WorldWideScience

Sample records for range electric field

  1. High dynamic range electric field sensor for electromagnetic pulse detection

    National Research Council Canada - National Science Library

    Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2011-01-01

    ...) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices...

  2. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  3. Concentrating colloids with electric field gradients. II. Phase transitions and crystal buckling of long-ranged repulsive charged spheres in an electric bottle

    NARCIS (Netherlands)

    Leunissen, M.E.; van Blaaderen, A.

    2008-01-01

    We explored the usefulness of electric field gradients for the manipulation of the particle concentration in suspensions of charged colloids, which have long-ranged repulsive interactions. In particular, we studied the compression obtained by ``negative'' dielectrophoresis, which drives the

  4. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  5. Escape factors for thermionic cathodes in atomic gases in a wide electric field range

    Science.gov (United States)

    Benilov, M. S.; Naidis, G. V.; Petrovic, Z. Lj; Radmilovic-Radjenovic, M.; Stojkovic, A.

    2006-07-01

    An approximate analytical expression is obtained for the escape factors for thermionically emitting cathodes in atomic gases that is uniformly valid at all values of the reduced electric field. This expression is used for evaluation of the escape factors in neon, helium and mercury. An independent evaluation is performed by means of Monte Carlo simulations. The analytical results are in good agreement with the results of Monte Carlo simulations, both for reflecting and non-reflecting cathodes.

  6. Escape factors for thermionic cathodes in atomic gases in a wide electric field range

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal); Naidis, G V [Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrovic, Z Lj [Institute of Physics, POB 68, 11080 Zemun, Belgrade (Serbia); Radmilovic-Radjenovic, M [Institute of Physics, POB 68, 11080 Zemun, Belgrade (Serbia); Stojkovic, A [Institute of Physics, POB 68, 11080 Zemun, Belgrade (Serbia)

    2006-07-21

    An approximate analytical expression is obtained for the escape factors for thermionically emitting cathodes in atomic gases that is uniformly valid at all values of the reduced electric field. This expression is used for evaluation of the escape factors in neon, helium and mercury. An independent evaluation is performed by means of Monte Carlo simulations. The analytical results are in good agreement with the results of Monte Carlo simulations, both for reflecting and non-reflecting cathodes.

  7. Control of Chiral Magnetism Through Electric Fields in Multiferroic Compounds above the Long-Range Multiferroic Transition.

    Science.gov (United States)

    Stein, J; Baum, M; Holbein, S; Finger, T; Cronert, T; Tölzer, C; Fröhlich, T; Biesenkamp, S; Schmalzl, K; Steffens, P; Lee, C H; Braden, M

    2017-10-27

    Polarized neutron scattering experiments reveal that type-II multiferroics allow for controlling the spin chirality by external electric fields even in the absence of long-range multiferroic order. In the two prototype compounds TbMnO_{3} and MnWO_{4}, chiral magnetism associated with soft overdamped electromagnons can be observed above the long-range multiferroic transition temperature T_{MF}, and it is possible to control it through an electric field. While MnWO_{4} exhibits chiral correlations only in a tiny temperature interval above T_{MF}, in TbMnO_{3} chiral magnetism can be observed over several kelvin up to the lock-in transition, which is well separated from T_{MF}.

  8. Ionisation potential theorem in the presence of the electric field: Assessment of range-separated functional in the reproduction of orbital and excitation energies.

    Science.gov (United States)

    Borpuzari, Manash Protim; Boruah, Abhijit; Kar, Rahul

    2016-04-28

    Recently, the range-separated density functionals have been reported to reproduce gas phase orbital and excitation energies with good accuracy. In this article, we have revisited the ionisation potential theorem in the presence of external electric field. Numerical results on six linear molecules are presented and the performance of the range-separated density functionals in reproducing highest occupied molecular orbital (HOMO) energies, LUMO energies, HOMO-LUMO gaps in the presence of the external electric field is assessed. In addition, valence and Rydberg excitation energies in the presence of the external electric field are presented. It is found that the range-separated density functionals reproduce orbital and excitation energies accurately in the presence of the electric field. Moreover, we have performed fractional occupation calculation using cubic spline equation and tried to explain the performance of the functional.

  9. Electric Field Imaging Project

    Science.gov (United States)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  10. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  11. Electric field analysis

    CERN Document Server

    Chakravorti, Sivaji

    2015-01-01

    This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.

  12. Ephemeral Electric Potential and Electric Field Sensor

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  13. Microreactors with electrical fields

    NARCIS (Netherlands)

    Agiral, A.; Gardeniers, Johannes G.E.

    2010-01-01

    The use of electric fields in chemistry is considered an important concept of process intensification. The combination of electricity with chemistry becomes particularly valuable at smaller scales, as they are exploited in microreaction technology. Microreactor systems with integrated electrodes

  14. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  15. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  16. Electric & Magnetic Fields

    Science.gov (United States)

    ... Reading Introduction Electric and magnetic fields (EMFs) are invisible areas of energy, often referred to as radiation , ... Abstract ] Staff Directory Freedom of Information Act OIG Web Policies Request Translation Services Employment Verification Contact Us ...

  17. Measurements of the Atmospheric Electric Field through a Triangular Array and the Long-range Saharan Dust Electrification in Southern Portugal

    CERN Document Server

    Silva, H G; Pereira, S; Barbosa, S M; Nicoll, K; Pereira, M Collares; Harrison, R G

    2016-01-01

    Atmospheric electric field (AEF) measurements were carried out in three different sites forming a triangular array in Southern Portugal. The campaign was performed during the summer characterized by Saharan dust outbreaks; the 16th-17th July 2014 desert dust event is considered here. Evidence of long-range dust electrification is attributed to the air-Earth electrical current creating a positive space-charge inside of the dust layer. An increase of ~23 V/m is observed in AEF on the day of the dust event corresponding to space-charges of ~20-2 pCm-3 (charge layer thicknesses ~10-100 m). A reduction of AEF is observed after the dust event.

  18. Device for measuring electric fields

    Science.gov (United States)

    Levine, S. H.; Harrison, S. R.

    1972-01-01

    Measurement of low-intensity electric fields in space and in presence of weak magnetic fields is accomplished by utilizing a device which permits determination of the extent a beam of cesium ions is deflected by an electric field.

  19. THOR Electric Field Instrument - EFI

    Science.gov (United States)

    Khotyaintsev, Yuri; Bale, Stuart D.; Rothkaehl, Hanna; Bonnell, John; Åhlen, Lennart; Vaivads, Andris; Lindqvist, Per-Arne; Ivchenko, Nickolay; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) is to measure the electric field vector in the frequency range 0-200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above 1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic

  20. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  1. Electric potential and electric field imaging

    Science.gov (United States)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  2. Imaging electric field dynamics with graphene optoelectronics.

    Science.gov (United States)

    Horng, Jason; Balch, Halleh B; McGuire, Allister F; Tsai, Hsin-Zon; Forrester, Patrick R; Crommie, Michael F; Cui, Bianxiao; Wang, Feng

    2016-12-16

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  3. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  4. Establishing conditions for simulating hydrophobic solutes in electric fields by molecular dynamics Effects of the long-range van der Waals treatment on the apparent particle mobility

    NARCIS (Netherlands)

    Milicevic, Zoran; Marrink, Siewert J.; Smith, Ana-Suncana; Smith, David M.

    Despite considerable effort over the last decade, the interactions between solutes and solvents in the presence of electric fields have not yet been fully understood. A very useful manner in which to study these systems is through the application of molecular dynamics (MD) simulations. However, a

  5. New range of heavy electric vehicle chassis

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    A new range of electrically-powered vehicles is announced in the UK. The vehicles are a joint venture between the Electric Vehicle Division of Hydrotechniek and its Dutch associate, Creusen Elektro-Mechanische Industrie BV. The 867S and 968S are three-axle vehicles with four-wheel drive on the rear four wheels. At present the vehicles go 20 km/h and have an 80-km range. The speed is to be extended in the near future and a diesel-electric hybrid may be introduced. An 867S is to be fitted out as a mobile library.

  6. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    OpenAIRE

    Seiho Kim; Jaesik Lee; Chulung Lee

    2017-01-01

    This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models availabl...

  7. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m-1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m-1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  9. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  10. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  11. Electroinduction disk sensor of electric field strength

    Science.gov (United States)

    Biryukov, S. V.; Korolyova, M. A.

    2018-01-01

    Measurement of the level of electric fields exposure to the technical and biological objects for a long time is an urgent task. To solve this problem, the required electric field sensors with specified metrological characteristics. The aim of the study is the establishment of theoretical assumptions for the calculation of the flat electric field sensors. It is proved that the accuracy of the sensor does not exceed 3% in the spatial range 0errors caused by the inhomogeneity of the field. The maximum of this error is 3% in the spatial range from 0 to 5R to the source field that allows you to design better quality sensors used in different measuring systems of wide application.

  12. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  13. Electron transport in argon in crossed electric and magnetic fields

    Science.gov (United States)

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field.

  14. Electric field changes and cloud electrical structure

    Science.gov (United States)

    Krider, E. Philip

    1989-09-01

    The NASA Kennedy Space Center and Cape Canaveral Air Force Station are currently operating a large network of electric field mills to detect lightning and electrified clouds that might present hazards to ground operations, launches, and landings. Here we summarize recent results of least squares analyses of multistation measurements of field changes that were produced by cloud-to-ground (Q model) and intracloud (P model) lightning. The values of the optimum parameters of 113 lightning events that occurred in one small storm on July 11, 1978, and a portion of a large storm on July 6, 1978, are tabulated and graphed. We note that, in both storms, there is considerable symmetry in the direction of P vectors around the Q region and that this pattern is consistent with the classic double-dipole model of thundercloud charges. We note also that the vertical separation of the Q and P regions depends on the storm intensity.

  15. Field Models in Electricity and Magnetism

    CERN Document Server

    Barba, Paolo Di; Wiak, S

    2008-01-01

    Covering the development of field computation in the past forty years, Field Models in Electricity and Magnetism intends to be a concise, comprehensive and up-to-date introduction to field models in electricity and magnetism, ranging from basic theory to numerical applications. The approach assumed throughout the whole book is to solve field problems directly from partial differential equations in terms of vector quantities. Theoretical issues are illustrated by practical examples. In particular, a single example is solved by different methods so that, by comparison of results, limitations and advantages of the various methods are made clear. The subjects of the synthesis of fields and of the optimal design of devices, which are growing in research and so far have not been adequately covered in textbooks, are developed in addition to more classical subjects of analysis. Topics covered include: vector fields: electrostatics, magnetostatics, steady conduction; analytical methods for solving boundary-value probl...

  16. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  17. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  18. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  19. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields

    OpenAIRE

    Grossman, Nir; De Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B.; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonio M.; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S.

    2017-01-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) conc...

  20. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  1. Lattice QCD with strong external electric fields

    OpenAIRE

    Yamamoto, Arata

    2012-01-01

    We study particle generation by a strong electric field in lattice QCD. To avoid the sign problem of the Minkowskian electric field, we adopt the "isospin" electric charge. When a strong electric field is applied, the insulating vacuum is broken down and pairs of charged particles are produced by the Schwinger mechanism. The competition against the color confining force is also discussed.

  2. Electric Fields and Enzyme Catalysis.

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2017-06-20

    What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.

  3. Electric fields at finite temperature

    Science.gov (United States)

    Bermúdez Manjarres, A. D.; Kelkar, N. G.; Nowakowski, M.

    2017-11-01

    Partial differential equations for the electric potential at finite temperature, taking into account the thermal Euler-Heisenberg contribution to the electromagnetic Lagrangian are derived. This complete temperature dependence introduces quantum corrections to several well known equations such as the Thomas-Fermi and the Poisson-Boltzmann equation. Our unified approach allows at the same time to derive other similar equations which take into account the effect of the surrounding heat bath on electric fields. We vary our approach by considering a neutral plasma as well as the screening caused by electrons only. The effects of changing the statistics from Fermi-Dirac to the Tsallis statistics and including the presence of a magnetic field are also investigated. Some useful applications of the above formalism are presented.

  4. Unit 6. Electric field (Summary)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2012-01-01

    Summary of the "Unit 6. Electric field" of course "Physical Foundations of Engineering I". Degree in Sound and Image Engineering, in Telecommunications. Polytechnic School of the University of Alicante. Resumen del "Tema 6. Campo eléctrico" de la asignatura "Fundamentos Físicos de la Ingeniería I". Grado en Ingeniería en Sonido e Imagen en Telecomunicaciones. Escuela Politécnica Superior. Universidad de Alicante.

  5. Electric Fields for Flame Extinguishment

    Science.gov (United States)

    1993-03-01

    ethylene-air and methane-air flames, the application of a DC field of 0.5 kV/cm increased the burning velocity by close to a factor of two. Salamandra and...flame surface area and thus the velocity, but Jaggers and von Engel also saw physical perturbations in flame fronts with no electric field. Salamandra ...Conductivity in Propane-Air Flames by Using Rydberg State Stark Spectroscopy," Proc. Combustion Inst., Fall (1990). 12. Salamandra , G.D., and Mairov, N.I

  6. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    2013-01-01

    We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel...

  7. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  8. Cell separation using electric fields

    Science.gov (United States)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  9. Composite lateral electric field excited piezoelectric resonator.

    Science.gov (United States)

    Zaitsev, B D; Shikhabudinov, A M; Borodina, I A; Teplykh, A A; Kuznetsova, I E

    2017-01-01

    The novel method of suppression of parasitic oscillations in lateral electric field excited piezoelectric resonator is suggested. Traditionally such resonator represents the piezoelectric plate with two electrodes on one side of the plate. The crystallographic orientation of the plate is selected so that the tangential components of electric field excite bulk acoustic wave with given polarization travelling along the normal to the plate sides. However at that the normal components of field excite the parasitic Lamb waves and bulk waves of other polarization which deteriorate the resonant properties of the resonator. In this work we suggest to separate the source of the HF electric field and resounded piezoelectric plate by air gap. In this case the tangential components of the field in piezoelectric plate do not practically weaken but normal components significantly decrease. This method is realized on the composite resonator having the structure "glass plate with rectangular electrodes - air gap - plate of 128 Y-X lithium niobate." It has been shown that there exist the optimal value of the width gap which ensure the good quality of series and parallel resonances in frequency range 3-4MHz with record values of Q-factor of ∼15,000 in both cases. Copyright © 2016. Published by Elsevier B.V.

  10. Inertial range spectrum of field-aligned whistler turbulence

    DEFF Research Database (Denmark)

    Dwivedi, Navin Kumar; Singh, Shobhana

    2017-01-01

    An analytical model to study the whistler turbulence spectrum and inertial range spectral scalings related with the electric and magnetic field spectra in a weakly non-collisional magnetized plasma is developed. In the present model, the dispersion relation of whistler wave propagating along...

  11. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    Science.gov (United States)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  12. Electric-field guiding of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  13. Electric Field and Microphysics of Hurricanes

    Science.gov (United States)

    Bateman, M. G.; Blakeslee, R. J.; Mach, D. M.; Bailey, J. C.

    2005-12-01

    The Tropical Cloud Systems and Processes (TCSP) project was a campaign to primarily study tropical storm and hurricane genesis, based in San José, Costa Rica, during July 2005. The main research platform was a NASA ER-2, high altitude (~21 km) aircraft, which carried a number of instruments, including the Lightning Instrument Package consisting of electric field mills and an air conductivity probe, two Doppler radar systems, and the Advanced Microwave Precipitation Radiometer (AMPR). The field mills allow us to determine the vector electric field along the aircraft path. The AMPR allows us to determine ice particle concentration from passive microwave ice scattering signatures. TCSP was the third program in which we have measured electrification above hurricanes. In the previous programs, we have found oceanic hurricanes to be at most only weakly electrified with little or no lightning in the central part of the storm. During the flight over Hurricane Emily (17 July 2005) we found strong electrification and significant lightning flash rates (over 9 flashes/min) in the eye wall. The ER-2 made several passes over and around the eyewall of Hurricane Emily during the flight. During the overpasses, the hurricane was almost constantly producing lightning. Vaisala's long range lightning detection system indicated that this remarkable lightning activity in the storm core persisted for several hours. We present the vector electric field, lightning rates, passive microwave microphysics, and Doppler radar data from Hurricane Emily and compare these observations with data from other hurricanes we have studied. We will address the question as to why Hurricane Emily was electrically so different from the other tropical storms.

  14. Electric Field Analysis of Breast Tumor Cells

    Directory of Open Access Journals (Sweden)

    V. Gowri Sree

    2011-01-01

    Full Text Available An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this.

  15. Electron transport in reduced graphene oxides in high electric field

    Science.gov (United States)

    Jian, Wen-Bin; Lai, Jian-Jhong; Wang, Sheng-Tsung; Tsao, Rui-Wen; Su, Min-Chia; Tsai, Wei-Yu; Rosenstein, Baruch; Zhou, Xufeng; Liu, Zhaoping

    Due to a honeycomb structure, charge carriers in graphene exhibit quasiparticles of linear energy-momentum dispersion and phenomena of Schwinger pair creation may be explored. Because graphene is easily broken in high electric fields, single-layer reduced graphene oxides (rGO) are used instead. The rGO shows a small band gap while it reveals a graphene like behavior in high electric fields. Electron transport in rGO exhibits two-dimensional Mott's variable range hopping. The temperature behavior of resistance in low electric fields and the electric field behavior of resistance at low temperatures are all well explained by the Mott model. At temperatures higher than 200 K, the electric field behavior does not agree with the model while it shows a power law behavior with an exponent of 3/2, being in agreement with the Schwinger model. Comparing with graphene, the rGO is more sustainable to high electric field thus presenting a complete high-electric field behavior. When the rGO is gated away from the charge neutral point, the turn-on electric field of Schwinger phenomena is increased. A summary figure is given to present electric field behaviors and power law variations of resistances of single-layer rGO, graphene, and MoS2.

  16. Does this range suit me? Range satisfaction of battery electric vehicle users.

    Science.gov (United States)

    Franke, Thomas; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2017-11-01

    User satisfaction is a vital design criterion for sustainable systems. The present research aimed to understand factors relating to individually perceived range satisfaction of battery electric vehicle (BEV) users. Data from a large-scale BEV field trial (N = 72) were analyzed. Apart from an initial drop in range satisfaction, increasing practical experience was related to increased range satisfaction. Classical indicators of users' mobility profiles (daily travel distances) were only weakly related to lower range satisfaction (not significant), after controlling for practical experience and preferred coverage of mobility needs. The regularity/predictability of users' mobility patterns, the percentage of journeys not coverable because of range issues, and users' individual comfortable range accounted for variance in range satisfaction. Finally, range satisfaction was related to key indicators of general BEV acceptance (e.g., purchase intentions). These results underline the complex dynamics involved in individual range satisfaction, as well as its central role for BEV acceptance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electric field induced short range to long range structural ordering and its influence on the Eu{sup +3} photoluminescence in the lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kalaskar, Abhijeet; Rao, Badari Narayana; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore 560012 (India); Thomas, Tiju, E-mail: tijuthomas@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2015-06-28

    Eu{sup +3} was incorporated into the lattice of a lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) as per the nominal formula Na{sub 0.5}Bi{sub 0.5−x}Eu{sub x}TiO{sub 3}. This system was investigated with regard to the Eu{sup +3} photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main {sup 5}D{sub 0}→{sup 7}F{sub 0} line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu{sup +3} luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom.

  18. On-line battery identification for electric driving range prediction

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Rosca, B.; Bergveld, H.J.; Bosch, P.P.J. van den

    2011-01-01

    Hybrid and electric vehicles require accurate knowledge of the battery to make an educated guess about the expected electric driving range. Range prediction is complicated by the fact that batteries are subject to external influences and aging. Also the future driving behavior is often unknown. This

  19. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    Science.gov (United States)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  20. ELECTRIC FIELD MEASUREMENT IN ROD-DISCONTINUED ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... In the vicinity of the interface, we observe a kind of discontinuity in the evolution of the electric field intensity. This one becomes greater than the value obtained in the case of gaps with homogeneous plane earth. Key words: breakdown voltage; electric field; distributed capacity. Author Correspondence ...

  1. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  2. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  3. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  4. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  5. A comparison between electric field strengths similarly generated and measured in the open air, in a shielded enclosure and in a large aircraft hangar, over frequency range 10 to 110 MHz

    Science.gov (United States)

    Dew, M.; Harrison, F.

    1980-02-01

    Field strength measurements over 10 to 110 MHz were made using a tracking generator counter, a spectrum analyzer, and a biconal antenna. The dimensions of the shielded enclosure were 6.1 x 3.66 x 3.0 m, and the concrete floored, metal hangar 80 x 40 x 10 m. It was found that in each polarization the hangar performance deviated much less from that in the open air than did the shielded enclosure performance. The latter shows deviations with modulus as great as 38 dB (certical pol) and 26 dB (horizontal pol). For any electric field strength measured in the shielded enclosure (in 10 kHz bandwidth in the range 10 to 110 MHz) the probability that the result would be at least 6 dB different from that similary obtained in the open air was 38% or 43.5% according to polarization and that when similarly measured in the hangar the corresponding probabilities were 0% and 1%. Hangar results were shown to lie much closer to the open air results than do the shielded enclosure results. This is further demonstrated by the rms deviations of the shielded enclosure and hangar readings from those of the open air.

  6. Electric Field Generation in Martian Dust Devils

    Science.gov (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  7. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    -5 A the electric current pulse amplitude. The sintering experiments were carried out in ambient atmosphere with the pellets positioned inside a vertical dilatometer furnace with Pt-Ir electrodes connected either to a power supply for applying the electric field or to an impedance analyzer for collecting [-Z''(ω) x......Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1...... of the electrical conductivity of flash sintered specimens. Joule heating is assumed to be the primary effect of the electric current pulse through the specimens. Improved grain-to-grain contact and the removal of depleted chemical species due to Joule heating at the space charge region are proposed, respectively...

  8. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Giant and tunable electric field enhancement in the terahertz regime.

    Science.gov (United States)

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-03

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  10. Accurate Calculation of Electric Fields Inside Enzymes.

    Science.gov (United States)

    Wang, X; He, X; Zhang, J Z H

    2016-01-01

    The specific electric field generated by a protease at its active site is considered as an important source of the catalytic power. Accurate calculation of electric field at the active site of an enzyme has both fundamental and practical importance. Measuring site-specific changes of electric field at internal sites of proteins due to, eg, mutation, has been realized by using molecular probes with CO or CN groups in the context of vibrational Stark effect. However, theoretical prediction of change in electric field inside a protein based on a conventional force field, such as AMBER or OPLS, is often inadequate. For such calculation, quantum chemical approach or quantum-based polarizable or polarized force field is highly preferable. Compared with the result from conventional force field, significant improvement is found in predicting experimentally measured mutation-induced electric field change using quantum-based methods, indicating that quantum effect such as polarization plays an important role in accurate description of electric field inside proteins. In comparison, the best theoretical prediction comes from fully quantum mechanical calculation in which both polarization and inter-residue charge transfer effects are included for accurate prediction of electrostatics in proteins. © 2016 Elsevier Inc. All rights reserved.

  11. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  12. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  13. Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields

    Science.gov (United States)

    Chegel, Raad

    2018-02-01

    Based on data of density function theory (DFT) as the input of tight binding model, the electrical conductivity (σ(T)) of graphene nanoribbos (GNRs) and Boron Nitride nanoribbos (BNNRs) under external electric fields with different wide are studied using the Green's function method. The BNNRs are wide band gap semiconductor and they are turned into metal depending on their electric field strength. The σ(T) shows increasing in low temperature region and after reaching the maximum value, it will decrease in high temperature region. In lower temperature ranges, the electrical conductivity of the GNRs is greater than that of the BNNRs. In a low temperature region, the σ(T) of GNRs increases linearly with temperature unlike the BNNRs. The electrical conductivity are strongly dependent on the electric field strength.

  14. Control of magnetism by electric fields.

    Science.gov (United States)

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  15. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    Science.gov (United States)

    Li, Xingwen; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli; Murphy, Anthony B.

    2015-04-01

    The influence of copper vapor mixed in hot CO2 on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K-4000 K is numerically analyzed. First, the equilibrium composition of hot CO2 with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N)cr is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N)cr of the CO2-Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O2 from the thermal dissociation of CO2 contributes to the increase of (E/N)cr of CO2-Cu hot gas mixtures from about 2000 K to 3500 K.

  16. Nonlinear cell response to strong electric fields

    Science.gov (United States)

    Bardos, D. C.; Thompson, C. J.; Yang, Y. S.; Joyner, K. H.

    2000-07-01

    The response of living cells to externally applied electric fields is of widespread interest. In particular, the intensification of electric fields across cell membranes is believed to be responsible, through membrane rupture and reversible membrane breakdown processes, for certain types of tissue damage in electrical trauma cases which cannot be attributed to Joule heating. Large elongated cells such as skeletal muscle fibres are particularly vulnerable to such damage. Previous theoretical studies of field intensification across cell membranes in such cells have assumed the membrane current to be linear in the applied field (Ohmic membrane conductivity) and were limited to sinusoidal applied fields. In this paper, we investigate a simple model of a long cylindrical cell, corresponding to nerve or skeletal muscle cells. Employing the electroquasistatic approximation, a system of coupled first-order differential equations for the membrane electric field is derived which incorporates arbitrary time dependence in the external field and nonlinear membrane response (non-Ohmic conductivity). The behaviour of this model is investigated for a variety of applied fields in both the linear and highly nonlinear regimes. We find that peak membrane fields predicted by the nonlinear model are approximately twice as intense, for low-frequency electrical trauma conditions, as those of the linear theory.

  17. Analysis of DE-1 PWI electric field data

    Science.gov (United States)

    Weimer, Daniel

    1994-01-01

    The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.

  18. ICE PLASMA WAVE ELECTRIC FIELD MEASUREMENT DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — The Plasma Wave Data were submitted to National Space Science Data Center after the Principal Investigator's death (Scarf) by S. Chang of TRW. For the electric field...

  19. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-05-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures.

  20. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  1. Axial Field Electric Motor and Method

    National Research Council Canada - National Science Library

    Cho, Chahee P

    2007-01-01

    .... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

  2. Molecular dynamics in high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, M., E-mail: apoma@theory.nipne.ro; Cune, L.C.

    2016-06-15

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  3. Electric/magnetic field sensor

    Science.gov (United States)

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  4. Electric-field-assisted crystallisation in phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohary, Krisztian; Diosdado, Jorge A.V.; Ashwin, Peter; Wright, C. David [College of Engineering, Mathematics, and Physical Sciences, University of Exeter (United Kingdom)

    2012-10-15

    Phase-change materials are of intense research interest due mainly to their use in phase-change memory (PCM) devices that are emerging as a promising technology for future non-volatile, solid-state, electrical storage. Electrically driven transitions from the amorphous to the crystalline phase in such devices exhibit characteristic threshold switching. Several alternative electronic explanations for the origins of this characteristic behaviour have been put forward, for example Poole-Frenkel effects, delocalisation of tail states, field emission processes and space charge limited currents [for a full discussion, see Radielli et al., J. Appl. Phys. 103, 111101 (2008) and Simon et al., MRS Proc. 1251, H01-H011 (2010)]. However, an alternative to these conventional electronic models of threshold switching is based on electric field induced lowering of the system free energy, leading to the field induced nucleation of conducting crystal filaments. In this paper we investigate this alternative view. We present a detailed kinetics study of crystallisation in the presence of an electric field for the phase-change material Ge{sub 2}Sb{sub 2}Te{sub 5}. We derive quantitative crystallisation maps to show the effects of both temperature and electric field on crystallisation and we identify field ranges and parameter values where the electric field might play a significant role. Then we carry out physically realistic simulations of the threshold switching process in typical phase-change device structures, both with and without electric field dependent energy contributions to the system free energy. Our results show that threshold switching can be obtained by a mechanism driven purely by electric field induced nucleation, but the fields so required are large, of the order of 300 MV m{sup -1}, and significantly larger than the experimentally measured threshold fields. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  6. Response Analysis of Electro-Optic Electric Field Sensor

    Directory of Open Access Journals (Sweden)

    Dawood Najem Saleh

    2013-05-01

    Full Text Available In this paper an electric field sensor based on the electro-optical effect in Lithium Niobate crystal is studied. The electro-optically induced polarization modification in crystal has been described and the response analyzed for different crystal lengths and light source wave lengths. The study shows that as the crystal length increased the required electric field to produce a phase-shift equal p is decreased. The responsivity of the sensor for different ranges of the electric field to be measured has been calculated and it is found that the rate of change of the half of the phase shift with respect to the electric field d(f/2/dE is equal to the responsivity of the sensor at the mid-point of the linear part of the light intensity response curve.

  7. On focused fields with maximum electric field components and images of electric dipoles

    NARCIS (Netherlands)

    De Bruin, R.; Urbach, H.P.; Pereira, S.F.

    2011-01-01

    We study focused fields which, for a given total power and a given numerical aperture, have maximum electric field amplitude in some direction in the focal point and are linearly polarized along this direction. It is shown that the optimum field is identical to the image of an electric dipole with

  8. On focused fields with maximum electric field components and images of electric dipoles

    NARCIS (Netherlands)

    De Bruin, R.; Urbach, H.P.; Pereira, S.F.

    We study focused fields which, for a given total power and a given numerical aperture, have maximum electric field amplitude in some direction in the focal point and are linearly polarized along this direction. It is shown that the optimum field is identical to the image of an electric dipole with

  9. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  10. Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields

    Science.gov (United States)

    Afshari, F.; Ghaffarian, M.

    2017-05-01

    We explore, numerically, some electronic properties of zigzag and armchair graphene nanoribbons under the external perpendicular magnetic field and transverse electric field. Our results, in the magnetic field only, indicate that numerical Landau levels deviate from the Dirac Landau levels formula for higher levels and quantum Hall conductance curve of armchair nanoribbon shows oscillatory behavior in the high gate voltage. In the presence of transverse electric field only, it is shown that the electric dipole moment of zigzag nanoribbon increases abruptly versus the electric field in the range of low-intensity electric fields while for armchair nanoribbon this varies very slowly. This variation in stronger electric fields is staircase for armchair nanoribbon while it is smoothly for zigzag nanoribbon. In the presence of electric and magnetic fields, there are electrons and holes as charge carrier in the same proportions. Conducting electrons make a round current in the half of nanoribbons while conducting holes make a round current in the other half. Electronic vortices, which are static in the presence of magnetic field only, move along nanoribbons in the effect of the transverse electric field. By considering the curve of electric dipole moment versus the electric field, it is found that magnetic field increases the electric susceptibility of nanoribbons in the low-intensity electric fields substantially and creates considerable electric susceptibilities in several higher electric fields. So these indicate that the magnetic field increases the electric sensitivity of graphene nanoribbons.

  11. Optical properties of graphene nanocones under electric and magnetic fields

    Science.gov (United States)

    Ulloa, P.; Pacheco, M.; Latgé, A.

    2017-11-01

    Here we present a theoretical study of the optical properties of graphene nanocones tuned by external electric and magnetic fields. We investigate the effects of the size and topology of the carbon nanostructures on the density of states and on the electro- and magneto-absorption of linearly polarized electromagnetic radiation in different nanocone geometries. We find that the electric field induces changes in the electric charge distribution mainly at the cone edges. In the infrared range the absorption coefficient shows a peculiar dependence on the electric field (magnitude and direction) and on the photon polarization for all investigated structures. Our results suggest that the electric field may be used to control the electric charge at the apex and for a selective light absorption. The presence of an axial magnetic field induces new features in the nanocone density of states due to the induced localization effects. For high fields the density of states exhibits a sequence of peaks resembling the graphene Landau spectra. The magneto-absorption spectra present a series of resonances strongly sensitive to the photon polarization opening routes for manipulation of the optical responses.

  12. Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor); Turner, Travis L. (Inventor)

    2017-01-01

    Provided is an electrically activated shape memory polymer composite capable of thermal shape reformation using electric power to heat the composite through its matrix glass transition temperature. The composite includes an adaptable polymer matrix component using a diglycidyl ether resin, at least one substantially well-dispersed conductive or magnetic nano-filler component, and at least one elastic, laminated layer. Also provided are methods of preparing the composite and methods of activating the composite. A shape reformation of the composite is triggered by applying an electric field at DC and/or at a frequency above about 1.mu.Hz for a sufficient time.

  13. Electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  14. Electric-field-stimulated protein mechanics.

    Science.gov (United States)

    Hekstra, Doeke R; White, K Ian; Socolich, Michael A; Henning, Robert W; Šrajer, Vukica; Ranganathan, Rama

    2016-12-15

    The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.

  15. Microfluidic Screening of Electric Fields for Electroporation

    Science.gov (United States)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  16. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    Science.gov (United States)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  17. Electric field distribution in irradiated silicon detectors

    CERN Document Server

    Castaldini, A; Polenta, L; Nava, F; Canali, C

    2002-01-01

    Particle irradiation causes dramatic changes in bulk properties of p sup + -n-n sup + silicon structures operating as particle detectors. Several attempts to model and justify such variations have been proposed in the last few years. The main unsolved problem remains in the determination of the electric field and depletion layer distributions as key-parameters to estimate the collection efficiency of the detector. By using optical beam induced current (OBIC) and surface potential (SP) measurements we determined the behavior of the electric field and confirmed the existence of a double-junction structure appearing after irradiation.

  18. Electric field distribution in irradiated silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A. E-mail: anna.cavallini@bo.infn.it; Polenta, L.; Nava, F.; Canali, C

    2002-01-11

    Particle irradiation causes dramatic changes in bulk properties of p{sup +}-n-n{sup +} silicon structures operating as particle detectors. Several attempts to model and justify such variations have been proposed in the last few years. The main unsolved problem remains in the determination of the electric field and depletion layer distributions as key-parameters to estimate the collection efficiency of the detector. By using optical beam induced current (OBIC) and surface potential (SP) measurements we determined the behavior of the electric field and confirmed the existence of a double-junction structure appearing after irradiation.

  19. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  20. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  1. Electric-field control of magnetism in graphene on chromia

    Science.gov (United States)

    Choudhary, R.; Skomski, R.; Kashyap, A.

    2017-12-01

    First-principle calculations are used to investigate how an external electric field controls the spin polarization in graphene on chromia, a system of interest in the area of spin field-effect transistors. Both free-standing chromia thin films and graphene-bilayers are considered. The effect of the electric field depends on the thickness of the chromia and ranges from moderately strong and linear effects to very strong nonlinear magnetoelectricity. The graphene modifies and generally enhances the nonlinear magnetoelectric effect. We also find that the external electric field drastically changes the energy-dependent spin polarization in the graphene layers, which is predicted to reach values of up to about 80%.

  2. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  3. Electric and magnetic fields in cryopreservation.

    Science.gov (United States)

    Wowk, Brian

    2012-06-01

    Electromagnetic warming has a long history in cryobiology as a preferred method for recovering large tissue masses from cryopreservation, especially from cryopreservation by vitrification. It is less well-known that electromagnetic fields may be able to influence ice formation during cryopreservation by non-thermal mechanisms. Both theory and published data suggest that static and oscillating electric fields can respectively promote or inhibit ice formation under certain conditions. Evidence is less persuasive for magnetic fields. Recent claims that static magnetic fields smaller than 1 mT can improve cryopreservation by freezing are specifically questioned. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Electric field mediated colloidal assembly and control

    Science.gov (United States)

    Juarez, Jaime Javier

    2011-12-01

    This dissertation presents video microscopy measurements and computer simulations of colloidal particle interactions in inhomogeneous, high-frequency AC electric fields. The interactions of particles with each other and inhomogeneous electric fields are quantified as a function of concentration, field amplitude, and frequency. Visual state diagrams show that these interactions in concentrated systems produce quasi-two dimensional microstructures including confined hard disk fluids, oriented dipolar chains, and oriented hexagonal close packed crystals. The interaction of a particle interacting with an electric field is directly measured with analyses of a single diffusing colloid within electric fields in the absence of many body effects. Concentrated systems are characterized in terms of density profiles across the electrode gap and angular pair distribution functions. An inverse Monte Carlo analysis extracted the induced dipole-induced dipole interaction from concentrated measurements. A single adjustable parameter consistently modified the induced dipole-field potential and the induced dipole-induced dipole potential to account for modification of the local electric field as the result of the local particle concentration, frequency and configuration. Confocal laser scanning microscopy (CLSM) perform sensitive measurements of internal three dimensional structure of crystals assembled in an interfacial quadrupole electrode device. Radial distributions as functions of elevation are used to characterize the equilibrium structure. A single adjustable parameter modified known potentials to match Monte Carlo simulations with experiment. The local density from experiment and simulation matched the expected density calculated from a balance of osmotic pressure and dielectrophoretic compression. Simulations qualitatively matched experimental observations of microstructure as a function of field amplitude. Programmable assembly for colloidal crystals is implemented in the

  5. Topology Optimized Nanostrips for Electric Field Enhancements

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian

    energy photons are converted to higher energy photons able to bridge the band gap energy and contribute the energy generation. The upconversion process in erbium is inefficient under the natural solar irradiation, and without any electric field enhancements of the incident light, the process...

  6. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  7. Nonthermal processing by radio frequency electric fields

    Science.gov (United States)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  8. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  9. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics...

  10. Static electric fields modify the locomotory behaviour of cockroaches.

    Science.gov (United States)

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  11. Magnetic and electric fields induce directional responses in Steinernema carpocapsae.

    Science.gov (United States)

    Ilan, Teva; Kim-Shapiro, Daniel B; Bock, Clive H; Shapiro-Ilan, David I

    2013-09-01

    Entomopathogenic nematode species respond directionally to various cues including electrical stimuli. For example, in prior research Steinernema carpocapsae was shown to be attracted to an electrical current that was applied to an agar dish. Thus, we hypothesised that these nematodes may use electromagnetic reception to assist in navigating through the soil and finding a host. In this study we discovered that S. carpocapsae also responds to electrical fields (without current) and to magnetic fields; to our knowledge this is the first report of nematode directional movement in response to a magnetic field. Our research expands on the range of known stimuli that entomopathogenic nematodes respond to. The findings may have implications for foraging behavior. Published by Elsevier Ltd.

  12. Influence of electric field on cellular migration

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields (EFs) and respond to them with a directed migratory movement. Dictyostelium discoideum (D.d.) cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an EF. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. Whereas genes and proteins that mediate the electric sensing as well as that define the migration direction have been previously investigated in D.d. cells, a deeper knowledge about the cellular kinematic effects caused by the EF is still lacking. Here we show that besides triggering a directional bias the electric field influences the cellular kinematics by accelerating the movement of cells along their path. We found that the migratory velocity of the cells in an EF increases linearly with the exposure time. Through the analysis of the PI3K and Phg2 distribution in the cytosol and of the cellular adherence to the substrate we aim at elucidating whereas this speed up effect in the electric field is due to either a molecular signalling or the interaction with the substrate. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  13. Analisa Desain Sensor Electrical Field Detector (EFD

    Directory of Open Access Journals (Sweden)

    Didik Aribowo

    2016-03-01

    Full Text Available Efektifitas EFD (Electrical Field Detector untuk mendeteksi medan listrik yang dipancarkan oleh Apparel pada ECCT (Electrical Capacitive Cancer Tomography diselidiki dalam penelitian ini. EFD merupakan teknik mendeteksi medan listrik dengan menangkap medan listrik statis berfrekuensi 100 kHz yang dipancarkan oleh Apparel ECCT. Medan listrik yang terpancar tersebut ditangkap oleh sensor yang didesain sedemikian rupa agar tepat mendeteksi medan listrik pada area yang di scan. Kemudian medan listrik yang didapat berupa muatan listrik disalurkan menuju mikrokontroler yang akan diolah menjadi sebuah informasi. Informasi ini yang kemudian diolah kembali untuk mengeksekusi berupa perintah menghidupkan buzzer dan LED (Light Emitting Diode.

  14. Holographic equilibration under external dynamical electric field

    Directory of Open Access Journals (Sweden)

    M. Ali-Akbari

    2017-10-01

    Full Text Available The holographic equilibration of a far-from-equilibrium strongly coupled gauge theory is investigated. In particular, the dynamics of a probe D7-brane in an AdS-Vaidya background is studied in the presence of an external time-dependent electric field. Defining the equilibration times teqc and teqj, at which condensation and current relax to their final equilibrated values, receptively, the smallness of transition time kM or kE is enough to observe a universal behaviour for re-scaled equilibration times kMkE(teqc−2 and kMkE(teqj−2. kM(kE is the time interval in which the temperature (electric field increases from zero to finite value. Moreover, regardless of the values for kM and kE, teqc/teqj also behaves universally for large enough value of the ratio of the final electric field to final temperature. Then a simple discussion of the static case reveals that teqc≤teqj. For an out-of-equilibrium process, our numerical results show that, apart from the cases for which kE is small, the static time-ordering, that is teqc≤teqj, persists.

  15. Electric-Field-Driven Direct Desulfurization.

    Science.gov (United States)

    Borca, Bogdana; Michnowicz, Tomasz; Pétuya, Rémi; Pristl, Marcel; Schendel, Verena; Pentegov, Ivan; Kraft, Ulrike; Klauk, Hagen; Wahl, Peter; Gutzler, Rico; Arnau, Andrés; Schlickum, Uta; Kern, Klaus

    2017-05-23

    The ability to elucidate the elementary steps of a chemical reaction at the atomic scale is important for the detailed understanding of the processes involved, which is key to uncover avenues for improved reaction paths. Here, we track the chemical pathway of an irreversible direct desulfurization reaction of tetracenothiophene adsorbed on the Cu(111) closed-packed surface at the submolecular level. Using the precise control of the tip position in a scanning tunneling microscope and the electric field applied across the tunnel junction, the two carbon-sulfur bonds of a thiophene unit are successively cleaved. Comparison of spatially mapped molecular states close to the Fermi level of the metallic substrate acquired at each reaction step with density functional theory calculations reveals the two elementary steps of this reaction mechanism. The first reaction step is activated by an electric field larger than 2 V nm(-1), practically in absence of tunneling electrons, opening the thiophene ring and leading to a transient intermediate. Subsequently, at the same threshold electric field and with simultaneous injection of electrons into the molecule, the exergonic detachment of the sulfur atom is triggered. Thus, a stable molecule with a bifurcated end is obtained, which is covalently bound to the metallic surface. The sulfur atom is expelled from the vicinity of the molecule.

  16. Range and Battery Depletion Concerns with Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Tomio Miwa

    2017-01-01

    Full Text Available This study investigates the effects of the range of a battery electric vehicle (EV by using questionnaire data. The concern about battery depletion changes according to charging station deployment. Firstly, the methodology for deriving the probabilistic distribution of the daily travel distance is developed, which enables us to analyze people’s tolerance of the risk of battery depletion. Secondly, the desired range of an EV is modeled. This model considers the effect of changing charging station deployment and can analyze the variation in the desired range. Then, the intention of a household to purchase an EV is analyzed by incorporating range-related variables. The results show that people can live with a risk of battery depletion of around 2% to 5%. The deployment of charging stations at large retail facilities and/or workplace parking spaces reduces the desired range of an EV. Finally, the answers to the questionnaire show that the probability of battery depletion on a driving day has little effect on the intention to purchase an EV. Instead, people tend to evaluate the range by itself or directly compare it with their desired range.

  17. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  18. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  19. Optical fiber sensor for electric field and electric charge using low-coherence, Fabry-Perot interferometry.

    Science.gov (United States)

    Priest, T S; Scelsi, G B; Woolsey, G A

    1997-07-01

    An optical fiber sensor for electric field and electric charge, based on the deflection of a small cantilever, has been developed. When the sensor head is placed in an electric field, induced charging produces deflection of the cantilever, which is measured using low-coherence, Fabry-Perot interferometry. The sensor has been used to measure the electric field in the vicinity of a Van de Graaff generator, in the range 135-650 V/cm. The measured deflections are in good agreement with the predictions of a simple model equating the electrostatic and mechanical forces acting on the cantilever.

  20. Oscillatory coalescence of droplets in an alternating electric field

    Science.gov (United States)

    Choi, Suhwan; Saveliev, Alexei V.

    2017-06-01

    Partial coalescence of microdroplets is of interest for a number of microfluidic applications where a controlled fluid transfer from one droplet to another is required for mixing, dispensing, and metering of chemical and biological fluids. We report a phenomenon of oscillatory coalescence of water droplets situated in an alternating electric field. The oscillatory coalescence exists in a range of electric capillary numbers and fluid conductivities and proceeds through a finite number of cycles. Each cycle includes attractive and repulsion stages and results in a partial fluid transfer through a liquid bridge formed between droplets during the repulsion stage. We propose an energy model to describe the phenomenon and define its limit of existence.

  1. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms...... require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly...... exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  2. Hydrogel Actuation by Electric Field Driven Effects

    Science.gov (United States)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  3. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  4. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering...... and capture of low energy electrons by molecular films. In this review it is described how this discovery was made and the properties of materials that display the spontelectric effect, so-called ‘spontelectrics’, are set out. A discussion is included of properties that differentiate spontelectrics from...

  5. Electric field control of Skyrmions in magnetic nanodisks

    Science.gov (United States)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  6. Increasing Electric Field Strength of Polymer Capacitors (Preprint)

    Science.gov (United States)

    2017-10-31

    AFRL-RX-WP-JA-2017-0496 INCREASING ELECTRIC FIELD STRENGTH OF POLYMER CAPACITORS (PREPRINT) Fahima Ouchen KBRWyle James Grote...COVERED (From - To) 31 October 2017 Interim 24 January 2014 – 30 September 2017 4. TITLE AND SUBTITLE INCREASING ELECTRIC FIELD STRENGTH OF...ABSTRACT (Maximum 200 words) Increased electric field breakdown in several polymer-based capacitor dielectrics, including biaxially oriented

  7. Importance of electric fields from ionized nanoparticles for radiation therapy

    Science.gov (United States)

    Shmatov, M. L.

    2017-05-01

    A model is presented in which electric fields from ionized particles in a biological tissue enhance the biological effect of ionizing radiation. The model is based on the data on enhancing the gamma radiation effect on biological cells by static electric fields and on estimates of the typical intensities of electric fields from ionized nanoparticles in a biological tissue.

  8. Electric field effects on droplet burning

    Science.gov (United States)

    Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe

    2015-11-01

    The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.

  9. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  10. 40 CFR 86.1770-99 - All-Electric Range Test requirements.

    Science.gov (United States)

    2010-07-01

    ... Vehicles and Light-Duty Trucks § 86.1770-99 All-Electric Range Test requirements. (a) ZEVs and Type A and Type B hybrid electric vehicles shall be subject to the All-Electric Range Test specified below for the purpose of determining the energy efficiency and operating range of a ZEV or of a hybrid electric vehicle...

  11. Influence of relative humidity on analyzing electric field exposure using ELF electric field measurements.

    Science.gov (United States)

    Korpinen, Leena H; Kuisti, Harri A; Tarao, Hiroo; Elovaara, Jarmo A

    2013-07-01

    The objective of the study was to investigate the influence of humidity on analyzing electric field exposure using extremely low frequency (ELF) electric field measurements. The study included 322 measurements in a climate room. We used two commercial three-axis meters, EFA-3 and EFA-300, and employed two measurement techniques in the climate room where we varied the temperature from 15 to 25 °C, the relative humidity from 55% to 95%, and the electric field from 1 to 25 kV/m. We calculated Pearson correlations between humidity and percentage errors for all data and for data at different levels of humidity. When the relative humidity was below 70%, the results obtained by the different measurement methods in terms of percentage errors were of the same order of magnitude for the considered temperatures and field strength, but the results were less reliable when the relative humidity was higher than 80%. In the future, it is important to take humidity into account when electric field measurement results will be compared to the values given in different exposure guidelines. Copyright © 2013 Wiley Periodicals, Inc.

  12. Electric field engineering using quantum-size-effect-tuned heterojunctions

    KAUST Repository

    Adinolfi, V.

    2013-07-03

    A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.

  13. Electric breakdown potentials under longitudinal magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio V, L.F.; Soberon V P, F. [Pontificia Universidad Catolica del Peru, Lima (Peru). Seccion Fisica. Grupo de Investigacion en Plasmas. E-mail: plasma@pucp.edu.pe

    1998-07-01

    A study of a DC ionization potential with longitudinal magnetic fields in a parallel plate configuration is presented. A variation of the well known Paschen curve is studied for two different separation distances (2.0 and 6.7 cm) between the electrodes; more than orders of magnitude in pressures (1.4 x 10{sup -2} to 40 mbar); and magnetic fields up to 250 Gauss. The differences between the curves with and without B field are explained by the fluid model only by means of perpendicular mobility ({mu}) and diffusion (D) coefficients, cyclotron frequencies ({omega}{sub c}), Larmor radii (r-L) and collision frequencies v{sup =}{pi}{sup -1} with neutrals, independently of whether they produce ionization or not. Some inversions or crossings of the electric behavior between the right and left branch of different modified Paschen curves are due to the increasing collision frequencies and anomalous coefficients producing lower ionization potentials than the established ones in the absence of magnetic fields. (author)

  14. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  15. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  16. Saturation of the Electric Field Transmitted to the Magnetosphere

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  17. Calculation of electric fields induced by body and head motion in high-field MRI

    Science.gov (United States)

    Liu, Feng; Zhao, Huawei; Crozier, Stuart

    2003-03-01

    In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength.

  18. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  19. Electrical and thermoelectric transport by variable range hopping in reduced graphene oxide

    Science.gov (United States)

    Park, Min; Hong, Sung Ju; Kim, Kyung Ho; Kang, Hojin; Lee, Minwoo; Jeong, Dae Hong; Park, Yung Woo; Kim, Byung Hoon

    2017-10-01

    This study investigated the transport properties of single-layer reduced graphene oxides (rGOs). The rGOs were prepared by the bubble deposition method followed by thermal reduction. The crossover of the transport mechanism from Efros-Shklovskii (ES) variable range hopping (VRH) between the localized states to Mott-VRH was observed near 70 K using the temperature-dependent conductance. The ES-VRH conduction below 70 K is apparent in the electric field dependence of the field-driven hopping transport in the high-electric field regime. We also figure out that the thermoelectric power is consistent with the 2D Mott VRH above 70 K. We argue that the VRH conduction results from the topological disorders of rGO as confirmed by Raman spectroscopy. This infers that the average distance between defects is approximately 2.0 nm.

  20. Variation of surface electric field during geomagnetic disturbed ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 8. Variation of surface electric field ... Diurnal variation of surface electric field measured at Maitri shows a similar variation with worldwide thunderstorm activity, whereas the departure of the field is observed during disturbed periods. This part of the field ...

  1. Liquid methanol under a static electric field

    Science.gov (United States)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  2. Electric field generated by axial longitudinal vibration modes of microtubule.

    Science.gov (United States)

    Cifra, M; Pokorný, J; Havelka, D; Kucera, O

    2010-05-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. We calculated electric field generated by axial longitudinal vibration modes of microtubules for random, and coherent excitation. In case of coherent excitation of vibrations, the electric field intensity is highest at the end of microtubule. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of microtubule polymerization via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play an important role in biological self-organization. 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Electrical and thermal tuning of quality factor and free spectral range of optical resonance of nematic liquid crystal microdroplets

    Science.gov (United States)

    Sofi, Junaid Ahmad; Mohiddon, M. A.; Dutta, N.; Dhara, Surajit

    2017-08-01

    We experimentally study the effect of temperature and electric field on the quality (Q ) factor and free spectral range (FSR) of whispering-gallery-mode optical resonance of dye-doped nematic liquid crystal microdroplets. Both the Q factor and the FSR are highly sensitive to the temperature and electric field and are tunable. The Q factor decreases, whereas the FSR increases substantially, with increasing temperature and electric field. The variation of the Q factor and FSR is understood based on the change in the effective refractive index and the dynamic size of the microdroplets.

  4. Which Factors Can Protect Against Range Stress in Everyday Usage of Battery Electric Vehicles? Toward Enhancing Sustainability of Electric Mobility Systems.

    Science.gov (United States)

    Franke, Thomas; Rauh, Nadine; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2016-02-01

    The objective of the present research was to advance understanding of factors that can protect against range anxiety, specifically range stress in everyday usage of battery electric vehicles (BEVs). Range anxiety is a major barrier to the broad adoption of sustainable electric mobility systems. To develop strategies aimed at overcoming range anxiety, a clear understanding of this phenomenon and influencing factors is needed. We examined range anxiety in the form of everyday range stress (ERS) in a field study setting. Seventy-two customers leased a BEV for 3 months. The field study was specifically designed to enable examination of factors that can contribute to lower ERS. In particular, study design and sample recruitment were targeted at generating vehicle usage profiles that would lead to relatively frequent experience of situations requiring active management of range resources and thereby potentially leading to experienced range stress. Less frequent encounter with critical range situations, higher practical experience, subjective range competence, tolerance of low range, and experienced trustworthiness of the range estimation system were related to lower ERS. Moreover, range stress was found to be related to range satisfaction and BEV acceptance. The results underline the importance of the human factors perspective to overcome range anxiety and enhance sustainability of electric mobility systems. Trustworthiness should be employed as a key benchmark variable in the design of range estimation systems, and assistance systems should target increasing drivers' adaptive capacity (i.e., resilience) to cope with critical range situations. © 2015, Human Factors and Ergonomics Society.

  5. Review Of Fiber-Optic Electric-Field Sensors

    Science.gov (United States)

    De Paula, Ramon P.; Jarzynski, Jacek

    1989-01-01

    Tutorial paper reviews state of art in fiber-optic sensors of alternating electric fields. Because such sensors are made entirely of dielectric materials, they are relatively transparent to incident electric fields; they do not distort fields significantly. Paper presents equations that express relationships among stress, strain, and electric field in piezoactive plastic and equations for phase shift in terms of photoelastic coefficients and strains in optical fiber.

  6. home range and reproduction of rodents in maynugus irrigation field

    African Journals Online (AJOL)

    ADMIN

    observations were outside irrigated fields. Population dynamics of small mammals in irrigated fields is unique due to the continuous supply of food. Hence this investigation was carried out in agricultural fields at Maynugus, in northern Ethiopia, to understand the home range and reproductive patterns of rodents, and to.

  7. Electrical Resistivity of an Elasmobranch's Ampullary Jelly in Varying Electric and Magnetic Fields

    Science.gov (United States)

    Brown, Brandon; Hughes, Mary E.

    2001-03-01

    The ampullae of Lorenzini are believed to function as the electroreceptive organs in elasmobranch fishes. Though the entire excised organs have been the subject of electrical transport measurements, the jelly that fills the ampullae -- composed primarily of glycoproteins with proteins and dissolved salts -- has received less scrutiny. The specific electromagnetic properties of the jelly contribute to electroreception, and we hope to supply useful parameters to modeling efforts via precise electrical characterization. We report preliminary resistivity measurements from ampullary jelly removed, post mortem, from an adult triaenodon obesus (white-tip reef shark). We present data over a broad range of applied electrical currents. We also present data of the resistivity as a function of applied magnetic field strength.

  8. Calculating the inductive electric field in the terrestrial magnetosphere

    Science.gov (United States)

    Ilie, Raluca; Daldorff, Lars K. S.; Liemohn, Michael W.; Toth, Gabor; Chan, Anthony A.

    2017-05-01

    This study presents a theoretical approach to calculate the inductive electric field, and it is further applied to global MHD simulations of the magnetosphere. The contribution of the inductive component to the total electric field is found by decomposing the motional electric field into a superposition of an irrotational and a solenoidal vector and assuming that the time-varying magnetic field vanishes on the boundary. We find that a localized change in the magnetic field generates an inductive electric field whose effect extends over all space, meaning that the effect of the inductive electric field is global even if the changes in the magnetic field are localized. Application of this formalism to disturbed times provides strong evidence that during periods of increased activity the electric field induced by the localized change in magnetic field can be comparable to (or larger than) the potential electric fields in certain regions. This induced field exhibits significant spatial and temporal variations, which means that particles that drift into different regions of space are being exposed to different means of acceleration. These results suggest that the inductive electric field could have a substantial contribution to particle energization in the near-Earth region even though the changes in the magnetic fields occur at distances of several tens of Earth radii. This finding is particularly important for ring current modeling which in many cases excludes inductive contributions to the total particle drift.

  9. The plasma wave and quasi-static electric field instrument /PWI/ for dynamics Explorer-A

    Science.gov (United States)

    Shawhan, S. D.; Gurnett, D. A.; Odem, D. L.; Helliwell, R. A.; Park, C. G.

    1981-01-01

    It is explained that the Plasma Wave Instrument (PWI) on Dynamics Explorer-A measures both plasma wave phenomena and quasi-static electric fields. The quasi-static electric fields are measured parallel to the spin axis of the spacecraft in a range of 2 mV/m to 2 V/m and perpendicular to the spin axis 0.5 mV/m to 2 V/m at 16 samples/s. The ac electric field sensors include a 200-m tip-to-tip long wire antenna and a 0.6-m short electric antenna, both of which are perpendicular to the spin axis, and a 9-m tip-to-tip tubular antenna parallel to the spin axis. AC electric wave fields are measured over a frequency range of 1 Hz to 2 MHz and over an amplitude range of 0.03 microvolt/m to 100 mV/m.

  10. The influence of electric field and confinement on cell motility.

    Science.gov (United States)

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  11. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  12. Neuronal spike initiation modulated by extracellular electric fields.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Yi

    Full Text Available Based on a reduced two-compartment model, the dynamical and biophysical mechanism underlying the spike initiation of the neuron to extracellular electric fields is investigated in this paper. With stability and phase plane analysis, we first investigate in detail the dynamical properties of neuronal spike initiation induced by geometric parameter and internal coupling conductance. The geometric parameter is the ratio between soma area and total membrane area, which describes the proportion of area occupied by somatic chamber. It is found that varying it could qualitatively alter the bifurcation structures of equilibrium as well as neuronal phase portraits, which remain unchanged when varying internal coupling conductance. By analyzing the activating properties of somatic membrane currents at subthreshold potentials, we explore the relevant biophysical basis of spike initiation dynamics induced by these two parameters. It is observed that increasing geometric parameter could greatly decrease the intensity of the internal current flowing from soma to dendrite, which switches spike initiation dynamics from Hopf bifurcation to SNIC bifurcation; increasing internal coupling conductance could lead to the increase of this outward internal current, whereas the increasing range is so small that it could not qualitatively alter the spike initiation dynamics. These results highlight that neuronal geometric parameter is a crucial factor in determining the spike initiation dynamics to electric fields. The finding is useful to interpret the functional significance of neuronal biophysical properties in their encoding dynamics, which could contribute to uncovering how neuron encodes electric field signals.

  13. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    The electric field enhancement inside a nanotube irradiated by intense ultrashort laser pulse ( ≪ 1 ps) is calculated. The hollowness of the nanotubes determines the field enhancement and the electron density at which such structures exhibit resonance. The electric field in a nanotube plasma is shown to be resonantly ...

  14. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  15. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  16. Humidity-induced charge leakage and field attenuation in electric field microsensors

    National Research Council Canada - National Science Library

    Zhang, Haiyan; Fang, Dongming; Yang, Pengfei; Peng, Chunrong; Wen, Xiaolong; Xia, Shanhong

    2012-01-01

    The steady-state zero output of static electric field measuring systems often fluctuates, which is caused mainly by the finite leakage resistance of the water film on the surface of the electric field...

  17. Natural factor impact on atmospheric electric field variations in Kamchatka

    Science.gov (United States)

    Firstov, Pavel; Cherneva, Nina; Akbashev, Rinat

    2017-10-01

    The paper briefly describes a site network which registers atmospheric electric field strength (AEF V'). The scheme of natural processes affecting the formation of the local atmospheric electric field is considered. AEF V' disturbances on ground flux meters are described. They were recorded when two eruptive clouds from Shiveluch volcano eruption were passing by. Key words: atmospheric electric field, potential gradient, electrostatic flux meter, volcanic clouds

  18. Natural factor impact on atmospheric electric field variations in Kamchatka

    Directory of Open Access Journals (Sweden)

    Firstov Pavel

    2017-01-01

    Full Text Available The paper briefly describes a site network which registers atmospheric electric field strength (AEF V’. The scheme of natural processes affecting the formation of the local atmospheric electric field is considered. AEF V’ disturbances on ground flux meters are described. They were recorded when two eruptive clouds from Shiveluch volcano eruption were passing by. Key words: atmospheric electric field, potential gradient, electrostatic flux meter, volcanic clouds

  19. Reversible electric-field-eriven magnetic domain-wall motion

    OpenAIRE

    Franke, Kévin; Van de Wiele, Ben; Shirahata, Yasuhiro; Hämäläinen, Sampo; Taniyama, Tomoyasu; van Dijken, Sebastiaan

    2015-01-01

    Control of magnetic domain-wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain-wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure el...

  20. Electric field driven switching of individual magnetic skyrmions

    OpenAIRE

    Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-01-01

    Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices, however, the switching between inversion symmetric states, e.g. magnetization up and down as used in current technology, is not straightforward, since the electric field does not break time-reversal symmetry. Here, we demonstrate that local electric fields can be used to reversibly switch between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequival...

  1. Flame stabilization in an electrical field at lowered pressures

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, N.A.; Ksenofontov, S.I.; Tyameykin, V.Ya.

    1975-01-01

    Results are presented of an experimental investigation of the effect of a longitudinal electric field on flame stabilization at low pressures. It is shown that in the absence of the effect of an ion wind at low pressures and the presence of an increase in the relative potential gradient, the collapse rates of a flame in an electrical field do not increase, which indicates that the electrical field has little influence on the kinetics of the chemical reactions.

  2. Effect of strong electric field on the conformational integrity of insulin.

    Science.gov (United States)

    Wang, Xianwei; Li, Yongxiu; He, Xiao; Chen, Shude; Zhang, John Z H

    2014-10-02

    A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.

  3. Electric field effects on electronic characteristics of arsenene nanoribbons

    Science.gov (United States)

    Luo, Yanwei; Li, Yuxiao; Wang, Fei; Guo, Peng; Jia, Yu

    2017-10-01

    By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.

  4. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  5. Imaging using long range dipolar field effects Nuclear magnetic resonance

    CERN Document Server

    Gutteridge, S

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. Thes...

  6. Electro-worming: The Behaviors of Caenorhabditis (C.) elegans in DC and AC Electric Fields

    CERN Document Server

    Chuang, Han-Sheng; Dabbish, Nooreen; Bau, Haim

    2010-01-01

    The video showcases how C. elegans worms respond to DC and AC electrical stimulations. Gabel et al (2007) demonstrated that in the presence of DC and low frequency AC fields, worms of stage L2 and larger propel themselves towards the cathode. Rezai et al (2010) have demonstrated that this phenomenon, dubbed electrotaxis, can be used to control the motion of worms. In the video, we reproduce Rezai's experimental results. Furthermore, we show, for the first time, that worms can be trapped with high frequency, nonuniform electric fields. We studied the effect of the electric field on the nematode as a function of field intensity and frequency and identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) avoid blue light, indicating that at least some of the nervous system functions remain unimpaired in the presence of the electric field. DEP is useful to dynamically confine nematodes for observati...

  7. Equilibrium drop surface profiles in electric fields

    Science.gov (United States)

    Mugele, F.; Buehrle, J.

    2007-09-01

    Electrowetting is becoming a more and more frequently used tool to manipulate liquids in various microfluidic applications. On the scale of the entire drop, the effect of electrowetting is to reduce the apparent contact angle of partially wetting conductive liquids upon application of an external voltage. Microscopically, however, strong electric fields in the vicinity of the three phase contact line give rise to local deformations of the drop surface. We determined the equilibrium surface profile using a combined numerical, analytical, and experimental approach. We find that the local contact angle in electrowetting is equal to Young's angle independent of the applied voltage. Only on the scale of the thickness of the insulator and beyond does the surface slope assume a value consistent with the voltage-dependent apparent contact angle. This behaviour is verified experimentally by determining equilibrium surface profiles for insulators of various thicknesses between 10 and 250 µm. Numerically and analytically, we find that the local surface curvature diverges algebraically upon approaching the contact line with an exponent -1<μ<0. We discuss the relevance of the local surface properties for dynamic aspects of the contact line motion.

  8. Electric field driven torque in ATP synthase.

    Directory of Open Access Journals (Sweden)

    John H Miller

    Full Text Available FO-ATP synthase (FO is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1 overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  9. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    OpenAIRE

    Jenn-Jiang Hwang; Jia-Sheng Hu; Chih-Hong Lin

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the ba...

  10. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  11. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  12. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  13. Electric field control of magnetic properties and magneto-transport in composite multiferroics.

    Science.gov (United States)

    Udalov, O G; Chtchelkatchev, N M; Beloborodov, I S

    2015-05-13

    We study magnetic state and electron transport properties of composite multiferroic system consisting of a granular ferromagnetic thin film placed above the ferroelectric substrate. Ferroelectricity and magnetism in this case are coupled by the long-range Coulomb interaction. We show that magnetic state and magneto-transport strongly depend on temperature, external electric field and electric polarization of the substrate. Ferromagnetic order exists at finite temperature range around ferroelectric Curie point. Outside the region the film is in the superparamagnetic state. We demonstrate that magnetic phase transition can be driven by an electric field and magneto-resistance effect has two maxima associated with two magnetic phase transitions appearing in the vicinity of the ferroelectric phase transition. We show that positions of these maxima can be shifted by the external electric field and that the magnitude of the magneto-resistance effect depends on the mutual orientation of external electric field and polarization of the substrate.

  14. Perovskite nickelates as electric-field sensors in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2017-12-18

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures

  15. Perovskite nickelates as electric-field sensors in salt water

    Science.gov (United States)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  16. Environment Assessment for Grand Bay Range, Bemiss Field, and Moody Explosive Ordnance Disposal Range Operations

    Science.gov (United States)

    2013-06-01

    longleaf pine (Pinus palustris), and slash pine (Moody AFB 2007a). The Grand Bay Range impact area and Bemiss Field are managed to provide a Bahia ...Bemiss Field or immigration has occurred in this area. No confirmed sightings of indigo snakes have occurred since 1996, despite intensive monitoring

  17. Electric-field-driven switching of individual magnetic skyrmions.

    Science.gov (United States)

    Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    2017-02-01

    Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.

  18. Electric-field-driven switching of individual magnetic skyrmions

    Science.gov (United States)

    Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    2017-02-01

    Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.

  19. Reception and learning of electric fields in bees.

    Science.gov (United States)

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf

    2013-05-22

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.

  20. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-12-01

    Full Text Available When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.

  1. Shielding of an oscillating electric field by a hollow conductor

    Science.gov (United States)

    Aguirregabiria, J. M.; Hernández, A.; Rivas, M.

    1996-08-01

    The electric and magnetic fields for a hollow conducting sphere located in a slowly varying uniform electric field background are computed to first-order in a power series expansion in the field frequency. These results are used to define an equivalent RC circuit and to test the circuit approach which is often used in electromagnetic compatibility (EMC). The case of an infinite cylindrical conducting tube under the influence of the same external field is also analyzed.

  2. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  3. Lunar electric fields, surface potential and associated plasma sheaths

    Science.gov (United States)

    Freeman, J. W.; Ibrahim, M.

    1975-01-01

    A review is given of studies of the electric-field environment of the moon. Surface electric potentials are reported for the dayside and terminator regions, electron and ion densities in the plasma sheath adjacent to each surface-potential regime are evaluated, and the corresponding Debye lengths are estimated. The electric fields, which are approximated by the surface potential over the Debye length, are shown to be at least three orders of magnitude higher than the pervasive solar-wind electric field and to be confined to within a few tens of meters of the lunar surface.

  4. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  5. High field electrical behaviour in lithium–phospho–vanadate glass ...

    Indian Academy of Sciences (India)

    High field electrical behaviour; lithium–phospho–vanadate glass system. 1. Introduction. High field electrical switching behaviour is one of the fascinating properties in oxide glasses, since it exhibits reversible threshold and irreversible memory states. Several investigations have been initiated to study switching in glasses ...

  6. Electric Field Measurement in Rod-Discontinued Plane Air Gaps ...

    African Journals Online (AJOL)

    For this purpose, we used a probe with distributed capacity, under negative lightning applied impulse voltage. The probe is incorporated on the same level of plane surface.The interface locally reinforces the electric field. The electric field increases at the interface may lead to a discharge between the high voltage rode and ...

  7. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    The electric field enhancement inside a nanotube irradiated by intense ultrashort laser pulse (≪1 ps) is ... section and the electric field in the vicinity of Mie resonance at 3nc in spherical clusters. Many experimental .... becomes metal-like or plasma-like because of the generation of free electrons [41,42]. The subsequent ...

  8. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  9. Electric and Magnetic Fields | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Electromagnetic fields (EMF) are a combination of electric and magnetic fields of energy that surround any electrical device when it is plugged in and turned on. Scientific experiments have not clearly shown whether or not exposure to EMF increases cancer risk. Scientists continue to study the issue.

  10. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  11. Deformations in Crystals Induced by External Electric Fields

    NARCIS (Netherlands)

    van Reeuwijk, S.J.

    2002-01-01

    This thesis presents the experimental study of electric-field-induced deformations in single crystals. It is well known that an external electric field applied to a piezoelectric crystals deforms the shape of the crystal on a macroscopic level. On the microscopic scale this deformation implies a

  12. Linear electric field effects in magnetic anisotropy and ferromagnetic resonance

    Science.gov (United States)

    Rado, George T.

    1980-01-01

    The concept, theory and measurement of electric-field-dependent macroscopic magnetic anisotropy energies are reviewed with examples involving magnetite and lithium ferrite. Also discussed are applications to the elucidation of magnetization processes, the determination of magnetic symmetry and the shifting of a ferromagnetic resonance with an applied electric field.

  13. Convolutional virtual electric field for image segmentation using active contours.

    Directory of Open Access Journals (Sweden)

    Yuanquan Wang

    Full Text Available Gradient vector flow (GVF is an effective external force for active contours; however, it suffers from heavy computation load. The virtual electric field (VEF model, which can be implemented in real time using fast Fourier transform (FFT, has been proposed later as a remedy for the GVF model. In this work, we present an extension of the VEF model, which is referred to as CONvolutional Virtual Electric Field, CONVEF for short. This proposed CONVEF model takes the VEF model as a convolution operation and employs a modified distance in the convolution kernel. The CONVEF model is also closely related to the vector field convolution (VFC model. Compared with the GVF, VEF and VFC models, the CONVEF model possesses not only some desirable properties of these models, such as enlarged capture range, u-shape concavity convergence, subject contour convergence and initialization insensitivity, but also some other interesting properties such as G-shape concavity convergence, neighboring objects separation, and noise suppression and simultaneously weak edge preserving. Meanwhile, the CONVEF model can also be implemented in real-time by using FFT. Experimental results illustrate these advantages of the CONVEF model on both synthetic and natural images.

  14. Nanoscale geometric electric field enhancement in organic photovoltaics.

    Science.gov (United States)

    Pegg, Lara-Jane; Hatton, Ross A

    2012-06-26

    Generic design rules for electrode-organic semiconductor contacts that transcend specific materials are urgently required to guide the development of new electrodes and provide a framework for engineering this important class of interface. Herein a novel nanostructured window electrode is utilized in conjunction with three-dimensional electrostatic modeling to elucidate the importance of geometric electric field enhancement effects at the electrode interfaces in organic photovoltaics. The results of this study show that nanoscale protrusions at the electrode surfaces in organic photovoltaics dramatically improve the efficiency of photogenerated charge carrier extraction to the external circuit and that the origin of this improvement is the local amplification of the electrostatic field in the vicinity of said protrusions. This wholly geometric approach to engineering electrodes at the nanoscale is materials generic and can be employed to enhance the efficiency of charge carrier injection or extraction in a wide range of organic electronic devices.

  15. Magnetic phase diagram of graphene nanorings in an electric field.

    Science.gov (United States)

    Zhou, Aiping; Sheng, Weidong

    2015-10-14

    Magnetic properties of graphene nanorings are investigated in the presence of an electric field. Within the formalism of Hubbard model, the graphene nanorings of various geometric configurations are found to exhibit rich phase diagram. For a nanoring system which has degenerate states at the Fermi level, the system is shown to undergo an abrupt phase transition from the antiferromagnetic to a nonmagnetic state in an electric field applied cross its zigzag edges. However, the nanoring is found to always stay in the antiferromagnetic state when the electric field is applied cross its armchair edges. For the other nanoring system with a finite single-particle gap, the magnetic moments of its antiferromagnetic ground state is seen to decrease gradually to zero with the electric field applied cross the zigzag edges. When the electric field is applied cross the armchair edges, the nanoring is shown to undergo several magnetic phase transitions before settling itself in a nonmagnetic ordering.

  16. Reversible Electric-Field-Driven Magnetic Domain-Wall Motion

    Directory of Open Access Journals (Sweden)

    Kévin J. A. Franke

    2015-02-01

    Full Text Available Control of magnetic domain-wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain-wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field-driven magnetic domain-wall motion is demonstrated for epitaxial Fe films on BaTiO_{3} with in-plane and out-of-plane polarized domains. In this system, magnetic domain-wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric-field strength.

  17. Electric field numerical simulation of disc type electrostatic spinning spinneret

    Science.gov (United States)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY

    2018-01-01

    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  18. Technique for Reducing the Effects of Nonlinear Terms on Electric Field Measurements of Electric Field Sensor Arrays on Aircraft Platforms

    National Research Council Canada - National Science Library

    D M Mach

    2015-01-01

      A generalized technique has been developed that reduces the contributions of nonlinear effects that occur during measurements of natural electric fields around thunderstorms by an array of field mills on an aircraft...

  19. Survival of metastable hydrogen atoms passing through crossed electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Robert, J.; Miniatura, C.; Perales, F.; Vassilev, G.; Reinhardt, J.; Baudon, J. (Paris-13 Univ., 93 - Villetaneuse (FR)); Bocvarski, V. (Belgrade Univ. (YU) Inst. Za Fiziku); Lorent, V. (Louvain Univ., Louvain-La-Neuve (BE). Inst. de Physique)

    1989-08-01

    In the present experiment, the motional electric field responsible for the quenching (and polarization) of metastable hydrogen atoms passing through a magnetic field, is compensated, for a prescribed atomic velocity, by a static electric field. The resulting continuous velocity selection has been tested over a wide range of velocities ((5/40) km/s). The relative velocity dispersion ranges from 5% at 40 km/s, to 22% at 5 km/s. As is confirmed by a calculation, the resolution is mainly determined by the quality of the matching of the two field profiles.

  20. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  1. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  2. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  3. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  4. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  5. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  6. Synchronization of neuron population subject to steady DC electric field induced by magnetic stimulation.

    Science.gov (United States)

    Yu, Kai; Wang, Jiang; Deng, Bin; Wei, Xile

    2013-06-01

    Electric fields, which are ubiquitous in the context of neurons, are induced either by external electromagnetic fields or by endogenous electric activities. Clinical evidences point out that magnetic stimulation can induce an electric field that modulates rhythmic activity of special brain tissue, which are associated with most brain functions, including normal and pathological physiological mechanisms. Recently, the studies about the relationship between clinical treatment for psychiatric disorders and magnetic stimulation have been investigated extensively. However, further development of these techniques is limited due to the lack of understanding of the underlying mechanisms supporting the interaction between the electric field induced by magnetic stimulus and brain tissue. In this paper, the effects of steady DC electric field induced by magnetic stimulation on the coherence of an interneuronal network are investigated. Different behaviors have been observed in the network with different topologies (i.e., random and small-world network, modular network). It is found that the coherence displays a peak or a plateau when the induced electric field varies between the parameter range we defined. The coherence of the neuronal systems depends extensively on the network structure and parameters. All these parameters play a key role in determining the range for the induced electric field to synchronize network activities. The presented results could have important implications for the scientific theoretical studies regarding the effects of magnetic stimulation on human brain.

  7. Technical Note: Computation of Electric Field Strength Necessary for ...

    African Journals Online (AJOL)

    The effects of this field on the objects lying within its vicinity depend on its intensity. In this paper, the electric field of 33kV overhead line is considered. The aim of the paper is to determine the maximum electric field strength or potential gradient, E of the 33kV overhead line at the surface of the ground above an underground ...

  8. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  9. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  10. Nucleation of superconductivity under rapid cycling of an electric field

    Science.gov (United States)

    Bandyopadhyay, Malay

    2008-10-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (Hc2) as well as the surface critical nucleation field (Hc3) of superconductivity as compared to the case of absent electric field (ɛ0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of Hc3 is 1.6592 times larger than that of Hc2.

  11. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Failure mode and effect analysis (FMEA) is an important step in the reliability assessment process of electric components. It provides knowledge of the physics of failure of a component that has been subjected to a given stress profile. This knowledge enables improvement of the component robustness...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  12. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A power supply concept capable of operation over 25:1 and 64:1 impedance ranges at full power has been successfully demonstrated in our Phase I effort at...

  13. Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.

    Science.gov (United States)

    Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges

    2013-01-01

    Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public

  14. Water response to intense electric fields: A molecular dynamics study.

    Science.gov (United States)

    Marracino, Paolo; Liberti, Micaela; d'Inzeo, Guglielmo; Apollonio, Francesca

    2015-07-01

    This paper investigated polarization properties of water molecules in close proximity to an ionic charge in the presence of external electric fields by using an approach based on simulations at the atomic level. We chose sodium and chloride ions in water as examples of dilute ionic solutions and used molecular dynamics simulations to systematically investigate the influence of an external static electric field on structural, dipolar, and polarization properties of water near charged ions. Results showed that a threshold electric field higher than 10(8) V/m is needed to affect water polarization and increase mean dipole moment of water molecules close to the ion. A similar threshold holds for water permittivity profiles, although a field 10× higher is needed to ensure that water permittivity is almost constant independently of the position close to the ion. Electric fields of such intensities can greatly enhance polarizability of water in hydration shells around ions. © 2015 Wiley Periodicals, Inc.

  15. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  16. Electric-field induced strain in biological tissues.

    Science.gov (United States)

    Doganay, Ozkan; Xu, Yuan

    2010-11-01

    This paper reports a new effect whereby a physiological-level direct-current electrical field (at 1.4 V/cm) can induce time-varying mechanical strain in various types of biological tissues and gel phantoms. This effect cannot be explained by the piezoelectric effect, tissue contraction, temperature changes, and electrorestriction. The induced strain in tissues was analyzed by processing ultrasound echo signals. The sample expanded perpendicularly to the applied electric field. The expansion rate depended on the history of the applied electric field. The speed of sound changed little compared with the expansion. The new effect might be related to electrokinetic effects.

  17. Electric Mars: A Large Trans-Terminator Electric Potential Drop on Closed Magnetic Field Lines Above Utopia Planitia

    Science.gov (United States)

    Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-Andre

    2017-01-01

    Abstract Parallel electric fields and their associated electric potential structures play a crucial role inionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN(MAVEN) Mars Scout, we present the discovery and measurement of a substantial (Phi) Mars 7.7 +/-0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (Phi) Mars of 10.9 +/- 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.

  18. Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics.

    Science.gov (United States)

    Jia, Chenglong; Wang, Fenglong; Jiang, Changjun; Berakdar, Jamal; Xue, Desheng

    2015-06-09

    Steering magnetism by electric fields upon interfacing ferromagnetic (FM) and ferroelectric (FE) materials to achieve an emergent multiferroic response bears a great potential for nano-scale devices with novel functionalities. FM/FE heterostructures allow, for instance, the electrical manipulation of magnetic anisotropy via interfacial magnetoelectric (ME) couplings. A charge-mediated ME effect is believed to be generally weak and active in only a few angstroms. Here we present an experimental evidence uncovering a new magnon-driven, strong ME effect acting on the nanometer range. For Co92Zr8 (20 nm) film deposited on ferroelectric PMN-PT we show via ferromagnetic resonance (FMR) that this type of linear ME allows for electrical control of simultaneously the magnetization precession and its damping, both of which are key elements for magnetic switching and spintronics. The experiments unravel further an electric-field-induced negative magnetic permeability effect.

  19. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  20. Formation of Organized Protein Thin Films with External Electric Field.

    Science.gov (United States)

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  1. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon

    Science.gov (United States)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong

    2015-04-01

    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  2. DC Electric Fields and Associated Plasma Drifts Observed with the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Rowland, D.

    2009-01-01

    Initial DC electric field observations and associated plasma drifts are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We present statistical averages of the vector fields for the first year of operations that include both the zonal and radial components of the resulting E x B plasma flows at low latitudes. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. The DC electric field detector reveals zonal and radial electric fields that undergo strong diurnal variations, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. There is considerable variation in the large scale DC electric field data, in both the daytime and nighttime cases, with enhanced structures typically observed at night. In general, the measured zonal DC electric field amplitudes include excursions that extend within the 0.4 - 2 m V/m range, corresponding to E x B drifts of the order of 30-150 m/s. The average vertical or radial electric fields may exceed the zonal fields in amplitude by a factor of 1.5 to 2. Although the data compare well, in a general sense, with previous satellite observations and statistical patterns of vertical ion drifts, the E x B drifts we report from C/NOFS rarely show a pronounced pre-reversal enhancement after sunset. We attribute this to a combination of extreme solar minimum conditions and the fact that the C/NOFS orbit of 401 by 867 km carries the probes essentially above the lower altitude regions where the wind-driven dynamo might be expected to create enhanced upwards drifts in the early evening. Evidence for wavenumber 4 tidal effects and other longitudinal signatures have been detected and will be presented. We also discuss off-equatorial electric fields and their relation to the ambient plasma density.

  3. Electric field analysis using Schwarz-Christoffel mapping

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tao; Green, Nicolas G; Morgan, Hywel [Nanoscale Systems Integration Group, School of Electronics and Computer Science, University of Southampton, SO17 1BJ (United Kingdom)], E-mail: ts04r@ecs.soton.ac.uk, E-mail: hm@ecs.soton.ac.uk

    2008-12-01

    Electrical techniques based on AC electrokinetics and impedance spectroscopy are widely used to manipulate and characterize biological particles in the microfluidic systems. This paper presents the application of the Schwarz-Christoffel mapping method to analytically solve the electric field distributions in different microfluidic systems, which are composed of different microelectrode patterns and boundary conditions. The derived results can be further utilized to analyze the movement and electrical response of the biological particles in each system.

  4. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  5. The Magnetic Fields of Electric Motors and their EMC

    Directory of Open Access Journals (Sweden)

    Irena Kovacova

    2008-01-01

    Full Text Available This paper deals with the computer analysis of the electromagnetic compatibility (EMC problems focused on the area of electrical machines, which can also disclose the concerning startling facts. A problem of interference between electric motor and surrounding space caused by the electromagnetic field radiation is discussed too.

  6. A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices.

    Science.gov (United States)

    Incerti, Paola V; Ching, Teresa Y C; Cowan, Robert

    2013-03-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices.

  7. Effect of electric field non-uniformity on droplets coalescence.

    Science.gov (United States)

    Luo, Shirui; Schiffbauer, Jarrod; Luo, Tengfei

    2016-11-21

    Electric field assisted coalescence is one of the most efficient methods for water-in-oil emulsion separation. In this paper, we experimentally study water droplet evolution in an oil phase under different electric field configurations. We determine that non-uniform fields can enhance the performance of electrocoalescence compared to uniform fields. The analysis indicates that the enhanced coalescence is due to the combined effects of dipole-dipole interaction between droplets and dielectrophoresis between individual droplets and the applied non-uniform field. The present study shows that a non-uniform electric field and the induced dielectrophoretic effect can accelerate the coalescence and phase separation of micro-emulsions. These results may provide useful guidance in designing an optimum electrode configuration for efficient electrocoalescence.

  8. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  9. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal...

  10. Direct sampling of electric-field vacuum fluctuations

    National Research Council Canada - National Science Library

    Riek, C; Seletskiy, D V; Moskalenko, A S; Schmidt, J F; Krauspe, P; Eckart, S; Eggert, S; Burkard, G; Leitenstorfer, A

    2015-01-01

    .... The ground-state electric-field variance is inversely proportional to the four-dimensional space-time volume, which we sampled electro-optically with tightly focused laser pulses lasting a few femtoseconds...

  11. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  12. Electric field effects in hyperexcitable neural tissue: A review

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.M

    2003-07-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm{sup -1} in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm{sup -1}. These results suggest that the threshold for this effect is clearly smaller than 1mV mm{sup -1}. The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease (n=4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than {approx}1mmV mm{sup -.} (author)

  13. Initial electric field changes of lightning flashes in two thunderstorms

    Science.gov (United States)

    Chapman, Ryan; Marshall, Thomas; Karunarathne, Sumedhe; Stolzenburg, Maribeth

    2017-04-01

    The beginning of all 75 lightning flashes in two small thunderstorms was investigated using an array of electric field change (E-change) meters and an array of VHF sensors with the goal of determining if an initial E-change (IEC) preceded the initial breakdown (IB) pulses in each flash. IECs were found at the beginning of all 62 flashes in Storm 1 and all 13 flashes in Storm 2. Hence, it is concluded that an IEC is a fundamental part of most or all lightning initiations and that an IEC is needed prior to the first IB pulse in a flash. IEC durations averaged 0.23 ms for cloud-to-ground (CG) flashes (range 0.08-0.54 ms) and averaged 2.7 ms for normal intracloud (IC) flashes (range 0.04-9.8 ms). IEC point dipole moments averaged 26 C m for CG flashes (range 4-86 C m) and averaged -140 C m for normal IC flashes (range -8 to -650 C m). IEC current moments averaged 120 kA m for CG flashes (range 41-410 kA m) and averaged -91 kA m for normal IC flashes (range -2 to -630 kA m). E-change data support the suggestion that weak narrow bipolar event type events initiate some lightning flashes, but 41 of the 75 flashes had no detectable initiating pulse > 0.04 V m-1 range normalized to 100 km. Two flashes had two IECs; the second IEC of each flash initiated a new lightning channel that propagated in a new direction and at a higher altitude than the original development after the first IEC.

  14. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data....

  15. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    densified in 1 h at 800◦C, by the application of a d.c. electrical field. Under a constant d.c. electrical field, the cur- rent density through the specimen of 3YSZ rose rapidly when the temperature increased to a certain value. In the sintering process, the current density was restricted when the sharp increase occurred. By limiting ...

  16. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  17. Modelling of induced electric fields based on incompletely known magnetic fields

    Science.gov (United States)

    Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro

    2017-08-01

    Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.

  18. Large amplitude middle atmospheric electric fields - Fact or fiction?

    Science.gov (United States)

    Kelley, M. C.; Siefring, C. L.; Pfaff, R. F., Jr.

    1983-01-01

    An analysis of the measurements of large apparent dc fields in the middle atmosphere, previously gathered by two sounding rockets, shows these fields to be spurious. In the case of one of the rockets, the evidence presented suggests that the measured electric fields, aligned with the rocket's velocity vector, may be due to a negatively charged wake. A comparison of measurements made by various electric field booms also suggests that the insulating boom coatings in one experiment may have affected the results obtained. It is recommended that insulating coatings should not be used at mesospheric altitudes, because of the detrimental effects that frictional charging may have.

  19. Spin transverse force on spin current in an electric field.

    Science.gov (United States)

    Shen, Shun-Qing

    2005-10-28

    As a relativistic quantum mechanical effect, it is shown that the electron field exerts a transverse force on an electron spin 1/2 only if the electron is moving. The spin force, analogue to the Lorentz for an electron charge in a magnetic field, is perpendicular to the electric field and the spin current whose spin polarization is projected along the electric field. This spin-dependent force can be used to understand the Zitterbewegung of the electron wave packet with spin-orbit coupling and is relevant to the generation of the charge Hall effect driven by the spin current in semiconductors.

  20. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  1. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  2. Capturing range of a near-field optical trap

    Science.gov (United States)

    Zaman, Mohammad Asif; Padhy, Punnag; Hesselink, Lambertus

    2017-10-01

    A study on the spatial characteristics of a near-field optical trap is presented. For analysis, a plasmonic near-field trap consisting of a C-shaped engraving is considered. Numerical simulations are performed to calculate the optical force exerted on a spherical nanoparticle by the trap. A Brownian dynamics model is used to simulate a large number of independent trajectories of a nanoparticle submerged in the optical force field. Statistical analysis is performed on the trajectory data to calculate the trapping probability at different points in space. The points with equal trapping probabilities are enclosed in a surface to visualize the influence domain of the trap. The metric capturing range is defined and calculated from the spatial extent of such surfaces. The possible applications of the defined metric are discussed. Some design examples from the literature are also analyzed and are found to be consistent with the proposed analysis.

  3. [Study on dewatering of activated sludge under applied electric field].

    Science.gov (United States)

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  4. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  5. Static electric field enhancement in nanoscale structures

    Science.gov (United States)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  6. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.

    2012-01-01

    Background Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. Objective To quantify the electric field focality and depth of penetration of various TMS coils. Methods The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d1/2, and focality by the tangential spread, S1/2, defined as the half-value volume (V1/2) divided by the half-value depth, S1/2 = V1/2/d1/2. Results The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth–focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d1/2 are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0–3.5 cm and 0.9–3.4 cm, respectively. However, figure-8 field coils are more focal, having S1/2 as low as 5 cm2 compared to 34 cm2 for circular field coils. Conclusions For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d1/2 and S1/2. PMID:22483681

  7. Ponderomotive Force in the Presence of Electric Fields

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  8. The mechanical transduction of physiological strength electric fields.

    Science.gov (United States)

    Hart, Francis X

    2008-09-01

    In this article it is proposed that electric fields of physiological strength (approximately 100 V/m) are transduced by the mechanical torque they exert on glycoproteins. The resulting mechanical signal is then transmitted to the cytoskeleton and propagated throughout the cell interior. This mechanical coupling is analyzed for transmembrane glycoproteins, such as integrins and the glycocalyx, and for glycoproteins in the extracellular matrix of cartilage. The applied torque is opposed by viscous fluid drag and restoring forces exerted by adjacent molecules in the membrane or cartilage. The resulting system represents a damped, driven harmonic oscillator. The amplitude of oscillation is constant at low frequencies, but falls off rapidly in the range 1-1000 Hz. The transition frequency depends on parameters such as the viscosity of the surrounding fluid and the restoring force exerted by the surrounding structure. The amplitude increases as the fourth power of the length of the transmembrane glycoproteins and as the square of the applied field. This process may operate in concert with other transduction mechanisms, such as the opening of voltage-gated channels and electrodiffusion/osmosis for DC fields. Copyright 2008 Wiley-Liss, Inc.

  9. Electric Field-Responsive Mesoporous Suspensions: A Review

    Directory of Open Access Journals (Sweden)

    Seung Hyuk Kwon

    2015-12-01

    Full Text Available This paper briefly reviews the fabrication and electrorheological (ER characteristics of mesoporous materials and their nanocomposites with conducting polymers under an applied electric field when dispersed in an insulating liquid. Smart fluids of electrically-polarizable particles exhibit a reversible and tunable phase transition from a liquid-like to solid-like state in response to an external electric field of various strengths, and have potential applications in a variety of active control systems. The ER properties of these mesoporous suspensions are explained further according to their dielectric spectra in terms of the flow curve, dynamic moduli, and yield stress.

  10. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  11. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  12. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    A., Blackmore, P. F., Schoenbach, K. H. & Beebe , S. J. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields...duration electric pulses in mammalian cells. Biochim Biophys Acta 1800, 1210–9 (2010). 31. Ren, W. & Beebe , S. J. An apoptosis targeted stimulus with

  13. Long-range interactions in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  14. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  15. Separation of water-ethanol solutions with carbon nanotubes and electric fields.

    Science.gov (United States)

    Winarto; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2016-12-07

    Bioethanol has been used as an alternative energy source for transportation vehicles to reduce the use of fossil fuels. The separation of water-ethanol solutions from fermentation processes is still an important issue in the production of anhydrous ethanol. Using molecular dynamics simulations, we investigate the effect of axial electric fields on the separation of water-ethanol solutions with carbon nanotubes (CNTs). In the absence of an electric field, CNT-ethanol van der Waals interactions allow ethanol to fill the CNTs in preference to water, i.e., a separation effect for ethanol. However, as the CNT diameter increases, this ethanol separation effect significantly decreases owing to a decrease in the strength of the van der Waals interactions. In contrast, under an electric field, the energy of the electrostatic interactions within the water molecule structure induces water molecules to fill the CNTs in preference to ethanol, i.e., a separation effect for water. More importantly, the electrostatic interactions are dependent on the water molecule structure in the CNT instead of the CNT diameter. As a result, the separation effect observed under an electric field does not diminish over a wide CNT diameter range. Moreover, CNTs and electric fields can be used to separate methanol-ethanol solutions too. Under an electric field, methanol preferentially fills CNTs over ethanol in a wide CNT diameter range.

  16. Peculiarities of high electric field conduction in p-type diamond

    Science.gov (United States)

    Mortet, V.; Trémouilles, D.; Bulíř, J.; Hubík, P.; Heller, L.; Bedel-Pereira, E.; Soltani, A.

    2016-04-01

    The electrical properties of chemical vapour deposited p-type epitaxial diamond layers are studied in high electric field conditions. The quasi-static current-voltage characteristics have been measured using transmission-line pulse method with 100 ns pulses. Reproducible impurity impact ionization avalanche breakdown occurs at a critical electrical field in the range of 100-200 kV cm-1 depending on the acceptor concentration and temperature, leading to complete ionisation of neutral impurities. The current-voltage characteristics exhibit an S-shape with the bi-stable conduction characteristic of impurity impact ionisation.

  17. Theoretical analysis of AC electric field transmission into biological tissue through frozen saline for electroporation.

    Science.gov (United States)

    Xiao, Chunyan; Rubinsky, Boris

    2014-12-01

    An analytical model was used to explore the feasibility of sinusoidal electric field transmission across a frozen saline layer into biological tissue. The study is relevant to electroporation and permeabilization of the cell membrane by electric fields. The concept was analyzed for frequencies in the range of conventional electroporation frequencies and electric field intensity. Theoretical analysis for a variety of tissues show that the transmission of electroporation type electric fields through a layer of frozen saline into tissue is feasible and the behavior of this composite system depends on tissue type, frozen domain temperature, and frequency. Freezing could become a valuable method for adherence of electroporation electrodes to moving tissue surfaces, such as the heart in the treatment of atrial fibrillation or blood vessels for the treatment of restenosis. © 2014 Wiley Periodicals, Inc.

  18. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  19. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  20. Reversible electric-field control of magnetization at oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.

    2014-06-23

    Electric field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. In this work, we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a (non superconducting) cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, the devices can be electrically toggled between two magnetization states (and corresponding spin-dependent resistance states in magnetic tunnel junctions) in the absence of a magnetic field.

  1. Reversible electric-field control of magnetization at oxide interfaces.

    Science.gov (United States)

    Cuellar, F A; Liu, Y H; Salafranca, J; Nemes, N; Iborra, E; Sanchez-Santolino, G; Varela, M; Garcia Hernandez, M; Freeland, J W; Zhernenkov, M; Fitzsimmons, M R; Okamoto, S; Pennycook, S J; Bibes, M; Barthélémy, A; te Velthuis, S G E; Sefrioui, Z; Leon, C; Santamaria, J

    2014-06-23

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  2. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    Science.gov (United States)

    Yeates, Anthony R.

    2017-02-01

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  3. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  4. Electric field control of emergent electrodynamics in quantum spin ice

    Science.gov (United States)

    Lantagne-Hurtubise, Étienne; Bhattacharjee, Subhro; Moessner, R.

    2017-09-01

    We study the coupling between conventional (Maxwell) and emergent electrodynamics in quantum spin ice, a 3+1-dimensional U (1 ) quantum spin liquid. We find that a uniform electric field can be used to tune the properties of both the ground state and excitations of the spin liquid. In particular, it induces emergent birefringence, rendering the speed of the emergent light anisotropic and polarization-dependent. A sufficiently strong electric field triggers a quantum phase transition into new U (1 ) quantum spin liquid phases, which trap emergent electric π fluxes. The flux patterns of these new phases depend on the direction of the electric field. Strikingly, some of the canonical pinch points in the spin structure factor, characteristic of classical spin ice, emerge near the phase transition, while they are absent in the quantum spin liquid phases. Estimating the electric field strength required, we find that this transition is potentially accessible experimentally. Finally, we propose a minimal mechanism by which an oscillating electric field can generate emergent radiation inside a quantum spin ice material with non-Kramers spin doublets.

  5. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  6. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  7. High school students' representations and understandings of electric fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-12-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields postinstruction as indicated by students' performance on textbook-style questions. It has, however, inadequately captured student ideas expressed in other situations yet informative to educational research. In this study, we explore students' ideas of electric fields preinstruction as shown by students' representations produced in open-ended activities. 92 participant students completed a worksheet that involved drawing comic strips about electric charges as characters of a cartoon series. Three students who had spontaneously produced arrow diagrams were interviewed individually after class. We identified nine ideas related to electric fields that these three students spontaneously leveraged in the comic strip activity. In this paper, we describe in detail each idea and its situated context. As most research in the literature has understood students as having relatively fixed conceptions and mostly identified divergences in those conceptions from canonical targets, this study shows students' reasoning to be more variable in particular moments, and that variability includes common sense resources that can be productive for learning about electric fields.

  8. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  9. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  10. Elastic constant of Dendrobium protoplasts in AC electric fields

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available This work reports elongation of Dendrobium protoplasts in an ac electric field between two cylindrical electrodes. A protoplast firstly was translated towards an electrode by dielectrophoretic force in 17 kV.m-1 field strength at 1 MHz, and secondly it was elongated due to an interaction between an induced electric dipole (μ and the electric field (E. Protoplast elongation was observed by varying both the field strength at 30, 45, 60, and 85 kV.m-1 and field frequency at 0.5, 1, 5, and 10 MHz. For a given field frequency and field strength, a parameter a/b (major/minor axis was measured as the protoplast elongation.Two-step elongation and restoration phases were observed. The former was completed within 2 minutes of field exposure, and the latter was completed within 15 seconds regardless of the field exposure time between 3 and 20 minutes. The evidence of a complete restoration indicated that the elasticity of the protoplast membrane obeyed Hooke’s law. This study also found that elastic constant k of the membrane varied non-linearly with the field strength. It was found to be from 0.04 to 0.08 mN.m-1, dependent on the field frequency.

  11. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  12. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  13. Electric Field Driven Self-Assembly of Colloidal Rods

    Science.gov (United States)

    Juarez, Jaime; Chaudhary, Kundan; Chen, Qian; Granick, Steve; Lewis, Jennifer

    2012-02-01

    The ability to assemble anisotropic colloidal building blocks into ordered configurations is of both scientific and technological importance. We are studying how electric field-induced interactions guide the self-assembly of these blocks into well aligned microstructures. Specifically, we present observations of the assembly of colloidal silica rods (L/D ˜ 4) within planar electrode cells as a function of different electric field parameters. Results from video microscopy and image analysis demonstrate that aligned microstructures form due to the competition between equilibrium interactions of induced dipoles and non-equilibrium processes (i.e., electro-osmosis). Under the appropriate electric field conditions (˜ kHZ AC fields), aligned colloidal rod fluids form over large areas on the electrode surface. The superposition of a DC electric field to this aligned colloidal rod fluid initiates their condensation into a vertically oriented crystalline phase. Ongoing work is now focused on exploring how temporal changes to electric fields influence colloidal rod dynamics and, hence, the assembly kinetics of aligned colloidal monolayers.

  14. Analysis of the temporal electric fields in lossy dielectric media

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1991-01-01

    The time-dependent electric fields associated with lossy dielectric media are examined. The analysis illustrates that, with respect to the basic time constant, these lossy media can take a considerable time to attain a steady-state condition. Time-dependent field enhancement factors are considered...

  15. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    patience

    2014-01-01

    Jan 1, 2014 ... Key words: Cicer arietinum L. seeds, electric-field, water-uptake model, ferroelectric effect. INTRODUCTION. Exposure of seeds to the magnetic field has been reported as safe and affordable treatment for enhanced germination and growth of plants by many workers. (Aladjadjiyan, 2002; Fischer et al., 2004 ...

  16. Impact of electric field on Hofmeister effects in aggregation of ...

    Indian Academy of Sciences (India)

    static field strength in the diffuse layer. The magnitude of the electric field strength in the diffuse layer are influ- enced by valence and concentration of the adsorbed counter-ions, ions with equal valence and concentration which would therefore exhibit identical capacity in pre- cipitating charged colloidal minerals; this is in ...

  17. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  18. Enhancement of the Performance of a Transfer Field Electric ...

    African Journals Online (AJOL)

    Enhancement of the Performance of a Transfer Field Electric Machine Operating in the Asynchronous Mode. ... With the enhanced output power achievable by capacitance injection, the transfer field machine can compare favorably with an equivalent induction motor except that the synchronous speed is inherently limited to ...

  19. Active stabilization of error field penetration via control field and bifurcation of its stable frequency range

    Science.gov (United States)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2017-11-01

    An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.

  20. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    weak THz and near infrared pulses as probes. Firstly, an intense THz pulse is used to study THz-induced impact ionization (IMI) dynamics in silicon. Local field enhancement by metallic dipole antenna arrays has been used to generate strong electric fields of several MV/cm in the hot spots near...... uniquely. Finally it is demonstrated for the first time that SiC can be tailored to have extremely fast THz-induced nonlinear behavior in moderate THz electric fields by addition of appropriate dopants. A 4H-SiC sample with high concentrations of nitrogen and boron dopants shows a nonlinear THz...

  1. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  2. Tunable terahertz optical properties of graphene in dc electric fields

    Science.gov (United States)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  3. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  4. Electric field simulations and electric dipole investigations at the KATRIN main spectrometer

    OpenAIRE

    Hilk, Daniel Franz Rudolf

    2017-01-01

    This thesis deals with the development of high-accuracy electric field simulation methods and experimental background investigations with the electric dipole method for the KATRIN experiment. Both fields of work are of crucial importance to obtain the targeted background level of 10 mcps for the investigation of the absolute neutrino mass scale with a sensitivity of 200 meV/c² at 90% C.L.

  5. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  6. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  7. Effects of orthogonal rotating electric fields on electrospinning process

    Science.gov (United States)

    Lauricella, M.; Cipolletta, F.; Pontrelli, G.; Pisignano, D.; Succi, S.

    2017-08-01

    Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through intensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibers. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.

  8. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity.

    Science.gov (United States)

    Choi, Bup Kyung; Oh, Tong In; Sajib, Saurav Zk; Kim, Jin Woong; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-04-01

    To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments.

  9. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  10. Electric-field control of magnetic moment in Pd

    Science.gov (United States)

    Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi

    2015-01-01

    Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306

  11. Coherent anti-Stokes Raman scattering under electric field stimulation

    Science.gov (United States)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  12. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Science.gov (United States)

    Hwang, Jenn-Jiang; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771

  13. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jenn-Jiang Hwang

    2015-01-01

    Full Text Available The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC. This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  14. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    Science.gov (United States)

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  15. Electric field alignment of nanofibrillated cellulose (NFC) in silicone oil: impact on electrical properties.

    Science.gov (United States)

    Kadimi, Amal; Benhamou, Karima; Ounaies, Zoubeida; Magnin, Albert; Dufresne, Alain; Kaddami, Hamid; Raihane, Mustapha

    2014-06-25

    This work aims to study how the magnitude, frequency, and duration of an AC electric field affect the orientation of two kinds of nanofibrillated cellulose (NFC) dispersed in silicone oil that differ by their surface charge density and aspect ratio. In both cases, the electric field alignment occurs in two steps: first, the NFC makes a gyratory motion oriented by the electric field; second, NFC interacts with itself to form chains parallel to the electric field lines. It was also observed that NFC chains become thicker and longer when the duration of application of the electric field is increased. In-situ dielectric properties have shown that the dielectric constant of the medium increases in comparison to the randomly dispersed NFC (when no electric field is applied). The optimal parameters of alignment were found to be 5000 Vpp/mm and 10 kHz for a duration of 20 min for both kinds of NFC. The highest increase in dielectric constant was achieved with NFC oxidized for 5 min (NFC-O-5 min) at the optimum conditions mentioned above.

  16. Modeling of electric field distribution in tissues during electroporation.

    Science.gov (United States)

    Corovic, Selma; Lackovic, Igor; Sustaric, Primoz; Sustar, Tomaz; Rodic, Tomaz; Miklavcic, Damijan

    2013-02-21

    Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of

  17. Electrically configurable graphene field-effect transistors with a graded-potential gate.

    Science.gov (United States)

    Wang, Xiaowei; Jiang, Xingbin; Wang, Ting; Shi, Jia; Liu, Mingju; Zeng, Qibin; Cheng, Zhihai; Qiu, Xiaohui

    2015-05-13

    A device architecture for electrically configurable graphene field-effect transistor (GFET) using a graded-potential gate is present. The gating scheme enables a linearly varying electric field that modulates the electronic structure of graphene and causes a continuous shift of the Dirac points along the channel of GFET. This spatially varying electrostatic modulation produces a pseudobandgap observed as a suppressed conductance of graphene within a controllable energy range. By tuning the electrical gradient of the gate, a GFET device is reversibly transformed between ambipolar and n- and p-type unipolar characteristics. We further demonstrate an electrically programmable complementary inverter, showing the extensibility of the proposed architecture in constructing logic devices based on graphene and other Dirac materials. The electrical configurable GFET might be explored for novel functionalities in smart electronics.

  18. Gene delivery in conjunction with gold nanoparticle and tumor treating electric field

    Science.gov (United States)

    Tiwari, Pawan K.; Soo Lee, Yeon

    2013-08-01

    The advances in electrotherapy to treat the diseased biological cell instigate its extension in gene therapy through the delivery of gene into the nucleus. The objective of this study is to investigate the application of moderate intensity alternating electric field, also known as tumor treating electric field on a carrier system consisting of a charged gene complex conjugated to the surface of a gold nanoparticle. The gene delivery mechanism relies on the magnitude and direction of the induced electric field inside the cytoplasm in presence of carrier system. The induced electric field strength is significant in breaking the gene complex-gold nanoparticle bonding, and exerting an electric force pushing the charged gene into the nucleus. The electric force orientation is dependent on the aspect ratio (AR) of the gold nanoparticle and a relationship between them is studied via Maxwell two-dimensional (2D) finite element simulation analyzer. The development of charge density on the surface of carrier system and the required electric field strength to break the bonding are investigated utilizing the Gouy-Chapman-Grahame-Stern (GCGS) theoretical model. A carrier system having the aspect ratio of the gold nanoparticle in the range 1 < AR ≤ 5 and AR = 1 are substantial delivering cationic and anionic genes into the nucleus, respectively.

  19. Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture

    OpenAIRE

    Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.

    2009-01-01

    Magnetic field variations are detected before rupture in the form of `spikes' of alternating sign. The distinction of these `spikes' from random noise is of major practical importance, since it is easier to conduct magnetic field measurements than electric field ones. Applying detrended fluctuation analysis (DFA), these `spikes' look to be random at short time-lags. On the other hand, long range correlations prevail at time-lags larger than the average time interval between consecutive `spike...

  20. Magnetic field-aligned electric potentials in nonideal plasma flows

    Science.gov (United States)

    Schindler, K.; Hesse, M.; Birn, J.

    1991-01-01

    The electric field component parallel to the magnetic field arising from plasma flows which violate the frozen-in field condition of ideal magnetohydrodynamics is discussed. The quantity of interest is the potential U = integral E parallel ds where the integral is extended along field lines. It is shown that U can be directly related to magnetic field properties, expressed by Euler potentials, even when time-dependence is included. These results are applicable to earth's magnetosphere, to solar flares, to aligned-rotator models of compact objects, and to galactic rotation. On the basis of order-of-magnitude estimates, these results support the view that parallel electric fields associated with nonideal plasma flows might play an important role in cosmic particle acceleration.

  1. 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis.

    Science.gov (United States)

    Neves, Gesilda F; Silva, José R F; Moraes, Renato B; Fernandes, Thiago S; Tenorio, Bruno M; Nogueira, Romildo A

    2014-06-01

    The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.

  2. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  3. A Systematic Review of Electric-Acoustic Stimulation: Device Fitting Ranges, Outcomes, and Clinical Fitting Practices

    OpenAIRE

    Incerti, Paola V.; Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devic...

  4. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  5. Magnets in an electric field: hidden forces and momentum conservation

    Science.gov (United States)

    Redfern, Francis

    2017-06-01

    In 1967 Shockley and James addressed the situation of a magnet in an electric field. The magnet is at rest and contains electromagnetic momentum, but there was no obvious mechanical momentum to balance this for momentum conservation. They concluded that some sort of mechanical momentum, which they called "hidden momentum", was contained in the magnet and ascribed this momentum to relativistic effects, a contention that was apparently confirmed by Coleman and Van Vleck. Since then, a magnetic dipole in an electric field has been considered to have this new form of momentum, but this view ignores the electromagnetic forces that arise when an electric field is applied to a magnet or a magnet is formed in an electric field. The electromagnetic forces result in the magnet-charge system gaining electromagnetic momentum and an equal and opposite amount of mechanical momentum so that it is moving in its original rest frame. This moving reference frame is erroneously taken to be the rest frame in studies that purport to show hidden momentum. Here I examine the analysis of Shockley and James and of Coleman and Van Vleck and consider a model of a magnetic dipole formed in a uniform electric field. These calculations show no hidden momentum.

  6. Weak electric fields detectability in a noisy neural network.

    Science.gov (United States)

    Zhao, Jia; Deng, Bin; Qin, Yingmei; Men, Cong; Wang, Jiang; Wei, Xile; Sun, Jianbing

    2017-02-01

    We investigate the detectability of weak electric field in a noisy neural network based on Izhikevich neuron model systematically. The neural network is composed of excitatory and inhibitory neurons with similar ratio as that in the mammalian neocortex, and the axonal conduction delays between neurons are also considered. It is found that the noise intensity can modulate the detectability of weak electric field. Stochastic resonance (SR) phenomenon induced by white noise is observed when the weak electric field is added to the network. It is interesting that SR almost disappeared when the connections between neurons are cancelled, suggesting the amplification effects of the neural coupling on the synchronization of neuronal spiking. Furthermore, the network parameters, such as the connection probability, the synaptic coupling strength, the scale of neuron population and the neuron heterogeneity, can also affect the detectability of the weak electric field. Finally, the model sensitivity is studied in detail, and results show that the neural network model has an optimal region for the detectability of weak electric field signal.

  7. Probing electric field control of magnetism using ferromagnetic resonance.

    Science.gov (United States)

    Zhou, Ziyao; Trassin, Morgan; Gao, Ya; Gao, Yuan; Qiu, Diana; Ashraf, Khalid; Nan, Tianxiang; Yang, Xi; Bowden, S R; Pierce, D T; Stiles, M D; Unguris, J; Liu, Ming; Howe, Brandon M; Brown, Gail J; Salahuddin, S; Ramesh, R; Sun, Nian X

    2015-01-29

    Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180° magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a ~180° switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180° magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices.

  8. Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields"

    Directory of Open Access Journals (Sweden)

    E. D. Schmitter

    2010-02-01

    Full Text Available Recent observations endorse earlier measurements of time varying electric and magnetic fields generated by tornadoes and dust devils. These signals may provide a means for early warning but together with a proper modeling approach can also provide insight into geometry and dynamics of the vortices. Our model calculations show the existence of pressure resonances characterized as acoustic duct modes with well defined frequencies. These resonances not only generate infrasound but also modulate the charge density and the velocity field and in this way lead to electric and magnetic field oscillations in the 0.5–20-Hz range that can be monitored from a distance of several kilometers.

  9. Determining of the electric field strength using high frequency broadband measurements

    OpenAIRE

    Vulević, Branislav D.

    2017-01-01

    Exposure of humans to electromagnetic fields of high frequency (above 100 kHz), i.e. radiofrequency radiation from the modern wireless systems, today inevitable is. The purpose of this paper is to highlight the importance of broadband measurements of the electric field of high frequency in order to fast and reliable assessment of human exposure. A practical method of ‘in situ’ measurement the electric field intensity which is related to the frequency range of 3 MHz to 18 GHz, is provided.

  10. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.

    Science.gov (United States)

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-02-07

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials.

  11. Analysis of radial electric field in LHD towards improved confinement

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, M.; Ida, K.; Sanuki, H.; Itoh, K.; Narihara, K.; Tanaka, K.; Kawahata, K.; Ohyabu, N.

    2001-05-01

    The radial electric field (E{sub r}) properties in LHD have been investigated to indicate the guidance towards improved confinement with possible E{sub r} transition and bifurcation. The ambipolar E{sub r} is obtained from the neoclassical flux based on the analytical formulae. This approach is appropriate to clarify ambipolar E{sub r} properties in a wide range of temperature and density in a more transparent way. The comparison between calculated E{sub r} and experimentally measured one has shown the qualitatively good agreement such as the threshold density for the transition from ion root to electron root. The calculations also well reproduce the experimentally observed tendency that the electron root is possible by increasing temperatures even for higher density and the ion root is enhanced for higher density. Based on the usefulness of this approach to analyze E{sub r} in LHD, calculations in a wide range have been performed to clarify the parameter region of interest where multiple solutions of E{sub r} can exist. This is the region where E{sub r} transition and bifurcation may be realized as already experimentally confirmed in CHS. The systematic calculations give a comprehensive understandings of experimentally observed E{sub r} properties, which indicates an optimum path towards improved confinement. (author)

  12. Electric-field control of spin-orbit torque in a magnetically doped topological insulator.

    Science.gov (United States)

    Fan, Yabin; Kou, Xufeng; Upadhyaya, Pramey; Shao, Qiming; Pan, Lei; Lang, Murong; Che, Xiaoyu; Tang, Jianshi; Montazeri, Mohammad; Murata, Koichi; Chang, Li-Te; Akyol, Mustafa; Yu, Guoqiang; Nie, Tianxiao; Wong, Kin L; Liu, Jun; Wang, Yong; Tserkovnyak, Yaroslav; Wang, Kang L

    2016-04-01

    Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

  13. Electric-field control of spin-orbit torque in a magnetically doped topological insulator

    Science.gov (United States)

    Fan, Yabin; Kou, Xufeng; Upadhyaya, Pramey; Shao, Qiming; Pan, Lei; Lang, Murong; Che, Xiaoyu; Tang, Jianshi; Montazeri, Mohammad; Murata, Koichi; Chang, Li-Te; Akyol, Mustafa; Yu, Guoqiang; Nie, Tianxiao; Wong, Kin L.; Liu, Jun; Wang, Yong; Tserkovnyak, Yaroslav; Wang, Kang L.

    2016-04-01

    Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

  14. Temperature dependence of electric field tunable ferromagnetic resonance lineshape in multiferroic heterostructure

    Directory of Open Access Journals (Sweden)

    Fenglong Wang

    2016-11-01

    Full Text Available Herein, we experimentally investigate the effect of temperature on the electric field tunable ferromagnetic resonance (FMR in a ferroelectric/ferromagnetic heterostructure, and demonstrate the tuning of abnormal change in FMR using the polarization of the ferroelectric layer above 200 K. The FMR was found to be almost unchanged under different electric field strength at 100 K owing to frozen polarization, which causes extremely weak magnetoelectric coupling. More interestingly, negative effective linewidth was observed when an electric field greater than 10 kV/cm was applied above 220 K. The simultaneous electrical control of magnetization and its damping via FMR based on linear magnetoelectric coupling are directly relevant to use of composite multiferroics for a wide range of devices.

  15. Electric field enhanced hydrogen storage on polarizable materials substrates.

    Science.gov (United States)

    Zhou, J; Wang, Q; Sun, Q; Jena, P; Chen, X S

    2010-02-16

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H(2) molecules is adsorbed on a BN sheet, the binding energy per H(2) molecule increases from 0.03 eV/H(2) in the field-free case to 0.14 eV/H(2) in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H(2) can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H(2) molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.

  16. Rotary motion driven by a direct current electric field

    OpenAIRE

    Takinoue, Masahiro; Atsumi, Yu; Yoshikawa, Kenichi

    2010-01-01

    We report the rotary motion of an aqueous microdroplet in an oil phase under a stationary direct current electric field. A droplet exhibits rotary motion under a suitable geometrical arrangement of positive and negative electrodes. Rotary motion appears above a certain critical electric potential and its frequency increases with an increase in the potential. A simple theoretical model is proposed to describe the occurrence of this rotary motion, together with an argument for the future expans...

  17. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually...... reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode...... arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 m...

  18. Electric field induced relaxor behavior in anisotropically strained SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: y.dai@fz-juelich.de; Schubert, J.; Hollmann, E.; Wördenweber, R.

    2016-03-15

    Electric fields can modify the dielectric response of ferroelectric and especially relaxor ferroelectric material. Since strained ferroelectric fields represent ideal candidates for relaxor ferroelectrics, we analyzed the impact of ac and dc electric fields and field orientation on the dielectric properties of anisotropically strained epitaxial SrTiO{sub 3} films in detail. The tensile strain in the SrTiO{sub 3} films causes an increase of the ferroelectric-dielectric phase transition temperature to 258 K and 288 K for small and large tensile strains, respectively. The resulting films represent relaxor-type ferroelectrics with properties that strongly depend on the applied electric field. While a dc bias field significantly suppresses the permittivity in the paraelectric regime ranging from 180 K to 320 K, an ac field leads to an even more pronounced enhancement of the permittivity in an even larger temperature regime (e.g. reduction of up to 50% versus enhancement of up to 380% for 0.5 V/μm dc bias or ac field, respectively). Furthermore the ac field dependence is nonlinear and cannot be explained by the classical Rayleigh law. Frequency dependent measurements show among others that the electric field dependences are strongly related to the relaxor-type behavior. The different dielectric responses are explained in terms of the mobility and dynamic of regimes of uniform polarization, the polar nanoregions, that are generally assumed to be responsible for the relaxor behavior.

  19. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may......A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...

  20. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, V. G.

    2013-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  1. Method of using an electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  2. High School Students' Understandings and Representations of the Electric Field

    CERN Document Server

    Cao, Ying

    2014-01-01

    This study investigates the understandings and representations of the electric field expressed by Chinese high school students ages 15 to 16 who have not yet received high school-level physics instruction. The literature has reported students' ideas of the electric field post-instruction as indicated by their performance on textbook-style questionnaires. However, by relying on measures such as questionnaires, previous research has inadequately captured the thinking process that led students to answer questions in the ways that they did. The present study portrays the beginning of this process by closely examining students' understandings pre-instruction. The participants in this study were asked to engage in a lesson that included informal group tasks that involved playing a Web-based hockey game that replicated an electric field and drawing comic strips that used charges as characters. The lesson was videotaped, students' work was collected, and three students were interviewed afterward to ascertain more det...

  3. Polyelectrolyte gels in electric fields: a theoretical and experimental approach

    Science.gov (United States)

    Guelch, Rainer W.; Holdenried, Jens; Weible, Andrea; Wallmersperger, Thomas; Kroeplin, Bernd

    2000-06-01

    In order to gain more insight into basic principles of the nature of polymer hydrogels which are able to execute work by large deformations in electric fields, this study is mainly focused on those gels with a polyacrylamide backbone being very suitable for considerably varying their physicochemical properties simply by specific copolymerization. In the experimental part, the Donnan potential has been registered for the first time in PAAm/PAA gels in varying electric fields and different chemical environments with a new microelectrode technique. The mechanical properties of the gels have been characterized by measurements of swelling ratio, elastic modulus and being in dynamics under various stimuli. In the theoretical part, a model based both on this theory and the measured mechanical parameters, the bending dynamics of a polyelectrolyte gel in an electric field can be evaluated. Numerical simulations employing finite element discretization demonstrate the potential and the validity of the model. A promising correlation between theory and experiment could be shown.

  4. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  5. Catalytic Reaction Assisted by Plasma or Electric Field.

    Science.gov (United States)

    Ogo, Shuhei; Sekine, Yasushi

    2017-08-01

    Direct conversion of methane, other hydrocarbons, and alcohol at lower temperatures can be achieved using plasma or an electric field and catalysts. Non-equilibrium plasma enables activation of stable molecules including methane, carbon dioxide, and water, even at low temperatures, by virtue of high electron energy. Use of a hybrid system of plasma and catalyst provided high conversion and selectivity to products by virtue of adsorption on the catalyst. Imposing a DC electric field to the catalyst bed also promotes catalytic reactions, even at low temperatures. Two mechanisms for electro-catalytic reactions are proposed for the DC electric field imposition: reactant activation by surface protonics and production of active surface oxygen species on the catalyst. This review presents summaries of these novel processes. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation of photoluminescent n-type macroporous silicon: Effect of magnetic field and lateral electric potential

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.E. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Estevez, J.O. [Instituto de Física, B. Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, CP 62580 (Mexico); Basurto-Pensado, M.A. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico)

    2014-11-15

    Metal electrode-free electrochemical etching of low doped n-type silicon substrates, under the combined effect of magnetic and lateral electric field, is used to fabricate photoluminescent n-type porous silicon structures in dark conditions. A lateral gradient in terms of structural characteristics (i.e. thickness and pore dimensions) along the electric field direction is formed. Enhancement of electric and magnetic field resulted in the increase of pore density and a change in the shape of the macropore structure, from circular to square morphology. Broad photoluminescence (PL) emission from 500 to 800 nm, with a PL peak wavelength ranging from 571 to 642 nm, is attributed to the wide range of microporous features present on the porous silicon layer.

  7. Recent advances in liquid mixtures in electric fields

    Science.gov (United States)

    Katsir, Yael; Tsori, Yoav

    2017-02-01

    When immiscible liquids are subject to electric fields interfacial forces arise due to a difference in the permittivity or the conductance of the liquids, and these forces lead to shape change in droplets or to interfacial instabilities. In this topical review we discuss recent advances in the theory and experiments of liquids in electric fields with an emphasis on liquids which are initially miscible and demix under the influence of an external field. In purely dielectric liquids demixing occurs if the electrode geometry leads to sufficiently large field gradients. In polar liquids field gradients are prevalent due to screening by dissociated ions irrespective of the electrode geometry. We examine the conditions for these ‘electro prewetting’ transitions and highlight few possible systems where they might be important, such as in stabilization of colloids and in gating of pores in membranes.

  8. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  9. Non-uniform velocity of homogeneous DNA in a uniform electric field: consequence of electric-field-induced slow dissociation of highly stable DNA-counterion complexes.

    Science.gov (United States)

    Musheev, Michael U; Kanoatov, Mirzo; Krylov, Sergey N

    2013-05-29

    Identical molecules move with identical velocities when placed in a uniform electric field within a uniform electrolyte. Here we report that homogeneous DNA does not obey this fundamental rule. While most DNA moves with similar velocities, a fraction of DNA moves with velocities that vary within a multiple-fold range. The size of this irregular fraction increases several orders of magnitude when exogenous counterions are added to DNA. The irregular fraction decreases several orders of magnitude when DNA counterions are removed by dialysis against deionized water in the presence of a strong electric field (0.6 kV/cm). Dialysis without the field is ineffective in decreasing the size of irregular fraction. These results suggest that (i) DNA can form very stable complexes with counterions, (ii) these complexes can be dissociated by an electric field, and (iii) the observed non-uniform velocity of DNA is caused by electric-field-induced slow dissociation of these stable complexes. Our findings help to better understand a fundamental property of DNA: its interaction with counterions. In addition, these findings suggest a practical way of making electromigration of DNA more uniform: removal of strongly bound DNA counterions by electro-dialysis against deionized water.

  10. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  11. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...... relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling...

  12. Dependence of electric field on STM tip preparation

    DEFF Research Database (Denmark)

    Huang, D.H.; Grey, Francois; Aono, M.

    1998-01-01

    Voltage pulses applied between an STM tip and a surface can modify the surface on the nanometer scale due to electric-field-induced evaporation. However, at present, different groups have achieved surface modification with quite different bias conditions, and it is still difficult to obtain high...... reproducibility in such experiments. In this paper, we measure the tip displacement during a pulse at constant tunnelling current, and deduce that the electric field produced by the pulse depends in a systematic way on tip preparation, The results show how differences in tip preparation can be a major source...

  13. Electric-field mediated propulsion in binary colloidal suspensions

    Science.gov (United States)

    Colon-Melendez, Laura; Spellings, Matthew; Glotzer, Sharon C.; Solomon, Michael J.

    We observe propulsion of pairs of unequally sized dielectric colloidal spheres in a plane perpendicular to the applied AC electric field. The fully reversible and reconfigurable effect is observed at different applied voltages and frequencies. Using confocal microscopy and particle tracking methods, we study the degree of active motion as a function of the number of particles in the dynamic clusters. The observed phenomenon is consistent with previous observations of asymmetric dumbbell propulsion in electric fields attributed to asymmetric electrohydrodynamic flow (Ma et al., PNAS 2015 112 (20) 6307-6312).

  14. Parametric Resonance of Magnetization Excited by Electric Field.

    Science.gov (United States)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan A; Barsukov, Igor; Tiberkevich, Vasil; Xiao, John Q; Slavin, Andrei N; Krivorotov, Ilya N

    2017-01-11

    Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.

  15. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  16. Nanosecond KTN varifocal lens without electric field induced phase transition

    Science.gov (United States)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Yin, Stuart (Shizhuo); Hoffman, Robert C.

    2017-08-01

    This paper presents a nanosecond speed KTN varifocal lens. The tuning principle of varifocal lens is based on the high-speed refractive index modulation from the nanosecond speed tunable electric field. A response time on the order of nanoseconds was experimentally demonstrated, which is the fastest varifocal lens reported so far. The results confirmed that the tuning speed of the KTN varifocal lens could be significantly increased by avoiding the electric field induced phase transition. Such a nanosecond speed varifocal lens can be greatly beneficial for a variety of applications that demand high speed axial scanning, such as high-resolution 3D imaging and high-speed 3D printing.

  17. Dynamic electrophoresis of charged colloids in an oscillating electric field.

    Science.gov (United States)

    Shih, Chunyu; Yamamoto, Ryoichi

    2014-06-01

    The dynamics of charged colloids in an electrolyte solution is studied using direct numerical simulations via the smoothed profile method. We calculated the complex electrophoretic mobility μ(ω) of the charged colloids under an oscillating electric field of frequency ω. We show the existence of three dynamically distinct regimes, determined by the momentum diffusion and ionic diffusion time scales. The present results agree well with approximate theories based on the cell model in dilute suspensions; however, systematic deviations between the simulation results and theoretical predictions are observed as the volume fraction of colloids is increased, similar to the case of constant electric fields.

  18. Quantum spin Hall effect induced by electric field in silicene

    OpenAIRE

    An, Xing-Tao; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2012-01-01

    We investigate the transport properties in a zigzag silicene nanoribbon in the presence of an external electric field. The staggered sublattice potential and two kinds of Rashba spin-orbit couplings can be induced by the external electric field due to the buckled structure of the silicene. A bulk gap is opened by the staggered potential and gapless edge states appear in the gap by tuning the two kinds of Rashba spin-orbit couplings properly. Furthermore, the gapless edge states are spin-filte...

  19. On electric field magnitude on the cathode surface in the negative corona discharge

    Science.gov (United States)

    Petrov, A.; Savinov, S.; Pestovskii, N.; Korostylev, E.; Amirov, R.; Samoylov, I.; Barengolts, S.

    2013-09-01

    Negative corona discharge has been studied in air in the Trichel pulse mode in point-to-plane configuration on graphite cathodes. Electric field magnitude of the positive space charge in the active phase of a Trichel pulse has been estimated on the range of 107 V/cm. The discharge flame on the cathode surface is localized in the region with maximum electric field. The wandering of the discharge is self-organized in such way that the electric field magnitude caused by the positive space charge in the region of the discharge flame localization exceeds the field magnitude on the microasperities in some distance from this region. So the proposed estimate of electric field magnitude is based on the results of the topography analysis of the cathode surface and on the results of registration of the discharge wandering over the cathode surface. Microasperities formed due to redeposition of erosion products with field magnification coefficient 10-102 were found. Finally the occurrence of electric field with magnitude 108 V/cm argues in favor of electroexplosive mechanism of cathode erosion in the negative corona discharge. The work is made under support of RBRF grants 12-08-01223 and 12-08-33031 and under financial support of Ministry of Education and Science of Russian Federation.

  20. Effective field theory for long-range properties of bottomonium

    Science.gov (United States)

    Krein, Gastão

    2017-03-01

    In this communication we present selected results from a recent study [N. Brambilla, G. Krein, J. Tarrús Castellà and A. Vairo, Phys. Rev. D 93, 054002 (2016)] of long-range properties of bottomonium. An analytical expression for the chromopolarizability of 1S bottomonium states is derived within the framework of potential nonrelativistic QCD (pNRQCD). Next, after integrating out the ultrasoft scale associated with the binding energy of bottomonium, the QCD trace anomaly is used to obtain the two-pion production amplitude for the chromopolarizability operator and the result is matched to a chiral effective field theory having bottomonium states and pions as degrees of freedom. We present results for the leading chiral logarithm correction to the mass of the 1S bottomonium and the van der Waals potential between two bottomonium states.

  1. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-07-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field. Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  2. Liquid/vapour phase separation in He-4 using electric fields

    Science.gov (United States)

    Israelsson, U. E.; Jackson, H. W.; Petrac, D.

    1988-01-01

    In space, a replacement must be found for gravity to physically control and, in certain instances, contain cryogenic liquids. A program has been started at the Jet Propulsion Laboratory to study the use of electric field generated forces to establish the required orienting effects. Measurements which show that it is possible to apply strong enough electric fields to a liquid/vapor interface of He-4 to obtain an orienting force comparable to gravity are presented. Our measurements span the temperature range 1.7-4.2 K and demonstrate the applicability of Pashen's law for maximum attainable field before breakdown occurs. Some advantages of the electric field separator as opposed to passive surface tension devices are identified.

  3. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  4. Electric field variability and classifications of Titan's magnetoplasma environment

    Directory of Open Access Journals (Sweden)

    C. S. Arridge

    2011-07-01

    Full Text Available The atmosphere of Saturn's largest moon Titan is driven by photochemistry, charged particle precipitation from Saturn's upstream magnetosphere, and presumably by the diffusion of the magnetospheric field into the outer ionosphere, amongst other processes. Ion pickup, controlled by the upstream convection electric field, plays a role in the loss of this atmosphere. The interaction of Titan with Saturn's magnetosphere results in the formation of a flow-induced magnetosphere. The upstream magnetoplasma environment of Titan is a complex and highly variable system and significant quasi-periodic modulations of the plasma in this region of Saturn's magnetosphere have been reported. In this paper we quantitatively investigate the effect of these quasi-periodic modulations on the convection electric field at Titan. We show that the electric field can be significantly perturbed away from the nominal radial orientation inferred from Voyager 1 observations, and demonstrate that upstream categorisation schemes must be used with care when undertaking quantitative studies of Titan's magnetospheric interaction, particularly where assumptions regarding the orientation of the convection electric field are made.

  5. Stormtime electric fields in the inner magnetosphere: local time variations

    Science.gov (United States)

    Rowland, D.; Wygant, J.

    2003-04-01

    The large-scale quasi-static electric field in the inner magnetosphere during major storms has been shown to be a major contributor to ring current energization and plasmaspheric transport [Rowland and Wygant; 1998, Wygant et al., 1998]. Previous studies showing that the convection field can reach magnitudes of 6-8 frac{mV}{m} and potential drops of 80 kV deep in the inner magnetosphere have been limited to the premidnight and dusk local time sectors. We will draw upon electric field measurements from the Polar spacecraft made at other local times during major geomagnetic storms to show how these premidnight observations fit into the general context of enhanced electric fields and particle transport during disturbed intervals. We have identified several main and recovery phase passes in which Polar was in the inner and middle magnetosphere (L=3 to L=10). We will determine potential drops along these trajectories and display these as a function of local time. We will interpret these results in the light of recent results from {IMAGE}, in which {ENA} measurements suggest a stagnation point near dusk, and in terms of the {MIT} radar results, which show the global character of the convection pattern, based on ground-based measurements. We will also assess the electric fields measured by Polar in situ to predictions of the Rice Convection Model.

  6. Electric field computation analysis for the Electric Field Detector (EFD) on board the China Seismic-Electromagnetic Satellite (CSES)

    Science.gov (United States)

    Diego, P.; Bertello, I.; Candidi, M.; Mura, A.; Coco, I.; Vannaroni, G.; Ubertini, P.; Badoni, D.

    2017-11-01

    The floating potential variability of the Electric Field Detector (EFD) probes, on board the Chinese Seismo-Electromagnetic Satellite (CSES), has been modeled, and the effects of several structural and environmental elements have been determined. The expected floating potentials of the probes are computed considering the ambient ionospheric plasma parameter variations. In addition, the ion collection variability, due to the different probe attitudes along the orbit, and its effect on each floating potential, are considered. Particular attention is given to the analysis of the shadow produced by the stubs, in order to determine the artificial electric field introduced by instrumental effects which has to be subtracted from the real measurements. The modulation of the altered electric field, due to the effect on shadowing of the ion drift, as measured by the ESA satellite Swarm A in a similar orbit, is also modeled. Such simulations are made in preparation of real EFD data analysis performed during the upcoming flight of CSES.

  7. Electric field and interface charge extraction in field-plate assisted RESURF devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Heringa, Anco; Ferrara, A.; Steeneken, Peter G.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2015-01-01

    A methodology for extracting the lateral electric field (Ex) in the drain extension of thin silicon-on-insulator high-voltage field-plate assisted reduced surface field (RESURF) devices is detailed including its limits and its accuracy. Analytical calculations and technology computer-aided design

  8. Extraction of the Electric Field in Field Plate Assisted RESURF Devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Dhar, S.; Heringa, A.; Koops, G.E.J.; Hueting, Raymond Josephus Engelbart

    2012-01-01

    It has previously been reported that the lateral electric field (Ex) in the drain extension of thin SOI HV (700V) field plate assisted RESURF devices can be extracted from their ID-VD characteristics in the subthreshold regime. In this work the prerequisites for valid field extraction and the

  9. Transport and radial electric field in torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao; Nakajima, Noriyoshi; Sugama, Hideo [National Inst. for Fusion Science, Toki, Gifu (Japan); Maluckov, Aleksandra A. [University of Nis, Prirodno-Matematicki Fakultet, FR (Yugoslavia); Satake, Shinsuke [Graduate University for Advanced Studies, Hayama, Kanagawa (Japan)

    2002-12-01

    Transport phenomena in torus plasmas are discussed focusing on the generation of the neoclassical radial electric field. A sophisticated {delta}f Monte Carlo particle simulation code 'FORTEC' is developed including the effect of finite orbit width (FOW), which is the non-local property of the plasma transport. It will be shown that the neoclassical radial electric field in the axisymmetric tokamak is generated due to this FOW effect. The Lagrangian approach is applied to construct a non-local transport theory in the region of near-axis. The reduction of the heat diffusivity toward the axis will be shown. From a statistical point of view, diffusion processes are studied in the presence of irregular magnetic fields. It is shown that the diffusion processes are non-local in almost all the cases if there are some irregularities in the magnetic field. (author)

  10. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  11. Electric field vector measurements in a surface ionization wave discharge

    Science.gov (United States)

    Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.

    2015-10-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns-1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85-95 Td, consistent with dc breakdown field estimated from the Paschen curve for

  12. Influence of strike object grounding on close lightning electric fields

    Science.gov (United States)

    Baba, Yoshihiro; Rakov, Vladimir A.

    2008-06-01

    Using the finite difference time domain (FDTD) method, we have calculated vertical electric field Ez, horizontal (radial) electric field Eh, and azimuthal magnetic field Hϕ produced on the ground surface by lightning strikes to 160-m- and a 553-m-high conical strike objects representing the Peissenberg tower (Germany) and the CN Tower (Canada), respectively. The fields were computed for a typical subsequent stroke at distances d' from the bottom of the object ranging from 5 to 100 m for the 160-m tower and from 10 to 300 m for the 553-m tower. Grounding of the 160-m object was assumed to be accomplished by its underground basement represented by a 10-m-radius and 8-m-long perfectly conducting cylinder with or without a reference ground plane located 2 m below. The reference ground plane simulates, to some extent, a higher-conducting ground layer that is expected to exist below the water table. The configuration without reference ground plane actually means that this plane is present, but is located at an infinitely large depth. Grounding of the 553-m object was modeled in a similar manner but in the absence of reference ground plane only. In all cases considered, waveforms of Eh and Hϕ are not much influenced by the presence of strike object, while waveforms of Ez are. Waveforms of Ez are essentially unipolar (as they are in the absence of strike object) when the ground conductivity σ is 10 mS/m (the equivalent transient grounding impedance is several ohms) or greater. Thus, for the CN Tower, for which σ ≥ 10 mS/m, the occurrence of Ez polarity change is highly unlikely. For the 160-m tower and for σ = 1 and 0.1 mS/m, waveforms of Ez become bipolar (exhibit polarity change) at d' ≤ 10 m and d' ≤ 50 m, respectively, regardless of the presence of the reference ground plane. The corresponding equivalent transient grounding impedances are about 30 and 50 Ω in the absence of the reference ground plane and smaller than 10 Ω in the presence of the reference

  13. [Risk of electromagnetic fields in electric power stations and substations of a petrochemical plant].

    Science.gov (United States)

    Castagnoli, A; Fabri, G; Romeo, A

    2003-01-01

    Authors evaluate electromagnetic field exposure in the low-frequency range (5-30,000 Hz) in electric power stations and substations of petroleum processing plant. According to the measured values and the reference exposure limits considered, they conclude that operators should be exposed without adverse effects.

  14. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans

    NARCIS (Netherlands)

    Lam, 't Gerard; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.; Wijffels, R.H.; Olivieri, G.

    2017-01-01

    Pulsed Electric Field (PEF) is currently discussed as promising technology for mild and scalable cell disintegration of microalgae. In this study Chlorella vulgaris and Neochloris oleoabundans have been subjected to batch and continuous PEF treatments under a wide range of operating conditions

  15. Study of electric fields parallel to the magnetic lines of force using artificially injected energetic electrons

    Science.gov (United States)

    Wilhelm, K.; Bernstein, W.; Whalen, B. A.

    1980-01-01

    Electron beam experiments using rocket-borne instrumentation will be discussed. The observations indicate that reflections of energetic electrons may occur at possible electric field configurations parallel to the direction of the magnetic lines of force in an altitude range of several thousand kilometers above the ionosphere.

  16. Integral Solution of 3D Electric Field of a Disconnector

    Directory of Open Access Journals (Sweden)

    Pavel Karban

    2008-01-01

    Full Text Available The disconnectors belong to elements widely used in electrical power engineering and apparatus technology for disconnecting various electric circuits. Usually they work without voltage (the circuit is first switched off by a circuit breaker. Nevertheless, in a fault regime the contacts of the disconnector may carry the full voltage, which may result in the electric arc between them at the moment when the movable contact approaches to the fixed one. In order to estimate this moment it is necessary to know the time evolution of the electric field in the domain between both contacts. This problem is solved in 3D (in somewhat simplified geometry by the integral technique. The theoretical analysis is supplemented with an illustrative example whose results are discussed.

  17. Electric field generated solitons, disclinations and vortical flows in ...

    Indian Academy of Sciences (India)

    Figure 8. Elliptical domain wall with minor axis along electric field (50 Hz, 36ÆC). (a) 50 V, (b) 90 V, (c) 120 V and (d) 160 V. a division into two (figures 8a–d). Higher modes of division are encountered with further elevation in the field. Yet another noteworthy feature in figure 8 is the appearance of defects at the extremities.

  18. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open-source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs....

  19. Electric field controlled magnetic anisotropy in a single molecule.

    Science.gov (United States)

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-08

    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  20. Ferroelectric charged domain walls in an applied electric field

    OpenAIRE

    Gureev, M. Y.; Mokry, P.; Tagantsev, A. K.; Setter, N.

    2012-01-01

    The interaction of electric field with charged domain walls in ferroelectrics is theoretically addressed. Ageneral expression for the force acting per unit area of a charged domain wall carrying free charge is derived. It is shown that, in proper ferroelectrics, the free charge carried by the wall is dependent on the size of the adjacent domains. As a result, the mobility of such domain wall (with respect to the applied field) is sensitive to the parameters of the domain pattern containing th...

  1. Ultrafast carrier dynamics in graphene under a high electric field.

    Science.gov (United States)

    Tani, Shuntaro; Blanchard, François; Tanaka, Koichiro

    2012-10-19

    We investigated ultrafast carrier dynamics in graphene with near-infrared transient absorption measurement after intense half-cycle terahertz pulse excitation. The terahertz electric field efficiently drives the carriers, inducing large transparency in the near-infrared region. Theoretical calculations using the Boltzmann transport equation quantitatively reproduce the experimental findings. This good agreement suggests that the intense terahertz field should promote a remarkable impact ionization process and increase the carrier density.

  2. Switching magnetization by 180° with an electric field.

    Science.gov (United States)

    Fechner, M; Zahn, P; Ostanin, S; Bibes, M; Mertig, I

    2012-05-11

    Magnetoelectric coupling allows for manipulating the magnetization by an external electric field or the electrical polarization by an external magnetic field. Here, we propose a mechanism to electrically induce 180° magnetization switching combining two effects: the magnetoelectric coupling at a multiferroic interface and magnetic interlayer exchange coupling. By means of first-principles methods, we investigate a ferroelectric layer in contact with a Fe/Au/Fe trilayer. The calculations show that the interface magnetism is strongly coupled to the ferroelectric layer. Furthermore, under certain conditions a reversal of polarization causes a sign reversal of the interlayer exchange coupling which is results in a 180° switching of the free layer magnetization. We argue that this magnetoelectric coupling mechanism is very robust and can find applications in magnetic data storage.

  3. Stretching magnetism with an electric field in a nitride semiconductor.

    Science.gov (United States)

    Sztenkiel, D; Foltyn, M; Mazur, G P; Adhikari, R; Kosiel, K; Gas, K; Zgirski, M; Kruszka, R; Jakiela, R; Li, Tian; Piotrowska, A; Bonanni, A; Sawicki, M; Dietl, T

    2016-10-26

    The significant inversion symmetry breaking specific to wurtzite semiconductors, and the associated spontaneous electrical polarization, lead to outstanding features such as high density of carriers at the GaN/(Al,Ga)N interface-exploited in high-power/high-frequency electronics-and piezoelectric capabilities serving for nanodrives, sensors and energy harvesting devices. Here we show that the multifunctionality of nitride semiconductors encompasses also a magnetoelectric effect allowing to control the magnetization by an electric field. We first demonstrate that doping of GaN by Mn results in a semi-insulating material apt to sustain electric fields as high as 5 MV cm -1 . Having such a material we find experimentally that the inverse piezoelectric effect controls the magnitude of the single-ion magnetic anisotropy specific to Mn 3+ ions in GaN. The corresponding changes in the magnetization can be quantitatively described by a theory developed here.

  4. Proton conduction in water ices under an electric field.

    Science.gov (United States)

    Cassone, Giuseppe; Giaquinta, Paolo V; Saija, Franz; Saitta, A Marco

    2014-04-24

    We report on a first-principles study of the effects produced by a static electric field on proton conduction in ordinary hexagonal ice (phase Ih) and in its proton-ordered counterpart (phase XI). We performed ab initio molecular dynamics simulations of both phases and investigated the effects produced by the field on the structure of the material, with particular attention paid to the phenomenon of proton transfer. We observed that in ice Ih molecules start to dissociate for field intensities around 0.25 V/Å, as in liquid water, whereas fields stronger than 0.36 V/Å are needed to induce a permanent proton flow. In contrast, in ice XI, electric fields as intense as 0.22 V/Å are already able to induce and sustain, through correlated proton jumps, an ionic current; this behavior suggests, somewhat counterintuitively, that the ordering of protons favors the autoprotolysis phenomenon. However, the same is not true for static conductivities. In fact, both crystalline phases show an ohmic behavior in the conduction regime, but the conductivity of ice Ih turns out to be larger than that of ice XI. We finally discuss the qualitative and quantitative importance of the conspicuous concentration of ionic defects generated by intense electric fields in determining the value of the conductivity, also through a comparison with the experimental data available for saline ices.

  5. Abnormally large magnetospheric electric field on 9 November 2004 ...

    Indian Academy of Sciences (India)

    region recorded by a GPS receiver at Udaipur and attributed the reduced TEC following the storm by weakened electric field due to disturbance dynamo. The space weather event of November 2004 has been studied by Fejer et al. (2007) using Jica- marca VHF radar, magnetometers in Peruvian. (Jicamarca and Piura) and ...

  6. Fluctuation of the electric field in a plasma

    Science.gov (United States)

    Lee, Hee J.

    2015-04-01

    The theory of electric field fluctuations in a plasma is reviewed. The fluctuations of an electric field can be assumed to be due to the Cerenkov radiation, which is emitted by single particles that satisfy the Landau wave-particle resonance conditions. This view naturally agrees with the picture that a plasma can be considered to be an aggregate of non-interacting dressed particles. A simple classical derivation of the fluctuation-dissipation theorem is presented to show that the fluctuations of the Cerenkov electric field agree with the fluctuation-dissipation theorem. A quasilinear-like solution of the Liouville equation is shown to derive an electric field fluctuation with the same form as that obtained by using the dressed particle approach. We suggest that the fluctuation can be traced to the causality that gives rise to collisionless dissipation (imaginary part of the dielectric function). Therefore, the fluctuation in a plasma has a philosophical implication in that its existence is fundamentally due to the causal principle that the effect cannot be precedent to the cause, thus defining the direction of time.

  7. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  8. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  9. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...

  10. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  11. ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE ...

    African Journals Online (AJOL)

    30 juin 2012 ... ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE SINGLE. MODE LASER HOMOGENEOUS BROADENING IN THE PULSE REGIME. S. Ayadi. Laboratoire d'électronique quantique. Faculté de physique. USTHB BP N 32. El Alia Bab Ezzouar Alger. Received: 25 November 2012 / Accepted: ...

  12. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  13. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Science.gov (United States)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  14. Bubble size reduction in a fluidized bed by electric fields

    NARCIS (Netherlands)

    Kleijn van Willigen, F.; Van Turnhout, J.; Van Ommen, J.R.; Van den Bleek, C.

    2003-01-01

    The reduction of the size of bubbles can improve both selectivity and conversion in gas-solid fluidized beds. Results are reported of the reduction of bubble size by the application of electric fields to uncharged, polarizable particles in fluidized beds. It is shown how average bubble diameters can

  15. Pulsed electric field processing for fruit and vegetables

    Science.gov (United States)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  16. Control over colloidal crystallization by shear and electric fields

    NARCIS (Netherlands)

    Wu, Y.L.

    2007-01-01

    We used shear flow and an electric field to control colloidal crystallization. The structures were examined in situ with confocal microscopy. For experiments under shear, a new parallel plate shear cell was designed. It had a zero-velocity plane that was stationary with respect to the microscope.

  17. Investigation of the Biological Effects of Pulsed Electrical Fields.

    Science.gov (United States)

    1977-01-30

    Isoenzyes in Serum by Ion-Exchange Column Chromatography . Clinical Chem. 21, 392, (1975). 6) Yafuso, M., Ke=edy, S.J., and Freeman, A.R.: Spontaneous...34 Sale, A.J.E. and Hamilton, W.A.: Effects of High Electric Fields on Micro- organisms 111. Lysis of Erythrocytes and Protoplasts . Biochim. Biophys

  18. Conductivity of Graphene Nanoribbon Affected by DC Electric Field

    Science.gov (United States)

    Konobeev, N. N.; Belonenko, M. B.

    2018-01-01

    The paper focuses on the calculation of the density of states based on the electron hopping Hamiltonian of graphene using the direct Hamiltonian diagonalization. The density of states is then recalculated into the tunneling current arising between graphene nanoribbon and contact metal. It is shown that the dc electric field applied in parallel to the nanoribbon plane modifies the properties of the tunneling current.

  19. Multilayers for high Tc superconducting electric field effect devices

    NARCIS (Netherlands)

    Joosse, K.; Joosse, K.; Gerritsma, G.J.; Rogalla, Horst; Boguslavskij, Y.M.; Boguslavskij, Y.M.; de Vaal, J.W.

    1993-01-01

    Epitaxial multilayers, consisting of a PrBa2Cu3O7-x buffer layer, ultrathin YBa2Cu3O7-x and SrTiO3, have been grown for application in electric field effect devices. Different analytical techniques indicate a sharp interface between the layers and good dielectric properties of the SrTiO3-layer.

  20. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  1. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  2. Electric-field control of ferromagnetism through oxygen ion gating.

    Science.gov (United States)

    Li, Hao-Bo; Lu, Nianpeng; Zhang, Qinghua; Wang, Yujia; Feng, Deqiang; Chen, Tianzhe; Yang, Shuzhen; Duan, Zheng; Li, Zhuolu; Shi, Yujun; Wang, Weichao; Wang, Wei-Hua; Jin, Kui; Liu, Hui; Ma, Jing; Gu, Lin; Nan, Cewen; Yu, Pu

    2017-12-18

    Electric-field-driven oxygen ion evolution in the metal/oxide heterostructures emerges as an effective approach to achieve the electric-field control of ferromagnetism. However, the involved redox reaction of the metal layer typically requires extended operation time and elevated temperature condition, which greatly hinders its practical applications. Here, we achieve reversible sub-millisecond and room-temperature electric-field control of ferromagnetism in the Co layer of a Co/SrCoO2.5 system accompanied by bipolar resistance switching. In contrast to the previously reported redox reaction scenario, the oxygen ion evolution occurs only within the SrCoO2.5 layer, which serves as an oxygen ion gating layer, leading to modulation of the interfacial oxygen stoichiometry and magnetic state. This work identifies a simple and effective pathway to realize the electric-field control of ferromagnetism at room temperature, and may lead to applications that take advantage of both the resistance switching and magnetoelectric coupling.

  3. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    The aim of the present study was to investigate the effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days ...

  4. Synthesis and electrical field-assisted sintering behaviour of yttria ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Synthesis and electrical field-assisted sintering behaviour of yttria-stabilized ... In the sintering process, the current density was restricted when the sharp increase occurred. By limiting current density to different values for one hour, it was found that current ...

  5. Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeffrey C.

    2009-05-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of clouds and thunderstorms. The measurements were made with NASA ER-2 and Altus-II aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV m-1 to 16. kV m-1, with a mean value of 0.9 kV m-1. The median peak field was 0.29 kV m-1. Flash rates ranged from 0 to over 27 flashes min-1 with the mean flash rate of 1.2 flashes min-1. The median flash rate for an overpass was 0.25 flashes min-1. The positive plus negative conductivity ranged from 0.6 pS m-1 to 3.6 pS m-1 at the nominal flight altitudes of 15 to 20 km. The mean and median total conductivity was 2.2 pS m-1. Peak current densities during the overpasses ranged from -2.0 nA m-2 to 33. nA m-2. The mean peak current density was 1.9 nA m-2, and the median value was 0.6 nA m-2. Using the peak electric fields, a median field falloff with distance based on all overflights, and cylindrical storm symmetry, the total upward current flow from storms in our data set ranges from -1.3 to 9.4 A with a mean value of 0.8 A. The median total current was 0.27 A. The contributions from lightning field changes do not significantly affect the total derived currents. We found that 7% of the storms were producing current flows above the storms that were opposite in polarity from the standard role that thunderstorms play in the global electric circuit. Approximately one third of the storms had no detectable lightning during the overpasses but still had significant electric fields. Owing to a possible sampling bias, the fraction of nonlightning storms with electric fields may not reflect the global probability of these clouds.

  6. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    Science.gov (United States)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  7. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  8. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    Science.gov (United States)

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. Copyright 2002 Wiley Periodicals, Inc.

  9. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  10. Determinants of the electric field during transcranial direct current stimulation.

    Science.gov (United States)

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The influence of strong electric fields on the DC conductivity of the composite cellulose, insulating oil, and water nanoparticles

    Science.gov (United States)

    Kierczyński, Konrad; Żukowski, Paweł

    2016-12-01

    The paper presents investigated the dependencies of DC conductivity electrical pressboard impregnated insolating oil of moisture content and electric field strength. The studies were conducted for measuring temperature in the range of 20 °C to 80 °C and the electric field intensity in the range of 10 kV/m to 1000 kV/m. With approximate waveforms in double logarithmic coordinates conductivity depending on the intensity of the electric field exponential function determined coefficients of determination R2. The value of this ratio is close to unity, which provides high accuracy measurements of conductivity and the exact stability and temperature measurements. It was found that changes in the electric field intensity will decrease the activation energy of conductivity of about 0.01 eV, thus increasing the DC conductivity of about 1.5 times.

  12. Role of electric field on surface wetting of polystyrene surface.

    Science.gov (United States)

    Bhushan, Bharat; Pan, Yunlu

    2011-08-02

    The role of surface charge in fluid flow in micro/nanofluidics systems as well as the role of electric field to create switchable hydrophobic surfaces is of interest. In this work, the contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water were measured with applied direct current (DC) and alternating current (AC) electric fields. The droplet was deposited on a polystyrene (PS) surface, commonly used in various nanotechnology applications, coated on a doped silicon (Si) wafer. With the DC field, CA decreased with an increase in voltage. Because of the presence of a silicon oxide layer and a space charge layer, the change of the CA was found to be lower than with a metal substrate. The CAH had no obvious change with a DC field. An AC field with a positive value was applied to the droplet to study its effect on CA and CAH. At low frequency (lower than 10 Hz), the droplet was visibly oscillating. The CA was found to increase when the frequency of the applied AC field increased from 1 Hz to 10 kHz. On the other hand, the CA decreased with an increasing peak-peak voltage at or lower than 10 kHz. The CAH in the AC field was found to be lower than in the DC field and had a similar trend to static CA with increasing frequency. A model is presented to explain the data.

  13. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; hide

    2009-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning

  14. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Martin, S.; Kujawski, J.; Uribe, P.; Fourre, R.; McCarthy, M.; Maynard, N.; Berthelier, J.; Steigies, C.

    2008-12-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to E x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's of km to > 500 km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field irregularities have been detected, suggestive of filamentary currents. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data set represents a treasure trove of measurements that are germane to numerous fundamental aspects of the

  15. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, VLATKO; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  16. Range-gated imaging for near-field target identification

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [and others

    1996-12-01

    The combination of two complementary technologies developed independently at Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL) has demonstrated feasibility of target detection and image capture in a highly light-scattering, medium. The technique uses a compact SNL developed Photoconductive Semiconductor Switch/Laser Diode Array (PCSS/LDA) for short-range (distances of 8 to 10 m) large Field-Of-View (FOV) target illumination. Generation of a time-correlated echo signal is accomplished using a photodiode. The return image signal is recorded with a high-speed shuttered Micro-Channel-Plate Image Intensifier (MCPII), declined by LANL and manufactured by Philips Photonics. The MCPII is rated using a high-frequency impedance-matching microstrip design to produce 150 to 200 ps duration optical exposures. The ultra first shuttering producer depth resolution of a few inches along the optic axis between the MCPII and the target, producing enhanced target images effectively deconvolved from noise components from the scattering medium in the FOV. The images from the MCPII are recorded with an RS-170 Charge-Coupled-Device camera and a Big Sky, Beam Code, PC-based digitizer frame grabber and analysis package. Laser pulse data were obtained by the but jitter problems and spectral mismatches between diode spectral emission wavelength and MCPII photocathode spectral sensitivity prevented the capture of fast gating imaging with this demonstration system. Continued development of the system is underway.

  17. Calculations of the Electric Fields in Liquid Solutions

    Science.gov (United States)

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  18. Measurements of intermediate-frequency electric and magnetic fields in households.

    Science.gov (United States)

    Aerts, Sam; Calderon, Carolina; Valič, Blaž; Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Verloock, Leen; Van den Bossche, Matthias; Gajšek, Peter; Vermeulen, Roel; Röösli, Martin; Cardis, Elisabeth; Martens, Luc; Joseph, Wout

    2017-04-01

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300Hz to 1MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6kHz and 300kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20cm were 41.5V/m and 2.7A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20cm and beyond (maximum exposure quotients EQE 1.0 and EQH 0.13). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sensing electric and magnetic fields with Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor

    2006-01-01

    We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two......-dimensional magnetic field map 10 μm above a 100-μm-wide wire and show how the transverse current-density component inside the wire can be reconstructed. The relation between the field sensitivity and the spatial resolution is discussed and further improvements utilizing Feshbach-resonances are outlined....

  20. Estimating of pulsed electric fields using optical measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  1. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  2. Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y. R.; Cao, J. X., E-mail: jxcao@xtu.edu.cn [Department of Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Zhang, Y. [Department of Physics and Information Technology, Baoji University of Arts and Sciences, Baoji 721016 (China)

    2016-05-21

    By virtue of first principle calculations, we propose an approach to reduce the band gap of layered semiconductors through the application of external electric fields for photocatalysis. As a typical example, the band gap of a boron nitride (BN) bilayer was reduced in the range from 4.45 eV to 0.3 eV by varying the external electric field strength. More interestingly, it is found that the uppermost valence band and the lowest conduction band are dominated by the N-p{sub z} and B-p{sub z} from different layers of the BN sheet, which suggests a wonderful photoexcited electron and hole separation system for photocatalysis. Our results imply that the strong external electric field can present an abrupt polarized surface.

  3. Influence of an electric field on the spin-reorientation transition in Ni/Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, Lukas [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bonell, Frédéric; Suzuki, Yoshishige [CREST, Japan Science Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Wulfhekel, Wulf [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-10-13

    Magnetoelectric coupling offers the possibility to change the magnetic state of a material by an applied electric field. Over the last few years, metallic systems have come up as simple prototypes for this interaction. While the previous studies focused on Fe and Co thin films or their alloys, here we demonstrate magnetoelectric coupling in a Ni thin film which is close to a spin-reorientation transition. Our magneto-optic Kerr effect measurements on 10 ML of Ni/Cu(100) show a considerable influence of the applied electric field on the magnetism. This rounds off the range of magnetic metals that exhibit magnetoelectric coupling, and it reveals the possibility of an electric field control of a spin-reorientation transition.

  4. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V M [Department of Theoretical Physics, I. I. Mechnikov Odessa National University, 65026 Odessa (Ukraine); Djuric, Z [Silvaco Data System, Silvaco Technology Centre, Compass Point, St. Ives PE27 5JL (United Kingdom); Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Sakan, N M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Tkachenko, I M [Department of Applied Mathematics, ETSII, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022 (Spain)

    2004-07-21

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N{sub e}, and temperature, T, varied within the following limits: 10{sup 19} {<=} N{sub e} {<=} 10{sup 21} cm{sup -3} and 2 x 10{sup 4} {<=} T {<=} 10{sup 6} K, respectively. The external electric field frequency, f, varied in the range 3 GHz{<=} f {<=} 0.05{omicron}{sub p}, where {omicron}{sub p} is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications.

  5. Effect of Electric Field in the Stabilized Premixed Flame on Combustion Process Emissions

    Science.gov (United States)

    Otto, Krickis

    2017-10-01

    The effect of the AC and DC electrical field on combustion processes has been investigated by various researchers. The results of these experiments do not always correlate, due to different experiment conditions and experiment equipment variations. The observed effects of the electrical field impact on the combustion process depends on the applied voltage polarity, flame speed and combustion physics. During the experiment was defined that starting from 1000 V the ionic wind takes the effect on emissions in flue gases, flame shape and combustion instabilities. Simulation combustion process in hermetically sealed chamber with excess oxygen amount 3 % in flue gases showed that the positive effect of electrical field on emissions lies in region from 30 to 400 V. In aforementioned voltage range carbon monoxide emissions were reduced by 6 % and at the same time the nitrogen oxide emissions were increased by 3.5 %.

  6. Electrohydrodynamics of a compound vesicle under an AC electric field.

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M

    2017-07-12

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius [Formula: see text], is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  7. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  8. Measurements of Electric and Magnetic Fields Using Optoelectronic Telemetry

    Directory of Open Access Journals (Sweden)

    KOKKOSIS, A.

    2007-04-01

    Full Text Available In the vicinity of the electric power network and near to the power electrical equipments the electromagnetic environment includes electric and magnetic fields, mainly at the spectral area of Extreme Low Frequencies (ELF. In some cases, very close to the working or areas of habitants, it is important to observe the values of the electric and magnetic fields and to compare those values with the appropriate biological limits and/or to the Electro-Magnetic Compatibility (EMC limits. In these special cases the fields must be measured successfully and carefully. Therefore, the measurement equipment must have high accuracy and be as small as possible, in order to avoid any impact to the measured field values from the physical presence of the unit or of the observer. For application in these cases we develop an optoelectronic telemetry system, for measurements, of the ELF electric and magnetic fields, with small sensors in the measurement point and all the rest equipment in small distance. The system includes two electro-magnetic optoelectronic sensors, an optical transceiver and all the measurement electronic circuits. By that method we applied the two appropriate optoelectronic sensors at the measured point and in some distance (up to 100m an optical (laser transceiver followed by the measurement circuits. If the outcome laser beam from the transceiver strikes the optoelectronic part of these sensors. Then, that part is triggered to modulate the reflected and returned laser beam. The modulation value depends on the field value. At the receiver part of the optical transceiver, a special optical demodulator extracts the modulation signal from the incoming laser beam and the following measurement electronic circuits extracts the information with the measurement values of the electric and magnetic fields. We must point out that the few mW red beam from a diode laser, has very low power to be an injury problem to the observer or to any other person

  9. The electric and magnetic fields research and public information dissemination (EMF-RAPID) program.

    Science.gov (United States)

    Moulder, J E

    2000-05-01

    In the United States, public concern that exposure to power-line fields was linked to cancer led to the establishment of a Congressionally mandated program, the Electric and Magnetic Fields Research and Public Information Dissemination (EMF-RAPID) Program. A major goal of the program was to "determine whether or not exposures to electric and magnetic fields produced by the generation, transmission, and use of electrical energy affect human health". Between 1994 and 1998, the EMF-RAPID program spent approximately $41 million on biological research. Much of the work funded by the EMF-RAPID program has not yet been published in the peer-reviewed literature. The U.S. National Institute of Environmental Health Sciences (NIEHS) asked that Radiation Research publish this special issue in an attempt to remedy this publication gap. The issue includes reviews of studies that were done to assess the biological plausibility of claims that power-frequency fields caused leukemia and breast cancer. The issue continues with two teratology studies and one immunology study. The section of the issue covering in vitro studies begins with an overview of the efforts NIEHS made to replicate a wide range of reported effects of power-frequency fields and continues with four papers reporting the absence of effects of power-frequency fields on the expression of stress-response genes and oncogenes. Other reports of in vitro studies and studies of mechanisms cover cytotoxicity, gap junction intracellular communication, calcium ion transport across the plasma membrane, and intracellular electric fields.

  10. Distribution of AC Contact Network Electric Field Strenght

    Directory of Open Access Journals (Sweden)

    Antonio Andonov

    2004-01-01

    Full Text Available To provide the stock electromagnetics compatibility is a serious problem with the contemporary development of the railway transport and implementation of lines for connection. The AS contact system is on of the main equipment of the electrify railway transport that implements the electrical connection between the traction substations and the roiling stock. But it is also one of the main sources of interference due to the presence of its strong electromagnetic field. The paper present an distribution of electric intensity by contact system.

  11. Nonlinear electric field effect on perpendicular magnetic anisotropy in Fe/MgO interfaces

    Science.gov (United States)

    Xiang, Qingyi; Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-10-01

    The electric field effect on magnetic anisotropy was studied in an ultrathin Fe(0 0 1) monocrystalline layer sandwiched between Cr buffer and MgO tunnel barrier layers, mainly through post-annealing temperature and measurement temperature dependences. A large coefficient of the electric field effect of more than 200 fJ (Vm)-1 was observed in the negative range of electric field, as well as an areal energy density of perpendicular magnetic anisotropy (PMA) of around 600 µJ m-2. More interestingly, nonlinear behavior, giving rise to a local minimum around  +100 mV nm-1, was observed in the electric field dependence of magnetic anisotropy, being independent of the post-annealing and measurement temperatures. The insensitivity to both the interface conditions and the temperature of the system suggests that the nonlinear behavior is attributed to an intrinsic origin such as an inherent electronic structure in the Fe/MgO interface. The present study can contribute to the progress in theoretical studies, such as ab initio calculations, on the mechanism of the electric field effect on PMA.

  12. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Lucas, J.H.; Moore, G.T.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-10-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The first project evaluated the potentially aversive character of exposure to 60 Hz electric fields by determining the threshold intensity that produces escape or avoidance responses. The second project estimated the threshold intensity for detection threshold was 12 kV/m; the range of means was 6 to 16 kV/m. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. 131 refs., 87 figs., 123 tabs.

  13. Electric-field Induced Microdynamics of Charged Rods

    Directory of Open Access Journals (Sweden)

    Kyongok eKang

    2014-12-01

    Full Text Available Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd, which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a non-equilibrium critical point, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  14. Temporal analysis of moving dc electric fields in aquatic media

    Science.gov (United States)

    Hofmann, Michael H.; Wilkens, Lon A.

    2005-03-01

    Many aquatic vertebrates can sense the weak electric fields generated by other animals and may also sense geoelectric or electromagnetic phenomena for use in orientation. All these sources generate stationary (dc) fields. In addition, fields from animals are modulated by respiration and other body movements. Since electroreceptors are insensitive to a pure dc field, it has been suggested that the ac modulation carries most of the relevant information for electrosensory animals. However, in a natural situation pure dc fields are rare since any relative movement between source and receiver will transform a dc field into a time varying signal. In this paper, we will describe the properties of such signals and how they are filtered at the first stage of electrosensory information processing in the brain. We will show that the signal perceived by an animal traversing a dc electric field contains all the information necessary to reconstruct the distance to the source and that the signal conditioning algorithms are perfectly adapted to preserve such information.

  15. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation.

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-07

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  16. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm‑1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ∼10 ns and ∼100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm‑1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm‑1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ∼100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  17. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.

    Science.gov (United States)

    Santos, Laura; Martinho, Miguel; Salvador, Ricardo; Wenger, Cornelia; Fernandes, Sofia R; Ripolles, Oscar; Ruffini, Giulio; Miranda, Pedro C

    2016-08-01

    The use of computational modeling studies accounts currently for the best approach to predict the electric field (E-field) distribution in transcranial direct current stimulation. As with any model, the values attributed to the physical properties, namely the electrical conductivity of the tissues, affect the predicted E-field distribution. A wide range of values for the conductivity of most tissues is reported in the literature. In this work, we used the finite element method to compute the E-field induced in a realistic human head model for two electrode montages targeting the left dorso-lateral prefrontal cortex (DLPFC). A systematic analysis of the effect of different isotropic conductivity profiles on the E-field distribution was performed for the standard bipolar 7×5 cm2 electrodes configuration and also for an optimized multielectrode montage. Average values of the E-field's magnitude, normal and tangential components were calculated in the target region in the left DLPFC. Results show that the field decreases with increasing scalp, cerebrospinal fluid (CSF) and grey matter (GM) conductivities, while the opposite is observed for the skull and white matter conductivities. The tissues whose conductivity most affects the E-field in the cortex are the scalp and the CSF, followed by the GM and the skull. Uncertainties in the conductivity of individual tissues may affect electric field values by up to about 80%.

  18. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles

    Science.gov (United States)

    Ager-Wick Ellingsen, Linda; Singh, Bhawna; Hammer Strømman, Anders

    2016-05-01

    The primary goal of this study is to investigate the effect of increasing battery size and driving range to the environmental impact of electric vehicles (EVs). To this end, we compile cradle-to-grave inventories for EVs in four size segments to determine their climate change potential. A second objective is to compare the lifecycle emissions of EVs to those of conventional vehicles. For this purpose, we collect lifecycle emissions for conventional vehicles reported by automobile manufacturers. The lifecycle greenhouse gas emissions are calculated per vehicle and over a total driving range of 180 000 km using the average European electricity mix. Process-based attributional LCA and the ReCiPe characterisation method are used to estimate the climate change potential from the hierarchical perspective. The differently sized EVs are compared to one another to find the effect of increasing the size and range of EVs. We also point out the sources of differences in lifecycle emissions between conventional- and electric vehicles. Furthermore, a sensitivity analysis assesses the change in lifecycle emissions when electricity with various energy sources power the EVs. The sensitivity analysis also examines how the use phase electricity sources influences the size and range effect.

  19. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  20. [A literature analysis of power frequency electric field testing data].

    Science.gov (United States)

    Zhang, Suli; Guo, Zehua; Yu, Xintian; Ding, Yan; Zhu, Zhiliang

    2015-06-01

    To analyze the literature on power frequency electric field testing data and to propose views and suggestions for current testing. The literature on power frequency electric field testing data published in the previous years was searched to identify 306 articles involving 193 valid testing data. Mann-Whitney test and Wilcoxon W test were used for analyzing the testing data. The classification of data was carried out according to one quarter of occupational exposure limit (1.25 kV/m), one half of the exposure limit (2.5 kV/m), and the exposure limit (5 kV/m). The structure of testing data showed a significant difference between the non-power facility group and the power facility group (Pelectric field is extensive. However, the power frequency electric field testing data in actual workplaces except high-voltage power facilities are far less than the occupational exposure limit with little harmfulness. There is a phenomenon of excessive testing at present.

  1. Tunable control of antibody immobilization using electric field.

    Science.gov (United States)

    Emaminejad, Sam; Javanmard, Mehdi; Gupta, Chaitanya; Chang, Shuai; Davis, Ronald W; Howe, Roger T

    2015-02-17

    The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption.

  2. Kalman filtering techniques for focal plane electric field estimation.

    Science.gov (United States)

    Groff, Tyler D; Jeremy Kasdin, N

    2013-01-01

    For a coronagraph to detect faint exoplanets, it will require focal plane wavefront control techniques to continue reaching smaller angular separations and higher contrast levels. These correction algorithms are iterative and the control methods need an estimate of the electric field at the science camera, which requires nearly all of the images taken for the correction. The best way to make such algorithms the least disruptive to science exposures is to reduce the number required to estimate the field. We demonstrate a Kalman filter estimator that uses prior knowledge to create the estimate of the electric field, dramatically reducing the number of exposures required to estimate the image plane electric field while stabilizing the suppression against poor signal-to-noise. In addition to a significant reduction in exposures, we discuss the relative merit of this algorithm to estimation schemes that do not incorporate prior state estimate history, particularly in regard to estimate error and covariance. Ultimately the filter will lead to an adaptive algorithm which can estimate physical parameters in the laboratory for robustness to variance in the optical train.

  3. Convection electric field effects on outer radiation belt electron precipitation

    Science.gov (United States)

    Gelpi, C.; Benbrook, J. R.; Sheldon, W. R.

    1986-01-01

    A model is presented for the possible diurnal modulation of outer radiation belt electron precipitation by considering the effect of the convection electric field on geomagnetically trapped electrons. The modulation flux is the flux due to electrons in the drift loss cone, i.e., those which drift into the bounce loss cone. The electron flux in the drift loss cone is related to the time allowable for diffusion from the stably trapped population to the drift loss cone for precipitation at a specific geographic location. This time, which is termed the maximum L-shell lifetime, is obtained by computing electron trajectories, using a realistic magnetic field model and a simple model for the electric field. The maximum L-shell lifetimes are taken to be the times between successive entries into the bounce loss cone. Conservation of the first two adiabatic invariants, as electrons are slowly energized by the convection electric field, leads to variations in pitch angle, maximum L-shell lifetimes, and, consequently, to changes in the electron flux in the drift loss cone. These results are compared with observations of precipitating electrons made with sounding rocket payloads.

  4. `Exotic' Electron Spectroscopy of Molecules in Electric Fields

    Science.gov (United States)

    Pathak, Rajeev; Gurav, Nalini; Gejji, Shridhar

    Single molecules, whether polar or non-polar (in their free state), when subjected to an externally applied uniform electric field, are observed to exhibit remarkably different UV spectra from those of their zero-field counterparts. Significant spectral line-shifts, line-splitting, line-merging as well as disappearance, and emergence of `exotic' spectral lines are observed as a function of the applied electric field strength. In particular, we simulate the molecular electronic-transition spectra of methanol, hydrogen-peroxide, water and carbon-dioxide in an electric field, employing time dependent density functional theory (TD-DFT) under the versatile M06-2X dispersion-corrected DFT prescription. It is further demonstrated that the Natural Localized Molecular Orbitals (NLMOs), playing a dual donor-acceptor role, can best describe the electron density redistribution and the interplay of various bands in the UV spectrum which is traced back to mutations and crossings of the frontier molecular orbitals. We would like to thank the Center for Advanced Computing, Pune University Campus, for computer time.

  5. The Effect of Electric Fields on Cathodoluminescence from Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Seager, C.H.

    1999-01-14

    When external electric fields are applied to phosphors the cathodoluminescence (CL) at low beam energies is strongly affected. This experiment has been carried out on a variety of common phosphors used in cathode ray tube applications, and the electron beam energy, beam current, and electric field dependence of the CL are thoroughly characterized. It is found that the general features of these effects, particular y the strong polarity and beam energy dependence, are consistent with a model which assumes that the main effect of the electric fields is to alter the populations of electrons `and holes at the phosphor surface. This in turn, modulates the non-radiative energy losses that strongly affect the low-beam-energy CL efficiency. Because the external fields are applied without any direct contact to the phosphor material, the large changes seen in the CL decay rapidly as the beam-created electrons and holes polarize, shielding the externally applied bias. These results have important implications for designing phosphors which might be efficient at low electron energies.

  6. Electric field effect in superconductor-ferroelectric structures

    Science.gov (United States)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  7. The effect of electric fields upon liquid extraction. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1988-04-13

    A series of mass transfer studies were conducted for the extraction of solute from droplets falling in an electric field. The experiments were planned such that the dispersed phase resistance was controlling. In one series of experiments single drops were formed from a charged nozzle and allowed to fall through a continuous, dielectric phase. The drop size and velocity were correlated by means of a simple force balance. Drop mass transfer coefficients were calculated for the drop free fall period and were compared to predictions based upon literature correlations for an oscillating droplet in-the absence of an electric field. Droplet size and velocity were approximately predicted by a staple force balance whereas the mass transfer coefficient was approximately 25--250% higher than that predicted. Droplet extraction efficiencies Increased about 20--30% in the presence of electric fields up to 2 kv/cm. For the same field, the drop diameter decreased 30--50% and the terminal velocity increased by up to 50%. The enhancements for the toluene-water system can be ascribed to increases in terminal velocity and decreases in drop diameter. The mass transfer model for freely falling drops proposed by Skelland and Wellek roughly predicts the moderate mass transfer efficiency increases (about 18% at 1 kv/cm) for the toluene water system but failed to predict the increases (about 25% at 0.5 kv/cm) for the heptane furfural system. The second series of experiments involved the formation of a swarm of droplets In a three stage sieve tray column. In a separate series of experiments. the effect of the electric field upon mass transfer from drops exhibiting interfacial turbulence was evaluated.

  8. The effect of electric fields upon liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1988-04-13

    A series of mass transfer studies were conducted for the extraction of solute from droplets falling in an electric field. The experiments were planned such that the dispersed phase resistance was controlling. In one series of experiments single drops were formed from a charged nozzle and allowed to fall through a continuous, dielectric phase. The drop size and velocity were correlated by means of a simple force balance. Drop mass transfer coefficients were calculated for the drop free fall period and were compared to predictions based upon literature correlations for an oscillating droplet in-the absence of an electric field. Droplet size and velocity were approximately predicted by a staple force balance whereas the mass transfer coefficient was approximately 25--250% higher than that predicted. Droplet extraction efficiencies Increased about 20--30% in the presence of electric fields up to 2 kv/cm. For the same field, the drop diameter decreased 30--50% and the terminal velocity increased by up to 50%. The enhancements for the toluene-water system can be ascribed to increases in terminal velocity and decreases in drop diameter. The mass transfer model for freely falling drops proposed by Skelland and Wellek roughly predicts the moderate mass transfer efficiency increases (about 18% at 1 kv/cm) for the toluene water system but failed to predict the increases (about 25% at 0.5 kv/cm) for the heptane furfural system. The second series of experiments involved the formation of a swarm of droplets In a three stage sieve tray column. In a separate series of experiments. the effect of the electric field upon mass transfer from drops exhibiting interfacial turbulence was evaluated.

  9. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Science.gov (United States)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  10. Electric field profiling by current transients in silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, D. E-mail: menichelli@ingfil.ing.unifi.it; Serafini, D.; Borchi, E.; Toci, G

    2002-01-11

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 {mu}m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  11. Electric field profiling by current transients in silicon diodes

    CERN Document Server

    Menichelli, D; Borchi, E; Toci, G

    2002-01-01

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 mu m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  12. Student understanding of electric and magnetic fields in materials

    Science.gov (United States)

    Mitchem, Savannah L.; Zohrabi Alaee, Dina; Sayre, Eleanor C.

    2017-09-01

    We discuss the clusters of resources that emerge when upper-division students write about electromagnetic fields in linear materials. The data analyzed for this paper come from students' written tests in an upper-division electricity and magnetism course. We examine how these clusters change with time and context. The evidence shows that students benefit from activating resources related to the internal structure of the atom when thinking about electric fields and their effect on materials. We argue that facilitating activation of certain resources by the instructor in the classroom can affect the plasticity of those resources in the student, making them more solid and easily activated. We find that the wording of the questions posed to students affects which resources are activated, and that students often fill in resources to link known phenomena to phenomena described by the question when lacking detailed mental models.

  13. Pulsed electric fields (PEF applications on wine production: A review

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2017-01-01

    Full Text Available Novel techniques have been searched in the last decades as a result of increasing demand for high quality food products. Non-thermal processing technologies, such as pulsed electric fields (PEF have been improved to achieve inhibition of deleterious effects on quality-related compounds. The working principle of PEF is based on the application of pulses of high voltage (typically above 20 kV/cm up to 70 kV/cm to liquid foods placed between two electrodes. Pulsed electric fields technique has also been studied in winemaking process. Certain positive influences of PEF on vinification have been reported as elimination of pathogenic microorganisms, reduction of maceration time, increase in phenolic compounds extraction , acceleration of wine aging and inactivation of oxidative enzymes. The aim of this review is to summarize the potential applications of PEF in winemaking and to express its effects on quality of wine.

  14. Wave rectification in plasma sheaths surrounding electric field antennas

    Science.gov (United States)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  15. Electric field control of valence tautomeric interconversion in cobalt dioxolene.

    Science.gov (United States)

    Droghetti, A; Sanvito, S

    2011-07-22

    We demonstrate that the critical temperature for valence tautomeric interconversion in cobalt dioxolene complexes can be significantly changed when a static electric field is applied to the molecule. This is achieved by effectively manipulating the redox potential of the metallic acceptor forming the molecule. Importantly, our accurate density functional theory calculations demonstrate that already a field of 0.1  V/nm, achievable in Stark spectroscopy experiments, can produce a change in the critical temperature for the interconversion of 20 K. Our results indicate a new way for switching on and off the magnetism in a magnetic molecule. This offers the unique chance of controlling magnetism at the atomic scale by electrical means.

  16. Student understanding of electric and magnetic fields in materials

    CERN Document Server

    Mitchem, Savannah L; Sayre, Eleanor C

    2016-01-01

    We discuss the clusters of resources that emerge when upper-division students enrolled in an upper-division electricity and magnetism course write about fields in linear materials. We examine how these clusters change with time and context. The evidence shows that students benefit from activating resources related to the internal structure of the atom when thinking about electric fields and their effect on materials. We argue that facilitating activation of certain resources by the instructor in the classroom can affect the plasticity of those resources in the student, making them more solid and easily activated. We find that the wording of the questions posed to students affects which resources are activated, and that students often fill in resources to link known phenomena to phenomena described by the question when lacking detailed mental models.

  17. The electric field standing wave effect in infrared transflection spectroscopy

    Science.gov (United States)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  18. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  19. Evidence of prompt penetration electric fields during HILDCAA events

    Science.gov (United States)

    Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas

    2017-10-01

    High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  20. Plasmon resonance and electric field amplification of crossed gold nanorods

    Science.gov (United States)

    Cortie, M. B.; Stokes, N.; McDonagh, A.

    2009-11-01

    Here we explore the unusual plasmon resonances of crossed gold nanorod structures of varying geometries. Using numerical simulations, we show that the resonances of simple rods are hybridized and blue-shifted in the composite structures and that these structures are surrounded by spatially extended and high intensity electric fields. This attribute suggests several potential uses for these shapes, for example as a nano-antenna for the generation of two-photon fluorescence.

  1. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  2. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    Science.gov (United States)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  3. Electric field control of a fluid transfer between freely suspended and sessile droplets

    Science.gov (United States)

    Choi, Suhwan; Saveliev, Alexei

    2015-11-01

    This works explore direct fluid transfer between microdroplets using liquid bridges stabilized by ac electric field. Experiments are performed with freely and sessile microdroplets of pure glycerol and water with dye. The droplets are placed along electric field directions in a cell with parallel plate electrodes filled with silicone oil. The electrical conductivity of droplets is changed from 1 to 200 μS/cm by adding dye solutions. Liquid bridges interconnecting two microdroplets can be created using an alternating electric field from 0.3 to 0.7 kV/mm with a frequency of 10.3 kHz. For such bridging fluid can be transferred through the liquid bridge from one droplet to another due to the pressure difference. The process is recorded using a CCD camera. The fluid flowrates in the range from ~ 100 to 10 nL/s are recorded with different electric fields and liquid conductivity. We propose that the manipulation of the liquid bridge will be the method in which small fluid volumes are dispensed.

  4. Interaction of biological systems with static and ELF electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  5. C. elegans Demonstrates Distinct Behaviors within a Fixed and Uniform Electric Field.

    Directory of Open Access Journals (Sweden)

    Steven D Chrisman

    Full Text Available C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals' tracks, turning behavior (pirouettes and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals' tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON, which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in

  6. C. elegans Demonstrates Distinct Behaviors within a Fixed and Uniform Electric Field.

    Science.gov (United States)

    Chrisman, Steven D; Waite, Christopher B; Scoville, Alison G; Carnell, Lucinda

    2016-01-01

    C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals' tracks, turning behavior (pirouettes) and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals' tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON), which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in electrotaxis

  7. Diffusion of minority carriers against electric field (high injection level)

    Science.gov (United States)

    Gert, A. V.; Dmitriev, A. P.; Levinshtein, M. E.; Yuferev, V. S.; Palmour, J. W.

    2017-11-01

    A one-dimensional analytic model describing the motion of minority carriers against the electric field direction under the conditions of high injection level is developed. The results of the model can also be used to estimate the motion of carriers against the field in the case of an arbitrary injection level. The model makes it possible to describe, in good agreement with the results of computer simulation, the modulation of the collector layer resistance in a high voltage SiC bipolar transistor.

  8. In Situ Nanoscale Electric Field Control of Magnetism by Nanoionics.

    Science.gov (United States)

    Zhu, Xiaojian; Zhou, Jiantao; Chen, Lin; Guo, Shanshan; Liu, Gang; Li, Run-Wei; Lu, Wei D

    2016-09-01

    Direct, nonvolatile, and reversible control of nanomagnetism in solid-state ferromagnetic thin films is achieved by controlling the chemical composition of the film through field-driven ion redistribution. The electric field-driven de-intercalation/intercalation of lithium ions can result in ≈100% modulation of the magnetization and drives domain wall motion over ≈100 nm. High-speed and multilevel magnetic information storage is further demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  10. Investigation of the electric field in irradiated diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Barvich, Tobias; Boer, Wim de; Dierlamm, Alexander; Eber, Robert; Nuernberg, Andreas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2015-07-01

    The Beam Condition Monitoring Leakage (BCML) system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of +/-1.8 m and +/-14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected based on laboratory measurements. At high particle rates, like they occur during the operation of the LHC, charge carriers can be trapped in defects created by radiation. This space charge is expected to modify the electrical field in the sensor bulk and hence to reduce the charge collection efficiency. This modified electrical field has been indirectly measured in the laboratory using the Transient Current Technique (TCT) method in irradiated single crystal CVD diamond. This rate dependent effect was simulated with the software 'SILVACO ATLAS' and the obtained electrical field was used to calculate a TCT measurement pulse. The results of the TCT measurements will be compared to the simulation.

  11. Magnetic and Electric Field Polarizations of Oblique Magnetospheric Chorus Waves

    Science.gov (United States)

    Verkhoglyadova, Olga; Tsurutani, Bruce T.; Lakhina, Gurbax S.

    2012-01-01

    A theory was developed to explain the properties of the chorus magnetic and electric field components in the case of an arbitrary propagation angle. The new theory shows that a whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by GEOTAIL observations. The wave electric field polarization plane is not orthogonal to the wave vector, and in general is highly elliptically polarized. A special case of the whistler wave called the Gendrin mode is also discussed. This will help to construct a detailed and realistic picture of wave interaction with magnetosphere electrons. It is the purpose of this innovation to study the magnetic and electric polarization properties of chorus at all frequencies, and at all angles of propagation. Even though general expressions for electromagnetic wave polarization in anisotropic plasma are derived in many textbooks, to the knowledge of the innovators, a detailed analysis for oblique whistler wave mode is lacking. Knowledge of the polarization properties is critical for theoretical calculations of resonant wave-particle interactions.

  12. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  13. Bipolar electrode focusing: tuning the electric field gradient.

    Science.gov (United States)

    Anand, Robbyn K; Sheridan, Eoin; Hlushkou, Dzmitry; Tallarek, Ulrich; Crooks, Richard M

    2011-02-07

    Bipolar electrode (BPE) focusing is a developing technique for enrichment and separation of charged analytes in a microfluidic channel. The technique employs a bipolar electrode that initiates faradaic processes that subsequently lead to formation of an ion depletion zone. The electric field gradient resulting from this depletion zone focuses ions on the basis of their individual electrophoretic mobilities. The nature of the gradient is of primary importance to the performance of the technique. Here, we report dynamic measurements of the electric field gradient showing that it is stable over time and that its axial position in the microchannel is directly correlated to the location of an enriched tracer band. The position of the gradient can be tuned with pressure-driven flow. We also show that a steeper electric field gradient decreases the breadth of the enriched tracer band and therefore enhances the enrichment process. The slope of the gradient can be tuned by altering the buffer concentration: higher concentrations result in a steeper gradient. Coating the channel with the neutral block co-polymer Pluronic also results in enhanced enrichment.

  14. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  15. Electrostatic suppression of the Leidenfrost state using AC electric fields

    Science.gov (United States)

    Ozkan, Onur; Shahriari, Arjang; Bahadur, Vaibhav

    2017-10-01

    The formation of a vapor layer at the solid-liquid interface at high temperatures (Leidenfrost phenomenon) degrades heat transfer substantially. Application of an electric field in this vapor layer can fundamentally eliminate the Leidenfrost state by electrostatically attracting liquid towards the surface. This study analyzes the influence of AC electric fields on electrostatic suppression of the Leidenfrost state; previous studies have only utilized DC electric fields. In particular, the influence of the frequency of the AC waveform on Leidenfrost state suppression is analyzed using high speed visualization of liquid-vapor instabilities and heat transfer measurements of evaporating droplets. It is seen that the extent of suppression is reduced with increasing AC frequency. At sufficiently high frequencies, the influence of an applied voltage is completely negated, and electrostatic suppression of the Leidenfrost state can be completely eliminated. A first-order electromechanical model is used to explain the frequency-dependent reduction in the electrostatic attraction force on the Leidenfrost droplet. Overall, this work highlights the importance of AC frequency as a tool to control the extent of suppression and the boiling heat transfer rate.

  16. Approximate expressions for lightning electromagnetic fields at near and far ranges: Influence of return-stroke speed

    Science.gov (United States)

    Chen, Yazhou; Wang, Xiaojia; Rakov, Vladimir A.

    2015-04-01

    The waveforms of lightning return-stroke electromagnetic fields on ground are studied using the transmission line model. Approximate expressions to calculate lightning electromagnetic fields at near and far ranges are presented. It is found that the waveforms of lightning electric and magnetic fields in the time domain at both near and far ranges can be expressed approximately as the channel-base current waveform multiplied by a factor which is a function of the return-stroke speed v and the horizontal distance r between the return-stroke channel and the observation point on ground. The ranges at which the approximate expressions are valid are determined. The ranges of validity increase with increasing the return-stroke speed, and the near and far field approximate expressions converge to the exact formula as the return-stroke speed approaches the speed of light.

  17. Behavior of InP:Fe under high electric field

    Science.gov (United States)

    Turki, K.; Picoli, G.; Viallet, J. E.

    1993-06-01

    The behavior of semi-insulating InP:Fe under high electric field is investigated. The current-voltage (I-V) characteristics are studied on both long liquid-encapsulated Czochralski-grown samples and short epitaxial-grown layers. These characteristics show a linear regime at low voltages followed, for higher voltages, by a nonlinear behavior and a current breakdown. The critical electric field at which the nonlinearity begins is found to be independent of the sample thickness, the material compensation, and the nature of the contacts, and is equal to 10 kV/cm. This fact rules out the usual explanation in terms of Lampert's injection theory. In the nonlinear regime, a slow transient response (≊1 s at room temperature) is observed only for long samples. The time constant of this effect exhibits a thermal activation energy (≊0.64 eV) close to that of the iron-related deep level. Field-dependent effects on the thermal emission rate and the capture cross section are discussed. Considering a field enhancement of the capture cross section, we propose a model to explain both the nonlinear characteristics and the slow dynamic behavior of long samples. The current breakdown observed at higher fields is attributed to an impact ionization of the deep levels and not to a trap-filled-limit voltage as previously reported.

  18. Electric field inside a "Rossky cavity" in uniformly polarized water.

    Science.gov (United States)

    Martin, Daniel R; Friesen, Allan D; Matyushov, Dmitry V

    2011-08-28

    Electric field produced inside a solute by a uniformly polarized liquid is strongly affected by dipolar polarization of the liquid at the interface. We show, by numerical simulations, that the electric "cavity" field inside a hydrated non-polar solute does not follow the predictions of standard Maxwell's electrostatics of dielectrics. Instead, the field inside the solute tends, with increasing solute size, to the limit predicted by the Lorentz virtual cavity. The standard paradigm fails because of its reliance on the surface charge density at the dielectric interface determined by the boundary conditions of the Maxwell dielectric. The interface of a polar liquid instead carries a preferential in-plane orientation of the surface dipoles thus producing virtually no surface charge. The resulting boundary conditions for electrostatic problems differ from the traditional recipes, affecting the microscopic and macroscopic fields based on them. We show that relatively small differences in cavity fields propagate into significant differences in the dielectric constant of an ideal mixture. The slope of the dielectric increment of the mixture versus the solute concentration depends strongly on which polarization scenario at the interface is realized. A much steeper slope found in the case of Lorentz interfacial polarization also implies a higher free energy penalty for polarizing such mixtures. © 2011 American Institute of Physics

  19. Electric-field effects in resistive oxides: facts and artifacts

    Directory of Open Access Journals (Sweden)

    Reisner G. M.

    2013-01-01

    Full Text Available Striking non-linear conductivity effects induced by surprisingly low electric-fields in charge-ordered oxides, were reported variously as dielectric breakdown, charge-order collapse, depinning of charge-density-waves or other electronic effects. Our pulsed and d.c. I-V measurements on resistive oxides show that non-linear conductivity of electronic origin at low electric-fields is a rare phenomenon. In the majority of cases we detected no deviations from linearity in pulsed I-V characteristics under fields up to E ~ 500 V/cm. Current-controlled negative-differential-resistance (NDR and hysteresis were found in d.c. measurements at fields that decrease with increasing temperatures, a behavior typical of Joule heating in materials with negative temperature coefficient of resistivity. For the d.c. I-V characteristics of our samples exhibiting NDR, we found a rather unexpected correlation between ρ(Em - the resistivity at maximum field (at the onset of NDR and ρ(E=0 – the ohmic resistivity. The data points for ρ(Em versus ρ(E=0 obtained from such characteristics of 13 samples (8 manganites, 4 nickelates and one multiferroic at various ambient temperatures, plotted together on a log-log scale, follow closely a linear dependence with slope one that spans more than five orders of magnitude. This dependence is reproduced by several simple models.

  20. Simulating electric field interactions with polar molecules using spectroscopic databases.

    Science.gov (United States)

    Owens, Alec; Zak, Emil J; Chubb, Katy L; Yurchenko, Sergei N; Tennyson, Jonathan; Yachmenev, Andrey

    2017-03-24

    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH 3 and NH 3 , and spontaneous emission data for optoelectrical Sisyphus cooling of H 2 CO and CH 3 Cl are discussed.

  1. Electric and magnetic field measurements in a high voltage center.

    Science.gov (United States)

    Safigianni, Anastasia S; Spyridopoulos, Anastasios I; Kanas, Vasilis L

    2012-01-01

    This paper investigates the electric and magnetic fields inside a large high voltage center constituted both of 400/150 and 150/20 kV substation areas. Results of previous field measurements and calculations in substations, made by the authors of this paper or other researchers, are presented first. The basic data distinguishing the examined center from previously examined substations follow. The main results of the field measurements in the areas of the above-mentioned center are presented in relevant diagrams. General conclusions arising from the comparison of the measured field values with relevant reference levels in force for safe public and occupational exposure as well as with the results of previous research are finally given.

  2. Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture.

    Science.gov (United States)

    Varotsos, P A; Sarlis, N V; Skordas, E S

    2009-06-01

    Magnetic field variations are detected before rupture in the form of "spikes" of alternating sign. The distinction of these spikes from random noise is of major practical importance since it is easier to conduct magnetic field measurements than electric field ones. Applying detrended fluctuation analysis (DFA), these spikes look to be random at short time lags. On the other hand, long-range correlations prevail at time lags larger than the average time interval between consecutive spikes with a scaling exponent alpha around 0.9. In addition, DFA is applied to recent preseismic electric field variations in long duration (several hours to a couple of days) and reveals a scale invariant feature with an exponent alpha approximately 1 over all scales available (around five orders of magnitude).

  3. Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Haldrup, Niels; Rodríguez-Caballero, Carlos Vladimir

    Equilibrium electricity spot prices and loads are often determined simultaneously in a day-ahead auction market for each hour of the subsequent day. Hence daily observations of hourly prices take the form of a periodic panel rather than a time series of hourly observations. We consider novel panel...... data approaches to analyse the time series and the cross-sectional dependence of hourly Nord Pool electricity spot prices and loads for the period 2000-2013. Hourly electricity prices and loads data are characterized by strong serial long-range dependence in the time series dimension in addition...... of the underlying production technology and because the demand is more volatile than the supply, equilibrium prices and loads are argued to identify the periodic power supply curve. The estimated supply elasticities are estimated from fractionally co-integrated relations and range between 0.5 and 1...

  4. Understanding the impact of electric vehicle driving experience on range anxiety.

    Science.gov (United States)

    Rauh, Nadine; Franke, Thomas; Krems, Josef F

    2015-02-01

    The objective of the present research was to increase understanding of the phenomenon of range anxiety and to determine the degree to which practical experience with battery electric vehicles (BEVs) reduces different levels of range anxiety. Limited range is a challenge for BEV users. A frequently discussed phenomenon in this context is range anxiety. There is some evidence suggesting that range anxiety might be a problem only for inexperienced BEV drivers and, therefore, might decrease with practical experience. We compared 12 motorists with high BEV driving experience (M = 60,500 km) with 12 motorists who had never driven a BEV before. The test drive was designed to lead to a critical range situation (remaining range < trip length). We examined range appraisal and range stress (i.e., range anxiety) on different levels (cognitive, emotional, and behavioral). Experienced BEV drivers exhibited less negative range appraisal and range anxiety than inexperienced BEV drivers, revealing significant, strong effects for all but one variable. Hence, BEV driving experience (defined as absolute kilometers driven with a BEV) seems to be one important variable that predicts less range anxiety. In order to reduce range anxiety in BEV drivers even when there is a critical range situation, it is important to increase efficiency and effectiveness of the learning process.

  5. Electric-field sensors for bullet detection systems

    Science.gov (United States)

    Vinci, Stephen; Hull, David; Ghionea, Simon; Ludwig, William; Deligeorges, Socrates; Gudmundsson, Thorkell; Noras, Maciej

    2014-06-01

    Research and experimental trials have shown that electric-field (E-field) sensors are effective at detecting charged projectiles. E-field sensors can likely complement traditional acoustic sensors, and help provide a more robust and effective solution for bullet detection and tracking. By far, the acoustic sensor is the most prevalent technology in use today for hostile fire defeat systems due to compact size and low cost, yet they come with a number of challenges that include multipath, reverberant environments, false positives and low signal-to-noise. Studies have shown that these systems can benefit from additional sensor modalities such as E-field sensors. However, E-field sensors are a newer technology that is relatively untested beyond basic experimental trials; this technology has not been deployed in any fielded systems. The U.S. Army Research Laboratory (ARL) has conducted live-fire experiments at Aberdeen Proving Grounds (APG) to collect data from E-field sensors. Three types of E-field sensors were included in these experiments: (a) an electric potential gradiometer manufactured by Quasar Federal Systems (QFS), (b) electric charge induction, or "D-dot" sensors designed and built by the Army Research Lab (ARL), and (c) a varactor based E-field sensor prototype designed by University of North Carolina-Charlotte (UNCC). Sensors were placed in strategic locations near the bullet trajectories, and their data were recorded. We analyzed the performance of each E-field sensor type in regard to small-arms bullet detection capability. The most recent experiment in October 2013 allowed demonstration of improved versions of the varactor and D-dot sensor types. Results of new real-time analysis hardware employing detection algorithms were also tested. The algorithms were used to process the raw data streams to determine when bullet detections occurred. Performance among the sensor types and algorithm effectiveness were compared to estimates from acoustics signatures

  6. Generic methodology for driving range estimation of electric vehicle with on-road charging

    NARCIS (Netherlands)

    Shekhar, A.; Prasanth, V.; Bauer, P.; Bolech, M.

    2015-01-01

    An analytical estimation of driving range of electric vehicles (EVs) with contactIess on-road charging system is presented in this paper. Inductive power transfer (IPT) systems with different configurations (static, dynamic), power levels and road coverage have different (and non-linear) impact on

  7. The Contribution of Matched Envelope Dynamic Range to the Binaural Benefits in Simulated Bilateral Electric Hearing

    Science.gov (United States)

    Chen, Fei; Wong, Lena L. N.; Qiu, Jianxin; Liu, Yehai; Azimi, Behnam; Hu, Yi

    2013-01-01

    Purpose: This study examined the effects of envelope dynamic-range mismatch on the intelligibility of Mandarin speech in noise by simulated bilateral electric hearing. Method: Noise-vocoded Mandarin speech, corrupted by speech-shaped noise at 5 and 0 dB signal-to-noise ratios, was presented unilaterally or bilaterally to 10 normal-hearing…

  8. The Ranges Of Subauroral Geomagnetic Field Elements | Rabiu ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... On quiet condition, the range in j season dominates over d- and e- seasons in all elements. ... Generally, the seasonal range in the D component for all the years as well as in H and Z components - apart from the anomaly - maintain the order e>j>d of seasonal variation which is ...

  9. Atom optics with Rydberg states in inhomogeneous electric fields

    Science.gov (United States)

    Kritsun, Oleg Anton

    Atom optics has become subject of intense investigation in recent years. Control of atomic motion is of great importance in atomic physics and applications like lithography or nanofabrication. Neutral atoms are not affected greatly by magnetic or electric field as they don't have a charge or large magnetic and electric moments. But by exciting a neutral atom to a high Rydberg state it is possible to increase its electric moment considerably. The purpose of this thesis is to demonstrate experimentally and theoretically the possibility of creating atom optical elements for the beam of neutral atoms based on the polarizability of highly excited states in an electric field. First this work will present a review of the basic concepts that are used for atom optics and also a discussion of the progress to date in realizations of the neutral atom manipulation techniques. In our earlier experiments deflection and beam-splitting was demonstrated for a beam of neutral Lithium atoms excited in a three-step scheme [3.5, 3.6]. In later experiments, metastable Helium was excited from 23S state to the 33P state using lambda = 389 nm light, and then to the 25--30 S or D states using lambda = 785--815 nm light. Because this was a two-step excitation and it had the higher laser power in the last step, this method increased the percentage of excited atoms by a factor close to 103 compared to the Lithium experiment. Furthermore coherent excitation technique, Stimulated Raman Adiabatic Population Transfer (STIRAP), is investigated in this system, which allows a complete transfer of the atoms from 23S to the Rydberg states. STIRAP is also very tolerant of experimental imperfections such as intensity and frequency fluctuations, Doppler shifts, etc. and can be done with modest laser power. Efficient excitation enables us to do the following atom manipulations in inhomogeneous electric field [3.6, 4.42]. (1) Deflection and reflection; (2) Beam-splitting; (3) Collimation and focusing. Since

  10. Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies

    Science.gov (United States)

    Ivorra, Antoni; Al-Sakere, Bassim; Rubinsky, Boris; Mir, Lluis M.

    2008-11-01

    Electroporation is used in tissue for gene therapy, drug therapy and minimally invasive tissue ablation. The electrical field that develops during the application of the high voltage pulses needs to be precisely controlled. In the region to be treated, it is desirable to generate a homogeneous electric field magnitude between two specific thresholds whereas in other regions the field magnitude should be as low as possible. In the case of irregularly shaped tissue structures, such as bulky tumors, electric field homogeneity is almost impossible to be achieved with current electrode arrangements. We propose the use of conductive gels, matched to the conductivity of the tissues, to fill dead spaces between plate electrodes gripping the tissue so that the electric field distribution becomes less heterogeneous. Here it is shown that this technique indeed improves the antitumor efficacy of electrochemotherapy in sarcomas implanted in mice. Furthermore, we analyze, through finite element method simulations, how relevant the conductivity mismatches are. We found that conductivity mismatching errors are surprisingly well tolerated by the technique. Gels with conductivities ranging from 5 mS cm-1 to 10 mS cm-1 will be a proper solution for most cases.

  11. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  12. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  13. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  14. Electric field control photo-induced Hall currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    We generate spin-polarized carrier populations in GaAs and low temperature-grown GaAs (LT-GaAs) by circularly polarized optical beams and pull them by external electric fields to create spin-polarized currents. In the presence of the optically generated spin currents, anomalous Hall currents with an enhancement with increasing doping are observed and found to be almost steady in moderate electric fields up to {approx}120 mV {mu}m{sup -1}, indicating that photo-induced spin orientation of electrons is preserved in these systems. However, a field {approx}300 mV {mu}m{sup -1} completely destroys the electron spin polarization due to an increase of the D'yakonov-Perel' spin precession frequency of the hot electrons. This suggests that high field carrier transport conditions might not be suitable for spin-based technology with GaAs and LT-GaAs. It is also demonstrated that the presence of the excess arsenic sites in LT-GaAs might not affect the spin relaxation by Bir-Aronov-Pikus mechanism owing to a large number of electrons in n-doped materials.

  15. Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating

    Science.gov (United States)

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-01-01

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6 × 10−3 min−1 and from 1.1 to 1.5 × 10−3 min−1 for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule. PMID:24892902

  16. Botanical studies in the Arctic National Wildlife Range: Field report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a botanical study in the Arctic National Wildlife Range during 1970. Cooperative studies on flora and fauna were done on selected sites. Sites include...

  17. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold.

    Science.gov (United States)

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2015-09-01

    To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r(2) = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r(2) > 0.96, p field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. This study can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms.

  18. Electric-field control of magnetic order above room temperature.

    Science.gov (United States)

    Cherifi, R O; Ivanovskaya, V; Phillips, L C; Zobelli, A; Infante, I C; Jacquet, E; Garcia, V; Fusil, S; Briddon, P R; Guiblin, N; Mougin, A; Ünal, A A; Kronast, F; Valencia, S; Dkhil, B; Barthélémy, A; Bibes, M

    2014-04-01

    Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics. Progress has been made in the electrical control of magnetic anisotropy, domain structure, spin polarization or critical temperatures. However, the ability to turn on and off robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field effects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

  19. A compact, short-pulse laser for near-field, range-gated imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, F.J.; Helgeson, W.D.; Loubriel, G.M. [Sandia National Labs., Albuquerque, NM (United States); Yates, G.J.; Gallegos, R.A.; McDonald, T.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    This paper describes a compact laser, which produces high power, wide-angle emission for a near-field, range-gated, imaging system. The optical pulses are produced by a 100 element laser diode array (LDA) which is pulsed with a GaAs, photoconductive semiconductor switch (PCSS). The LDA generates 100 ps long, gain-switched, optical pulses at 904 nm when it is driven with 3 ns, 400 A, electrical pulses from a high gain PCSS. Gain switching is facilitated with this many lasers by using a low impedance circuit to drive an array of lasers, which are connected electrically in series. The total optical energy produced per pulse is 10 microjoules corresponding to a total peak power of 100 kW. The entire laser system, including prime power (a nine volt battery), pulse charging, PCSS, and LDA, is the size of a small, hand-held flashlight. System lifetime, which is presently limited by the high gain PCSS, is an active area of research and development. Present limitations and potential improvements will be discussed. The complete range-gated imaging system is based on complementary technologies: high speed optical gating with intensified charge coupled devices (ICCD) developed at Los Alamos National Laboratory (LANL) and high gain, PCSS-driven LDAs developed at Sandia National Laboratories (SNL). The system is designed for use in highly scattering media such as turbid water or extremely dense fog or smoke. The short optical pulses from the laser and high speed gating of the ICCD are synchronized to eliminate the back-scattered light from outside the depth of the field of view (FOV) which may be as short as a few centimeters. A high speed photodiode can be used to trigger the intensifier gate and set the range-gated FOV precisely on the target. The ICCD and other aspects of the imaging system are discussed in a separate paper.

  20. Statistical study on the occurrence of ASAID electric fields

    Directory of Open Access Journals (Sweden)

    S. Liléo

    2010-02-01

    Full Text Available The first statistical results on the occurrence of abnormal subauroral ion drifts (ASAID are presented based on electric and magnetic field measurements from the low-altitude Astrid-2 satellite. ASAID are narrow regions of rapid eastward ion drifts observed in the subauroral ionosphere. They correspond to equatorward-directed electric fields with peak amplitudes seen to vary between 45 mV/m and 185 mV/m, and with latitudinal extensions between 0.2° and 1.2° Corrected Geomagnetic Latitude (CGLat, reaching in some cases up to 3.0° CGLat.

    Opposite to subauroral ion drifts (SAID that are known to be substorm-related, ASAID are seen to occur predominantly during extended periods of low substorm activity. Our results show that ASAID are located in the vicinity of the equatorward edge of the auroral oval, mainly in the postmidnight sector between 23:00 and 03:00 magnetic local time. They are associated with a local current system with the same scale-size as the corresponding ASAID, composed by a region of downward field-aligned currents (FACs flowing in the ASAID poleward side, and a region of upward flowing FACs in the equatorward side. The FACs have densities between 0.5 and 2.0 μA/m2. The data suggest that ASAID do not contribute significantly to the reduction of the ionospheric conductivity. ASAID are seen to have life times of at least 3.5 h.

    A discussion on possible mechanisms for the generation of ASAID is presented. We speculate that the proximity of the electron to the ion plasma sheet inner boundaries and of the plasmapause to the ring current outer edge, during extended quiet times, is an important key for the understanding of the generation of ASAID electric fields.

  1. Relationship between field strength and arousal response in mice exposed to 60-Hz electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, R.S.; Duffy, P.H.; Sacher, G.A.; Ehret, C.F.

    1983-01-01

    White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal response based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.

  2. Multistate nonvolatile straintronics controlled by a lateral electric field.

    Science.gov (United States)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-07-23

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications.

  3. Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field.

    Science.gov (United States)

    Nayak, Pabitra K; Narasimhan, K L; Cahen, David

    2013-05-16

    Charge separation at organic-organic (O-O) interfaces is crucial to how many organic-based optoelectronic devices function. However, the mechanism of formation of spatially separated charge carriers and the role of geminate recombination remain topics of discussion and research. We review critically the contributions of the various factors, including electric fields, long-range order, and excess energy (beyond the minimum needed for photoexcitation), to the probability that photogenerated charge carriers will be separated. Understanding the processes occurring at the O/O interface and their relative importance for effective charge separation is crucial to design efficient solar cells and photodetectors. We stress that electron and hole delocalization after photoinduced charge transfer at the interface is important for efficient free carrier generation. Fewer defects at the interface and long-range order in the materials also improve overall current efficiency in solar cells. In efficient organic cells, external electric fields play only a small role for charge separation.

  4. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by ∇×E, with E determined by plasma dynamics via the generalized Ohm's law; as illustrative simple examples, I discuss the formation of magnetic drift currents in the magnetosphere and of Pedersen and Hall currents in

  5. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern

    NARCIS (Netherlands)

    Lagzi, István; Izsak, F.

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial

  6. Balloon-Borne Electric-Field Observations Relevant to Models for Sprites and Jets

    National Research Council Canada - National Science Library

    Beasley, William

    1999-01-01

    We designed and built a new balloon-borne electric-field-change instrument and launched five of them into thunderstorms to observe changes in the vertical component of electric field caused by lightning...

  7. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists ...

  8. Electrical synapses between AII amacrine cells: dynamic range and functional consequences of variation in junctional conductance.

    Science.gov (United States)

    Veruki, Margaret Lin; Oltedal, Leif; Hartveit, Espen

    2008-12-01

    AII amacrine cells form a network of electrically coupled interneurons in the mammalian retina and tracer coupling studies suggest that the junctional conductance (G(j)) can be modulated. However, the dynamic range of G(j) and the functional consequences of varying G(j) over the dynamic range are unknown. Here we use whole cell recordings from pairs of coupled AII amacrine cells in rat retinal slices to provide direct evidence for physiological modulation of G(j), appearing as a time-dependent increase from about 500 pS to a maximum of about 3,000 pS after 30-90 min of recording. The increase occurred in recordings with low- but not high-resistance pipettes, suggesting that it was related to intracellular washout and perturbation of a modulatory system. Computer simulations of a network of electrically coupled cells verified that our recordings were able to detect and quantify changes in G(j) over a large range. Dynamic-clamp electrophysiology, with insertion of electrical synapses between AII amacrine cells, allowed us to finely and reversibly control G(j) within the same range observed for physiologically coupled cells and to examine the quantitative relationship between G(j) and steady-state coupling coefficient, synchronization of subthreshold membrane potential fluctuations, synchronization and transmission of action potentials, and low-pass filter characteristics. The range of G(j) values over which signal transmission was modulated depended strongly on the specific functional parameter examined, with the largest range observed for action potential transmission and synchronization, suggesting that the full range of G(j) values observed during spontaneous run-up of coupling could represent a physiologically relevant dynamic range.

  9. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  10. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...

  11. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 5. Effects of High Electric Fields on Animals

    Science.gov (United States)

    Isaka, Katsuo

    The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.

  12. High-field electrical transport in amorphous phase-change materials

    Science.gov (United States)

    Kaes, Matthias; Le Gallo, Manuel; Sebastian, Abu; Salinga, Martin; Krebs, Daniel

    2015-10-01

    Electrical transport in chalcogenide-based phase change materials is an active area of research owing to the prominent role played by these materials in the field of information technology. Here, we present transport measurements (IV curves) obtained on line-cells of as-deposited amorphous phase change materials (Ge2Sb2Te5, GeTe, Ag4In3Sb66Te27) over a wide voltage and temperature range (300 K to 160 K). The well defined geometry of our devices enables a description of the transport behavior in terms of conductivity vs. electric field. At higher temperatures (300 K ≥ T ≥ 220 K) and low to intermediate fields (F Poole-Frenkel emission from a two-center Coulomb potential. Based on this model, we observe a temperature dependence of the inter-trap distance, which we can relate to a temperature dependence in the occupation of the defect creating the Coulomb potential governing Poole-Frenkel emission. At higher fields and lower temperatures, the dependency of the IV curve on the electric field can be described by ln(I/I0) = (F/Fc)2. By combining this contribution with that of the Poole-Frenkel emission, we can show that the slope at high fields, Fc, is independent of temperature. We argue that models based on direct tunneling or thermally assisted tunneling from a single defect into the valence band cannot explain the observed behavior quantitatively.

  13. Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields

    Science.gov (United States)

    Arsoski, Vladimir V.; Grujić, Marko M.; Čukarić, Nemanja A.; Tadić, Milan Ž.; Peeters, François M.

    2017-09-01

    The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding method, and the effect of different types of edges is examined analytically. A description based on a continuum model is proposed using an expansion of the tight-binding model in the long-wavelength limit. The wave functions corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons. Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge states shift with magnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons originate from edge states that are found in the band gap.

  14. Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices

    Science.gov (United States)

    Khusid, Boris; Acrivos, Andreas

    2004-01-01

    Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.

  15. Femtosecond measurements of electric fields: from classical amplitudes to quantum fluctuations

    Science.gov (United States)

    Riek, Claudius; Seletskiy, Denis V.; Leitenstorfer, Alfred

    2017-03-01

    Ultrabroadband electro-optic sampling is presented as an extremely sensitive technique to detect electric field amplitudes in free space. The temporal resolution provided by few-femtosecond laser pulses results in a bandwidth exceeding 100 THz, potentially covering the entire infrared spectral range. A pedagogic introduction to the operational principle of the method is given along the lines of a classical coherent input field and a zincblende-type electro-optic sensor. We then show that even the bare vacuum fluctuations of the electric field in the quantum ground state may be detected. This time-domain approach to quantum physics operates directly on sub-cycle scales where no local energy conservation holds. Therefore, signals may be obtained from purely virtual photons without amplification to finite intensity.

  16. Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation.

    Science.gov (United States)

    Weber, W H; Ford, G W

    1981-03-01

    Surface plasmons can be excited on a metal by an external plane-wave beam through the use of prism or grating couplers or by introducing roughness. This can enhance the electric field at the surface compared with that in the incident beam, and it has been suggested that this effect is an important aspect of surface-enhanced Raman scattering. A general upper limit for this field enhancement is derived on the basis of energy conservation. Numerical results are given for Ag, Au, and Cu. With a perfect coupler on a Ag surface, the maximum increase of the square of the electric field in the 2-3-eV range is congruent with300. On randomly roughened surfaces, the estimated enhancements are of the order of unity.

  17. Electric-field Assisted Deposition of the DNA on Polymer Surface

    Science.gov (United States)

    Ryu, Junhwan; Zhu, Ke; Budassi, Julia; Sokolov, Jonathan

    2012-02-01

    Recently, the interaction of DNA with surfaces has been widely studied for its range of applications, including mapping, sequencing and analyzing DNAs. In this study, the Lambda DNA molecules were aligned in 6:50(0.1M NaOH:0.02M MES) buffer solution with different electric fields and deposited onto polymethylmetacrylate (PMMA) surfaces by dipping and retracting PMMA coated silicon wafers into the solution. Electric field was set up with platinum wire and gold plated Si wafer. The DNA strands were dyed with YoYo-1 and observed using a fluorescence microscope. The efficiency of deposition was optimized with respect to DNA concentration, DNA length and electric field. The results indicate that the density and possibly the lengths of the DNA deposited on surface can be controlled by this method. Enhancement of adsorption density of greater than twenty-fold were found using electric field strengths of 10v/cm. This study is supported by NSF-DMR-MRSEC program.

  18. Lightning and Electric Field Structure of a Squall Line During TELEX

    Science.gov (United States)

    Macgorman, D.; Rust, D.; Bruning, E.; Ramig, N.; Apostolakopoulos, I.; Schuur, T.; Biggerstaff, M.; Straka, J.; Krehbiel, P.; Rison, B.; Hamlin, T.

    2004-12-01

    During the 2004 field program for the Thunderstorm Electrification and Lightning Experiment (TELEX), simultaneous electric field soundings, three-dimensional lightning mapping observations, high-resolution Doppler radar data, polarimetric radar data, and environmental soundings were acquired for several mesoscale convective systems, supercell storms, and non-severe thunderstorms. The overall data set was of particularly high quality for a squall line that produced frequent lightning in southern and central Oklahoma on the morning of 19 June 2004. A total of five balloon-borne electric field soundings were launched into the leading line of convection and into the trailing stratiform region. Two 5-cm wavelength mobile Doppler radars (SMART-R's) provided coordinated volume scans every 3 min throughout the period of operations. Furthermore, all operations were well within range of the 10-cm wavelength polarimetric radar and the three-dimensional lightning mapping array. This presentation will emphasize lightning mapping and electric field observations to characterize the electrical behavior of the convective line and the stratiform region.

  19. Electric field measurements on plasma bullets in N2 using four-wave mixing

    Science.gov (United States)

    van der Schans, Marc; Böhm, Patrick; Teunissen, Jannis; Nijdam, Sander; IJzerman, Wilbert; Czarnetzki, Uwe

    2017-11-01

    Atmospheric pressure plasma jets generated by kHz nanosecond voltage pulses typically consist of guided streamer discharges called plasma bullets. In this work, plasma bullets are generated in a pulsed plasma jet using N2 as feed gas and their electric field distribution is investigated by polarization-resolved four-wave mixing. The method and its analysis have been extended to resolve radial profiles of non-uniform, but radially symmetric, electric field distributions. In addition, a calibration procedure using an electrode geometry different from the discharge geometry has been developed. A radially resolved profile of the axial electric field component of a plasma bullet in N2 is presented, as well as the temporal development of the (line-integrated) radial and axial components of the electric field. To verify the results, they are compared to a streamer model adapted to the conditions of the experiment. The peak values obtained from the experiment are in the range expected from streamer literature. However, there are some quantitative differences with the model, which predicts values approximately a factor two lower than those found in the experiment, as well as a faster radial decay. The temporal development shows similar features in both the experiment and the model. Explanations for these differences are provided and further improvements for the method are outlined.

  20. Effects on DPPH inhibition of egg-white protein polypeptides treated by pulsed electric field technology.

    Science.gov (United States)

    Wang, Ke; Wang, Jia; Liu, Bolong; Lin, Songyi; Zhao, Ping; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-05-01

    Egg-white protein polypeptides are potentially used as a functional ingredient in food products. In this study, the effects on DPPH inhibition of egg-white protein polypeptides ranging from 10 to 30 kDa treated by pulsed electric field (PEF) technology were investigated. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition (%) was used to evaluate the antioxidant activity of polypeptides. In order to develop and optimize a pulsed electric field (PEF) mathematical model for improving the antioxidant activity, we have investigated three variables, including concentration (6, 8 and 10 mg mL(-1)), electric field intensity (10, 20 and 30 kV cm(-1)) and pulse frequency (2000, 2350 and 2700 Hz) and subsequently optimized them by response surface methodology (RSM). The concentration (8 mg mL(-1)), electric field intensity (10 kV cm(-1)) and pulse frequency (2000 Hz) were found to be the optimal conditions under which the DPPH inhibition increased 28.44%, compared to the sample without PEF treatment. Both near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyze the change of functional groups. The results showed that PEF technology could improve the antioxidant activity of antioxidant polypeptides from egg-white protein under the optimized conditions. © 2012 Society of Chemical Industry.