WorldWideScience

Sample records for range 400-700 nm

  1. Transmission of light in the visible spectrum (400-700 nm) and blue spectrum (360-540 nm) through CAD/CAM polymers.

    Science.gov (United States)

    Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Ueda, Kazuhiko; Florian, Beuer; Stimmelmayr, Michael

    2016-12-01

    CAD/CAM-fabricated long-term temporary restorations from high-density polymers can be applied for a wide range of indications. Milled from monolithic, mono-colored polymer blocks, the translucency of the material plays an important role for an esthetically acceptable result. The aim of this study was to compare the transmittance through visible light and blue light of CAD CAM polymers to a glass-ceramic material of the same color. Ambarino High-Class (AM), Telio-CAD (TC), Zenotec PMMA (ZT), Cercon base PMMA (CB), CAD Temp (CT), Artbloc Temp (AT), Polycon ae (PS), New Outline CAD (NC), QUATTRO DISK Eco PMMA (GQ), Lava Ultimate (LU), and Paradigm MZ 100 (PA) were employed in this study using the feldspathic glass-ceramic Vita Mark II (MK) as control group. Using a spectrophotometer, the overall light transmittance was measured for each material (n = 40) and was calculated as the integration (t c (λ) dλ [10(-5)]) of all t c values for the wavelengths of blue light (360-540 nm). Results were compared to previous data of the authors for visible light (400 to 700 nm). Wilcoxon test showed significant differences between the light transmittance of visible and blue light for all materials. CAD/CAM polymers showed different translucency for blue and visible light. This means clinicians may not conclude from the visible translucency of a material to its permeability for blue light. This influences considerations regarding light curing. CAD/CAM polymers need to be luted adhesively; therefore, clinicians should be aware about the amount of blue light passing through a restoration.

  2. Evolution of the structure and mechanical properties of a bulk-nitrided corrosion-resistant ferritic steel upon tempering in the temperature range of 400-700°C

    Science.gov (United States)

    Rogachev, S. O.; Nikulin, S. A.; Khatkevich, V. M.

    2017-08-01

    Methods of the X-ray diffraction analysis and electron microscopy were used to study changes in the structural phase state and mechanical properties of bulk-nitrided 08Kh17T steel (0.08 wt % C, 17 wt % Cr, 0.8 wt % Ti, 0.5 wt % Si, 0.8 wt % Mn, 0.025 wt % S, and 0.035 wt % P) upon tempering in the temperature range of 400-700°C. The changes in the mechanical properties of the nitrided steel upon tempering are associated with the predominance of either the solid-solution or precipitation strengthening, i.e., with the presence of martensite in the steel structure at low temperatures of tempering and the precipitation of particles of Cr2N nitrides of different dispersity upon increasing the tempering temperature. The greatest increase in the ultimate tensile strength and yield stress (1.8-2.5 times) at a satisfactory plasticity (no less than 10%) of the bulk-nitrided steel is achieved by tempering bulk-nitrided steel in a temperature range of 600-700°C.

  3. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range.

    Science.gov (United States)

    Jayaraman, V; Cole, G D; Robertson, M; Uddin, A; Cable, A

    2012-07-05

    Microelectromechanical-systems-based vertical-cavity surface-emitting lasers (MEMS-VCSELs) capable of a 150 nm continuous tuning range near 1310 nm are demonstrated. These devices employ a thin optically pumped active region structure with large free-spectral range, which promotes wide and continuous tuning. To achieve VCSEL emission at 1310 nm, a wide-gain-bandwidth indium phosphide-based multiple quantum well active region is combined with a wide-bandwidth fully oxidised GaAs-based mirror through wafer bonding, with tuning enabled by a suspended dielectric top mirror. These devices are capable of being scanned over the entire tuning range at frequencies up to 500 kHz, making them ideal for applications such as swept source optical coherence tomography and high-speed transient spectroscopy.

  4. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    Science.gov (United States)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  5. EFFECT OF ASE ON PERFORMANCE OF TDFA FOR 1479 nm-1555 nm WAVELENGTH RANGE

    Directory of Open Access Journals (Sweden)

    INDERPREET KAUR

    2017-08-01

    Full Text Available In this paper, mathematical modelling of TDFA for broadened gain spectrum and reduced noise figure has been carried out by keeping all practical parameters in consideration. A model of TDFA has been designed based on simulation after considering all the major parameters like ASE pump and signal power. The present research claims to support 96 DWDM channels across 1479 nm-1555 nm wavelength range, with a peak gain of 26 dB (without ASE and with a peak gain 24 dB, ASE of 1.5 dBm for optimum fiber length of TDF as 10 m. With this proposed model, the gain of 24 dB and NF of 7 dB has been achieved.

  6. Search for $\\Theta^+(1540)$ emission in hadron--nucleus collisions at 400--700 GeV

    CERN Document Server

    Asratyan, A E

    2016-01-01

    The data on hadron--nucleus collisions at 400--700 GeV, collected by the SELEX experiment at Fermilab, are analyzed for formation of the exotic pentaquark baryon $\\Theta^+(1540)$. A narrow enhancement near 1539 MeV is observed in the mass spectrum of the $pK^0_S$ system emitted at small $x_F$ from hadron collisions with copper nuclei. The statistical significance of the peak is near 9 standard deviations. Fitted width of the observed $pK^0_S$ resonance is consistent with being entirely due to experimental resolution, and its intrinsic width is restricted to $\\Gamma < 3$ MeV at 90\\% CL. The data favor positive rather than negative strangeness for the $pK^0_S$ resonance observed in $h$Cu collisions. At the same time, the $pK^0_S$ mass spectrum for collisions in carbon is featureless. The yield of $\\Theta^+$ baryons per $h$C collision is restricted to be $< 24$\\% of the yield per $h$Cu collision.

  7. Penetration of nanoparticles in 5 nm to 400 nm size range through two selected fibrous media

    Science.gov (United States)

    Brochot, C.; Mouret, G.; Michielsen, N.; Chazelet, S.; Thomas, D.

    2011-07-01

    Due to the strong development of nanotechnologies, ultrafine particles could represent a growing hazard for workers health. When it is not possible to reduce the risk at its source, filtration systems are one of the means used to limit the exposure to hazardous substances such as airborne particles. The aim of this study is to measure the penetration of nanoparticles on a very large diameter range, from the nanometer size to the most penetrating particle size (MPPS). Here we present experimental results obtained for three different types of nanoparticles. Measurements of nanoparticle penetration through two low efficiency fiberglass media are carried out using two test benches presented in this article. Penetration values for carbon, copper and NaCl nanoparticles decreases with particle size, as predicted by theory. The value of the most penetrating particle size is situated between 100 and 300 nm. No thermal rebound was observed in this particle size range. The penetration values will be used, in further studies, to determine a global penetration model.

  8. Penetration of nanoparticles in 5 nm to 400 nm size range through two selected fibrous media

    Energy Technology Data Exchange (ETDEWEB)

    Brochot, C; Michielsen, N [Aerosol Physics and Metrology Laboratory, Institute for Radiological Protection and Nuclear Safety, BP68 - 91192, Gif-sur-Yvette Cedex (France); Mouret, G; Thomas, D [Laboratoire Reactions et Genie des Procedes, Nancy Universite, BP 20451 - 54001 Nancy (France); Chazelet, S, E-mail: clothilde.brochot@irsn.fr [Laboratory of polluant and air cleaning process, National Institute for Occupational Safety and Health, Rue du Morvan CS 60027 - 54519 Vandoeuvre Les Nancy (France)

    2011-07-06

    Due to the strong development of nanotechnologies, ultrafine particles could represent a growing hazard for workers health. When it is not possible to reduce the risk at its source, filtration systems are one of the means used to limit the exposure to hazardous substances such as airborne particles. The aim of this study is to measure the penetration of nanoparticles on a very large diameter range, from the nanometer size to the most penetrating particle size (MPPS). Here we present experimental results obtained for three different types of nanoparticles. Measurements of nanoparticle penetration through two low efficiency fiberglass media are carried out using two test benches presented in this article. Penetration values for carbon, copper and NaCl nanoparticles decreases with particle size, as predicted by theory. The value of the most penetrating particle size is situated between 100 and 300 nm. No thermal rebound was observed in this particle size range. The penetration values will be used, in further studies, to determine a global penetration model.

  9. Quantitative effect of temperature to the absorbance of aqueous glucose in wavelength range from 1200nm to 1700nm.

    Science.gov (United States)

    Cui, Houxin; An, Lin; Chen, Wenliang; Xu, Kexin

    2005-09-05

    In this paper, to find the quantitative errors of aqueous glucose induced by the temperature change at every wave point ranging from 1200nm to 1700nm, the calibration curve is calculated and shown. During the measurement the temperature varies from 30 degrees to 40 degrees , at a 2 degrees interval, and aqueous glucose concentration ranges from 100mg/dL to 500mg/dL, at a interval of 100mg/dL. The absorption of aqueous glucose decreases with the increasing of temperature, also the absorbance decreases. In addition, only 1 degrees change in the temperature induces about -7x10-3 and -4x10-3 errors in the absorbance of the aqueous glucose at the wavelength of 1550nm, 1610nm respectively. So the examined result should be correct according to the data read from the calibration curve if the temperatures of modeling and measuring are not uniform. Using this method, the error caused by the temperature change can be reduced even eliminated.

  10. Megahertz FDML Laser with up to 143nm Sweep Range for Ultrahigh Resolution OCT at 1050nm

    CERN Document Server

    Kolb, Jan Philip; Eibl, Mattias; Pfeiffer, Tom; Wieser, Wolfgang; Huber, Robert

    2016-01-01

    We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1um center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6um (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0um by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.

  11. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range.

    Science.gov (United States)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-21

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  12. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  13. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    Science.gov (United States)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  14. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    Science.gov (United States)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  15. Cavity-ring-down spectroscopy on water vapor in the range 555-604 nm

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.M.G.; Levelt, P.F.; Polyansky, O.L.; Zobov, N.F.; Tennyson, J.

    2001-01-01

    The method of pulsed cavity-ring-down spectroscopy was employed to record the water vapor absorption spectrum in the wavelength range 555-604 nm. The spectrum consists of 1830 lines, calibrated against the iodine standard with an accuracy of 0.01 cm

  16. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Pedersen, Christian; Andersen, Peter E.

    2012-01-01

    Recently, the wavelength range around 1060 nm has become attractive for retinal imaging with optical coherence tomography (OCT), promising deep penetration into the retina and the choroid. The adjacent water absorption bands limit the useful bandwidth of broadband light sources, but until now...... sources for OCT....

  17. Optical properties of mice skull bone in the 455- to 705-nm range

    Science.gov (United States)

    Haleh, Soleimanzad; Hirac, Gurden; Frédéric, Pain

    2017-01-01

    Rodent brain is studied to understand the basics of brain function. The activity of cell populations and networks is commonly recorded in vivo with wide-field optical imaging techniques such as intrinsic optical imaging, fluorescence imaging, or laser speckle imaging. These techniques were recently adapted to unrestrained mice carrying transcranial windows. Furthermore, optogenetics studies would benefit from optical stimulation through the skull without implanting an optical fiber, especially for longitudinal studies. In this context, the knowledge of bone optical properties is requested to improve the quantitation of the depth and volume of imaged or stimulated tissues. Here, we provide experimental measurements of absorption and reduced scattering coefficients of freshly excised mice skull for wavelengths between 455 and 705 nm. Absorption coefficients from 6 to 8 months mice skull samples range between 1.67±0.28 mm-1 at 455 nm and 0.47±0.07 mm-1 at 705 nm, whereas reduced scattering coefficients were in the range of 2.79±0.26 mm-1 at 455 nm up to 2.29±0.12 mm-1 at 705 nm. In comparison, measurements carried out on 4 to 5 weeks mice showed similar spectral profiles but smaller absorption and reduced scattering coefficients by a factor of about 2 and 1.5, respectively.

  18. Optical properties of human colon tissues in the 350 – 2500 nm spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Bashkatov, A N; Genina, E A; Kochubey, V I; Kolesnikova, E A; Tuchin, V V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation); Rubtsov, V S [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation)

    2014-08-31

    We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)

  19. Experimental study on the 1550 nm all fiber heterodyne laser range finder.

    Science.gov (United States)

    Yang, Fu; He, Yan; Shang, Jianhua; Chen, Weibiao

    2009-12-01

    In this paper, a 1550 nm all fiber monostatic laser range finder system based on linear chirp modulation and heterodyne detection is presented. The fiber end face signal is used as a range starting indicator. The transmitted laser power is 5 mW with a laser pulse length of 131 micros and a linear chirp bandwidth of 40 MHz. The telescope with an aperture of 3 cm couples the return light into a single mode fiber. Better than 14 cm distance accuracy and 26 dB SNR can be achieved for a wood target at a distance of about 43 m by using the above system setup. Several experiments with different system parameters are conducted. The system performance is tested under variable laser pulse length, linear chirp bandwidth, local oscillator power, and background noise. Finally, an application of the linear chirp modulation heterodyne laser range finder in a spaceborne ranging system is proposed.

  20. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  1. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected...... by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth...... for better depth resolution in combination with high tuning speed. We investigate the performance of novel semiconductor laser gain media in fiber-based high-speed swept source prototypes. We demonstrate high output power using a tapered amplifier, and we achieve improved depth resolution with a broadband...

  2. Graphene mode-locked femtosecond Cr2+:ZnS laser with ~300 nm tuning range.

    Science.gov (United States)

    Cho, Won Bae; Choi, Sun Young; Zhu, Chunhui; Kim, Mi Hye; Kim, Jun Wan; Kim, Jin Sun; Park, Hyung Ju; Shin, Dong Ho; Jung, Moon Youn; Wang, Fengqiu; Rotermund, Fabian

    2016-09-05

    Graphene has proved to be an excellent broadband saturable absorber for mode-locked operation of ultrafast lasers. However, for the mid-infrared (mid-IR) range where broadly tunable sources are in great needs, graphene-based broadly tunable ultrafast mid-IR lasers have not been demonstrated so far. Here, we report on passive mode-locking of a mid-IR Cr:ZnS laser by utilizing a transmission-type monolayer graphene saturable absorber and broad spectral tunability between 2120 nm and 2408 nm, which is the broadest tuning bandwidth ever reported for graphene mode-locked mid-IR solid-state lasers. The recovery time of the saturable absorber is measured to be ~2.4 ps by pump-probe technique at a wavelength of 2350 nm. Stably mode-locked Cr:ZnS laser delivers Fourier transform-limited 220-fs pulses with a pulse energy of up to 7.8 nJ.

  3. Excited state absorption measurement in the 900-1250 nm wavelength range for bismuth-doped silicate fibers.

    Science.gov (United States)

    Yoo, Seongwoo; Kalita, Mridu P; Nilsson, Johan; Sahu, Jayanta

    2009-02-15

    The feasibility of direct laser diode pumping of Bi-doped fiber lasers at the wavelengths of 915 and 975 nm was examined by measuring excited state absorption in Bi-doped silicate fibers for the wavelength range of 900-1250 nm. When the Bi-doped fibers were pumped at 1047 nm a strong excited state absorption was found at 915 and 975 nm, whereas no significant excited state absorption was observed in the 1080 nm pumping band nor in the emission band, approximately 1160 nm, of Bi-doped fiber lasers.

  4. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany

    2016-09-09

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.

  5. Optical properties of mice's stool in 550 to 1000 nm wavelength range.

    Science.gov (United States)

    Isler, Helene; Germanier, Catherine; Ahnen, Linda; Jiang, Jingjing; Lindner, Scott; Di Costanzo Mata, Aldo; Karen, Tanja; Sánchez Majos, Salvador; Wolf, Martin; Kalyanov, Alexander

    2017-08-17

    The aim of this work was to measure optical properties of stool of mice to provide this relevant wavelength-dependent behavior for optical imaging modalities such as fluorescent molecular tomography and near-infrared optical tomography. BALB/c nude female mice were studied and optical properties of the stool were determined by employing the inverse adding-doubling approach. The animals were kept on chlorophyll-free diet. Nine stool samples were measured. The wavelength-dependent behavior of absorption and scattering in 550 to 1000 nm range is presented. The reduced scattering spectrum is fitted to the Mie scattering approximation in the near-infrared (NIR) wavelength range and to the Mie + Rayleigh approximation in visible/NIR range with the fitting coefficients presented. The study revealed that the absorption spectrum of stool can lead to crosstalk with the spectrum of hemoglobin in the NIR range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. UV absorbance of the human cornea in the 240- to 400-nm range.

    Science.gov (United States)

    Kolozsvári, Lajos; Nógrádi, Antal; Hopp, Béla; Bor, Zsolt

    2002-07-01

    To determine the UV absorbance of the corneal layers (epithelium, Bowman layer, stroma) in the 240- to 400-nm range. Consecutive slices (100 microm) of human cadaveric corneas were cut, and the UV absorbance of each sample was determined in a scanning spectrophotometer. In some cases the epithelium was scraped off and its absorbance measured separately. The investigation of the UV-B absorption of consecutive corneal slices revealed evidence that UV-B absorption is 1.8 times higher in the anterior 100 microm of the human cornea than in the posterior layers. The UV absorbance of the posterior layers was uniform, showing no further structural dependence. The epithelium and Bowman layer are both effective absorbers of UV-B radiation. These results suggest that the anterior corneal layers are particularly important in preventing damage by UV-B radiation.

  7. Optical properties of animal tissues in the wavelength range from 350 to 2600 nm

    Science.gov (United States)

    Filatova, Serafima A.; Shcherbakov, Ivan A.; Tsvetkov, Vladimir B.

    2017-03-01

    The optical properties of different cow and pig biological tissues such as skeletal muscle, adipose, spinal cord, and dura mater of the spinal cord were investigated in the spectral range of 350 to 2600 nm. The measurements were carried out by a commercially available spectrophotometer SHIMADZU UV 3101PC. The wavelength dependence on the scattering coefficient has been observed to follow a power-law decay for skeletal muscle and dura mater of spinal cord. The influence of time delay between the sample preparation and measuring of transmittance spectra on the data reasonableness was reviewed. The conclusion about the benefits of 2-μm lasers application in surgery is given for the tissue types listed above.

  8. UV absorbance of a bioengineered corneal stroma substitute in the 240-400 nm range.

    Science.gov (United States)

    Ionescu, Ana-Maria; de la Cruz Cardona, Juan; González-Andrades, Miguel; Alaminos, Miguel; Campos, Antonio; Hita, Enrique; del Mar Pérez, María

    2010-08-01

    To determine the UV absorbance of a bioengineered human corneal stroma construct based on fibrin and fibrin-agarose scaffolds in the 240-400 nm range. Three types of artificial substitutes of the human corneal stroma were developed by tissue engineering using fibrin and fibrin with 0.1% and 0.2% agarose scaffolds with human keratocytes immersed within. After 28 days of culture, the UV absorbance of each sample was determined using a spectrophotometer. The thickness of corneal stroma samples was determined by light microscope. For all the 3 types of corneal stroma substitutes studied, the range of the UV absorbance values was similar to that of the native human corneal stroma, although the fibrin with 0.1% agarose stroma substitute had the best UV filtering properties. The higher UV absorbance of the artificial substitute of the human corneal stroma was in the UV-B and -A ranges, suggesting that these artificial tissues could have potential clinical usefulness and proper UV light-absorption capabilities. Our data suggest that the bioengineered human corneal substitute of fibrin with 0.1% agarose is an effective absorber of harmful UV radiation and could therefore be potentially useful.

  9. Application of prominent spectral lines in the 125-180 nm range for inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, O.; Heitland, P. [Spectro Analytical Instruments GmbH, Kleve (Germany)

    2001-12-01

    A new axially viewed ICP optical emission spectrometer featuring an argon-filled optic and CCD detectors was evaluated for the application of prominent spectral lines in the 125-180 nm range. This wavelength range was investigated for several analytical applications of inductively coupled plasma optical emission spectrometry (ICP-OES). There are different advantages for the application of spectral lines below 180 nm. A number of elements, such as Al, Br, Cl, Ga, Ge, I, In, N, P, Pb, Pt, S and Te, were found to have the most intense spectral lines in the wavelength range from 125-180 nm. Compared with lines above 180 nm higher signal-to-background ratios were found. Low limits of detection using pneumatic nebulization of aqueous solutions for sample introduction were calculated for Al II 167.080 nm (0.04 {mu}g L{sup -1}), Br I 154.065 nm (9 {mu}g L{sup -1}), Cl I 134.724 nm (19 {mu}g L{sup -1}), Ga II 141.444 nm (0.8 {mu}g L{sup -1}), Ge II 164.919 nm (1.3 {mu}g L{sup -1}), I I 142.549 nm (13 {mu}g L{sup -1}), In II 158.583 nm (0.2 {mu}g L{sup -1}), P I 177.500 nm (0.9 {mu}g L{sup -1}), Pb II 168.215 nm (1.5 {mu}g L{sup -1}), Pt II 177.709 nm (2.6 {mu}g L{sup -1}), S I 180.731 nm (1.9 {mu}g L{sup -1}) and Te I 170.00 nm (4.6 {mu}g L{sup -1}). Numerous application examples for the use of those lines and other important spectral lines below 180 nm are given. Because of fewer emission lines from transition elements, such as Fe, Co, Cr, lines below 180 nm often offer freedom from spectral interferences. Additional lines of lower intensity for the determination of higher elemental concentrations are also available in the vacuum ultraviolet spectral range. This is specially useful when the concentrations are not in the linear range of calibration curves obtained with commonly used lines. (orig.)

  10. Temperature dependence of the ozone obsorption spectrum over the wavelength range 410 to 760 nm

    Science.gov (United States)

    Burkholder, James B.; Talukdar, Ranajit K.

    1994-01-01

    The ozone, O3, absorption cross sections between 410 and 760 nm, the Chappuis band, were measured at 220, 240, 260, and 280 K relative to that at room temperature using a diode array spectrometer. The measured cross sections varied very slightly, less than 1%, with decreasing temperature between 550 and 660 nm, near the peak of the Chappuis band. At wavelengths away from the peak, the absorption cross sections decreased with decreasing temperature; e.g., about 40% at 420 nm between 298 and 220 K. These results are compared with previous measurements and the impact on atmospheric measurements are discussed.

  11. Space-Qualifiable 1064 nm Fiber Based Transmitter for Long Range Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek has developed transmitters for Lidar and 3D imaging applications based on fiber optics architectures both at 1064nm. We have demonstrated an all fiber...

  12. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  13. High efficiency AlGaInN-based light emitting diode in the 360-380 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hisao; Wang, Hong-Xing; Sato, Daisuke; Takaki, Ryohei; Wada, Naoki; Tanahashi, Tetsuya; Yamashita, Kenji; Kawano, Shunsuke; Mizobuchi, Takashi; Dempo, Akihiko; Morioka, Kenji; Kimura, Masahiro; Nohda, Suguru [Nitride Semiconductors Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan); Sugahara, Tomoya [Satellite Venture Business Laboratory, The University of Tokushima (Japan); Sakai, Shiro [Department of Electrical and Electronic Engineering, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2003-11-01

    High performance LEDs emitting in the wavelength range 360-380 nm, are fabricated on sapphire substrates by one-time metalorganic chemical vapor deposition (MOCVD) without using epitaxial lateral overgrowth (ELO) or similar techniques. By improving layer structures and growth conditions, the output power of the LEDs was much improved. The light output power of the LEDs at an injection current of 20 mA is 3.2 mW, 2.5 mW and 1 mW at wavelengths of 378 nm, 373 nm and 363 nm, which correspond to an external quantum efficiency of 4.8%, 3.8% and 1.4%, respectively. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Nano-Position Sensors with Superior Linear Response to Position and Dynamic Range from Sub-nm to Centimeters

    Science.gov (United States)

    Lee, Sheng-Chiang; Peters, Randall

    2010-03-01

    Commercial nano-positioners have achieved direct position measurements at the scale of 0.01 nm with capacitive sensing metrology. However, the commercial sensors have small dynamic ranges (up to only a few hundred μm) and are relatively large in size (centimeters in the transverse directions), which is necessary for healthy signal detections but making it difficult to use on smaller devices. The small dynamic range also limits its applications in which large materials (on the scale of centimeters or greater) are handled with needs of sub-nm resolutions. What has been done in the past is to combine the fine and coarse position sensors with different dynamic ranges to cover the required dynamic range. In this paper, we present a novel capacitive position sensing metrology with ultra-wide dynamic range from sub-nm to literally any practically desired length for a translation stage. This sensor will greatly simplify the task and enhance the performance of direct metrology in a hybrid translational stage covering translation tasks from sub-nm to centimeters.

  15. Mobility of Chromophores Absorbing Light in the 320-420 nm Range in Transparent and Cataract Lens Tissue

    Science.gov (United States)

    Halets-Bui, I. V.; Sukhodol, A. A.; Shcharbin, D. G.

    2014-11-01

    We have analyzed the spectral and kinetic characteristics of phosphorescence at room temperature on a millisecond time scale for transparent and cataract lens tissues. We have studied the nature of the change (with age and with cataract development in the lens tissues) in the molecular mobility of the products absorbing light in the 320-420 nm range.

  16. PMMA-based resists for a spectral range near 13 nm

    CERN Document Server

    Bulgakova, S A; Luchin, V I; Mazanova, L M; Molodnjakov, S A; Salashchenko, N N

    2000-01-01

    A number of poly(meth)acrylates positive resists of various chemical structures were synthesized and the sensitivity of 0.2 mu m resists films to soft X-ray radiation of a laser plasma source at a wavelength of 13 nm was investigated. We found that the sensitivity of methylmethacrylate (MMA) copolymers depending on the nature of comonomers changes within the limits of 12.3-1.7 mJ/cm sup 2 in a combination with the contrast gamma=5.4-1.0. This sensitivity is higher than that of PMMA, which changes from 12 to 45 mJ/cm sup 2 at the contrast gamma=2.6-8.0 depending on the developer composition of methylethylketone (MEK)/isopropyl alcohol (IPA).

  17. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm

    Science.gov (United States)

    Wu, Shuang-hong; Li, Wen-lian; Chu, Bei; Su, Zi-sheng; Zhang, Feng; Lee, C. S.

    2011-07-01

    We demonstrate a photodetector (PD) with broad spectral response by taking the advantages of more flexible device design in using small molecule materials. The optimized device shows an external quantum efficiency of over 20% from 200 to 900 nm. The high performance is achieved by jointing two donor (D)/acceptor (A) hetero-junctions [m-MTDATA(D)/TiOPc(A) and TiOPc(D)/F16CuPc: PTCDI-C8(A)] such that photoresponses over the deep-ultraviolet (UV) and visible-near infrared regions can be independently optimized. By choosing D- and A-materials with matched energy level alignment, high carrier mobility, and balanced carrier transporting properties, the present PD shows a fast response of 56 ns. The high speed and deep-UV sensitivity might lead to potential military applications such as missile tracking in addition to optical communications, chemical/biological sensing etc.

  18. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm.

    Science.gov (United States)

    Salo, Daniel; Zhang, Hairong; Kim, David M; Berezin, Mikhail Y

    2014-08-01

    In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range.

  19. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  20. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  1. Development of photonic-crystal-fiber-based optical coupler with a broad operating wavelength range of 800 nm

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Min-Seok; Kwon, Oh-Jang; Kim, Hyun-Joo; Chu, Su-Ho; Kim, Gil-Hwan; Lee, Sang-Bae; Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    We developed a broadband optical coupler based on a photonic crystal fiber (PCF), which is very useful for applications to optical coherence tomography (OCT). The PCF-based coupler is fabricated by using a fused biconical tapering (FBT) method. The PCF has six hexagonally-stacked layers of air holes. The PCF-based coupler has a nearly-flat 50/50 coupling ratio in a broad bandwidth range of 800 nm, which is much wider than that previously reported for a PCF-based coupler and a singlemode-fiber-based coupler. The bandwidth and the bandedge wavelength of the broadband coupler are controlled by changing the elongation length. The fabricated broadband optical coupler has great potential for realizing a broadband interferogram with a high resolution in an OCT system.

  2. All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120  nm tuning range.

    Science.gov (United States)

    Xu, Zhuo; Dou, Zhi-Yuan; Hou, Jing; Xu, Xiao-Jun

    2017-07-20

    We demonstrate an all-fiber widely wavelength-tunable thulium-doped fiber laser (TDFL) mode locked by a semiconductor saturable absorber mirror (SESAM). The tuning range spans 121 nm, from 1862 nm to 1983 nm. The central wavelength is tuned by a grating-based tunable filter in the ring laser cavity. To the best of our knowledge, this is so far the most widely wavelength-tunable TDFL mode locked by SESAM.

  3. Fluorescence anisotropy of indole molecules under two-photon excitation in the spectral range of 485-510 nm

    Science.gov (United States)

    Sasin, M. E.; Tushkanov, V. I.; Smolin, A. G.; Vasyutinskii, O. S.

    2017-10-01

    Decay of polarized fluorescence in indole dissolved in propylene glycol under two-photon excitation by femtosecond laser pulses in the wavelength range of 485-510 nm has been studied. It is shown that under the experimental conditions used the fluorescence decay signal can be well described by a single excited state lifetime τf and a single rotation diffusion time τrot. By processing the data obtained, the times τf and τrot as well as anisotropy parameter r 0 characterizing the symmetry of two-photon excitation of indole molecules have been determined. Decreasing of the anisotropy parameter r0 down to zero under two-photon excitation energy higher than 5.1 eV has been observed. Interpretation of the obtained results have been done on the basis of ab initio quantum-mechanical computations. A model of energy relaxation under the condition of twophoton excitation of indole in a polar solvent has been discussed.

  4. Optical properties of dental restorative materials in the wavelength range 400 to 700 nm for the simulation of color perception.

    Science.gov (United States)

    Friebel, Moritz; Povel, Kirsten; Cappius, Hans-Joachim; Helfmann, Jürgen; Meinke, Martina

    2009-01-01

    Aesthetic restorations require dental restorative materials to have optical properties very similar to those of the teeth. A method is developed to this end to determine the optical parameters absorption coefficient mu(a), scattering coefficient mu(s), anisotropy factor g, and effective scattering coefficient mu(s) (') of dental restorative materials. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer followed by inverse Monte Carlo simulations. Using this method the intrinsic optical parameters are determined for shade B2 of the light-activated composites TPH((R)) Spectrum, Esthet-X, and the Ormocer Definite in the wavelength range 400 to 700 nm. By using the determined parameters mu(a), mu(s), and g together with an appropriate phase function, the reflectance of samples with 1-mm layer thickness and shade B2 could be predicted with a very high degree of accuracy using a forward Monte Carlo simulation. The color perception was calculated from the simulated reflectance according to the CIELAB system. We initiate the compilation of a data pool of optical parameters that in the future will enable calculation models to be used as a basis for optimization of the optical approximation of the natural tooth, and the composition of new materials and their production process.

  5. Optical properties of dental restorative materials in the wavelength range 400 to 700 nm for the simulation of color perception

    Science.gov (United States)

    Friebel, Moritz; Povel, Kirsten; Cappius, Hans-Joachim; Helfmann, Jürgen; Meinke, Martina

    2009-09-01

    Aesthetic restorations require dental restorative materials to have optical properties very similar to those of the teeth. A method is developed to this end to determine the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g, and effective scattering coefficient μs' of dental restorative materials. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer followed by inverse Monte Carlo simulations. Using this method the intrinsic optical parameters are determined for shade B2 of the light-activated composites TPH® Spectrum®, Esthet-X®, and the Ormocer® Definite® in the wavelength range 400 to 700 nm. By using the determined parameters μa, μs, and g together with an appropriate phase function, the reflectance of samples with 1-mm layer thickness and shade B2 could be predicted with a very high degree of accuracy using a forward Monte Carlo simulation. The color perception was calculated from the simulated reflectance according to the CIELAB system. We initiate the compilation of a data pool of optical parameters that in the future will enable calculation models to be used as a basis for optimization of the optical approximation of the natural tooth, and the composition of new materials and their production process.

  6. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400 1100 nm

    Science.gov (United States)

    Ao, Huilan; Xing, Da; Wei, Huajiang; Gu, Huaimin; Wu, Guoyong; Lu, Jianjun

    2008-04-01

    The absorption coefficients, the reduced scattering coefficients and the optical penetration depths for native and coagulated human normal and adenomatous colon tissues in vitro were determined over the range of 400-1100 nm using a spectrophotometer with an internal integrating sphere system, and the inverse adding-doubling method was applied to calculate the tissue optical properties from diffuse reflectance and total transmittance measurements. The experimental results showed that in the range of 400-1100 nm there were larger absorption coefficients (P thermotherapy (LITT) and photodynamic therapy (PDT). It is necessary to adjust the application parameters of lasers to achieve optimal therapy.

  7. Nondestructive assessment of fruit biological age in Brazilian mangoes by time-resolved reflectance spectroscopy in the 540-900 nm spectral range

    NARCIS (Netherlands)

    Spinelli, L.; Rizzolo, A.; Vanoli, M.; Grassi, M.; Eccher Zerbini, P.C.; Meirelles de Azevedo Pementel, A.; Torricelli, A.

    2013-01-01

    Time-resolved Reflectance Spectroscopy (TRS) in the 540–900 nm spectral range has been tested in order to assess nondestructively the biological age of Brazilian mangoes. To this purpose a TRS set-up has been used to measure absorption and scattering coefficients of 60 intact mango fruits (cultivar

  8. NARROW-BAND EXTREME-ULTRAVIOLET LASER-RADIATION TUNABLE IN THE RANGE 90.5-95-NM - APPLICATION TO THE SPECTROSCOPY OF N2

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Eikema, K.S.E.; Hogervorst, W.

    1993-01-01

    Tunable, narrowband extreme ultraviolet radiation in the range 90.5-95 nm with only limited intensity variations is produced by frequency-tripling ultraviolet light from a frequency-doubled dye laser in a gas-jet of xenon. Acetylene gas is found to be an efficient medium for third-harmonic

  9. Heterogeneous quantum dot/silicon photonics-based wavelength-tunable laser diode with a 44 nm wavelength-tuning range

    Science.gov (United States)

    Kita, Tomohiro; Yamamoto, Naokatsu; Matsumoto, Atsushi; Kawanishi, Tetsuya; Yamada, Hirohito

    2016-04-01

    A heterogeneous wavelength-tunable laser diode combining quantum dot and silicon photonics technologies is proposed. A compact wavelength-tunable filter with two ring resonators was carefully designed and fabricated using silicon photonics technology. The tunable laser combining the wavelength-tunable filter and an optical amplifier, which includes InAs quantum dots, achieved a 44.0 nm wavelength-tuning range at around 1250 nm. The broadband optical gain of the quantum dot optical amplifier was effectively used by the optimized wavelength-tunable filter. This heterogeneous wavelength-tunable laser diode could become a breakthrough technology for high-capacity data transmission systems.

  10. Laboratory reflectometer for the investigation of optical elements in a wavelength range of 5-50 nm: description and testing results

    Science.gov (United States)

    Garakhin, S. A.; Zabrodin, I. G.; Zuev, S. E.; Kas'kov, I. A.; Lopatin, A. Ya.; Nechay, A. N.; Polkovnikov, V. N.; Salashchenko, N. N.; Tsybin, N. N.; Chkhalo, N. I.; Svechnikov, M. V.

    2017-05-01

    We describe a laboratory reflectometer developed at the IPM RAS for precision measurements of spectral and angular dependences of the reflection and transmission coefficients of optical elements in a wavelength range of 5-50 nm. The radiation is monochromatised using a high-resolution Czerny-Turner spectrometer with a plane diffraction grating and two spherical collimating mirrors. A toroidal mirror focuses the probe monochromatic beam on a sample. The X-ray source is a highly ionised plasma produced in the interaction of a high-power laser beam with a solid target at an intensity of 1011-1012 W cm-2. To stabilise the emission characteristics, the target executes translatory and rotary motions in such a way that every pulse irradiates a new spot. The short-focus lens is protected from contamination by erosion products with the use of a specially designed electromagnetic system. The samples under study are mounted on a goniometer is accommodated in a dedicated chamber, which provides five degrees of freedom for samples up to 500 mm in diameter and two degrees of freedom for a detector. The sample mass may range up to 10 kg. The X-ray radiation is recorded with a detector composed of a CsI photocathode and two microchannel plates. A similar detector monitors the probe beam intensity. The spectral reflectometer resolution is equal to 0.030 nm with the use of ruled gratings with a density of 900 lines mm-1 (spectral range: 5-20 nm) and to 0.067 nm for holographic gratings with a density of 400 lines mm-1 (spectral range: 10-50 nm). We analyse the contribution of higher diffraction orders to the probe signal intensity and the ways of taking it into account in the measurements. Examples are given which serve to illustrate the reflectometer application to the study of multilayer mirrors and filters.

  11. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm

    Science.gov (United States)

    Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.

    2014-01-01

    Abstract. In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range. PMID:25104414

  12. Frequency tripled 1542 nm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range

    CERN Document Server

    Philippe, Charles; Holleville, David; Lours, Michel; Minh-Pham, Tuam; Hrabina, Jan; Burck, Frederic Du; Wolf, Peter; Acef, Ouali

    2016-01-01

    We report on telecom laser frequency stabilization to narrow iodine hyperfine line in the green range of the optical domain, after a frequency tripling process using two nonlinear PPLN crystals. We have generated up to 300 mW optical power in the green (P3w), from 800 mW of infrared power (Pw). This result corresponds to an optical conversion efficiency eta= P3w/Pw ~ 36 %. To our knowledge, this is the best value ever demonstrated for a CW frequency tripling process. We have used a narrow linewidth iodine hyperfine line (component a1 of the 127I2 R 35 (44-0) line) to stabilize the IR laser yielding to frequency stability of 4.8x10-14 t-1/2 with a minimum of 6x10-15 reached after 50 s of integration time. The whole optical setup is very compact and mostly optically fibered. This approach opens the way for efficient and elegant architecture development for space applications as one of several potential uses.

  13. Wavelength dispersion measurement of electro-optic coefficients in the range of 520 to 930 nm in rubidium titanyl phosphate using spectral interferometry.

    Science.gov (United States)

    Gobert, Olivier; Fedorov, Nikita; Mennerat, Gabriel; Lupinski, Dominique; Guillaumet, Delphine; Perdrix, Michel; Bourgeade, Antoine; Comte, Michel

    2012-02-10

    Rubidium titanyl phosphate (RTP) is widely used for electro-optical applications at low switching voltages. RTP is nonhygroscopic and does not induce piezoelectric ringing up to the megahertz range. It has large electro-optic (EO) coefficients and a high damage threshold. We present here the EO coefficient wavelength dispersion measurements in the [550,950] nm spectral range using a method based on spectral interferometry. These data are necessary for, among other things, a quantitative modelization of an EO carrier-envelope phase shifter.

  14. Electronic sideband locking of 318.6nm UV laser to an ultrastable optical cavity with a wide continuously tunable range

    CERN Document Server

    Bai, Jiandong; He, Jun; Wang, Junmin

    2016-01-01

    We have demonstrated a frequency-stabilized tunable 318.6 nm ultraviolet (UV) laser system for the single-photon 6S1/2 - nP (n = 70 ~ 100) Rydberg excitation of cesium atoms. The 637.2 nm laser produced by single-pass sum frequency generation from two infrared fiber lasers is offset locked to a high-finesse ultra-low expansion (ULE) optical cavity placed in ultra-high vacuum using the electronic sideband locking technique. The generated 318.6 nm UV laser via cavity-enhanced second-harmonic generation can be continuously tuned over 4 GHz by indirectly changing modulation frequency on the electro-optic phase modulator while the whole laser system remains locked. We analyze the tuning range mainly depends on the modulator bandwidth and the tunable range of the seed laser. The locking scheme offers a method to compensate the frequency difference between the reference frequency and the goal frequency to a desired excited state, and has huge potential in precision spectroscopic experiments of cold atoms.

  15. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100 nm range

    Energy Technology Data Exchange (ETDEWEB)

    Canada, J.; Maj, A. [Departamento de Termodinamica Aplicada, Universidad Politecnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain); Utrillas, M.P.; Martinez-Lozano, J.A.; Pedros, R.; Gomez-Amo, J.L. [Departamento de Fisica de la Tierra y Termodinamica, Facultat de Fisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain)

    2007-10-15

    An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectro radiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330-1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. (author)

  16. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Ao Huilan; Xing Da; Wei Huajiang; Gu Huaimin [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, ina Normal University, Guangzhou 510631 (China); Wu Guoyong; Lu Jianjun [Department of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)], E-mail: xingda@scnu.edu.cn

    2008-04-21

    The absorption coefficients, the reduced scattering coefficients and the optical penetration depths for native and coagulated human normal and adenomatous colon tissues in vitro were determined over the range of 400-1100 nm using a spectrophotometer with an internal integrating sphere system, and the inverse adding-doubling method was applied to calculate the tissue optical properties from diffuse reflectance and total transmittance measurements. The experimental results showed that in the range of 400-1100 nm there were larger absorption coefficients (P < 0.01) and smaller reduced scattering coefficients (P < 0.01) for adenomatous colon tissues than for normal colon tissues, and there were smaller optical penetration depths for adenomatous colon tissues than for normal colon tissues, especially in the near-infrared wavelength. Thermal coagulation induced significant increase of the absorption coefficients and reduced scattering coefficients for the normal and adenomatous colon tissues, and significantly reduced decrease of the optical penetration depths for the normal and adenomatous colon tissues. The smaller optical penetration depth for coagulated adenomatous colon tissues is a disadvantage for laser-induced thermotherapy (LITT) and photodynamic therapy (PDT). It is necessary to adjust the application parameters of lasers to achieve optimal therapy.

  17. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    Science.gov (United States)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  18. EVALUATION OF SKIN-CANCER RISK RESULTING FROM LONG-TERM OCCUPATIONAL EXPOSURE TO RADIATION FROM ULTRAVIOLET-LASERS IN THE RANGE FROM 190 TO 400 NM

    NARCIS (Netherlands)

    Sterenborg, H. J.; de Gruijl, F. R.; Kelfkens, G.; van der Leun, J. C.

    1991-01-01

    The relative risk of occupational exposure to radiation from UV lasers was estimated using a mathematical model based on both epidemiological data and animal experiments. Calculations were performed for the 193 nm ArF excimer laser cornea shaping, the 308 nm XeCl excimer laser for coronary

  19. Imaging Grating Spectrometer (I-GRASP) for Solar Soft X-Ray Spectral Measurements in Critically Under-Observed 0.5 - 7 nm Spectral Range

    Science.gov (United States)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.; Woods, T. N.; Jones, A. R.; Thiemann, E.; Mason, J. P.

    2016-12-01

    We discuss science and technology advantages of the Imaging Grating Spectrometer (I-GRASP) based on a novel transmission diffracting grating (TDG) made possible by technology for fabricating Fresnel zone plates (ZPs) developed at the Lawrence Berkeley National Laboratory (LBNL). Older version TDGs with 200 nm period available in the 1990s became a proven technology for providing 21 years of regular measurements of solar EUV irradiance. I-GRASP incorporates an advanced TDG with a grating period of 50 nm providing four times better diffraction dispersion than the 200 nm period gratings used in the SOHO/CELIAS/SEM, the SDO/EVE/ESP flight spectrophotometers, and the EVE/SAM sounding rocket channel. Such new technology for the TDG combined with a back-illuminated 2000 x 1504 CMOS image sensor with 7 micron pixels, will provide spatially-and-spectrally resolved images and spectra from individual Active Regions (ARs) and solar flares with high (0.15 nm) spectral resolution. Such measurements are not available in the spectral band from about 2 to 6 nm from existing or planned spectrographs and will be significantly important to study ARs and solar flare temperatures and dynamics, to improve existing spectral models, e.g. CHIANTI, and to better understand processes in the Earth's atmosphere processes. To test this novel technology, we have proposed to the NASA LCAS program an I-GRASP version for a sounding rocket flight to increase the TDG TRL to a level appropriate for future CubeSat projects.

  20. UV spectroscopy of Titan's atmosphere, planetary organic chemistry and prebiological synthesis. II - Interpretation of new IUE observations in the 220-335 nm range

    Science.gov (United States)

    Courtin, Regis; Wagener, Richard; Mckay, Christopher P.; Caldwell, John; Fricke, Karl-Heinrich

    1991-01-01

    The theoretical model developed by McKay et al. (1989) to characterize the size distribution, thermal structure, and chemical composition of the stratospheric haze of Titan is applied to new 220-335-nm albedo measurements obtained with the long-wavelength prime camera of the IUE during August 1987. Data and model predictions are presented in extensive graphs and discussed in detail. It is shown that a simple model with particles of one size at a given altitude does not accurately reproduce the observed features in all spectral regions, but that good general agreement is obtained using a model with a uniformly mixed layer at 150-600 km and a bimodal distribution of small 'polymer' haze particles (radius less than 20 nm) and larger haze particles (radius 100-500 nm). The number densities implied by this model require, however, a mechanism such as electrostatic charging or reaction kinetics to inhibit coagulation of the smaller particles.

  1. Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range

    Science.gov (United States)

    Konugolu Venkata Sekar, Sanathana; Farina, Andrea; Martinenghi, Edoardo; Dalla Mora, Alberto; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut; Pagliazzi, Marco; Lindner, Claus; Farzam, Parisa; Mora, Mireia; Squarcia, Mattia; Urbano-Ispizua, A.

    2015-07-01

    We report on the design, performance assessment, and first in vivo measurement of a Time-Resolved Diffuse Optical system for broadband (600-1350 nm) nm measurement of absorption and scattering spectra of biological tissues for non-invasive clinical diagnostics. Two strategies to reduce drift and enhance responsivity are adopted. The system was enrolled in a first in vivo test phase on healthy volunteers, carrying out non-invasive, in vivo quantification of key tissue constituents (oxy- and deoxy-hemoglobin, water, lipids, collagen) and tissue micro-structure (scatterer size and density).

  2. IM/DD vs. 4-PAM Using a 1550-nm VCSEL over Short-Range SMF/MMF Links for Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Rodes Lopez, Roberto; Prince, Kamau

    2013-01-01

    We experimentally compare the performance of 10.9-Gb/s IM/DD and 5-GBd 4-PAM modulation formats over 5-km SMF and 1-km MMF links, employing a commercially-available 1550-nm VCSEL as an enabling technology for use in optical interconnects.......We experimentally compare the performance of 10.9-Gb/s IM/DD and 5-GBd 4-PAM modulation formats over 5-km SMF and 1-km MMF links, employing a commercially-available 1550-nm VCSEL as an enabling technology for use in optical interconnects....

  3. Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    R. Nachabé (Rami); B.H.W. Hendriks (Benno); M. van der Voort (Marjolein); A.E. Desjardins (Adrien); H.J.C.M. Sterenborg (Dick)

    2010-01-01

    textabstractWith an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of

  4. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  5. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  6. 21 CFR Appendix A to Part 74 - The Procedure for Determining Ether Soluble Material in D&C Red Nos. 6 and 7

    Science.gov (United States)

    2010-04-01

    ... spectrophotometrically in the visible range. The absorbance at each wavelength must not exceed 150% of the absorbance... Analysis Spectrophotometer Parameters: Scan Range: 400-700 nm Scan: 50 nm/in; 5.0 nm/sec. Absorbance Range... spectra attached. The attached spectra represents 150% of the absorbance at each wavelength for similarly...

  7. Final Supplemental Environmental Impact Statement for Airborne Laser Program at Kirtland Air Force Base (AFB) and White Sands Missile Range/Holloman AFB, NM, and Edwards AFB and Vandenberg AFB, CA

    Science.gov (United States)

    2003-06-01

    Executive Committee Mescalero Apache Tribe P.O. Box 227 Mescalero. NM 88340 Chairman Gene Maroquin Apache Tribe of Oklahoma P.O. Box 1220...Sand prickly pear ( Opuntia arenaria) Sandhill goosefoot (Chenopodium cycloides) Standley whitlow-grass (Draba standleyi) 2 Lincoln Cnuntv

  8. The new method of real-time detection of 129I2, 129I127I, 127I2 and NO2 in gases using tunable diode laser operating in the range of 632–637 nm

    Science.gov (United States)

    Kireev, S. V.; Shnyrev, S. L.

    2018-02-01

    This paper develops the new selective real-time method of 129I2, 129I127I, 127I2 and NO2 detection in gases. Measuring concentrations of molecular iodine is based on fluorescence exciting by the radiation of a tunable diode laser, operating in the red spectral region (632–637 nm), at two or three wavelengths corresponding to the centers of the absorption lines of 129I2, 129I127I and 127I2. Detection of NO2 is performed by measuring the intensity of the tunable diode laser radiation, which passed through the measuring cell. Measured simultaneously, boundary ratios of iodine molecule concentrations measured simultaneously are about 10‑6. The sensitivity of nitrogen dioxide detection is 1016 cm‑3.

  9. Laser hypersensitisation using 266nm light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Kristensen, Martin

    2005-01-01

    UV hypersensitisation using CW 266 nm light on hydrogenated Ge-doped fibre is reported. The optimum sensitisation fluence is found to be in the range of 5 to 10 kJ/cm2, coinciding with previous results obtained using 355 nm light, indicating the same end-process used in the photochemical reaction...

  10. Advances in 750 nm VECSELs (Conference Presentation)

    Science.gov (United States)

    Saarinen, Esa J.; Ranta, Sanna; Lyytikäinen, Jari; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Guina, Mircea

    2017-03-01

    Lasers operating in the transmission window of tissue at wavelengths between 700 and 800 nm are needed in numerous medical and biomedical applications, including photodynamic therapy and fluorescence microscopy. However, the performance of diode lasers in this spectral range is limited by the lack of appropriate compound semiconductors. Here, we review our recent research on 750 nm VECSELs. Two approaches to reaching the 750 nm wavelength will be discussed. The first approach relies on intra-cavity frequency doubling a wafer-fused 1500 nm VECSEL. The VECSEL gain chip comprises a GaAs-based DBR and an InP-based gain section, which allows for optical pumping with low-cost commercial diodes at 980 nm. With this scheme we have achieved watt-level output powers and tuning of the laser wavelength over a 40 nm band at around 750 nm. The second approach is direct emission at 750 nm using the AlGaAs/GaAs material system. In this approach visible wavelengths are required for optical pumping. However, the consequent higher costs compared to pumping at 980 nm are mitigated by the more compact laser setup and prospects of doubling the frequency to the ultraviolet range.

  11. Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro, Mexico

    DEFF Research Database (Denmark)

    Finke, Niko; Hoehler, Tori M.; Polerecky, Lubos

    2013-01-01

    While most oxygenic phototrophs harvest light only in the visible range (400-700 nm, VIS), anoxygenic phototrophs can harvest near infrared light (> 700 nm, NIR). To study interactions between the photosynthetic guilds we used microsensors to measure oxygen and gross oxygenic photosynthesis (gOP)...

  12. (308 nm) excimer laser

    Indian Academy of Sciences (India)

    The UV lasers with high quantum energy photons directly break the atomic and molecular bonds within material. The photons in this spectral range are also capable of inducing photo- chemical reactions. Most solid materials have high absorption in the UV. The short pulses result in reducing interaction time between laser ...

  13. 1550-nm wavelength-tunable HCG VCSELs

    Science.gov (United States)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2014-02-01

    We demonstrate wavelength-tunable VCSELs using high contrast gratings (HCGs) as the top output mirror on VCSELs, operating at 1550 nm. Tunable HCG VCSELs with a ~25 nm mechanical tuning range as well as VCSELs with 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for WDM communications systems.

  14. How to distinguish scattered and absorbed light from re-emitted light for white LEDs?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.

    2017-01-01

    We have studied the light transport through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that scatter, absorb and re-emit incident light in the visible wavelength range (400-700 nm). To

  15. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...... in the HCG minimizes this reduction of the quantum confinement factor, not as significant as in the air-coupled cavity DBR VCSEL....

  16. Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment.

    Science.gov (United States)

    Mordon, Serge R; Wassmer, Benjamin; Zemmouri, Jaouad

    2007-03-01

    Endovenous laser treatment (ELT) has been proposed as an alternative in the treatment of reflux of the great saphenous vein (GSV) and small saphenous vein (SSV). Numerous studies have since demonstrated that this technique is both safe and efficacious. ELT was presented initially using diode lasers of 810 nm, 940 nm, and 980 nm. Recently, a 1,320-nm Nd:YAG laser was introduced for ELT. This study aims to provide mathematical modeling of ELT in order to compare 980 nm and 1,320 nm laser-induced damage of saphenous veins. The model is based on calculations describing light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation, and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma, Inc., Arlington, MA). Calculations were performed so as to determine the damage induced in the intima tunica, the externa tunica and inside the peri-venous tissue for 3 mm and 5 mm vessels (considered after tumescent anesthesia) and different linear endovenous energy densities (LEED) usually reported in the literature. Calculations were performed for two different vein diameters: 3 mm and 5 mm and with LEED typically reported in the literature. For 980 nm, LEED: 50 to 160 J/cm (CW mode, 2 mm/second pullback speed, power: 10 W to 32 W) and for 1,320 nm, LEED: 50 to 80 J/cm (pulsed mode, pulse duration 1.2 milliseconds, peak power: 135 W, repetition rate 30 Hz to 50 Hz). Numerical simulations are in agreement with LEED reported in clinical studies. Mathematical modeling shows clearly that 1,320 nm, with a better absorption by the vessel wall, requires less energy to achieve wall damage. In the 810-1,320-nm range, blood plays only a minor role. Consequently, the

  17. Inactivation of oxytocin by 254 nm radiation

    Energy Technology Data Exchange (ETDEWEB)

    Erndt, A.; Karolczyk-Kostuch, S.; Polaczek, E.

    1975-01-01

    Irradiation of oxytocin in diluted solutions with 254 nm light reduced markedly the hormone activity. The decrease in activity in the range between 0 and 20 percent was nearly proportional to the increase in sulfhydryl group concentration. In view of the fundamental role of cystyl residue in holding the oxytocin native backbone conformation the results suggest that disulfide bond cleavage makes an essential contribution to photoinactivation of this hormone under the conditions used.

  18. Dust Plasma Analogue for Interstellar 217.5 nm Extinction

    Directory of Open Access Journals (Sweden)

    Stefanović, I.

    2008-12-01

    Full Text Available The new ultraviolet (UV extinction measurements of carbonaceous nanoparticles in the range from 140 nm to 260 nm are presented. The plasma polymerized hydrocarbon nanoparticles were already proposed as a new astro analogue, which describe the infrared (IR extinction spectra in an excellent way. We use the same particles to find the possible carrier of the "mysterious" UV 217.5 nm extinction "bump" of interstellar media (ISM.

  19. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    Science.gov (United States)

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  20. 193 nm photodissociation of acetylene

    Science.gov (United States)

    Balko, B. A.; Zhang, J.; Lee, Y. T.

    1991-06-01

    The product translational energy distribution P(ET) for acetylene photodissociation at 193 nm was obtained from the time-of-flight spectrum of the H atom fragments. The P(ET) shows resolved structure from the vibrational and electronic excitation of the C2H fragment; comparison of the translational energy release for given excited states of C2H with the known energy levels of these states gives D0(HCC-H) = 131.4 + or - 0.5 kcal/mol. This value is in agreement with that determined previously in this group from analogous studies of the C2H fragment and with the latest experimental and theoretical work. The high resolution of the experiment also reveals the nature of C2H internal excitation. A significant fraction of the H atoms detected at moderate laser power were from the secondary dissociation of C2H. The P(ET) derived for this channel indicates that most of the C2 is produced in excited electronic states.

  1. 193 nm photodissociation of acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Balko, B.A.; Zhang, J.; Lee, Y.T. (Department of Chemistry, University of California at Berkeley and Chemical Sciences Division, Lawrence Berkeley Laboratory Berkeley, California 94720 (USA))

    1991-06-15

    The product translational energy distribution {ital P}({ital E}{sub {ital T}}) for acetylene photodissociation at 193 nm was obtained from the time-of-flight spectrum of the H atom fragments. The {ital P}({ital E}{sub {ital T}}) shows resolved structure from the vibrational and electronic excitation of the C{sub 2}H fragment; comparison of the translational energy release for given excited states of C{sub 2}H with the known energy levels of these states gives {ital D}{sub 0}(HCC--H)=131.4{plus minus}0.5 kcal/mol. This value is in agreement with that determined previously in this group from analogous studies of the C{sub 2}H fragment and with the latest experimental and theoretical work. The high resolution of the experiment also reveals the nature of C{sub 2}H internal excitation. A significant fraction of the H atoms detected at moderate laser power were from the secondary dissociation of C{sub 2}H. The {ital P}({ital E}{sub {ital T}}) derived for this channel indicates that most of the C{sub 2} is produced in excited electronic states.

  2. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    Science.gov (United States)

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  3. Trends in nanosecond melanosome microcavitation up to 1540 nm

    Science.gov (United States)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Vincelette, Rebecca L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-09-01

    Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ˜0.159 J/cm2 at 800 nm to 4.5 J/cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.

  4. Transillumination of interproximal caries lesions with 830-nm light

    Science.gov (United States)

    Jones, Graham C.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    New imaging technology is needed for the early detection of dental caries (decay) in the interproximal contact sites between teeth. Previous measurements have demonstrated that dental enamel is highly transparent in the near-IR near 1310-nm making that wavelength range ideal for the transillumination of interproximal lesions. However, imaging at 1310-nm involves the use of expensive InGaAs technology. The purpose of this study was to compare the performance of a low cost near-IR sensitive imaging system employing a CCD camera with enhanced near-IR sensitivity operating at 830-nm with the 1310-nm InGaAs system. Images of simulated caries lesions were acquired through tooth sections of varying thickness and whole teeth in order to demonstrate the utility of a near-IR dental transillumination system for the imaging of early dental caries (decay). Simulated lesions, representing the optical scattering of natural dental caries, were placed in plano-parallel dental enamel sections and whole anterior teeth. The contrast ratio between the simulated lesions and surrounding sound enamel was calculated from analysis of the respective spatial intensity profiles in the acquired projection images. This study shows that near-IR transillumination at 830-nm offers significantly improved image contrast over the visible range, but less image contrast than at 1310-nm.

  5. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources...... in this wavelength range. We demonstrate that a tapered amplifier can be integrated into a fiber-based swept source and allows for high-speed FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average output power in excess of 30mW. With a total sweep range of 70 nm...

  6. Widely tunable 10GHz synchronized fiber laser in the 1550nm-1750nm wavelength range via dispersion flattened DDF

    Science.gov (United States)

    Sysoliatin, Alexej; Senatorov, Andrew; Konyukhov, Andrey; Melnikov, Leonid; Stasyuk, Vladimir

    2009-02-01

    In this work we experimentally demonstrate the possibility to build up the L-band tunable GHz repetition rate fiber laser via a dispersion flattened dispersion decreasing fiber. High quality fully synchronized with clock source 0.9 ps pulses are generated.

  7. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    Science.gov (United States)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  8. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Binetti, Simona [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Le Donne, Alessia, E-mail: alessia.ledonne@mater.unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Rolfi, Andrea [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Jäggi, Beat; Neuenschwander, Beat [Bern University of Applied Sciences, Engineering and Information Technology, Institute for Applied Laser, Photonics and Surface Technologies ALPS, Pestalozzistrasse 20, CH-3400 Burgdorf (Switzerland); Busto, Chiara [ENI Spa, Via Giacomo Fauser, 4, 28100 Novara (Italy); Frigeri, Cesare [CNR-IMEM Institute, Parco Area Delle Scienze 37/A, Fontanini, 43010 Parma (Italy); Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio [Laserpoint Srl, Via Della Burrona 51, 20090 Vimodrone, Milano (Italy)

    2016-05-15

    Highlights: • Self-organized surface structures were produced by picosecond laser pulses on mc-Si. • Three laser wavelengths were used which effectively reduce Si reflectivity up to 8%. • The subsurface damage induced by the three lasers was studied in detail. • μ-Raman, PL and TEM proved that UV laser provides the lowest subsurface damage. • UV laser induced damage is located above the depletion region of the p–n junction. - Abstract: Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p–n junction.

  9. Widely Tunable High-Power Tapered Diode Laser at 1060 nm

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Sumpf, Bernd; Erbert, Götz

    2011-01-01

    We report a large tuning range from 1018 to 1093 nm from a InGaAs single quantum-well 1060-nm external cavity tapered diode laser. More than 2.5-W output power has been achieved. The tuning range is to our knowledge the widest obtained from a high-power InGaAs single quantum-well tapered laser...

  10. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  11. Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm.

    Science.gov (United States)

    Granados, Eduardo; Pask, Helen M; Spence, David J

    2009-01-19

    We demonstrate the operation of a continuous-wave (CW) picosecond yellow laser operating at 559 nm. A solid-state Raman laser using a KGW crystal was synchronously pumped by an 80 MHz laser operating at 532 nm. The output pulses were compressed from 10 ps at 532 nm down to 3.2 ps at 559 nm, strongly depending on the cavity length detuning. Slope efficiencies up to 42% were observed when the system was optimized for maximum output power. This technique can be extended to a range of visible wavelengths between 550-600 nm by using different Raman materials, and by cascaded conversion.

  12. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers.

    Science.gov (United States)

    Emami, Siamak Dawazdah; Dashtabi, Mahdi Mozdoor; Lee, Hui Jing; Arabanian, Atoosa Sadat; Rashid, Hairul Azhar Abdul

    2017-10-06

    This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.

  13. Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Wierzbicki, Rafal; Occhipini, Luigi

    2010-01-01

    We present here a polysilicon electrothermal microfabricated nanogripper capable of manipulating nanowires and nanotubes in the sub-100 nm range. The nanogripper was fabricated with a mix and match microfabrication process, combining high throughput of photolithography with 10 nm resolution...

  14. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  15. Cascaded quadratic soliton compression at 800 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  16. Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals

    Science.gov (United States)

    Xin, Feifei; Zhang, Guoquan; Bo, Fang; Sun, Haifeng; Kong, Yongfa; Xu, Jingjun; Volk, Tatyana; Rubinina, Natalia M.

    2010-02-01

    We studied the photorefractive effect of lithium niobate (LiNbO3) doped with Mg, Zn, In, Hf, or codoped with Mg and Fe at an ultraviolet (UV) wavelength down to 325 nm. It is found that the UV photorefraction of LiNbO3 doped with Mg, Zn, In, or Hf was enhanced significantly as compared to that of the nominally pure LiNbO3. Our results show that the property of resistance against photorefraction in highly Mg, Zn, In, or Hf doped LiNbO3 is true only in the visible and near-infrared wavelength range. By contrast, these crystals exhibit excellent photorefractive characteristics at UV wavelength of 325 nm, even better than those at 351 nm. For example, the photorefractive two-wave coupling gain coefficient Γ and the photorefractive recording sensitivity at 325 nm were measured to be ˜38 cm-1 and 37.7 cm/J, respectively, in a LiNbO3 crystal doped with 9 mol % Zn. The photorefractive response time of a Mg:LiNbO3 with a 9 mol % Mg was measured to be 73 ms with a total recording intensity of 614 mW/cm2 at 325 nm. In highly Mg, Zn, In, or Hf doped LiNbO3 crystals, diffusion dominates over photovoltaic effect and electrons are the dominant charge carriers in UV photorefraction at 325 nm. The results are also of interest to the study on the defect structure of LiNbO3 near to the absorption edge.

  17. Scattering matrices of martian dust analogs at 488 nm and 647 nm

    Science.gov (United States)

    Dabrowska, Dominika D.; Muñoz, Olga; Moreno, Fernando; Ramos, José L.; Martínez-Frías, Jesús; Wurm, Gerhard

    2015-04-01

    We present measurements of the complete scattering matrix as a function of the scattering angle of five martian dust analogs, namely montmorillonite, two palagonite (JSC-1) samples, basalt, and calcite. The measurements are performed at 488 and 647 nm, covering the scattering angle range from 3° to 177°. The experimental scattering matrices are compared with results of Lorenz-Mie calculations performed for the same size distributions and refractive indices as our analog samples. As expected, we find that scattering matrices of realistic polydispersions of dust particles cannot be replaced by such calculated matrices. In contrast, the measured phase functions for our martian dust analogs may be considered a good approximation for martian dust at the studied wavelengths. Further, because of the sensitivity of polarimetry to particle microphysics, spectro-polarimetric observations from the martian surface appear to be a powerful diagnostic tool to infer the composition of the dust in the martian atmosphere. To facilitate the use of the experimental matrices for multiple-scattering calculations with polarization included, we compute the corresponding synthetic scattering matrices based on the measurements and defined in the full angle range from 0° to 180°.

  18. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    Science.gov (United States)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  19. Radiation Failures in Intel 14nm Microprocessors

    Science.gov (United States)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; hide

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  20. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    Science.gov (United States)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  1. Photomask development for 90-nm technology

    Science.gov (United States)

    Zhang, Yuan; Cottle, Rand; Mackay, Scott; Xiao, Guangming; Unruh, James; Progler, Christopher J.

    2005-01-01

    To accelerate the time-to-market of advanced photomasks, Photronics launched its 90nm program in spring 2003. The program included three learning cycles and a technology transfer phase. Both 90nm test masks and product masks from leading integrated device manufacturers (IDMs) and foundries were exercised through the cycles. Stringent success criteria were set based on a survey of leading customers" requirements and the International Technology Roadmap for Semiconductors (ITRS). Hundreds of binary masks, embedded attenuated phase shift masks (EAPSMs), and alternating aperture phase shift masks (AAPSMs) were produced throughout the program. All targets were exceeded. This paper describes program success criteria, complexity of customer requirements, 90nm test vehicle design, and efforts on improving critical dimension (CD) uniformity and registration. Results in positive and negative chemically amplified resist (CAR) and tunable etching for AAPSM are shown. Details on AAPSM undercut optimization, intensity and CD imbalance are reported.

  2. Liquid Carbon Reflectivity at 19 nm

    Directory of Open Access Journals (Sweden)

    Riccardo Mincigrucci

    2015-01-01

    Full Text Available We hereby report on a pump-probe reflectivity experiment conducted on amorphous carbon, using a 780 nm laser as a pump and a 19 nm FEL emission as probe. Measurements were performed at 50 degrees with respect to the surface normal to have an un-pumped reflectivity higher than 0.5%. A sub-10 fs time synchronization error could be obtained exploiting the nearly jitter-free capabilities of FERMI. EUV FEL-based experiments open the way to study the behaviour of a liquid carbon phase being unaffected by plasma screening.

  3. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise......We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...

  4. Materials challenges for sub-20nm lithography

    Science.gov (United States)

    Thackeray, James W.

    2011-04-01

    This paper discusses the future of resist materials for sub-20nm lithography. It is my contention that polymer-bound PAG based resists will be used to 16nm node. There has been enough progress in resolution and sensitivity to justify the use of these materials. PBP resists have shown that the principal demerit of acid diffusion can be overcome through attachment of the PAG anion to the lithographic polymer. Since the introduction of this chemically amplified resist approach, we have seen steady improvement in resolution, sensitivity, and LWR. We have also seen improvement in OOB response, outgassing, and pattern collapse. There is no doubt that continuous improvement is still required for these resist systems. We believe that increasing the overall resist quantum yield for acid generation substantially improves the shot noise problem thereby leading to faster high resolution resist materials. Using a 0.30NA EUV tool with dipole, we can achieve 22nm hp resolution, with 12mJ dose, and 4.2nm LWR.

  5. Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation.

    Science.gov (United States)

    Nania, Manuela; Foglia, Fabrizia; Matar, Omar K; Cabral, João T

    2017-02-02

    We demonstrate nanoscale wrinkling on polydimethylsiloxane (PDMS) at sub-100 nm length scales via a (double) frontal surface oxidation coupled with a mechanical compression. The kinetics of the glassy skin propagation is resolved by neutron and X-ray reflectivity, and atomic force microscopy, combined with mechanical wrinkling experiments to evaluate the resulting pattern formation. In conventional PDMS surface oxidation, the smallest wrinkling patterns attainable have an intrinsic lower wavelength limit due to the coupling of skin formation and front propagation at fixed strain εprestrain, whose maximum is, in turn, set by material failure. However, combining two different oxidative processes, ultra-violet ozonolysis followed by air plasma exposure, we break this limit by fabricating trilayer laminates with excellent interfacial properties and a sequence of moduli and layer thicknesses able to trivially reduce the surface topography to sub-100 nm dimensions. This method provides a powerful, yet simple, non-lithographic approach to extend surface patterning from visible to the deep UV range.

  6. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...... the reflection at the semiconductor #x2013;air interface using an anti-reflective coating (ARC). We demonstrate how the ARC can be integrated in a monolithic structure by oxidizing AlGaAs with high Al-content. The HCG VCSEL has the potential to achieve polarization stable single-mode output with high tuning...... efficiency. The HCG VCSEL shows a total tuning range of 16 nm around an emission wavelength of 1060 nm with 1-mW output power....

  7. Tunable liquid-crystal filter for solar imaging at the He i 1083-nm line.

    Science.gov (United States)

    Kopp, G A; Derks, M J; Elmore, D F; Hassler, D M; Woods, J C; Streete, J L; Blankner, J G

    1997-01-01

    A Lyot-Ohman filter for imaging near the solar He i 1083-nm line is described. Fast and continuous spectral tunability is provided by nematic liquid crystals. This solid-state filter has a free spectral range of 2.35 nm and a spectral resolution of 0.135 nm at the operating wavelength of 1083 nm. A wide-fielded design was used for both static and electro-optic retarder elements, facilitating use in fast imaging systems. A first-light He i image of the Sun is presented.

  8. Alveolar macrophage accumulation rates, for 28 nm and 250 nm PSL, are mediated by separate mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Moss, O R; Wong, V A, E-mail: moss@thehamner.or [Hamner Institutes for Health Sciences, Research Triangle Park, NC 27509-2137 (United States)

    2009-02-01

    When macrophages accumulate 28 nm and 250 nm diameter polystyrene latex (PSL) beads, the accumulation rates should reflect differences in molecular and cellular function. We used a confocal microscope to measure the accumulation rates of nanoparticles by F344-rat-alveolar macrophages (approx25,000 cells adhered to a 0.7 cm{sup 2} surface). Over the cells were layered 0.1 ml of media, and 0.1 ml of media-with-beads. Fresh cells were introduced for each exposure scenario. The maximum possible individual macrophage exposures were as follows: 8x10{sup 6}, 8x10{sup 5}, and 8x10{sup 4} 28 nm beads per macrophage; and 8x10{sup 4} and 1.12x10{sup 4} 250 nm beads per macrophage. Accumulation rates were estimated over 23 minutes. The increase in bead accumulation-rate matched changes in bead-availability: 7x increase for 250 nm beads; 100x increase for 28 nm beads; and 700x increase for all bead availabilities. The maximum sustained 28 nm bead accumulation rate was > 30,000 /min (for 5 min). Increases in bead accumulation could be explained by two mechanisms: bead-diffusion; and, for the macrophage, macropinocytosis. Also for the highest concentrations of 28 nm beads, we saw a colligative threshold - possibly due to beads masking the cell surface or obstructing cellular mechanisms.

  9. Alveolar macrophage accumulation rates, for 28 nm and 250 nm PSL, are mediated by separate mechanisms

    Science.gov (United States)

    Moss, O. R.; Wong, V. A.

    2009-02-01

    When macrophages accumulate 28 nm and 250 nm diameter polystyrene latex (PSL) beads, the accumulation rates should reflect differences in molecular and cellular function. We used a confocal microscope to measure the accumulation rates of nanoparticles by F344-rat-alveolar macrophages (~25,000 cells adhered to a 0.7 cm2 surface). Over the cells were layered 0.1 ml of media, and 0.1 ml of media-with-beads. Fresh cells were introduced for each exposure scenario. The maximum possible individual macrophage exposures were as follows: 8x106, 8x105, and 8x104 28 nm beads per macrophage; and 8x104 and 1.12x104 250 nm beads per macrophage. Accumulation rates were estimated over 23 minutes. The increase in bead accumulation-rate matched changes in bead-availability: 7x increase for 250 nm beads; 100x increase for 28 nm beads; and 700x increase for all bead availabilities. The maximum sustained 28 nm bead accumulation rate was > 30,000 /min (for 5 min). Increases in bead accumulation could be explained by two mechanisms: bead-diffusion; and, for the macrophage, macropinocytosis. Also for the highest concentrations of 28 nm beads, we saw a colligative threshold -- possibly due to beads masking the cell surface or obstructing cellular mechanisms.

  10. TIGER/Line Shapefile, 2013, county, Chaves County, NM, Current Address Ranges Relationship File

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master...

  11. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...

  12. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...

  13. Design of an 1800 nm Raman Amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    in the pump power requirement and deteriorated noise properties. Here we demonstrate a Raman amplifier designed for signal wavelengths around 1800 nm. The amplification fiber is an OFS PM Raman fiber, and is pumped by a Raman fiber laser emitting at 1680 nm [4]. The amplifier was pumped co...... suggested as potential transmission fibers for extended wavelength operation, as low losses at long wavelengths have been predicted [3]. Fig. 1 illustrates the predicted low loss limit for a hollow core fiber and for comparison the measured loss of a OFS True Wave fiber. Besides low loss transmission fibers......, also extended band amplifiers are required. As a solution to the latter challenge, Raman amplifiers are suggested as promising candidates. The main hurdle when designing a long wavelength Raman amplifier is the increased intrinsic fiber attenuation which as a consequence leads to an increase...

  14. 1550 nm high contrast grating VCSEL.

    Science.gov (United States)

    Chase, Christopher; Rao, Yi; Hofmann, Werner; Chang-Hasnain, Connie J

    2010-07-19

    We demonstrate an electrically pumped high contrast grating (HCG) VCSEL operating at 1550 nm incorporating a proton implant-defined aperture. Output powers of >1 mW are obtained at room temperature under continuous wave operation. Devices operate continuous wave at temperatures exceeding 60 degrees C. The novel device design, which is grown in a single epitaxy step, may enable lower cost long wavelength VCSELs.

  15. 70-nm-bandwidth achromatic waveguide coupler.

    Science.gov (United States)

    Mendes, S B; Li, L; Burke, J J; Lee, J E; Saavedra, S S

    1995-09-20

    We report a general approach to the design of broadband waveguide couplers. A double-parallel grating assembly is used to cancel the first chromatic order, and a proper choice of prism glass and base angle is made to compensate for the second chromatic order. The technique was applied to a Corning glass 7059 waveguide, and a spectral bandwidth of 70 nm was measured by the use of two complementary procedures.

  16. Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs

    OpenAIRE

    Jayaraman, V.; Cole, G.D.; Robertson, M.; Burgner, C.; John, D.; Uddin, A.; Cable, A.

    2012-01-01

    Demonstrated are 1060 nm microelectromechanical-systems-based tunable vertical-cavity surface-emitting lasers (MEMS-VCSELs) with a 100 nm continuous tuning range under repetitively scanned operation at rates beyond 500 kHz and a 90 nm continuous tuning range under static operation. These devices employ a thin strained InGaAs multiple quantum well active region integrated with a fully oxidised GaAs/AlxOy bottom mirror and a suspended dielectric top mirror. The devices are optically pumped via ...

  17. Towards Using DNAzyme in Sub-20 nm Lithography

    Science.gov (United States)

    Dirar, Qassim

    DNAzyme is a unique molecule with applications ranging from gene regulation to molecular machines. Another attractive venue for the use of DNAzyme is next generation lithography, sub-20 nm lithography, harnessing the unique features of specific recognition and self-assembly. Tools to achieve that goal are discussed and experimental procedures were presented. Loading DNAzyme on gold nanoparticles, depositing self-assembled monolayers and DNA patterning using soft lithographic techniques are tools that are explored. To support the findings, different characterization techniques are employed.

  18. High-throughput optical coherence tomography at 800 nm.

    Science.gov (United States)

    Goda, Keisuke; Fard, Ali; Malik, Omer; Fu, Gilbert; Quach, Alan; Jalali, Bahram

    2012-08-27

    We report high-throughput optical coherence tomography (OCT) that offers 1,000 times higher axial scan rate than conventional OCT in the 800 nm spectral range. This is made possible by employing photonic time-stretch for chirping a pulse train and transforming it into a passive swept source. We demonstrate a record high axial scan rate of 90.9 MHz. To show the utility of our method, we also demonstrate real-time observation of laser ablation dynamics. Our high-throughput OCT is expected to be useful for industrial applications where the speed of conventional OCT falls short.

  19. Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs

    Science.gov (United States)

    Jayaraman, V.; Cole, G.D.; Robertson, M.; Burgner, C.; John, D.; Uddin, A.; Cable, A.

    2013-01-01

    Demonstrated are 1060 nm microelectromechanical-systems-based tunable vertical-cavity surface-emitting lasers (MEMS-VCSELs) with a 100 nm continuous tuning range under repetitively scanned operation at rates beyond 500 kHz and a 90 nm continuous tuning range under static operation. These devices employ a thin strained InGaAs multiple quantum well active region integrated with a fully oxidised GaAs/AlxOy bottom mirror and a suspended dielectric top mirror. The devices are optically pumped via 850 nm light. These ultra-widely tunable lasers represent the first MEMS-VCSELs reported in this wavelength range, and are ideally suited for application in ophthalmic swept-source optical coherence tomography. PMID:23520409

  20. Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs.

    Science.gov (United States)

    Jayaraman, V; Cole, G D; Robertson, M; Burgner, C; John, D; Uddin, A; Cable, A

    2012-10-11

    Demonstrated are 1060 nm microelectromechanical-systems-based tunable vertical-cavity surface-emitting lasers (MEMS-VCSELs) with a 100 nm continuous tuning range under repetitively scanned operation at rates beyond 500 kHz and a 90 nm continuous tuning range under static operation. These devices employ a thin strained InGaAs multiple quantum well active region integrated with a fully oxidised GaAs/Al x O y bottom mirror and a suspended dielectric top mirror. The devices are optically pumped via 850 nm light. These ultra-widely tunable lasers represent the first MEMS-VCSELs reported in this wavelength range, and are ideally suited for application in ophthalmic swept-source optical coherence tomography.

  1. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    Science.gov (United States)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  2. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    Science.gov (United States)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; hide

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  3. Operation of the OK-4/Duke storage ring FEL below 200 nm

    CERN Document Server

    Litvinenko, V N; Pinayev, I V; Wu Yin

    2001-01-01

    For a number of years the wavelength of 200 nm was a psychological barrier for FEL oscillators. The progress towards short wavelength was marginal since the OK-4/VEPP-3 storage ring FEL lased at 240 nm in 1988. After 10 years, in 1998, the OK-4/Duke FEL and the NIJI-IV FEL group moved the limit to 217 and 212 nm, respectively. Improvements of the OK-4/Duke storage ring FEL gain above 10% and the use of custom manufactured mirror coatings brought the success in August 1999. The OK-4 FEL lased in the range from 193.7 to 209.8 nm using electron energies from 500 to 800 MeV. In this paper, we present the description of the OK-4/Duke FEL up-grades and the lasing results below 200 nm obtained in August and October of 1999.

  4. Single pulse near field study on a Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure by using a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Ulmeanu, M.; Jipa, F.; Luculescu, C.; Moldovan, A.; Zamfirescu, M. [National Institute for Laser, Plasma and Radiation Physics, Laser Department, Atomistilor 409, P.O. Box MG-36, Magurele (Romania)

    2011-09-15

    Single pulse near field study on a Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure was experimentally investigated with a laser pulse width of 200 fs at a wavelength of 775 nm. For the near field experiments, we have used polystyrene colloidal particles of 700 nm diameter deposited by spin coating on top of the multilayer structure, as well on top of Co (50 nm) and Cu (50 nm) thin films. The diameter and the morphologies of the holes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have estimated the fluence thresholds values for the near field and discuss their values in respect with the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. We compare the depths and the widths of the holes obtained at the same peak laser fluence for the Co thin film (50 nm), Cu thin film (50 nm) and Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure. Depending on the laser fluence, the ablation depth can reach the first, the second, or the third layer. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain (FDTD) by using the RSoft software. This type of a selective distribution of the ablation depth, in the near field regime, of a planar metal/dielectric interface can open new perspective in the excitation of propagating surface plasmons. (orig.)

  5. Single pulse near field study on a Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure by using a femtosecond laser

    Science.gov (United States)

    Ulmeanu, M.; Jipa, F.; Luculescu, C.; Moldovan, A.; Zamfirescu, M.

    2011-09-01

    Single pulse near field study on a Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure was experimentally investigated with a laser pulse width of 200 fs at a wavelength of 775 nm. For the near field experiments, we have used polystyrene colloidal particles of 700 nm diameter deposited by spin coating on top of the multilayer structure, as well on top of Co (50 nm) and Cu (50 nm) thin films. The diameter and the morphologies of the holes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have estimated the fluence thresholds values for the near field and discuss their values in respect with the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. We compare the depths and the widths of the holes obtained at the same peak laser fluence for the Co thin film (50 nm), Cu thin film (50 nm) and Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure. Depending on the laser fluence, the ablation depth can reach the first, the second, or the third layer. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain (FDTD) by using the RSoft software. This type of a selective distribution of the ablation depth, in the near field regime, of a planar metal/dielectric interface can open new perspective in the excitation of propagating surface plasmons.

  6. 308-nm excimer laser in endodontics

    Science.gov (United States)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  7. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    Science.gov (United States)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  8. Optical absorption of silicon nitride membranes at 1064 nm and at 1550 nm

    Science.gov (United States)

    Steinlechner, Jessica; Krüger, Christoph; Martin, Iain W.; Bell, Angus; Hough, Jim; Kaufer, Henning; Rowan, Sheila; Schnabel, Roman; Steinlechner, Sebastian

    2017-07-01

    Because of a low mechanical loss, thin films made of silicon nitride (Si3N4 ) are interesting for fundamental research and development in the field of gravitational-wave detection. Si3N4 membranes allow for the characterization of quantum radiation pressure noise (RPN), which will be a limiting noise source in gravitational-wave detectors of the second and third generations. Furthermore, Si3N4 is an interesting material for possible thermal noise reduction in highly reflective mirror coatings. For both applications, the optical absorption of Si3N4 needs to be low. This paper presents absorption measurements on low-stress Si3N4 membranes showing an absorption a factor of 7 lower at 1550 nm than at 1064 nm resulting in an estimated 2 times higher sensitivity in RPN experiments at the higher wavelength and making Si3N4 an interesting material for highly reflective multimaterial mirror coatings at 1550 nm.

  9. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP at 775 nm and 1550 nm

    Directory of Open Access Journals (Sweden)

    Jessica Steinlechner

    2013-01-01

    Full Text Available The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP at 1,550 nm and 775 nm. Themeasurement results are (84±40 ppm/cmand (127±24 ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.

  10. Picosecond Laser Shock Peening of Nimonic 263 at 1064 nm and 532 nm Wavelength

    Directory of Open Access Journals (Sweden)

    Sanja Petronic

    2016-02-01

    Full Text Available The paper presents a study on the surface modifications of nickel based superalloy Nimonic 263 induced by laser shock peening (LSP process. The process was performed by Nd3+:Yttrium Aluminium Garnet (YAG picosecond laser using the following parameters: pulse duration 170 ps; repetition rate 10 Hz; pulse numbers of 50, 100 and 200; and wavelength of 1064 nm (with pulse energy of 2 mJ, 10 mJ and 15 mJ and 532 nm (with pulse energy of 25 mJ, 30 mJ and 35 mJ. The following response characteristics were analyzed: modified surface areas obtained by the laser/material interaction were observed by scanning electron microscopy; elemental composition of the modified surface was evaluated by energy-dispersive spectroscopy (EDS; and Vickers microhardness tests were performed. LSP processing at both 1064 nm and 532 nm wavelengths improved the surface structure and microhardness of a material. Surface morphology changes of the irradiated samples were determined and surface roughness was calculated. These investigations are intended to contribute to the study on the level of microstructure and mechanical properties improvements due to LSP process that operate in a picosecond regime. In particular, the effects of laser wavelength on the microstructural and mechanical changes of a material are studied in detail.

  11. Laser Shock Processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Rosas, G., E-mail: gomezrg@hotmail.com [Departamento de Fisica, Centro Universitario de Ciencias Exactas e Ingenierias, CUCEI, Universidad de Guadalajara, Blvd. Marcelino Garcia Barragan 1421, Guadalajara, Jalisco 44430 (Mexico); Rubio-Gonzalez, C. [Centro de Ingenieria y Desarrollo Industrial, Pie de la cuesta No. 702, Desarrollo San Pablo, Queretaro, Qro. 76130 (Mexico); Ocana, J.L.; Molpeceres, C.; Porro, J.A.; Morales, M. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII. Universidad Politecnica de Madrid (Spain); Casillas, F.J. [Departamento de Ciencias Exactas y Tecnologicas, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460 (Mexico)

    2010-08-01

    Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm{sup 2} and 5000 pulses/cm{sup 2} in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products.

  12. Photodissociation of ethylene at 193 nm

    Science.gov (United States)

    Balko, B. A.; Zhang, J.; Lee, Y. T.

    1992-07-01

    The photodissociation of ethylene at 193 nm was studied by measuring the product translational energy distributions for the H+C2H3 and H2+C2H2 channels. In agreement with previous workers, it was determined that atomic and molecular elimination occur in relatively equal amounts. Using 1,1 D2CCH2 and 1,2 cis HDCCDH, it was shown that both acetylene and vinylidene are formed and that the acetylene/vinylidene ratio is approximately 2/3 in the molecular elimination. This H2 elimination channel has a translational energy distribution peaked at around 20 kcal/mol, indicating that it is a concerted process with a substantial exit barrier. It was found that the H atom elimination channel is best described as a simple bond rupture occurring after internal conversion of the electronically excited molecule to the vibrationally excited ground state ethylene. Some of the primary C2H3 product has sufficient internal energy to spontaneously decompose to H+HC≡CH. At higher laser intensity a large fraction of the C2H3, however, absorbs another photon and fragments to H+H2C=C: (1A1 and 3B2).

  13. Photodissociation of ethylene at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Balko, B.A.; Zhang, J.; Lee, Y.T. (Department of Chemistry, University of California at Berkeley and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1992-07-15

    The photodissociation of ethylene at 193 nm was studied by measuring the product translational energy distributions for the H+C{sub 2}H{sub 3} and H{sub 2}+C{sub 2}H{sub 2} channels. In agreement with previous workers, it was determined that atomic and molecular elimination occur in relatively equal amounts. Using 1,1 D{sub 2}CCH{sub 2} and 1,2 {ital cis} HDCCDH, it was shown that both acetylene and vinylidene are formed and that the acetylene/vinylidene ratio is approximately 2/3 in the molecular elimination. This H{sub 2} elimination channel has a translational energy distribution peaked at around 20 kcal/mol, indicating that it is a concerted process with a substantial exit barrier. It was found that the H atom elimination channel is best described as a simple bond rupture occurring after internal conversion of the electronically excited molecule to the vibrationally excited ground state ethylene. Some of the primary C{sub 2}H{sub 3} product has sufficient internal energy to spontaneously decompose to H+HC{equivalent to}CH. At higher laser intensity a large fraction of the C{sub 2}H{sub 3}, however, absorbs another photon and fragments to H+H{sub 2}C=C: ({sup 1}{ital A}{sub 1} and {sup 3}{ital B}{sub 2}).

  14. Characteristics of 630nm auroral polarization observed at Pokar Flat, Alaska

    Science.gov (United States)

    Shimpei, T.; Kagitani, M.; Sakanoi, T.; Hampton, D. L.

    2014-12-01

    We report the result of OI 630 nm auroral polarization observation at Poker Flat Research Range (Glat=65.12N, Glon=147.43W, Mlat=65.72N) during the period from December 2013 to April 2014. OI 630nm auroral emission is theoretically expected to show linear polarization with degrees up to 17% [Bommier et al., 2011]. The important point is that, the degree of linear polarization depends on energy and velocity anisotropy of precipitating electrons [Fujimoto et al., 1997]. Recent observation data also showed that 630nm auroral emission related to polar rain at high-latitudes linear polarization parallel to field with degrees of 2-7%[Lilensten et al., 2013]. However, these past measurements were limited in the polar cap region and its polarization characteristics are not clear. To examine auroral polarization with an accuracy of 1% polarization degree, we developed an imaging spectrograph which can measure auroral polarization in the wide field-of-view of 130 deg covering the wavelength range from 420 nm to 680 nm (resolution 2 nm). This new instrument enables us to obtain the linear polarization degrees at 557.7 nm and 630 nm auroral emissions simultaneously. Here, we can regard 557.7 nm aurora as a standard polarization light source because it does not produce polarization theoretically. We installed the spectrograph at Poker Flat Research Range and carried out precise calibration to estimate artificial polarization which is produced inside the optical system using an LED light source with a linear polarizer every 3 hours on five nights in December 2013. Since then, automatic operation was continuously carried every night out till the beginning of April 2014.We obtained the linear polarization of 630 nm aurora with degree of 5% showing elevation angle dependence. On the other hand, we unexpectedly measured the polarization of 557.7 nm emission which shows similar polarization property as 630 nm. We are considering two possibilities to interpret the results as follows

  15. NM-Scale Anatomy of an Entire Stardust Carrot Track

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  16. Multi-watt 589nm fiber laser source

    Energy Technology Data Exchange (ETDEWEB)

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  17. Lasing at 300 nm and below: Optical challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Garzella, D. [Universite de Paris-Sud, Orsay (France); Couprie, M.E. [Universite de Paris-Sud, Orsay (France)]|[CEA DSM DRECAM SPAM, Gif Sur Yvette (France); Billardon, M. [ESPCI, Paris (France)

    1995-12-31

    The FEL experiment in the visible and near UV on the Super ACO storage ring has given, since 1989, important informations on the SRFEL dynamics and, furthermore, a very good beam stability has been achieved. In addition, the operation at 350 nm with this good stability and a long beam lifetime allowed us to perform the first user experiment in biology and to start with a campaign for using the laser as photons source for experiments in other domains, coupling FEL light and the Synchrotron Radiation. For this, FEL starts to be very competitive with respect to the other conventional laser sources, provided that it could oscillate further in the UV, say at 300 nm and below. So, the real challenge is now given by the lasing at shorter wavelengths and, for this, by the optical technology existing nowadays. Since 1992 the efforts have been concentrating to look for every kind of solution allowing us to overcome the problem of having a very low gain. From an optical point of view, in the range of wavelengths explored, there is a lack of transparents dielectric materials for substrates and coatings. Substrates are required at the same time to be relatively not absorbing (a few tens 10{sup -6}), to have a very good surface quality (RMS roughness below 10 {Angstrom}) because of scattering losses dramatically increasing in this spectral range and, due to the thermal load of the undulator emission, to have adequate thermal characteristics. In order to fulfill all these requirements, a good characterisation and modelisation of the substrates is needed, especially to correlate thermal loading and mechanical deformations from one hand, and roughness and scattering losses from the other hand. Coatings must be not absorbing too and, above all, the most amorphous as possible (this could be obtained with IBS deposition technique), in order to insure a good reproduction of the substrate roughness at the interfaces and on the top layer and an higher resistance to the XUV photons load.

  18. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge alloys

    Directory of Open Access Journals (Sweden)

    Shimakura Hironori

    2017-01-01

    Full Text Available For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  19. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    Science.gov (United States)

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  20. Absolute frequency references at 1529 nm and 1560 nm using modulation transfer spectroscopy

    CERN Document Server

    de Escobar, Y Natali Martinez; Coop, Simon; Vanderbruggen, Thomas; Kaczmarek, Krzysztof T; Mitchell, Morgan W

    2015-01-01

    We demonstrate a double optical frequency reference (1529 nm and 1560 nm) for the telecom C-band using $^{87}$Rb modulation transfer spectroscopy. The two reference frequencies are defined by the 5S$_{1/2} F=2 \\rightarrow $ 5P$_{3/2} F'=3$ two-level and 5S$_{1/2} F=2 \\rightarrow $ 5P$_{3/2} F'=3 \\rightarrow $ 4D$_{5/2} F"=4$ ladder transitions. We examine the sensitivity of the frequency stabilization to probe power and magnetic field fluctuations, calculate its frequency shift due to residual amplitude modulation, and estimate its shift due to gas collisions. The short-term Allan deviation was estimated from the error signal slope for the two transitions. Our scheme provides a simple and high performing system for references at these important wavelengths. We estimate an absolute accuracy of $\\sim$ 1 kHz is realistic.

  1. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths

    Science.gov (United States)

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-01-01

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices. PMID:28362339

  2. Trends in nanosecond melanosome microcavitation up to 1540 nm.

    Science.gov (United States)

    Schmidt, Morgan S; Kennedy, Paul K; Noojin, Gary D; Vincelette, Rebecca L; Thomas, Robert J; Rockwell, Benjamin A

    2015-01-01

    Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ∼0.159 J∕cm2 at 800 nm to 4.5 J∕cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.

  3. Comparison of 3D surfaces produced by 248-nm and 193-nm excimer laser radiation

    Science.gov (United States)

    Toenshoff, Hans K.; Graumann, Christoph; Rinke, Marcus; Hesener, Hanno; Kulik, Christian

    1998-10-01

    Currently there is a strong demand for refractive optical elements made from glass in 21/2D and 3D-structures. Due to the characteristics of brittle materials like glass, only a limited number of manufacturing methods can be used to machine these materials with sub-micron resolution. Thus, current microstructures made out of glass are mainly manufactured by photolithography and etching process. Lithography techniques are only for economic purposes for a series production, but is not suitable for manufacturing prototypes or a small series. Micromachining done with Excimer Lasers in combination with high precision CNC- controlled handling systems offers flexible design possibilities for optical components. Due to the limitations of conventional machining techniques for brittle materials, a new laser machining system for material processing at a wavelength of 193 nm has been designed and built. The better absorption of 193 nm compared to 248 nm or larger wavelengths leads to damage free microstructuring of most glasses. Data generation for the volume to be ablated starts with the mathematical description of the surface shape of the optical component. The contour can be derived from a mathematical function or individual xyz-data point information from any CAD-program. A pre-processor calculates the CNC-data for laser triggering, xyz-table and the CNC- mask control. Each laser pulse leads to a material removal, defined by the illuminated surface on the workpiece as well as the energy density. Superposition or overlapping of pulses allows the creation of the desired surface. The surface roughness is determined by the wavelength as well as the chosen ablation strategy. To achieve best results, the process has to be carefully adjusted for a specific material. This technique is a sufficient method for structuring grooves in ceramics or glass as well as producing aspherical transparent optical surfaces or micro lens arrays. This paper shall describe the potential of 193 nm

  4. Measuring EGFR separations on cells with ~10 nm resolution via fluorophore localization imaging with photobleaching.

    Directory of Open Access Journals (Sweden)

    Sarah R Needham

    Full Text Available Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ~10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ~10 nm resolution while continuously covering the range of ~10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands.

  5. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...... 0.07 nm throughout the tuning range, and the beam quality factor M2 is 2.0 with the output power of 1.27 W....

  6. Ordering of self-assembled 5-nm-diameter poly(dimethylsiloxane) nanodots with sub-10 nm pitch using ultra-narrow electron-beam-drawn guide lines and three-dimensional control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui, E-mail: t10802275@gunma-u.ac.jp [Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515 (Japan); Hosaka, Sumio; Yin, You [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515 (Japan)

    2014-03-03

    We demonstrate the possibility of forming long-range ordered self-assembled arrays of 5-nm-diameter nanodots with pitch of 10 × 7.5 nm{sup 2} using guide line templates and low molecular weight (MW) (4700–1200 g/mol) poly(styrene)-poly(dimethylsiloxane) (PS-PDMS) for application in ultrahigh density patterned magnetic recording media. We propose a three-dimensional control which involves control of the height of the guide lines, the thickness of the PS-PDMS films, and the gap between the guide lines in order to produce 5-nm-diameter, sub-10 nm pitched nanodots with long-range order along the guide lines. Adopting a 13-nm-thick PS-PDMS film and 14-nm-high resist guide lines, the 5-nm-diameter and 10 × 7.5 nm{sup 2}-pitched self-assembled nanodots were ordered in 4–7 dot arrays with long-range order. The experimental results demonstrate that the method is suitable for the production of patterned media with magnetic recording densities of 8.6 Tbit/in.{sup 2} using low MW PS-PDMS and slim guide lines.

  7. MEBES reticle writers for 350-nm and 250-nm design rules

    Science.gov (United States)

    Abboud, Frank E.; Naber, Robert J.; Dean, Robert L.; Sauer, Charles A.

    1994-11-01

    New MEBES reticle writers are described that meet the production requirements of the 350- nm and 250-nm design rules required for 64 Mb and first generation 256 Mb DRAM techniques. These raster scan e-beam systems are based on the MEBES IV thermal field emission (TFE) exposure system, in production use since early 1992. The MEBES IV-TFE system exceeds its 500-nm design rule requirement and is routinely used to product reticles of first-generation 64 Mb DRAMs, prototype 256 Mb DRAMs, and phase shift masks. The success of MEBES IV-TFE is based on a close working relationship with system users, who provided input to establish the requirements of the new reticle writers. The new reticle writers are the result of a two-phase development program. The initial phase, completed in 1993, focused on productivity improvements to the base system, which proved to have excellent accuracy. These improvements ease the handling of the large pattern files, improve the use of the 160 MHz writing rate with a faster data path and more efficient writing strategy, and improve overall system utilization with in situ (maskless) beam-calibration techniques. The second phase of development, completed early in 1994, focused on the production reticle requirements of second-generation 64 Mb DRAM, including optical proximity correction features, and first-generation 256 Mb DRAM. The second development phase improves data path speed, system accuracy, and system productivity. System and subsystem performance is shown for the first and second development phases. Lithographic and write-time performance on the product is presented and discussed in the context of system requirements.

  8. New single-layer positive photoresists for 193-nm photolithography

    Science.gov (United States)

    Okoroanyanwu, Uzodinma; Shimokawa, Tsutomu; Byers, Jeff D.; Medeiros, David R.; Willson, C. Grant; Niu, Qingshang J.; Frechet, Jean M. J.; Allen, Robert D.

    1997-07-01

    New series of chemically amplified, single layer, positive tone photoresists for 193 nm lithography have been developed. These resists were formulated from a series of cycloaliphatic co- and terpolymers of 2-methyl propyl bicyclo(2.2.1)hept-2- ene-5-carboxylate (carbo-tert-butoxynorbornene), bicyclo(2.2.1)hept-2-ene carboxylic acid (norbornene carboxylic acid), 8-methyl-8-carboxy tetracyclo(4,4,0.12,5,17,10)dodec-3-ene (methyltetracyclododecene carboxylic acid), norbornenemethanol, and maleic anhydride, which were synthesized by free radical, vinyl addition and ring opening metathesis polymerization techniques. The polymers derived from ring opening metathesis polymerization have bee successfully hydrogenated to provide yet another member of this group of materials. The cycloaliphatic polymer backbones provide etch resistance, mechanical properties and stability to radiation. The lithographic function is provided by carefully tailored pendant groups, which include an acid functionality that is masked by protecting groups that undergo acid catalyzed thermolysis as well as polar groups that influence the adhesion, wetability and dissolution properties of the polymer. The polymers are soluble in common organic solvents and have glass transition temperatures ranging from less than 60 degrees Celsius to higher than 250 degrees Celsius depending on their specific structure and mode of polymerization. They are at least as transparent at 193 nm as the corresponding acrylics. Their dry etch resistance varies with the formulation, but the base polymers etch more slowly than novolac under conditions typically used to pattern polysilicon. Upon exposure and baking, the resists have demonstrated high sensitivities (9-25 mJ/cm2), and 0.16 micrometer features have bean resolved.

  9. Ultraviolet 320 nm laser excitation for flow cytometry.

    Science.gov (United States)

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  10. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    Science.gov (United States)

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm(2). And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  11. 980 nm and 808 nm excitable upconversion nanoparticles for the detection of enzyme related reactions

    Science.gov (United States)

    Himmelstoß, Sandy F.; Wiesholler, Lisa M.; Buchner, Markus; Muhr, Verena; Märkl, Susanne; Baeumner, Antje J.; Hirsch, Thomas

    2017-02-01

    Upconverting luminescent nanoparticles (UCNPs) represent an interesting class of nanomaterials for bioanalytical applications. Due to their excitation in the near infrared region of the spectra, no fluorescence of biological compounds is trigged. Compared to other nanomaterials like quantum dots they exhibit low cytotoxicity, high photostability, no blinking and chemical inertness. Nevertheless, UCNPs suffer from low quantum efficiency. Here we report on two different core-shell particle systems which have a core consisting of NaYF4 doped with Yb3+/ Tm3+ and an additional inert shell (NaYF4) or an active shell (NaYF4 doped with Yb3+/Nd3+). Nanoparticles without Yb3+ as sensitizer can be excited at 980 nm. However, water has an absorption band in this region. This results in a reduction of the upconversion efficiency in aqueous systems and a heating of the solution. For bioanalytical application, more beneficial is the shifting of the wavelength to 808 nm by additional doping of the shell with Nd3+. Both core-shell systems were investigated in respect to the monitor enzymatic reactions of dehydrogenases and oxidases involving the generation of either NADH or FADH2.

  12. Alignment robustness for 90 nm and 65 nm node through copper alignment mark integration optimization

    Science.gov (United States)

    Warrick, Scott; Hinnen, Paul; Morton, Rob; Cooper, Kevin; Sassoulas, Pierre-Olivier; Depre, Jerome; Navarro, Ramon; van Haren, Richard; Browning, Clyde; Reber, Doug; Megens, Henry

    2005-05-01

    In this paper, methods for stacking ASML scribe lane alignment marks (SPM) and improving the mark performance at initial copper metal levels are discussed. The new mark designs and the theoretical reasons for mark design and/or integration change are presented. In previous joint publications between ASML and Freescale Semiconductor [1], improved overlay performance and alignment robustness for Back End Of Line (BEOL) layers by the application of stacked scribe lane marks (SPM) was presented. In this paper, further improvements are demonstrated through the use of optimized Versatile Scribe Lane Mark design (VSPM). With the application of stacked optimized VSPM-marks, the alignment signal strength of marks in the copper metal layer is increased compared to stacked SPM marks. The gains in signal strength stability, which is typical for stacked marks, as well as significantly reduced scribe lane usage, are also maintained. Through the placement of specially designed orthogonal scatter-bars in selected layers under the VSPM-marks, the alignment performance of initial inlaid metal layers is improved as well. The integration of these marks has been evaluated for the 90 nm and 65 nm technology nodes as part of a joint development program between the Crolles2 Alliance and ASML. A measured overlay improvement of ~10-15% was obtained by a strategy change from floating copper marks to stacked optimized VSPM marks.

  13. Genotoxic effects of 1064-nm Nd:YAG and 532-nm KTP lasers on fibroblast cell cultures.

    Science.gov (United States)

    Senturk, N; Bedir, A; Bilgici, B; Aydin, F; Okuyucu, A; Ozmen, Z C; Turanli, A Y

    2010-07-01

    Several different laser types are used in cutaneous surgery. The neodymium:yttrium-aluminium-garnet (Nd:YAG) and frequency-doubled Nd:YAG (KTP, potassium titanyl phosphate) lasers are widely used in dermatology. To investigate the possible genotoxic effects on fibroblasts of irradiation with a 1064-nm Nd:YAG laser and a 532-nm KTP laser. Fibroblast cell cultures were exposed to each of the lasers, using 10-mm spot size at 60 ms pulse duration with 10, 20, 40 J/cm(2) and 3, 6, 12 J/cm(2) fluences, respectively. Fibroblasts in passages 1-6 were used. During laser irradiation, 96-well microplate cultures were kept on a cooling block and transported on ice and in the dark, and processed immediately for single-cell gel electrophoresis (SCGE) assay (also known as a comet assay). DNA damage was determined by computerized assessment of comet assay. There was increasing damage with increasing numbers of passages. For the Nd:YAG laser, the greatest damage occurred on passages 5 and 6, whereas the greatest damage appeared at passages 3 and 4 for KTP and returned to baseline at passages 5 and 6. Damage also increased with each dose increment for both wavelengths. At the highest dose for both wavelengths (Nd:YAG 40 J/cm(2) and KTP 12 J/cm(2)), damage was higher with the Nd:YAG laser. Different patterns of cellular damage were seen for different cell-culture passages, treatment doses, and laser wavelengths. These dose ranges are generally used for the treatment of vascular and pigmented lesions and for rejuvenation purposes. As replicative ageing or cell senescence is one of the critical factors determining the extent of cell damage induced by laser therapy, these results may have important implications for clinical practice.

  14. 78 FR 78299 - Proposed Establishment of Class E Airspace; Truth or Consequences, NM

    Science.gov (United States)

    2013-12-26

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Truth or... Truth or Consequences VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Truth or... feet above the surface at the Truth or Consequences VORTAC navigation aid, Truth or Consequences, NM...

  15. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isotani, Sadao, E-mail: sisotani@if.usp.br [Instituto de Física, Universidade de São Paulo, São Paulo (Brazil); Matsuoka, Masao [Instituto de Física, Universidade de São Paulo, São Paulo (Brazil); Albuquerque, Antonio Roberto Pereira Leite [University Federal of São Paulo, São Paulo (Brazil)

    2013-04-15

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O{sup −} bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge–Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O{sup −} polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373–553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O{sup −} polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  16. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm

    Science.gov (United States)

    Chung, Soojeong; Fried, Daniel; Staninec, Michal; Darling, Cynthia L.

    2011-03-01

    Near-IR (NIR) imaging is a new technology that is currently being investigated for the detection and assessment of dental caries without the use of ionizing radiation. Several papers have been published on the use of transillumination and reflectance NIR imaging to detect early caries in enamel. The purpose of this study was to investigate alternative near infrared wavelengths besides 1300-nm in the range from 1200- 1600-nm to determine the wavelengths that yield the highest contrast in both transmission and reflectance imaging modes. Artificial lesions were created on thirty tooth sections of varying thickness for transillumination imaging. NIR images at wavelengths from the visible to 1600-nm were also acquired for fifty-four whole teeth with occlusal lesions using a tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS image sensor. Cavity preparations were also cut into whole teeth and Z250 composite was used as a restorative material to determine the contrast between composite and enamel at NIR wavelengths. Slightly longer NIR wavelengths are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Significantly higher performance was attained at wavelengths that have higher water absorption, namely 1460-nm and wavelengths greater than 1500-nm and these wavelength regions are likely to be more effective for reflectance imaging. Wavelengths with higher water absorption also provided higher contrast of composite restorations.

  17. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about...... 20 to 10 nm and the thickness of the cementite lamellae decreases from about 2 nm to about 0.7 nm, representing a structure, which breaks up at large strains, decomposes and releases carbon to the ferrite lamellae. The dislocation density increases continuously with strain and reaches about 5 1016 m2...

  18. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  19. Temperature characteristic of 808nm VCSELs with large aperture

    Science.gov (United States)

    Feng, Yuan; Feng, Dawei; Hao, Yongqin; Wang, Yong; Yan, Changling; Lu, Peng; Li, Yang

    2015-03-01

    In order to study the output characteristics of 808nm vertical cavity surface emitting laser(VCSEL) with large aperture at different temperature, 808nm VCSEL with 500μm emitting diameter are fabricated with Reticular Electrode Structure(RES). Lasing wavelength, optical power and the threshold current are measured by changing the temperature of heat sink. And an output power of 0.42W is achieved at 1.3A at room temperature under continuous wave operation. The central wavelength is 803.32nm, and the full width at half maximum is 0.16nm, the temperature shift is 0.06nm/°, the thermal resistance is 0.098°/mW. The testing results show that 808nm VCSEL with large aperture is good temperature characteristic.

  20. Antifungal effect of 405-nm light on Botrytis cinerea.

    Science.gov (United States)

    Imada, K; Tanaka, S; Ibaraki, Y; Yoshimura, K; Ito, S

    2014-12-01

    There is very little information on the fungistatic or fungicidal effect of visible light. This study investigated the effect of 405-nm light, generated by a light-emitting diode array, on the economically important fungus Botrytis cinerea. The mycelial growth of B. cinerea was inhibited to the greatest extent by light at 405 and 415 nm and was negligibly inactivated at 450 nm, suggesting the presence of a photosensitizing compound that absorbs light mainly at wavelengths of 405-415 nm. Delta-aminolevulinic acid, a precursor of endogenous photosensitizer porphyrins, was used to determine the role of these porphyrins in 405-nm light-mediated photoinactivation of the fungus. Concentration-dependent inhibition of spore germination by delta-aminolevulinic acid and accumulation of singlet oxygen in the spores was observed when the spores were exposed to 405-nm light. These results suggest that the excitation of endogenous porphyrins and subsequent accumulation of singlet oxygen could partially explain the 405-nm light-mediated photoinactivation of B. cinerea. The development of symptoms in detached tomato leaves inoculated with B. cinerea spores was significantly reduced by irradiation with 405-nm light, indicating that 405-nm light has a potential use for controlling plant diseases caused by B. cinerea. Grey mould (Botrytis cinerea) is a very successful necrotroph, causing serious losses in more than 200 crop hosts. This study investigated the antifungal effect of 405-nm light on this pathogen. Our results suggest that the excitation of endogenous porphyrins and subsequent accumulation of singlet oxygen contribute to the 405-nm light-mediated photoinactivation of grey mould. The development of symptoms in detached tomato leaves inoculated with B. cinerea spores was significantly inhibited by irradiation with 405-nm light, indicating that this wavelength of light has a potential use in controlling plant diseases caused by B. cinerea. © 2014 The Society for

  1. Virus safety of plasma products using 20 nm instead of 15 nm filtration as virus removing step.

    Science.gov (United States)

    Koenderman, A H L; ter Hart, H G J; Prins-de Nijs, I M M; Bloem, J; Stoffers, S; Kempers, A; Derksen, G J; Al, B; Dekker, L; Over, J

    2012-11-01

    During the manufacture of human plasma derivatives, a series of complementary measures are undertaken to prevent transmission of blood-borne viruses. Virus filtration using 15 nm (Planova15N) filters has successfully been implemented in manufacturing processes for various plasma derivatives primarily because virus filtration is a technique, mild for proteins, that can effectively remove even small non-lipid-enveloped viruses, such as HAV and parvovirus B19. However, the use of 15 nm filters has limitations with regard to protein capacity of the filters and the process flow, resulting in an expensive manufacturing step. Therefore, studies were performed to test whether the use of 20 nm (Planova20N) filters, having different characteristics compared to 15 nm filters, can be an alternative for the use of 15 nm filters. It is shown that 20 nm filtration can be an alternative for 15 nm filtration. However, the virus removal capacity of the 20 nm filters depends on the plasma product that is filtered. Therefore, an optimisation study must be performed with regard to process parameters such as pressure, pH and protein concentration for each plasma product. In this study, using optimised conditions, the virus removal capacity of 20 nm filters appears to be comparable or even better when compared to that of 15 nm filters. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. Anetoderma treated with combined 595-nm pulsed-dye laser and 1550-nm non-ablative fractionated laser.

    Science.gov (United States)

    Wang, Krystle; Ross, Nicholas Alexander; Saedi, Nazanin

    2016-01-01

    Anetoderma is a skin disorder characterized by a focal loss of dermal elastic tissue whereby patients present with soft, depressible lesions. We postulated that a series of combination treatment using the 595-nm pulsed dye laser (PDL) and the 1550-nm non-ablative fractionated laser (NAFL) would improve the anetoderma lesions. Our patient with biopsy proven anetoderma received 3 treatments with a combination of 595-nm PDL and 1550-nm NAFL spaced 3 weeks apart. Skin biopsies were performed at baseline and immediately prior to the third treatment. Stains for hematoxylin and eosin and Verhoeff Van Gieson (VVG) were performed. Improvement in lesion color, texture, and overall appearance was noted after the second treatment and continued following the third treatment. Post-treatment VVG staining demonstrated an increase in dermal elastin fibers and a decrease in elastin fiber fragmentation. Thus, the combination of 595-nm PDL and 1550-nm NAFL should be considered as a treatment modality for anetoderma.

  3. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm......High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality...

  4. Broadband Tuning (170nm) of InGaAs Quantum Well Lasers

    OpenAIRE

    Eng, L. E.; Mehuys, D. G.; Mittelstein, M.; Yariv, A.

    1990-01-01

    The wavelength tuning properties of strained InGaAs quantum well lasers using an external grating for feedback is reported. Tunable laser oscillation has been observed over a range of 170 nm, between 840 and 1010 nm, under pulsed current excitation. The optimal conditions for broadband tunability for the InGaAs lasers are different from GaAs lasers, which is attributed to a difference in spectral gain curves. Together with an optimised GaAs quantum well laser the entire region between 740 and...

  5. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    Science.gov (United States)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  6. On high speed transmission with the 850 nm VCSELs

    DEFF Research Database (Denmark)

    Turkiewicz, Jarosław P.; Chorchos, Łukasz; Puerta Ramírez, Rafael

    2016-01-01

    One of the key research challenges is development of energy efficient high bit rate data interconnects. The most promising solutions are based on 850 nm vertical cavity surface emitting lasers (VCSEL) and multi mode fibre (MMF). In this paper options to realize energy efficient 850 nm data interc...

  7. 14/16nm FinFET Radiation Response Characterization

    Science.gov (United States)

    2016-03-17

    inverter-based DFF, and Figure 1. Floorplan layout of 16nm bulk FinFET test chip with multiple CREST configuration flip-flop shift registers. Figure...D. Rennie, " Neutron - and Proton-Induced Single Event Upsets for D- and DICE-Flip/Flop Designs at a 40 nm Technology Node," IEEE Trans. Nucl. Sci

  8. Electron beam inspection of 16nm HP node EUV masks

    Science.gov (United States)

    Shimomura, Takeya; Narukawa, Shogo; Abe, Tsukasa; Takikawa, Tadahiko; Hayashi, Naoya; Wang, Fei; Ma, Long; Lin, Chia-Wen; Zhao, Yan; Kuan, Chiyan; Jau, Jack

    2012-11-01

    EUV lithography (EUVL) is the most promising solution for 16nm HP node semiconductor device manufacturing and beyond. The fabrication of defect free EUV mask is one of the most challenging roadblocks to insert EUVL into high volume manufacturing (HVM). To fabricate and assure the defect free EUV masks, electron beam inspection (EBI) tool will be likely the necessary tool since optical mask inspection systems using 193nm and 199nm light are reaching a practical resolution limit around 16nm HP node EUV mask. For production use of EBI, several challenges and potential issues are expected. Firstly, required defect detection sensitivity is quite high. According to ITRS roadmap updated in 2011, the smallest defect size needed to detect is about 18nm for 15nm NAND Flash HP node EUV mask. Secondly, small pixel size is likely required to obtain the high sensitivity. Thus, it might damage Ru capped Mo/Si multilayer due to accumulated high density electron beam bombardments. It also has potential of elevation of nuisance defects and reduction of throughput. These challenges must be solved before inserting EBI system into EUV mask HVM line. In this paper, we share our initial inspection results for 16nm HP node EUV mask (64nm HP absorber pattern on the EUV mask) using an EBI system eXplore® 5400 developed by Hermes Microvision, Inc. (HMI). In particularly, defect detection sensitivity, inspectability and damage to EUV mask were assessed. As conclusions, we found that the EBI system has capability to capture 16nm defects on 64nm absorber pattern EUV mask, satisfying the sensitivity requirement of 15nm NAND Flash HP node EUV mask. Furthermore, we confirmed there is no significant damage to susceptible Ru capped Mo/Si multilayer. We also identified that low throughput and high nuisance defect rate are critical challenges needed to address for the 16nm HP node EUV mask inspection. The high nuisance defect rate could be generated by poor LWR and stitching errors during EB writing

  9. Raster scan patterning solution for 100- and 70-nm OPC masks

    Science.gov (United States)

    Abboud, Frank E.; Baik, Ki-Ho; Chakarian, Varoujan; Cole, Damon M.; Dean, Robert L.; Gesley, Mark A.; Gillman, Herb; Moore, William C.; Mueller, Mark; Naber, Robert J.; Newman, Thomas H.; Puri, Romin; Raymond, Frederick, III; Rougieri, Mario

    2002-07-01

    Photomask complexity threatens to outpace mask pattern generator productivity, as semiconductor devices are scaled down and optical proximity correction (OPC) becomes commonplace. Raster scan architectures are well suited to the challenge of maintaining mask throughput and mask quality despite these trends. The MEBES eXara mask pattern generator combines the resolution of a finely focused 50 keV electron beam with the productivity and accuracy of Raster Graybeam writing. Features below 100 nm can be imaged, and OPC designs are produced with consistent fidelity. Write time is independent of resist sensitivity, allowing high-dose processes to be extended, and relaxing sensitivity constraints on chemically amplified resists. Data handling capability is enhanced by a new hierarchical front end and hiearchical data format, building on an underlying writing strategy that is efficient for OPC patterns. A large operating range enables the MEBES eXara system to support the production of 100 nm photomasks, and the development of 70 nm masks.

  10. H- laser photodetachment at 1064, 532, and 355 nm in plasma

    Science.gov (United States)

    Nishiura, M.; Sasao, M.; Bacal, M.

    1998-03-01

    The fundamental frequency (1064 nm), the second harmonic (532 nm), and the third harmonic (355 nm) of a Nd yttrium aluminum garnet laser have been used to investigate the influence of the energies of photodetached electrons upon the determination of the H- density and the H- drift velocity in a hydrogen plasma, where the electron density and temperature range from 1010cm-3 to 1011cm-3 and from 0.5 to 3 eV, respectively, with the n-/ne ratio less than 2%. From the δIp-Vp characteristics, where δIp is the photodetachment current and Vp is the probe voltage, it is found that there is no dependence of the energies of photodetached electrons on the photon energies. The effective temperature of photodetached electrons Teff is close, within 40%, to that of background electrons. As a result the H- density and the H- drift velocity are not affected by photon energies.

  11. Broadly tunable (440-670 nm) solid-state organic laser with disposable capsules

    CERN Document Server

    Mhibik, Oussama; Siove, Alain; Forget, Sebastien; Chenais, Sébastien

    2014-01-01

    An innovative concept of thin-film organic solid-state laser is proposed, with diffraction-limited output and a broad tuning range covering the visible spectrum under UV optical pumping. The laser beam is tunable over 230 nm, from 440 to 670 nm, with a 3 nm full width at half maximum typical spectral width. The structure consists of a compact fixed bulk optical cavity, a polymeric intracavity etalon for wavelength tuning, as well as five different disposable glass slides coated with a dye-doped polymer film, forming a very simple and low-cost gain medium. The use of interchangeable/disposable "gain capsules" is an alternative solution to photodegradation issues, since gain chips can be replaced without realignment of the cavity. The laser lifetime of a single chip in ambient conditions and without encapsulation was extrapolated to be around 107 pulses at a microjoule energy-per-pulse level.

  12. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  13. NM23-H1: a Metastasis-Associated Gene

    Directory of Open Access Journals (Sweden)

    Yi-Torng Tee

    2006-06-01

    Full Text Available The protein product of nm23-H1 gene has activity of nucleoside diphosphate (NDP kinase, which catalyzes the phosphorylation of nucleoside diphosphates to the corresponding nucleoside triphosphates. Reductions in nm23 expression have been significantly associated with aggressive behavior in melanoma, breast, colon, and gastric carcinomas. On the contrary, high levels of nm23 gene expression are noted in the advanced stage of thyroid carcinomas and associated with significant reductions in survival for neuroblastoma and osteosarcoma patients. Although expression of nm23/NDP kinase is divergent in various malignant tumors, its reduced expression seems to be related to increased metastatic potential in most carcinoma types. However, it is hypothesized that nm23 may play a tissue-specific role, and that different regulatory mechanisms may act in different tumors. In ovarian carcinoma, nm23-H1/NDP kinase may be correlated with some clinicopathologic characteristics. In cervical cancer, nm23-H1 is probably involved in cervical carcinogenesis and correlated with some aggressive parameters. Overexpression of nm23-H1 protein may indicate poor survival for cervical cancer patients. Other than histidine 118 residue (amino acid sequence 118: histidine concerned with NDP kinase activity of nm23-H1, serine 120 (amino acid sequence 120: serine related activity of histidine-dependent protein phosphotransfer was recently reported to be responsible for its biological suppressive effects. To inhibit metastatic potential, nm23-H1 is also demonstrated to co-immunoprecipitate the kinase suppressor of Ras and phosphorylate it, and therefore reduce activation of the extracellular signal-regulated kinase mitogen-activated protein kinase pathway in response to signaling.

  14. Range management visual impacts

    Science.gov (United States)

    Bruce R. Brown; David Kissel

    1979-01-01

    Historical overgrazing of western public rangelands has resulted in the passage of the Public Rangeland Improvement Act of 1978. The main purpose of this Act is to improve unsatisfactory range conditions. A contributing factor to unfavorable range conditions is adverse visual impacts. These visual impacts can be identified in three categories of range management: range...

  15. InGaAs-QW VECSEL emitting >1.300-nm via intracavity Raman conversion

    Science.gov (United States)

    Parrotta, Daniele C.; Casula, Riccardo; Penttinen, Jussi-Pekka; Leinonen, Tomi; Kemp, Alan J.; Guina, Mircea; Hastie, Jennifer E.

    2016-03-01

    We report intracavity Raman conversion of a long-wavelength InGaAs-QW VECSEL to ~1320 nm, the longest wavelength yet achieved by a VECSEL-pumped Raman laser. The setup consisted of a VECSEL capable of emitting >17W at 1180nm and tunable from 1141-1203nm and a 30-mm-long KGd(WO4)2 (KGW) Raman crystal in a coupled-cavity Raman resonator. The Raman cavity was separated from the VECSEL resonator by a tilted dichroic mirror, which steers the Raman beam to an output coupler external to the VECSEL. The spectral emission of the VECSEL, and consequently of the Raman laser, was set by a 4-mm-thick quartz birefringent filter in the VECSEL cavity. The KGW Raman laser was capable of emitting 2.5W at 1315 nm, with M2~2.7 and >4% diode-to-Stokes conversion efficiency. The Raman laser emission was tunable from 1295-1340 nm, limited by the free spectral range of the birefringent filter. Spectral broadening of the fundamental emission was observed during Raman conversion. At the maximum Raman laser output power, the total linewidth of the VECSEL spectrum was ~0:7nm FWHM. As a consequence, the Raman laser emission was also relatively broad (~0.9nm FWHM). Narrow (Raman emission was obtained by inserting an additional 100 µm etalon within the VECSEL cavity. With this configuration the fundamental intracavity power clamped at its value at the Raman threshold, suggesting an enhanced effective Raman gain, but the maximum output power of the Raman laser was 1.8 W.

  16. Challenges in the Plasma Etch Process Development in the sub-20nm Technology Nodes

    Science.gov (United States)

    Kumar, Kaushik

    2013-09-01

    For multiple generations of semiconductor technologies, RF plasmas have provided a reliable platform for critical and non-critical patterning applications. The electron temperature of processes in a RF plasma is typically several electron volts. A substantial portion of the electron population is within the energy range accessible for different types of electron collision processes, such as electron collision dissociation and dissociative electron attachment. When these electron processes occur within a small distance above the wafer, the neutral species, radicals and excited molecules, generated from these processes take part in etching reactions impacting selectivity, ARDE and micro-loading. The introduction of finFET devices at 22 nm technology node at Intel marks the transition of planar devices to 3-dimensional devices, which add to the challenges to etch process in fabricating such devices. In the sub-32 nm technology node, Back-end-of-the-line made a change with the implementation of Trench First Metal Hard Mask (TFMHM) integration scheme, which has hence gained traction and become the preferred integration of low-k materials for BEOL. This integration scheme also enables Self-Aligned Via (SAV) patterning which prevents via CD growth and confines via by line trenches to better control via to line spacing. In addition to this, lack of scaling of 193 nm Lithography and non-availability of EUV based lithography beyond concept, has placed focus on novel multiple patterning schemes. This added complexity has resulted in multiple etch schemes to enable technology scaling below 80 nm Pitches, as shown by the memory manufacturers. Double-Patterning and Quad-Patterning have become increasingly used techniques to achieve 64 nm, 56 nm and 45 nm Pitch technologies in Back-end-of-the-line. Challenges associated in the plasma etching of these multiple integration schemes will be discussed in the presentation. In collaboration with A. Ranjan, TEL Technology Center, America

  17. Development of 2-channel (532 nm and 355 nm) mobile LIDAR for mapping particulate matter in the atmosphere

    CSIR Research Space (South Africa)

    Sivakumar, V

    2010-09-01

    Full Text Available In this paper, the authors describe the developmentof 2-Channel (532 nm and 355 nm) mobile LIDAR system for studying atmospheric particulate matter. The system is currently tested in house at the Council for Scientific and Industrial Research...

  18. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    Science.gov (United States)

    Herman, J. R.; Mentall, J. E.

    1982-10-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  19. Efficient single-pass third-harmonic generation from 1560 nm to 520 nm for pumping doubly-resonant OPO

    Science.gov (United States)

    Zhang, Kong; Wang, Junmin

    2017-08-01

    A ~545 mW single-frequency tunable 520 nm green laser has been demonstrated using a periodically-poled potassium titanyl phosphate (PPKTP) bulk crystal based on single-pass third-harmonic generation (THG) of a 1560 nm laser via single-pass second-harmonic generation (SHG) followed by single-pass sum-frequency generation (SFG). In single-pass SHG, two cascaded periodically-poled magnesium-oxide-doped lithium niobate (PPMgO:LN) crystals were used, and ~3.5 W 780.25 nm doubled laser output is produced, corresponding to maximum doubling efficiency of 26.8%. The system can provide a pump source (520 nm) for an optical parametric oscillator for two-color entangled continuous-variable optical field generation at 1560 and 780 nm and two-color local oscillators for homodyne detection.

  20. Photolysis of tryptophan with 337. 1 nm laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borkman, R.F.; Hibbard, L.B.; Dillon, J.

    1986-01-01

    Aqueous solutions of L-tryptophan were photolyzed by exposure to 337.1 nm radiation from a pulsed nitrogen laser. These data were compared with results for the 290 nm conventional-source photolysis of tryptophan. The loss of Trp was observed to be first order for 290 nm photolysis but of mixed order for 337.1 nm photolysis. Five photolysis products including N-formylkynurenine, kynurenine, tryptamine and two unknown products were detected. The tryptophan-containing peptides N-acetyl-tryptophanamide (NATA) and tryptophylglycine (Trp-Gly) were also observed to photolyze upon 337.1 nm laser radiation demonstrating that this phenomenon is not restricted to free tryptophan monomer. A number of experiments were performed in an effort to determine the mechanism of photolysis at this wavelength. It is concluded that this photolysis results either from a very weak absorption tail extending to 337.1 nm in tryptophan itself or from a reaction involving an impurity sensitizer which absorbs the 337.1 nm radiation.

  1. The influence of mounting and thermal strains on defects disclose during ageing test for laser diodes for 808nm and 880nm bands

    Science.gov (United States)

    Dabrowska, E.; Kozłowska, A.; Teodorczyk, M.; Zawistowska, J.; Sobczak, G.; Malag, A.

    2013-07-01

    The quality of the die bonding is critical to the operation and reliability of the laser diodes since it can affect the electrical, thermal, and optical properties of the device. We investigated the effect of mounting induced strain and defects on the performance of high power laser. In this paper measurements of the temperature distribution, the spontaneous emission spectrum and the electroluminescence along the cavity of quantum well lasers are presented. The electro-optical parameters of the high output power laser diodes, such as emission wavelength, output power, threshold current, slope efficiency, and operating lifetime are presented too. In the experiment, high power diode lasers emitting in 808 nm and 880 nm- range are investigated. We have observed that defect lines tend to create in areas where temperature gradients were observed in thermovision measurements.

  2. Designing to win in sub-90nm mask production

    Science.gov (United States)

    Zhang, Yuan

    2005-11-01

    An informal survey conducted with key customers by Photronics indicates that the time gap between technology nodes has accelerated in recent years. Previously the cycle was three years. However, between 130nm and 90nm there was less than a 2 year gap, and between 90nm and 65nm a 1.5 year gap exists. As a result, the technical challenges have increased substantially. In addition, mask costs are rising exponentially due to high capital equipment cost, a shrinking customer base, long write times and increased applications of 193nm EAPSM or AAPSM. Collaboration among EDA companies, mask houses and wafer manufacturers is now more important than ever. This paper will explore avenues for reducing mask costs, mainly in the areas of: write-time reduction through design for manufacturing (DFM), and yield improvement through specification relaxation. Our study conducted through layout vertex modeling suggests that a simple design shape such as a square versus a circle or an angled structure helps reduce shot count and write time. Shot count reduction through mask layout optimization, and advancement in new generation E-beam writers can reduce write time up to 65%. An advanced laser writer can produce those less critical E-beam layers in less than half the time of an e-beam writer. Additionally, the emerging imprint lithography brings new life and new challenges to the photomask industry with applications in many fields outside of the semiconductor industry. As immersion lithography is introduced for 45nm device production, polarization and MEEF effects due to the mask will become severe. Larger magnification not only provides benefits on CD control and MEEF, but also extends the life time of current 90nm/65nm tool sets where 45nm mask sets can be produced at a lower cost.

  3. Formation of nickel germanides from Ni layers with thickness below 10 nm

    Energy Technology Data Exchange (ETDEWEB)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel; Abedin, Ahmad; Hellström, Per-Erik; Östling, Mikael; Jordan-Sweet, Jean; Lavoie, Christian; Zhang, Shi-Li; Zhang, Zhen

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5 nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness

  4. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  5. Picosecond Laser Pulse Optical Density of Three 1060-NM Filters.

    Science.gov (United States)

    1980-12-01

    pul- ses. These included a dyed glass plate (Schott KG-3), a polymethyl methacrylate plate ( PMMA ) developed for the Air Force for 1060-nm- specific...Schott KG-3), a polymethyl methacrylate plate ( PMMA ) developed for the Air Force for 1060-nm-specific visors, and a dielectric-coated laser cavity... Ocular tissue damage due to ultrashort 1060-nm light pulses from a mode-locked Nd:glass laser. Appl Opt 14:1759-1761 (1975). 4. Taboada, J., and D. D

  6. High power composite cavity fiber laser oscillator at 1120 nm

    Science.gov (United States)

    Wang, Jianming; Li, Cheng; Yan, Dapeng

    2017-12-01

    A high power composite cavity fiber laser oscillator at 1120 nm is demonstrated experimentally. Performances of the 1120 nm single fiber laser oscillator and the composite cavity are investigated and compared, and the parasitic oscillation created by the strong amplified spontaneous emission (ASE) can be suppressed effectively in the composite cavity scheme. 2.04-kW 1120-nm signal light with a good beam quality (M2=1.15) is obtained, and the optical conversion efficiency of the composite cavity fiber laser oscillator is about 63% in the experiment. The compact architecture of composite cavity provides an effective scheme for power scaling of long wavelength lasers.

  7. Treatment of tattoos with a 755-nm Q-switched alexandrite laser and novel 1064 nm and 532 nm Nd:YAG laser handpieces pumped by the alexandrite treatment beam.

    Science.gov (United States)

    Bernstein, Eric F; Bhawalkar, Jay; Clifford, Joan; Hsia, James

    2010-11-01

    Multi-colored and even black tattoos often require more than one wavelength to remove the target pigment. The authors report here a novel alexandrite laser with two Nd:YAG laser handpieces pumped by the alexandrite treatment beam enabling the delivery of three wavelengths from a single device. To describe and evaluate the effectiveness of a novel Q-switched laser-pumped laser for treating tattoos. Twenty tattoos in 14 subjects were treated at four-week intervals using a combination of available wavelengths (532, 755 and 1064 nm) as determined by the treating physician. Digital cross-polarized photographs were taken before treatment and two months following the fourth and final treatment. Photographs were evaluated by three physician observers blinded as to the treatment condition and rated for clearance by the following scale: 1 = > 95 percent, 2 = 76-95 percent, 3 = 51-75 percent, 4 = 26-50 percent and 5 = 0-25 percent clearance. The average clearance score was 3.1, in the 51-75 percent range, two months following four treatments. No scarring, hyper- or hypopigmentation was noted on post-treatment photographs or by the treating physician. The alexandrite and alexandrite-pumped 532 nm and 1064 nm Q-switched lasers are effective for removing decorative tattoos, and represents the first commercial laser with laser-pumped, laser handpieces.

  8. High-speed polarization-sensitive OCT at 1060 nm using a Fourier domain mode-locked swept source

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Torzicky, Teresa; Klein, Thomas

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera), as it permits a long penetration depth. Complementary to structural images, polarization-sensitive OCT (PS-OCT) images visualize birefringent...... sufficiently large datasets. Here, we demonstrate PS-OCT imaging at 350 kHz A-scan rate using a two-channel PS-OCT system in conjunction with a Fourier domain mode-locked laser. The light source spectrum spans up to 100nm around the water absorption minimum at 1060 nm. By modulating the laser pump current, we...

  9. Minnesota Pheasant Range

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and...

  10. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... for substring range reporting generalize to substring range counting and substring range emptiness variants. We also obtain non-trivial time-space trade-offs for these problems. Our bounds for substring range reporting are based on a novel combination of suffix trees and range reporting data structures...

  11. Space-Qualified 1064 nm Seed and Metrology Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A space-qualified, single-frequency oscillator operating at 1064 nm is a critical component for a number of active optical measurement systems that have been...

  12. BIA Wingate High School WWTF, Fort Wingate, NM: NN0020958

    Science.gov (United States)

    NPDES Permit and Fact Sheet explaining EPA's action under the Clean Water Act to issue NPDES Permit No. NN0020958 to Bureau of Indian Affairs (BIA) Wingate High School Wastewater Treatment Lagoon, Fort Wingate, NM.

  13. Compact 2050 nm Semiconductor Diode Laser Master Oscillator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to develop DFB laser master oscillators at the novel wavelength of 12050 nm. Two prototypes will be built, tested, and delivered ....

  14. The extra-terrestrial vacuum-ultraviolet wavelength range

    Science.gov (United States)

    Timothy, J. Gethyn; Wilhelm, Klaus; Xia, Lidong

    Electromagnetic radiation in the vacuum-ultraviolet (VUV) and extra-terrestrial range at wavelengths from 10 nm to 300 nm is absorbed in the upper atmosphere by ozone, molecular and atomic oxygen, and molecular nitrogen. Observations at wavelengths down to ≈ 200 nm can be carried out from stratospheric balloons, and observations below 200 nm require space platforms operating at altitudes above 250 km. The VUV spectral region contains emission lines and continua arising from plasma at formation temperatures ranging from about 104 K to more than 107 K. This chapter describes the wide range of plasma diagnostic techniques available at VUV wavelengths, and the development of instrumentation for studies of the high-temperature solar outer atmosphere and astrophysical plasmas. Finally, the prospects for future studies are briefly discussed.

  15. A 205GHz Amplifier in 90nm CMOS Technology

    Science.gov (United States)

    2017-03-01

    A 205GHz Amplifier in 90nm CMOS Technology Shahab Ardalan, Senior Member, IEEE Electrical Department, Charles W. Davidson College of Engineering...greater CMOS technologies . Keywords: Amplifier, neutralization, parasitic, Psat, P1dB.   Introduction Millimeter-wave and sub-mm-wave (THz band...amplifier has been implemented and fabricated in 90nm CMOS technology . The proposed amplifier attained a gain of 10.5 dB whilst consuming a dc power

  16. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 . NOTICE AND SIGNATURE PAGE Using Government drawings, specifications...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER *Leidos, Inc 11951 Freedom Drive Reston, VA 20190 **University of New Mexico ECE Building, Room 125...AFRL/RDLT 3550 Aberdeen Ave SE Kirtland AFB, NM 87117-5776 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL-RD-PS-TP-2016-0009 12. DISTRIBUTION

  17. Investigation of a Pulsed 1550 nm Fiber Laser System

    Science.gov (United States)

    2015-12-15

    Technical Paper APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AIR FORCE RESEARCH LABORATORY Directed Energy Directorate 3550 Aberdeen Ave SE...NUMBER The University of New Mexico ECE Building, Room 125 Albuquerque, NM 87131-0001 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory AFRL/RDLT 3550 Aberdeen Ave SE Kirtland AFB, NM 87117-5776 11. SPONSOR/MONITOR’S REPORT

  18. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...

  19. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...... chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifier as gain medium, and investigated the FDML performance comparing two fiber delay lines with different dispersion properties. We introduced an additional gain element into the resonator, and thereby...... achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 μm...

  20. EUV lithography at the 22nm technology node

    Science.gov (United States)

    Wood, Obert; Koay, Chiew-Seng; Petrillo, Karen; Mizuno, Hiroyuki; Raghunathan, Sudhar; Arnold, John; Horak, Dave; Burkhardt, Martin; McIntyre, Gregory; Deng, Yunfei; La Fontaine, Bruno; Okoroanyanwu, Uzo; Wallow, Tom; Landie, Guillaume; Standaert, Theodorus; Burns, Sean; Waskiewicz, Christopher; Kawasaki, Hirohisa; Chen, James H.-C.; Colburn, Matthew; Haran, Bala; Fan, Susan S.-C.; Yin, Yunpeng; Holfeld, Christian; Techel, Jens; Peters, Jan-Hendrik; Bouten, Sander; Lee, Brian; Pierson, Bill; Kessels, Bart; Routh, Robert; Cummings, Kevin

    2010-04-01

    We are evaluating the readiness of extreme ultraviolet (EUV) lithography for insertion into production at the 15 nm technology node by integrating it into standard semiconductor process flows because we believe that device integration exercises provide the truest test of technology readiness and, at the same time, highlight the remaining critical issues. In this paper, we describe the use of EUV lithography with the 0.25 NA Alpha Demo Tool (ADT) to pattern the contact and first interconnect levels of a large (~24 mm x 32 mm) 22 nm node test chip using EUV masks with state-of-the-art defectivity (~0.3 defects/cm2). We have found that: 1) the quality of EUVL printing at the 22 nm node is considerably higher than the printing produced with 193 nm immersion lithography; 2) printing at the 22 nm node with EUV lithography results in higher yield than double exposure double-etch 193i lithography; and 3) EUV lithography with the 0.25 NA ADT is capable of supporting some early device development work at the 15 nm technology node.

  1. Tissue measurement using 1064 nm dispersive Raman spectroscopy

    Science.gov (United States)

    Lieber, Chad A.; Wu, Huawen; Yang, William

    2013-03-01

    The use of Raman spectroscopy to provide characterization and diagnosis of biological tissues has shown increasing success in recent years. Most of this work has been performed using near-infrared laser sources such as 785 or 830 nm, in a balance of reduced intrinsic fluorescence in the tissues and quantum efficiency in the silicon detectors often used. However, even at these wavelengths, many tissues still exhibit strong or prohibitive fluorescence, and these wavelengths still cause autofluorescence in many common sampling materials, such as glass. In this study, we demonstrate the use of 1064 nm dispersive Raman spectroscopy for the study of biological tissues. A number of tissues are evaluated using the 1064 nm system and compared with the spectra obtained from a 785 nm system. Sampling materials are similarly compared. These results show that 1064 nm dispersive Raman spectroscopy provides a viable solution for measurement of highly fluorescent biological tissues such as liver and kidney, which are difficult or impossible to extract Raman at 785 nm.

  2. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  3. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics.

    Science.gov (United States)

    Afshinnia, Kamelia; Sikder, Mithun; Cai, Bo; Baalousha, Mohammed

    2017-02-01

    Nanomaterial (NM) aggregation is a key process determining their environmental, fate behavior and effects. Nanomaterials are typically engineered to remain kinetically stable; however, in environmental and toxicological media, NMs are prone to aggregation. The aggregation kinetics of NM is typically quantified by measuring their attachment efficiency (α) and critical coagulation concentration (CCC). Several studies measured α and CCC for Ag NMs with a major focus on investigating the effects of ionic strength, ion valency and natural organic matter, with few studies investigating other environmental factors such as light and dissolved oxygen and none investigating the effect of particle size, buffer type and concentration, or surface coverage by capping agent. A survey of recent research articles reporting CCC values for Ag NMs reveals substantial variation in experimental conditions and particle stability with CCC values of monovalent and divalent counterions covering a wide range (ca. 25 to infinity for monovalent counterions and 1.6 to infinity for divalent counterions). Here, we rationalize the differences in the CCC values for Ag NMs based on the variability in the experimental conditions, which includes NM and medium physicochemical properties. Capping agents determines NM stability mechanism with citrate, sodium dodecyl sulfate (SDS), and alginate stabilizing NM by electrostatic mechanism; whereas polyvinylpyrrolidone (PVP), casein, dextrin, tween, branched polyethyleneimine (BPEI), and Gum Arabic stabilizing NMs by steric mechanisms. The CCC values for Ag NMs with different capping agents follow the order citrate∼alginate∼SDSNM size and buffer concentration and decreases with light irradiation. For sterically stabilized PVP-Ag NMs, the CCC increases with the coating concentration/surface coverage and completely

  4. Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength.

    Science.gov (United States)

    Biedermann, Benjamin R; Wieser, Wolfgang; Eigenwillig, Christoph M; Huber, Robert

    2009-07-01

    We report on recent progress in Fourier domain mode-locking (FDML) technology. The paper focuses on developments beyond pushing the speed of these laser sources. After an overview of improvements to FDML over the last three years, a brief analysis of OCT imaging using FDML lasers with different wavelengths is presented. For the first time, high speed, high quality FDML imaging at 1550 nm is presented and compared to a system at 1310 nm. The imaging results of human skin for both wavelengths are compared and analyzed. Sample arm optics, power on the sample, heterodyne gain, detection bandwidth, colour cut levels and sample location have been identical to identify the influence of difference in scattering and water absorption. The imaging performance at 1310 nm in human skin is only slightly better and the results suggest that water absorption only marginally affects the penetration depth in human skin at 1550 nm. For several applications this wavelength may be preferred.

  5. Irradiation Effect of Argon Ion on Interfacial Structure Fe(2nm/Si(tsi=0.5-2 nm Multilayer thin Film

    Directory of Open Access Journals (Sweden)

    S. Purwanto

    2010-04-01

    Full Text Available Investigation includes formation of interfacial structure of Fe(2nm/Si(tSi= 0.5-2 nm multilayer thin film and the behavior of antiferromagnetic coupling between Fe layers due to Argon ion irradiation was investigated. [Fe(2nm/Si]30 multilayers (MLs with a thickness of Si spacer 0.5 - 2 nanometer were prepared on n-type (100 Si substrate by the helicon plasma sputtering method. Irradiation were performed using 400keV Ar ion to investigate the behavior of magnetic properties of the Fe/Si MLs. The magnetization measurements of Fe/Si MLs after 400keV Ar ion irradiation show the degradation of antiferromagnetic behavior of Fe layers depend on the ion doses. The Magnetoresistance (MR measurements using by Four Point Probe (FPP method also confirm that MR ratio decrease after ion irradiation. X-ray diffraction (XRD patterns indicate that the intensity of a satellite peak induced by a superlattice structure does not change within the range of ion dose. These results imply that the surface of interface structures after ion irradiation become rough although the layer structures are maintained. Therefore, it is considered that the MR properties of Fe/Si MLs also are due to the metallic superlattice structures such as Fe/Cr and Co/Cu MLs.

  6. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    Science.gov (United States)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  7. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... range reporting are based on a novel combination of suffix trees and range reporting data structures. The reductions are simple and general and may apply to other combinations of string indexing with range reporting....

  8. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  9. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  10. The molecular background of the differential UV absorbance of the human lens in the 240-400 nm range.

    Science.gov (United States)

    Pajer, Viktor; Tiboldi, Akos; Bae, Narkhyun; Li, Kongzhao; Kang, Sung Ung; Hopp, Béla; Kolozsvári, Lajos; Lubec, Gert; Nógrádi, Antal

    2013-01-01

    The ultraviolet (UV) absorption of various sections of the human lens was studied and compared with protein expression paralleling differential UV absorbance in anterior and posterior lenticular tissue. The UV absorbance of serial lens cryostat sections (60 μm) and that of lens capsules was determined using a Shimadzu scanning spectrophotometer, and the absorption coefficients were calculated. Two-dimensional gel electrophoresis was performed using two pooled lenticular protein extracts (anterior and posterior sections). Protein spots were quantified and significantly different spots were identified by mass spectrometry following in-gel digestion with trypsin and chymotrypsin. The UV-C and UV-B absorption of the human lens increased toward the posterior parts of the lens. The anterior and posterior lens capsules also effectively absorbed UV radiation. Levels of molecular chaperone proteins Beta-crystallin B2 (UniProtKB ID:P43320), A3 (UniProtKB ID:P05813) and of glyceraldehyde 3-phosphate dehydrogenase (UniProtKB ID:P04406) were significantly higher in the anterior part of the lens, whereas lens proteins Beta-crystallin B1 (UniProtKB ID:P53674) and Alpha-crystallin A chain (UniProtKB ID:P02489) were higher in the posterior sections. These results provide evidence that differential UV absorption in the anterior and posterior lens is accompanied by differential protein expression. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  11. Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica

    Science.gov (United States)

    Li, Dongwei; Zhang, Lanzhi; Zafar, Saba; Song, He; Hao, Zuoqiang; Xi, Tingting; Gao, Xun; Lin, Jingquan

    2017-06-01

    Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant Nos. 11274053, 11474039, 11474040, and 11004240), the Science and Technology Department of Jilin Province, China (Grant No. 20170519018JH), and the Innovation Fund of Changchun University of Science and Technology, China (Grant No. XJJLG-2016-02).

  12. The photochemistry of ozone at 193 and 222 nm

    Science.gov (United States)

    Turnipseed, Andrew A.; Vaghjiani, Ghanshyam L.; Gierczak, Tomasz; Thompson, John E.; Ravishankara, A. R.

    1991-09-01

    Measurements at 193 and 222nm are reported for the quantum yields for the formation of O(1D) and O(3P) from the photolysis of ozone. The quantum yield for O(3P) was observed to be 0.13 + or - 0.02 at 222 nm, and the primary quantum yield for O(1D) was found to be 0.87 + or - 0.04. The present measurements are consistent with other studies of O3 photolysis within the Hartley band which indicate that a significant portion (5-12 percent) of the products are formed in the ground state. At 193 nm the quantum yield for the production of excited state O(1D) atoms is 0.46 + or - 0.29, which is significantly less than what is observed during photolysis within the lower energy Hartley band. The quantum yield for O(3P) atoms at 193 nm was found to be 0.57 + or - 0.14. It was also observed that the quantum yield for O atoms is greater than unity at 193 nm, indicating the presence of a channel which produces three O(3P) atoms.

  13. RET and DFM techniques for sub 30nm

    Science.gov (United States)

    Yesilada, E.; Entradas, J.; Gardin, C.; Pena, J. N.; Villaret, A.; Farys, V.; Beylier, C.; Robert, F.; Postnikov, S.; Armeanu, A. M.; Moyroud, C.; Chaoui, F.; Granger, F. B.; Toublan, O.

    2012-03-01

    The resolution enhancement through lithography hardware (wavelength and Numerical Aperture) has come to a stop putting the burden on computational lithography to fill in the resulting gap between design and process until the arrival of EUV tools. New Computational Lithography techniques such as Optical Proximity Correction (OPC), Sub Resolution Assist Feature (SRAF), and Lithography Friendly Design (LFD) constitute a significant transformation of the design. These new Computational Lithography applications have become one of the most computationally demanding steps in the design process. Computing farms of hundreds and even thousands of CPUs are now routinely used to run these applications. The 28nm node presents many difficulties due to low k1 lithography whereas the 20nm requires double patterning solutions. In this paper we present a global view of enhanced RET and DFM techniques deployed to provide a robust 28nm node and prepare for 20nm. These techniques include advanced OPC manipulation through end user IP insertion into EDA software, optimized sub resolution assist features (SRAF) placement and pixilated OPC. These techniques are coupled with a fast litho print check, aka LFD, for 28nm P&R.

  14. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  15. Switching Properties of sub-100 nm Perpendicular Magnetic Tunnel Junctions

    Science.gov (United States)

    Tryputen, Larysa; Piotrowski, Stephan; Bapna, Mukund; Chien, Chia-Ling; Wang, Weigang; Majetich, Sara; Ross, Caroline

    2015-03-01

    Perpendicular magnetic tunnel junctions (p-MTJs) have great potential for realizing high-density non-volatile memory and logic devices. It is critical to solve scalability problem to implement such devices, to achieve low resistance area and to reduce switching current density while maintaining thermal stability. We present our recent results on fabrication of high resolution Ta/CoFeB/MgO/CoFeB/Ta p-MTJ devices and characterization of their switching properties as well as topography and current mapping by using nanoscale Conductive Atomic Force Microscopy. Our patterning method is based on using hydrogen silsesquioxane resist mask combined with ion beam etching. It allows to fabricate p-MTJ devices down to 40 nm in diameter while maintaining the magnetic quality of the multilayers. Repeatable, consistent switching behaviour has been observed in the obtained p-MTJ devices of 500 nm down to 40 nm with 10 - 800 mV voltage applied. Switching field increased as device diameter decreased, from 580 Oe at 500 nm (MR = 10%) to 410 Oe at 80 nm (MR = 9%). We discuss the effect of device sizes on the switching properties. This work was supported in part by C-SPIN, one of the six centers of STARnet, a Semiconductor Research Corporation Program sponsored by MARCO and DARPA and in part through the National Science Foundation through NCN-Needs Program, Contract 12207020-EEC.

  16. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm.

    Science.gov (United States)

    Anthis, Nicholas J; Clore, G Marius

    2013-06-01

    Quantitative studies in molecular and structural biology generally require accurate and precise determination of protein concentrations, preferably via a method that is both quick and straightforward to perform. The measurement of ultraviolet absorbance at 280 nm has proven especially useful, since the molar absorptivity (extinction coefficient) at 280 nm can be predicted directly from a protein sequence. This method, however, is only applicable to proteins that contain tryptophan or tyrosine residues. Absorbance at 205 nm, among other wavelengths, has been used as an alternative, although generally using absorptivity values that have to be uniquely calibrated for each protein, or otherwise only roughly estimated. Here, we propose and validate a method for predicting the molar absorptivity of a protein or peptide at 205 nm directly from its amino acid sequence, allowing one to accurately determine the concentrations of proteins that do not contain tyrosine or tryptophan residues. This method is simple to implement, requires no calibration, and should be suitable for a wide range of proteins and peptides. © 2013 The Protein Society.

  17. Lasing at 602-620 nm from a red algae-derived phycobiliprotein

    Science.gov (United States)

    Rivera, José A.; Eden, J. Gary

    2017-12-01

    Lasing in the 602-620 nm (orange-red) spectral region has been observed from R-phycoerythrin (RPE), a phycobiliprotein responsible for the >80% quantum yield of red algae. Photoexcitation of 8 μM RPE solutions in a Fabry-Pérot resonator with frequency-doubled Nd:YAG laser pulses (λp = 532 nm) yields >26 nJ of energy in ˜2.5 ns (FWHM) pulses, which corresponds to >10 W of peak power. Maximum laser emission occurs at ˜610 nm, the threshold pump energy fluence is measured to be 260 ± 15 μJ/mm2, and more than 100 longitudinal laser modes are generated when the cavity free spectral range and mirror separation are Δλ = 0.18 nm and L = 777 ± 1 μm, respectively. In combination with the known versatility of the phycobiliproteins as fluorescent tags, the biomolecular RPE laser reported here suggests its applicability to clinical assays and in situ laser imaging.

  18. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J., E-mail: henk.bolink@uv.es [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Roldán-Carmona, C. [Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna, Valencia (Spain); Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Rabanales, Ed. C3, 14014, Córdoba (Spain); Edri, E. [Department of Materials and Interfaces, Weizmann Institute of Science, Herzl St. 34, Rehovot 76100 (Israel)

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  19. Assessment of a Low-Power 65 nm CMOS Technology for Analog Front-End Design

    Science.gov (United States)

    Manghisoni, Massimo; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio; Traversi, Gianluca

    2014-02-01

    This work is concerned with the study of the analog properties of MOSFET devices belonging to a 65 nm CMOS technology with emphasis on intrinsic voltage gain and noise performance. This node appears to be a robust and promising solution to cope with the unprecedented requirements set by silicon vertex trackers in experiments upgrades and future colliders as well as by imaging detectors at light sources and free electron lasers. In this scaled-down technology, the impact of new dielectric materials and processing techniques on the analog behavior of MOSFETs has to be carefully evaluated. An inversion level design methodology has been adopted to analyze data obtained from device measurements and provide a powerful tool to establish design criteria for detector front-ends in this nanoscale CMOS process. A comparison with data coming from less scaled technologies, such as 90 nm and 130 nm nodes, is also provided and can be used to evaluate the resolution limits achievable for low-noise charge sensitive amplifiers in the 100 nm minimum feature size range.

  20. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Energy Technology Data Exchange (ETDEWEB)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  1. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  2. Range Scheduling Aid (RSA)

    Science.gov (United States)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  3. Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

    KAUST Repository

    Alhashim, Hala H.

    2016-05-29

    The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in

  4. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  5. A new solar reference spectrum from 165 to 3088 nm

    Science.gov (United States)

    Damé, Luc; Meftah, Mustapha; Bolsée, David; Pereira, Nuno; Bekki, Slimane; Hauchecorne, Alain; Irbah, Abdenour; Cessateur, Gaël; Sluse, Dominique

    2017-04-01

    Since April 5, 2008 and until February 15, 2017 the SOLAR/SOLSPEC spectro-radiometer on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). In particular, a new reference solar spectrum is established covering most of the unusual solar cycle 24 from minimum in 2008 to maximum. Temporal variability in the UV (165 to 400 nm) is presented in several wavelengths bands. These results are possible thanks to revised engineering corrections, improved calibrations and new procedures to account for thermal and aging advanced corrections. Uncertainties on these measurements are evaluated and compare favorably with other instruments.

  6. Prototyping the HPDP Chip on STM 65 NM Process

    Science.gov (United States)

    Papadas, C.; Dramitinos, G.; Syed, M.; Helfers, T.; Dedes, G.; Schoellkopf, J.-P.; Dugoujon, L.

    2011-08-01

    Currently Astrium GmbH is involved in the of the High Performance Data Processor (HPDP) development programme for telecommunication applications under a DLR contract. The HPDP project targets the implementation of the commercially available reconfigurable array processor IP (XPP from the company PACT XPP Technologies) in a radiation hardened technology.In the current complementary development phase funded under the Greek Industry Incentive scheme, it is planned to prototype the HPDP chip in commercial STM 65 nm technology. In addition it is also planned to utilise the preliminary radiation hardened components of this library wherever possible.This abstract gives an overview of the HPDP chip architecture, the basic details of the STM 65 nm process and the design flow foreseen for the prototyping. The paper will discuss the development and integration issues involved in using the STM 65 nm process (also including the available preliminary radiation hardened components) for designs targeted to be used in space applications.

  7. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has......, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation...

  8. Cost-effective tunable 1310nm DWDM transmitter

    Science.gov (United States)

    Chorchos, Łukasz; Turkiewicz, Jarosław P.

    2015-09-01

    The growing demand for higher data rate transmissions in local and metropolitan area networks is main reason of developing effective and inexpensive transmission systems. In this paper, study about the possibility to realize 1310 nm tunable DWDM transmitter using commercially available low-cost DFB lasers is presented. Extensive DFB lasers characterization has been performed which led to establish relationships between laser current, operational temperature, emitted wavelength and power. An algorithm to find the laser settings for a desired wavelength grid has been proposed and tested. Generation of the 1310nm DWDM channels with frequency spacing between 120 and 240GHz has been demonstrated.

  9. 30 Gbps bottom-emitting 1060 nm VCSEL

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Zheng, Y.; Rodes, G. A.

    2014-01-01

    1060 nm VCSEL-based data transmission over 50 m OM3 MMF at 30 Gbit/s is experimentally demonstrated. A highly-strained bottom-emitting QW VCSEL with p-type modulation doping is used with 3.77 mA bias and 0.55 V data amplitude.......1060 nm VCSEL-based data transmission over 50 m OM3 MMF at 30 Gbit/s is experimentally demonstrated. A highly-strained bottom-emitting QW VCSEL with p-type modulation doping is used with 3.77 mA bias and 0.55 V data amplitude....

  10. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  11. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2018-01-01

    Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.

  12. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.

    Science.gov (United States)

    Zhang, Wenwu; Gunst, Susan J

    2017-07-01

    Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. Rho

  13. Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm.

    Science.gov (United States)

    Eigenwillig, Christoph M; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert

    2011-08-01

    The wavelength swept amplified spontaneous emission (ASE) source presented in this paper is an alternative approach to realize a light source for high speed swept source optical coherence tomography (OCT). ASE alternately passes a cascade of different optical gain elements and tunable optical bandpass filters. In this work we show for the first time a wavelength swept ASE source in the 1060 nm wavelength range, enabling high speed retinal OCT imaging. We demonstrate ultra-rapid retinal OCT at a line rate of 170 kHz, a record sweep rate at 1060 nm of 340 kHz with 70 nm full sweep width, enabling an axial resolution of 11 μm. Two different implementations of the source are characterized and compared to each other. The last gain element is either a semiconductor optical amplifier or an Ytterbium-doped fibre amplifier enabling high average output power of >40 mW. Various biophotonic imaging examples provide a wide range of quality benchmarks achievable with such sources. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of electromagnetic radiation (550-850 nm) on 1-lactate dehydrogenase kinetics.

    Science.gov (United States)

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2007-04-01

    This work is based on our earlier research of the Resonant Recognition Model (RRM), where we have proposed that protein activation is electromagnetic in its nature. In this study we investigated experimentally the possibility of modulating the protein activity by the electromagnetic radiation of the specific frequency. The concept is studied here by applying a visible light radiation to example of 1-Lactate Dehydrogenase enzyme (LDH). The selected LDH example is radiated by monochromatic visible light in a frequency range predicted computationally by the RRM. The kinetics of the irradiated LDH is measured by continuous monitoring of the NADH absorption at 340 nm. A comparative analysis of the LDH enzyme activity before and after the electromagnetic field (EMF) exposures is performed. It was found that the LDH activity is selectively increased only by the radiation at the particular wavelengths of 595 nm and 828 nm. These experimentally determined wavelengths of the applied EMF are within the range predicted by the RRM. Results reveal the LDH activity was modulated by the EMF exposures at the computationally predicted frequencies. The RRM concept presented provides new insights into proteins susceptibility to perturbation by electromagnetic radiation and possibility to program, predict, design and modify proteins and their bioactivity.

  15. Long range image enhancement

    CSIR Research Space (South Africa)

    Duvenhage, B

    2015-11-01

    Full Text Available and Vision Computing, Auckland, New Zealand, 23-24 November 2015 Long Range Image Enhancement Bernardt Duvenhage Council for Scientific and Industrial Research South Africa Email: bduvenhage@csir.co.za Abstract Turbulent pockets of air...

  16. SNOWY RANGE WILDERNESS, WYOMING.

    Science.gov (United States)

    Houston, Robert S.; Bigsby, Philip R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness in Wyoming was undertaken and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, the authors conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  17. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  18. Light Detection And Ranging

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  19. Isolation of Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512 as novel probiotics with immunomodulatory properties.

    Science.gov (United States)

    Mansour, Nahla M; Heine, Holger; Abdou, Sania M; Shenana, Mohamed E; Zakaria, Mohamed K; El-Diwany, Ahmed

    2014-10-01

    Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full-term, breast-fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy-protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL-12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll-like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  20. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    is a small number, but only gave heuristic arguments for this. In this paper, we provide the first methods for rigorously estimating the Range of Skill of a given game. We provide some general, asymptotic bounds that imply that the Range of Skill of a perfectly balanced game tree is almost exponential in its......At AAAI'07, Zinkevich, Bowling and Burch introduced the Range of Skill measure of a two-player game and used it as a parameter in the analysis of the running time of an algorithm for finding approximate solutions to such games. They suggested that the Range of Skill of a typical natural game...... size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  1. Low-noise design issues for analog front-end electronics in 130 nm and 90 nm CMOS technologies

    CERN Document Server

    Manghisoni, M; Re, V; Speziali, V; Traversi, G

    2007-01-01

    Deep sub-micron CMOS technologies provide wellestablished solutions to the implementation of low-noise front-end electronics in various detector applications. The IC designers’ effort is presently shifting to 130 nm CMOS technologies, or even to the next technology node, to implement readout integrated circuits for silicon strip and pixel detectors, in view of future HEP applications. In this work the results of noise measurements carried out on CMOS devices in 130 nm and 90 nm commercial processes are presented. The behavior of the 1/f and white noise terms is studied as a function of the device polarity and of the gate length and width. The study is focused on low current density applications where devices are biased in weak or moderate inversion. Data obtained from the measurements provide a powerful tool to establish design criteria in nanoscale CMOS processes for detector front-ends in LHC upgrades.

  2. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light.

    Science.gov (United States)

    Chen, Jing; Zhang, Peng-yi; Liu, Jian

    2007-01-01

    The photodegradation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water by 185 nm vacuum ultraviolet (VUV) light was examined to develop an effective technology to deal with PFOA pollution. PFOA degraded very slowly under irradiation of 254 nm UV light. However, 61.7% of initial PFOA was degraded by 185 nm VUV light within 2 h, and defluorination ratio reached 17.1%. Pseudo first-order-kinetics well simulated its degradation and defluorination. Besides, fluoride ion formed in water, 4 shorter-chain perfluorinated carboxylic acids (PFCAs), that is, perfluoroheptanoic acid, perfluorohexanoic acid, perfluoropentanoic acid, and perfluorobutanoic acid. These were identified as intermediates by LC-MS measurement. These PFCAs consecutively formed and further degraded with irradiation time. According to the mass balance calculation, no other byproducts were formed. It was proposed that PFCAs initially are decarboxylated by 185 nm light, and the radical thus formed reacts with water to form shorter-chain PFCA with one less CF2 unit.

  3. EST Table: NM_001046878 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046878 LOC732875 10/09/29 100 %/169 aa ref|NP_001040343.1| peripheral-type benzodiazepine... receptor [Bombyx mori] gb|ABF51223.1| peripheral-type benzodiazepine receptor [Bombyx mori] 10/

  4. comparing the 810nm diode laser with conventional surgery in ...

    African Journals Online (AJOL)

    David Ofori-Adjei

    2013-09-01

    Sep 1, 2013 ... SUMMARY. Aim: To compare the use of the 810nm diode laser with conventional surgery in the management of soft tissue mucogingival problems associated with orthodontic treatment. Methods: Orthodontic patients requiring different soft tissue surgical procedures were randomly assigned to.

  5. EST Table: NM_001043468 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001043468 Mf-cpa 10/09/29 91 %/479 aa ref|NP_001036933.1| molting fluid carboxyp...eptidase A [Bombyx mori] dbj|BAD60916.1| molting fluid carboxypeptidase A [Bombyx mori] 10/09/13 50 %/393 aa

  6. Benchmarking of 50 nm features in thermal nanoimprint

    DEFF Research Database (Denmark)

    Gourgon, C.; Chaix, N.; Schift, H.

    2007-01-01

    The objective of this benchmarking is to establish a comparison of several tools and processes used in thermal NIL with Si stamps at the nanoscale among the authors' laboratories. The Si stamps have large arrays of 50 nm dense lines and were imprinted in all these laboratories in a similar to 100...

  7. EST Table: NM_001043377 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available moting Protein [Bombyx mori] 10/09/13 30 %/136 aa FBpp0237404|DvirGJ22987-PA 10/08/...NM_001043377 Pp 10/09/29 92 %/154 aa ref|NP_001036842.1| promoting protein [Bombyx mori] dbj|BAA89306.1| Pro

  8. 77 FR 62481 - Radio Broadcasting Services; Crownpoint, NM

    Science.gov (United States)

    2012-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Crownpoint, NM AGENCY: Federal Communications....415 and 1.420. List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications... preamble, the Federal Communications Commission proposes to amend 47 CFR Part 73 as follows: PART 73--RADIO...

  9. 850-nm oxide VCSEL development at Hewlett-Packard

    Science.gov (United States)

    Deng, Hongyu; Dudley, James J.; Lim, Sui F.; Lei, Chun; Liang, Bing; Tashima, M.; Hodge, Lee A.; Zhang, Xuemei; Herniman, John; Herrick, Robert W.

    1999-04-01

    Oxide confined VCSELs are being developed at Hewlett-Packard for the next-generation low cost fiber optics communication applications. Compared to the existing 850 nm implant confined VCSELs, the oxide VCSELs have lower operating voltages, higher slope efficiencies, and better modal bandwidth characteristics. Preliminary data on epitaxy and oxidation control uniformity, device performance, and reliability will be discussed.

  10. EST Table: NM_001043517 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001043517 Cycb 10/09/29 89 %/700 aa ref|NP_001036982.1| Cycle like factor b [Bom...byx mori] dbj|BAB91178.1| Cycle like factor BmCyc b [Bombyx mori] 10/09/13 52 %/387 aa FBpp0114038|DanaGF108

  11. EST Table: NM_001167716 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001167716 Vps4 10/09/29 88 %/438 aa ref|NP_001161188.1| vacuolar protein sorting...ojGI14672-PA 10/08/29 64 %/432 aa Y34D9A.10#CE39043#WBGene00021334#locus:vps- 4#status:Confirmed#UniProt:Q9B

  12. Direct visualization of fluid dynamics in sub-10 nm nanochannels.

    Science.gov (United States)

    Li, Huawei; Zhong, Junjie; Pang, Yuanjie; Zandavi, Seyed Hadi; Persad, Aaron Harrinarine; Xu, Yi; Mostowfi, Farshid; Sinton, David

    2017-07-13

    Optical microscopy is the most direct method to probe fluid dynamics at small scales. However, contrast between fluid phases vanishes at ∼10 nm lengthscales, limiting direct optical interrogation to larger systems. Here, we present a method for direct, high-contrast and label-free visualization of fluid dynamics in sub-10 nm channels, and apply this method to study capillary filling dynamics at this scale. The direct visualization of confined fluid dynamics in 8-nm high channels is achieved with a conventional bright-field optical microscope by inserting a layer of a high-refractive-index material, silicon nitride (Si 3 N 4 ), between the substrate and the nanochannel, and the height of which is accurately controlled down to a few nanometers by a SiO 2 spacer layer. The Si 3 N 4 layer exhibits a strong Fabry-Perot resonance in reflection, providing a sharp contrast between ultrathin liquid and gas phases. In addition, the Si 3 N 4 layer enables robust anodic bonding without nanochannel collapse. With this method, we demonstrate the validity of the classical Lucas-Washburn equation for capillary filling in the sub-10 nm regime, in contrast to the previous studies, for both polar and nonpolar liquids, and for aqueous salt solutions.

  13. Trends and challenges in VLSI technology scaling towards 100 nm

    NARCIS (Netherlands)

    Rusu, S.; Sachdev, M.; Svensson, C.; Nauta, Bram

    Summary form only given. Moore's Law drives VLSI technology to continuous increases in transistor densities and higher clock frequencies. This tutorial will review the trends in VLSI technology scaling in the last few years and discuss the challenges facing process and circuit engineers in the 100nm

  14. EST Table: NM_001184845 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ptor) 10/09/29 63 %/2474 aa gb|ACH47049.1| target of rapamycin [Blattella germanica] 10/09/13 55 %/2493 aa F...437 aa gi|91089099|ref|XP_971819.1| PREDICTED: similar to fkbp-rapamycin associated protein [Tribolium castaneum] NM_001184845 ...

  15. Isolation and genomic characterization of Escherichia coli O157:NM ...

    African Journals Online (AJOL)

    Human diseases caused by Escherichia coli O157:NM and E. coli O157:H7 strains have been reported throughout the world. In developed countries, serotype O157:H7 represents the major cause of human diseases; however, there have been increasing reports of non-O157 Shiga toxin (Stx)-producing E. coli strains ...

  16. Optically pumped 1550nm wavelength tunable MEMS VCSEL

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa

    2016-01-01

    The paper presents the design and fabrication of an optically pumped 1550nm tunable MEMS VCSEL with anenclosed MEMS. The MEMS is defined in SOI and the active material, an InP wafer with quantum wells arebonded to the SOI and the last mirror is made from the deposition of dielectric materials...

  17. EST Table: NM_001177411 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001177411 tan 10/09/29 96 %/395 aa ref|NP_001170882.1| tan protein [Bombyx mori] dbj|BAI87831.1| Tan...0/09/10 46 %/375 aa gi|91078850|ref|XP_971848.1| PREDICTED: similar to tan CG12120-PA [Tribolium castaneum] AU000330 ...

  18. High gain 1310nm Raman amplifier (withdrawal notice)

    Science.gov (United States)

    CzyŻak, Paweł; Turkiewicz, Jarosław Piotr; Mazurek, Paweł

    2014-05-01

    This paper has been withdrawn. The following nearly identical paper is available in this conference proceedings: Jarosław Piotr Turkiewicz and Paweł Czyżak, "The high gain 1310nm Raman amplifier," Proc. SPIE 9228, Optical Fibers and Their Applications 2014, 92280P (May 12, 2014); doi:10.1117/12.2067055.

  19. EST Table: NM_001123349 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001123349 18w 10/09/29 92 %/1295 aa ref|NP_001116821.1| 18 wheeler [Bombyx mori] dbj|BAB85498.1| 18 wheel...|Amel|GB15177-PA 10/09/10 58 %/1242 aa gi|91076478|ref|XP_972409.1| PREDICTED: similar to 18 wheeler [Tribolium castaneum] FS922922 ...

  20. EST Table: NM_001046698 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046698 LOC692853 10/09/29 93 %/269 aa ref|NP_001040163.1| ischemia/reperfusion... inducible protein [Bombyx mori] gb|ABD36179.1| ischemia/reperfusion inducible protein [Bombyx mori] 10/09/

  1. EST Table: NM_001046937 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046937 LOC732938 10/09/29 100 %/220 aa ref|NP_001040402.1| preimplantation pr...otein [Bombyx mori] gb|ABF51322.1| preimplantation protein [Bombyx mori] 10/09/13 79 %/222 aa FBpp0234606|Dv

  2. EST Table: NM_001142927 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001142927 Kynu 10/09/29 100 %/426 aa ref|NP_001136399.1| kynureninase [Bombyx mo...ri] dbj|BAH03383.1| kynureninase [Bombyx mori] 10/09/13 n.h 10/08/29 32 %/432 aa C15H9.7#CE06835#WBGene00015802#kynurenina

  3. Emerging ≈800 nm Excited Lanthanide-Doped Upconversion Nanoparticles.

    Science.gov (United States)

    Xie, Xiaoji; Li, Zhanjun; Zhang, Yuanwei; Guo, Shaohong; Pendharkar, Aarushi Iris; Lu, Min; Huang, Ling; Huang, Wei; Han, Gang

    2017-02-01

    Lanthanide-doped upconversion nanoparticles can tune near-infrared light to visible or even ultra-violet light in emissions. Due to their unique photophysical and photochemical properties, as well as their promising bioapplications, there has been a great deal of enthusiastic research performed to study the properties of lanthanide-doped upconversion nanoparticles in the past few years. Despite the considerable progress in this area, numerous challenges associated with the nanoparticles, such as a low upconversion efficiency, limited host materials, and a confined excitation wavelength, still remain, thus hindering further development with respect to their applications and in fundamental science. Recently, innovative strategies that utilize alternative sensitizers have been designed in order to engineer the excitation wavelengths of upconversion nanoparticles. Here, focusing on the excitation wavelength at ≈800 nm, recent advances in the design, property tuning, and applications of ≈800 nm excited upconversion nanoparticles are summarized. Benefiting from the unique features of ≈800 nm light, including deep tissue penetration depth and low photothermal effect, the ≈800 nm excited upconversion nanoparticles exhibit superior potential for biosensing, bioimaging, drug delivery, therapy, and three dimensional displays. The critical aspects of such emerging nanoparticles with regards to meeting the ever-changing needs of future development are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. EST Table: NM_001044201 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001044201 Tert 10/09/29 100 %/703 aa ref|NP_001037666.1| telomerase reverse tran...scriptase [Bombyx mori] gb|ABC95023.1| telomerase reverse transcriptase [Bombyx mori] gb|ABF56516.1| telomerase reverse

  5. EST Table: NM_001130897 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001130897 CCAP 11/12/09 n.h 10/09/29 100 %/103 aa ref|NP_001124369.1| crustacean... cardioactive peptide [Bombyx mori] dbj|BAG50376.1| crustacean cardioactive peptide [Bombyx mori] 10/09/13 l

  6. EST Table: NM_001109916 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001109916 Coc 10/09/29 94 %/260 aa ref|NP_001103386.1| cocoonase [Bombyx mori] gb|ABR14241.1| cocoona...se [Bombyx mori] gb|ABU49588.1| cocoonase [Bombyx mori] 10/09/13 41 %/232 aa FBpp014387

  7. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nm.

    Science.gov (United States)

    Yuill, Elizabeth M; Sa, Niya; Ray, Steven J; Hieftje, Gary M; Baker, Lane A

    2013-09-17

    Work presented here demonstrates application of nanopipettes pulled to orifice diameters of less than 100 nm as electrospray ionization emitters for mass spectrometry. Mass spectrometric analysis of a series of peptides and proteins electrosprayed from pulled-quartz capillary nanopipette emitters with internal diameters ranging from 37 to 70 nm is detailed. Overall, the use of nanopipette emitters causes a shift toward the production of ions of higher charge states and leads to a reduction in width of charge-state distribution as compared to typical nanospray conditions. Further, nanopipettes show improved S/N and the same signal precision as typical nanospray, despite the much smaller dimensions. As characterized by SEM images acquired before and after spray, nanopipettes are shown to be robust under conditions employed. Analytical calculations and numerical simulations are used to calculate the electric field at the emitter tip, which can be significant for the small diameter tips used.

  8. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    Science.gov (United States)

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm.

  9. Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam.

    Science.gov (United States)

    Ritucci, A; Tomassetti, G; Reale, A; Arrizza, L; Zuppella, P; Reale, L; Palladino, L; Flora, F; Bonfigli, F; Faenov, A; Pikuz, T; Kaiser, J; Nilsen, J; Jankowski, A F

    2006-01-01

    We applied a 0.3 mJ, 1.7 ns, 46.9 nm soft-x-ray argon laser to ablate the surface of large bandgap dielectrics: CaF2 and LiF crystals. We studied the ablation versus the fluence of the soft-x-ray beam, varying the fluence in the range 0.05-3 J/cm2. Ablation thresholds of 0.06 and 0.1 J/cm2 and ablation depths of 14 and 20 nm were found for CaF2 and LiF, respectively. These results define new ablation conditions for these large bandgap dielectrics that can be of interest for the fine processing of these materials.

  10. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    Energy Technology Data Exchange (ETDEWEB)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.

  11. A InGaN/GaN quantum dot green (λ=524 nm) laser

    KAUST Repository

    Zhang, Meng

    2011-01-01

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/ cm2 at 278 K. The slope and wall plug efficiencies are 0.74 W/A and ∼1.1%, respectively, at 1.3 kA/ cm 2. The value of T0 =233 K in the temperature range of 260-300 K. © 2011 American Institute of Physics.

  12. High brightness, tunable biphoton source at 976 nm for quantum spectroscopy.

    Science.gov (United States)

    Jechow, Andreas; Heuer, Axel; Menzel, Ralf

    2008-08-18

    A compact all solid state continuous-wave biphoton source, tunable around 488 nm, for quantum spectroscopic applications based on a frequency doubled diode laser system is presented. Copolarized photon pairs in the fundamental transversal mode could be generated at 976 nm by spontaneous parametric down conversion inside a type-0 quasi phase matched periodically poled lithium niobate waveguide crystal with an efficiency of 8-10(-6). A high flux rate greater than 10(7) photon pairs per second has been achieved at pump powers in the muW range resulting in more than 7-10(9) photon pairs/s-mW. Further a detailed investigation of the spectral behavior and the flux rate as a function of the detuning from the degenerated case is presented.

  13. Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles

    Science.gov (United States)

    Kim, Inho; Hwang, Kwangseok; Lee, JinWon

    2012-04-01

    Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively.

  14. Enhanced broadband near-IR luminescence and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping

    Directory of Open Access Journals (Sweden)

    Qiancheng Zhao

    2017-04-01

    Full Text Available A dual 830 and 980 nm pumping scheme is proposed aiming at broadening and flattening the spectral performance of bismuth/erbium codoped multicomponent fiber (BEDF. The spectral properties of distinct Bi active centers (BACs associated with germanium (BAC-Ge, aluminium (BAC-Al, phosphorus (BAC-P and silicon (BAC-Si are characterized under single pumping of 830 and 980 nm, respectively. Based on the emission slope efficiencies of BAC-Al (∼1100 nm and BAC-Si (∼1430 nm under single pumping of 830 and 980 nm, the dual pumping scheme with the optimal pump power ratio of 25 (980 nm VS 830 nm is determined to achieve flat, ultrabroadband luminescence spectra covering the wavelength range 950-1600 nm. The dual pumping scheme is further demonstrated on the on-off gain performance of BEDF. It is found under the pump power ratio of ∼8 (980 VS 830 nm, The gain spectrum has been flattened and broadened over 300 nm (1300-1600 nm with an average gain coefficient of ∼1.5 dBm-1. The spectral coverage is approximately 1.5 and 3 times wider compared to single pumping of 830 and 980 nm pumping, respectively. The energy level diagrams of 830 and 980 nm are also constructed separately in view of the optical characteristic, which further clarifies the advantage for dual pumping. The proposed dual 830 and 980 nm pumping scheme with the multicomponent BEDF shows great potential in various broadband optical applications such as uniform ASE source, broadband amplifier and tuneable laser in NIR band.

  15. Meeting the challenges of 157-nm microstepper technology

    Science.gov (United States)

    Yamabe, Osamu; Uchida, Noboru; Itani, Toshiro

    2002-07-01

    For the aim of fabricating next-generation semiconductor devices, researchers are now attempting to enhance 157-nm lithography so as to achieve 70-nm node level various circuit designs. Many of the challenges for 157-nm technology such as contamination and purge control, calcium fluoride intrinsic birefringence, finding resists with suitable performance characteristics, have been performed. The major challenge, in terms of stability of tool performance, has been the apparent accumulation of contamination on the bottom of the objective. This has been evidenced by a reduction in resolution performance and an increase in the non-uniformity of the illumination intensity across the image plane. Uniformity over the entire imaging field has increased from 0.58% to as much as 18.5% through the use of the tool. This paper reports our demonstration that loss of uniformity due to contamination from resist outgassing can be reversed by cleaning the bottom surface of the lens of 157-nm microstepper (Ultratech Stepper Inc.) in- situ using 157-nm light and a small concentration of O2 in the N2 purging for exposure area. With an in-situ oxygen (O2) and vacuum ultra violet (VUV) cleaning, the uniformity of over the full imaging field has been improved from 18.5% to 6.0%. The edges of the imaging field do not recover as well during a cleaning as the center of the field, as the central 0.5 mm diameter of the field uniformity has been improved to more or less 2.0%. The procedure of this in-situ O2 cleaning will also be introduced, and in addition to this in-situ O2 cleaning, some recent results in system performance will be shown and many of these challenges will be discussed.

  16. Progress on high-power 808nm VCSELs and applications

    Science.gov (United States)

    Zhou, Delai; Seurin, Jean-Francois; Xu, Guoyang; Van Leeuwen, Robert; Miglo, Alexander; Wang, Qing; Kovsh, Alexey; Ghosh, Chuni

    2017-02-01

    High power 808nm semiconductor lasers are widely used for pumping neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal to produce high-brightness lasing at 1064nm. In addition, there are growing interest to use such high power 808nm lasers in the field of automotive infra-red (IR) illumination and medical aesthetic treatment. Vertical-cavity surface-emitting lasers (VCSELs) have emerged as a promising candidate and attracted increased interests for those applications, due to their combined advantages of high efficiency, low diverging circular beam, narrow emission spectrum with reduced temperature sensitivity, low-cost manufacturability, simpler coupling optics, and increased reliability, especially at high temperatures. They can emit very high power with very high power density as they can be conveniently configured into large two-dimensional arrays and modules of arrays. We report recent development on such high-power, high-efficiency 808nm VCSELs with industrial leading 55% power conversion efficiency (PCE). Top emitting VCSELs were grown by MOCVD and processed into single devices and 2D arrays using selective wet oxidation process and substrate removal technique for efficient current confinement and heat removal. Peak PCE of 51% and peak power of 800W were achieved from 5x5mm array, corresponding to peak power density of 4kW/cm2. Pumped with new generation of 2.3kW VCSEL module, Q-switched laser pulse energy at 1064nm reached 46.9mJ, more than doubled from previously reported results.

  17. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Kangasluoma, Juha; Franchin, Alessandro; Wimmer, Daniela; Schobesberger, Siegfried; Junninen, Heikki; Petäjä, Tuukka; Sipilä, Mikko; Mikkilä, Jyri; Vanhanen, Joonas; Worsnop, Douglas R; Kulmala, Markku

    2014-01-01

    The most important parameters describing the atmospheric new particle formation process are the particle formation and growth rates. These together determine the amount of cloud condensation nuclei attributed to secondary particle formation. Due to difficulties in detecting small neutral particles, it has previously not been possible to derive these directly from measurements in the size range below about 3 nm. The Airmodus Particle Size Magnifier has been used at the SMEAR II station in Hyytiälä, southern Finland, and during nucleation experiments in the CLOUD chamber at CERN for measuring particles as small as about 1 nm in mobility diameter. We developed several methods to determine the particle size distribution and growth rates in the size range of 1–3 nm from these data sets. Here we introduce the appearance-time method for calculating initial growth rates. The validity of the method was tested by simulations with the Ion-UHMA aerosol dynamic model.

  18. Optimisation of drive pulse configuration for a Ni-like Sn X-ray laser at 12 nm

    Science.gov (United States)

    Zhang, J.; MacPhee, A. G.; Lin, J.; Wolfrum, E.; Smith, R.; Danson, C.; Key, M. H.; Lewis, C. L. S.; Neely, D.; Nilsen, J.; Pert, G. J.; Tallents, G. J.; Wark, J. S.; Warwick, P. J.

    1997-02-01

    The current saturated operation of X-ray lasers at wavelengths > 15 nm requires at least kilojoule drive energy, which is only available at the largest laser installations in the world. Using a specially designed drive pulse configuration, saturated operation of a Ni-like Sn X-ray laser at 12 nm has been achieved with only 75 J drive energy. An efficiency as high as 9 × 10 6 in converting laser energy from the 1 eV optical spectral range to the 100 eV soft X-ray range has been reached. This paves the way for applications of saturated X-ray lasers at 12 nm at many other smaller laboratories.

  19. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band.

    Science.gov (United States)

    Caliman, Andrei; Mereuta, Alexandru; Suruceanu, Grigore; Iakovlev, Vladimir; Sirbu, Alexei; Kapon, Eli

    2011-08-29

    We report record-high fundamental mode output power of 8 mW at 0 °C and 1.5 mW at 100°C achieved with wafer-fused InAlGaAs-InP/AlGaAs-GaAs 1550 nm VCSELs incorporating a re-grown tunnel junction and un-doped AlGaAs/GaAs distributed Bragg reflectors. A broad wavelength tuning range of 15 nm by current variation and wavelength setting in a spectral range of 40 nm on the same VCSEL wafer are demonstrated as well. This performance positions wafer-fused VCSELs as prime candidates for many applications in low power consumption, "green" photonics.

  20. Study of drain-extended NMOS under electrostatic discharge stress in 28 nm and 40 nm CMOS process

    Science.gov (United States)

    Wang, Weihuai; Jin, Hao; Dong, Shurong; Zhong, Lei; Han, Yan

    2016-02-01

    Researches on the electrostatic discharge (ESD) performance of drain-extended NMOS (DeNMOS) under the state-of-the-art 28 nm and 40 nm bulk CMOS process are performed in this paper. Three distinguishing phases of avalanche breakdown stage, depletion region push-out stage and parasitic NPN turn on stage of the gate-grounded DeNMOS (GG-DeNMOS) fabricated under 28 nm CMOS process measured with transmission line pulsing (TLP) test are analyzed through TCAD simulations and tape-out silicon verification detailedly. Damage mechanisms and failure spots of GG-DeNMOS under both CMOS processes are thermal breakdown of drain junction. Improvements based on the basic structure adjustments can increase the GG-DeNMOS robustness from original 2.87 mA/μm to the highest 5.41 mA/μm. Under 40 nm process, parameter adjustments based on the basic structure have no significant benefits on the robustness improvements. By inserting P+ segments in the N+ implantation of drain or an entire P+ strip between the N+ implantation of drain and polysilicon gate to form the typical DeMOS-SCR (silicon-controlled rectifier) structure, the ESD robustness can be enhanced from 1.83 mA/μm to 8.79 mA/μm and 29.78 mA/μm, respectively.

  1. Cryogenic Lifetime Studies of 130 nm and 65 nm CMOS Technologies for High-Energy Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, James R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Deptuch, G. W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Guoying [Southern Methodist Univ., Dallas, TX (United States); Gui, Ping [Southern Methodist Univ., Dallas, TX (United States)

    2015-06-04

    The Long Baseline Neutrino Facility intends to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. Research is under way to place the electronics inside the cryostat. For reasons of efficiency and economics, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This, then, requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130 nm and 65 nm nMOS transistors operating at cryogenic temperatures are investigated. Our results show that both technologies achieve the lifetimes required by the experiment. Minimal design changes are necessary in the case of the 130 nm process and no changes whatsoever are necessary for the 65 nm process.

  2. Detection of emission in the Si I 1082.7 nm line core in sunspot umbrae

    Science.gov (United States)

    Orozco Suárez, D.; Quintero Noda, C.; Ruiz Cobo, B.; Collados Vera, M.; Felipe, T.

    2017-11-01

    Context. Determining empirical atmospheric models for the solar chromosphere is difficult since it requires the observation and analysis of spectral lines that are affected by non-local thermodynamic equilibrium (NLTE) effects. This task is especially difficult in sunspot umbrae because of lower continuum intensity values in these regions with respect to the surrounding brighter granulation. Umbral data is therefore more strongly affected by the noise and by the so-called scattered light, among other effects. Aims: The purpose of this study is to analyze spectropolarimetric sunspot umbra observations taken in the near-infrared Si I 1082.7 nm line taking NLTE effects into account. Interestingly, we detected emission features at the line core of the Si I 1082.7 nm line in the sunspot umbra. Here we analyze the data in detail and offer a possible explanation for the Si I 1082.7 nm line emission. Methods: Full Stokes measurements of a sunspot near disk center in the near-infrared spectral range were obtained with the GRIS instrument installed at the German GREGOR telescope. A point spread function (PSF) including the effects of the telescope, the Earth's atmospheric seeing, and the scattered light was constructed using prior Mercury observations with GRIS and the information provided by the adaptive optics system of the GREGOR telescope during the observations. The data were then deconvolved from the PSF using a principal component analysis deconvolution method and were analyzed via the NICOLE inversion code, which accounts for NLTE effects in the Si I 1082.7 nm line. The information of the vector magnetic field was included in the inversion process. Results: The Si I 1082.7 nm line seems to be in emission in the umbra of the observed sunspot after the effects of scattered light (stray light coming from wide angles) are removed. We show how the spectral line shape of umbral profiles changes dramatically with the amount of scattered light. Indeed, the continuum levels

  3. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    that supports queries in constant time, needs n1+ (1) space. For data structures that uses n logO(1) n space this matches the best known upper bound. Additionally, we present a linear space data structure that supports range selection queries in O(log k= log log n + log log n) time. Finally, we prove that any...

  4. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  5. Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition.

    Science.gov (United States)

    Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N

    2014-01-22

    We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date.

  6. Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition

    Science.gov (United States)

    Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N.

    2014-01-01

    We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date. PMID:24448201

  7. Evaluation of the Diode laser (810nm, 980 nm) on color change of teeth after external bleaching.

    Science.gov (United States)

    Kiomars, Nazanin; Azarpour, Pouneh; Mirzaei, Mansooreh; Hashemi Kamangar, Sedighe Sadat; Kharazifard, Mohammad Javad; Chiniforush, Nasim

    2016-12-30

    Subject and aim: The aim of this study was to evaluate the efficiency of diode laser-activated bleaching systems for color change of teeth. Materials & Methods: 40 premolars with intact enamel surfaces were selected for five external bleaching protocols (n=8). Two different wavelengths of diode laser (810 and 980 nm) with two different hydrogen peroxide concentrations (30% and 46%) were selected for laser bleaching. Group 1 received bleaching (Heydent- Germany) with a 810 nm diode laser; Group 2 received bleaching (Heydent- Germany) with a 980 nm diode laser; Group 3 received bleaching (laser white*20- Biolase) with a 810 nm diode laser; Group 4 received bleaching (laser white*20- Biolase) with a 980 nm diode laser, with an output power of 1.5 W, in continuous wave (cw) mode for each irradiation. Group 5 as control group received 40% hydrogen peroxide (Opalescence Boost, Ultradent-USA) with no light activation. The color of teeth was scored at baseline and 1 week after bleaching with spectrophotometer. Color change data on the CIEL*a*b* system were analyzed statistically by the one-way ANOVA and Tukey's HSD test. Results: All the bleaching techniques resulted in shade change. According to ΔE values, all techniques were effective to bleach the teeth (ΔE ≥ 3). Statistically significant differences were detected among bleaching protocols (p=0.06). Regarding shade change values expressed as ΔL*, Δa*, Δb*, ΔE*, laser bleached groups were no statistically different with each other (p>0.05). Conclusion: Bleaching with different wavelengths of diode laser resulted in the same results.

  8. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  9. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods

    NARCIS (Netherlands)

    Nachabé, Rami; Evers, Daniel; Evers, Daniel J.; Hendriks, Benno H.W.; Lucassen, Gerald W.; Lucassen, Gerald; van der Voort, Marjolein; Rutgers, Emiel J.; Vrancken Peeters, Marie-Jeanne; van der Hage, Jos A.; Oldenburg, Hester S.; Wesseling, Jelle; Ruers, Theo J.M.

    2011-01-01

    We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma, and ductal

  10. 80-nm-tunable high-index-contrast subwavelength grating long-wavelength VCSEL: Proposal and numerical simulations

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Sirbu, Alexei

    2010-01-01

    A widely-tunable single-mode long wavelength vertical-cavity surface-emitting laser structure employing a MEMStunable high-index-contrast subwavelength grating (HCG) is suggested and numerically investigated. A very large 80- nm linear tuning range was obtained as the HCG was actuated by -220 to ...

  11. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: a comparison of classification methods

    NARCIS (Netherlands)

    Nachabe, R.; Evers, D.; Hendriks, B.H.W.; Lucassen, G.W.; Van der Voort, M.; Wesseling, J.; Rutgers, E. J.; Vrancken Peeters, M.J.; Hage, J.A.van der; Oldenbeng, H.S.; Ruers, T.

    2011-01-01

    We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma and ductal

  12. An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia

    Science.gov (United States)

    Fan, Jianjia; Stukas, Sophie; Wong, Charmaine; Chan, Jennifer; May, Sharon; DeValle, Nicole; Hirsch-Reinshagen, Veronica; Wilkinson, Anna; Oda, Michael N.; Wellington, Cheryl L.

    2011-01-01

    Lipid transport in the brain is coordinated by glial-derived lipoproteins that contain apolipoprotein E (apoE) as their primary protein. Here we show that apoE is secreted from wild-type (WT) primary murine mixed glia as nascent lipoprotein subspecies ranging from 7.5 to 17 nm in diameter. Negative-staining electron microscropy (EM) revealed rouleaux, suggesting a discoidal structure. Potassium bromide (KBr) density gradient ultracentrifugation showed that all subspecies, except an 8.1 nm particle, were lipidated. Glia lacking the cholesterol transporter ABCA1 secreted only 8.1 nm particles, which were poorly lipidated and nondiscoidal but could accept lipids to form the full repertoire of WT apoE particles. Receptor-associated-protein (RAP)-mediated inhibition of apoE receptor function blocked appearance of the 8.1 nm species, suggesting that this particle may arise through apoE recycling. Selective deletion of the LDL receptor (LDLR) reduced the level of 8.1 nm particle production by approximately 90%, suggesting that apoE is preferentially recycled through the LDLR. Finally, apoA-I stimulated secretion of 8.1 nm particles in a dose-dependent manner. These results suggest that nascent glial apoE lipoproteins are secreted through multiple pathways and that a greater understanding of these mechanisms may be relevant to several neurological disorders. PMID:21705806

  13. Simulation of 100 nm Vertical Replacement Gate (VRG) MOSFET

    Science.gov (United States)

    Ooi, P. K.; Ibrahim, K.; Aziz, A. Abdul; Rashid, M.

    2010-07-01

    In this work, we simulate two dimensional n-type 100 nm vertical replacement gate (VRG) metal oxide semiconductor field oxide transistor (MOSFET). The simulations are done with using DEVEDIT and ATLAS from Silvaco International. The VRG VMOST with channel doping carrier concentration of 3.5×1018 cm-3 and the width of the body region between the two channel lengths of 200 nm resulted in a threshold voltage (Vth) of 0.90 V, an off-state leakage current (Ioff) of 6.71×10-15 A/μm, a subthreshold slope (S) of 95.84 mV/dec, and a drain current (ID) of 200 μA/μm. In addition, we study the effects of channel doping carrier concentration (NC) and the width of the body region between the two channel lengths (WB). Besides, the simulation results also compared with experiment result from other researchers.

  14. Photodissociation of NH3 at 106-200 nm

    Science.gov (United States)

    Suto, M.; Lee, L. C.

    1983-01-01

    The absorption and fluorescence cross sections for NH3 are measured in the 106-200 nm region using synchrotron radiation as the light source. The threshold wavelengths for the production of the NH (b to X) and NH (c to a) emissions from NH3 dissociation are measured and compared with previous measurements. The heat of formation of NH determined from these thresholds agrees well with the value determined from thermochemical data. The process of dissociation of NH3 into NH2(2AL) and H2(S) has a significant quantum yield whose maximum at 134 nm is about twice the NH(c) production yield. All the vibronic levels of the B and C states produce the NH2(2A1) emission, contrary to previous theoretical interpretations.

  15. Raster Shaped Beam Pattern Generation for 70 nm Photomask Production

    Science.gov (United States)

    Newman, Thomas H.; Finklestein, Ira; Kao, Huei-Mei; Krishnaswami, Sriram; Long, Darryn; Lozes, Richard L.; Pearce-Percy, Henry T.; Sagle, Allan L.; Varner, Jeffrey K.; Winter, Stacey; Gesley, Mark A.; Abboud, Frank E.

    2002-12-01

    Photomask complexity is rapidly increasing as feature sizes are scaled down and as optical proximity correction (OPC) methods become widespread. The growing data content of critical mask levels requires that pattern generator solutions be adapted to maintain productivity. Raster shaped beam (RSB) technology has been developed to enable the production of 70 nm photomasks and the development of 50 nm masks. RSB is built on and extends the capability of the 50 kV MEBES platform. The beam is shaped as it is scanned, printing the mask pattern on a calibrated flash grid. Complex OPC patterns are efficiently tiled by combining a relatively small maximum shape size with a high flash rate of 100 MHz. The maximum shape size and the current density can be adjusted to match a wide set of mask applications. Proximity effects are corrected with dose modulation using a real-time computation.

  16. Magnetic Behavior of Surface Nanostructured 50-nm Nickel Thin Films

    Directory of Open Access Journals (Sweden)

    Kumar Prashant

    2010-01-01

    Full Text Available Abstract Thermally evaporated 50-nm nickel thin films coated on borosilicate glass substrates were nanostructured by excimer laser (0.5 J/cm2, single shot, DC electric field (up to 2 kV/cm and trench-template assisted technique. Nanoparticle arrays (anisotropic growth features have been observed to form in the direction of electric field for DC electric field treatment case and ruptured thin film (isotropic growth features growth for excimer laser treatment case. For trench-template assisted technique; nanowires (70–150 nm diameters have grown along the length of trench template. Coercive field and saturation magnetization are observed to be strongly dependent on nanostructuring techniques.

  17. Tunnel junction 850-nm VCSEL for aperture uniformity and reliability

    Science.gov (United States)

    Wong, P. S.; Yan, J.; Wu, T. C.; Kyi, W.; Pao, J.; Riaziat, M.

    2017-02-01

    We are reporting the first successful fabrication of 850-nm buried tunnel junction (BTJ) VCSELs. Multiple parameters were considered for the design. First, n-type dopants other than silicon had to be considered for an abrupt junction. Second, proper layer thickness had to be chosen. Finally, compatibility with regrowth and processing had to be ensured. In this paper the successful fabrication and performance of 850-nm BTJ VCSELs with tunnel junctions comprised of GaAs and AlGaAs materials is demonstrated. Key achieved parameters include a significant improvement in the slope efficiency from approximately 0.45 W/A in an oxide-aperture VCSEL to over 0.6 W/A.

  18. EST Table: NM_001043458 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001043458 Apkc 10/09/29 93 %/586 aa ref|NP_001036923.1| atypical protein kinase ...C [Bombyx mori] dbj|BAE17023.1| atypical protein kinase C [Bombyx mori] 10/09/13 72 %/601 aa FBpp0292491|aPK...ef|XP_974234.1| PREDICTED: similar to atypical protein kinase C [Tribolium castaneum] FS907336 ...

  19. EST Table: NM_001046972 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046972 LOC732975 10/09/29 100 %/182 aa ref|NP_001040437.1| muscular protein 2...0 [Bombyx mori] gb|ABF51386.1| muscular protein 20 [Bombyx mori] 10/09/13 61 %/173 aa FBpp0235584|DvirGJ2116...aa gi|91077564|ref|XP_972465.1| PREDICTED: similar to muscular protein 20 [Tribolium castaneum] FS765856 ...

  20. EST Table: NM_001044218 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001044218 glv2 10/09/29 100 %/173 aa ref|NP_001037683.1| gloverin 2 [Bombyx mori] dbj|BAE53372.1| antibac...terial peptide [Bombyx mori] dbj|BAF51564.1| gloverin2 [Bombyx mori] 10/09/13 n.h 10/08/29 n.h 10/09/10 n.h 10/09/10 n.h 10/09/10 n.h FS917189 ...

  1. EST Table: NM_001043703 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001043703 Osp 10/09/29 93 %/1801 aa ref|NP_001037168.1| ovarian serine protease ...[Bombyx mori] gb|AAL62027.1|AF294884_1 ovarian serine protease [Bombyx mori] 10/09/13 43 %/583 aa FBpp016242...189234398|ref|XP_974954.2| PREDICTED: similar to ovarian serine protease [Tribolium castaneum] FS920735 ...

  2. EST Table: NM_001173359 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001173359 Surf1 10/09/29 100 %/228 aa ref|NP_001166830.1| surfeit 1 isoform 2 [B...ombyx mori] gb|ABD36359.1| surfeit protein isoform 2 [Bombyx mori] 10/09/13 35 %/216 aa FBpp0179156|DperGL15...|XP_972868.1| PREDICTED: similar to surfeit locus protein [Tribolium castaneum] FS918885 ...

  3. EST Table: NM_001046863 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046863 Surf1 10/09/29 100 %/294 aa ref|NP_001040328.1| surfeit 1 isoform 1 [B...ombyx mori] gb|ABD36358.1| surfeit protein isoform 1 [Bombyx mori] 10/09/13 45 %/250 aa FBpp0162190|DmojGI12...|XP_972868.1| PREDICTED: similar to surfeit locus protein [Tribolium castaneum] FS918885 ...

  4. EST Table: NM_001044001 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001044001 LOC693032 10/09/29 100 %/596 aa ref|NP_001037466.1| chitooligosacchari...dolytic beta-N-acetylglucosaminidase precursor [Bombyx mori] sp|P49010.1|HEXC_BOMMO RecName: Full=Chitooligo...e; AltName: Full=Beta-N-acetylhexosaminidase; Flags: Precursor gb|AAC60521.1| chitool...igosaccharidolytic beta-N-acetylglucosaminidase [Bombyx mori] prf||2107188A chitooligosaccharidolytic be

  5. Hardmask technology for sub-100 nm lithographic imaging

    Science.gov (United States)

    Babich, Katherina; Mahorowala, Arpan P.; Medeiros, David R.; Pfeiffer, Dirk; Petrillo, Karen E.; Angelopoulos, Marie; Grill, Alfred; Patel, Vishnubhai; Halle, Scott; Brunner, Timothy A.; Conti, Richard; Allen, Scott D.; Wise, Richard

    2003-06-01

    The importance of hardmask technology is becoming increasingly evident as the demand for high-resolution imaging dictates the use of ever-thinner resist films. An appropriately designed etch resistant hardmask used in conjunction with a thin resist can provide the combined lithographic and etch performance needed for sub-100 nm device fabrication. We have developed a silicon-based, plasma-enhanced chemical vapor deposition (PECVD) prepared material that performs both as an antireflective coating (ARC) and a hardmask and thus enables the use of thin resists for device fabrication. This ARC/hardmask material offers several advantages over organic bottom antireflective coatings (BARC). These benefits include excellent tunability of the material's optical properties, which allows superior substrate reflectivity control, and high etch selectivity to resist, exceeding 2:1. In addition, this material can serve as an effective hardmask etch barrier during the plasma etching of dielectric stacks, as the underlying silicon oxide etches eight times faster than this material in typical fluorocarbon plasma. These properties enable the pattering of features in 1-2 μm dielectric stacks using thin resists, imaging that would otherwise be impossible with conventional processing. Potential extendibility of this approach to feature sizes below 100nm has been also evaluated. High resolution images as small as 50nm, have been transferred into a 300nm thick SiO2 layer by using Si ARC/hardmask material as an etch mask. Lithographic performance and etch characteristics of a thin resist process over both single layer and index-graded ARC/hardmask materials will be shown.

  6. EST Table: NM_001130877 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001130877 hibadh 10/09/29 96 %/314 aa ref|NP_001124349.1| 3-hydroxyisobutyrate d...DROGENASE PRECURSOR (EC 1.1.1.31) (HIBADH) (FRAGMENT)#status:Confirmed#UniProt:Q9...1 10/09/10 41 %/279 aa gnl|Amel|GB17533-PA 10/09/10 46 %/279 aa gi|189238804|ref|XP_974950.2| PREDICTED: similar to Hibadhb [Tribolium castaneum] FS797397 ...

  7. EST Table: NM_001044219 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001044219 glv4 10/09/29 100 %/171 aa ref|NP_001037684.1| gloverin 4 [Bombyx mori] dbj|BAE53373.1| antibac...terial peptide [Bombyx mori] dbj|BAF63528.1| gloverin4 [Bombyx mori] 10/09/13 n.h 10/08/29 n.h 10/09/10 n.h 10/09/10 n.h 10/09/10 n.h FS798027 ...

  8. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.

    Science.gov (United States)

    van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K

    2009-04-09

    We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.

  9. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser.

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción; Ramos-Torrecillas, Javier

    2017-07-13

    Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2-1 W and energy density: 1-7 J/cm²) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm²; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  10. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  11. Protein Helical Structure Determination Using CD Spectroscopy for Solutions with Strong Background Absorbance from 190-230 nm

    Science.gov (United States)

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2014-01-01

    Conventional empirical methods for the quantification of the helical content of proteins in solution using circular dichroism (CD) primarily rely on spectral data acquired between wavelengths of 190 to 230 nm. The presence of chemical species in a protein solution with strong absorbance within this range can interfere with the ability to use these methods for the determination of the protein’s helical structure. The objective of this research was to overcome this problem by developing a method for CD spectral analysis that relies on spectral features above this wavelength range. In this study, we determined that the slopes of CD spectra acquired over the 230 to 240 nm region strongly correlate with the helix contents including α-helix and 310-helix of protein as determined using conventional CD algorithms that rely on wavelengths between 190-230 nm. This approach (i.e., the 230-240 nm slope method) is proposed as an effective method to determine the helix content within proteins in the presence of additives such as detergents or denaturants with high absorbance of wavelengths up to 230 nm. PMID:25308773

  12. Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm.

    Science.gov (United States)

    Wei, Yang; Thyparambil, Aby A; Latour, Robert A

    2014-12-01

    Conventional empirical methods for the quantification of the helical content of proteins in solution using circular dichroism (CD) primarily rely on spectral data acquired between wavelengths of 190 and 230nm. The presence of chemical species in a protein solution with strong absorbance within this range can interfere with the ability to use these methods for the determination of the protein's helical structure. The objective of this research was to overcome this problem by developing a method for CD spectral analysis that relies on spectral features above this wavelength range. In this study, we determined that the slopes of CD spectra acquired over the 230 to 240nm region strongly correlate with the helix contents including α-helix and 310-helix of protein as determined using conventional CD algorithms that rely on wavelengths between 190 and 230nm. This approach (i.e., the 230-240nm slope method) is proposed as an effective method to determine the helix content within proteins in the presence of additives such as detergents or denaturants with high absorbance of wavelengths up to 230nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL.

    Science.gov (United States)

    Paul, Sujoy; Haidar, Mohammad Tanvir; Cesar, Julijan; Malekizandi, Mohammadreza; Kögel, Benjamin; Neumeyr, Christian; Ortsiefer, Markus; Küppers, Franko

    2016-06-13

    We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications.

  14. 500 nm Continuous Wave Tunable SingleFrequency MidIR Light Source for C–H Spectroscopy

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin

    2012-01-01

    A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel...... approach, a tunable single-frequency output power exceeding 3 mW was obtained in the mid-IR tuning range from 2.9 to 3.4 μm....

  15. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...... implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment. With a moderate SOA current (270 mA) we achieve up...... to 100nm total sweep range and 12 μm depth resolution in air. By modulating the current, we can optimize the output spectrum and thereby improve the resolution to 9 μm in air (~6.5 μm in tissue). The average output power is higher than 20mW. Both sweep directions show similar performance; hence, both can...

  16. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures.

    Science.gov (United States)

    Fu, Tian-Ming; Duan, Xiaojie; Jiang, Zhe; Dai, Xiaochuan; Xie, Ping; Cheng, Zengguang; Lieber, Charles M

    2014-01-28

    The miniaturization of bioelectronic intracellular probes with a wide dynamic frequency range can open up opportunities to study biological structures inaccessible by existing methods in a minimally invasive manner. Here, we report the design, fabrication, and demonstration of intracellular bioelectronic devices with probe sizes less than 10 nm. The devices are based on a nanowire-nanotube heterostructure in which a nanowire field-effect transistor detector is synthetically integrated with a nanotube cellular probe. Sub-10-nm nanotube probes were realized by a two-step selective etching approach that reduces the diameter of the nanotube free-end while maintaining a larger diameter at the nanowire detector necessary for mechanical strength and electrical sensitivity. Quasi-static water-gate measurements demonstrated selective device response to solution inside the nanotube, and pulsed measurements together with numerical simulations confirmed the capability to record fast electrophysiological signals. Systematic studies of the probe bandwidth in different ionic concentration solutions revealed the underlying mechanism governing the time response. In addition, the bandwidth effect of phospholipid coatings, which are important for intracellular recording, was investigated and modeled. The robustness of these sub-10-nm bioelectronics probes for intracellular interrogation was verified by optical imaging and recording the transmembrane resting potential of HL-1 cells. These ultrasmall bioelectronic probes enable direct detection of cellular electrical activity with highest spatial resolution achieved to date, and with further integration into larger chip arrays could provide a unique platform for ultra-high-resolution mapping of activity in neural networks and other systems.

  17. New apparatus with high radiation energy between 320-460 nm: physical description and dermatological applications

    Energy Technology Data Exchange (ETDEWEB)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high-radiation energy between 320 to 460 nm. The measureable energy below 320 nm was shown to be many orders of magnitude too low to produce erythema. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. At a skin-target distance of 0.2 m the size of the irradiated area is 0.35 x 0.35 m, and the measured mean uv-A intensity is about 1400 W. m-2 (140 mW . cm-2). The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-a applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. The calculated IPD threshold time was 1.8 min at 0.2 m. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. The instrument was also successfully used for photo-patch testing and reproduction of skin lesions of polymorphous light eruption. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.

  18. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2018-01-01

    Full Text Available Lithium disilicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (peak power of 5, 7.5 and 10 kW, repetition rate (RR 20 kHz, speed of 10 and 50 mm/s, and total energy density from 1.3 to 27 kW/cm2 and the thermal elevation during the experiment was recorded by a fiber Bragg grating (FBG temperature sensor. Subsequently, the surface modifications were analyzed by optical microscope, scanning electron microscope (SEM, and energy dispersive X-ray spectroscopy (EDS. With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. A 1070 nm fiber laser can be considered as a good device to increase the adhesion of lithium disilicate ceramics when optimum parameters are considered.

  19. SADP for BEOL using chemical slimming with resist mandrel for beyond 22nm nodes

    Science.gov (United States)

    Jang, Linus; Raghunathan, Sudhar; Ryan, E. Todd; Kye, Jongwook; Levinson, Harry J.; Dunn, Shannon; Hetzer, David; Kawakami, Shinichiro; Huli, Lior

    2012-03-01

    The fundamental limits of optical lithography have driven semiconductor processing research to push the envelope. Double patterning (DP) techniques including litho-etch litho-etch (LELE), litho-litho etch (LLE), and self-aligned double patterning (SADP) have become standard vernacular for near term semiconductor processing as EUV is not yet ready for high volume production. The challenge, even with techniques like LLE and SADP, remains that printing small lines on tight pitches (for LLE) or even small lines on relaxed pitches for mandrel/spacer combinations is not trivial. We have demonstrated a track-based slimming technique that can produce sub-25 nm resist lines for either SADP or LLE DP processes. Our work includes results for varying shrink amounts at different target critical dimensions (CD) and for multiple pitches. We also investigated CD uniformity (CDU) and defectivity. In particular, optimization of the amount of slimming is critical as it allows for much greater process latitude at the lithography step. In addition to the lithography work, we have continued the processing for both integration schemes to include oxide deposition and etch for SADP and through etch performance for DP. We have demonstrated sub 45 nm pitch structures. The wide variety of process uses, as well as the ability to achieve a large range of shrink amounts shows that track based slimming is a viable solution to achieve target CD and pitch values for sub 22 nm technology node.

  20. On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas

    Science.gov (United States)

    Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.

    2017-01-01

    The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.

  1. Near-field coupling of gold plasmonic antennas for sub-100 nm magneto-thermal microscopy

    Science.gov (United States)

    Karsch, Jonathan C.; Bartell, Jason M.; Fuchs, Gregory D.

    2017-08-01

    The development of spintronic technology with increasingly dense, high-speed, and complex devices will be accelerated by accessible microscopy techniques capable of probing magnetic phenomena on picosecond time scales and at deeply sub-micron length scales. A recently developed time-resolved magneto-thermal microscope provides a path towards this goal if it is augmented with a picosecond, nanoscale heat source. We theoretically study adiabatic nanofocusing and near-field heat induction using conical gold plasmonic antennas to generate sub-100 nm thermal gradients for time-resolved magneto-thermal imaging. Finite element calculations of antenna-sample interactions reveal focused electromagnetic loss profiles that are either peaked directly under the antenna or are annular, depending on the sample's conductivity, the antenna's apex radius, and the tip-sample separation. We find that the thermal gradient is confined to 40 nm to 60 nm full width at half maximum for realistic ranges of sample conductivity and apex radius. To mitigate this variation, which is undesirable for microscopy, we investigate the use of a platinum capping layer on top of the sample as a thermal transduction layer to produce heat uniformly across different sample materials. After determining the optimal capping layer thickness, we simulate the evolution of the thermal gradient in the underlying sample layer and find that the temporal width is below 10 ps. These results lay a theoretical foundation for nanoscale, time-resolved magneto-thermal imaging.

  2. Fifth-harmonic production in neon and argon with picosecond 248-nm radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, R.; Gibson, G.; Boyer, K.; Jara, H.; S. T. Luk; McIntyre, I.A.; McPherson, A.; Solem, J.C.; Rhodes, C.K.

    1988-06-01

    The results of a study of fifth-harmonic production in neon and argon irradiated with 248-nm picosecond laser pulses are presented. Focused intensities range from 10/sup 13/ to 10/sup 15/ Wcm/sup 2/. Data for fifth-harmonic intensity as a function of both target density and focused laser intensity are presented and compared with theory. For the laser intensities and medium densities studied, estimates for the linear and nonlinear components of ..delta..k, the wave-vector mismatch between the fundamental and harmonic waves, indicate that the nonlinear component is much greater than the linear component.

  3. Angular distributions of emitted particles by laser ablation of silver at 355 nm

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Hansen, T.

    1998-01-01

    The angular distribution of laser ablated silver in vacuum has been measured in situ with an array of quartz-crystal microbalances. The silver surface was irradiated by ns pulses from a Nd:YAG laser operating at 355 nm for fluences ranging from 0.7 J/cm2 to 8 J/cm2. The distribution is strongly...... peaked in the forward direction corresponding to cosp/, where p varies from 5 to 12 for the largest beam spot, but is less peaked for the smallest beam spots. The total collected yield of ablated atoms is about 221015 Ag atoms per pulse for the highest pulse energies....

  4. A novel method for fabricating sub-16 nm footprint T-gate nanoimprint molds.

    Science.gov (United States)

    Peng, Can; Liang, Xiaogan; Chou, Stephen Y

    2009-05-06

    A novel method for fabricating nanoimprint lithography (NIL) molds for T-shaped gates (T-gates) for high speed transistors is proposed and demonstrated. This method uses NIL, low pressure chemical vapor deposition and reactive ion etching processes, and avoids costly electron beam lithography and high accuracy alignment technology. Using the T-gate nanoimprint molds fabricated by this novel method, T-gates with a footprint as small as sub-16 nm were achieved. This method can be extended to fabricate a broad range of 3D nanostructures.

  5. Optical Limiting Properties of 3,5-Dithienylenevinylene BODIPY Dyes at 532 nm.

    Science.gov (United States)

    Harris, Jessica; Gai, Lizhi; Kubheka, Gugu; Mack, John; Nyokong, Tebello; Shen, Zhen

    2017-10-17

    The optical limiting properties of a series of near infrared absorbing 3,5-dithienylenevinylene BODIPY (boron-dipyrromethene) dyes (1-3) that contain donor and acceptor moieties in their π-conjugation systems were studied by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed when the compounds are embedded into poly(bisphenol carbonate A) polymer thin films, which demonstrates that BODIPY dyes with this type of structure are suitable for use in optical limiting applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL.

    Science.gov (United States)

    Szczerba, Krzysztof; Westbergh, Petter; Karout, Johnny; Gustavsson, Johan; Haglund, Åsa; Karlsson, Magnus; Andrekson, Peter; Agrell, Erik; Larsson, Anders

    2011-12-12

    We present high speed real time, error free 4-PAM transmission for short range optical links based on a VCSEL operating at 850 nm, a multimode fibre and a simple intensity detector. Transmission speeds of 25 Gbps and 30 Gbps are demonstrated, and the maximum fibre reaches were 300 m and 200 m, respectively. The 4-PAM is also compared with OOK transmission at 25 Gbps, and we find that at this bit rate 4-PAM increases the error free transmission distance in the multimode fibre by 100 m, compared to OOK. © 2011 Optical Society of America

  7. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  8. Endovenous laser therapy for occlusion of incompetent saphenous veins using 1940nm

    Science.gov (United States)

    Sroka, Ronald; Pongratz, Thomas; Esipova, Anna; Dikic, Slobodan; Demhasaj, Sahit; Comsa, Florin; Schmedt, Claus-Georg

    2015-07-01

    Objective: Several studies indicate that ELT using wavelengths of high water absorption showed advantages compared to conventional ELT. Thulium-Lasers emit nearby the local absorption maximum of water at 1940nm. In this clinical study the effectiveness, safety and the feasibility of 1940nm-ELT is proven. Materials and Method: A single centric, prospective observational study was performed. 1940nm-laserenergy was applied using radial emitting fibres with continuous pullback (1mm/s). Treatment was performed under anesthesia (general, spinal, tumescent) thus simultaneous miniphlebectomy and ligation of perforators could be applied. Patient and technical details were systematically collected. Evaluation included: standardized questionnaire, clinical examination, color-duplex ultrasonography preoperatively, 3d, 4w, 6m postoperatively, statistic. Results: The 1940nm-ELT study include 55 patients (female/men=34/21, mean age 55y, range 23-90y) treating n=72 vessels. The mean maximum diameter of great saphenous veins (GSV, n=59) was 7.5mm (range 3.7-11.3mm) and of small saphenous veins (SSV, n=13) was 5.3mm (3.0-10.0mm). The mean applied longitudinal endovenous energy density (LEED) was 64.3J/cm (40.3-98.2J/cm) in GSVs and 51.0J/cm (37.6-72.7J/cm) in SSVs. Complete occlusion of the vein without sign of reflux was achieved in 100%. The mean length of non-occluded stump at the sapheno-femoral junction was 6.0mm (1.0-20.0mm). Postoperative reduction of the diameter of GSV was 1.6mm (21.3%) and 2.0mm (37.7%) in SSV. One (1.4%) endovenous heat induced thrombus (EHIT) was observed. Further adverse events were: paresthesia 10/72 (13.9%), ecchymosis 1/72 (1.4%), lymphocele 1/72 (1.4%), hyperpigmentation 1/72 (1.4%). The mean postoperative pain intensity was 1.3 and 1.8 single doses of analgesics were administered. Normal physical activity was reached after 3d (1-21d). Conclusion: 1940nm-ELT using radial light application effectively eliminates the reflux in insufficient saphenous

  9. Writing time estimation of EB mask writer EBM-9000 for hp16nm/logic11nm node generation

    Science.gov (United States)

    Kamikubo, Takashi; Takekoshi, Hidekazu; Ogasawara, Munehiro; Yamada, Hirokazu; Hattori, Kiyoshi

    2014-10-01

    The scaling of semiconductor devices is slowing down because of the difficulty in establishing their functionality at the nano-size level and also because of the limitations in fabrications, mainly the delay of EUV lithography. While multigate devices (FinFET) are currently the main driver for scalability, other types of devices, such as 3D devices, are being realized to relax the scaling of the node. In lithography, double or multiple patterning using ArF immersion scanners is still a realistic solution offered for the hp16nm node fabrication. Other lithography candidates are those called NGL (Next Generation Lithography), such as DSA (Directed-Self-Assembling) or nanoimprint. In such situations, shot count for mask making by electron beam writers will not increase. Except for some layers, it is not increasing as previously predicted. On the other hand, there is another aspect that increases writing time. The exposure dose for mask writing is getting higher to meet tighter specifications of CD uniformity, in other words, reduce LER. To satisfy these requirements, a new electron beam mask writer, EBM-9000, has been developed for hp16nm/logic11nm generation. Electron optical system, which has the immersion lens system, was evolved from EBM-8000 to achieve higher current density of 800A/cm2. In this paper, recent shot count and dose trend are discussed. Also, writing time is estimated for the requirements in EBM-9000.

  10. Long-range antigravity

    Energy Technology Data Exchange (ETDEWEB)

    Macrae, K.I.; Riegert, R.J. (Maryland Univ., College Park (USA). Center for Theoretical Physics)

    1984-10-01

    We consider a theory in which fermionic matter interacts via long-range scalar, vector and tensor fields. In order not to be in conflict with experiment, the scalar and vector couplings for a given fermion must be equal, as is natural in a dimensionally reduced model. Assuming that the Sun is not approximately neutral with respect to these new scalar-vector charges, and if the couplings saturate the experimental bounds, then their strength can be comparable to that of gravity. Scalar-vector fields of this strength can compensate for a solar quadrupole moment contribution to Mercury's anomalous perihelion precession.

  11. Wavelength-dependent induction of thymine dimers and growth rate reduction in the marine diatom Cyclotella sp. exposed to ultraviolet radiation

    NARCIS (Netherlands)

    Buma, A.G.J.; Engelen, A.H; Gieskes, W.W C

    1997-01-01

    Cultures of the marine diatom Cyclotella sp. were subjected to various polychromatic exposures of UVB radiation (280-320 nm), UVA radiation (320-400 nm) and photosynthetically active radiation, PAR (400-700 nm). Changes in growth rate and residual thymine dimer content (a measure for DNA damage)

  12. Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae)

    NARCIS (Netherlands)

    van de Poll, WH; van Leeuwe, MA; Roggeveld, J; Buma, AGJ

    The effects of high PAR (400-700 nm), UVA (315-400 nm), and UVB (280-315 nm) radiation on viability and photosynthesis were investigated for Chaetoceros brevis Schutt. This Antarctic marine diatom was cultivated under low, medium, and high irradiance and nitrate, phosphate, silicate, and iron

  13. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    Science.gov (United States)

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  14. Online Sorted Range Reporting

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark

    2009-01-01

    We study the following one-dimensional range reporting problem: On an arrayA of n elements, support queries that given two indices i ≤ j and an integerk report the k smallest elements in the subarray A[i..j] in sorted order. We present a data structure in the RAM model supporting such queries...... in optimal O(k) time. The structure uses O(n) words of space and can be constructed in O(n logn) time. The data structure can be extended to solve the online version of the problem, where the elements in A[i..j] are reported one-by-one in sorted order, in O(1) worst-case time per element. The problem...... is motivated by (and is a generalization of) a problem with applications in search engines: On a tree where leaves have associated rank values, report the highest ranked leaves in a given subtree. Finally, the problem studied generalizes the classic range minimum query (RMQ) problem on arrays....

  15. Design of the 65 nm CLICpix demonstrator chip

    CERN Document Server

    Valerio, P.; Campbell, M.

    2012-01-01

    A hybrid pixel detector ASIC designed to be used in the vertex detector for the CLIC experiment is presented in this note. It has been designed using a commercial 65 nm CMOS technology. The main features include simultaneous 4-bit TOT and TOA measurements with 10 ns accuracy, a spatial resolution of 3 um (the pixel size is 25x25 um), an on-chip data compression scheme and power pulsing capability. A prototype with a fully featured array of 64 by 64 pixels has been designed and produced. Testing on the prototype is ongoing.

  16. Conjugated 12 nm long oligomers as molecular wires in nanoelectronics

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Strobel, Sebastian; Bundgaard, Eva

    2009-01-01

    containing 3–19 phenyl units were synthesised by step wise HWE-reactions of a bifunctional OPV-monomer which allowed for complete control of the sizes of the OPVs. Workup and analysis (1H- and 13C-NMR, mass spectrometry and size exclusion chromatography) of each step ensured a high purity of the final...... products. Final end group functionalities of the OPVs were introduced either as the first step (alcohol) or the last step (thioacetate). We further demonstrate a fabrication method for well defined nanogap electrode devices based on silicon-on-insulator technology, featuring a gap distance of down to 9 nm...

  17. EST Table: NM_001184844 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001184844 TOR1 10/09/29 53 %/2461 aa ref|XP_625130.1| PREDICTED: similar to FKBP12-rapamycin... complex-associated protein (FK506-binding protein 12-rapamycin complex-associated protein 1) (R...apamycin target protein) (RAPT1) (Mammalian target of rapamycin) (MTOR) isoform 1 [Apis mellifera] 10/09/13 ...9/10 50 %/2441 aa gi|91089099|ref|XP_971819.1| PREDICTED: similar to fkbp-rapamycin associated protein [Tribolium castaneum] CK537623 ...

  18. Ocular safety limits for 1030nm femtosecond laser cataract surgery

    Science.gov (United States)

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel V.

    2013-03-01

    Application of femtosecond lasers to cataract surgery has added unprecedented precision and reproducibility but ocular safety limits for the procedure are not well-quantified. We present an analysis of safety during laser cataract surgery considering scanned patterns, reduced blood perfusion, and light scattering on residual bubbles formed during laser cutting. Experimental results for continuous-wave 1030 nm irradiation of the retina in rabbits are used to calibrate damage threshold temperatures and perfusion rate for our computational model of ocular heating. Using conservative estimates for each safety factor, we compute the limits of the laser settings for cataract surgery that optimize procedure speed within the limits of retinal safety.

  19. EST Table: NM_001046789 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046789 LOC692949 10/09/29 95 %/267 aa ref|NP_001040254.1| beadex/dLMO protein... [Bombyx mori] gb|ABD36315.1| beadex/dLMO protein [Bombyx mori] 10/09/13 74 %/175 aa FBpp0262745|DyakGE17735...0 aa gnl|Amel|GB11268-PA 10/09/10 71 %/212 aa gi|91080717|ref|XP_975367.1| PREDICTED: similar to beadex/dLMO protein [Tribolium castaneum] FS794536 ...

  20. EST Table: NM_001046920 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001046920 LOC732920 10/09/29 94 %/371 aa ref|NP_001040385.1| pelota-like protein... [Bombyx mori] gb|ABF51295.1| pelota-like protein [Bombyx mori] 10/09/13 71 %/371 aa FBpp0253329|DwilGK24186...ene:AGAP008269 10/09/10 67 %/371 aa gnl|Amel|GB10750-PA 10/09/10 69 %/371 aa gi|91095145|ref|XP_967126.1| PREDICTED: similar to pelota [Tribolium castaneum] FS917768 ...

  1. Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2013-01-01

    The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787

  2. Lightning detection and ranging

    Science.gov (United States)

    Lennon, C. L.; Poehler, H. A.

    1982-01-01

    A lightning detector and ranging (LDAR) system developed at the Kennedy Space Center and recently transferred to Wallops Island is described. The system detects pulsed VHF signals due to electrical discharges occurring in a thunderstorm by means of 56-75 MHz receivers located at the hub and at the tips of 8 km radial lines. Incoming signals are transmitted by wideband links to a central computing facility which processes the times of arrival, using two independent calculations to determine position in order to guard against false data. The results are plotted on a CRT display, and an example of a thunderstorm lightning strike detection near Kennedy Space Center is outlined. The LDAR correctly identified potential ground strike zones and additionally provided a high correlation between updrafts and ground strikes.

  3. Identifying the 630 nm auroral arc emission height: A comparison of the triangulation, FAC profile, and electron density methods

    Science.gov (United States)

    Megan Gillies, D.; Knudsen, D.; Donovan, E.; Jackel, B.; Gillies, R.; Spanswick, E.

    2017-08-01

    We present a comprehensive survey of 630 nm (red-line) emission discrete auroral arcs using the newly deployed Redline Emission Geospace Observatory. In this study we discuss the need for observations of 630 nm aurora and issues with the large-altitude range of the red-line aurora. We compare field-aligned currents (FACs) measured by the Swarm constellation of satellites with the location of 10 red-line (630 nm) auroral arcs observed by all-sky imagers (ASIs) and find that a characteristic emission height of 200 km applied to the ASI maps gives optimal agreement between the two observations. We also compare the new FAC method against the traditional triangulation method using pairs of all-sky imagers (ASIs), and against electron density profiles obtained from the Resolute Bay Incoherent Scatter Radar-Canadian radar, both of which are consistent with a characteristic emission height of 200 km.

  4. Broadband rotary joint for high-speed ultrahigh-resolution endoscopic OCT imaging at 800  nm.

    Science.gov (United States)

    Park, Hyeon-Cheol; Mavadia-Shukla, Jessica; Yuan, Wu; Alemohammad, Milad; Li, Xingde

    2017-12-01

    We report the development of a broadband rotary joint for high-speed ultrahigh-resolution endoscopic optical coherence tomography (OCT) imaging in the 800 nm spectral range. This rotary joint features a pair of achromatic doublets in order to achieve broadband operation for a 3 dB bandwidth over 150 nm. The measured one-way throughput of the rotary joint is greater than 80%, while the fluctuation of the double-pass coupling efficiency during 360 deg rotation is less than ±5% at a near video-rate speed of 20 revolutions/s (rps). The rotary joint is used in conjunction with a diffractive-optics-based endoscope and 800 nm spectral domain OCT system and achieved an ultrahigh axial resolution of ∼2.4  μm in air. The imaging performance is demonstrated by 3D circumferential imaging of a mouse colon in vivo.

  5. A Faraday laser lasing on Rb 1529 nm transition.

    Science.gov (United States)

    Chang, Pengyuan; Peng, Huanfa; Zhang, Shengnan; Chen, Zhangyuan; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2017-08-21

    We present the design and performance characterization of a Faraday laser directly lasing on the Rb 1529 nm transition (Rb, 5P 3/2 - 4D 5/2) with high stability, narrow spectral linewidth and low cost. This system does not need an additional frequency-stabilized pump laser as a prerequisite to preparing Rb atom from 5S to 5P excited state. Just by using a performance-improved electrodeless discharge lamp-based excited-state Faraday anomalous dispersion optical filter (LESFADOF), we realized a heterogeneously Faraday laser with the frequency corresponding to atomic transition, working stably over a range of laser diode (LD) current from 85 mA to 171 mA and the LD temperature from 11 °C to 32 °C, as well as the 24-hour long-term frequency fluctuation range of no more than 600 MHz. Both the laser linewidth and relative intensity noisy (RIN) are measured. The Faraday laser lasing on Rb 1529 nm transition (telecom C-band) can be applied to further research on metrology, microwave photonics and optical communication systems. Besides, since the transitions correspongding to the populated excited-states of alkali atoms within lamp are extraordinarily rich, this scheme can increase the flexibility for choosing proper wavelengths for Faraday laser and greatly expand the coverage of wavelength corresponding to atomic transmission for laser frequency stabilization.

  6. Metal free structural colours via disordered nanostructures with nm resolution and full CYMK colour spectrum

    KAUST Repository

    Bonifazi, Marcella

    2017-02-28

    Structural colours represents a research area of great interest, due to a wide field of application ranging from micro-security to biomimetic materials. At present metallic substrate are heavily employed and only a partial spectra of colours can be realised. We propose a novel, metal-free technology that exploits the complex scattering from a disordered three-dimensional dielectric material on a silicon substrate. We reproduce experimentally the full spectrum of CMYK colours, including variations in intensity. Our resolution lies in the nm range, limited only by the electron beam lithography fabrication process. We demonstrate that this technique is extremely robust, suitable for flexible and reusable substrates. Full of these notable proprieties these nano-structures fits perfectly with the requirements of a real-world technology.

  7. High-Power 1180-nm GaInNAs DBR Laser Diodes

    DEFF Research Database (Denmark)

    Aho, Antti T.; Viheriala, Jukka; Korpijarvi, Ville-Markus

    2017-01-01

    We report high-power 1180-nm GaInNAs distributed Bragg reflector laser diodes with and without a tapered amplifying section. The untapered and tapered components reached room temperature output powers of 655 mW and 4.04 W, respectively. The diodes exhibited narrow linewidth emission with side......-mode suppression ratios in the range of 50 dB for a broad range of operating current, extending up to 2 A for the untapered component and 10 A for the tapered component. The high output power is rendered possible by the use of a high quality GaInNAs-based quantum well gain region, which allows for lower strain...... and better carrier confinement compared with traditional GaInAs quantum wells. The development opens new opportunities for the power scaling of frequency-doubled lasers with emission at yellow-orange wavelengths....

  8. Electrical Analysis of 65 nm PMOS Based on SOI Technology

    Science.gov (United States)

    Adrus, Syed Muhamad Firdauz Bin Syed; Abdullah, Mohd. Hanapiah Bin; Rusop, Mohamad

    2009-06-01

    This paper describes the fabrication and the performance analysis of 65 nm PMOS using Silicon-on-Insulator (SOI) technology. As the technology evolved towards minimizing the scaling size, the scaling activity has it own limitations. The Silicon-on-Insulator (SOI) is the primary method used to overcome the scaling limitation. In this paper, the 65 nm PMOS device with 0.4 μm thickness of Silicon-on-Insulator (SOI) Technology was fabricated and the performance of the devices was analyzed by focusing on the electrical characteristics of Id-Vd and Id-Vg curves for bulk PMOS and the one with SOI technology. The fabrication process simulation and electrical characteristic was simulated using SILVACO TCAD ATHENA and ATLAS simulator. A very promising results were obtained, the device with SOI technology shows improvement in drain saturation current of Idsat = -269 uA/um from -257 uA/um of bulk PMOS (with increment of 4.7%) and the SOI device exhibits lower threshold voltage of pVth(SOI) = -0.2165 V compared to pVth(bulk) = -0.2367 V (with decrement of 8.5%). It could also be seen that a higher Id-Vg curve obtained for SOI device which means higher drain current produced at lower control voltage thus contribute to a faster switching mechanism with low leakage over the bulk, all these would lead to a device with low power consumption and at the same time exhibit faster performance.

  9. Negative-tone cycloolefin photoresist for 193-nm lithography

    Science.gov (United States)

    Fu, ShihChi; Hsieh, Kuo-Huang; Wang, Lon A.

    2001-08-01

    The chemistry of acid-catalyzed dehydration reaction and followed by crosslinking of the tert-alcohol group in the cycloolefin photoresists was used to tailor the performance of the photoresists for 193nm lithography. A radiation- sensitive photoacid generator (PAG) in this chemically amplified photoresist (CAMP) can change the polarity of the exposed area of the resist and exhibit a negative-tone behavior. The cycloolefin resists are synthesized by the free radical copolymerization of alicyclic monomer and maleic anhydride, and/or by the cationic polymerization of alicyclic monomer via Pd catalyst followed by the attaching of tert-alcohol group in to the resist. The side reaction of cycloolefin copolymer was observed at the temperature below the post exposure baking (PEB) temperature, but this problem can be eliminated by the introduction of isobornyl methacrylate into the polymer. The lithographic performance of the resists was investigated by using isopropyl alcohol as a developer under various processing conditions. The results demonstrate that these resists are the promising candidates for being used in 193nm lithography.

  10. Efficient frequency doubling at 776 nm in a ring cavity

    Science.gov (United States)

    Han, Zhen-Hai; Liu, Shi-Long; Liu, Shi-Kai; Ding, Dong-Sheng; Zhou, Zhi-Yuan

    2017-08-01

    We report efficient frequency doubling (FD) at 776 nm using periodically poled LiNbO3 (PPLN) in a ring cavity pumped by a commercial erbium-doped fiber amplifier (EDFA) operating at 1552 nm. Two sets of input couplers are used that have been optimized to operate in the low pump and high pump regimes. The maximum conversion efficiencies measured for these couplers are 65.8% (transmittance T=4.5%) and 65.9% (T=9.1%). The internal conversion efficiencies are 85.0% and 88.2%, respectively, after the mode-matching efficiency and filtering transmittance have been taken into account. The maximum output powers obtained for the two couplers are 333 mW and 602 mW at pump powers of 535 mW and 999 mW, respectively. Coupling efficiency of more than 80% to single mode fibers indicates the high beam quality of the FD laser. This FD laser will be useful for quantum optics experiments in the telecommunications band and atomic physics experiments.

  11. Discrimination of liver malignancies with 1064 nm dispersive Raman spectroscopy.

    Science.gov (United States)

    Pence, Isaac J; Patil, Chetan A; Lieber, Chad A; Mahadevan-Jansen, Anita

    2015-08-01

    Raman spectroscopy has been widely demonstrated for tissue characterization and disease discrimination, however current implementations with either 785 or 830 nm near-infrared (NIR) excitation have been ineffectual in tissues with intense autofluorescence such as the liver. Here we report the use of a dispersive 1064 nm Raman system using a low-noise Indium-Gallium-Arsenide (InGaAs) array to discriminate highly autofluorescent bulk tissue ex vivo specimens from healthy liver, adenocarcinoma, and hepatocellular carcinoma (N = 5 per group). The resulting spectra have been combined with a multivariate discrimination algorithm, sparse multinomial logistic regression (SMLR), to predict class membership of healthy and diseased tissues, and spectral bands selected for robust classification have been extracted. A quantitative metric called feature importance is defined based on classification outputs and is used to guide the association of spectral features with biological indicators of healthy and diseased liver tissue. Spectral bands with high feature importance for healthy and liver tumor specimens include retinol, heme, biliverdin, or quinones (1595 cm(-1)); lactic acid (838 cm(-1)); collagen (873 cm(-1)); and nucleic acids (1485 cm(-1)). Classification performance in both binary (normal versus tumor, 100% sensitivity and 89% specificity) and three-group cases (classification accuracy: normal 89%, adenocarcinoma 74%, hepatocellular carcinoma 64%) indicates the potential for accurately separating healthy and cancerous tissues and suggests implications for utilizing Raman techniques during surgical guidance in liver resection.

  12. 1125-nm quantum dot laser for tonsil thermal therapy

    Science.gov (United States)

    McMillan, Kathleen

    2011-03-01

    Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

  13. Vitreoretinal surgery with the 193-nm excimer laser

    Science.gov (United States)

    Palanker, Daniel V.; Hemo, Itzhak; Turovets, Igor; Zauberman, Hanan; Lewis, Aaron

    1994-06-01

    The 193-nm excimer laser is known for its ability to precisely ablate soft biological tissues in the air environment with sub- micron depth control and sub-micron damage zones in the surrounding. The lack of a convenient delivery system and strong absorption of this radiation by biological liquids prevented, until recently, microsurgical applications of this laser. We have constructed special tips that are capable of delivering enough energy for effective removal of soft tissues in a strongly absorbing liquid environment. These tips attach to an articulated arm-based delivery system. This instrument was applied to vitreoretinal membranes removal. The accepted technique for these membranes removal is mechanical peeling and cutting which is associated with strong traction of the retina and this occasionally results in retinal damage. It was demonstrated in this study that the 193-nm excimer laser is capable of safely and precisely cutting and ablating these membranes which enable their removal without exerting any tractional forces on the retina. The effective cutting regime of retina and vitreoretinal membranes occurred at energy fluence of about 250- to 350-mJ/cm2/pulse with a corresponding cutting depth of 50 to 150 micrometers /pulse. The results obtained in this study suggest that this technology could be applicable to a wide variety of intraocular procedures.

  14. Granular corneal dystrophy in 830-nm spectral optical coherence tomography.

    Science.gov (United States)

    Kaluzny, Bartlomiej J; Szkulmowska, Anna; Szkulmowski, Maciej; Bajraszewski, Tomasz; Wawrocka, Anna; Krawczynski, Maciej R; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2008-08-01

    Spectral optical coherence tomography (SOCT) is a new imaging technique that can provide high-resolution tomograms much faster and with higher sensitivity than conventional Time domain (TdOCT) systems. Its usefulness in producing cross-sectional imaging of different corneal pathologies in vivo has already been presented. The aim of this case report is to show 830-nm SOCT findings in granular corneal dystrophy. A 48-year-old woman with granular corneal dystrophy was examined with a slit-lamp, confocal microscope (Confoscan 4) and a prototype SOCT instrument constructed at the Institute of Physics, Nicolaus Copernicus University, Torun, Poland. A genetic examination showed a mutation of arginine 555-to-tryptophan (Arg555Trp) in the TGFBI gene that confirmed the clinical diagnosis. SOCT tomograms showed multiple hyperreflective changes throughout the corneal stroma that corresponded to hyaline deposits. Precise and objective assessment of the localization, size, shape, and light scattering properties of the pathologic changes was possible. Three-dimensional rendering of the acquired data allowed a comprehensive evaluation of the deposits in the central cornea. SOCT (830 nm) provides clinically valuable 2- and 3-dimensional assessments of pathomorphologic changes in granular corneal dystrophy in vivo.

  15. Passive ranging of boost-phase missiles

    Science.gov (United States)

    Hawks, Michael; Perram, Glen

    2007-04-01

    The depth of absorption bands in observed spectra of distant, bright sources can be used to estimate range to the source. Previous efforts in this area relied on Beer's Law to estimate range from observations of infrared CO II bands, with disappointing results. A modified approach is presented that uses band models and observations of the O II absorption band near 762 nm. This band is spectrally isolated from other atmospheric bands, which enables direct estimation of molecular absorption from observed intensity. Range is estimated by comparing observed values of band-average absorption, (see manuscript), against predicted curves derived from either historical data or model predictions. Accuracy of better than 0.5% has been verified in short-range (up to 3km) experiments using a Fourier transform interferometer at 1cm -1 resolution. A conceptual design is described for a small, affordable passive ranging sensor suitable for use on tactical aircraft for missile attack warning and time-to-impact estimation. Models are used to extrapolate experimental results (using 1 cm -1 resolution data) to analyze expected performance of this filter-based system.

  16. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  17. Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I; Nikolajsen, Thomas

    2006-01-01

    By introducing periodic thickness-modulation of thin metal stripes embedded in a dielectric, we realize compact and efficient Bragg gratings for long-range surface plasmon polaritons (LR-SPPs) operating around 1550 nm. We measure reflection and transmission spectra of the gratings having different...

  18. Fluorescence Properties and Synthesis of Green-Emitting Tb3+-Activated Amorphous Calcium Silicate Phosphor by Ultraviolet Irradiation of 378 nm

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kojima

    2012-01-01

    Full Text Available The excitation wavelength of conventional Tb3+-activated phosphor is near 270 nm. This study describes novel green-emitting Tb3+-activated amorphous calcium silicate by ultraviolet excitation at 378 nm. The Tb3+-activated amorphous calcium silicate was prepared by heating a sample of Tb3+-activated calcium silicate hydrate (CSH at 900°C for 30 minutes. The emission wavelength of the resulting phosphor was 544 nm. The optimum excitation wavelength within the range 300–400 nm was 378 nm. The Tb3+-activated amorphous calcium silicate emitted green by ultraviolet irradiation. The optimum initial Tb/Ca atomic ratio of this phosphor was about 0.5. A mechanism for the action of the phosphor is proposed, in which Tb3+ ions existing in the layer of the CSH lead to loss of water molecules and OH groups.

  19. Microstructural, structural and optical properties of nanoparticles of PbO-CrO3 pigment synthesized by a soft route

    Directory of Open Access Journals (Sweden)

    V. D. Araújo

    2015-03-01

    Full Text Available PbCrO4 and Pb2CrO5 particles were synthesized by the polymeric precursor method. Structural and microstructural properties of the particles were characterized by scanning electron microscopy with field emission gun, X-ray diffraction, and Raman spectroscopy techniques. The diffuse reflectance technique was employed to study the optical properties in the 400-700 nm range. The optical bandgap of the samples was obtained indirectly. Colorimetric coordinates L*, a*, b* were calculated for the pigment powders as a function of the heat treatment (400-700 ºC. The powders displayed colors ranging from green to red. X-ray diffraction patterns showed the presence of monoclinic PbCrO4 phase in green samples, while red powders had a monoclinic Pb2CrO5 phase structure. The Raman spectra of the PbCrO4 and Pb2CrO5 powders were in good agreement with those reported in the literature. The synthesized compounds can be used as green and red pigments with high thermal stability.

  20. Effect of 660 nm Light-Emitting Diode on the Wound Healing in Fibroblast-Like Cell Lines

    Directory of Open Access Journals (Sweden)

    Myung-Sun Kim

    2015-01-01

    Full Text Available Light in the red to near-infrared (NIR range (630–1000 nm, which is generated using low energy laser or light-emitting diode (LED arrays, was reported to have a range of beneficial biological effects in many injury models. NIR via a LED is a well-accepted therapeutic tool for the treatment of infected, ischemic, and hypoxic wounds as well as other soft tissue injuries in humans and animals. This study examined the effects of exposure to 660 nm red LED light at intensities of 2.5, 5.5, and 8.5 mW/cm2 for 5, 10, and 20 min on wound healing and proliferation in fibroblast-like cells, such as L929 mouse fibroblasts and human gingival fibroblasts (HGF-1. A photo illumination-cell culture system was designed to evaluate the cell proliferation and wound healing of fibroblast-like cells exposed to 600 nm LED light. The cell proliferation was evaluated by MTT assay, and a scratched wound assay was performed to assess the rate of migrating cells and the healing effect. Exposure to the 660 nm red LED resulted in an increase in cell proliferation and migration compared to the control, indicating its potential use as a phototherapeutic agent.

  1. EST Table: NM_001111333 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available lar)|GO:0008270(zinc ion binding) 10/09/29 81 %/425 aa ref|NP_001104803.1| broad-complex isoform Z2 [Bombyx mori] dbj|BAD23979.1| bro...ad-complex Z2-isoform [Bombyx mori] dbj|BAD23981.1| broad-complex Z2-isoform [Bomby...oad-Complex isoform Z2 [Bombyx mori] dbj|BAD46733.1| broad-complex A-Z2 isoform [Bombyx mori] dbj|BAD46740.1| broad...%/474 aa gnl|Amel|GB30150-PB 10/09/10 41 %/468 aa gi|159149120|gb|ABW91135.1| broad-complex isoform Z5 [Tribolium castaneum] NM_001111333 ...

  2. Extreme ultraviolet resist materials for sub-7 nm patterning

    KAUST Repository

    Li, Li

    2017-06-26

    Continuous ongoing development of dense integrated circuits requires significant advancements in nanoscale patterning technology. As a key process in semiconductor high volume manufacturing (HVM), high resolution lithography is crucial in keeping with Moore\\'s law. Currently, lithography technology for the sub-7 nm node and beyond has been actively investigated approaching atomic level patterning. EUV technology is now considered to be a potential alternative to HVM for replacing in some cases ArF immersion technology combined with multi-patterning. Development of innovative resist materials will be required to improve advanced fabrication strategies. In this article, advancements in novel resist materials are reviewed to identify design criteria for establishment of a next generation resist platform. Development strategies and the challenges in next generation resist materials are summarized and discussed.

  3. Sub-10 nm patterning with DNA nanostructures: a short perspective

    Science.gov (United States)

    Du, Ke; Park, Myeongkee; Ding, Junjun; Hu, Huan; Zhang, Zheng

    2017-11-01

    DNA is the hereditary material that contains our unique genetic code. Since the first demonstration of two-dimensional (2D) nanopatterns by using designed DNA origami ˜10 years ago, DNA has evolved into a novel technique for 2D and 3D nanopatterning. It is now being used as a template for the creation of sub-10 nm structures via either ‘top-down’ or ‘bottom-up’ approaches for various applications spanning from nanoelectronics, plasmonic sensing, and nanophotonics. This perspective starts with an histroric overview and discusses the current state-of-the-art in DNA nanolithography. Emphasis is put on the challenges and prospects of DNA nanolithography as the next generation nanomanufacturing technique.

  4. Corneal and skin laser exposures from 1540-nm laser pulses

    Science.gov (United States)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  5. Cycloolefin/maleic anhydride copolymers for 193-nm resist compositions

    Science.gov (United States)

    Rahman, M. D.; Dammel, Ralph R.; Cook, Michelle M.; Ficner, Stanley A.; Padmanaban, Munirathna; Oberlander, Joseph E.; Durham, Dana L.; Klauck-Jacobs, Axel

    1999-06-01

    Several novel norbornene carboxylate monomers consisting of isobornyl and alkyl ether chains on the ester groups were synthesized and polymerized with maleic anhydride (MA), t- butylnorbornene carboxylate (BNC), hydroxyethylnorbornene carboxylate (HNC) and norbornene carboxylic acid (NC). These polymers were compared with BNC/HNC/NC/MA tetra-polymers with respect to glass transition temperature (Tg) as well as photoresist performance using a 193 nm exposure tool. It was observed that introduction of these groups decreases the Tg but not to the extent where the polymers can be used as an annealing type resist. The synthesis of these polymers, their characterization, and their lithographic evaluation as 193 resists will be discussed in this paper. Further optimization in terms of final polymer composition as well as resist formulation is on-going in order to fully exploit these monomers for photoresist application.

  6. 1940 nm all-fiber Q-switched fiber laser

    Science.gov (United States)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.

    2017-02-01

    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  7. Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Samuel Adam

    2005-12-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

  8. EST Table: NM_001111334 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001111334 Br-c 10/09/29 81 %/420 aa ref|NP_001104804.1| broad-complex isoform Z1... [Bombyx mori] dbj|BAD23978.1| broad-complex Z1-isoform [Bombyx mori] dbj|BAD23983.1| broad-complex Z1-isofo...rm [Bombyx mori] dbj|BAD24045.1| Broad-Complex isoform Z1 [Bombyx mori] dbj|BAD24046.1| Broad-Complex isofor...m Z1 [Bombyx mori] dbj|BAD46732.1| broad-complex A-Z1 isoform [Bombyx mori] dbj|BAD46739.1| broad...-complex B-Z1 isoform [Bombyx mori] dbj|BAF43564.1| Broad-Complex isoform Z1 [Bombyx mori] 1

  9. Multiple product pathways in photodissociation of nitromethane at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masataka; Kohge, Yasunori; Yamasaki, Katsuyoshi; Kohguchi, Hiroshi, E-mail: kohguchi@hiroshima-u.ac.jp [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2016-02-14

    In this paper, we present a photodissociation dynamics study of nitromethane at 213 nm in the π → π{sup *} transition. Resonantly enhanced multiphoton ionization spectroscopy and ion-imaging were applied to measure the internal state distributions and state-resolved scattering distributions of the CH{sub 3}, NO(X {sup 2}Π, A {sup 2}Σ{sup +}), and O({sup 3}P{sub J}) photofragments. The rotationally state-resolved scattering distribution of the CH{sub 3} fragment showed two velocity components, of which the slower one decreased the relative intensity as the rotational and vibrational excitations. The translational energy distribution of the faster CH{sub 3} fragment indicated the production of the NO{sub 2} counter-product in the electronic excited state, wherein 1 {sup 2}B{sub 2} was the most probable. The NO(v = 0) fragment exhibited a bimodal translational energy distribution, whereas the NO(v = 1 and 2) fragment exhibited a single translational energy component with a relatively larger internal energy. The translational energy of a portion of the O({sup 3}P{sub J}) photofragment was found to be higher than the one-photon dissociation threshold, indicating the two-photon process involved. The NO(A {sup 2}Σ{sup +}) fragment, which was detected by ionization spectroscopy via the Rydberg ←A {sup 2}Σ{sup +} transition, also required two-photon energy. These experimental data corroborate the existence of competing photodissociation product pathways, CH{sub 3} + NO{sub 2},CH{sub 3} + NO + O,CH{sub 3}O + NO, and CH{sub 3}NO + O, following the π → π{sup *} transition. The origins of the observed photofragments are discussed in this report along with recent theoretical studies and previous dynamics experiments performed at 193 nm.

  10. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light

    OpenAIRE

    Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D.; Owens, David M.; Brenner, David J.

    2017-01-01

    We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region,...

  11. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  12. Gain and noise properties of small-signal erbium-doped fiber amplifiers pumped in the 980-nm band

    DEFF Research Database (Denmark)

    Pedersen, B.; Chirravuri, J.; Miniscalco, W. J.

    1992-01-01

    The authors have experimentally and theoretically investigated the effects of detuning the pump wavelength on the gain and noise properties of small-signal, erbium-doped fiber amplifiers codirectionally pumped in the 980-nm band. While the pump wavelength can be varied over a wide range with litt...... impact on the gain, a noise penalty is incurred. For amplifiers saturated by amplified spontaneous emission, it is possible to increase the gain by detuning the pump wavelength......The authors have experimentally and theoretically investigated the effects of detuning the pump wavelength on the gain and noise properties of small-signal, erbium-doped fiber amplifiers codirectionally pumped in the 980-nm band. While the pump wavelength can be varied over a wide range with little...

  13. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    Directory of Open Access Journals (Sweden)

    Veselovskii Igor

    2016-01-01

    Full Text Available We describe a practical implementation of rotational Raman (RR measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  14. Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning.

    Science.gov (United States)

    Gierl, C; Gruendl, T; Debernardi, P; Zogal, K; Grasse, C; Davani, H A; Böhm, G; Jatta, S; Küppers, F; Meissner, P; Amann, M-C

    2011-08-29

    For the first time a vertical-cavity surface-emitting laser (VCSEL) with a single-mode wavelength-tuning over 102 nm in the range of 1550 nm is demonstrated. The fiber-coupled optical output power has a maximum of 3.5 mW and is > 2 mW over the entire tuning range. The sidemode suppression ratios are > 45 dB. The wavelength tuning is achieved with the micro-electro mechanical actuation of a mirror membrane fabricated with surface micro-machining for on-wafer mass production. The mirror membrane consists of low cost dielectric materials (SiOx/SiNy) deposited with low temperature (< 100°C) Plasma Enhanced Chemical Vapor Deposition (PECVD).

  15. Similar Endothelial Glycocalyx Structures in Microvessels from a Range of Mammalian Tissues

    DEFF Research Database (Denmark)

    Arkill, K P; Knupp, C; Michel, C C

    2011-01-01

    , with a center-to-center fiber spacing of 20 nm and a fiber width of 12 nm, which might explain the observed macromolecular filtering properties. In this study, we used electron micrographs of tissues prepared using perfusion fixation and tannic acid treatment. The digitized images were analyzed using...... lateral spacings at ~19.5 nm (possibly in a quasitetragonal lattice) and longer spacings above 100 nm. Individual glycocalyx tufts above fenestrations in the first three of these tissues and also in stomach fundus and jejunum showed evidence for similar short-range structural regularity, but with more...

  16. The effective etch process proximity correction methodology for improving on chip CD variation in 20 nm node DRAM gate

    Science.gov (United States)

    Park, Jeong-Geun; Kim, Sang-wook; Shim, Seong-Bo; Suh, Sung-Soo; Oh, Hye-Keun

    2011-04-01

    This paper presents an effective methodology for etch PPC (Process Proximity Correction) of 20 nm node DRAM (Dynamic Random Access Memory) gate transistor. As devices shrinks, OCV(On chip CD Variation) control become more important to meet the performance goal for high speed in DRAM. The main factors which influence OCV are mask, photo, etch PPE (Process proximity effect) in DRAM gate. Model based etch PPC is required to properly correct Etch PPE as device density increases. To improve OCV in DRAM gate, we applied new type of etch loading kernel. It is called Vkernel which accounts for directional weight from the point of interest. And we optimized the etch PPC convergence by optimizing the etch PPC iteration. Because of density difference between spider mask and real gate mask, the skew difference occurs between them. We tested the effect of long range density using same real gate pattern clip by varying mask open image size from 0.5 ~ 10 mm. The ADI CD difference was on average in the order on 2 nm for varying mask open image size. But the ACI CD difference (the average of CD range by varying open image size) was very noticeable (about 15 nm). This result shows that etch skew affected by long range density by mm unit size. Due to asymmetrical pattern in real gate mask, spider mask which have symmetrical patterns is necessarily used to make PPC model. The etch skew of real pattern clip in spider mask was not also the same for the real pattern in real gate mask. To reduce this skew difference between spider mask and real mask, we applied open field mask correction term and long range density effects correlation equation to PPC modeling. There was noticeable improvement in the accuracy of PPC model. By applying these improvement items, OCV of 20 nm node DRAM gate is shown to improve up to 67%.

  17. 5 GHz 200 Mbit/s radio over polymer fibre link with envelope detection at 650 nm wavelength

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Jensen, Jesper Bevensee; Yu, Xianbin

    2008-01-01

    All-optical envelope detection of a 5 GHz 200 Mbit/s modulated radio frequency signal is achieved using a 650 nm resonant cavity light emitting diode. Error-free transmission is achieved over a 50 m-long link of 1 mm diameter graded index polymer optical fibre (POF). The presented system has...... potential applications in low cost and low complexity short range wireless and wireline POF-based transmission links....

  18. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    Science.gov (United States)

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  19. High-resolution Absorption Spectra of Acetylene in 142.8-152.3 nm

    Science.gov (United States)

    Hu, Ya-hua; Zhen, Chen; Dai, Jing-hua; Zhou, Xiao-guo; Liu, Shi-lin

    2008-10-01

    The absorption spectra of acetylene molecules was measured under jet-cooled conditions in the wavelength range of 142.8-152.3 nm, with a tunable and highly resolved vacuum ultraviolet (VUV) laser generated by two-photon resonant four wave difference frequency mixing processes. Due to the sufficient vibrational and rotational cooling effect of the molecular beam and the higher resolution VUV laser, the observed absorption spectra exhibit more distinct spectral features than the previous works measured at room temperature. The major three vibrational bands are assigned as a C-C symmetry stretching vibrational progress (u2 = 0-2) of the tilde C1 IIu state of acetylene. The observed shoulder peak at 148.2 nm is assigned to the first overtone band of the trans-bending mode u4 of the tilde C1 IIustate of acetylene. Additionally, the two components, 4o2(μ1IIu) and 4o2(κ1 IIuare suggested to exhibit in the present absorption spectra, due to their Renner-Teller effect and transition selection rule. All band origins and bandwidths are obtained subsequently, and it is found that bandwidths are broadened and lifetimes decrease gradually with the excitation of vibration.

  20. Technology for fabrication of sub-20 nm silicon planar nanowires array

    Science.gov (United States)

    Miakonkikh, Andrey V.; Tatarintsev, Andrey A.; Rogozhin, Alexander E.; Rudenko, Konstantin V.

    2016-12-01

    The results presented on Silicon one-dimensional structures fabrication which are promising for application in nanoelectronics, sensors, THz-applications. We employ two-stage technology of precise anizotropic plasma etching of silicon over e-beam resist and isotropic removal of thermally oxidised defected surface layer of silicon by wet etch. As first the process for nano-fins fabrication on SOI substrate was developed. HSQ resist was used as a negative-tone electron beam resist with good etch-resistance, high resolution and high mechanical stability. The etching was performed by RIE in mix of SF6 + C4F8. plasma. By changing the ratio SF6:C4F8, the sidewall profile angle can be controlled thoroughly. Next step to minimize lateral size of structures and reduce impact of surface defects on electron mobility in core of nanowires was the application of surface thermal oxidation to defected layer. It was used for selective removal of damaged silicon layer and polymer residues. Oxidation was performed with controlled flow of dry oxygen and water vapour. Oxidation rate was precisely controlled by ex-situ spectral ellipsometry on unpatterned chips As a result the arrays of planar sub-20 nm Silicon nanowires with length in the range 200 nm - 500 um were made.

  1. Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure.

    Science.gov (United States)

    Bajpai, Gaurav; Jain, Ishutesh; Inamdar, Mandar M; Das, Dibyendu; Padinhateeri, Ranjith

    2017-01-01

    Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure-a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions.

  2. Safety of cornea and iris in ocular surgery with 355-nm lasers.

    Science.gov (United States)

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED 50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  3. Safety of cornea and iris in ocular surgery with 355-nm lasers

    Science.gov (United States)

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  4. Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber.

    Science.gov (United States)

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; AndradeLucio, Jose Amparao; Díez, Antonio; Andrés, Miguel

    2014-12-01

    We have numerically investigated the supercontinuum generation and pulse compression in a specially designed all-normal dispersion photonic crystal fiber with a flat-top dispersion curve, pumped by typical pulses from state of the art Ti:Sapphire lasers at 800 nm. The optimal combination of pump pulse parameters for a given fiber was found, which provides a wide octave-spanning spectrum with superb spectral flatness (a drop in spectral intensity of ~1.7 dB). With regard to the pulse compression for these spectra, multiple-cycle pulses (~8 fs) can be obtained with the use of a simple quadratic compressor and nearly single-cycle pulses (3.3 fs) can be obtained with the application of full phase compensation. The impact of pump pulse wavelength-shifting relative to the top of the dispersion curve on the generated SC and pulse compression was also investigated. The optimal pump pulse wavelength range was found to be 750 nm fiber fabrication errors on the SC generation and pulse compression were investigated systematically. We propose that the spectral shape distortions generated by fiber fabrication errors can be significantly attenuated by properly manipulating the pump.

  5. 1.5nm fabrication of test patterns for characterization of metrological systems

    Science.gov (United States)

    Babin, S.; Bouet, N.; Cabrini, S.; Calafiore, G.; Conley, R.; Gevorkyan, G.; Munechika, K.; Vladár, A.; Yashchuk, V. V.

    2017-03-01

    The semiconductor industry is moving toward a half-pitch of 7 nm. The required metrology equipment should be one order of magnitude more accurate than that. Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns that are one order of magnitude smaller than the measured features. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location and any magnification. The power spectral density of such pseudo-random test pattern is inherently flat, down to the minimum size of lines. Metrology systems add a cut-off of the spectra at high frequencies; the shape of the cut-off characterizes the system in its entire dynamic range. This method is widely used in optics, and has allowed optical systems to be perfected down to their diffraction limit. There were attempts to use the spectral method to characterize nanometrology systems such as SEMs, but the absence of natural samples with known spatial frequencies was a common problem. Pseudo-random test patterns with linewidths down to 1.5 nm were fabricated. The system characterization includes the imaging of a pseudo-random test sample and image analysis by a developed software to automatically extract the power spectral density and the contrast transfer function of the nanoimaging system.

  6. Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging.

    Science.gov (United States)

    John, Demis D; Burgner, Christopher B; Potsaid, Benjamin; Robertson, Martin E; Lee, Byung Kun; Choi, Woo Jhon; Cable, Alex E; Fujimoto, James G; Jayaraman, Vijaysekhar

    2015-08-15

    In this paper, we present a 1050 nm electrically-pumped micro-electro-mechanically-tunable vertical-cavity-surface-emitting-laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost & complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 mm & 3 mm × 3 mm fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 meters ± 51 meters, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications.

  7. Swept source optical coherence microscopy using a 1310 nm VCSEL light source.

    Science.gov (United States)

    Ahsen, Osman O; Tao, Yuankai K; Potsaid, Benjamin M; Sheikine, Yuri; Jiang, James; Grulkowski, Ireneusz; Tsai, Tsung-Han; Jayaraman, Vijaysekhar; Kraus, Martin F; Connolly, James L; Hornegger, Joachim; Cable, Alex; Fujimoto, James G

    2013-07-29

    We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens.

  8. Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm.

    Science.gov (United States)

    Samanta, G K; Kumar, S Chaitanya; Das, Ritwick; Ebrahim-Zadeh, M

    2009-08-01

    We report a high-power, cw, singly resonant optical parametric oscillator (SRO) using a simple, compact fiber pump laser architecture in the green. The SRO, based on MgO:sPPLT, is pumped by 9.6 W of single-frequency cw radiation at 532 nm obtained by single-pass second-harmonic generation (SHG) of a 30 W Yb fiber laser, also in MgO:sPPLT. Using two identical crystals of 30 mm length for SHG and SRO, we generate cw idler powers of up to 2 W over 855-1408 nm, with a peak-to-peak power stability <11.7% over 40 min, in a TEM(00) spatial mode with M(2)<1.26. Using finite output coupling of the resonant wave, we extract 800 mW of signal power with peak-to-peak power stability <10.7% over 40 min, and a frequency stability <75 MHz over 15 min. The signal and idler output have TEM(00) beam profile with M(2)<1.52 across the tuning range.

  9. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    Science.gov (United States)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  10. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    Science.gov (United States)

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  11. Identification of new psychoactive substances (NPS) using handheld Raman spectroscopy employing both 785 and 1064nm laser sources.

    Science.gov (United States)

    Guirguis, Amira; Girotto, Sarah; Berti, Benedetta; Stair, Jacqueline L

    2017-04-01

    The chemical identification of new psychoactive substances (NPS) in the field is challenging due not only to the plethora of substances available, but also as a result of the chemical complexity of products and the chemical similarity of NPS analogues. In this study, handheld Raman spectroscopy and the use of two excitation wavelengths, 785 and 1064nm, were evaluated for the identification of 60 NPS products. The products contained a range of NPS from classes including the aminoindanes, arylalkylamines, benzodiazepines, and piperidines & pyrrolidines. Identification was initially assessed using the instruments' in built algorithm (i.e., % HQI) and then further by visual inspection of the Raman spectra. Confirmatory analysis was preformed using gas chromatography mass spectrometry. For the 60 diverse products, an NPS was successfully identified via the algorithm in 11 products (18%) using the 785nm source and 29 products (48%) using the 1064nm source. Evaluation of the Raman spectra showed that increasing the excitation wavelength from 785 to 1064nm improved this 'first pass' identification primarily due to a significant reduction in fluorescence, which increased S/N of the characteristic peaks of the substance identified. True positive correlations between internet products and NPS signatures ranged from 57.0 to 91.3% HQI with typical RSDsbranded products were particularly challenging as a result of low NPS concentration and high chemical complexity, respectively. This study demonstrates the advantage of using a 1064nm source with handheld Raman spectroscopy for improved 'first pass' NPS identification when minimal spectral processing is required, such as when working in field. Future investigations will focus on the use of mixture algorithms, effect of NPS concentration, and further improvement of spectral libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    Science.gov (United States)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  13. Nantenna for Standard 1550 nm Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2016-01-01

    Full Text Available Nanoscale transmission and reception technologies will play a vital role and be part of the next generation communication networks. This applies for all application fields including imaging, health, biosensing, civilian, and military communications. The detection of light frequency using nanooptical antennas may possibly become a good competitor to the semiconductor based photodetector because of the simplicity of integration, cost, and inherent capability to detect the phase and amplitude instead of power only. In this paper, authors propose simulated design of a hexagonal dielectric loaded nantenna (HDLN and explore its potential benefits at the standard optical C-band (1550 nm. The proposed nantenna consists of “Ag-SiO2-Ag” structure, consisting of “Si” hexagonal dielectric with equal lengths fed by “Ag” nanostrip transmission line. The simulated nantenna achieves an impedance bandwidth of 3.7% (190.9 THz–198.1 THz and a directivity of 8.6 dBi, at a center frequency of 193.5 THz, covering most of the ITU-T standard optical transmission window (C-band. The hexagonal dielectric nantenna produces HE20δ modes and the wave propagation is found to be end-fire. The efficiency of the nantenna is proven via numerical expressions, thus making the proposed design viable for nanonetwork communications.

  14. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  15. FY09 assessment of mercury reduction at SNL/NM.

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Samuel Adam

    2010-02-01

    This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

  16. High power 1060-nm super large vertical cavity semiconductor lasers

    Science.gov (United States)

    Tan, Shaoyang; Zhai, Teng; Wang, Wei; Zhang, Ruikang; Lu, Dan; Ji, Chen

    2014-11-01

    High power single-mode ridge waveguide 1060-nm semiconductor lasers are reported. The lasers consist of compressively strained double InGaAs/GaAs quantum wells and a GaAs/AlGaAs separate confinement vertical structure. A super large vertical optical cavity is employed to have a low internal loss, large optical spot size and low vertical optical divergence angle. The material composition and thickness of waveguide layers and claddings layer are optimized systematically. The active layer is detuned from center of the waveguide and thickness of cladding layers is optimized to guaranty single mode lasing of the large optical cavity. The large vertical cavity laser structure with thickness of 4 μm allows the lasers have a low internal loss of less than 0.6 /cm, a large optical spot size about 1μm and a vertical divergence angle about 20 degree. For lateral optical confinement, a double trench ridge waveguide is employed to maintain single-lateral-mode operation. Based on the optimization, 1.5 W continue wave optical power is achieved for broad area lasers with 1mm longitude cavity length. Narrow stripe ridge waveguide lasers of 1mm cavity length with single mode current and optical power of 700 mA and 340 mW is obtained. Suggestions for further improvements in terms of single mode power and applications of the high power semiconductors are discussed.

  17. Body contouring using 635-nm low level laser therapy.

    Science.gov (United States)

    Nestor, Mark S; Newburger, Jessica; Zarraga, Matthew B

    2013-03-01

    Noninvasive body contouring has become one of the fastest-growing areas of esthetic medicine. Many patients appear to prefer nonsurgical less-invasive procedures owing to the benefits of fewer side effects and shorter recovery times. Increasingly, 635-nm low-level laser therapy (LLLT) has been used in the treatment of a variety of medical conditions and has been shown to improve wound healing, reduce edema, and relieve acute pain. Within the past decade, LLLT has also emerged as a new modality for noninvasive body contouring. Research has shown that LLLT is effective in reducing overall body circumference measurements of specifically treated regions, including the hips, waist, thighs, and upper arms, with recent studies demonstrating the long-term effectiveness of results. The treatment is painless, and there appears to be no adverse events associated with LLLT. The mechanism of action of LLLT in body contouring is believed to stem from photoactivation of cytochrome c oxidase within hypertrophic adipocytes, which, in turn, affects intracellular secondary cascades, resulting in the formation of transitory pores within the adipocytes' membrane. The secondary cascades involved may include, but are not limited to, activation of cytosolic lipase and nitric oxide. Newly formed pores release intracellular lipids, which are further metabolized. Future studies need to fully outline the cellular and systemic effects of LLLT as well as determine optimal treatment protocols.

  18. Photodissociation dynamics of methoxybenzoic acid at 193 nm

    Science.gov (United States)

    Ho, Yu-Chieh; Dyakov, Yuri A.; Hsu, Wen-Hsin; Ni, Chi-Kung; Sun, Yi-Lun; Hu, Wei-Ping

    2012-11-01

    The theoretical prediction and experimental confirmation of the 1πσ* repulsive excited state along O-H bond of phenol have large impact on the interpretation of phenol and tyrosine photochemistry. In this work, we investigated the photodissociation dynamics of 2-, 3-, and 4-methoxybenzoic acid (MOBA) in a molecular beam at 193 nm using multimass ion imaging techniques. In addition, the ground state and the excited state potential energy surfaces of MOBA were investigated using ab initio calculations, and branching ratios were predicted by Rice-Ramsperger-Kassel-Marcus theory. The results show that (1) the excited state potential of 1πσ* along O-CH3 bond remains similar to that of phenol and anisole, (2) CH3 elimination is the major channel for three MOBA isomers, and (3) photofragment translational energy distributions show bimodal distributions, representing the dissociation on the ground state and repulsive excited state, respectively. Comparison to the study of hydroxbenzoic acid [Y. L. Yang, Y. A. Dyakov, Y. T. Lee, C. K. Ni, Y. L. Sun, and W. P. Hu, J. Chem. Phys. 134, 034314 (2011), 10.1063/1.3526059] shows that only the intramolecular hydrogen bonding has significant effects on the excited state dynamics of phenol chromophores.

  19. Refractive index sensitivity in etched FBG in the visible range

    Science.gov (United States)

    Kuhne, Jean F.; Nadas, Rafael B.; Inácio, Patricia L.; Chiamenti, Ismael; Kamicawachi, Ricardo C.; Kalinowski, Hypolito José

    2017-08-01

    A visible fiber Bragg grating (Vis-FBG) with wavelength peak centered at 673.07 nm was inscribed in a multimode fiber designed for infrared (IR) operation using a femtosecond (fs) laser emitting at 248 nm. The fiber cladding is removed by chemical etching in hydrofluoric acid solution (40%). The sensor refractive index response is determined by dipping the sensor into diluted glycerin solution at different concentrations with refractive index range from 1.3328 to 1.4607. The Vis-FBG performance is compared with an IR etched FBG (EFBG) with similar diameter. The sensitivity found for the Vis-FBG sensor is 15.71nm/RIU with a 6.34 x 10-3 RIU resolution for a refractive index of 1.4607.

  20. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    Science.gov (United States)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured

  1. Broadband spectroscopy for characterization of tissue-like phantom optical properties

    Science.gov (United States)

    Shahin, Ali; Bachir, Wesam

    2017-12-01

    Optical phantoms are widely used for evaluating the performance of biomedical optical modalities, and hence, absorbing and scattering materials are required for the construction of optical phantoms. Towards that aim, new readily available and inexpensive black Ink (Parker) as a simulating absorber as well as Intralipid 20% as a simulating scatterer are thoroughly investigated. Broadband Transmittance and Diffuse reflectance spectroscopic measurements were performed in the visible range 400 - 700 nm. Optical properties of the phantom materials are determined. Analytical expressions for absorption and scattering coefficient related to the concentrations and wavelength of the Parker ink and Intralipid are also presented and discussed. The results show nonlinear trend in the absorption coefficient of Parker ink over the examined visible spectral range. Furthermore, Intralipid scattering coefficient variation across the mentioned spectral range shows a tissue-like scattering trend. The findings demonstrate the capability of the broadband transmission and diffuse reflectance for characterizing tissue-like phantom materials in the examined spectral range.

  2. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  3. Photoacclimation modulates excessive photosynthetically active and ultraviolet radiation effects in a temperate and an Antarctic marine diatom

    NARCIS (Netherlands)

    van de Poll, W.H.; Alderkamp, A.C.; Janknegt, P.J.; Roggeveld, J; Buma, A.G.J.

    The influence of photoacclimation on the effects of excessive photosynthetically active (PAR; 400-700 nm) and ultraviolet (UVR; 280-400 nm) radiation was assessed for the marine diatoms Thalassiosira weissflogii (Grunow) Fryxell and Hasle and Thalassiosira antarctica (Comber). Low and high PAR

  4. Excessive irradiance and antioxidant responses of an Antarctic marine diatom exposed to iron limitation and to dynamic irradiance

    NARCIS (Netherlands)

    van de Poll, Willem H.; Janknegt, P. J.; van Leeuwe, M. A.; Visser, R. J. W.; Buma, A. G. J.

    2009-01-01

    The synergistic effects of iron limitation and irradiance dynamics on growth, photosynthesis, antioxidant activity and excessive PAR (400-700 nm) and UV (280-400 nm) sensitivity were investigated for the Antarctic marine diatom Chaetoceros brevis. Iron-limited and iron-replete cultures were exposed

  5. Nonlinear absorbance amplification using a diffuse reflectance cell: total organic carbon monitoring at 214 nm.

    Science.gov (United States)

    Li, Yin-Huan; Shelor, C Phillip; Dasgupta, Purnendu K

    2015-01-20

    We present an absorption spectrometric method using a polytetrafluoroethylene (PTFE) cell as a diffuse reflector. The system was used for monitoring ultrapure water. All compounds absorb to some degree at low UV wavelengths, and the absorption at 214 nm from a zinc lamp source was monitored using a charge-coupled device (CCD) spectrometer. The absorption was interpreted in terms of total organic carbon present. The cell acts as a nonlinear absorbance amplifier, improving both the limit of detection (LOD) and the dynamic range. Potassium hydrogen phthalate (KHP) and glucose were used to evaluate the system and provided respective LODs of 46.5 ng/L and 4.5 mg/L as carbon. Although the physical path length was 25 cm, a maximum effective path length of 280 cm was observed at the lowest tested KHP concentrations. The system is intended for real-time monitoring of ultrapure water.

  6. Fragmentation of H+2 in strong 800-nm laser pulses: Initial-vibrational-state dependence

    Science.gov (United States)

    Feuerstein, Bernold; Thumm, Uwe

    2003-04-01

    The fragmentation of the H+2 molecular ion in 25-fs, 800-nm laser pulses in the intensity range 0.05 0.5 P W/cm2 is investigated by means of wave-packet propagation calculations. We use a collinear reduced-dimensionality model that represents both the nuclear and electronic motion by one degree of freedom including non-Born-Oppenheimer couplings. In order to reproduce accurately the properties of the “real” three-dimensional molecule, we introduce a modified “soft-core” Coulomb potential with a softening function that depends on the internuclear distance. The analysis of the calculated flux of the outgoing wave packets allows us to obtain fragmentation probabilities and kinetic-energy spectra. Our results show that the relative probabilities for dissociation and Coulomb explosion depend critically on the initial vibrational state of the molecular ion.

  7. Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology

    Directory of Open Access Journals (Sweden)

    Ro'ee Eitan

    2014-12-01

    Full Text Available Thermal sensors (TS are essential for achieving optimized performance and reliability in the era of nanoscale microprocessor and system on chip (SoC. Compiling with the low-power and small die area of the mobile computing, the presented TS supports a wide range of sampling frequencies with an optimized power envelope. The TS supports up to 45 K samples/s, low average power consumption, as low as 20 μW, and small core Si area of 0.013 mm2. Advanced circuit techniques are used in order to overcome process variability, ensuring inaccuracy lower than ±2 °C without any calibration. All this makes the presented thermal sensor a cost-effective, low-power solution for 22 nm nanoscale digital process technology.

  8. Time and spectrum-resolving multiphoton correlator for 300–900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Kolenderski, Piotr, E-mail: kolenderski@fizyka.umk.pl [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Scarcella, Carmelo; Tosi, Alberto [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  9. The Photodissociation of CH_3OCl to CH_3O + Cl at 248 nm

    Science.gov (United States)

    Krisch, M. J.; McCunn, L. R.; Takematsu, K.; Butler, L. J.; Blase, F. R.; Shu, J.

    2004-03-01

    We investigate the 248 nm photodissociation of methyl hypochlorite (CH_3OCl), an atmospheric chlorine reservoir species. Photofragment translational spectroscopy with a crossed laser-molecular beam apparatus, coupled with tunable VUV photoionization detection, identifies the primary photodissociation channel as cleavage of the O-Cl bond to produce Cl atoms and CH_3O radicals. This result is consistent with the direct dissociation mechanism suggested by other computational and experimental studies of alkyl hypohalites. The measured recoil kinetic energy distribution of the products shows that the CH_3O product is formed with a very narrow range of internal energies. A simple model predicts from conservation of angular momentum that nearly all of the internal energy is in rotational excitation. CH_3OCl thus serves as a photolytic precursor of CH_3O radicals with high and well-defined rotational and translational energies.

  10. Effect of low-level pulsed laser 890-nm on lumbar spondylolisthesis: a case report

    Science.gov (United States)

    Mortazavi, Seyed M. J.; Afsharpad, Mitra; Djavid, Gholam-reza E.

    2002-10-01

    Objective: Evaluating the effectiveness of low-level laser therapy (LLLT) in alleviating the symptoms of lumbar spondylolisthesis. Materials and Methods: Laser was irradiated for 2 mm at six symmetric points along the lumbosacral spine and 5 points along the referred point ofpain, six times a week for 2 weeks (890 nm; 8 J/cm2; pulsed at 1500 Hz). Perception of benefit, level of function was assessed by the Oswestry disability index, lumbar mobility range of motion and low back pain intensity. Results and Discussion: Results showed a complete reduction in pain and improvement in function in the patient. This case report suggests that low-level laser therapy (LLLT) could play a role in conservative management of low-grade lumbar spondylolisthesis.

  11. Nickellike soft-x-ray lasing at the wavelengths between 14 and 7.9nm

    Energy Technology Data Exchange (ETDEWEB)

    Daido, H.; Ninomiya, S.; Imani, T.; Kodama, R.; Takagi, M.; Kato, Y. [Institute of Laser Engineering, Osaka University, 2-6 Yamado-oka, Suita, Osaka 565 (Japan); Murai, K. [Department of Material Physics, Osaka National Research Institute, Midorigaoka, Ikeda, Osaka 563 (Japan); Zhang, J.; You, Y.; Gu, Y. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, P.O. Box 525-84, Chengdu, 610003 (China)

    1996-07-01

    We report what we believe is the first observation of clear soft-x-ray lasing in Ni-like Ag, Te, La, Ce, and Pr and also in Nd covering the spectral range 14.3{endash}7.9 nm. A curved slab target was irradiated with quadruple 1.053-{mu}m laser pulses. The pulse-to-pulse separation for the first three pulses was 400 ps, and that between the third and the fourth pulses was 1.6 ns. The pulse duration and irradiance on the target were 100 ps and {approximately}7{times}10{sup 13} W/cm{sup 2}, respectively. For all the targets the most intense lasing was observed at the fourth pump pulse. {copyright} {ital 1996 Optical Society of America.}

  12. In vivo and in vitro evaluation of corneal damage induced by 1573 nm laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Courant, D.; Chapel, C. [CEA Fontenay-aux-Roses (DSV/DRR/SRBF), 92 (France). Dept. de Radiobiologie et de Radiopathologie; Pothier, C. [DGA-DCE/CTA/LOT, 94 - Arcueil (France); Sales, N. [CEA Fontenay-aux-Roses (DSV/DRM/SNV), 92 (France)

    2006-07-01

    Recent developments in laser technology have originated a variety of infrared laser sources between 1500-1700 nm called as 'eye-safe' which are gaining widespread use in industry, medicine and military applications. This spectral region has been called 'eye safe' because the cornea and aqueous humor absorb sufficient radiation to prevent nearly all potentially damaging radiation from reaching the retina whereas the lens does not absorb this spectral range and remains undamaged. However, in providing protection for the deeper layers of the eye, the cornea itself is susceptible to thermal damage. Previous studies, performed at 1540 nm with exposures less than 1 s, are inconsistent in the quantity of energy required to cause corneal damage. The purpose of this study was first, to determine the threshold damage exposure (E.D.{sub 50}) on rabbit cornea induced by a 3 ns single pulse emitted at 1573 nm, using clinical observations and histology and to compare the results to the limit values recommended by I.C.N.I.R.P. guidelines or international standards. Secondly, it was suggested to investigate the cellular effects of infrared radiation with biochemical techniques on cell cultures in order to specify a cellular damage threshold and a better understanding of the laser - tissue interaction and the corneal injury. The minimal damage criterion was defined by a shallow, very small depression of the epithelial surface with a mild fluorescein staining. The E.D.{sub 50} obtained with corneal beam diameter of 400 mm is 26.6 J.cm{sup -2}. The corresponding radiant exposure, calculated with the 1 mm aperture diameter recommended by I.C.N.I.R.P. guidelines or standards, is 4.3 J.cm{sup -2}. In vitro experiments have been carried out on primary keratocytes and H.T. 1080 epithelial cell line, using an expanded beam of 3.5 mm diameter on plates or Lab Tek holders. Cells were irradiated with 10 Hz pulse ratio frequency during 1, 2 or 3 s. The S A

  13. Large-scale characterization of silicon nitride-based evanescent couplers at 532nm wavelength

    Science.gov (United States)

    Claes, Tom; Jansen, Roelof; Neutens, Pieter; Du Bois, Bert; Helin, Philippe; Severi, Simone; Van Dorpe, Pol; Deshpande, Paru; Rottenberg, Xavier

    2014-05-01

    Recently, the photonics community has a renewed attention for silicon nitride.1-3 When deposited at temperatures below 650K with plasma-enhanced chemical vapor deposition (PECVD),4 it enables photonic circuits fabricated on-top of standard complementary metaloxidesemiconductor (CMOS) electronics. Silicon nitride is moreover transparent to wavelengths that are visible to the human eye and detectable with available silicon detectors, thus offering a photonics platform for a range of applications that is not accessible with the popular silicon-on-insulator platform. However, first-time-right design of large-scale circuits for demanding specifications requires reliable models of the basic photonic building blocks, like evanescent couplers (Figure 1), components that couple power between multiple waveguides. While these models typically exist for the silicon-on-insulator platform, they still lack maturity for the emerging silicon nitride platform. Therefore, we meticulously studied silicon nitride-based evanescent couplers fabricated in our 200mm-wafer facility. We produced the structures in a silicon nitride film deposited with low-temperature PECVD, and patterned it using optical lithography at a wavelength of 193nm and reactive ion etching. We measured the performance of as much as 250 different designs at 532nm wavelength, a central wavelength in the visible range for which laser sources are widespread. For each design, we measured the progressive transmission of up-to 10 cascaded identical couplers (Figure 2(a)), yielding very accurate figures for the coupling factor (Figure 2(b)). This paper presents the trends extracted from this vast data set (Figure 3), and elaborates on the impact of the couplers bend radius and gap on its coupling factors (Figure 4 and Figure 5). We think that the large- scale characterization of evanescent couplers presented in this paper, in excellent agreement with the simulated performance of the devices, forms the basis for a component

  14. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    Science.gov (United States)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan

    2016-12-01

    This work focused on the catalytic transformation of methane (CH4) and carbon dioxide (CO2) into syngas (mixture of CO and H2). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400-700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  15. Design And Investigation Of 65 Nm Rf Cmos Technology Lc-Vco’s

    Directory of Open Access Journals (Sweden)

    Vytautas Mačaitis

    2014-05-01

    Full Text Available In this paper, two LC Voltage-Controlled Oscillators (LC-LC-VCO1 and LC-VCO2 are designed using TSMC 65 nm LP/MS/RF CMOS technology. Two arrays, one of which is a 6-bit capacitor array and the other – an array of MOS varactors, provide a wide LC-VCO frequency tuning range. Post-layout simulation results unveiled that at 1.8 V supply voltage the tuning range of LC-VCO1 spans from 5.17 GHz to 6.76 GHz and for LC-VCO2 the range spans from 6.33 GHz to 8.08 GHz. The phase noise at 1 MHz offset frequency is about −123.1 dBc/Hz for LC-VCO1 and −121.6 dBc/Hz for LC-VCO2. The power dissipation at maximum carrier is 30.47 mW for LC-VCO1 and 30.5 mW for LC-VCO2. The layout area is 285×335 μm and 255×305 μm, respectively for LC-VCO1 and LC-VCO2.

  16. Simulation of 50-nm Gate Graphene Nanoribbon Transistors

    Directory of Open Access Journals (Sweden)

    Cedric Nanmeni Bondja

    2016-01-01

    Full Text Available An approach to simulate the steady-state and small-signal behavior of GNR MOSFETs (graphene nanoribbon metal-semiconductor-oxide field-effect transistor is presented. GNR material parameters and a method to account for the density of states of one-dimensional systems like GNRs are implemented in a commercial device simulator. This modified tool is used to calculate the current-voltage characteristics as well the cutoff frequency fT and the maximum frequency of oscillation fmax of GNR MOSFETs. Exemplarily, we consider 50-nm gate GNR MOSFETs with N = 7 armchair GNR channels and examine two transistor configurations. The first configuration is a simplified MOSFET structure with a single GNR channel as usually studied by other groups. Furthermore, and for the first time in the literature, we study in detail a transistor structure with multiple parallel GNR channels and interribbon gates. It is shown that the calculated fT of GNR MOSFETs is significantly lower than that of GFETs (FET with gapless large-area graphene channel with comparable gate length due to the mobility degradation in GNRs. On the other hand, GNR MOSFETs show much higher fmax compared to experimental GFETs due the semiconducting nature of the GNR channels and the resulting better saturation of the drain current. Finally, it is shown that the gate control in FETs with multiple parallel GNR channels is improved while the cutoff frequency is degraded compared to single-channel GNR MOSFETs due to parasitic capacitances of the interribbon gates.

  17. Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Taroni, Paola [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Torricelli, Alessandro [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Spinelli, Lorenzo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Pifferi, Antonio [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Arpaia, Francesco [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Danesini, Gianmaria [Dipartimento di Radiologia, Casa di Cura S.Pio X, via Francesco Nava 31, I-20159 Milan (Italy); Cubeddu, Rinaldo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy)

    2005-06-07

    The first time-resolved optical mammograph operating beyond 900 nm was tested in a retrospective clinical study involving 194 patients with malignant and benign lesions, to investigate the diagnostic potential for the detection and characterization of breast lesions. For the first part of the study (101 patients with 114 lesions), the system was operated at 683, 785, 913 and 975 nm. Subsequently, to improve the spectral content of optical images, the number of wavelengths was increased (up to 7) and the spectral range was extended (637-985 nm). Late gated intensity and scattering images provide sensitivity to tissue composition (oxy- and deoxyhaemoglobin, water and lipids) and physiology (total haemoglobin content and oxygen saturation), as well as to structural changes. Tumours are typically identified because of the strong blood absorption at short wavelengths (637-685 nm), while cysts are characterized by low scattering, leading to a detection rate of approximately 80% for both lesion types, when detection is required in both cranio-caudal and oblique views. The detection rate for other benign lesions, such as fibroadenomas, is presently much lower (<40%). The effectiveness of the technique in localizing and identifying different lesion types was analysed as a function of various parameters (lesion size, compressed breast thickness, age, body mass index, breast parenchymal pattern). The possibility that physiologic changes due to the development of a malignant lesion could affect the entire breast was investigated. The capacity to assess the density of breast based on the average scattering properties was also tested.

  18. Q-switched thulium-doped fibre laser operating at 1900 nm using multi-walled carbon nanotubes saturable absorber

    Directory of Open Access Journals (Sweden)

    Norazlina Saidin

    2014-06-01

    Full Text Available Simple, low-cost and stable passive Q-switched thulium-doped fibre lasers (TDFLs operating at 1892.4 and 1910.8 nm are demonstrated using 802 and 1552 nm pumping schemes, respectively, in conjunction with a multi-walled carbon nanotubes (MWCNTs saturable absorber (SA. The MWCNTs composite is prepared by mixing the MWCNTs homogeneous solution into a dilute polyvinyl alcohol (PVA polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fibre connectors and integrated into the laser cavity for Q-switching pulse generation. The pulse repetition rate of the TDFL configured with 802 nm pump can be tuned from 3.8 to 4.6 kHz, whereas the corresponding pulse width reduces from 22.1 to 18.3 μs as the pump power is increased from 187.3 to 194.2 mW. On the other hand, with 1552 nm pumping, the TDFL generates optical pulse train with a repetition rate ranging from 13.1 to 21.7 kHz with a pulse width of 11.5–7.9 μs when the pump power is tuned from 302.2 to 382.1 mW. A higher performance Q-switched TDFL is expected to be achieved with the optimisation of the MWCNT-SA saturable absorber and laser cavity.

  19. Gd$^{3+}$ - Gd$^{3+}$ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance

    CERN Document Server

    Clayton, Jessica A; Godt, Adelheid; Goldfarb, Daniella; Han, Songi; Sherwin, Mark S

    2016-01-01

    Electron paramagnetic resonance spectroscopy in combination with site-directed spin-labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd$^{3+}$ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA---spacer---Gd-PyMTA, with Gd-Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central $|-1/2\\rangle\\rightarrow|1/2\\rangle$ transition occurs at 30 K for Gd-Gd distances up to $\\sim$ 3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to $\\sim$ 2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method i...

  20. Second (1178 nm) and third (1242 nm) Stokes Raman fiber lasers without intermediate Stokes cavities

    Science.gov (United States)

    Mejía, E. B.; Juárez-Hernández, M.; De la Cruz-May, L.

    2017-07-01

    We report and propose a simple Raman fiber laser scheme that generates two or three order Raman Stokes components by using a single strong (unidirectional) cavity formed by a high-reflecting fiber Bragg grating and air-glass interface (fiber output); the intermediate cavities are non-grating, weak and bi-directional cavities that serve as ‘virtual links’ or energy reservoirs. Once the strong cavity reaches operation, it practically consumes (converts) all the energy from pump and intermediate components into a single and clamped (unidirectional) signal. For example, the use of second-Stokes fiber Bragg grating together with glass-air output operated and harvested practically all the energy. Analogously, third Stokes emission was obtained by changing the grating and hence relying on first and second non-grating formed intermediate cavities. The system uses commercial silica fiber and minimizes the use of lossy and costly fiber Bragg gratings. This proposal broadens the possibilities for covering the entire 1000-2000 nm window for applications that use silica fibers.

  1. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm.

    Science.gov (United States)

    Liu, Pengfei; Zhang, Yue; Martin, Scot T

    2013-01-01

    The complex refractive indices of three different types of secondary organic material (SOM) were obtained for 220 to 1200 nm using a variable angle spectroscopic ellipsometer. Aerosol particles were produced in a flow tube reactor by ozonolysis of volatile organic compounds, including the monoterpenes α-pinene and limonene and the aromatic catechol (benzene-1,2-diol). Optically reflective thin films of SOM were grown by electrostatic precipitation of the aerosol particles onto silicon substrates. The ellipsometry analysis showed that both the real and imaginary components of the refractive indices decreased with increasing wavelength. The real part n(λ) could be parametrized by the three-term form of Cauchy's equation, as follows: n(λ) = B + C/λ(2) + D/λ(4) where λ is the wavelength and B, C, and D are fitting parameters. The real refractive indices of the three SOMs ranged from 1.53 to 1.58, 1.49-1.52, and 1.48-1.50 at 310, 550, and 1000 nm, respectively. The catechol-derived SOM absorbed light in the ultraviolet (UV) range. By comparison, the UV absorption of the monoterpene-derived SOMs was negligible. On the basis of the measured refractive indices, optical properties were modeled for a typical atmospheric particle population. The results suggest that the wavelength dependence of the refractive indices can vary the Angstrom exponent by up to 0.1 across the range 310 to 550 nm. The modeled single-scattering albedo can likewise vary from 0.97 to 0.85 at 310 nm (UV-B). Variability in the optical properties of different types of SOMs can imply important differences in the relative effects of atmospheric particles on tropospheric photochemistry, as well as possible inaccuracies in some satellite-retrieved properties such as optical depth and mode diameter.

  2. Orbital analysis of two-color laser ranging

    Science.gov (United States)

    Schillak, S. R.

    2013-12-01

    The poster presents the results of analysis of Zimmerwald SLR data for two colors 423nm and 846 nm. Two-color laser ranging were performed by Zimmerwald SLR station from August 2002 to January 2008. The results in each color were treated as two independent stations 7810 Blue and 7810 Infrared. The station positions were determined by NASA Goddard's orbital program GEODYN-II from results of LAGEOS-1 and LAGEOS-2 satellites. The NEU positions stability were equal to 3.5 mm (N), 3.2 mm (E), 16.5 mm (U) for blue and 3.2 mm (N), 2.9 mm (E), 14.6 (U) for infrared. In the period of study were 47 common monthly points for both colors. The difference between N, E, U components in blue and infrared for common points were equal to 0.8×2.0 mm, 0.4×1.9 mm and -4.8×8.7 mm respectively. The differences between Range Biases for both colors independently for LAGEOS-1 and LAGEOS-2 were equal to -5.7×8.6 mm and for -5.0×9.5 mm respectively. The same for both satellites annual wave with amplitude 10 mm was detected. This effect can to be explain by differences in atmospheric correction for each color. This same analysis for station Concepcion (7405) couldn't to be performed due to only 8 common points. In future very important should be laser ranging in two-colors 532 nm and 1064 nm for confirmation presented here results, especially that a new sensitive APD detectors for 1064 nm are now available. The atmospheric correction is critical for SLR accuracy upgrading.

  3. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm

    OpenAIRE

    Smith, Arlee V.; Smith, Jesse J.

    2015-01-01

    We use a detailed numerical model of stimulated thermal Rayleigh scattering to compute mode instability thresholds in Tm$^{3+}$-doped fiber amplifiers. The fiber amplifies 2040 nm light using a 790 nm pump. The cross-relaxation process is strong, permitting power efficiencies of 60%. The predicted instability thresholds are compared with those in similar Yb$^{3+}$-doped fiber amplifiers with 976 nm pump and 1060 nm signal, and are found to be higher, even though the heat load is much higher i...

  4. Comparing the effectiveness of 585-nm vs. 595-nm wavelength pulsed dye laser treatment of port wine stains in conjunction with cryogen spray cooling

    NARCIS (Netherlands)

    Chang, Cheng-Jen; Kelly, Kristen M.; van Gemert, Martin J. C.; Nelson, J. Stuart

    2002-01-01

    Background and Objectives: The objective of this study was to compare the efficacy and safety of cryogen spray cooled laser treatment (CSC-LT) at wavelengths of 585 nm vs. 595 nm for port wine stain (PWS) birthmarks in a large series of patients. Study Design/Materials and Methods: A retrospective

  5. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    Science.gov (United States)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan

    2017-11-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.

  6. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Deng, Lei; Rodes Lopez, Roberto

    2013-01-01

    We experimentally compare the performance of two commercially available vertical-cavity surface-emitting laser diodes (VCSELs), a multi-mode 850-nm and a single-mode 1550-nm, exploiting on–off keying/direct detection (OOK/DD), and orthogonal frequency division multiplexed (OFDM) quadrature phase...... modulation (4-PAM), for the 1550-nm transmitter over SMF and MMF links and we compare it to the data-rate equivalent NRZ-OOK. The extensive performance comparison under various transmission scenarios shows the superiority of 1550-nm single-mode VCSEL compared to its multi-mode 850-nm counterpart. Moreover......, OFDM/DD and 4-PAM in conjunction with low-cost, inexpensive VCSELs as transmitters prove to be an enabling technology for next-generation WDM, point-to-point, short-reach, SMF/MMF optical interconnects and potential candidates to substitute NRZ-OOK. Nevertheless, the sensitivity requirements are higher...

  7. Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils.

    Science.gov (United States)

    Poirier, Michelle; Simard, Jean-Christophe; Girard, Denis

    2016-05-01

    The influence of size of nanoparticles (NP), especially in regard to pulmonary toxicity, has been widely investigated. In general, NP with smaller diameters are more pro-inflammatory in vivo, at least in terms of neutrophil influx. Nevertheless, the influence of size of NP on polymorphonuclear neutrophil (PMN) cell biology is poorly documented. In the study here, it was decided to determine if AgNP with a diameter of 70 nm (AgNP70) will alter the biology of human PMN similarly to AgNP20 previously reported to induce apoptosis and inhibit de novo protein synthesis. The results here indicated that, in contrast to AgNP20, AgNP70 delayed PMN apoptosis. However, both AgNP20 and AgNP70 inhibited de novo protein synthesis. Both forms of AgNP did not significantly increase reactive oxygen species (ROS) production, but AgNP20 significantly increased the cell production of the CXCL8 chemokine (IL-8). In addition, AgNP20, but not AgNP70, induced the release of albumin and matrix metalloproteinase-9 (MMP-9/gelatinase B) into culture supernatants. Consistent with this latter observation, gelatinase activity was increased by AgNP20, as assessed by zymography. From these outcomes, it is concluded that two NP with different initial diameters can possess similar - as well as distinct - biological properties in modulating human PMN functions. These outcomes are testimony to the complexity of the modes of action of NP at the cellular level.

  8. Fractional Erbium laser in the treatment of photoaging: randomized comparative, clinical and histopathological study of ablative (2940nm) vs. non-ablative (1540nm) methods after 3 months*

    Science.gov (United States)

    Borges, Juliano; Cuzzi, Tullia; Mandarim-de-Lacerda, Carlos Alberto; Manela-Azulay, Mônica

    2014-01-01

    BACKGROUND Fractional non-ablative lasers keep the epidermis intact, while fractional ablative lasers remove it, making them theoretically more effective. OBJECTIVES To evaluate the clinical and histological alterations induced by fractional photothermolysis for treating photoaging, comparing the possible equivalence of multiple sessions of 1540nm Erbium, to one session of 2940nm Erbium. METHODS Eighteen patients (mean age 55.9) completed the treatment with three sessions of 1540nm fractional Erbium laser on one side of the face (50 mJ/mB, 15ms, 2 passes), and one session of 2940nm on the other side (5mJ/mB, 0.25ms, 2 passes). Biopsies were performed before and 3 months after treatment. Clinical, histological and morphometric evaluations were carried out. RESULTS All patients presented clinical improvement with no statistically significant difference (p> 0.05) between the treated sides. Histopathology revealed a new organization of collagen and elastic fibers, accompanied by edema, which was more evident with the 2940nm laser. This finding was confirmed by morphometry, which showed a decrease in collagen density for both treatments, with a statistical significance for the 2940nm laser (p > 0.001). CONCLUSIONS Three 1540nm sessions were clinically equivalent to one 2940nm session. The edema probably contributed to the positive results after three months, togheter with the new collagen and elastic fibers organization. The greater edema after the 2940nm session indicates that dermal remodeling takes longer than with 1540nm. It is possible that this histological superiority relates to a more prolonged effect, but a cohort longer than three months is needed to confirm that supposition. PMID:24770501

  9. Observations of equatorial F region plasma bubbles using simultaneous OI 777.4 nm and OI 630.0 nm imaging: New results

    Science.gov (United States)

    Abalde, J. R.; Fagundes, P. R.; Bittencourt, J. A.; Sahai, Y.

    2001-12-01

    Simultaneous observations of the OI 630.0 nm and OI 777.4 nm nightglow emissions using all-sky imaging systems and ionospheric radio sounding using a Canadian Advanced Digital Ionosonde (CADI) digisonde have been recently carried out at São José dos Campos (23.21°S, 45.86°W), Brazil. The all-sky imaging systems use novel CCD devices, with high quantum efficiency and which provide an exceptional capacity for quantitative measurement of faint- and low-contrast emissions. On October 23-24, 2000 (high solar activity), the presence of large-scale F region plasma irregularities (plasma bubbles) was observed using both techniques (i.e., optical and radio). The high-resolution images, recorded using the OI 777.4 nm nightglow emission, show a new striated or ray-like pattern, which has not been detected before. These OI 777.4 nm optical observations show for the first time, in great detail, the field-aligned ionospheric plasma bubble structures, in contrast with the OI 630.0 nm images, which show a diffuse image of the bubbles. The optical signatures of the OI 777.4 nm emission are more closely related to the actual ionospheric bubble structure, owing to its prompt emission and dependence only on the electron density, with no F layer height dependence. On the other hand, the OI 630.0 nm emission comes from the bottomside of the F layer with a strong F layer height dependence and shows blurred images due to its 110-s lifetime. An additional advantage of using the OI 777.4 nm emission for ionospheric irregularity studies is that the plasma bubbles can be observed earlier on the OI 777.4 nm images than on the OI 630.0 nm images (by ~15 min).

  10. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    Science.gov (United States)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  11. Investigation on the influence of BBO thermal-induced phase mismatching in 266nm UV laser conversion efficiency

    Science.gov (United States)

    Yu, Kai; Jin, Guangyong; Yu, Miao; Huang, Zhulong; Zhai, Ruizhi; Wang, Lei

    2014-12-01

    266nm UV laser has a wide range of applications in many fields, such as laser medical treatment, laser processing, precision measure and other applications for the reason of its advantages in wavelength, small diffraction effects, high single-photon energy, and high resolution and so on. BBO crystals absorb parts of the fundamental laser energy and second harmonic laser energy are unavoidable, and thus the temperature raise, so that the existing crystal phase matching conditions change, resulting in phase mismatching in the high-power frequency doubling, greatly influence the 266nm UV laser conversion efficiency. To further study the effect of phase mismatching to conversion efficiency, and improve the conversion efficiency, output power and other output characteristics of 266nm laser, the article mainly describe from the following three aspects. Firstly, took the use of three-dimensional nonlinear crystal temperature distribution which is obtained, the process of BBO crystal thermal-induced phase mismatching is analyzed. Secondly, based on frequency doubling theory, the effects of the thermal-induced phase mismatching affected of conversion in crystals are analyzed. Combining with the phase mismatching of the three-dimensional distributions, the fourth harmonic conversion efficiency with thermal phase mismatching changes of BBO 266nm UV laser are simulated for the first time. Thirdly, by using MATLAB software, the effects of phase mismatching to conversion efficiency in crystal for different waist radius, 532nm laser power and the fundamental beam quality are simulated. The results indicate a good physical interpretation of reasons of high power laser frequency doubling system. It shows that the model established explains the reason of the reduction of conversion efficiency, output power and the beam quality excellently. All results make a leading sense to the research on the compensating of the phase mismatching and on the improvement of conversion efficiency.

  12. A wide spectral range photoacoustic aerosol absorption spectrometer.

    Science.gov (United States)

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-06

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter.

  13. Saturn's icy satellites investigated by Cassini-VIMS. I. Full-disk properties: 350-5100 nm reflectance spectra and phase curves

    Science.gov (United States)

    Filacchione, G.; Capaccioni, F.; McCord, T.B.; Coradini, A.; Cerroni, P.; Bellucci, G.; Tosi, F.; D'Aversa, E.; Formisano, V.; Brown, R.H.; Baines, K.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; Combes, M.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Hansen, G.; Hibbitts, K.; Showalter, M.; Newman, S.

    2007-01-01

    Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0??-144?? range; Rhea shows an opposition surge at visible wavelengths in the 0.5??-1.17?? interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available

  14. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    Directory of Open Access Journals (Sweden)

    Yves Saydjari

    2016-01-01

    Full Text Available Objective. In endodontics, Nd:YAG laser (1064 nm and diode laser (810 nm and 980 nm devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment.

  15. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals-A Literature Overview.

    Science.gov (United States)

    Saydjari, Yves; Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment.

  16. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    Science.gov (United States)

    Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  17. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    Science.gov (United States)

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  18. High efficiency 878.6nm LD end-pumped pulse burst Nd:YVO4 laser

    Science.gov (United States)

    Li, Xudong; Zhou, Yiping; Yan, Renpeng; Yu, Xin; Chen, Deying; Zhou, Zhongxiang

    2016-03-01

    A high-efficiency, high-repetition-rate burst-mode 1064 nm laser under pulsed 878.6 nm laser diode pumping is demonstrated. Pulses at repetition rates ranging from 10 kHz to 100 kHz are produced during the time period of 1 ms pumping duration by using an acousto-optical Q-switch. The maximum pulse burst energy of 44 mJ at 10 kHz is obtained at the incident pump power of 108.5 mJ, yielding an optical-to-optical efficiency of 40.5%. The shortest pulse width at 10 kHz is 9.4 ns at the maximum pump energy of 108.5 mJ. The peak powers are estimated to be 468.1 kW and 30.1 kW at 10 kHz and 100 kHz in the burst-mode oscillator.

  19. Homogeneous pinhole free 1 nm Al{sub 2}O{sub 3} tunnel barriers on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dlubak, B.; Martin, M.-B.; Deranlot, C.; Bouzehouane, K.; Fusil, S.; Mattana, R.; Petroff, F.; Anane, A.; Seneor, P.; Fert, A. [Unite Mixte de Physique CNRS/Thales, 91767 Palaiseau (France) and University of Paris-Sud, 91405 Orsay (France)

    2012-11-12

    We report on the topographical and electrical characterisations of 1 nm thick Al{sub 2}O{sub 3} dielectric films on graphene. The Al{sub 2}O{sub 3} is grown by sputtering a 0.6 nm Al layer on graphene and subsequentially oxidizing it in an O{sub 2} atmosphere. The Al{sub 2}O{sub 3} layer presents no pinholes and is homogeneous enough to act as a tunnel barrier. A resistance-area product in the mega-ohm micrometer-square range is found. Comparatively, the growth of Al{sub 2}O{sub 3} by evaporation does not lead to well-wetted films on graphene. Application of this high quality sputtered tunnel barrier to efficient spin injection in graphene is discussed.

  20. Operation of the European FEL at ELETTRA Below 190 nm A Tunable Laser Source for VUV Spectroscopy

    CERN Document Server

    De Ninno, G; Curbis, F; Danailov, M B; Diviacco, B; Marsi, M; Trovò, M

    2005-01-01

    Thanks to an intensive technological effort in the framework of the EEC Contract HPRI CT-2001-50025 (EUFELE), the European FEL at ELETTRA was able to break the previous record for the shortest wavelength of an FEL oscillator. Novel solutions were adopted for multilayer mirrors to allow FEL operation in the wavelength region between 160 and 190 nm, which is one of the main targets of the project. The characteristics of the FEL pulses measured at 176 nm (spectral profiles, high intensity, meV bandpass, MHz repetition rate) make it a competitive light source for spectroscopy, in particular for fluorescence studies in the VUV spectral range. Proof of principle experiments have been performed on different types of silica glasses, yielding information on the mechanisms of light absorption in this material.

  1. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  2. Mask design rules (45 nm): time for standardization

    Science.gov (United States)

    Mason, Mark; Progler, Christopher J.; Martin, Patrick; Ham, Young-Mog; Dillon, Brian; Pack, Robert; Heins, Mitch; Gookassian, John; Garcia, John; Boksha, Victor

    2005-11-01

    Time-to-mask (ttm) has been growing exponentially in the subwavelength era with the increased application of advanced RET's (Resolution Enhancement Technology). Not only are a greater number of design/mask layers impacted but more-and-more layers also have more severe restrictions on critical dimension uniformity (CDU) despite operating at a very low k1 factors necessitating rigorous but practical tolerancing. Furthermore, designs are also more complex, may be built up from blocks spanning different design styles, and occupy increasingly-large Rayleigh field areas. Given these factors and scales, it's no wonder that the cycle time for verification of a design following RET, is growing however it is doing so exponentially and that this is a critical factor impeding ttm. Until an unambiguously interprable and standard Mask Design Rule (MaskDR) set is created, neither the designer nor the mask supplier can reliably verify manufacturability of the mask for the simple reason that ambiguity and inter-rule conflict are at the source of the problem and that the problem increasingly requires cooperation spanning a large ecosystem of tool, IP, and mask suppliers all needing to essentially speak the same language. Since the 130 nm node, Texas Instruments has enforced a strict set of mask rule checks (MRCs) in their mask data preparation (MDP) flow based on MaskDRs negotiated with their mask suppliers. The purpose of this effort has been to provide an a-priori guarantee that the data shipped to the mask shop can be used to manufacture a mask reliably and with high yield both from a mask standpoint and from the silicon standpoint. As has been reported earlier, mask manufacturing rules are usually determined from assumed or experimentally acquired/validated mask-manufacturing limits. These rules are then applied during RET/MDP data treatment to guide and/or limit pattern correction strategies. With increasing RET and low-k1 lithography challenges, the importance of MRCs

  3. Blockade of extracellular NM23 or its endothelial target slows breast cancer growth and metastasis.

    Science.gov (United States)

    Yokdang, Nucharee; Nordmeier, Senny; Speirs, Katie; Burkin, Heather R; Buxton, Iain L O

    Nucleoside Diphosphate Kinase (NDPK), described as NM23 a metastasis suppressor, is found in the culture medium of cancer cells lines suggesting that the kinase may have an extracellular role. We propose that extracellular NM23 released from breast cancers in vivo stimulates tumor cell migration, proliferation and endothelial cell angiogenesis in support of metastasis development. NM23 in the bloodstream of immunocompromised mice carrying human triple-negative breast cancers or in breast cancer patients was measured by ELISA. Primary and metastatic tumor development, the impact of blockade of NM23 and/or its stimulation of nucleotide receptors were measured using in vivo imaging. NM23 expression data in the Curtis breast dataset was examined to test our hypothesis that NM23 may play a mechanistic role in breast cancer development. SCID mice carrying metastatic MDA-MB-231Luc+ triple-negative human breast tumor cells elaborate NM23 into the circulation correlated with primary tumor growth. Treatment of mice with the NM23 inhibitor ellagic acid (EA) or the purinergic receptor antagonist MRS2179 slowed primary tumor growth. At 16 weeks following implantation, lung metastases were reduced in mice treated with EA, MRS2179 or the combination. Expression of NM23 in the Curtis breast dataset confirmed a likely role for NM23 in tumor metastasis. Extracellular NM23 may constitute both a biomarker and a therapeutic target in the management of breast cancer.

  4. Preliminary methodology investigation of mask pattern fidelity for 250-nm design rules

    Science.gov (United States)

    Coleman, Thomas P.; Sauer, Charles A.; Naber, Robert J.; Hamaker, Henry Chris

    1995-07-01

    Techniques have been developed that can quickly and accurately measure corner rounding and contact fill as key indicators of pattern fidelity. Using these techniques, we have examined writing variables for their effect on the lithographic quality of 1.0 micrometers contact. A small contact is perhaps the most demanding figure to achieve, so the results shown can be considered the worst case for 4X radicle manufacturing at 250 nm design rules. A MEBES 4500 was used as the writing tool, using PBS resist on quartz masks. Standard printing methods, single-phase printing (SPP) and multiphase printing (2X MPP) were examined. Results indicate that excellent corner rounding results can be achieved with small address sizes, regardless of the writing strategy or the dose used. As expected, larger spot sizes increase the amount of corner rounding, regardless of the address. As the pattern address is increased, judicious choices of spot size reduce potential pattern fidelity loss when imaging small contracts and other fine features. Multiphase printing is a technique that offers advantages to the user. Its use of offset scan voting (OSV) is a significant factor in reducing placement errors. MPP (2X) has an additional advantage of providing higher dosages. This provides flexibility in resist choices and in the selection of a process window. With 2X MPP, the user has a wide range of addresses and spot sizes that will give excellent results. The dynamic range of operating conditions possible with 2X MPP when writing 1.0 micrometers contacts is a reduced subset of those available using SPP, due to the 2X writing grid (output address). Implementation of 2X MPP has been limited on previous MEBES models due to increased write times of multipass writing. The MEBES 4500 data path supports 2X MPP with write times that approximate SPP. The practical operating envelope of both writing strategies are detailed in this paper. Overall, the MEBES 4500 has a large dynamic operating range. When

  5. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    CERN Document Server

    Wang, Jieying; He, Jun; Wang, Junmin

    2016-01-01

    We report the generation of narrow-linewidth 637.2 nm laser by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding conversion efficiency is 38%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  6. Extended coherence length Fourier domain mode locked lasers at 1310 nm.

    Science.gov (United States)

    Adler, Desmond C; Wieser, Wolfgang; Trepanier, Francois; Schmitt, Joseph M; Huber, Robert A

    2011-10-10

    Fourier domain mode locked (FDML) lasers are excellent tunable laser sources for frequency domain optical coherence tomography (FD-OCT) systems due to their combination of high sweep rates, large tuning ranges, and high output powers. However, conventional FDML lasers provide coherence lengths of only 4-10 mm, limiting their use in demanding applications such as intravascular OCT where coherence lengths of >20 mm are required for optimal imaging of large blood vessels. Furthermore, like most swept lasers, conventional FDML lasers produce only one useable sweep direction per tunable filter drive cycle, halving the effective sweep rate of the laser compared to the filter drive frequency. Here, we demonstrate a new class of FDML laser incorporating broadband dispersion compensation near 1310 nm. Elimination of chromatic dispersion in the FDML cavity results in the generation of forward (short to long wavelength) and backward (long to short wavelength) sweeps with substantially identical properties and coherence lengths of >21 mm. This advance enables long-range, high-speed FD-OCT imaging without the need for optical buffering stages, significantly reducing laser cost and complexity.

  7. SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution

    Science.gov (United States)

    Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.

    2016-10-01

    Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and

  8. InP-based monolithically integrated 1310/1550nm diplexer/triplexer

    Science.gov (United States)

    Silfvenius, C.; Swillo, M.; Claesson, J.; Forsberg, E.; Akram, N.; Chacinski, M.; Thylén, L.

    2008-11-01

    Multiple streams of high definition television (HDTV) and improved home-working infrastructure are currently driving forces for potential fiber to the home (FTTH) customers [1]. There is an interest to reduce the cost and physical size of the FTTH equipment. The current fabrication methods have reached a cost minimum. We have addressed the costchallenge by developing 1310/(1490)/1550nm bidirectional diplexers, by monolithic seamless integration of lasers, photodiodes and wavelength division multiplexing (WDM) couplers into one single InP-based device. A 250nm wide optical gain profile covers the spectrum from 1310 to 1550nm and is the principal building block. The device fabrication is basically based on the established configuration of using split-contacts on continuos waveguides. Optical and electrical cross-talks are further addressed by using a Y-configuration to physically separate the components from each other and avoid inline configurations such as when the incoming signal travels through the laser component or vice versa. By the eliminated butt-joint interfaces which can reflect light between components or be a current leakage path and by leaving optically absorbing (unpumped active) material to surround the components to absorb spontaneous emission and nonintentional reflections the devices are optically and electrically isolated from each other. Ridge waveguides (RWG) form the waveguides and which also maintain the absorbing material between them. The WDM functionality is designed for a large optical bandwidth complying with the wide spectral range in FTTH applications and also reducing the polarization dependence of the WDM-coupler. Lasing is achieved by forming facet-free, λ/4-shifted, DFB (distributed feedback laser) lasers emitting directly into the waveguide. The photodiodes are waveguide photo-diodes (WGPD). Our seamless technology is also able to array the single channel diplexers to 4 to 12 channel diplexer arrays with 250μm fiber port

  9. The Efficiency of 1064 nm Nd: YAG Laser in the Treatment of Different Types of Verruca

    Directory of Open Access Journals (Sweden)

    Tuncer Saçar

    2010-10-01

    Full Text Available Background and Design: The aim of this study was to determine the efficiency of 1064 nm Nd: YAG laser in different types of verruca.Material and Method: A prospective descriptive study was planned. The study group constituted of 198 patients who had referred to the dermatology outpatient clinic between September 2007 and September 2008 with warts located at different sites and not previously treated.Results: Of the 198 patients aged 7-65 years who applied to our outpatient clinic during the study, 83 (41.9% were female, 115 (58.1% were male and the female/male ratio was 0.72; the total wart number, the mean wart number, and standard deviation were found to be 1127, 6.59, and 14.28, respectively. The location of warts was as follows: periungual (n=25; 12.6%, facial - plana (n=16; 8.1%, palmar (n=45; 22.7%, plantar (n=70; 35.4%, and genital (n=42; 21.2%. At clinical recovery evaluation, the recovery rate was 97% (range: 75-100%, and the patient satisfaction was found to be 98.5% in recovery rate over 50%. Our results and the rate of side effects overlap with those in the literature.Conclusion: The treatment success ratio with 1064 nm Nd: YAG laser is quite high in comparison with the other treatment methods and its side effects are not too much, except for pain. Being expensive is the disadvantage of the system. We suggest that Nd: YAG laser is the most efficient and time-saving method in patients with needle fear, unwilling to receive longstanding local treatment, and in children.

  10. Analysis of FDML lasers with meter range coherence

    Science.gov (United States)

    Pfeiffer, Tom; Draxinger, Wolfgang; Wieser, Wolfgang; Klein, Thomas; Petermann, Markus; Huber, Robert

    2017-02-01

    FDML lasers provide sweep rates in the MHz range at wide optical bandwidths, making them ideal sources for high speed OCT. Recently, at lower speed, ultralong-range swept-source OCT has been demonstrated using a tunable vertical cavity surface emitting laser (VCSEL) and also using a Vernier-tunable laser. These sources provide relatively high sweep rates and meter range coherence lengths. In order to achieve similar coherence, we developed an extremely well dispersion compensated Fourier Domain Mode Locked (FDML) laser, running at 3.2 MHz sweep rate and 120 nm spectral bandwidth. We demonstrate that this laser offers meter range coherence and enables volumetric long range OCT of moving objects.

  11. Satellite laser ranging in the near-infrared regime

    Science.gov (United States)

    Eckl, Johann J.; Schreiber, K. Ulrich; Schüler, Torben

    2017-05-01

    Satellite Laser Ranging Systems typically operate on the second harmonic wavelength of a pulsed Nd:YAG laser at a wavelength of 532 nm. The absence of sufficiently sensitive photo-detectors with a reasonably large active area made it beneficial to trade the conversion loss of frequency doubling against the higher quantum efficiency of the detectors. Solid state silicon detectors in the near infra-red regime at λ = 1.064 µm also suffered from high thermal noise and slow signal rise times, which increased the scatter of the measurements by more than a factor of 3 over the operation at λ = 532 nm. With the availability of InGaAs/InP compound - Single Photon Avalanche Diodes the situation has changed considerably. Their quantum efficiency has reached 70% and the compound material of these diodes provides a response bandwidth, which is commensurate with high high speed detectors in the regime of 532 nm. We have investigated the properties of such a diode type Princeton Lightwave PGA-200-1064 for its suitability for SLR at the Nd:YAG fundamental wavelength with respect to the quantum efficiency and their timing properties. The results are presented in this paper. Furthermore, we provide remarks to on the performance of the diode compared to state of the art detectors, that operate at the Nd:YAG second harmonic wavelength. Finally, we give an estimate of the photoelectron statistics in satellite laser ranging for different operational parameters of the Wettzell Laser Ranging System.

  12. Barium Titanate Nanoparticles: Short-range Lattice Distortions with Long-range Cubic Order

    Science.gov (United States)

    Haskell, Richard C.; Shi, Chenyang; Billinge, Simon J. L.; Puma, Eric; Bang, Sun Hwi; Bean, Nathaniel J. H.; de Sugny, Jean-Claude; Gambee, Robert G.; Hightower, Adrian; Monson, Todd C.

    Small barium titanate (BTO) nanoparticles (atomic pair distribution functions (PDFs). Fits to PDFs at temperatures of 20° to 220°C suggest that Ti atom displacements from the center of the unit cell are comparable to or even greater than those in the bulk material and persist at temperatures well above 120°C where the tetragonal to pseudo-cubic phase transition occurs in the bulk. Raman spectra acquired over a temperature range of 20° to 220°C confirm that small BTO nanoparticles exhibit a distorted unit cell even above 120°C. On the other hand, small BTO nanoparticles exhibit a long-range order consistent with a cubic lattice as recorded by laboratory XRD Bragg reflections at temperatures of 20° to 150°C. We have reconciled these seemingly contradictory data sets by fitting the PDFs over their full range of 6 nm to reveal a long-range structure with a reduced lattice distortion that still manages to support tetragonal Raman lines but is sufficiently close to cubic to yield apparent Bragg peak singlets. US DOE NNSA contract DE-AC04-94AL85000 and US DOE Office of Science contract DE-SC00112704.

  13. Ranging Behaviour of Commercial Free-Range Laying Hens

    Directory of Open Access Journals (Sweden)

    Leonard Ikenna Chielo

    2016-04-01

    Full Text Available In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources. These were: apron (0–10 m from shed normally without cover or other enrichments; enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided; and outer range (beyond 50 m from shed with no cover and mainly grass pasture. Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range

  14. Ranging Behaviour of Commercial Free-Range Laying Hens.

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  15. Osprey Range - CWHR [ds601

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  16. Short-range fundamental forces

    CERN Document Server

    Antoniadis, I; Buchner, M; Fedorov, V V; Hoedl, S; Lambrecht, A; Nesvizhevsky, V V; Pignol, G; Protasov, K V; Reynaud, S; Sobolev, Yu

    2011-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces, 2) spin-dependent axion-like forces. Differe nt experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experim ents. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.

  17. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges

  18. Ranging Behaviour of Commercial Free-Range Laying Hens

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  19. The SEMATECH Berkeley MET: extending EUV learning to 16-nm half pitch

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Baclea-an, Lorie Mae; Denham, Paul E.; George, Simi; Goldberg, Kenneth A.; Jones, Michael; Smith, Nathan; Wallow, Thomas; Montgomery, Warren; Naulleau, Patrick P.

    2011-03-18

    Several high-performing resists identified in the past two years have been exposed at the 0.3-numerical-aperture (NA) SEMATECH Berkeley Microfield Exposure Tool (BMET) with an engineered dipole illumination optimized for 18-nm half pitch. Five chemically amplified platforms were found to support 20-nm dense patterning at a film thickness of approximately 45 nm. At 19-nm half pitch, however, scattered bridging kept all of these resists from cleanly resolving larger areas of dense features. At 18-nm half pitch, none of the resists were are able to cleanly resolve a single line within a bulk pattern. With this same illumination a directly imageable metal oxide hardmask showed excellent performance from 22-nm half pitch to 17-nm half pitch, and good performance at 16-nm half pitch, closely following the predicted aerial image contrast. This indicates that observed limitations of the chemically amplified resists are indeed coming from the resist and not from a shortcoming of the exposure tool. The imageable hardmask was also exposed using a Pseudo Phase-Shift-Mask technique and achieved clean printing of 15-nm half pitch lines and modulation all the way down to the theoretical 12.5-nm resolution limit of the 0.3-NA SEMATECH BMET.

  20. Modeling of a narrow band pass filter for Bathymetry light detection and ranging (LIDAR) system

    Science.gov (United States)

    Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2017-11-01

    In this work, a narrow band pass Fabry-Perot filter is designed which can be used in an airborne light detection (ALB) and ranging bathymetry. LIDAR is done by reflecting a pulse laser beam from a target and detecting the round-trip propagation time between the source and the target. ALB systems consist of Nd: YAG laser that emits the pulses at two different wavelengths such as 1064 nm and 532 nm. Infrared pulses at 1064 nm are reflected from the water surface and the green pulses at 532 nm which penetrates the water surface and are reflected from the ground. Filters are desirable to suppress the ambient light that is reflected by the surface of the water or an atmosphere which always enter the detector as a noise. The designed filter shows a high quality with an average transmission of more than 95 % at 532 nm which is considered as practically ideal for water penetration in typical coastal waters.

  1. Design of a machine for the universal non-contact measurement of large free-form optics with 30 nm uncertainty

    NARCIS (Netherlands)

    Henselmans, R.; Rosielle, P.C.J.N.; Steinbuch, M.; Saunders, I.; Bergmans, R.

    2005-01-01

    A new universal non-contact measurement machine design for measuring free-form optics with 30 nm expanded uncertainty is presented. In the cylindrical machine concept, an optical probe with 5 mm range is positioned over the surface by a motion system. Due to a 2nd order error effect when measuring

  2. NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions

    NARCIS (Netherlands)

    Portieles, R.; Ayra, C.; Gonzalez, E.; Gallo, A.; Rodriguez, R.; Chacón, O.; López, Y.; Rodriguez, M.; Castillo, J.; Pujol, M.; Enriquez, G.; Borroto, C.; Trujillo, L.; Thomma, B.P.H.J.; Borrás-Hidalgo, O.

    2010-01-01

    Plant defensins are small cysteine-rich peptides that inhibit the growth of a broad range of microbes. In this article, we describe NmDef02, a novel cDNA encoding a putative defensin isolated from Nicotiana megalosiphon upon inoculation with the tobacco blue mould pathogen Peronospora hyoscyami

  3. Frequency-mixing scheme for the production of tunable narrowband XUV radiation (91-95 nm): application to precision spectroscopy and predissociation in diatomic molecules

    NARCIS (Netherlands)

    Philip, J.M.P.; Sprengers, J.P.; Cacciani, P.; de Lange, C.A.; Ubachs, W.M.G.

    2004-01-01

    Tunable narrowband extreme ultraviolet radiation in the range 91-95 nm is produced by sum-frequency mixing of the outputs of a visible pulsed dye amplifier (seeded by a ring dye laser) and of a seeded second-harmonic Nd : YAG laser and subsequent frequency tripling in a gas jet of xenon. The

  4. pH-induced reversal of ionic diode polarity in 300 nm thin membranes based on a polymer of intrinsic microporosity

    NARCIS (Netherlands)

    Rong, Yuanyang; Song, Qilei; Mathwig, Klaus; Madrid, Elena; He, Daping; Niemann, Ralf G.; Cameron, Petra J.; Dale, Sara E. C.; Bending, Simon; Carta, Mariolino; Malpass-Evans, Richard; McKeown, Neil B.; Marken, Frank

    2016-01-01

    “Ionic diode” (or current rectification) effects are potentially important for a range of applications including water purification. In this preliminary report, we observe novel ionic diode behaviour of thin (300 nm) membranes based on a polymer of intrinsic microporosity (PIM-EA-TB) supported on a

  5. First demonstration of InGaP/InAlGaP based 608nm orange laser and 583nm yellow superluminescent diode

    KAUST Repository

    Majid, Mohammed Abdul

    2015-11-12

    We report on the first demonstration of InGaP/InAlGaP based orange semiconductor laser (OSL) and yellow superluminescent diode (YSLD) emitting at a wavelength of 608nm and 583nm respectively. The total output power of YSLD is ∼4.5mW which is the highest ever reported power on this material system at room-temperature.

  6. Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia.

    Science.gov (United States)

    Barikbin, Behrooz; Khodamrdi, Zeinab; Kholoosi, Leila; Akhgri, Mohammad Reza; Haj Abbasi, Majid; Hajabbasi, Mojgan; Razzaghi, Zahra; Akbarpour, Samaneh

    2017-05-17

    This study aimed to evaluate the effectiveness of a combined set of low level diode laser scanner (665 nm and 808nm) on hair growth, and assessment of safety and effectiveness of a new laser scanner on hair growth treatment procedure in androgenic alopecia. 90 patients (18 to 70 years) with androgenic alopecia were randomized into three groups. The first group (n=30) received 655 nm red light using laser hat, the second group (n=30) received 655 nm red laser plus 808 nm infrared laser using a laser scanner of hair growth device (with the patent number: 77733) and the third group (n=30) received no laser as the control group. Patients in laser scanner group had better results and showed a higher increase in terminal hair density compared with laser hat group (mean of 9.61 versus 9.16 per cm2). We found significant decrease in terminal hair density from baseline in control group (mean -1.8 per cm2, pscanner of the hair growth group compared with laser hat and the control group. The study showed that treatment with new laser devise had a promising result without any observable adverse effects.

  7. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms.

    Science.gov (United States)

    Ha, Jae-Won; Lee, Jae-Ik; Kang, Dong-Hyun

    2017-02-21

    This study was conducted to investigate the basic spectral properties of a 222-nm krypton-chlorine (KrCl) excilamp and its inactivation efficacy against major foodborne pathogens on solid media, as well as on sliced cheese compared to a conventional 254-nm low-pressure mercury (LP Hg) lamp. Selective media and sliced cheese inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated with a KrCl excilamp and a LP Hg lamp at the same dose. The KrCl excilamp showed full radiant intensity from the outset at a wide range of working temperatures, especially at low temperatures of around 0 to 10°C. Irradiation with 222nm UV-C showed significantly (P<0.05) higher inactivation capacity against all three pathogens than 254-nm radiation on both media and sliced cheese surfaces without generating many sublethally injured cells which potentially could recover. The underlying inactivation mechanisms of 222-nm KrCl excilamp treatment were evaluated by fluorescent staining methods and damage to cellular membranes and intracellular enzyme inactivation were the primary factors contributing to the enhanced bactericidal effect. The results of this study suggest that a 222-nm UV-C surface disinfecting system can be applied as an alternative to conventional LP Hg lamp treatment by the dairy industry. Copyright © 2016. Published by Elsevier B.V.

  8. Near-infrared (808 and 980 nm) excited photoluminescence study in Nd-doped Y2O3 phosphor for bio-imaging

    Science.gov (United States)

    Prasad Sukul, Prasenjit; Kumar, Kaushal

    2016-12-01

    The upconversion (UC) process in lanthanide-doped nanophosphors has attracted great research interest for its extensive application potential in biological in vitro and in vivo imaging due to the high tissue penetration depth of near-infrared excitation and low autofluorescence background. In this article, the authors report the synthesis of oxide nanophosphor of size  ⩽50 nm, which forms stable aqueous dispersion. The photoluminescence study is made on the nanophosphor upon 808 and 980 nm diode laser excitations. The 808 nm excitation resulted in strong emission at 795 nm due to the 4K13/2  →  4I13/2 transition along with other emissions from the Nd3+ ion. The 980 nm excitation has resulted in it turning green in the 525-560 nm range and is assigned to the 4S3/2  →  4I15/2 transition of the Er3+ ion, which is supposed to be present in a trace amount in the sample. The observation of strong UC emission indicates that the sample can be used for UC-based bio-imaging applications.

  9. Desert Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Stanley G. Kitchen

    2013-01-01

    Entries qualify for inclusion if they were conducted in whole or part at the Desert Experimental Range (DER, also known as the Desert Range Experiment Station) or were based on DER research in whole or part. They do not qualify merely by the author having worked at the DER when the research was performed or prepared. Entries were drawn from the original abstracts or...

  10. Modeling and Measurements of Atmospheric Methane at Four Corners, NM

    Science.gov (United States)

    Costigan, K. R.; Lindenmaier, R.; Dubey, M. K.

    2014-12-01

    Methane (CH4) fugitive emissions from fossil energy mining remain highly uncertain and scrutinized with the rapid expansion in domestic production by hydraulic fracturing. Top down observational studies of reported bottom up inventories are limited, but the latter may be biased low. We focus on the Four Corners region of the Southwestern United States, a region with extensive coal bed methane production, to verify its current emissions. At our site we measured methane over a range of scales using ground-based, in-situ instruments and a Fourier Transform Spectrometer (FTS), which is part of the Total Carbon Column Observing Network (TCCON). Measurements of CH4 produced much higher concentrations of methane in this rural area than previously expected. The diurnal variation and wind direction dependence in the CH4 concentrations suggest a source location tied to topographically induced winds and consistent with oil and gas production. This paper presents the results of WRF-Chem simulations that are performed to simulate methane concentrations in this region. Emissions from the Emissions Database for Global Atmospheric Research (EDGAR) indicate large CH4 emissions, associated with the gas production and distribution sector, in one 0.1 x 0.1 degree grid cell within the region and these emissions are employed in the simulations. A series of six simulations are run at two-month intervals during 2012. Each simulates a six-day time series to demonstrate the diurnal and seasonal characteristics of the methane concentrations that would be expected at the FTS location, from the sources reported in the EDGAR data set. The results of these simulations will be presented, along with the implications for interpretation of the FTS measurements. We will also interpret our FTS measurements of ethane (C2H6), which is emitted only from fossil fuel mining, to attribute leaks.

  11. Final report for SNL/NM environmental drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, R.P.; Meyer, R.D.; Staller, G.E. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    Concern for the environment and cost reduction are driving forces for a broad effort in government and the private sector to develop new, more cost-effective technologies for characterizing, monitoring and remediating environmental sites. Secondary goals of the characterization, monitoring and remediation (CMR) activity are: minimize secondary waste generation, minimize site impact, protect water tables, and develop methods/strategies to apply new technologies. The Sandia National Laboratories (SNL) project in directional boring for CMR of waste sites with enhanced machinery from the underground utility installation industry was initiated in 1990. The project has tested a variety of prototype machinery and hardware built by the industrial partner, Charles Machine Works (CMW), and SNL at several sites (Savannah River Site (SRS), Hanford, SNL, Kirtland AFB (KAFB), CMW), successfully installed usable horizontal environmental test wells at SRS and SNL/KAFB, and functioned as a clearing house for information regarding application of existing commercial machinery to a variety of governmental and commercial sites. The project has continued to test and develop machinery in FY 94. The original goal of cost-effectiveness is being met through innovation, adaptation, and application of fundamental concepts. Secondary goals are being met via a basic philosophy of {open_quotes}cut/thrust and compact cuttings without adding large quantities of fluid{close_quotes} to an environmental problem site. This technology will be very cost-effective where applicable. Technology transfer and commercialization by CMW is ongoing and will continue into FY 95. Technology transfer to the private sector is ongoing and reflected in increasing machinery sales to environmental contractors. Education of regulatory agencies resulting in restructuring of appropriate regulatory standards for specification of the horizontal drilling techniques continues to be a long-range goal.

  12. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    Science.gov (United States)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  13. The Global Albedo of the Moon at 1064 nm from LOLA

    Science.gov (United States)

    Lucey, P. G.; Neumann, G. A.; Riner, M. A.; Mazarico, E.; Smith, D. E.; Zuber, M. T.; Paige, D. A.; Bussey, D. B.; Cahill, J. T.; McGovern, A.; hide

    2014-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) measures the backscattered energy of the returning altimetric laser pulse at its wavelength of 1064 nm, and these data are used to map the reflectivity of the Moon at zero-phase angle with a photometrically uniform data set. Global maps have been produced at 4 pixels per degree (about 8 kilometers at the equator) and 2 kilometers resolution within 20 deg latitude of each pole. The zero-phase geometry is insensitive to lunar topography, so these data enable characterization of subtle variations in lunar albedo, even at high latitudes where such measurements are not possible with the Sun as the illumination source. The geometric albedo of the Moon at 1064 nm was estimated from these data with absolute calibration derived from the Kaguya Multiband Imager and extrapolated to visual wavelengths. The LOLA estimates are within 2 sigma of historical measurements of geometric albedo. No consistent latitude-dependent variations in reflectance are observed, suggesting that solar wind does not dominate space weathering processes that modify lunar reflectance. The average normal albedo of the Moon is found to be much higher than that of Mercury consistent with prior measurements, but the normal albedo of the lunar maria is similar to that of Mercury suggesting a similar abundance of space weathering products. Regions within permanent shadow in the polar regions are found to be more reflective than polar surfaces that are sometimes illuminated. Limiting analysis to data with slopes less than 10 deg eliminates variations in reflectance due to mass wasting and shows a similar increased reflectivity within permanent polar shadow. Steep slopes within permanent shadow are also more reflective than similar slopes that experience at least some illumination. Water frost and a reduction in effectiveness of space weathering are offered as possible explanations for the increased reflectivity of permanent shadow; porosity is largely ruled out as the

  14. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  15. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  16. Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm

    Directory of Open Access Journals (Sweden)

    C. H. A. von Savigny

    Full Text Available Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS. The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.

    Key words. Atmospheric composition and structure (airglow and aurora; thermosphere – composition and chemistry; instruments and techniques

  17. Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm

    Directory of Open Access Journals (Sweden)

    C. H. A. von Savigny

    1999-11-01

    Full Text Available Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS. The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.Key words. Atmospheric composition and structure (airglow and aurora; thermosphere – composition and chemistry; instruments and techniques

  18. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-01

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm-1 (at the 458-nm laser excitation) which shifts to 1630 cm-1 at the 257-nm laser excitation. Contrary to sp2-bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm-1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  19. UV Generation of 25 mJ/pulse at 289 nm for Ozone Lidar

    Science.gov (United States)

    Storm, Mark E.; Marsh, Waverly; Barnes, James C.

    1998-01-01

    Our paper describes a technique for generating tunable UV laser radiation between 250-300 nm capable of energies up to 30-5O mJ/pulse. The tunability of this source is attractive for selecting ozone absorption cross sections which are optimal for ozone DIAL detection throughout the troposphere. A Nd:YAG laser is used to pump a pulsed titanium sapphire laser which is then frequency tripled into the UV. Titanium sapphire (TiS) lases robustly between 750-900 nm. In initial experiments we have converted 110 mJ of 867 nm from a TiS laser into 28 mJ at 289 nm. The energy conversion efficiency was 62% for doubling into 433 nm and 25% into 289 nm.

  20. 730-nm optical parametric conversion from near- to short-wave infrared band

    DEFF Research Database (Denmark)

    Boggio, J.M.C.; Windmiller, J.R.; Knutzen, M.

    2008-01-01

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling sin...... single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.......A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling...

  1. CMOS-NEMS Copper Switches Monolithically Integrated Using a 65 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Jose Luis Muñoz-Gamarra

    2016-02-01

    Full Text Available This work demonstrates the feasibility to obtain copper nanoelectromechanical (NEMS relays using a commercial complementary metal oxide semiconductor (CMOS technology (ST 65 nm following an intra CMOS-MEMS approach. We report experimental demonstration of contact-mode nano-electromechanical switches obtaining low operating voltage (5.5 V, good ION/IOFF (103 ratio, abrupt subthreshold swing (4.3 mV/decade and minimum dimensions (3.50 μm × 100 nm × 180 nm, and gap of 100 nm. With these dimensions, the operable Cell area of the switch will be 3.5 μm (length × 0.2 μm (100 nm width + 100 nm gap = 0.7 μm2 which is the smallest reported one using a top-down fabrication approach.

  2. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    Science.gov (United States)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  3. Particle control challenges in process chemicals and ultra-pure water for sub-10nm technology nodes

    Science.gov (United States)

    Rastegar, Abbas; Samayoa, Martin; House, Matthew; Kurtuldu, Hüseyin; Eah, Sang-Kee; Morse, Lauren; Harris-Jones, Jenah

    2014-04-01

    Particle contamination in ultra-pure water (UPW) and chemicals will eventually end up on the surface of a wafer and may result in killer defects. To improve the semiconductor processing yield in sub-10 nm half pitch nodes, it is necessary to control particle defectivity. In a systematic study of all major techniques for particle detection, counting, and sizing in solutions, we have shown that there is a gap in the required particle metrology which needs to be addressed by the industry. To reduce particles in solutions and improve filter retention for sub-10 nm particles with very low densities (<10 particles/mL), liquid particle counters that are able to detect small particles at low densities are required. Non-volatile residues in chemicals and UPW can result in nanoparticles. Measuring absolute non-volatile residues in UPW with concentrations in the ppb range is a challenge. However, by using energy-dispersive spectroscopy (EDS) analysis through transmission electron microscopy (TEM) of non-volatile residues we found silica both in dissolved and colloidal particle form which is present in one of the cleanest UPW that we tested. A particle capture/release technique was developed at SEMATECH which is able to collect particles from UPW and release them in a controlled manner. Using this system we showed sub-10 nm particles are present in UPW. In addition to colloidal silica, agglomerated carbon containing particles were also found in UPW.

  4. Sub-10 nm Silicon Nanopillar Fabrication Using Fast and Brushless Thermal Assembly of PS-b-PDMS Diblock Copolymer.

    Science.gov (United States)

    Garnier, Jérôme; Arias-Zapata, Javier; Marconot, Olivier; Arnaud, Sandrine; Böhme, Sophie; Girardot, Cécile; Buttard, Denis; Zelsmann, Marc

    2016-04-20

    A new approach to obtaining spherical nanodomains using polystyrene-block-polydimethylsiloxane (PS-b-PDMS) is proposed. To reduce drastically the process time, we blended a copolymer with cylindrical morphology with a PS homopolymer. Adding PS homopolymer into a low-molar-mass cylindrical morphology PS-b-PDMS system drives it toward a spherical morphology. Besides, by controlling the as-spun state, spherical PDMS nanodomains could be kept and thermally arranged. This PS-homopolymer addition allows not only an efficient, purely thermal arrangement process of spheres but also the ability to work directly on nontreated silicon substrates. Indeed, as shown by STEM measurements, no PS brush surface treatment was necessary in our study to avoid a PDMS wetting layer at the interface with the Si substrate. Our approach was compared to a sphere-forming diblock copolymer, which needs a longer thermal annealing. Furthermore, GISAXS measurements provided complete information on PDMS sphere features. Excellent long-range order spherical microdomains were therefore produced on flat surfaces and inside graphoepitaxy trenches with a period of 21 nm, as were in-plane spheres with a diameter of 8 nm with a 15 min thermal annealing. Finally, direct plasma-etching transfer into the silicon substrate was demonstrated, and 20 nm high silicon nanopillars were obtained, which are very promising results for various nanopatterning applications.

  5. Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 °C.

    Science.gov (United States)

    Choi, Chung Seok; Jo, Yun Hwan; Kim, Min Gyu; Lee, Hyuck Mo

    2012-02-17

    To steadily apply conductive inks that contain Cu nanoparticles (NPs) to inkjet printing of patterns at temperatures below 150 °C, the size of the Cu NPs must be reduced. Therefore, we obtained Cu NPs in the range of 9-33 nm, and we studied how their size changes. The variation of the chemical reaction rate changed the size of the Cu NPs for two main reasons. First, the fast transition rate of the Cu precursors at high pH values raises the supersaturation level of the Cu precursor above that of a process with a slow transition rate. The high supersaturation level is generally attributed to the small Cu nuclei and the slow growth caused by their density. Second, the high viscosity of the reaction solution, which occurs because polyvinyl pyrrolidone (PVP) causes an increase in the repulsive force, slows the growth of the Cu NPs at high pH values. The recrystallization temperature of the 9 nm Cu NPs was reduced to 108 °C, and a low specific resistivity of 45 μΩ cm was achieved using the conductive ink prepared with 9 nm Cu NPs at 120 °C. This temperature is significantly lower than those reported for other Cu NP inks. Hence, Cu NP conductive ink could considerably reduce costs because of its apparently low temperature, resolving the main bottleneck of inkjet printing on flexible (polymeric) substrates.

  6. Initial benchmarking of a new electron-beam raster pattern generator for 130-100 nm maskmaking

    Science.gov (United States)

    Sauer, Charles A.; Abboud, Frank E.; Babin, Sergey V.; Chakarian, Varoujan; Ghanbari, Abe; Innes, Robert; Trost, David; Raymond, Frederick, III

    2000-07-01

    The decision by the Semiconductor Industry Association (SIA) to accelerate the continuing evolution to smaller linewidths is consistent with the commitment by Etec Systems, Inc. to rapidly develop new technologies for pattern generation systems with improved resolution, critical dimension (CD) uniformity, positional accuracy, and throughput. Current pattern generation designs are inadequate to meet the more advanced requirements for masks, particularly at or below the 100 nm node. Major changes to all pattern generation tools will be essential to meet future market requirements. An electron-beam (e-beam) system that is designed to meet the challenges for 130 - 100 nm device generation with extendibility to the 70-nm range will be discussed. This system has an architecture that includes a graybeam writing strategy, a new state system, and improved thermal management. Detailed changes include a pulse width modulated blanking system, per-pixel deflection, retrograde scanning multipass writing, and a column with a 50 kV accelerating voltage that supports a dose of up to 45 (mu) C/cm2 with minimal amounts of resist heating. This paper examines current issues, our approach to meeting International Technology Roadmap for Semiconductors (ITRS) requirements, and some preliminary results from a new pattern generator.

  7. Ultrasmall-Superbright Neodymium-Upconversion Nanoparticles via Energy Migration Manipulation and Lattice Modification: 808 nm-Activated Drug Release.

    Science.gov (United States)

    Zhang, Yan; Yu, Zhongzheng; Li, Jingqiu; Ao, Yanxiao; Xue, Jingwen; Zeng, Zhiping; Yang, Xiangliang; Tan, Timothy Thatt Yang

    2017-03-28

    Nd3+-sensitized upconversion nanoparticles are among the most promising emerging fluorescent nanotransducers. They are activated by 808 nm irradiation, which features merits such as limited tissue overheating and deeper penetration depth, and hence are attractive for diagnostic and therapeutic applications. Recent studies indicate that ultrasmall nanoparticles (upconversion nanoparticles in the sub-10 nm range suffer from poor luminescence due to their ultrasmall size and greater proportion of lattice defects. To reconcile these opposing traits, we adopt a combinatorial strategy of energy migration manipulation and crystal lattice modification, creating ultrasmall-superbright Nd3+-sensitized nanoparticles with 2 orders of magnitude enhancement in upconversion luminescence. Specifically, we configure a sandwich-type nanostructure with a Yb3+-enriched intermediate layer [Nd3+]-[Yb3+-Yb3+]-[Yb3+-Tm3+] to form a positively reinforced energy migration system, while introducing Ca2+ into the crystal lattice to reduce lattice defects. Furthermore, we apply the nanoparticles to 808 nm light-mediated drug release. The results indicate time-dependent cancer cells killing and better antitumor activities. These ultrasmall-superbright dots have unraveled more opportunities in upconversion photomedicine with the promise of potentially safer and more effective therapy.

  8. Next generation 9xx/10xx nm high power laser diode bars for multi-kilowatt industrial applications

    Science.gov (United States)

    Commin, Paul; Todt, René; Krejci, Martin; Bättig, Rainer; Brunner, Reinhard; Lichtenstein, Norbert

    2013-02-01

    We report on the development of high power, 9xx-10xx nm laser diode bars for use in direct diode systems and for solidstate and fibre laser pumping with applications in industrial markets. For 1 cm wide bars on micro channel cooler (MCC) we have achieved a reliable output power of 250 W across the 900 nm - 1060 nm range. At this output power level we have achieved power conversion efficiencies of 65-66 % and 90 % power content slow axis beam divergence of ~6.5°. Results of a 6400 h life test show an average power degradation of 0.6 % per 1000 h at this operating power level. We will also show results of high power bars assembled on the new OCLARO conductive cooler, the BLM. This new cooler has a small footprint of 12.6 mm × 24.8 mm and is designed for lateral or vertical stacking of diodes in multi kilowatt systems but with the benefits associated with a conductive cooler. The thermal properties are shown to be the same as for a standard CS mount. 1 cm wide high fill factor bars and 0.5 cm wide low fill factor half bars assembled on the BLM operate at 63-64 % power conversion efficiency (PCE) with output powers of up to 250 W and 150 W, respectively.

  9. Green laser light (532nm) activates a chloride current in the C1 neuron of Helix aspersa.

    Science.gov (United States)

    Reece, Peter J; Dholakia, Kishan; Thomas, Roger C; Cottrell, Glen A

    2008-03-15

    Five hundred and thirty-two nanometers laser light evokes neuron-specific electrical responses in identified neurons of Helix ganglia. Such responses are intensity-dependent over the range 25-1500 mW, readily reversible and repeatable. Detailed experiments on the C1 neuron, which is inhibited by 532 nm light, showed that inhibition results from a selective increase in transmembrane Cl(-) ion conductance. Experiments with calcium-sensitive microelectrodes suggest that the response does not result from an increase in [Ca(2+)](i). The change in Cl(-) ion conductance probably occurs in the extensive plasmalemma infoldings of the proximal axon.

  10. Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Andrew; Salmassi, Farhad; Liu, Yanwei; Gullikson, Eric M.

    2009-09-09

    Magnesium/silicon carbide (Mg/SiC) multilayers have been fabricated with normal incidence reflectivity in the vicinity of 40% to 50% for wavelengths in the 25 to 50 nm wavelength range. However many applications, for example solar telescopes and ultrafast studies using high harmonic generation sources, desire larger bandwidths than provided by high reflectivity Mg/SiC multilayers. We investigate introducing a third material, Scandium, to create a tri-material Mg/Sc/SiC multilayer allowing an increase the bandwidth while maintaining high reflectivity.

  11. Measurement of 60CO gamma radiation induced attenuation in multimode step-index POF at 530 nm

    Directory of Open Access Journals (Sweden)

    Kovačević Milan S.

    2013-01-01

    Full Text Available As optical fibres are used ever more extensively in space applications, nuclear industry, medicine and high-energy physics experiments, it has become essential to investigate the influence of ionizing radiation on their characteristics. In this work, the radiation-induced attenuation at 530 nm is investigated experimentally in step-index multimode polymethyl-methacrylate plastic optical fibres exposed to low dose-rate gamma radiation. Cumulative doses ranged from 50 Gy to 500 Gy. The radiation induced attenuation has been empirically found to obey the power law RIA= aDb, where D is the total radiation dose and a and b are the constants determined by fitting.

  12. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    Directory of Open Access Journals (Sweden)

    H. Yu

    2016-03-01

    Full Text Available Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014–2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity – RH and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm−3 s−1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56–0.86, excluding a day with significant nocturnal nucleation, but the correlation among all eight events deteriorated (R2 =  0.17 due to temperature or season change. We observed that new particle growth rate (GR did not increase monotonically with particle size, but had a local maximum up to 25 nm h−1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  13. Photonic band gap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  14. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz....

  15. Effects of laser irradiation (670-nm InGaP and 830-nm GaAlAs) on burn of second-degree in rats.

    Science.gov (United States)

    Chiarotto, Gabriela Bortolança; Neves, Lia Mara Grosso; Esquisatto, Marcelo Augusto Marreto; do Amaral, Maria Esméria Corezola; dos Santos, Gláucia Maria Tech; Mendonça, Fernanda Aparecida Sampaio

    2014-09-01

    This study investigated the effects of 670-nm indium gallium phosphide (InGaP) and 830-nm gallium aluminum arsenide (GaAlAs) laser therapy on second-degree burns induced on the back of Wistar rats. Sixty-three male Wistar rats were anesthetized, and second-degree burns were made on their back. The animals were then divided randomly into three groups: control (C), animals treated with 670-nm InGaP laser (LIn), and animals treated with 830-nm GaAlAs laser (LGa). The wound areas were removed after 2, 6, 10, 14, and 18 days of treatment and submitted to structural and morphometric analysis. The following parameters were studied: total number of granulocytes and fibroblasts, number of newly formed blood vessels, and percentage of birefringent collagen fibers in the repair area. Morphometric analysis showed that different lasers 670-nm InGaP and 830-nm GaAlAs reduced the number of granulocytes and an increase of newly formed vessels in radiated lesions. The 670-nm InGaP laser therapy was more effective in increasing the number of fibroblasts. The different treatments modified the expression of VEGF and TGF-β1, when compared with lesions not irradiated. The different types of light sources showed similar effects, improved the healing of second-degree burns and can help for treating this type of injury. Despite the large number of studies with LLTI application in second-degree burns, there is still divergence about the best irradiation parameters to be used. Further studies are needed for developing a protocol effective in treating this type of injury.

  16. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes.

    Science.gov (United States)

    Beisswenger, Paul J; Howell, Scott; Mackenzie, Todd; Corstjens, Hugo; Muizzuddin, Neelam; Matsui, Mary S

    2012-03-01

    Advanced glycation end products (AGEs) and oxidation products (OPs) play an important role in diabetes complications, aging, and damage from sun exposure. Measurement of skin autofluorescence (SAF) has been promoted as a noninvasive technique to measure skin AGEs, but the actual products quantified are uncertain. We have compared specific SAF measurements with analytically determined AGEs and oxidative biomarkers in skin collagen and determined if these measurements can be correlated with chronological aging and actinic exposure. SAF at four excitation (ex)/emission (em) intensities was measured on the upper inner arm ("sun protected") and dorsal forearm ("sun exposed") in 40 subjects without diabetes 20-60 years old. Skin collagen from the same sites was analyzed by liquid chromatography-tandem mass spectrometry for three AGEs-pentosidine, carboxymethyllysine (CML), and carboxyethyllysine (CEL)-and the OP methionine sulfoxide (MetSO). There was poor correlation of AGE-associated fluorescence spectra with AGEs and OP in collagen, with only pentosidine correlating with fluorescence at 370(ex)/440(em) nm. A little-studied SAF (440(ex)/520(em) nm), possibly reflecting elastin cross-links, correlated with all AGEs and OPs. Levels of CML, pentosidine, and MetSO, but not SAF, were significantly higher in sun-exposed skin. These AGEs and OPs, as well as SAF at 370(ex)/440(em) nm and 440(ex)/520(em) nm, increased with chronological aging. SAF measurements at 370(ex)/440(em) nm and 335(ex)/385(em) nm, except for pentosidine, which correlated with fluorescence at 370(ex)/440(em), correlate poorly with glycated and oxidatively modified protein in human skin and do not reflect actinic modification. A new fluorescence measurement (440(ex)/520(em) nm) appears to reflect AGEs and OPs in skin.

  17. Polarization-Entangled Photon Pairs From Periodically-Poled Crystalline Waveguides Over a Range of Frequencies.

    Science.gov (United States)

    Heberle, Dylan A; Levine, Zachary H

    2013-01-01

    We propose a method to extend the frequency range of polarization entanglement in periodically poled rubidium-doped potassium titanyl phosphate (Rb:KTP) waveguides. Our calculations predict that output wavelengths from 1130 nm to 1257 nm may be achieved using Rb:KTP by the appropriate selection of a direction of propagation for the waveguide. The fidelity using a poling period of 1 mm is approximately 0.98.

  18. Reference Ranges & What They Mean

    Science.gov (United States)

    ... Chains Sex Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle ... If you're trying to follow a healthy lifestyle, take test results that are within range as ...

  19. Kenai National Moose Range Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This book presents a summary of the history, wildlife, recreational opportunities, economic uses, and future plans for Kenai National Moose Range.

  20. A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter/amplifier based on a 1064 nm pump source.

    Science.gov (United States)

    Kuyken, B; Leo, F; Mussot, A; Kudlinski, A; Roelkens, G

    2015-05-18

    We demonstrate a two-stage wavelength converter that uses compact near-infrared sources to amplify and convert short-wave infrared signals. The first stage consists of a photonic crystal fiber wavelength converter pumped by a Q-switched 1064 nm pump source, while the second stage consists of a silicon photonic wire waveguide wavelength converter. The system enables on-chip amplification and conversion of up to 30 dB . We demonstrate amplification in a broad wavelength range around 2344 nm using temporally long pulses (>300ps).