AM technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum were prepared in order to combine the excellent printing properties of alginate with the favorable gelling characteristics of gellan gum. Mixtures of 16.7 wt % alginate and 2 or 3 wt % gellan gum were found applicable for 3D plotting. Characterization of the resulting composite scaffolds revealed an increased stiffness in the wet state (15%–20% higher Young’s modulus and significantly lower volume swelling in cell culture medium compared to pure alginate scaffolds (~10% vs. ~23%. Cytocompatibility experiments with human mesenchymal stem cells (hMSC revealed that cell attachment was improved—the seeding efficiency was ~2.5–3.5 times higher on the composites than on pure alginate. Additionally, the composites were shown to support hMSC proliferation and early osteogenic differentiation. In conclusion, print fidelity of highly concentrated alginate-gellan gum composites was comparable to those of pure alginate; after plotting and crosslinking, the scaffolds possessed improved qualities regarding shape fidelity, mechanical strength, and initial cell attachment making them attractive for tissue engineering applications.

  10. Volcano plots in hydrogen electrocatalysis - uses and abuses.

    Science.gov (United States)

    Quaino, Paola; Juarez, Fernanda; Santos, Elizabeth; Schmickler, Wolfgang

    2014-01-01

    Sabatier's principle suggests, that for hydrogen evolution a plot of the rate constant versus the hydrogen adsorption energy should result in a volcano, and several such plots have been presented in the literature. A thorough examination of the data shows, that there is no volcano once the oxide-covered metals are left out. We examine the factors that govern the reaction rate in the light of our own theory and conclude, that Sabatier's principle is only one of several factors that determine the rate. With the exception of nickel and cobalt, the reaction rate does not decrease for highly exothermic hydrogen adsorption as predicted, because the reaction passes through more suitable intermediate states. The case of nickel is given special attention; since it is a 3d metal, its orbitals are compact and the overlap with hydrogen is too low to make it a good catalyst.

  11. Volcano plots in hydrogen electrocatalysis – uses and abuses

    Science.gov (United States)

    Quaino, Paola; Juarez, Fernanda; Santos, Elizabeth

    2014-01-01

    Summary Sabatier’s principle suggests, that for hydrogen evolution a plot of the rate constant versus the hydrogen adsorption energy should result in a volcano, and several such plots have been presented in the literature. A thorough examination of the data shows, that there is no volcano once the oxide-covered metals are left out. We examine the factors that govern the reaction rate in the light of our own theory and conclude, that Sabatier’s principle is only one of several factors that determine the rate. With the exception of nickel and cobalt, the reaction rate does not decrease for highly exothermic hydrogen adsorption as predicted, because the reaction passes through more suitable intermediate states. The case of nickel is given special attention; since it is a 3d metal, its orbitals are compact and the overlap with hydrogen is too low to make it a good catalyst. PMID:24991521

  12. Volcano plots in hydrogen electrocatalysis – uses and abuses

    Directory of Open Access Journals (Sweden)

    Paola Quaino

    2014-06-01

    Full Text Available Sabatier’s principle suggests, that for hydrogen evolution a plot of the rate constant versus the hydrogen adsorption energy should result in a volcano, and several such plots have been presented in the literature. A thorough examination of the data shows, that there is no volcano once the oxide-covered metals are left out. We examine the factors that govern the reaction rate in the light of our own theory and conclude, that Sabatier’s principle is only one of several factors that determine the rate. With the exception of nickel and cobalt, the reaction rate does not decrease for highly exothermic hydrogen adsorption as predicted, because the reaction passes through more suitable intermediate states. The case of nickel is given special attention; since it is a 3d metal, its orbitals are compact and the overlap with hydrogen is too low to make it a good catalyst.

  13. CADASTRAL CLASSIFICATION OF THE LAND PLOTS IN UKRAINE

    Directory of Open Access Journals (Sweden)

    KIRICHEK Yu. O.

    2016-04-01

    Full Text Available Summary. Work concerns development of national system of classification of the land plots. The developed classification will allow to solve correctly a number of the corresponding cadastral, land management, estimated and other tasks. The analysis of classifications of lands, improvements and real estate in general is made. The created offers concerning creation of a new classification of the land plots in Ukraine. Today the Ukrainian real estate market has no single system that separates the system property groups, classes and types. This significantly complicates the work and can not fully be aware of the specific situation of real estate market. This task is designed to solve classification properties, it is used to transition from a diversity of individual properties to a limited number of classes of evaluation objects. The classification is different functional purpose (use facilities assessment, which determines the difference in value.

  14. [Eugenics, an element of the literary plots of dystopia].

    Science.gov (United States)

    Baum, Ewa; Musielak, Michał

    2007-01-01

    The work presents the ideas and assumptions of eugenics, a social philosophy established in 1883 by Francis Galton, which affected the social policies of numerous European countries in the first half of the 20th century. The work shows the effect of eugenics on the literary standards of European prose in the previous century. Two outstanding dystopian novels of the 20th century, The Brave New World by Aldous Huxley and 1984 by George Orwell, situate eugenics as a permanent element of the literary plot of dystopia. Apart from the typical features of this type of novel, for example: personal narration with a trace of irony, a totalitarian state and Newspeak, eugenics is an important element of the literary plot with is aim to exclude and marginalise certain social groups. Eugenics is also one of the main social ideas criticised by both the writers.

  15. D.3.3 PLOT Persuasive Learning Design Framework

    DEFF Research Database (Denmark)

    Gram-Hansen, Sandra Burri

    2012-01-01

    In this third and final deliverable of WP3: Persuasive Learning Designs, the theoretical cross field between persuasion and learning and the practical analysis of the technological learning tools and products which are currently related to the PLOT project, namely the GLOMaker and the 3ET tool......, are linked together as persuasive learning designs are defined and exemplified through the four e-PLOT cases. Based on the literary study of D.3.1 as well as the subsequent discussions and reflections regarding the theoretical foundation and practical application of persuasive learning technologies......, this report presents a novel perspective on the definition of persuasive design, and in continuation, an applicable definition of persuasive learning designs. D.3.3 is formally described as: “A set of Persuasive Learning Designs (PLDs) appropriately described in terms of theoretical background and expected...

  16. Impact of invertebrate herbivory in grasslands depends on plant species diversity.

    Science.gov (United States)

    Stein, Claudia; Unsicker, Sybille B; Kahmen, Ansgar; Wagner, Markus; Audorff, Volker; Auge, Harald; Prati, Daniel; Weisser, Wolfgang W

    2010-06-01

    Invertebrate herbivores are ubiquitous in most terrestrial ecosystems, and theory predicts that their impact on plant community biomass should depend on diversity and productivity of the associated plant communities. To elucidate general patterns in the relationship between invertebrate herbivory, plant diversity, and productivity, we carried out a long-term herbivore exclusion experiment at multiple grassland sites in a mountainous landscape of central Germany. Over a period of five years, we used above- and belowground insecticides as well as a molluscicide to manipulate invertebrate herbivory at 14 grassland sites, covering a wide range of plant species diversity (13-38 species/m2) and aboveground plant productivity (272-1125 g x m(-2) x yr(-1)), where plant species richness and productivity of the sites were not significantly correlated. Herbivore exclusion had significant effects on the plant communities: it decreased plant species richness and evenness, and it altered plant community composition. In particular, exclusion of belowground herbivores promoted grasses at the expense of herbs. In contrast to our expectation, herbivore effects on plant community biomass were not influenced by productivity. However, effect size of invertebrate herbivores was negatively correlated with plant diversity of the grasslands: the effect of herbivory on biomass tended to be negative at sites of high diversity and positive at sites of low diversity. In general, the effects of aboveground herbivores were relatively small as compared to belowground herbivores, which were important drivers of plant community composition. Our study is the first to show that variation in the effects of invertebrate herbivory on plant communities across a landscape is significantly influenced by plant species richness.

  17. Fisher.py: Fisher Matrix Manipulation and Confidence Contour Plotting

    Science.gov (United States)

    Coe, Dan

    2010-10-01

    Fisher.py allows you to combine constraints from multiple experiments (e.g., weak lensing + supernovae) and add priors (e.g., a flat universe) simply and easily. Calculate parameter uncertainties and plot confidence ellipses. Fisher matrix expectations for several experiments are included as calculated by myself (time delays) and the Dark Energy Task Force (WL/SN/BAO/CL/CMB), or provide your own.

  18. Using SAS Generate Trial Designs and Plot Maps

    OpenAIRE

    Edzard van Santen

    2012-01-01

    Previous contribution in this series on SAS tips and tricks introduced the basic aspects of macro variables (van Santen, 2009a,b) and PROC SQL introduced as time saving tools of the SAS/BASE installation (van Santen, 2010). In this contribution I demonstrate how these tools might be combined and used in conjunction with an EXCEL spreadsheet to generate field trial designs and plot plans

  19. Looking at large data sets using binned data plots

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.B.

    1990-04-01

    This report addresses the monumental challenge of developing exploratory analysis methods for large data sets. The goals of the report are to increase awareness of large data sets problems and to contribute simple graphical methods that address some of the problems. The graphical methods focus on two- and three-dimensional data and common task such as finding outliers and tail structure, assessing central structure and comparing central structures. The methods handle large sample size problems through binning, incorporate information from statistical models and adapt image processing algorithms. Examples demonstrate the application of methods to a variety of publicly available large data sets. The most novel application addresses the too many plots to examine'' problem by using cognostics, computer guiding diagnostics, to prioritize plots. The particular application prioritizes views of computational fluid dynamics solution sets on the fly. That is, as each time step of a solution set is generated on a parallel processor the cognostics algorithms assess virtual plots based on the previous time step. Work in such areas is in its infancy and the examples suggest numerous challenges that remain. 35 refs., 15 figs.

  20. The value of building plots in Italy - pdf

    Directory of Open Access Journals (Sweden)

    Paolo Rosato

    2014-12-01

    Full Text Available This paper suggests some analysis on dynamics of building plots value in Italy. This is an important subject, since the study of changes in plots value in space and time enables the evaluation of urban rent, which is essential for a fair and effective planning. The analysis confirm past hypothesis which are well known to real estate market operators. The first resulting fact is that the changes in building plots value are concurrent to those in real estate value and the increase occurring in the last years is in relative terms higher than the past one. This seems to confirm that, during real estate market expansion, most of the increase of buildings’ value is attributable to the land rent. The second observation is about value dynamics over time: it has been observed that, during an expansion in demand, the value significantly increases in central areas, much more than in peripheral ones; this means that absolute rent arising from shortage in urban areas is higher than the differential rent created through urban expansion in peripheral areas. Finally, it was highlighted that the factors affecting the value in building areas play different roles, depending on their location relative to the urban centre, identifying differently structured market segments.

  1. Matrix matters: differences of grand skink metapopulation parameters in native tussock grasslands and exotic pasture grasslands.

    Directory of Open Access Journals (Sweden)

    Konstanze Gebauer

    Full Text Available Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.

  2. Tropical grasslands: A pivotal place for a more multi-functional agriculture.

    Science.gov (United States)

    Boval, Maryline; Angeon, Valérie; Rudel, Tom

    2017-02-01

    Tropical grasslands represent a pivotal arena for the sustainable intensification of agriculture in the coming decades. The abundant ecosystem services provided by the grasslands, coupled with the aversion to further forest destruction, makes sustainable intensification of tropical grasslands a high policy priority. In this article, we provide an inventory of agricultural initiatives that would contribute to the sustainable intensification of the tropical grassland agro-ecosystem, and we recommend a shift in the scientific priorities of animal scientists that would contribute to realization of a more agro-ecological and multi-functional agriculture in the world's tropical grasslands.

  3. Climate-driven diversity change in annual grasslands: Drought plus deluge does not equal normal.

    Science.gov (United States)

    Harrison, Susan P; LaForgia, Marina L; Latimer, Andrew M

    2018-04-01

    Climate forecasts agree that increased variability and extremes will tend to reduce the availability of water in many terrestrial ecosystems. Increasingly severe droughts may be exacerbated both by warmer temperatures and by the relative unavailability of water that arrives in more sporadic and intense rainfall events. Using long-term data and an experimental water manipulation, we examined the resilience of a heterogeneous annual grassland community to a prolonged series of dry winters that led to a decline in plant species richness (2000-2014), followed by a near-record wet winter (2016-2017), a climatic sequence that broadly resembles the predicted future in its high variability. In our 80, 5-m 2 observational plots, species richness did not recover in response to the wet winter, and the positive relationship of richness to annual winter rainfall thus showed a significant weakening trend over the 18-year time period. In experiments on 100, 1-m 2 plots, wintertime water supplementation increased and drought shelters decreased the seedling survival and final individual biomass of native annual forbs, the main functional group contributing to the observed long-term decline in richness. Water supplementation also increased the total cover of native annual forbs, but only increased richness within nested subplots to which seeds were also added. We conclude that prolonged dry winters, by increasing seedling mortality and reducing growth of native forbs, may have diminished the seedbank and thus the recovery potential of diversity in this community. However, the wet winter and the watering treatment did cause recovery of the community mean values of a key functional trait (specific leaf area, an indicator of drought intolerance), suggesting that some aggregate community properties may be stabilized by functional redundancy among species. © 2017 John Wiley & Sons Ltd.

  4. Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland.

    Science.gov (United States)

    Bachman, Sarah; Heisler-White, Jana L; Pendall, Elise; Williams, David G; Morgan, Jack A; Newcomb, Joanne

    2010-03-01

    Predicting net C balance under future global change scenarios requires a comprehensive understanding of how ecosystem photosynthesis (gross primary production; GPP) and respiration (Re) respond to elevated atmospheric [CO(2)] and altered water availability. We measured net ecosystem exchange of CO(2) (NEE), GPP and Re under ambient and elevated [CO(2)] in a northern mixed-grass prairie (Wyoming, USA) during dry intervals and in response to simulated precipitation pulse events. Elevated [CO(2)] resulted in higher rates of both GPP and Re across the 2006 growing season, and the balance of these two fluxes (NEE) accounted for cumulative growing season C uptake (-14.4 +/- 8.3 g C m(-2)). Despite lower GPP and Re, experimental plots under ambient [CO(2)] had greater cumulative uptake (-36.2 +/- 8.2 g C m(-2)) than plots under elevated [CO(2)]. Non-irrigated control plots received 50% of average precipitation during the drought of 2006, and had near-zero NEE (1.9 +/- 6.4 g C m(-2)) for the growing season. Elevated [CO(2)] extended the magnitude and duration of pulse-related increases in GPP, resulting in a significant [CO(2)] treatment by pulse day interaction, demonstrating the potential for elevated [CO(2)] to increase the capacity of this ecosystem to respond to late-season precipitation. However, stimulation of Re throughout the growing season under elevated [CO(2)] reduced net C uptake compared to plots under ambient [CO(2)]. These results indicate that although elevated [CO(2)] stimulates gross rates of ecosystem C fluxes, it does not necessarily enhance net C uptake, and that C cycle responses in semi-arid grasslands are likely to be more sensitive to changes in precipitation than atmospheric [CO(2)].

  5. Considerations in Forest Growth Estimation Between Two Measurements of Mapped Forest Inventory Plots

    Science.gov (United States)

    Michael T. Thompson

    2006-01-01

    Several aspects of the enhanced Forest Inventory and Analysis (FIA) program?s national plot design complicate change estimation. The design incorporates up to three separate plot sizes (microplot, subplot, and macroplot) to sample trees of different sizes. Because multiple plot sizes are involved, change estimators designed for polyareal plot sampling, such as those...

  6. A narratological analysis of Mark 12:1-12: The plot of the Gospel of ...

    African Journals Online (AJOL)

    The purpose of this article is an attempt to read Mark 12: 1-12 in terms of the plot of the Gospel. Firstly a brief survey is given of the development of the term plot from Aristotle to the present, thereafter an own methodological point of departure concerning plot is formulated in order to study the plot of Mark. The conclusions ...

  7. Impacts of grazing, fire, and precipitation variability on woody plant cover expansion in semi-arid grasslands of southeastern Arizona

    Science.gov (United States)

    O'neal, K. J.

    2011-12-01

    Northern Chihuahuan semi-arid grasslands are highly managed systems supporting rich biodiversity and many endemic species as well as providing a valuable economic resource for cattle-ranching livelihoods, with 90% of grasslands open to grazing. Chihuahuan grasslands share many characteristics with other managed grazing systems, which occupy 25% of the global land surface and are the most extensive form of land use. These grasslands are experiencing land-cover modification from woody plant cover expansion, leading to diminished biodiversity and grazing capacity. Ongoing research indicates that grazing, fire suppression, and precipitation variability are the primary drivers causing increased woody plant cover in Chihuahuan grasslands; however, there is debate concerning the dominant driver. While it is understood that historical land use and climate variation have facilitated initial woody encroachment in the region, the current relative influence of the three drivers remains unclear. This research explores how grazing, fire/suppression, and seasonal precipitation variability influence woody plant cover in the semi-arid grasslands of southeastern Arizona and identifies the dominant driver behind observed changes. This research used the Landsat Thematic Mapper record from 1984 to 2008 to map changes in woody plant cover and identify spatial patterns and temporal trends of woody plant cover expansion. Spectral mixture analysis (SMA) was used to quantify the percent of woody plant cover in each pixel; trend analysis was used to track per-pixel changes over the time-series. Trend analysis was further refined by segmenting trends around fire events to accommodate abrupt and non-monotonic effects of fire on woody plant cover. The overall trend in the region shows increasing woody plant cover with most values ranging between 5-20% over the 25-year period and significant spatial variability in expansion amounts across the region. The Random Forests decision tree approach was

  8. Plot and Personification in “Tehran-e- Makhuf“

    Directory of Open Access Journals (Sweden)

    M. Pashaei

    Full Text Available Story is one of the important and influential literary genres that deserves to research on its structure and content .By study and analysis of a story, the reader could comprehend the textual messages and change his attitude toward life and different issues .After defining of the social novel, the author tries to analyze plot and personification in novel of “Tehran-e- Makhuf” and respond to the questions on the method employed for plot and personification and analyze it from plot and its components such as conflict, suspension and resolution and compare the differences and similarities between old tales and modern novels.The plot of “Tehran-e- Makhuf” is not so complex due to its subject and content and natural order of events dominates on artificial discipline and it lacks open plot. Of main elements of plot, conflict is more outstanding here. This novel is full of emotional and moral conflicts and there is no similarity with historical novels that describe good and bad conflicts. Cause and effect relationship is main element of plot that shadows on the story events .In “Tehrna-e- Makhuf”, the author tries to violate the principles and cause to imbalance in natural events sequences with discomposing rational and experiential relationship and take action toward artificiality and unnatural suspension. In creating suspension by emphasis on incidences in some extremist cases, Kazemi tries to found the story based on the considerable sequence of events and this conduct reduces quality of the story significantly and leads to imbalance in rational and acceptable discipline.Kazemi employs direct or reporting personification mostly. This novel lacks diversity in personage considerably .All characters speak in similar style and there is no particular speech style. The personification of Kazemi in “Tehran-e-Makhuf” is continuous and interdependent in style of old tales and novel in European account. In some cases, he approaches to story

  9. Contemplation on Plot and Personification in Tehran Makhuf

    Directory of Open Access Journals (Sweden)

    Mohammad Pashaei

    2013-10-01

    Full Text Available  Abstract Story is one of the important and influential literary genres that deserves to research on its structure and content .By study and analysis of a story, the reader could comprehend the textual messages and change his attitude toward life and different issues .After defining of the social novel, the author tries to analyze plot and personification in novel of “Tehran-e- Makhuf” and respond to the questions on the method employed for plot and personification and analyze it from plot and its components such as conflict, suspension and resolution and compare the differences and similarities between old tales and modern novels.  The plot of “Tehran-e- Makhuf” is not so complex due to its subject and content and natural order of events dominates on artificial discipline and it lacks open plot. Of main elements of plot, conflict is more outstanding here. This novel is full of emotional and moral conflicts and there is no similarity with historical novels that describe good and bad conflicts. Cause and effect relationship is main element of plot that shadows on the story events .In “Tehrna-e- Makhuf”, the author tries to violate the principles and cause to imbalance in natural events sequences with discomposing rational and experiential relationship and take action toward artificiality and unnatural suspension. In creating suspension by emphasis on incidences in some extremist cases, Kazemi tries to found the story based on the considerable sequence of events and this conduct reduces quality of the story significantly and leads to imbalance in rational and acceptable discipline.  Kazemi employs direct or reporting personification mostly. This novel lacks diversity in personage considerably .All characters speak in similar style and there is no particular speech style. The personification of Kazemi in “Tehran-e-Makhuf” is continuous and interdependent in style of old tales and novel in European

  10. Contemplation on Plot and Personification in Tehran Makhuf

    Directory of Open Access Journals (Sweden)

    Mirjalil Akrami

    2013-11-01

    Full Text Available Abstract Story is one of the important and influential literary genres that deserves to research on its structure and content .By study and analysis of a story, the reader could comprehend the textual messages and change his attitude toward life and different issues .After defining of the social novel, the author tries to analyze plot and personification in novel of “Tehran-e- Makhuf” and respond to the questions on the method employed for plot and personification and analyze it from plot and its components such as conflict, suspension and resolution and compare the differences and similarities between old tales and modern novels.  The plot of “Tehran-e- Makhuf” is not so complex due to its subject and content and natural order of events dominates on artificial discipline and it lacks open plot. Of main elements of plot, conflict is more outstanding here. This novel is full of emotional and moral conflicts and there is no similarity with historical novels that describe good and bad conflicts. Cause and effect relationship is main element of plot that shadows on the story events .In “Tehrna-e- Makhuf”, the author tries to violate the principles and cause to imbalance in natural events sequences with discomposing rational and experiential relationship and take action toward artificiality and unnatural suspension. In creating suspension by emphasis on incidences in some extremist cases, Kazemi tries to found the story based on the considerable sequence of events and this conduct reduces quality of the story significantly and leads to imbalance in rational and acceptable discipline.  Kazemi employs direct or reporting personification mostly. This novel lacks diversity in personage considerably .All characters speak in similar style and there is no particular speech style. The personification of Kazemi in “Tehran-e-Makhuf” is continuous and interdependent in style of old tales and novel in European account. In some cases, he

  11. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  12. Biomass productivity and carrying capacity of the natural grassland ...

    African Journals Online (AJOL)

    The study assessed the biomass productivity and then estimated the carrying capacity of the natural grassland on the Accra Plains of Ghana between January 1990 and February 1992. Eleven sampling sites with varying grass association, soil type and ease of accessibility were sampled. In each sampling site an area of 5.0 ...

  13. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  14. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  15. Productivity, biodiversity and nitrate in groundwater of multifunctional grassland

    NARCIS (Netherlands)

    Korevaar, H.; Geerts, R.H.E.M.

    2007-01-01

    Multifunctional land use is an option to increase economic and environmental sustainability and to make a region more attractive for local inhabitants and visitors. Between 2002 and 2004 we studied 76 grasslands on different farms. This paper presents results on production, flora and fauna

  16. Botanical composition, yield and nutritional quality of grassland in ...

    African Journals Online (AJOL)

    Harvesting at 90 d and application of 100 and 150 kg ha-1 N fertiliser had a higher (P < 0.05) total DM yield of the grassland. Crude protein, neutral detergent fibre, acid detergent fibre, cellulose, hemicellulose, phosphorus and IVDMD were significantly (P < 0.05) affected by the stage of harvesting. However, N fertiliser had ...

  17. Response of two semiarid grasslands to a second fire application

    Science.gov (United States)

    Carleton S. White; Rosemary L. Pendleton; Burton K. Pendleton

    2006-01-01

    Prescribed fire was used in two semiarid grasslands to reduce shrub cover, promote grass production, and reduce erosional loss that represents a potential non­point-source of sediment to degrade water quality. This study measured transported soil sediment, dynamics in soil surface microtopography, cover of the woody shrub, grass, and bare ground cover classes, and soil...

  18. Ecological dynamic model of grassland and its practical verification.

    Science.gov (United States)

    Zeng, Xiaodong; Wang, Aihui; Zhao, Gang; Shen, Samuel S P; Zeng, Xubin; Zeng, Qingcun

    2005-02-01

    Based on the physico-biophysical considerations, mathematical analysis and some approximate formulations generally adopted in meteorology and ecology, an ecological dynamic model of grassland is developed. The model consists of three interactive variables, i.e. the biomass of living grass, the biomass of wilted grass, and the soil wetness. The major biophysical processes are represented in parameterization formulas, and the model parameters can be determined inversely by using the observational climatological and ecological data. Some major parameters are adjusted by this method to fit the data (although incomplete) in the Inner Mongolia grassland, and other secondary parameters are estimated through sensitivity studies. The model results are well agreed with reality, e.g., (i) the maintenance of grassland requires a minimum amount of annual precipitation (approximately 300 mm); (ii) there is a significant relationship between the annual precipitation and the biomass of living grass; and (iii) the overgrazing will eventually result in desertification. A specific emphasis is put on the shading effect of the wilted grass accumulated on the soil surface. It effectively reduces the soil surface temperature and the evaporation, hence benefits the maintenance of grassland and the reduction of water loss in the soil.

  19. Bird Use of Grassland Habitat Patches at a Military Airfield

    Science.gov (United States)

    In light of reported declines in grassland bird populations in North America, information about their use of airfield habitats can help inform management decisions in the context of conflicting objectives of minimizing wildlife-aircraft collisions and helping to conserve grasslan...

  20. Collaborative approach passes field test on Mongolian grasslands ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-13

    Oct 13, 2010 ... The result was an open-access situation that put mounting pressure on a fragile ecosystem. Grasslands, increasingly affected by drought, became seriously overgrazed. Throughout the 1990s, the number of families engaged in herding more than doubled, and the livestock population increased by 30%.