Sample records for random waviness curvature

  1. Effects of Mild Curvature on ANCOVA and Randomized Blocks. (United States)

    Klockars, Alan J.; Potter, Nina Salcedo

    The type I error control and power of a number of analysis of covariance (ANCOVA) and randomized block (RB) designs with curvilinear data were studied for tests of the additive treatment effect and interaction. For tests of additive effects, the analysis was also conducted using systematic assignment to treatments and using random assignment with…

  2. Simulation of waviness in neutron guides

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengaard; Bertelsen, Mads; Bergbäck Knudsen, Erik


    As the trend of neutron guide designs points towards longer and more complex guides, imperfections such as waviness becomes increasingly important. Simulations of guide waviness has so far been limited by a lack of reasonable waviness models. We here present a stochastic description of waviness...... and its implementation in the McStas simulation package. The effect of this new implementation is compared to the guide simulations without waviness and the simple, yet unphysical, waviness model implemented in McStas 1.12c and 2.0....

  3. Near-field interaction of colloid near wavy walls (United States)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  4. Development of a wavy Stark velocity filter for studying interstellar chemistry (United States)

    Okada, Kunihiro; Takada, Yusuke; Kimura, Naoki; Wada, Michiharu; Schuessler, Hans A.


    Cold polar molecules are key to both the understanding of fundamental physics and the characterization of the chemical evolution of interstellar clouds. To facilitate such studies over a wide range of temperatures, we developed a new type of Stark velocity filter for changing the translational and rotational temperatures of velocity-selected polar molecules without changing the output beam position. The translational temperature of guided polar molecules can be significantly varied by exchanging the wavy deflection section with one having a different radius of the curvature and a different deflection angle. Combining in addition a temperature variable gas cell with the wavy Stark velocity filter enables to observe the translational and rotational temperature dependence of the reaction-rate constants of cold ion-polar molecule reactions over the interesting temperature range of 10-100 K.

  5. Development of a wavy Stark velocity filter for studying interstellar chemistry. (United States)

    Okada, Kunihiro; Takada, Yusuke; Kimura, Naoki; Wada, Michiharu; Schuessler, Hans A


    Cold polar molecules are key to both the understanding of fundamental physics and the characterization of the chemical evolution of interstellar clouds. To facilitate such studies over a wide range of temperatures, we developed a new type of Stark velocity filter for changing the translational and rotational temperatures of velocity-selected polar molecules without changing the output beam position. The translational temperature of guided polar molecules can be significantly varied by exchanging the wavy deflection section with one having a different radius of the curvature and a different deflection angle. Combining in addition a temperature variable gas cell with the wavy Stark velocity filter enables to observe the translational and rotational temperature dependence of the reaction-rate constants of cold ion-polar molecule reactions over the interesting temperature range of 10-100 K.

  6. Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation

    Directory of Open Access Journals (Sweden)

    Ahmed Patel


    Full Text Available This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously.

  7. Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis. (United States)

    Mahata, Paritosh; Das, Sovan Lal


    We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.

  8. Influence of a white noise at channel inlet on the parallel and wavy convective instabilities of Poiseuille-Rayleigh-Bénard flows (United States)

    Nicolas, Xavier; Zoueidi, Noussaiba; Xin, Shihe


    The present paper concerns Poiseuille-Rayleigh-Bénard mixed convection flows in horizontal rectangular air-filled channels of large spanwise aspect ratio (W/H ≥ 10) and it focuses on the primary and secondary thermoconvective instabilities made of steady longitudinal and unsteady wavy rolls for 100 ≤ Re ≤ 200, 3000 8000 is due to spanwise oscillations of thermoconvective rolls that favor a bulk temperature homogenization. Because they are a convective instability, wavy rolls and their space and time development are studied numerically by maintaining at channel inlet, a permanent random excitation: it is designed to cover all the modes and allows detecting the wavy roll modes that are naturally amplified by the flow and those that are damped. Wavy roll patterns are characterized with respect to its three control parameters: Re, the relative distance ɛ to the critical Rayleigh number Ra≈*, and the excitation magnitude Aexc. The growth length of the wavy rolls is shown to correlate with ɛ-0.72 and Log(Aexc). The frequency, wave number, and phase velocity of the most amplified mode, the wall averaged Nusselt number and the spanwise displacements of the wavy rolls are independent of Aexc in the fully developed zone, but depend a lot on ɛ for ɛ 2 (i.e., Ra > 3Ra≈*). Correlation laws as a function of Re, ɛ, and Aexc are proposed for most of the exploited quantities. Numerical simulations performed are in a good agreement with experimental results on the wavy rolls obtained by Pabiou et al. ["Wavy secondary instability of longitudinal rolls in Rayleigh-Bénard-Poiseuille flows," J. Fluid Mech. 542, 175 (2005), 10.1017/S0022112005006154]. Finally, wavy roll characteristics are shown to be potentially interesting to better homogenize the vapor depositions in the horizontal rectangular chemical vapor deposition reactors used to make thin coatings on heated substrates from gaseous components.

  9. Poisseuille flow over a wavy surface (United States)

    Haward, Simon J.; Shen, Amy Q.; Page, Jacob; Zaki, Tamer A.


    We present a detailed series of experiments using spatially resolved flow velocimetry to examine the flow of Newtonian fluids through rectangular channels with one wavy surface of wave number k . The glass channels are fabricated by the method of selective laser-induced etching, which allows them to be made with a high (quasi-2D) aspect ratio (width/depth, w /2 d =5 ) and with an accurate wave profile of small relative amplitude (A /d =0.05 ,A attributed to the contrasting boundary conditions in the different flow configurations. Our experimental results also compare favorably to results from linear theory for a Poiseuille base flow and thus establish a detailed experimental complement to the theory.

  10. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.


    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  11. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir


    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  12. The curvature coordinate system

    DEFF Research Database (Denmark)

    Almegaard, Henrik


    The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lines......, called middle curvature lines, is introduced. These lines define the curvature coordinate system. Using the curvature coordinate system, the surface can be conformally mapped on the plane. In this mapping, elliptic sections are mapped as circles, and hyperbolic sections are mapped as equilateral...... hyperbolas. This means that when a plane orthogonal system of curves for which the vertices in a mesh always lie on a circle is mapped on a surface with positive Gaussian curvature using inverse mapping, and the mapped vertices are connected by straight lines, this network will form a faceted surface...

  13. The meaning of curvature

    DEFF Research Database (Denmark)

    (geodesic) triangles and negative curvatures slim triangles. Some basic ideas from metric (length-)space geometry and from the geometric analysis of the Laplacian will be surveyed and applied. Via the Laplacian the curvature tensor is in control of a variety of very natural phenomena ranging from heat......This talk is essentially concerned with the shape molding forces of curvature and with the old question of how to detect the presence of curvature in manifolds and length spaces at various scales ranging from global to local to microlocal. As the old saying goes: Positive curvatures produce fat...... diffusion to volume growth. We are e.g. interested in obtaining precise bounds for mean exit times for Brownian motions and for isoperimetric inequalities. One way to obtain such bounds are via curvature controlled comparison with corresponding values in constant curvature spaces and in other tailor-made so...

  14. Hypersonic boundary layer stabilization by using a wavy surface (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.


    Numerical simulation of hypersonic (M∞=6) flow and evolution of disturbances on a smooth plate and a shallow grooved plate was performed by solving two-dimensional Navier– Stokes equations. Computational soft-ware verification was conducted by comparison with existing data of pressure pulsations on plates surface. It was showed that wavy surface significantly decrease pressure pulsations on plate surface and does not increase the value of mean heat fluxes. Data about effect of wavy surfaces with different form on the disturbances intensity in hypersonic boundary layer was obtained.

  15. A comparative study on effect of plain-and wavy-wall confinement on ...

    Indian Academy of Sciences (India)

    Keywords. Bluff body; wake; flow separation; wavy-wall confinement; CFD simulation; finite volume method. Abstract. A first attempt is made for identifying the wake characteristics of circular cylinder confined by a wavy wall at laminar flow regime. Numerical study of flow characteristics past circular cylinder with wavy-wall ...

  16. WAViS server for handling, visualization and presentation of multiple alignments of nucleotide or amino acids sequences. (United States)

    Zika, Radek; Paces, Jan; Pavlícek, Adam; Paces, Václav


    Web Alignment Visualization Server contains a set of web-tools designed for quick generation of publication-quality color figures of multiple alignments of nucleotide or amino acids sequences. It can be used for identification of conserved regions and gaps within many sequences using only common web browsers. The server is accessible at

  17. Systematic periodicity in waviness of vertically aligned carbon nanotubes explained by helical buckling (United States)

    Jahangiri, Mehdi


    A hypothesis is proposed in this work to account for the geometry of individual vertically aligned carbon nanotubes (VACNTs) that not only justifies the directionality of their growth, but also explains the origin of the waviness frequently reported for these nanotube forests. Such waviness has fundamental effects on the transport/conduction properties of VACNTs, either through or along them, regarding phenomena such as mass, stress, heat and electricity. Despite the general opinion about randomness of carbon nanotubes (CNTs) tortuosity, we demonstrate here that rules of helical buckling of tubular strings is applicable to VACNTs, based on which a regular 3D helical geometry is proposed for VACNTs, with a 2D sine wave shape side-profile. In this framework, gradual increase of the total free surface energy by growth of CNTs ensues their partial cohesion, driven by van der Waals interactions, to reduce the excess surface energy. On the other hand, their cohesion is accompanied by their deformation and loss of straightness, which in turn, translates to buildup of an elastic strain energy in the system. The balance of the two energies along with the spatial constraints on each CNT at its contact points with neighboring CNTs, is manifested in its helical buckling, that is systematically influenced by nanostructural characteristics of VACNTs, such as their diameter, wall thickness and inter-CNT spacing.

  18. Systematic periodicity in waviness of vertically aligned carbon nanotubes explained by helical buckling. (United States)

    Jahangiri, Mehdi


    A hypothesis is proposed in this work to account for the geometry of individual vertically aligned carbon nanotubes (VACNTs) that not only justifies the directionality of their growth, but also explains the origin of the waviness frequently reported for these nanotube forests. Such waviness has fundamental effects on the transport/conduction properties of VACNTs, either through or along them, regarding phenomena such as mass, stress, heat and electricity. Despite the general opinion about randomness of carbon nanotubes (CNTs) tortuosity, we demonstrate here that rules of helical buckling of tubular strings is applicable to VACNTs, based on which a regular 3D helical geometry is proposed for VACNTs, with a 2D sine wave shape side-profile. In this framework, gradual increase of the total free surface energy by growth of CNTs ensues their partial cohesion, driven by van der Waals interactions, to reduce the excess surface energy. On the other hand, their cohesion is accompanied by their deformation and loss of straightness, which in turn, translates to buildup of an elastic strain energy in the system. The balance of the two energies along with the spatial constraints on each CNT at its contact points with neighboring CNTs, is manifested in its helical buckling, that is systematically influenced by nanostructural characteristics of VACNTs, such as their diameter, wall thickness and inter-CNT spacing.

  19. Curvature of the penis (United States)

    ... if: You have symptoms of curvature of the penis. Erections are painful. You have a sharp pain in ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  20. Spaces of constant curvature

    CERN Document Server

    Wolf, Joseph A


    This book is the sixth edition of the classic Spaces of Constant Curvature, first published in 1967, with the previous (fifth) edition published in 1984. It illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds and their curvatures, of the representation theory of finite groups, and of indications of recent progress in discrete subgroups of Lie groups. Part I is a brief introduction to differentiable manifolds, covering spaces, and riemannian and pseudo-riemannian geomet

  1. Roughness and waviness requirements for laminar flow surfaces (United States)

    Obara, Clifford J.; Holmes, Bruce J.


    Many modern metal and composite airframe manufacturing techniques can provide surface smoothness which is compatible with natural laminar flow (NLF) requirements. An important consideration is manufacturing roughness of the surface in the form of steps and gaps perpendicular to the freestream. The principal challenge to the design and manufacture of laminar flow surfaces today appears to be in the installation of leading-edge panels on wing, nacelle, and empennage surfaces. A similar challenge is in the installation of access panels, doors, windows, fuselage noses, and engine nacelles. Past work on roughness and waviness manufacturing tolerances and comparisons with more recent experiments are reviewed.

  2. Chern and Total Curvature

    Indian Academy of Sciences (India)

    characteristic, Chern class. Siddhartha Gadgil. Shiing-Shen Chern 1 was one of the great math- ematicians of the twentieth century, and a tow- ering figure in the field of differential geometry, where one studies curvatures of spaces. In this article we give the reader a glimpse into differ- ential geometry and the work of Chern.

  3. Hair curvature: a natural dialectic and review. (United States)

    Nissimov, Joseph N; Das Chaudhuri, Asit Baran


    Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways

  4. Failure Behavior of Unidirectional Composites under Compression Loading: Effect of Fiber Waviness. (United States)

    Nair, Swaroop Narayanan; Dasari, Aravind; Yue, Chee Yoon; Narasimalu, Srikanth


    The key objective of this work is to highlight the effect of manufacturing-induced fiber waviness defects on the compressive failure of glass fiber-reinforced unidirectional specimens. For this purpose, in-plane, through-thickness waviness defects (with different waviness severities) are induced during the manufacturing of the laminate. Numerical and experimental results show that the compressive strength of the composites decreases as the severity of the waviness defects increases. A reduction of up to 75% is noted with a wave severity of 0.075. Optical and scanning electron microscopy observations of the failed specimens reveal that kink-bands are created in the wavy regions and lead to failure.

  5. Numerical study of Wavy Blade Section for Wind Turbines

    DEFF Research Database (Denmark)

    Kobæk, C. M.; Hansen, Martin Otto Laver


    The Wavy Blade concept is inspired by the unique flipper of a humpback whale, characterized by the tubercles located at the leading edge. It has been suggested that this shape may have been a result of a natural selection process, since this flipper under some circumstances can produce higher lift...... relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical...... results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate...

  6. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. (United States)

    Bueno, Ericka M; Bilgen, Bahar; Barabino, Gilda A


    Hydrodynamic forces in bioreactors can decisively influence extracellular matrix deposition in engineered cartilage constructs. In the present study, the reduced fluid shear, high-axial mixing environment provided by a wavy-walled bioreactor was exploited in the cultivation of cartilage constructs using polyglycolic acid scaffolds seeded with bovine articular chondrocytes. Increased growth as defined by weight, cell proliferation and extracellular matrix deposition was observed in cartilage constructs from wavy-walled bioreactors in comparison with those from spinner flasks cultured under the same conditions. The wet weight composition of 4-week constructs from the wavy-walled bioreactor was similar to that of spinner flask constructs, but the former were 60% heavier due to equally higher incorporation of extracellular matrix and 30% higher cell population. It is most likely that increased construct matrix incorporation was a result of increased mitotic activity of chondrocytes cultured in the environment of the wavy-walled bioreactor. A layer of elongated cells embedded in type I collagen formed at the periphery of wavy-walled bioreactor and spinner flask constructs, possibly as a response to local shear forces. On the basis of the robustness and reproducibility of the extracellular matrix composition of cartilage constructs, the wavy-walled bioreactor demonstrated promise as an experimental cartilage tissue-engineering vessel. Increased construct growth in the wavy-walled bioreactor may lead to enhanced mechanical properties and expedited in vitro cultivation.

  7. Forman curvature for directed networks

    CERN Document Server

    Sreejith, R P; Saucan, Emil; Samal, Areejit


    A goal in network science is the geometrical characterization of complex networks. In this direction, we have recently introduced the Forman's discretization of Ricci curvature to the realm of undirected networks. Investigation of Forman curvature in diverse model and real-world undirected networks revealed that this measure captures several aspects of the organization of complex undirected networks. However, many important real-world networks are inherently directed in nature, and the Forman curvature for undirected networks is unsuitable for analysis of such directed networks. Hence, we here extend the Forman curvature for undirected networks to the case of directed networks. The simple mathematical formula for the Forman curvature in directed networks elegantly incorporates node weights, edge weights and edge direction. By applying the Forman curvature for directed networks to a variety of model and real-world directed networks, we show that the measure can be used to characterize the structure of complex ...

  8. On Gauss-Bonnet Curvatures

    Directory of Open Access Journals (Sweden)

    Mohammed Larbi Labbi


    Full Text Available The $(2k$-th Gauss-Bonnet curvature is a generalization to higher dimensions of the $(2k$-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for $k = 1$. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.

  9. An Experimental Study of Sonic Boom Penetration Under a Wavy Air-Water Interface

    National Research Council Canada - National Science Library

    Fincham, Adam; Maxworthy, Tony


    A laboratory experiment was designed and performed to ascertain the difference in underwater response to sonic boom laboratory between flat and wavy surface models and their depth-dependent rule overpressure attenuation...

  10. A Curvature Flow Unifying Symplectic Curvature Flow And Pluriclosed Flow


    Dai, Song


    Streets and Tian introduced pluriclosed flow and symplectic curvature flow in recent years. Here we construct a curvature flow to unify these two flows. We show the short time existence of our flow and exhibit an obstruction to long time existence.

  11. (Invited) Wavy Channel TFT Architecture for High Performance Oxide Based Displays

    KAUST Repository

    Hanna, Amir


    We show the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate without any further real estate penalty. The performance improvement is attributed not only to the increased transistor width, but also to enhanced applied electric field in the channel due to the wavy architecture.

  12. Environmental influences on DNA curvature

    DEFF Research Database (Denmark)

    Ussery, David; Higgins, C.F.; Bolshoy, A.


    DNA curvature plays an important role in many biological processes. To study environmentalinfluences on DNA curvature we compared the anomalous migration on polyacrylamide gels ofligation ladders of 11 specifically-designed oligonucleotides. At low temperatures (25 degreesC and below) most of the...... for DNAcurvature and for environmentally-sensitive DNA conformations in the regulation of geneexpression....

  13. Lectures on mean curvature flows

    CERN Document Server

    Zhu, Xi-Ping


    "Mean curvature flow" is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals \\pi, the curve tends to the unit circle. In this book, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolution of non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential ...

  14. EAU guidelines on penile curvature. (United States)

    Hatzimouratidis, Konstantinos; Eardley, Ian; Giuliano, François; Hatzichristou, Dimitrios; Moncada, Ignacio; Salonia, Andrea; Vardi, Yoram; Wespes, Eric


    Penile curvature can be congenital or acquired. Acquired curvature is secondary due to La Peyronie (Peyronie's) disease. To provide clinical guidelines on the diagnosis and treatment of penile curvature. A systematic literature search on the epidemiology, diagnosis, and treatment of penile curvature was performed. Articles with the highest evidence available were selected and formed the basis for assigning levels of evidence and grades of recommendations. The pathogenesis of congenital penile curvature is unknown. Peyronie's disease is a poorly understood connective tissue disorder most commonly attributed to repetitive microvascular injury or trauma during intercourse. Diagnosis is based on medical and sexual histories, which are sufficient to establish the diagnosis. Physical examination includes assessment of palpable nodules and penile length. Curvature is best documented by a self-photograph or pharmacologically induced erection. The only treatment option for congenital penile curvature is surgery based on plication techniques. Conservative treatment for Peyronie's disease is associated with poor outcomes. Pharmacotherapy includes oral potassium para-aminobenzoate, intralesional treatment with verapamil, clostridial collagenase or interferon, topical verapamil gel, and iontophoresis with verapamil and dexamethasone. They can be efficacious in some patients, but none of these options carry a grade A recommendation. Steroids, vitamin E, and tamoxifen cannot be recommended. Extracorporeal shock wave treatment and penile traction devices may only be used to treat penile pain and reduce penile deformity, respectively. Surgery is indicated when Peyronie's disease is stable for at least 3 mo. Tunical shortening procedures, especially plication techniques, are the first treatment options. Tunical lengthening procedures are preferred in more severe curvatures or in complex deformities. Penile prosthesis implantation is recommended in patients with erectile dysfunction

  15. Sigma Models with Negative Curvature

    CERN Document Server

    Alonso, Rodrigo; Manohar, Aneesh V.


    We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold H^n, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n,1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  16. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim


    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  17. Multiple Manifold Clustering Using Curvature Constrained Path. (United States)

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba


    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering.

  18. Multiple Manifold Clustering Using Curvature Constrained Path.

    Directory of Open Access Journals (Sweden)

    Amir Babaeian

    Full Text Available The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering.

  19. Solving higher curvature gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sumanta [IUCAA, Pune (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Theoretical Physics Department, Kolkata (India)


    Solving field equations in the context of higher curvature gravity theories is a formidable task. However, in many situations, e.g., in the context of f(R) theories, the higher curvature gravity action can be written as an Einstein-Hilbert action plus a scalar field action. We show that not only the action but the field equations derived from the action are also equivalent, provided the spacetime is regular. We also demonstrate that such an equivalence continues to hold even when the gravitational field equations are projected on a lower-dimensional hypersurface. We have further addressed explicit examples in which the solutions for Einstein-Hilbert and a scalar field system lead to solutions of the equivalent higher curvature theory. The same, but on the lower-dimensional hypersurface, has been illustrated in the reverse order as well. We conclude with a brief discussion on this technique of solving higher curvature field equations. (orig.)

  20. Wavy Taylor vortices in molecular dynamics simulation of cylindrical Couette flow. (United States)

    Trevelyan, David J; Zaki, Tamer A


    Molecular dynamics simulations of flow between concentric rotating cylinders are performed. As the relative speed between the two cylinders is increased, a spontaneous flow bifurcation occurs and vortices form in a stationary-vortex or traveling-wavy-vortex configuration. The former emerges when the axial boundary conditions constrain the flow by reflection, and the traveling-wavy-vortex flow develops when the axial boundaries are relaxed to periodic conditions. The flow bifurcation is triggered by the thermal fluctuations in the system, and the resulting flow field is in agreement with previous experimental observations. In addition, the temporal growth of the Fourier mode that characterizes the wavy-vortex motion is well described by Landau's theory for Hopf bifurcations. The spatiotemporal energy spectrum is evaluated in order to characterize the instability in terms of its azimuthal wave number and wave speed.

  1. Wavy regimes of film flow down a fiber. (United States)

    Ruyer-Quil, Christian; Kalliadasis, Serafim


    We consider axisymmetric traveling waves propagating on the gravity-driven flow of a liquid down a vertical fiber. Our starting point is the two-equation model for the flow derived in the study by Ruyer-Quil et al. [J. Fluid Mech. 603, 431 (2008)]. The speed, amplitude, and shape of the traveling waves are obtained for a wide range of parameters by using asymptotic analysis and elements from dynamical systems theory. Four different regimes are identified corresponding to the predominance of four different physical effects: advection by the flow, azimuthal curvature, inertia, and viscous dispersion. Construction of the traveling-wave branches of solutions reveals complex transitions from one regime to another. A phase diagram of the different regimes in the parameter space is constructed.

  2. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths. (United States)

    Takizawa, Ken; Beaucamp, Anthony


    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  3. Discrete Curvature Theories and Applications

    KAUST Repository

    Sun, Xiang


    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  4. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.


    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  5. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel containing porous and fluid layer with traveling thermal waves. ... Results for a wide range of governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, and traveling thermal temperature are plotted for different values of ...

  6. and wavy-wall confinement on wake characteristics of flow past ...

    Indian Academy of Sciences (India)

    R Deepakkumar

    Keywords. Bluff body; wake; flow separation; wavy-wall confinement; CFD simulation; finite volume method. 1. Introduction. The flow across cross-confined circular cylinder plays a significant role in many engineering systems such as wind structure interaction of civil engineering industries, tube banks of heat exchanger in ...

  7. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin


    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  8. Natural convection of Al2O3-water nanofluid in a wavy enclosure (United States)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.


    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  9. Modern approaches to discrete curvature

    CERN Document Server

    Romon, Pascal


     This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

  10. Equi-Gaussian curvature folding

    Indian Academy of Sciences (India)

    Figure 10. Note that the graph Gf of any equi-Gaussian curvature of #nT 2 is a regular graph of valency 4. 2. References. [1] Farran H R, El-Kholy E and Robertson S A, Folding a surface to a polygon, Geometric. Dedicatiae 33 (1996) 255–266. [2] Zeen El-Deen M R, Cellular and fuzzy folding, Ph.D. thesis (Egypt: Tanta Univ.) ...

  11. Microelectrofluidic lens for variable curvature (United States)

    Chang, Jong-hyeon; Lee, Eunsung; Jung, Kyu-Dong; Lee, Seungwan; Choi, Minseog; Kim, Woonbae


    This paper presents a tunable liquid lens based on microelectrofluidic technology which integrates electrowetting and microfluidics. In the novel microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. The previous electrowetting lens in which the contact angle changes at the side wall has a certain limitation of the curvature variation because of the contact angle saturation. Although the contact angle saturation also appears in the surface channel of the MEFL, the low surface channel increases the Laplace pressure and it makes the MEFL to have full variation of the optical power possible. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL as well as the electrowetting lens. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. It is expected that the proposed MEFL is able to be widely used because of its full variation of the optical power without the use of oil and digital operation with fast response.

  12. Disformal invariance of curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637 (United States); White, Jonathan, E-mail:, E-mail: [Research Center for the Early Universe (RESCEU), The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033 Japan (Japan)


    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  13. Substrate curvature regulates cell migration. (United States)

    He, Xiuxiu; Jiang, Yi


    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  14. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang


    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  15. Effect of the Wavy permeable Interface on Double Diffusive Natural Convection in a Partially Porous Cavity

    Directory of Open Access Journals (Sweden)

    R Mehdaoui


    Full Text Available Two-dimensional, double diffusion, natural convection in a partially porous cavity satured with a binary fluid is investigated numerically. Multiple motions are driven by the external temperature and concentration differences imposed across vertical walls. The wavy interface between fluid and porous layer is horizontal. The equations which describe the fluid flow and heat and mass transfer are described by the Navier-Stokes equations (fluid region, Darcy-Brinkman equation (porous region and energy and mass equations. The finite element method was applied to solve the governing equations. The fluid flow and heat and mass transfer has been investigated for different values of the amplitude and the wave number of the interface and the buoyancy ratio. The results obtained in the form of isotherms, stream lines, isoconcentrations and the Nusselt and Sherwood numbers; show that the wavy interface has a significant effect on the flow and heat and mass transfer.

  16. Correction of an image distorted by a wavy water surface: laboratory experiment. (United States)

    Levin, Iosif M; Savchenko, Victor V; Ju Osadchy, Vladimir


    A laboratory-modeling installation for experimental investigations of light and image transfer through a wavy water surface was described. Measurements of the modulation transfer function of turbid media and a wavy surface have proved the reliability of laboratory image transfer modeling. An experiment to correct the image distortion caused by surface wave refraction of an underwater object was done using laboratory-modeling installation. A color digital camera was used to simultaneously obtain an image of the object and a glitter pattern on the surface. Processing the glitter pattern allows one to obtain the values of surface slopes at a limited number of points and to use these slopes for retrieval of image fragments. A totally corrected image is formed by accumulating the fragments. The accumulated image closely matches an original undistorted image. The experiment demonstrates that correction of image distortion produced by surface waves is possible, at least in special cases.

  17. Numerical Simulation of Frosting on Wavy Fin-and-tube Heat Exchanger Surfaces (United States)

    Ma, Q.; Wu, X. M.; Chu, F.; Zhu, B.


    Frost on fin surfaces of the heat exchanger increases thermal resistance and blocks air flow passage, which reduces the system energy efficiency. In this paper, a frosting model based on Euler multi-phase flow proposed before is used to simulate the frost layer growth process on wavy fin-and-tube heat exchanger surfaces. The model predicts the frost layer and temperature distributions on the heat exchanger surfaces. The air flow pressure drops before and after frosting have been obtained. The results show that the frost layer is unevenly distributed and no frost appears on the fin surfaces in the tube wake region. Frost on the wavy fin-and-tube heat exchanger surfaces restricts the airflow and the pressure drop increases about 140% after 45 min frosting. The simulation results are in good agreement with the experimental results.

  18. Wavy Lineaments on Europa: Fracture Propagation into Combined Nonsynchronous and Diurnal Stress Fields (United States)

    Crawford, Zane; Pappalardo, Robert T.; Barr, Amy C.; Gleeson, Damhnait; Mullen, McCall; Nimmo, Francis; Stempel, Michelle M.; Wahr, John


    Understanding the processes that have operated on Europa and the manner in which they may have changed through time is fundamental to understanding the satellite's geology and present-day habitability. Previous studies have shown that lineament patterns on Europa can be explained by accumulation of tensile stress from slow nonsynchronous rotation (NSR), while the cycloidal planforms of other Europan lineaments can be explained if fractures propagate through a diurnally changing tensile stress field. We find that fractures propagated into combined diurnal and NSR stress fields can be "wavy" in planform for NSR stress accumulated over 2 to 8 of ice shell rotation and average propagation speeds of approx. 1 to 3 m/s. The variety of Europa's observed lineament planforms from cycloidal, to wavy, to arcuate can be produced by accumulation of NSR stress relative to the diurnal stress field. Varying proportions of these stress mechanisms plausibly may be related to a time-variable (slowing) NSR rate.

  19. Darcy Flow in a Wavy Channel Filled with a Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S


    Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.

  20. The effects of wavy-wall phase shift on thermal-hydraulic performance of Al2O3–water nanofluid flow in sinusoidal-wavy channel

    Directory of Open Access Journals (Sweden)

    M.A. Ahmed


    Full Text Available In this paper, laminar forced convection flow of Al2O3–water nanofluid in sinusoidal-wavy channel is numerically studied. The two-dimensional governing equations of continuity, momentum and energy equations in body-fitted coordinates are solved using finite volume method. The sinusoidal-wavy channel with four different phase shifts of 0°, 45°, 90° and 180° are considered in this study. The results of numerical solution are obtained for Reynolds number and nanoparticle volume fractions ranges of 100–800 and 0–5%, respectively. The effect of phase shift, nanoparticle volume fraction and Reynolds number on the streamline and temperature contours, local Nusselt number, local skin friction coefficient, average Nusselt number, non-dimensional pressure drop and thermalhydraulic performance factor have been presented and analyzed. Results indicate that the optimal performance is achieved by 0° phase shift channel over the ranges of Reynolds number and nanoparticles volume fractions.

  1. Form removal aspects on the waviness parameters for steel sheet in automotive applications : fourier filtering versus polynomial regression


    Vermeulen, Michel; Balabane, Mikhael; Mallé, Celine


    Premium car makers attach great importance to the visual appearance of the painted car skin as an indication of product quality. The “orange peel” phenomenon constitutes a major problem here. It is not only depending on the paint’s chemical composition and application method, but also on possible waviness components in the sheet substrate. Therefore one is searching hard for a valuable waviness parameter to quantify the substrate’s fitness for purpose. A technically emerging problem is how to...

  2. Numerical Study of Natural Convection within a Wavy Enclosure Using Meshfree Approach: Effect of Corner Heating

    Directory of Open Access Journals (Sweden)

    Sonam Singh


    Full Text Available This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th>Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra, Prandtl number (Pr, and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature.

  3. Effect of Fiber Waviness on Tensile Strength of a Flax-Sliver-Reinforced Composite Material

    Directory of Open Access Journals (Sweden)

    Taweesak Piyatuchsananon


    Full Text Available Recently, a composite material made from natural fibers and biodegradable resin, “green composite,” is attracting attention as an alternative composite material for the replacement of glass fiber-reinforced plastics. Plant-based natural fibers such as kenaf and flax have already been used as composite reinforcement materials because they are more environmentally friendly and costless fibers than artificial fibers. A problem of using natural fibers is the fiber waviness, which affects the tensile properties. Fiber waviness is fluctuation in the fiber orientation that is inherent in the sliver morphology of plant-based natural fibers. This study was conducted to clarify the relation between quantified parameters of fiber waviness and a composite’s tensile strength. First, the fiber orientation angles on a flax-sliver-reinforced composite were measured. Then the angle distribution was quantified through spatial autocorrelation analysis methods: Local Moran’s I and Local Geary’s c. Finally, the relation between the resultant tensile strength and quantified parameters was discussed.

  4. Effect of semi-circular wavy liner on performance of journal bearing (United States)

    Sheriff, Jamaluddin Md.; Osman, Kahar; Asral


    The amount of lubricant present in a bearing can affect its performance. This study compares the load carrying capacity of wavy and smooth surfaces liner bearing so that the potential advantages of the former could be identified. Both types of bearing used palm oil as lubricant and computational analysis was developed to predict the numerical data for full film lubrication condition. The bearing model was 60 mm in diameter and its ratio of length to diameter was 0.5 with clearance and amplitude of 250μm and 200μm respectively. All cases studied included temperature effect under steady flow conditions with speed between 200 and 5000 rpm. The results show, for low eccentricity ratio, semi circular wavy liner bearings were able to produce higher load carrying capacity. The results also show that the overall temperature drop for wavy liner surfaces was higher for all test conditions. The shaft speeds, however, have no direct effect on the magnitude of the load carrying capacity.

  5. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho


    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  6. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties (United States)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong


    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  7. Nuclear curvature energy in relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Vinas, X. [Departament dEstructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Schuck, P. [Institut National de Physique Nucleaire et de Physique des Particules, Centre National de la Recherche Scientifique (CNRS--IN2P3), Universite Joseph Fourier, Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026 Grenoble Cedex (France)


    The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement. {copyright} {ital 1996 The American Physical Society.}

  8. The Curvature of the Hitchin Connection

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Poulsen, Niccolo Skovgård

    In this paper we calculate the curvature of the Hitchin connection. We further show that a slight (possibly trivial) modification of the Hitchin connection has curvature equal to an explict given multiple of the Weil-Petersen symplectic form on Teichmüller space.......In this paper we calculate the curvature of the Hitchin connection. We further show that a slight (possibly trivial) modification of the Hitchin connection has curvature equal to an explict given multiple of the Weil-Petersen symplectic form on Teichmüller space....

  9. The Kramers-Moyal Equation of the Cosmological Comoving Curvature Perturbation

    CERN Document Server

    Riotto, Antonio


    Fluctuations of the comoving curvature perturbation with wavelengths larger than the horizon length are governed by a Langevin equation whose stochastic noise arise from the quantum fluctuations that are assumed to become classical at horizon crossing. The infrared part of the curvature perturbation performs a random walk under the action of the stochastic noise and, at the same time, it suffers a classical force caused by its self-interaction. By a path-interal approach and, alternatively, by the standard procedure in random walk analysis of adiabatic elimination of fast variables, we derive the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators of the curvature perturbation from infrared effects.

  10. On the nuclear curvature energy

    Energy Technology Data Exchange (ETDEWEB)

    Durand, M. (Institut des Sciences Nucleaires, Univ. Joseph Fourier, 38 - Grenoble (France)); Schuck, P. (Institut des Sciences Nucleaires, Univ. Joseph Fourier, 38 - Grenoble (France)); Vinas, X. (Barcelona Univ. (Spain). Dept. de Estructura y Constituyentes de la Materia)


    The curvature energy coefficient of the nuclear mass formula [alpha][sub c] is first calculated for the model case of a Fermi gas bounded by an external Woods-Saxon potential. The semiclassical theory of Wigner and Kirkwood is used and [alpha][sub c] is found to be close to zero. It is, however, shown that this low value is due to the lack of selfconsistency of the potential. When available, the results of the model compare very well with quantal values and the extrapolation to the spherical cavity (billiard) checks with the value for [alpha][sub c] known from the Balian-Bloch theory. Second, the selfconsistent case is generalised to finite range forces. No indication is found that this modifies the fact that all theoretical values for [alpha][sub c] are larger than about 7 MeV which is an order of magnitude above the empirical value. (orig.)

  11. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir


    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  12. Wavy and Cycloidal Lineament Formation on Europa from Combined Diurnal and Nonsynchronous Stresses (United States)

    Gleeson, Damhnait; Crawford, Zane; Barr, Amy C.; Mullen, McCall; Pappalardo, Robert T.; Prockter, Louise M.; Stempel, Michelle M.; Wahr, John


    In a companion abstract, we show that fractures propagated into combined diurnal and nonsynchronous rotation (NSR) stress fields can be cycloidal, "wavy," or arcuate in planform as the relative proportion of NSR stress in increased. These transitions occur as NSR stress accumulates over approx. 0 to 10 deg of ice shell rotation, for average fracture propagation speeds of approx. 1 to 3 m/s. Here we consider the NSR speed parameter space for these morphological transitions, and explore the effects on cycloids of adding NSR to diurnal stress. Fitting individual Europan lineaments can constrain the combined NSR plus diurnal stress field at the time of formation.

  13. Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films (United States)

    Chernyavskiy, A. N.; Pavlenko, A. N.


    The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.

  14. GDP growth and the yield curvature

    DEFF Research Database (Denmark)

    Møller, Stig Vinther


    This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...


    African Journals Online (AJOL)

    curvatures (6 cases) were managed by ventral Nesbit in four (67%) and ventral. TAP in the remaining two cases (33%). Pa, tients with a complex curvature (8 cases) were managed by sequential TAP on an in- dividual basis according to the results of in- traoperative artificial erection in 6 cases. (63%) and by complete penile ...

  16. Numerical Study of Natural Convection in a Heated Enclosure with Two Wavy Vertical Walls Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pensiri Sompong


    Full Text Available The effects of wavy geometry on natural convection in an enclosure with two wavy vertical walls and filled with fluid saturated porous media are investigated numerically by using finite element method. The wavy enclosure is transformed to a unit square in the computational domain and the finite element formulations are solved in terms of ξη-coordinate based on iterative method. In order to investigate the effects of interested parameters, the values of wave amplitude (λ = 0.05 and 0.1 and number of undulations (n = 1 and 2 are chosen with constants Ra = 105, Da = 10−3, and Pr = 0.71. It is found that the increase in number of undulations has small effect on natural convection inside the enclosure whereas the increase in wave amplitude reduces the strength of convection because higher wave volume plays a barricade role.

  17. Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions (United States)

    Balakotaiah, V.; Jayawardena, S. S.


    For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.

  18. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dengliang


    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  19. Direct numerical simulation of low-Prandtl number turbulent convection above a wavy wall

    Energy Technology Data Exchange (ETDEWEB)

    Errico, Orsola; Stalio, Enrico, E-mail:


    Highlights: • Turbulent convection is investigated in a wavy channel for Re = 18, 880 and Pr = 0.025. • In the considered Péclet number range, heat transfer is mostly by mean flow advection. • The Generalized Gradient Diffusion Hypothesis (GGDH) represents with fair accuracy the direction of turbulent heat fluxes. • Given the time scale in the model depends on mechanical quantities only, C{sub θ} needs to be tuned for Pr ≠ 1. - Abstract: Turbulent forced convection is investigated by Direct Numerical Simulation in a channel with one sinusoidal wavy wall and one flat wall. Fluid flow and heat transfer are periodically fully developed, the simulated Reynolds number of the bulk velocity and the hydraulic diameter is Re = 18, 880 while three Prandtl numbers are considered, i.e. Pr = 0.025, Pr = 0.2, and Pr = 0.71. The fluid flow is characterized by separation, reattachment and a shear layer downstream the wave peak, these are conditions relevant for turbulent heat transfer and passive scalar transport applications. In the range of Péclet numbers investigated, the most important heat transfer mechanism is by mean flow advection. Accordingly, the peak heat transfer region is in the upslope part of the domain. The separation bubble instead acts as a barrier to convection and the heat transfer rate is minimum close to separation. An a priori analysis is performed in order to assess the accuracy of turbulent heat transfer models based on the Generalized Gradient Diffusion Hypothesis.

  20. Forecasting of Machined Surface Waviness on the Basis of Self-oscillations Analysis (United States)

    Belov, E. B.; Leonov, S. L.; Markov, A. M.; Sitnikov, A. A.; Khomenko, V. A.


    The paper states a problem of providing quality of geometrical characteristics of machined surfaces, which makes it necessary to forecast the occurrence and amount of oscillations appearing in the course of mechanical treatment. Objectives and tasks of the research are formulated. Sources of oscillation onset are defined: these are coordinate connections and nonlinear dependence of cutting force on the cutting velocity. A mathematical model of forecasting steady-state self-oscillations is investigated. The equation of the cutter tip motion is a system of two second-order nonlinear differential equations. The paper shows an algorithm describing a harmonic linearization method which allows for a significant reduction of the calculation time. In order to do that it is necessary to determine the amplitude of oscillations, frequency and a steady component of the first harmonic. Software which allows obtaining data on surface waviness parameters is described. The paper studies an example of the use of the developed model in semi-finished lathe machining of the shaft made from steel 40H which is a part of the BelAZ wheel electric actuator unit. Recommendations on eliminating self-oscillations in the process of shaft cutting and defect correction of the surface waviness are given.

  1. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade (United States)

    Yang; Baeder, J. D.


    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.

  2. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays

    KAUST Repository

    Hanna, Amir Nabil


    A novel wavy-shaped thin-film-transistor (TFT) architecture, capable of achieving 70% higher drive current per unit chip area when compared with planar conventional TFT architectures, is reported for flexible display application. The transistor, due to its atypical architecture, does not alter the turn-on voltage or the OFF current values, leading to higher performance without compromising static power consumption. The concept behind this architecture is expanding the transistor\\'s width vertically through grooved trenches in a structural layer deposited on a flexible substrate. Operation of zinc oxide (ZnO)-based TFTs is shown down to a bending radius of 5 mm with no degradation in the electrical performance or cracks in the gate stack. Finally, flexible low-power LEDs driven by the respective currents of the novel wavy, and conventional coplanar architectures are demonstrated, where the novel architecture is able to drive the LED at 2 × the output power, 3 versus 1.5 mW, which demonstrates the potential use for ultrahigh resolution displays in an area efficient manner.

  3. Wavy channel Thin Film Transistor for area efficient, high performance and low power applications

    KAUST Repository

    Hanna, Amir


    We report a new Thin Film Transistor (TFT) architecture that allows expansion of the device width using wavy (continuous without separation) fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.4x increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, similar to 100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers a pragmatic opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications without any limitation any TFT materials.

  4. Local digital algorithms for estimating the mean integrated curvature of r-regular sets

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Consider the design based situation where an r-regular set is sampled on a random lattice. A fast algorithm for estimating the integrated mean curvature based on this observation is to use a weighted sum of 2×⋯×2 configuration counts. We show that for a randomly translated lattice...

  5. Local digital algorithms for estimating the mean integrated curvature of r-regular sets

    DEFF Research Database (Denmark)

    Consider the design based situation where an r-regular set is sampled on a random lattice. A fast algorithm for estimating the integrated mean curvature based on this observation is to use a weighted sum of 2×⋯×2 configuration counts. We show that for a randomly translated lattice, no asymptotica......-or-miss transforms of r-regular sets....

  6. Right thoracic curvature in the normal spine

    Directory of Open Access Journals (Sweden)

    Masuda Keigo


    Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.

  7. Strong curvature effects in Neumann wave problems

    DEFF Research Database (Denmark)

    Willatzen, Morten; Pors, A.; Gravesen, Jens


    equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important......-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute...

  8. Defect Motifs for Constant Mean Curvature Surfaces (United States)

    Kusumaatmaja, Halim; Wales, David J.


    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  9. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation

    CERN Document Server

    Ferrara, Sergio


    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.

  10. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation (United States)

    Ferrara, Sergio; Kehagias, Alex

    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supcrgravity.

  11. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    Ariaei F


    Full Text Available Abstract We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature ("meshed" network to negative curvature ("core concentric" network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  12. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)


    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  13. Large–eddy simulations of wall heat transfer and coherent structures in mixed convection over a wavy wall

    NARCIS (Netherlands)

    Kuhn, S.; Kenjeres, S.; Von Rohr, P.R.


    In this numerical study the mixed convective flow of water over a heated wavy surface over a range of Reynolds and Richardson numbers, including transitional and turbulent flow regimes (20 ? Re ? 2000 and 0.5 ? Ri ? 5000) is investigated. A dynamic Large Eddy Simulation (LES) approach is applied

  14. Amine-borane assisted synthesis of wavy palladium nanorods on graphene as efficient catalysts for formic acid oxidation. (United States)

    Du, Cheng; Liao, Yuxiang; Hua, Xing; Luo, Wei; Chen, Shengli; Cheng, Gongzhen


    Wavy palladium (Pd) nanorods were obtained by controlled synthesis by using amine-boranes as the reducing agents. Thanks to the unique structure and strong interaction with graphene, the as-synthesized Pd nanorods supported on graphene exhibit much enhanced electrocatalytic activity towards formic acid oxidation as compared with Pd nanoparticles.

  15. Spline-Based Smoothing of Airfoil Curvatures (United States)

    Li, W.; Krist, S.


    Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been

  16. Experimental Investigation of Thermal Performance in a Concentric-Tube Heat Exchanger with Wavy Inner Pipe (United States)

    Çakmak, Gülşah; Yücel, H. Lütfi; Argunhan, Zeki; Yıldız, Cengiz


    In this article, the heat transfer, friction factor, and thermal performance factor characteristics of a concentric-tube heat exchanger are examined experimentally. A wavy inner pipe is mounted in the tube with the purpose of generating swirl flow that would help to increase the heat transfer rate of the tube. The examination is performed for a Reynolds number ranging from 2700 to 8800. An empirical correlation is also formulated to match with experimental data of the Nusselt number using the Wilson plot method. In addition, to obtain the real benefits in using the swirl generator at a constant pumping power, the thermal enhancement factor is also determined. Over the range considered, the increases in the Nusselt number, friction factor, and thermal performance factor are found to be, respectively, about 113 %, 81 %, and 196 % higher than those obtained from a smooth-surface inner pipe.

  17. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir


    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  18. Numerical simulation on vapor absorption by wavy lithium bromide aqueous solution films (United States)

    Bo, Shoushi; Ma, Xuehu; Chen, Hongxia; Lan, Zhong


    Numerical simulation has been made on heat and mass transfer of vapor absorption by wavy lithium bromide aqueous solution films. The velocity fields and interface positions are obtained by VOF model. Solitary waves are generated by periodically disturbed inflow boundary. Based on these, the temperature and concentration fields are obtained with a stationary interface shape. The effect of solitary waves on the heat and mass transfer across the film is investigated. It is shown that due to the mixing of circulation and stretch of large film thickness, the gradient of concentration and absorption rate decrease for solitary wave region. The region of capillary waves shows a significant amount of absorption enhancement. The percentage of absorption for the different regions is quantified.

  19. Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes. (United States)

    Bradley, Ryan P; Radhakrishnan, Ravi


    We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height-height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function.

  20. Cosmic curvature from de Sitter equilibrium cosmology. (United States)

    Albrecht, Andreas


    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  1. [The occlusal curvature and masticatory function]. (United States)

    Okano, Kota


    This study examined the association between masticatory movement and occlusal curvature in dentate adults. Forty-six subjects (mean age : 25.0 years) with complete permanent dentition except for their third molars participated in this study. A mandibular cast mounted on the lower member of an articulator was fixed to a three-dimensional measuring gauge (QM-Measure 353). Approximate spheres were calculated from the measurements according to the Broadrick Occlusal Plane Analyser. Subjects were asked to chew raw carrot, cheese, fish paste, boiled beef and gummy candy prepared to the size of 10 x 10 x 20 mm. Three-dimensional chewing movements of the mandibular central incisor point were measured using a Gnatho-analyzer. The Pearson correlation coefficient and multiple regression analysis were used to test the relationship between the occlusal curvature and masticatory movement. Significant correlations were found between masticatory movement and occlusal curvature in dentate adults (p masticatory movements.

  2. Cholesterol mediates membrane curvature during fusion events. (United States)

    Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David


    Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41's membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.

  3. Natural convection flow of Cu-H2O nanofluid along a vertical wavy surface with uniform heat flux (United States)

    Habiba, Farjana; Molla, Md. Mamun; Khan, M. A. Hakim


    A numerical study on natural convection flow of Cu-Water nanofluid along a vertical wavy surface with uniform heat flux has been carried out. The governing boundary layer equations are transformed into parabolic partial differential equations by applying a suitable set of variables. The resulting nonlinear system of equations are then mapped into a regular rectangular computational domain and solved numerically by using an implicit finite difference method. Numerical results are thoroughly discussed in terms of velocity and temperature distributions, surface temperature distribution, skin friction coefficient and Nusselt number coefficient for selected key parameters such as solid volume fraction of nanofluid (ϕ) and amplitude (α) of surface waviness. In addition, velocity vectors, streamlines and isotherms are plotted to visualize momentum and thermal flow pattern within the boundary layer region.

  4. An extended numerical calibration method for an electrochemical probe in thin wavy flow with large amplitude waves

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)


    The calibrating method for an electrochemical probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution of the wave-induced normal velocity can be classified on the dimensionless parameter, V. If V is above a critical value of V, V{sub crit}, the effects of the wave-induced normal velocity become larger with an increase in V. While its effects negligible for inversely. The present inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method. 18 refs., 8 figs. (Author)

  5. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers


    Favier, J.; Pinelli, A; Piomelli, U.


    International audience; The influence of spanwise geometrical undulations of the leading edge of an infinite wing is investigated numerically at low Reynolds number, in the context of passive separation control and focusing on the physical mechanisms involved. Inspired by the tubercles of the humpback whale flippers, the wavy leading edge is modeled using a spanwise sinusoidal function whose amplitude and wavelength constitute the parameters of control. A direct numerical simulation is perfor...

  6. MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei Nejad, Mehrzad [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Javaherdeh, K., E-mail: [Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Moslemi, M. [Ayandegan Institute of Higher Education, Tonekabon (Iran, Islamic Republic of)


    Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors. - Highlights: • Magnetic field effects undermine the heat transfer for n<1 more markedly. • Magnetic field decreases the values of Nu number and C{sub f} downstream of the plat. • The magnetic field opposes the second harmonic in the curve of Nu number and C{sub f}. • The wavy geometry influences the pseudo-plastic fluids (n<1) more profoundly.

  7. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    Darbhasayanam Srinivasacharya


    Full Text Available This paper investigates the influence of thermophoresis on mixed convection heat and mass transfer flow over a vertical wavy surface in a porous medium with variable properties, namely variable viscosity and variable thermal conductivity. The effect of wavy surface is incorporated into non-dimensional equations by using suitable transformations and then transformed into non-linear ordinary differential equations by employing the similarity transformations and then solved numerically. The transport process of flow, heat and mass transfer in the boundary layer for aiding and opposing flow cases is discussed. The structure of flow, temperature and concentration fields in the Darcy porous media are more pronounced by complex interactions among variable viscosity, variable thermal conductivity, mixed convective parameter, thermophoresis and amplitude of the wavy surface. Increasing thermophoresis parameter enhances velocity profile, concentration distribution and Sherwood number while reduces Nusselt number. As increase in variable viscosity, temperature and concentration distributions are enhanced while velocity profile, Nusselt number and Sherwood numbers are reduced. This study finds applications in aerosol Technology, space technology and processes involving high temperatures.

  8. LES of stratified-wavy flows using novel near-interface treatment (United States)

    Karnik, Aditya; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.


    The pressure drop in horizontal stratified wavy flows is influenced by interfacial shear stress. The near-interface behavior of the lighter phase is akin to that near a moving wall. We employ a front-tracking code, Blue, to simulate and capture the near-interface behaviour of both phases. Blue uses a modified Smagorinsky LES model incorporating a novel near-interface treatment for the sub-grid viscosity, which is influenced by damping due to the wall-like interface, and enhancement of the turbulent kinetic energy (TKE) due to the interfacial waves. Simulations are carried out for both air-water and oil-water stratified configurations to demonstrate the applicability of the present method. The mean velocities and tangential Reynolds stresses are compared with experiments for both configurations. At the higher Re, the waves penetrate well into the buffer region of the boundary layer above the interface thus altering its dynamics. Previous attempts to capture the secondary structures associated with such flows using RANS or standard LES methodologies have been unsuccessful. The ability of the present method to reproduce these structures is due to the correct estimation of the near-interface TKE governing energy transfer from the normal to tangential directions. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  9. Novel seed adaptations of a monocotyledon seagrass in the wavy sea.

    Directory of Open Access Journals (Sweden)

    Keryea Soong

    Full Text Available Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae, a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species.

  10. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed


    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  11. Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front (United States)

    Matti, R. S.; Kaplan, A. F. H.

    The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.

  12. Area and energy efficient high-performance ZnO wavy channel thin-film transistor

    KAUST Repository

    Hanna, Amir


    Increased output current while maintaining low power consumption in thin-film transistors (TFTs) is essential for future generation large-area high-resolution displays. Here, we show wavy channel (WC) architecture in TFT that allows the expansion of the transistor width in the direction perpendicular to the substrate through integrating continuous fin features on the underlying substrate. This architecture enables expanding the TFT width without consuming any additional chip area, thus enabling increased performance while maintaining the real estate integrity. The experimental WCTFTs show a linear increase in output current as a function of number of fins per device resulting in (3.5×) increase in output current when compared with planar counterparts that consume the same chip area. The new architecture also allows tuning the threshold voltage as a function of the number of fin features included in the device, as threshold voltage linearly decreased from 6.8 V for planar device to 2.6 V for WC devices with 32 fins. This makes the new architecture more power efficient as lower operation voltages could be used for WC devices compared with planar counterparts. It was also found that field effect mobility linearly increases with the number of fins included in the device, showing almost \\\\(1.8×) enhancements in the field effect mobility than that of the planar counterparts. This can be attributed to higher electric field in the channel due to the fin architecture and threshold voltage shift. © 2014 IEEE.

  13. Wavy channel thin film transistor architecture for area efficient, high performance and low power displays

    KAUST Repository

    Hanna, Amir


    We demonstrate a new thin film transistor (TFT) architecture that allows expansion of the device width using continuous fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.5× increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, ~100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers an interesting opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Timelike Constant Mean Curvature Surfaces with Singularities

    DEFF Research Database (Denmark)

    Brander, David; Svensson, Martin


    We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...

  15. Local surface orientation dominates haptic curvature discrimination

    NARCIS (Netherlands)

    Wijntjes, M.W.A.|info:eu-repo/dai/nl/304831816; Sato, A.; Hayward, V.; Kappers, A.M.L.|info:eu-repo/dai/nl/07445370X


    Prior studies have shown that local surface orientation is a dominant source of information for haptic curvature perception in static conditions. We show that this dominance holds for dynamic touch, just as was shown earlier for static touch. Using an apparatus specifically developed for this

  16. Riemann curvature of a boosted spacetime geometry (United States)

    Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco


    The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.

  17. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.


    layer lW, leading to a power law lW∝r01/3. At a critical wetting transition of a planar substrate, curvature adds a relevant field; the corresponding multiscaling forms are readily available. The method allows for the systematic evaluation of corrections to the leading behavior; the next to the leading...

  18. Constraining inverse curvature gravity with supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab


    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  19. Spinfoams near a classical curvature singularity (United States)

    Han, Muxin; Zhang, Mingyi


    We apply the technique of the spinfoam to study space-time, which, classically, contains a curvature singularity. We derive from the full covariant loop quantum gravity (LQG) that the region near curvature singularity has to be of the strong quantum gravity effect. We show that the spinfoam configuration describing the near-singularity region has to be of small spins j , in order that its contribution to the full spinfoam amplitude is nontrivial. The spinfoams in low and high-curvature regions of space-time may be viewed as in two different phases of covariant LQG. There should be a phase transition as space-time described by the spinfoam becomes more and more curved. A candidate of the order parameter is proposed for understanding the phase transition. Moreover, we also analyze the spin-spin correlation function of the spinfoam and show the correlation is of long range in the low-curvature phase. This work is a first step toward understanding the physics of black hole and early Universe from the full covariant LQG theory.

  20. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.|info:eu-repo/dai/nl/326113398


    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  1. Change in corneal curvature induced by surgery

    NARCIS (Netherlands)

    G. van Rij (Gabriel)


    textabstractThe first section deals with the mechanisms by which sutures, incisions and intracorneal contact lenses produce a change in corneal curvature. To clarify the mechanisms by which incisions and sutures produce astigmatism, we made incisions and placed sutures in the corneoscleral limbus

  2. Metric Ricci Curvature for PL Manifolds

    Directory of Open Access Journals (Sweden)

    David Xianfeng Gu


    Full Text Available We introduce a metric notion of Ricci curvature for PL manifolds and study its convergence properties. We also prove a fitting version of the Bonnet-Myers theorem, for surfaces as well as for a large class of higher dimensional manifolds.

  3. Laser triangulation measurements of scoliotic spine curvatures. (United States)

    Čelan, Dušan; Jesenšek Papež, Breda; Poredoš, Primož; Možina, Janez


    The main purpose of this research was to develop a new method for differentiating between scoliotic and healthy subjects by analysing the curvatures of their spines in the cranio-caudal view. The study included 247 subjects with physiological curvatures of the spine and 28 subjects with clinically confirmed scoliosis. The curvature of the spine was determined by a computer analysis of the surface of the back, measured with a non-invasive, 3D, laser-triangulation system. The determined spinal curve was represented in the transversal plane, which is perpendicular to the line segment that was defined by the initial point and the end point of the spinal curve. This was achieved using a rotation matrix. The distances between the extreme points in the antero-posterior (AP) and left-right (LR) views were calculated in relation to the length of the spine as well as the quotient of these two values LR/AP. All the measured parameters were compared between the scoliotic and control groups using the Student's t-Test in case of normal data and Kruskal-Wallis test in case of non-normal data. Besides, a comprehensive diagram representing the distances between the extreme points in the AP and LR views was introduced, which clearly demonstrated the direction and the size of the thoracic and lumbar spinal curvatures for each individual subject. While the distances between the extreme points of the spine in the AP view were found to differ only slightly between the groups (p = 0.1), the distances between the LR extreme points were found to be significantly greater in the scoliosis group, compared to the control group (p < 0.001). The quotient LR/AP was statistically significantly different in both groups (p < 0.001). The main innovation of the presented method is the ability to differentiate a scoliotic subject from a healthy subject by assessing the curvature of the spine in the cranio-caudal view. Therefore, the proposed method could be useful for human posture

  4. On hypersurfaces with two distinct principal curvatures in space forms

    Indian Academy of Sciences (India)

    Abstract. We investigate the immersed hypersurfaces in space forms Nn+1(c), n ≥4 with two distinct non-simple principal curvatures without the assumption that the (high order) mean curvature is constant. We prove that any immersed hypersurface in space forms with two distinct non-simple principal curvatures is locally ...

  5. Collineations of the curvature tensor in general relativity

    Indian Academy of Sciences (India)

    Curvature collineations for the curvature tensor, constructed from a fundamental Bianchi Type-V metric, are studied. We are concerned with a symmetry property of space-time which is called curvature collineation, and we briefly discuss the physical and kinematical properties of the models.

  6. Self-Dual Manifolds with Positive Ricci Curvature

    CERN Document Server

    Lebrun, C; Nitta, T; Brun, Claude Le; Nayatani, Shin; Nitta, Takashi


    We prove that the connected sums CP_2 # CP_2 and CP_2 # CP_2 # CP_2 admit self-dual metrics with positive Ricci curvature. Moreover, every self-dual metric of positive scalar curvature on CP_2 # CP_2 is conformal to a metric with positive Ricci curvature.

  7. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. (United States)

    Bilgen, Bahar; Sucosky, Philippe; Neitzel, G Paul; Barabino, Gilda A


    Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties. Copyright 2006 Wiley Periodicals, Inc.

  8. On a curvature-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail:


    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  9. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang


    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  10. Flow in sigmoid diffusers of moderate curvature (United States)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.


    Developing laminar and turbulent flows have been measured in two diffusers with S- and C-shaped center-lines, small divergence angle and moderate curvature. The square inlet cross-section expanded in the plane of curvature to a rectangle with an exit-to-inlet area ratio of 1.5. Laser-Doppler anemometry was used to measure three velocity components and, in turbulent flow, the associated fluctuations and cross-correlations. Wall static pressure measurements are also reported. Flow visualization did not reveal the presence of any recirculation regions. Pressure-driven secondary flows are present in both ducts, but are generally smaller than those measured in similar ducts of uniform cross-section area.

  11. Scaling up the curvature of mammalian metabolism

    Directory of Open Access Journals (Sweden)

    Juan eBueno


    Full Text Available A curvilinear relationship between mammalian metabolic rate and body size on a log-log scale has been adopted in lieu of thelongstanding concept of a 3/4 allometric relationship (Kolokotrones et al. 2010. The central tenet of Metabolic Ecology (ME states that metabolism at the individual level scales-up to drive the ecology of populations, communities and ecosystems. If this tenet is correct, the curvature of metabolism should be perceived in other ecological traits. By analyzing the size scaling allometry of eight different mammalian traits including basal and field metabolic rate, offspring biomass production, ingestion rate, costs of locomotion, life span, population growth rate and population density we show that the curvature affects most ecological rates and

  12. Gravitational curvature an introduction to Einstein's theory

    CERN Document Server

    Frankel, Theodore


    This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence, replacing the often-tedious analytical computations with geometric arguments. Clearly presented and physically motivated derivations express the deflection of light, Schwarzchild's exterior and interior solutions, and the Oppenheimer-Volkoff equations. A perfect choice for advanced students of mathematics, this volume will also appeal to mathematicians interested in physics. It stresses

  13. Gravitational curvature an introduction to Einstein's theory

    CERN Document Server

    Frankel, Theodore Thomas


    This classic text and reference monograph applies modern differential geometry to general relativity. A brief mathematical introduction to gravitational curvature, it emphasizes the subject's geometric essence, replacing the often-tedious analytical computations with geometric arguments. Clearly presented and physically motivated derivations express the deflection of light, Schwarzchild's exterior and interior solutions, and the Oppenheimer-Volkoff equations. A perfect choice for advanced students of mathematics, this volume will also appeal to mathematicians interested in physics. It stresses

  14. Superintegrable systems on spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Gonera, Cezary, E-mail:; Kaszubska, Magdalena


    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  15. Inflationary scenario from higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)


    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  16. Stiffness Modulation of Rayed Fins by Curvature (United States)

    Nguyen, Khoi; Yu, Ning; Venkadesan, Madhusudhan; Bandi, Mahesh; Mandre, Shreyas


    Fishes with rayed fins comprise over 99% of all extant fish species. Multifunctional use of fins, from propulsion to station holding, requires substantial modulation of stiffness. We propose that fishes stiffen the fin by curving it transverse to its length. This effect is similar to stiffening a dollar bill by curling it because of curvature-induced coupling of out-of-plane bending with in-plane stretching. Unlike a piece of paper, rayed fins are a composite of rays and membranes. We model this as parallel elastic beams (rays) with springy interconnections (membranes). Our analysis shows that the key parameters stiffening the fin are the ray anisotropy to bending, the misalignment of principal bending directions of adjacent rays, and the membrane elasticity. The composite fin stiffens when the principal bending directions of adjacent rays are misaligned due to fin curvature, which necessarily causes the membrane to stretch. Unlike a homogenous thin sheet, composite rayed structures are able to mimic curvature-induced stiffening by using misaligned rays even if the fin appears geometrically flat. Preliminary radiographic evidence from the rays of fish fins supports such a mechanism. Funding by Human Frontier Science Program.

  17. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich


    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.

  18. Curvature-Mediated Assembly of Janus Nanoparticles on Membrane Vesicles. (United States)

    Bahrami, Amir Houshang; Weikl, Thomas R


    Besides direct particle-particle interactions, nanoparticles adsorbed to biomembranes experience indirect interactions that are mediated by the membrane curvature arising from particle adsorption. In this Letter, we show that the curvature-mediated interactions of adsorbed Janus particles depend on the initial curvature of the membrane prior to adsorption, that is, on whether the membrane initially bulges toward or away from the particles in our simulations. The curvature-mediated interaction can be strongly attractive for Janus particles adsorbed to the outside of a membrane vesicle, which initially bulges away from the particles. For Janus particles adsorbed to the vesicle inside, in contrast, the curvature-mediated interactions are repulsive. We find that the area fraction of the adhesive Janus particle surface is an important control parameter for the curvature-mediated interaction and assembly of the particles, besides the initial membrane curvature.

  19. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik


    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  20. Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array


    Fuh, Yiin Kuen; Wang, Bo Sheng; Tsai, Chen-Yu


    Near-field electrospinning (NFES) is capable of precisely deposit one-dimensional (1D) or two-dimensional (2D) highly aligned micro/nano fibers (NMFs) by electrically discharged a polymer solution. In this paper, a new integration of three-dimensional (3D) architectures of NFES electrospun polyvinylidene fluoride (PVDF) NMFs with the 3D printed topologically tailored substrate are demonstrated in a direct-write and in-situ poled manner, called wavy- substrate self-powered sensors (WSS). The f...

  1. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir


    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  2. Gaussian curvature on hyperelliptic Riemann surfaces

    Indian Academy of Sciences (India)

    Let be a compact Riemann surface of genus g ≥ 1 , 1 , … , g be a basis of holomorphic 1-forms on and let H = ( h i j ) i , j = 1 g be a positive definite Hermitian matrix. It is well known that the metric defined as d s H 2 = ∑ i , j = 1 g h i j i ⊗ j ¯ is a K\\"a hler metric on of non-positive curvature. Let K H : C → R be ...

  3. Curvature, zero modes and quantum statistics

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)


    We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)

  4. Origin of matter out of pure curvature


    Dadhich, Naresh; Maeda, Hideki


    We propose a mechanism for origin of matter in the universe in the framework of Einstein-Gauss-Bonnet gravity in higher dimensions. The recently discovered new static black hole solution by the authors \\cite{md2006} with the Kaluza-Klein split up of spacetime as a product of the usual ${\\ma M}^4$ with a space of negative constant curvature is indeed a pure gravitational creation of a black hole which is also endowed with a Maxwell-like {\\it gravitational charge} in four-dimensional vacuum spa...

  5. Differential geometry bundles, connections, metrics and curvature

    CERN Document Server

    Taubes, Clifford Henry


    Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the

  6. Zero curvature-surface driven small objects (United States)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin


    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  7. Higher curvature gravity at the LHC (United States)

    Chakraborty, Sumanta; SenGupta, Soumitra


    We investigate brane-world models in different viable F(R) gravity theories where the Lagrangian is an arbitrary function of the curvature scalar. Deriving the warped metric for this model, resembling Randal-Sundrum (RS)-like solutions, we determine the graviton KK modes. The recent observations at the LHC, which constrain the RS graviton KK modes to a mass range greater than 3 TeV, are incompatible with RS model predictions. It is shown that the models with F(R) gravity in the bulk address the issue, which in turn constrains the F(R) model itself.

  8. Curvature sensor for ocular wavefront measurement. (United States)

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O


    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.

  9. CFD Study of Liquid Sodium inside a Wavy Tube for Laminar Convectors: Effect of Reynolds Number, Wave Pitch, and Wave Amplitude

    Directory of Open Access Journals (Sweden)

    Syed Murtuza Mehdi


    Full Text Available Metallic tubes have been widely used as primary heat transfer elements in laminar convectors for domestic and aerospace heating purpose. This paper uses CFD tool to investigate the heat output and pressure drop of liquid sodium flowing inside a circular tube having a wavy profile throughout its length. The wavy tube can be utilized in laminar liquid metal convectors as basic heat transfer element. The effect of Reynolds number (500≤Re≤2000 wave pitch (25 mm≤λ≤100 mm and wave amplitude (2 mm≤a≤6 mm on the heat output and pressure drop has been numerically studied. Based on the CFD results important controlling parameters have been identified and it is concluded that the heat output from the wavy tube is affected by the wave pitch and the wave amplitude while the pressure drop is mostly affected by the Reynolds number and wave amplitude.

  10. Slug-flow dynamics with phase change heat transfer in compact heat exchangers with oblique wavy walls (United States)

    Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji


    With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

  11. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann


    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  12. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers (United States)

    Favier, Julien; Pinelli, Alfredo; Piomelli, Ugo


    The influence of spanwise geometrical undulations of the leading edge of an infinite wing is investigated numerically at low Reynolds number, in the context of passive separation control and focusing on the physical mechanisms involved. Inspired by the tubercles of the humpback whale flippers, the wavy leading edge is modeled using a spanwise sinusoidal function whose amplitude and wavelength constitute the parameters of control. A direct numerical simulation is performed on a NACA0020 wing profile in a deep stall configuration ( α=20°), with and without the presence of the leading edge waviness. The complex solid boundaries obtained by varying the sinusoidal shape of the leading edge are modeled using an immersed boundary method (IBM) recently developed by the authors [Pinelli et al., J. Comput. Phys. 229 (2010) 9073-9091]. A particular set of wave parameters is found to change drastically the topology of the separated zone, which becomes dominated by streamwise vortices generated from the sides of the leading edge bumps. A physical analysis is carried out to explain the mechanism leading to the generation of these coherent vortical structures. The role they play in the control of boundary layer separation is also investigated, in the context of the modifications of the hydrodynamic performances which have been put forward in the literature in the last decade.

  13. Natural convection of nanofluid in a wavy cavity in the presence of magnetic field on variable heat surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Javaherdeh, Korosh; Moslemi, Mehdi; Shahbazi, Mona [University of Guilan, Rasht (Iran, Islamic Republic of)


    A numerical analysis has been performed to investigate the laminar natural convection heat characteristics in a wavy cavity filled with CuO/water nanofluid. One of the sinusoidal walls (BC) is at the volatile high temperature and the opposite wavy surface is at a stable low temperature and the two other walls are considered flat and insulated while the uniform magnetic field is considered. Performing the analysis, the governing equations are given in terms of the stream function-vorticity formulation. In order to solve the nondimensionalized equations, discretizing with second-order accurate central difference method is performed then the successive under relaxation method with appropriate boundary conditions is considered. To validate the numerical model, various comparisons with previously published studies have been conducted and the results are in a good agreement. The main objective is to survey the effects of the Rayleigh number, Hartmann number, and nanoparticles volume fraction on the fluid flow and heat transfer characteristics. The results are illustrated in contours of stream function, constant temperature, and Nusselt number. The results show that the presence of the magnetic field the local Nusselt number decreases at the hot wall. Moreover, the enhancement in the heat transfer performance increases with an increasing nanoparticle concentration. However, for all values of Rayleigh number, the presence of nanoparticles leads to significant enhancement in heat transfer and the increase of Rayleigh number causes the heat transfer mechanism to change from conduction to convection.

  14. Emergent gravity in spaces of constant curvature (United States)

    Alvarez, Orlando; Haddad, Matthew


    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  15. Emergent gravity in spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)


    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  16. Curvature dependent modulation of fish fin stiffness (United States)

    Nguyen, Khoi; Yu, Ning; Bandi, Mahesh; Venkadesan, Madhusudhan; Mandre, Shreyas

    Propulsion and maneuvering ability of fishes depends on the stiffness of their fins. However, increasing stiffness by simply adding material to thicken the fin would incur a substantial energetic cost associated with flapping the fin. We propose that fishes increase stiffness of the fin not by building thicker fins, but by geometrically coupling out-of-plane bending of the fin's rays with in-plane stretching of a stiff membrane that connects the rays. We present a model of fin elasticity for ray-finned fish, where we decompose the fin into a series of elastic beams (rays) with springy interconnections (membrane). In one limit, where the membranes are infinitely extensible, the fin's stiffness is no more than the sum of the stiffness of individual rays. At the other limit of an inextensible membrane, fin stiffness reaches an asymptotic maximum. The asymptote value increases monotonically with curvature. We propose that musculature at the base of the fin controls fin curvature, and thereby modulates stiffness.

  17. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni


    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  18. Ricci Curvature on Polyhedral Surfaces via Optimal Transportation

    Directory of Open Access Journals (Sweden)

    Benoît Loisel


    Full Text Available The problem of correctly defining geometric objects, such as the curvature, is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu and Yau and Jost and Liu have used and extended this notion for graphs, giving estimates for the curvature and, hence, the diameter, in terms of the combinatorics. In this paper, we describe a method for computing the coarse Ricci curvature and give sharper results, in the specific, but crucial case of polyhedral surfaces.

  19. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang


    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  20. Membrane Curvature Affects the Formation of α-Hemolysin Nanopores. (United States)

    Fujii, Satoshi; Matsuura, Tomoaki; Yomo, Tetsuya


    Membrane proteins perform their functions within or on the lipid membrane, and lipid compositions are known to affect membrane protein integration and activity. Recently, the geometric aspect of membrane curvature was shown to play an important role in membrane protein behavior. Certain membrane proteins are known to sense the curvature of the membrane and to preferentially bind to highly curved membranes. However, although numerous membrane proteins assemble to form homo- or heterocomplexes and perform their biological functions, the dependence of membrane protein assembly on membrane curvature remains elusive. In this study, we analyzed the effect of the membrane curvature on the nanopore formation of α-hemolysin (AH), which is a toxic membrane protein derived from Staphylococcus aureus. The AH protein binds to the membrane as a monomer, assembles to form a heptamer, and forms a nanopore. By simultaneously measuring the molecules bound to the membrane and the activities of the nanopore on the membrane, we determined the nanopore formation ratio of AH. We used various sizes of liposomes and analyzed the dependence on the membrane curvature by using flow cytometry. Combining the results for positive and negative curvature, we found that the nanopore formation ratio of AH was curvature sensitive and was higher in a flat membrane than in a curved membrane. Furthermore, the nanopore formation ratio was almost identical or relatively higher in membranes with negative curvature than those with positive curvature.

  1. A Field Theory with Curvature and Anticurvature

    Directory of Open Access Journals (Sweden)

    M. I. Wanas


    Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.

  2. Differential geometry connections, curvature, and characteristic classes

    CERN Document Server

    Tu, Loring W


    This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...

  3. Self-similar decay to the marginally stable ground state in a model for film flow over inclined wavy bottoms

    Directory of Open Access Journals (Sweden)

    Tobias Hacker


    Full Text Available The integral boundary layer system (IBL with spatially periodic coefficients arises as a long wave approximation for the flow of a viscous incompressible fluid down a wavy inclined plane. The Nusselt-like stationary solution of the IBL is linearly at best marginally stable; i.e., it has essential spectrum at least up to the imaginary axis. Nevertheless, in this stable case we show that localized perturbations of the ground state decay in a self-similar way. The proof uses the renormalization group method in Bloch variables and the fact that in the stable case the Burgers equation is the amplitude equation for long waves of small amplitude in the IBL. It is the first time that such a proof is given for a quasilinear PDE with spatially periodic coefficients.

  4. Dynamic simulation of wavy-stratified two-phase flow with the one-dimensional two-fluid model (United States)

    Fullmer, William D.

    conditions. This appears to result in non-convergence when particular solutions at a specific time are compared using different numerical discretizations. However, it is shown that the chaotic solutions exhibit an invariant spectrum in wavenumber space that can be used to assess the convergence of solutions. This concept is applied to a Kelvin-Helmholtz experiment of kerosene and liquid water in a tilted channel whereby many slightly different simulations are run and averaged to determine the mean behavior. Comparisons to experimental data are favorable; especially considering the limitations of applying a one-dimensional model to a dynamic simulation of wavy channel flow. When the analysis is extended to consider air-water flows, several additional challenges are encountered related to the long-wavelength inviscid Kelvin-Helmholtz instability, which is the instability inherent to the one-dimensional two-fluid model. The transition from stratified to wavy flow is significantly over-predicted, i.e., requires a larger velocity to become unstable than observed experimentally. The wave sheltering model of Brauner and Maron (1993) is included in the interfacial shear model and calibrated for flow in a rectangular channel. However, when the unstable flow regime is simulated a wavy flow pattern does not develop as in the liquid-liquid case. Due to the near absence of inertia in the lighter gas phase, viscosity and surface tension are unable to bound the growth of disturbances within the physical limitations of the channel geometry. Transitions to regions of single phase flow result, indicating a slug flow pattern where wavy flow should exist. A novel approach is taken where the instability mechanism, here the sheltering force, is adjusted based on local geometric conditions, namely the void fraction gradient. Comparison to data shows promising results, although a large degree of uncertainty in such an approach remains due to a lack of local experimental data.

  5. Ricci flow of warped product metrics with positive isotropic curvature ...

    Indian Academy of Sciences (India)

    We study the asymptotic behaviour of the ODE associated to the evolution of curvature operator in the Ricci flow of a doubly warped product metric on S p + 1 × S 1 with positive isotropic curvature. Author Affiliations. H A Gururaja1. Department of Mathematics, St. Aloysius College, Mangalore 575 003, India. Dates.

  6. On the projective curvature tensor of generalized Sasakian-space ...

    African Journals Online (AJOL)

    ... some conditions regarding projective curvature tensor. All the results obtained in this paper are in the form of necessary and sufficient conditions. Keywords: Generalized Sasakian-space-forms; projectively flat; projectively-semisymmetric; projectively symmetric; projectively recurrent; Einstein manifold; scalar curvature

  7. How to obtain Transience from Bounded Radial Mean Curvature

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, Vicente


    We show that Brownian motion on any unbounded submanifold P in an ambient manifold N with a pole P is transient if the following conditions are satisfied: The p-radial mean curvatures of P are sufficiently small outsidea compact set and the p-radial sectional curvatures of N are sufficiently...

  8. Surfaces of Constant Curvature in the Pseudo-Galilean Space

    Directory of Open Access Journals (Sweden)

    Željka Milin Šipuš


    constant curvature, so-called the Tchebyshev coordinates, and show that the angle between parametric curves satisfies the Klein-Gordon partial differential equation. We determine the Tchebyshev coordinates for surfaces of revolution and construct a surface with constant curvature from a particular solution of the Klein-Gordon equation.

  9. Finsler metrics with constant (or scalar) flag curvature

    Indian Academy of Sciences (India)

    of new Finsler metrics of constant (or scalar) flag curvature and determine their scalar curvature. Keywords. ... For instance, Li, Chang and Mo related some Killing fields of Finsler metrics to the symmetry of very ...... [13] Shen Z, Differential Geometry of Spray and Finsler Spaces (Kluwer Academic Publish- ers) (2001) 258 ...

  10. Constant mean curvature surfaces via integrable dynamical system

    CERN Document Server

    Konopelchenko, B G


    It is shown that the equation which describes constant mean curvature surface via the generalized Weierstrass-Enneper inducing has Hamiltonian form. Its simplest finite-dimensional reduction has two degrees of freedom, integrable and its trajectories correspond to well-known Delaunay and do Carmo-Dajzcer surfaces (i.e., helicoidal constant mean curvature surfaces).

  11. Haptic perception of object curvature in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Konczak

    Full Text Available BACKGROUND: The haptic perception of the curvature of an object is essential for adequate object manipulation and critical for our guidance of actions. This study investigated how the ability to perceive the curvature of an object is altered by Parkinson's disease (PD. METHODOLOGY/PRINCIPAL FINDINGS: Eight healthy subjects and 11 patients with mild to moderate PD had to judge, without vision, the curvature of a virtual "box" created by a robotic manipulandum. Their hands were either moved passively along a defined curved path or they actively explored the curved curvature of a virtual wall. The curvature was either concave or convex (bulging to the left or right and was judged in two locations of the hand workspace--a left workspace location, where the curved hand path was associated with curved shoulder and elbow joint paths, and a right workspace location in which these joint paths were nearly linear. After exploring the curvature of the virtual object, subjects had to judge whether the curvature was concave or convex. Based on these data, thresholds for curvature sensitivity were established. The main findings of the study are: First, 9 out 11 PD patients (82% showed elevated thresholds for detecting convex curvatures in at least one test condition. The respective median threshold for the PD group was increased by 343% when compared to the control group. Second, when distal hand paths became less associated with proximal joint paths (right workspace, haptic acuity was reduced substantially in both groups. Third, sensitivity to hand trajectory curvature was not improved during active exploration in either group. CONCLUSION/SIGNIFICANCE: Our data demonstrate that PD is associated with a decreased acuity of the haptic sense, which may occur already at an early stage of the disease.

  12. A curvature filter and PDE based non-uniformity correction algorithm (United States)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui; Yin, Shimin


    In this paper, a curvature filter and PDE based non-uniformity correction algorithm is proposed, the key point of this algorithm is the way to estimate FPN. We use anisotropic diffusion to smooth noise and Gaussian curvature filter to extract the details of original image. Then combine these two parts together by guided image filter and subtract the result from original image to get the crude approximation of FPN. After that, a Temporal Low Pass Filter (TLPF) is utilized to filter out random noise and get the accurate FPN. Finally, subtract the FPN from original image to achieve non-uniformity correction. The performance of this algorithm is tested with two infrared image sequences, and the experimental results show that the proposed method achieves a better non-uniformity correction performance.

  13. Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Curvature describes the rate of change of...

  14. Profile Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...

  15. Plan Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Plan curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Plan curvature describes the rate of...

  16. Planck-Scale Dual-Curvature Lensing and Spacetime Noncommutativity

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia


    Full Text Available It was recently realized that Planck-scale momentum-space curvature, which is expected in some approaches to the quantum-gravity problem, can produce dual-curvature lensing, a feature which mainly affects the direction of observation of particles emitted by very distant sources. Several gray areas remain in our understanding of dual-curvature lensing, including the possibility that it might be just a coordinate artifact and the possibility that it might be in some sense a by-product of the better studied dual-curvature redshift. We stress that data reported by the IceCube neutrino telescope should motivate a more vigorous effort of investigation of dual-curvature lensing, and we observe that studies of the recently proposed “ρ-Minkowski noncommutative spacetime” could be valuable from this perspective. Through a dedicated ρ-Minkowski analysis, we show that dual-curvature lensing is not merely a coordinate artifact and that it can be present even in theories without dual-curvature redshift.

  17. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. (United States)

    Kooijman, Edgar E; Chupin, Vladimir; Fuller, Nola L; Kozlov, Michael M; de Kruijff, Ben; Burger, Koert N J; Rand, Peter R


    The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.

  18. Geometry-specific scaling of detonation parameters from front curvature

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Scott I [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory


    It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

  19. Effect of membrane curvature on lateral distribution of membrane proteins

    DEFF Research Database (Denmark)

    Bendix, Pól Martin


    Several membrane proteins exhibit interesting shapes that increases their preference for certain membrane curvatures. Both peripheral and transmembrane proteins are tested with respect to their affinity for a spectrum of high membrane curvatures. We generate high membrane curvatures by pulling...... membrane tubes out of Giant Unilamellar lipid Vesicles (GUVs). The tube diameter can be tuned by aspirating the GUV into a micropipette for controlling the membrane tension. By using fluorescently labled proteins we have shown that sorting of proteins like e.g. FBAR onto tubes is significantly increased...

  20. On the transverse Scalar Curvature of a Compact Sasaki Manifold

    Directory of Open Access Journals (Sweden)

    He Weiyong


    Full Text Available We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the strict contactomophism group

  1. Motion on constant curvature spaces and quantization using Noether symmetries. (United States)

    Bracken, Paul


    A general approach is presented for quantizing a metric nonlinear system on a manifold of constant curvature. It makes use of a curvature dependent procedure which relies on determining Noether symmetries from the metric. The curvature of the space functions as a constant parameter. For a specific metric which defines the manifold, Lie differentiation of the metric gives these symmetries. A metric is used such that the resulting Schrödinger equation can be solved in terms of hypergeometric functions. This permits the investigation of both the energy spectrum and wave functions exactly for this system.

  2. Measurement of radius of curvature of spherical optical surfaces with small curvature and aperture by optical profiler (United States)

    Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan


    Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.

  3. Curvature and bow of bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Foronda, Humberto M.; Young, Erin C.; Robertson, Christian A.; Speck, James S. [Materials Department, UCSB, Santa Barbara, California 93106 (United States); Romanov, Alexey E. [Materials Department, UCSB, Santa Barbara, California 93106 (United States); Ioffe Physico-Technical Institute RAS, St. Petersburg 194021 (Russian Federation); ITMO University, St. Petersburg 197101 (Russian Federation); Beltz, Glenn E. [Mechanical Engineering Department, UCSB, Santa Barbara, California 93106 (United States)


    We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.

  4. Curvature Control of Silicon Microlens for THz Dielectric Antenna (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran


    We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.

  5. Changes on the corneal thickness and curvature after orthokeratology (United States)

    Mitsui, Iwane; Yamada, Yoshiya


    To evaluate the corneal thickness and curvature changes after Orthokeratology contact lens wear, using the ORBSCAN II corneal topography system, corneal thickness and corneal curvature were measured on one hundred and twenty eyes of sixty patients before and after wearing the custom rigid gas permeable contact lenses for Orthokeratology. The contact lenses were specially designed for each eye. The subjects wore the orthokeratology lenses for approximately Four hours with their eyes closed. The corneal thickness of the subjects was increased on fifty-five eyes at not only the peripheral zone but also the center of the cornea. The average increase of central and peripheral corneal thickness was 18 micrometer and 22micrometer, respectively. The mean anterior curvature of corneal surface changed 1.25D. The mean posterior curvature of corneal endothelium side changed 0.75D.

  6. Spacetime curvature and the Higgs stability during inflation. (United States)

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A


    It has been claimed that the electroweak vacuum may be unstable during inflation due to large fluctuations of the order H in the case of a high inflationary scale as suggested by BICEP2. We compute the standard model Higgs effective potential including UV-induced curvature corrections at one-loop level. We find that for a high inflationary scale a large curvature mass is generated due to renormalization group running of nonminimal coupling ξ, which either stabilizes the potential against fluctuations for ξEW≳6×10(-2), or destabilizes it for ξEW≲2×10(-2) when the generated curvature mass is negative. Only in the narrow intermediate region may the effect of the curvature mass be significantly smaller.

  7. Abnormalities of Penile Curvature: Chordee and Penile Torsion

    Directory of Open Access Journals (Sweden)

    Sylvia Montag


    Full Text Available Congenital chordee and penile torsion are commonly observed in the presence of hypospadias, but can also be seen in boys with the meatus in its orthotopic position. Varying degrees of penile curvature are observed in 4–10% of males in the absence of hypospadias. Penile torsion can be observed at birth or in older boys who were circumcised at birth. Surgical management of congenital curvature without hypospadias can present a challenge to the pediatric urologist. The most widely used surgical techniques include penile degloving and dorsal plication. This paper will review the current theories for the etiology of penile curvature, discuss the spectrum of severity of congenital chordee and penile torsion, and present varying surgical techniques for the correction of penile curvature in the absence of hypospadias.

  8. Triangulation in Random Refractive Distortions. (United States)

    Alterman, Marina; Schechner, Yoav Y; Swirski, Yohay


    Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space, time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics induce a probabilistic relation between any pixel location and a line of sight in space. Measurements of an object's random projection from multiple views and times lead to a likelihood function of the object's 3D location. The likelihood leads to estimates of the 3D location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video sequences, both in a lab and a swimming pool.

  9. The weighted curvature approximation in scattering from sea surfaces


    GUERIN, Charles-Antoine; Soriano, Gabriel; Chapron, Bertrand


    A family of unified models in scattering from rough surfaces is based on local corrections of the tangent plane approximation through higher-order derivatives of the surface. We revisit these methods in a common framework when the correction is limited to the curvature, that is essentially the second-order derivative. The resulting expression is formally identical to the weighted curvature approximation, with several admissible kernels, however. For sea surfaces under the Gaussian assumption,...

  10. Memory for curvature of objects: Haptic touch vs. vision


    Ittyerah, Miriam; Lawrence E Marks


    The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic–haptic (T–T) and haptic–visual (T–V) discrimination of curvature in a short-term memory paradigm, using 30-second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about sh...

  11. Static Characterization of Curvature Sensors Based on Plastic Optical Fibers


    Casalicchio, Maria Luisa; Perrone, Guido; Vallan, Alberto; Carullo, Alessio


    Sensors able to measure curvature changes are emerging as an effective alternative to the more common strain gauges for structural health monitoring applications. Particularly interesting is the all-optical fiber implementation for its unique properties and the possibility of being embedded. This paper, after a brief description of curvature sensors using plastic optical fibers, focuses on their characterization in applications where high sensitivity is required, and compares their performanc...

  12. No fast food for solving higher curvature gravity

    CERN Document Server

    Zhao, Liu


    Nowadays, gravity theories with higher curvature terms have attracted considerable attentions. Due to the complicated form of the equations of motion, an effective action method, basically based on substituting a metric ansatz into the action and then replacing the original action by the resulting "effective action", is often practiced while finding solutions to such theories. We indicate via explicit example, however, that this procedure is mathematically inconsistent, thus calling for an end for using this method in analyzing higher curvature gravities.

  13. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory (United States)

    Velazquez, L.


    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold {M} of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor Rijkl(x|θ) of the statistical manifold {M}. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(\\check{x}|\\theta ) obtained from dp(x|θ) by considering a coordinate change \\check{x}=\\phi (x) cannot be factorized into independent distributions as dp(\\check{x}|\\theta )=\\prod _{i}dp^{(i)}(\\check{x}^{i}|\\theta ). It is shown that the curvature tensor Rijkl(x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(\\theta )=\\theta _{i

  14. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe


    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  15. Design of a curvature sensor using a flexoelectric material (United States)

    Yan, X.; Huang, W. B.; Kwon, S. R.; Yang, S. R.; Jiang, X. N.; Yuan, F. G.


    A curvature sensor based on flexoelectricity using Ba0.64Sr0.36TiO3 (BST) material is proposed and developed in this paper. The working principle of the sensor is based on the flexoelectricity, exhibiting coupling between mechanical strain gradient and electric polarization. A BST curvature sensor is lab prepared using a conventional solid state processing method. The curvature sensing is demonstrated in four point bending tests of the beam under harmonic loads. BST sensors are attached on both side surfaces of an aluminum beam, located symmetrically with respect to its neutral axis. Analyses have shown that the epoxy bonding layer plays a critical role for curvature transfer. Consequently a shear lag effect is taken into account for extracting actual curvature from the sensor measurement. Experimental results demonstrated good linearity from the charge outputs under the frequencies tests and showed a sensor sensitivity of 30.78pC•m in comparison with 32.48pC•m from theoretical prediction. The BST sensor provides a direct curvature measure instead of using traditional strain gage through interpolation and may offer an optional avenue for on-line and in-situ structural health monitoring.

  16. Curvature recognition and force generation in phagocytosis

    Directory of Open Access Journals (Sweden)

    Prassler Jana


    Full Text Available Abstract Background The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. Results Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR domain in combination with an Src homology (SH3 domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. Conclusions Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle

  17. 3D-CFD simulation and neural network model for the j and f factors of the wavy fin-and-flat tube heat exchangers

    Directory of Open Access Journals (Sweden)

    M Khoshvaght Aliabadi


    Full Text Available A three dimensional (3D computational fluid dynamics (CFD simulation and a neural network model are presented to estimate the behaviors of the Colburn factor (j and the Fanning friction factor (f for wavy fin - and - flat tube (WFFT heat exchangers. Effects of the five geometrical factors of fin pitch, fin height, fin length, fin thickness, and wavy amplitude are investigated over a wide range of Reynolds number (600wavy fins have significant effects on the j and f factors as a function of Reynolds number. The computational results have an adequate accuracy when compared to experimental data. The accuracy of the calculations of the j and f factors are evaluated by the values of the absolute average relative deviation (AARD, being respectively 3.8% and 8.2% for the CFD simulation and 1.3% and 1% for the neural network model. Finally, new correlations are proposed to estimate the values of the j and f factors with 3.22% and 3.68% AARD respectively.

  18. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics (United States)

    Feng, Di; Zhang, Hui; Xu, Siyi; Tian, Limei; Song, Ningfang


    Metal nanostructures integrated with soft, elastomeric substrates provide an unusual platform with capabilities in plasmonic frequency tuning of mechanical strain. In this paper, we have prepared a tunable optical device, dense arrays of plasmonic nanodisks on a low-modulus, and high-elongation elastomeric substrate with a three-dimensional (3D) sinusoidal wavy, and their optical characteristics have been measured and analyzed in detail. Since surface plasmon is located and propagates along metal surfaces with sub-wavelength structures, and those dispersive properties are determined by the coupling strength between the individual structures, in this study, a 3D sinusoidal curve elastomeric substrate is used to mechanically control the inter-nanodisk spacing by applying straining and creating a frequency tunable plasmonic device. Here we study the optical resonance peak shifting generated by stretching this type of flexible device, and the role that 3D sinusoidal curve surface configuration plays in determining the tunable properties. Since only the hybrid dipolar mode has been observed in experiments, the coupled dipole approximation (CDA) method is employed to simulate the optical response of these devices, and the experimental and simulation results show that these devices have high tunability to shift optical resonance peaks at near-infrared wavelengths, which will provide strong potential for new soft optical sensors and wearable plasmonic sensors.

  19. Wavy liquid films in interaction with a strongly confined laminar gas flow: Modeling and direct numerical simulations (United States)

    Dietze, Georg F.; Ruyer-Quil, Christian


    Different technological settings concern the flow of a wavy liquid film in contact with a strongly confined gas flow. Micro-gaps for instance, which are employed for the cooling of electronic equipment, involve a pressure-driven evaporating liquid film flowing co-currently to its own vapor. In packed columns used for distillation, falling liquid films sheared by a counter-current gas flow occur within narrow channels. Surface waves on the liquid-gas interface of these flows play an important role as they intensify scalar transfer and may cause flooding of the channel. However, their accurate prediction by full numerical simulation is associated with a substantial computational cost. We evaluate an alternative approach based on a low-dimensional integral boundary layer formulation applied to both fluid layers. The resulting model captures the long-wave (Yih and Kapitza) instabilities of the flow accurately and allows calculations on long domains at low computational cost. These evince a number of intricate wave-induced flow structures within the film and gas as well as a possible route to the flooding of narrow channels under counter-current gas flow conditions. Comparisons with direct numerical simulations using the VOF-CSF approach as well as experiments are convincing. GFD acknowledges support from DAAD (Deutscher Akademischer Austauschdienst).

  20. Polyamide Curvature and DNA Sequence Selective Recognition: Use of 4-Aminobenzamide to Adjust Curvature (United States)

    Lajiness, Jamie; Sielaff, Alan; Mackay, Hilary; Brown, Toni; Kluza, Jerome; Nguyen, Binh; Wilson, W. David; Lee, Moses; Hartley, John A.


    Imidazole and pyrrole-containing polyamides belong to an important class of compounds that can be designed to target specific DNA sequences, and they are potentially useful in applications of controlling gene expression. The extent of polyamide curvature is an important consideration when studying the ability of such compounds to bind in the minor groove of DNA. The current study investigates the importance of curvature using polyamides of the form f-Im-Phenyl-Im, in which the imidazole heterocycles are placed in ortho-, meta-, and para-configurations of the phenyl moiety. The synthesis and biophysical evaluation of each compound binding to its cognate DNA sequence (5′-ACGCGT-3′) and a negative control sequence (5′-AAATTT-3′) is reported, along with their comparison to the parent binder, f-Im-Py-Im (3). ACGCGT is a medicinally significant sequence present in the MluI cell-cycle box (MCB) transcriptional element found in the promoter of a gene associated with cell division. The results demonstrated that the para-derivative has the greatest affinity for its cognate sequence, as indicated via thermal denaturation, CD, ITC, SPR analyses, and DNase I footprinting. ITC studies showed that binding of the para-isomer (2c) to ACGCGT was significantly more exothermic than binding to AAATTT. In contrast, no heat change was observed for binding of the meta- (2b) and ortho- (2a) isomers to both DNAs, due to low binding affinities. This is consistent with results from SPR studies, which indicate that the para-derivative binds in a 2:1 fashion to ACGCGT and binds weakly to ACCGGT (K = 1.8 × 106 and 4.0 × 104 M−1, respectively). Interestingly, it binds in a 1:1 fashion to AAATTT (K = 5.4 × 105 M−1). The meta-compound does not bind to any sequence. The para-derivative also was the only compound to show an induced peak via CD at 330 nm, indicative of minor groove binding, and produced a ΔTm value of 5.8 ºC. Molecular modeling experiments have been performed to

  1. Novel tilt-curvature coupling in lipid membranes (United States)

    Terzi, M. Mert; Deserno, Markus


    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  2. The speed-curvature power law of movements: a reappraisal. (United States)

    Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco


    Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.

  3. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi


    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  4. Membrane curvature based lipid sorting using a nanoparticle patterned substrate. (United States)

    Black, Joshua C; Cheney, Philip P; Campbell, Travis; Knowles, Michelle K


    Cellular membranes contain a variety of shapes that likely act as motifs for sorting lipids and proteins. To understand the sorting that takes place within cells, a continuous, fluid bilayer with regions of membrane curvature was designed and characterized using confocal fluorescence and total internal reflection fluorescence microscopy techniques. A supported lipid bilayer was formed over fluorescently labelled nanoparticles deposited on a glass surface. The lipid composition and membrane shape are separately controlled and the nanoparticle dimensions (d = 40-200 nm) determine the extent of curvature. The bulk membrane is fluid as demonstrated by fluorescence recovery after photobleaching (FRAP) using dye labelled lipids. In bilayers that contain fluorescently labelled, single-tailed lipids, accumulation is observed at regions of curvature, yet the molecules retain fluidity. Using single particle imaging methods, lipids are observed to visit regions of curvature and exchange with the surrounding flat membrane. The nanoparticle patterned substrate described here allows for quantitative measurement of the transient interactions between fluorescently labelled biomolecules and regions of membrane curvature.

  5. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.


    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that coll......The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  6. Cholesterol Induces Uneven Curvature of Asymmetric Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    S. O. Yesylevskyy


    Full Text Available A remarkable flexibility is observed in biological membranes, which allows them to form the structures of different curvatures. We addressed the question of intrinsic ability of phospholipid membranes to form highly curved structures and the role of cholesterol in this process. The distribution of cholesterol in the highly curved asymmetric DOPC/DOPS lipid bilayer was investigated by the coarse-grained molecular dynamics simulations in the membrane patches with large aspect ratio. It is shown that cholesterol induces uneven membrane curvature promoting the formation of extended flattened regions of the membrane interleaved by sharp bends. It is shown that the affinity of cholesterol to anionic DOPS or neutral DOPC lipids is curvature dependent. The cholesterol prefers DOPS to DOPC in either planar or highly curved parts of the membrane. In contrast, in the narrow interval of moderate membrane curvatures this preference is inverted. Our data suggest that there is a complex self-consistent interplay between the membrane curvature and cholesterol distribution in the asymmetric lipid bilayers. The suggested new function of cholesterol may have a biological relevance.

  7. Geometric curvature and phase of the Rabi model

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lijun; Huai, Sainan; Guo, Liping; Zhang, Yunbo, E-mail:


    We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit–cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.

  8. Exploiting cantilever curvature for noise reduction in atomic force microscopy. (United States)

    Labuda, Aleksander; Grütter, Peter H


    Optical beam deflection is a widely used method for detecting the deflection of atomic force microscope (AFM) cantilevers. This paper presents a first order derivation for the angular detection noise density which determines the lower limit for deflection sensing. Surprisingly, the cantilever radius of curvature, commonly not considered, plays a crucial role and can be exploited to decrease angular detection noise. We demonstrate a reduction in angular detection shot noise of more than an order of magnitude on a home-built AFM with a commercial 450 μm long cantilever by exploiting the optical properties of the cantilever curvature caused by the reflective gold coating. Lastly, we demonstrate how cantilever curvature can be responsible for up to 45% of the variability in the measured sensitivity of cantilevers on commercially available AFMs.

  9. Waterfall field in hybrid inflation and curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Sasaki, Misao, E-mail:, E-mail: [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)


    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.

  10. Curvature affects Doppler investigation of vessels: implications for clinical practice. (United States)

    Balbis, S; Roatta, S; Guiot, C


    In clinical practice, blood velocity estimations from Doppler examination of curved vascular segments are normally different from those of nearby straight segments. The observed "accelerations," sometimes considered as a sort of stochastic disturbances, can actually be related to very specific physical effects due to vessel curvature (i.e., the development of nonaxial velocity [NAV] components) and the spreading of the axial velocity direction in the Doppler sample volume with respect to the insonation axis. The relevant phenomena and their dependence on the radius of curvature of the vessels and on the insonation angle are investigated with a beam-vessel geometry as close as possible to clinical setting, with the simplifying assumptions of steady flow, mild vessel curvature, uniform ultrasonic beam and complete vessel insonation. The insonation angles that minimize the errors are provided on the basis of the study results.

  11. Model-independent Constraints on Cosmic Curvature and Opacity (United States)

    Wang, Guo-Jian; Wei, Jun-Jie; Li, Zheng-Xiang; Xia, Jun-Qing; Zhu, Zong-Hong


    In this paper, we propose to estimate the spatial curvature of the universe and the cosmic opacity in a model-independent way with expansion rate measurements, H(z), and type Ia supernova (SNe Ia). On the one hand, using a nonparametric smoothing method Gaussian process, we reconstruct a function H(z) from opacity-free expansion rate measurements. Then, we integrate the H(z) to obtain distance modulus μ H, which is dependent on the cosmic curvature. On the other hand, distances of SNe Ia can be determined by their photometric observations and thus are opacity-dependent. In our analysis, by confronting distance moduli μ H with those obtained from SNe Ia, we achieve estimations for both the spatial curvature and the cosmic opacity without any assumptions for the cosmological model. Here, it should be noted that light curve fitting parameters, accounting for the distance estimation of SNe Ia, are determined in a global fit together with the cosmic opacity and spatial curvature to get rid of the dependence of these parameters on cosmology. In addition, we also investigate whether the inclusion of different priors for the present expansion rate (H 0: global estimation, 67.74 ± 0.46 km s-1 Mpc-1, and local measurement, 73.24 ± 1.74 km s-1 Mpc-1) exert influence on the reconstructed H(z) and the following estimations of the spatial curvature and cosmic opacity. Results show that, in general, a spatially flat and transparent universe is preferred by the observations. Moreover, it is suggested that priors for H 0 matter a lot. Finally, we find that there is a strong degeneracy between the curvature and the opacity.

  12. Multiple-image shearography: a direct method to determine curvatures. (United States)

    Tay, C J; Toh, S L; Shang, H M; Lin, Q Y


    We present a modified method of shearography, known herein as multiple-image shearography, whereby the curvatures of an object can be measured directly from the resulting fringes. It employs an image-shearing camera that produces three sheared images simultaneously to interfere with each other in the image plane. When film is doubly exposed before and after an object is deformed, three sets of fringes are observed of which one set would depict the second-order derivatives of surface displacement.The theory of the multiple-image shearography technique and its application to curvature measurements in plate bending are presented.

  13. Effect of curvature on the backscattering from a leaf (United States)

    Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.


    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.

  14. Effect of curvature on the backscattering from leaves (United States)

    Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.


    Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.

  15. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang


    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  16. Optimization of zonal wavefront estimation and curvature measurements (United States)

    Zou, Weiyao

    Optical testing in adverse environments, ophthalmology and applications where characterization by curvature is leveraged all have a common goal: accurately estimate wavefront shape. This dissertation investigates wavefront sensing techniques as applied to optical testing based on gradient and curvature measurements. Wavefront sensing involves the ability to accurately estimate shape over any aperture geometry, which requires establishing a sampling grid and estimation scheme, quantifying estimation errors caused by measurement noise propagation, and designing an instrument with sufficient accuracy and sensitivity for the application. Starting with gradient-based wavefront sensing, a zonal least-squares wavefront estimation algorithm for any irregular pupil shape and size is presented, for which the normal matrix equation sets share a pre-defined matrix. A Gerchberg--Saxton iterative method is employed to reduce the deviation errors in the estimated wavefront caused by the pre-defined matrix across discontinuous boundary. The results show that the RMS deviation error of the estimated wavefront from the original wavefront can be less than lambda/130˜ lambda/150 (for lambda equals 632.8nm) after about twelve iterations and less than lambda/100 after as few as four iterations. The presented approach to handling irregular pupil shapes applies equally well to wavefront estimation from curvature data. A defining characteristic for a wavefront estimation algorithm is its error propagation behavior. The error propagation coefficient can be formulated as a function of the eigenvalues of the wavefront estimation-related matrices, and such functions are established for each of the basic estimation geometries (i.e. Fried, Hudgin and Southwell) with a serial numbering scheme, where a square sampling grid array is sequentially indexed row by row. The results show that with the wavefront piston-value fixed, the odd-number grid sizes yield lower error propagation than the even

  17. About the relevance of waviness, agglomeration, and strain on the electrical behavior of polymer composites filled with carbon nanotubes evaluated by a Monte-Carlo simulation (United States)

    Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto


    In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.

  18. Remarks on the boundary curve of a constant mean curvature topological disc

    DEFF Research Database (Denmark)

    Brander, David; Lopéz, Rafael


    We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature of the bo......We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...

  19. Curvature Properties of Lorentzian Manifolds with Large Isometry Groups

    Energy Technology Data Exchange (ETDEWEB)

    Batat, Wafaa [Ecole Normale Superieure de L' Enseignement Technique d' Oran, Departement de Mathematiques et Informatique (Algeria)], E-mail:; Calvaruso, Giovanni, E-mail:; Leo, Barbara De [University of Salento, Dipartimento di Matematica ' E. De Giorgi' (Italy)], E-mail:


    The curvature of Lorentzian manifolds (M{sup n},g), admitting a group of isometries of dimension at least 1/2n(n - 1) + 1, is completely described. Interesting behaviours are found, in particular as concerns local symmetry, local homogeneity and conformal flatness.

  20. Supported lipid bilayers with controlled curvature via colloidal lithography

    DEFF Research Database (Denmark)

    Sundh, Maria; Manandhar, Michal; Svedhem, Sofia


    , is presented, utilizing lipid vesicle rupture onto nanostructured sensor substrates. Heat treated colloidal particle masks were used as templates to produce silicon dioxide films with systematically varied radius of curvature (ROC, 70 to 170 nm are demonstrated) and quartz crystal microbalance with dissipation...

  1. Automatic quantification of local and global articular cartilage surface curvature

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F


    The objective of this study was to quantitatively assess the surface curvature of the articular cartilage from low-field magnetic resonance imaging (MRI) data, and to investigate its role in populations with varying radiographic signs of osteoarthritis (OA), cross-sectionally and longitudinally. ...

  2. Cosmological models with positive scalar spatial curvature and Λ>0 (United States)

    Ponce de Leon, J.


    Some exact spherically symmetric solutions of the Einstein field equations with Λ>0 and positive three-curvature are given. They have reasonable physical properties and represent universes which do not undergo inflation but have a non-de Sitter behaviour for large times. This paper extends some previous results in the literature. Permanent address: Apartado 2816, Caracas 1010-A, Venezuela.

  3. Generalized Curvature-Matter Couplings in Modified Gravity

    Directory of Open Access Journals (Sweden)

    Tiberiu Harko


    Full Text Available In this work, we review a plethora of modified theories of gravity with generalized curvature-matter couplings. The explicit nonminimal couplings, for instance, between an arbitrary function of the scalar curvature R and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor, implying non-geodesic motion and, consequently, leads to the appearance of an extra force. Applied to the cosmological context, these curvature-matter couplings lead to interesting phenomenology, where one can obtain a unified description of the cosmological epochs. We also consider the possibility that the behavior of the galactic flat rotation curves can be explained in the framework of the curvature-matter coupling models, where the extra terms in the gravitational field equations modify the equations of motion of test particles and induce a supplementary gravitational interaction. In addition to this, these models are extremely useful for describing dark energy-dark matter interactions and for explaining the late-time cosmic acceleration.

  4. Slope and curvature of Isgur–Wise function using variationally ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 3. Slope and curvature of Isgur–Wise function using variationally improved perturbation theory in a quantum chromodynamics inspired potential model. Bhaskar Jyoti Hazarika D K Choudhury. Research Articles Volume 75 Issue 3 September 2010 pp 423- ...

  5. Measurement of sternal curvature angle on patients with pectus excavatum. (United States)

    Lee, Cory; Zavala-Garcia, Abraham; Teekappanavar, Neha; Lee, Catherine; Idowu, Olajire; Kim, Sunghoon


    Pectus excavatum (PE) is a chest deformity characterized by marked sternal depression. The objective of this study was to quantify the sternal curvature observed in patients diagnosed with PE using the sternal curvature angle (SCA). A retrospective review of lateral chest X-rays of patients with PE from 2006 to 2013 was performed. The SCA was measured in a manner similar to the method of Cobb's angle is used to measure spinal curvature. SCA and Haller index were calculated from the chest X-rays for all patients. Lateral chest X-rays of 202 PE and 196 normal control patients were analyzed. The mean SCA ± SD of PE patients was 40.56° ± 12.88° compared to 22.02° ± 7.65° for normal patients. The difference was statistically significant with a p value of pectus excavatum and normal patients was statistically significant. Our data suggest that sternal depression evident in PE patients is not a simple linear depression of the sternum but due to curvature in the sternal body.

  6. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth


    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states decrea...

  7. Phase error correction in wavefront curvature sensing via phase retrieval

    DEFF Research Database (Denmark)

    Almoro, Percival; Hanson, Steen Grüner


    Wavefront curvature sensing with phase error correction system is carried out using phase retrieval based on a partially-developed volume speckle field. Various wavefronts are reconstructed: planar, spherical, cylindrical, and a wavefront passing through the side of a bare optical fiber. Spurious...

  8. The effect of anterior cruciate ligament injury on bone curvature

    DEFF Research Database (Denmark)

    Hunter, D J; Lohmander, Stefan; Makovey, J


    OBJECTIVE: Investigate the 5-year longitudinal changes in bone curvature after acute anterior cruciate ligament (ACL) injury, and identify predictors of such changes. METHODS: In the KANON-trial (ISRCTN 84752559), 111/121 young active adults with an acute ACL tear to a previously un-injured knee...

  9. Other Earths: Search for Life and the Constant Curvature

    Directory of Open Access Journals (Sweden)

    Khoshyaran M. M.


    Full Text Available The objective of this paper is to propose a search methodology for finding other exactly similar earth like planets (or sister earths. The theory is based on space consisting of Riemann curves or highways. A mathematical model based on constant curvature, a moving frame bundle, and gravitational dynamics is introduced.

  10. Effect of entry bending moment on exit curvature in asymmetrical ...

    African Journals Online (AJOL)


    In practice, rolling of plate and sheet asymmetry arises due to inequality in roll radii, roll velocity and interface friction. These ... used modified slab method to analyze the asymmetrical plate rolling and to predict strip curvature. Knight et al. ...... This relative motion makes the rotation toward the rougher roll. By applying ...

  11. Temperature insensitive curvature sensor based on cascading photonic crystal fiber (United States)

    Fu, Guangwei; Li, Yunpu; Fu, Xinghu; Jin, Wa; Bi, Weihong


    A temperature insensitive curvature sensor is proposed based on cascading photonic crystal fiber. Using the arc fusion splicing method, this sensor is fabricated by cascading together a single-mode fiber (SMF), a three layers air holes structure of photonic crystal fiber (3PCF), a five layers air holes structure of photonic crystal fiber (5PCF) and a SMF in turn. So the structure SMF-3PCF-5PCF-SMF can be obtained with a total length of 20 mm. During the process of fabrication, the splicing machine parameters and the length of each optical fiber are adjusted to obtain a high sensitivity curvature sensor. The experimental results show that the curvature sensitivity is -8.40 nm/m-1 in the curvature variation range of 0-1.09 m-1, which also show good linearity. In the range of 30-90 °C, the temperature sensitivity is only about 3.24 pm/°C, indicating that the sensor is not sensitive to temperature. The sensor not only has the advantages of easy fabricating, simple structure, high sensitivity but also can solve the problem of temperature measurement cross sensitivity, so it can be used for different areas including aerospace, large-scale bridge, architectural structure health monitoring and so on.

  12. A level set crystalline mean curvature flow of surfaces


    Giga, Yoshikazu; Požár, Norbert


    We introduce a new notion of viscosity solutions for the level set formulation of the motion by crystalline mean curvature in three dimensions. The solutions satisfy the comparison principle, stability with respect to an approximation by regularized problems, and we also show the uniqueness and existence of a level set flow for bounded crystals.

  13. Draping Double-Layer Woven Fabrics Onto Double-Curvature ...

    African Journals Online (AJOL)

    Draping woven fabrics to complex parts with double curvature leads to complex redistribution and reorientation of the yarns in composites reinforced with woven preforms. To reduce the risk of fabric tearing or wrinkling we propose to use double-layer woven fabrics. This paper presents a simulation model for draping

  14. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)


    Dec 5, 2017 ... Aim/Background: Associations between axial length (AL) to corneal radius of curvature (CR) ratio and refractive status in a healthy Nigerian adult population were studied. Materials and Methods: Healthy students and members of staff of Obafemi Awolowo Teaching Hospitals Complex, Ile-Ife, South West ...

  15. A quasifibration of spaces of positive scalar curvature metrics


    Chernysh, Vladislav


    In this paper we show that for Riemannian manifolds with boundary the natural restriction map is a quasifibration between spaces of metrics of positive scalar curvature. We apply this result to study homotopy properties of spaces of such metrics on manifolds with boundary.

  16. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)

    Aim/Background: Associations between axial length (AL) to corneal radius of curvature (CR) ratio and refractive status in a healthy Nigerian adult population were studied. Materials and Methods: Healthy students and members of staff of Obafemi Awolowo Teaching Hospitals Complex, Ile‑Ife, South West Nigeria, free of ...

  17. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)


    Feb 7, 2018 ... Aim/Background: Associations between axial length (AL) to corneal radius of curvature (CR) ratio and refractive status in a healthy Nigerian adult population were studied. Materials and Methods: Healthy students and members of staff of Obafemi Awolowo Teaching Hospitals Complex, Ile-Ife, South West ...

  18. Eigenvalue estimates for submanifolds with bounded f-mean curvature

    Indian Academy of Sciences (India)


    Abstract. In this paper, we obtain an extrinsic low bound to the first non-zero eigenvalue of the f -Laplacian on complete noncompact submanifolds of the weighted. Riemannian manifold (Hm(−1), e−f dv) with respect to the f -mean curvature. In par- ticular, our results generalize those of Cheung and Leung in Math. Z. 236 ...

  19. Curvature sensing with a Shack-Hartmann sensor

    NARCIS (Netherlands)

    Soloviev, O.A.; Verhaegen, M.H.G.; Vdovine, G.V.; Bonora, S


    Shack-Hartmann (SH) sensor, based on sampling of wavefront tilts in subapertures, is a simple, reliable, and widely used in adaptive optics wavefront sensor. A wavefront curvature sensor has the advantage of providing the results suitable for direct control of membrane and bimorph deformable mirrors

  20. On the Curvature and Heat Flow on Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ohta Shin-ichi


    Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

  1. An optomechatronic curvature measurement array based on fiber Bragg gratings (United States)

    Chang, Hsing-Cheng; Chang, I.-Nan; Chen, Ya-Hui; Lin, Shyan-Lung; Hung, San-Shan; Lin, Jung-Chih; Liu, Wen-Fung


    This study investigated an optomechatronic array-integrated signal processing module and a human-machine interface based on fiber Bragg grating sensing elements embedded in an elastic support matrix that involves using a self-located electromagnetic mechanism for curvature sensing and solid contour reconstruction. Using bilinear interpolation and average calculation methods, the smooth and accurate surface contours of convex and concave lenses are reconstructed in real-time. The elastic supporting optical sensing array is self-balanced to reduce operational errors. Compared with our previous single-head sensor, the sensitivity of the proposed array is improved by more than 15%. In the curvature range from -20.15 to +27.09 m-1, the sensitivities are 3.53 pm m for the convex measurement and 2.15 pm m for the concave measurement with an error rate below 8.89%. The curvature resolutions are 0.283 and 0.465 m-1 for convex and concave lenses, respectively. This array could be applied in the curvature measurement of solar collectors to monitor energy conversion efficiency or could be used to monitor the wafer-level thin-film fabrication process.

  2. Influence of a white noise at channel inlet on the parallel and wavy convective instabilities of Poiseuille-Rayleigh-Bénard flows


    Nicolas, Xavier; Zoueidi, N.; Xin, S.


    International audience; The present paper concerns Poiseuille-Rayleigh-Bénard mixed convection flows in horizontal rectangular air-filled channels of large spanwise aspect ratio (W/H ≥ 10) and it focuses on the primary and secondary thermoconvective instabilities made of steady longitudinal and unsteady wavy rolls for 100 ≤ Re ≤ 200, 3000 < Ra < 15 000, Pr = 0.7, and W/H = 10. Time linear stability analysis of longitudinal rolls and 3D nonlinear numerical simulations using a specially tailore...

  3. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    KAUST Repository

    Hanna, Amir


    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.


    Directory of Open Access Journals (Sweden)

    Mahmoud Mohamed Ahmed Ewidea


    Full Text Available Purpose: Kinesio Taping (KT is a technique that has been used in the clinical management of people with chronic back pain. This study investigated the efficacy of KT on patient with chronic non-specific low back pain using electromyography (EMG and three-dimensional motion analysis (3DMA. Subjects: 50 patients with chronic low back pain aging from 25 – 40 years, with mean age (36.62±2.9 years. Patients were divided randomly into two equal groups, placebo group (A received sham KT, and group B received real KT. Methods: The outcome measurements were electrical activity of lumbar Para spinal muscle using EMG pre and post KT, lumbar curvature using 3DMA and pain Pre and post KT using visual analogue scale (VAS EMG and 3DMA were carried out at baseline and 2 weeks later while pain was recorded after 1 month. Results: Paired analysis for comparison between pre and post treatment measurements in each group showed significant decrease of lumbar curvature as well as medium frequency of Para spinal muscles in group B than group A. also there is significant decrease of pain in group B than on group A. Despite the equal baseline of all groups before treatment, there were significant decrease of lumbar curvature, medium frequency of Para spinal muscles and pain measurements in real KT group than placebo group. The results suggested that kinsiotaping have beneficial effects on pain, range of motion, and trunk muscle endurance in people with chronic non-specific low back pain of mechanical etiology

  5. Stimulation of root elongation and curvature by calcium (United States)

    Takahashi, H.; Scott, T. K.; Suge, H.


    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  6. Patient satisfaction with correction of congenital penile curvature. (United States)

    Mayer, M; Rey Valzacchi, G; Silva Garretón, A; Layus, O; Gueglio, G


    Congenital penile curvature is a relatively rare disease, resulting from a deviation of the penis from the body's straight axis when erect. The prevalence is difficult to determine. Although it has been suggested that the condition could affect up to 10% of the male population, most of these deviations are minor, with no clinical or psychological importance, which leads to its underdiagnosis. Effective correction of the deviation can markedly improve the quality of life of adolescents with this condition. To assess the quality of the sex life of patients diagnosed with congenital penile curvature who underwent surgical correction. Design Retrospective, observational cohort study. Data was collected from the medical records of patients who underwent surgical correction of congenital penile curvature from June 2004 to August 2016. The patients completed the following self-administered questionnaires: Sexual Quality of Life Questionnaire-Male (SQOL-M), International Index of Erectile Function 5 (IIEF 5) and "How satisfied are you with the results of the surgery? From 0 to 10". Twenty-two corporoplasties were performed to correct the patients' congenital penile curvature. The patients' average age was 23.4 years (range, 17-35). The mean deviation prior to surgery was 47.9° (range, 20°-90°). The average score on the SQOL-M was 52 points (range, 6-66). The average score on the IIEF 5 was 22.4 points. Congenital penile curvature profoundly decreases quality of life, and early surgery is fundamental for repairing the anatomical deformation and thereby significantly restores the patients' psychosocial and sexual wellbeing. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Quantifying the Relationship Between Curvature and Electric Potential in Lipid Bilayers

    DEFF Research Database (Denmark)

    Bruhn, Dennis Skjøth; Lomholt, Michael Andersen; Khandelia, Himanshu


    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecul...

  8. Remarks on the boundary curve of a constant mean curvature topological disc

    DEFF Research Database (Denmark)

    Brander, David; Lopéz, Rafael


    We discuss some consequences of the existence of the holomorphic quadratic Hopf differential on a conformally immersed constant mean curvature topological disc with analytic boundary. In particular, we derive a formula for the mean curvature as a weighted average of the normal curvature...

  9. Curvature correction to the mobility of fluid membrane inclusions. (United States)

    Daniels, D R


    Using rigorous low-Reynolds-number hydrodynamic theory on curved surfaces, we provide, via a Stokeslet-type approach, a general and concise expression for the leading-order curvature correction to the canonical, planar, Saffman-Delbrück value of the diffusion constant for a small inclusion embedded in an arbitrarily (albeit weakly) curved fluid membrane. In order to demonstrate the efficacy and utility of this general result, we apply our theory to the specific case of calculating the diffusion coefficient of a locally curvature inducing membrane inclusion. By including both the effects of inclusion and membrane elasticity, as well as their respective thermal shape fluctuations, excellent agreement is found with recently published experimental data on the surface tension dependent mobility of membrane bound inclusions.

  10. Gravitomagnetism and the significance of the curvature scalar invariants

    CERN Document Server

    Costa, L Filipe O; Natário, José


    The curvature invariants have been subject of recent interest due to the debate concerning the notions of intrinsic/extrinsic frame-dragging, the use of the electromagnetic analogy in such classification, and the question of whether there is a fundamental difference between the gravitomagnetic field arising from the translational motion of the sources, detected with Lunar Laser Raging and in the observations of binary pulsars, and the gravitomagnetic field produced by the rotation of the Earth, detected in the LAGEOS Satellites data and by the Gravity Probe-B mission. In this work we clarify both the algebraic and physical meaning of the curvature invariants and their electromagnetic counterparts. The structure of the invariants of the astrophysical setups of interest is studied in detail, and its relationship with the gravitomagnetic effects is dissected. Finally, a new classification for intrinsic/extrinsic gravitomagnetism is put forth.

  11. Thermodynamics in Modified Gravity with Curvature Matter Coupling

    Directory of Open Access Journals (Sweden)

    M. Sharif


    Full Text Available The first and generalized second laws of thermodynamics are studied in f(R,Lm gravity, a more general modified theory with curvature matter coupling. It is found that one can translate the Friedmann equations to the form of first law accompanied with entropy production term. This behavior is due to the nonequilibrium thermodynamics in this theory. We establish the generalized second law of thermodynamics and develop the constraints on coupling parameters for two specific models. It is concluded that laws of thermodynamics in this modified theory are more general and can reproduce the corresponding results in Einstein, f(R gravity, and f(R gravity with arbitrary as well as nonminimal curvature matter coupling.

  12. Glauber theory and the quantum coherence of curvature inhomogeneities

    CERN Document Server

    Giovannini, Massimo


    The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.

  13. DNA Origami with Complex Curvatures in Three-Dimensional Space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao


    We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

  14. On M-theory fourfold vacua with higher curvature terms

    Directory of Open Access Journals (Sweden)

    Thomas W. Grimm


    Full Text Available We study solutions to the eleven-dimensional supergravity action, including terms quartic and cubic in the Riemann curvature, that admit an eight-dimensional compact space. The internal background is found to be a conformally Kähler manifold with vanishing first Chern class. The metric solution, however, is non-Ricci-flat even when allowing for a conformal rescaling including the warp factor. This deviation is due to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat metric. We present a systematic derivation of the background solution by solving the Killing spinor conditions including higher curvature terms. These are translated into first-order differential equations for a globally defined real two-form and complex four-form on the fourfold. We comment on the supersymmetry properties of the described solutions.

  15. Identification of black hole horizons using scalar curvature invariants (United States)

    Coley, Alan; McNutt, David


    We introduce the concept of a geometric horizon, which is a surface distinguished by the vanishing of certain curvature invariants which characterize its special algebraic character. We motivate its use for the detection of the event horizon of a stationary black hole by providing a set of appropriate scalar polynomial curvature invariants that vanish on this surface. We extend this result by proving that a non-expanding horizon, which generalizes a Killing horizon, coincides with the geometric horizon. Finally, we consider the imploding spherically symmetric metrics and show that the geometric horizon identifies a unique quasi-local surface corresponding to the unique spherically symmetric marginally trapped tube, implying that the spherically symmetric dynamical black holes admit a geometric horizon. Based on these results, we propose a suite of conjectures concerning the application of geometric horizons to more general dynamical black hole scenarios.

  16. Substrate Curvature Regulates Cell Migration -A Computational Study (United States)

    He, Xiuxiu; Jiang, Yi

    Cell migration in host microenvironment is essential to cancer etiology, progression and metastasis. Cellular processes of adhesion, cytoskeletal polymerization, contraction, and matrix remodeling act in concert to regulate cell migration, while local extracellular matrix architecture modulate these processes. In this work we study how stromal microenvironment with native and cell-derived curvature at micron-meter scale regulate cell motility pattern. We developed a 3D model of single cell migration on a curved substrate. Mathematical analysis of cell morphological adaption to the cell-substrate interface shows that cell migration on convex surfaces deforms more than on concave surfaces. Both analytical and simulation results show that curved surfaces regulate the cell motile force for cell's protruding front through force balance with focal adhesion and cell contraction. We also found that cell migration on concave substrates is more persistent. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration. NIH 1U01CA143069.

  17. Magnetic curvature driven Rayleigh-Taylor instability revisited

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov


    Full Text Available The problem of incomplete finite ion Larmor radius (FLR stabilization of the magnetic curvature driven Rayleigh-Taylor instability (RTI in low beta plasma with homogeneous ion temperature is investigated. For this purpose a model hydrodynamic description of nonlinear flute waves with arbitrary spatial scales compared to the ion Larmor radius is developed. It is shown that the RTI is not stabilized by FLR effects in a plasma with cold electrons when the ratio of characteristic spatial scale of the plasma inhomogeneity to local effective radius of curvature of the magnetic field lines is larger than 1/4. The crucial role in the absence of the complete FLR stabilization plays the contribution of the compressibility of the polarization part of the ion velocity.

  18. Timelike Bonnet surfaces with non-constant curvature

    Directory of Open Access Journals (Sweden)

    Soley Ersoy


    Full Text Available In this study, the criterion of a timelike surface being Bonnet surface in 3-dimensional Minkowski space given by [11] is taken into consideration and by a similar manner of the classification of surfaces in Euclidean space done by I. M. Roussos in [6], timelike surfaces as Bonnet surfaces are investigated in three class as C1, C2 and C3. Timelike surfaces given in the case of C1 have constant mean curvature and were investigated by a detailed way in [11]. In the present study, by investigating the cases of C2 and C3, a criterion of the timelike surfaces with non-constant mean curvature being Bonnet surfaces is determined.

  19. Curvature-Induced Asymmetric Spin-Wave Dispersion (United States)

    Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila


    In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect.

  20. Curvature-Restored Gauge Invariance and Ultraviolet Naturalness

    Directory of Open Access Journals (Sweden)

    Durmuş Ali Demir


    Full Text Available It is shown that (aΛ2+b|H|2R in a spacetime of curvature R is a natural ultraviolet (UV completion of (aΛ4+bΛ2|H|2 in the flat-spacetime Standard Model (SM with Higgs field H, UV scale Λ, and loop factors a and b. This curvature completion rests on the fact that Λ-mass gauge theory in flat spacetime turns, on the cut view R=4Λ2, into a massless gauge theory in curved spacetime. It provides a symmetry reason for curved spacetime, wherein gravity and matter are both low-energy effective phenomena. Gravity arises correctly if new physics exists with at least 63 more bosons than fermions, with no need to interact with the SM and with dark matter as a natural harbinger. It can source various cosmological, astrophysical, and collider phenomena depending on its spectrum and couplings to the SM.

  1. The Imaginary Starobinsky Model and Higher Curvature Corrections

    CERN Document Server

    Ferrara, Sergio; Riotto, Antonio


    We elaborate on the predictions of the imaginary Starobinsky model of inflation coupled to matter, where the inflaton is identified with the imaginary part of the inflaton multiplet suggested by the Supergravity embedding of a pure R + R^2 gravity. In particular, we study the impact of higher-order curvature terms and show that, depending on the parameter range, one may find either a quadratic model of chaotic inflation or monomial models of chaotic inflation with fractional powers between 1 and 2.

  2. Higher derivative free energy terms and interfacial curvatures


    Mihailescu, M.


    High derivative terms do not play a major role in field theories because of the associated complexity and inherent difficulty in connecting these terms to physically measurable quantities. A role for higher derivative terms is analyzed for the case of field theories used to describe phase separated systems. In these theories, higher derivative terms are directly connected to an interfacial free energy which contains the mean and the Gaussian curvature and are shown to determine explicitly the...

  3. Toward assessing the effects of crack front curvature /CFC/. (United States)

    Swedlow, J. L.; Ritter, M. A.


    Consideration of the effect of crack front curvature (CFC) on the K calibration of five special geometries in which CFC occurs. The five cases considered include an elliptical crack in an infinite medium, an internal annular crack in a thick-walled cylinder, a through crack in a flat plate, a part-through crack in a plate, and an irregularly shaped crack in a solid. It is shown that K depends on CFC differently in each case.

  4. Gaussian Curvature as an Identifier of Shell Rigidity (United States)

    Harutyunyan, Davit


    In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn's first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. We prove that if the Gaussian curvature is positive, then the optimal constant in the first Korn inequality scales like h, and if the Gaussian curvature is negative, then the Korn constant scales like h 4/3, where h is the thickness of the shell. These results have a classical flavour in continuum mechanics, in particular shell theory. The Korn first inequalities are the linear version of the famous geometric rigidity estimate by Friesecke et al. for plates in Arch Ration Mech Anal 180(2):183-236, 2006 (where they show that the Korn constant in the nonlinear Korn's first inequality scales like h 2), extended to shells with nonzero curvature. We also recover the uniform Korn-Poincaré inequality proven for "boundary-less" shells by Lewicka and Müller in Annales de l'Institute Henri Poincare (C) Non Linear Anal 28(3):443-469, 2011 in the setting of our problem. The new estimates can also be applied to find the scaling law for the critical buckling load of the shell under in-plane loads as well as to derive energy scaling laws in the pre-buckled regime. The exponents 1 and 4/3 in the present work appear for the first time in any sharp geometric rigidity estimate.

  5. Localized tearing modes in the magnetotail driven by curvature effects (United States)

    Sundaram, A. K.; Fairfield, D. H.


    The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed.

  6. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids (United States)

    Mostajeran, Cyrus; Warner, Mark; Ware, Taylor H.; White, Timothy J.


    We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains.

  7. Lateral pressure profile in lipid membranes with curvature: Analytical calculation (United States)

    Drozdova, A. A.; Mukhin, S. I.


    An analytical expression is obtained for the lateral pressure profile in the hydrophobic part of a lipid bilayer of finite curvature. Calculations are carried out within a microscopic model of a lipid bilayer, according to which the energy of a lipid chain represents the energy of a flexible string of finite thickness and the interaction between lipid chains is considered as a steric (entropic) repulsion. This microscopic model allows one to obtain an expression for the distribution of lateral pressure in membranes with given curvature if one considers the bending of a membrane as a small deviation from a flat conformation and applies perturbation theory in the small parameter L 0 J, where L 0 is the hydrophobic thickness of a monolayer and J is the mean curvature of the lipid bilayer. The resulting pressure profile depends on the microscopic parameters of the lipid chain: the bending modulus of the lipid chain, incompressible area per lipid chain, and the thickness of a flat monolayer. The coefficient of entropic repulsion between lipids is calculated self-consistently. The analytical results obtained for the lateral pressure distribution are in qualitative agreement with molecular dynamic simulations.

  8. Curvature-Induced Spatial Ordering of Composition in Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Shimrit Katz


    Full Text Available Phase segregation of membranal components, such as proteins, lipids, and cholesterols, leads to the formation of aggregates or domains that are rich in specific constituents. This process is important in the interaction of the cell with its surroundings and in determining the cell’s behavior and fate. Motivated by published experiments on curvature-modulated phase separation in lipid membranes, we formulate a mathematical model aiming at studying the spatial ordering of composition in a two-component biomembrane that is subjected to a prescribed (imposed geometry. Based on this model, we identified key nondimensional quantities that govern the biomembrane response and performed numerical simulations to quantitatively explore their influence. We reproduce published experimental observations and extend them to surfaces with geometric features (imposed geometry and lipid phases beyond those used in the experiments. In addition, we demonstrate the possibility for curvature-modulated phase separation above the critical temperature and propose a systematic procedure to determine which mechanism, the difference in bending stiffness or difference in spontaneous curvatures of the two phases, dominates the coupling between shape and composition.

  9. Why Women Wear High Heels: Evolution, Lumbar Curvature, and Attractiveness (United States)

    Lewis, David M. G.; Russell, Eric M.; Al-Shawaf, Laith; Ta, Vivian; Senveli, Zeynep; Ickes, William; Buss, David M.


    Despite the widespread use of high-heeled footwear in both developing and modernized societies, we lack an understanding of this behavioral phenomenon at both proximate and distal levels of explanation. The current manuscript advances and tests a novel, evolutionarily anchored hypothesis for why women wear high heels, and provides convergent support for this hypothesis across multiple methods. Using a recently discovered evolved mate preference, we hypothesized that high heels influence women’s attractiveness via effects on their lumbar curvature. Independent studies that employed distinct methods, eliminated multiple confounds, and ruled out alternative explanations showed that when women wear high heels, their lumbar curvature increased and they were perceived as more attractive. Closer analysis revealed an even more precise pattern aligning with human evolved psychology: high-heeled footwear increased women’s attractiveness only when wearing heels altered their lumbar curvature to be closer to an evolutionarily optimal angle. These findings illustrate how human evolved psychology can contribute to and intersect with aspects of cultural evolution, highlighting that the two are not independent or autonomous processes but rather are deeply intertwined. PMID:29180972

  10. Pelvic Floor Symptoms and Spinal Curvature in Women. (United States)

    Meyer, Isuzu; McArthur, Tatum A; Tang, Ying; McKinney, Jessica L; Morgan, Sarah L; Richter, Holly E


    To characterize the association between thoracic (T) and lumbar (L) spinal curvature and pelvic floor (PF) symptoms (pelvic organ prolapse, urinary incontinence [UI], fecal incontinence [FI]). Of women undergoing a bone mineral density scan from January 2007 to October 2010, patients who completed PF symptom questionnaires and had T and/or L spine radiographs or computed tomography examinations within 3 years of questionnaire completion were included in this study. The spine angles were measured using the Cobb angle method. The T and L curvatures were categorized as hypokyphosis (hyperkyphosis (>40°), hypolordosis (70°). The presence and type of UI were identified with the 3 Incontinence Questionnaire and FI with the Modified Manchester Questionnaire. Pelvic organ prolapse was defined as a positive response to the presence of a bulge question from the PF Distress Inventory-20. Of 1665 eligible women, 824 and 302 (mean age 64 ± 10 for both) had T and L spine images, respectively. No differences in PF symptoms were observed in the T or L spine groups categorized by hypo-, normal, and hyperkyphosis/lordosis except for urgency UI being more prevalent in the hypolordosis group (P = 0.01). However, upon further characterization using logistic regression, no association was noted between PF symptoms and T or L spine angles; no differences in the mean angles were found between women with versus without PF symptoms (P ≥ 0.05). The current study shows that the T and L spinal curvatures are not associated with the presence of PF symptoms.

  11. New surgical technique for ventral penile curvature without circumcision. (United States)

    Alei, Giovanni; Letizia, Piero; Alei, Lavinia; Massoni, Francesco; Ricci, Serafino


    To describe and report on our variant of penile corporoplasty, the ‘double-breasted’ corporoplasty, with penoscrotal and infrapubic access not requiring circumcision. The medicolegal aspects of treatment are also discussed. Between February 1995 and October 2012, double-breasted corporoplasty was performed in 93 patients with congenital ventral penile curvature. Preoperative assessment comprised RigiScan monitoring, prostaglandin E1 injection with photographic documentation and measurement of penile angulation, administration of the International Index of Erectile Function-5 (IIEF-5) questionnaire, and biothesiometry up until 5 years ago when it was substituted with the Genito Sensory Analyser for testing sensitivity. Dorsal infrapubic access was used in the patients with ventral curvature. After preparation and incision of Colles' fascia, the penis is degloved and double-breasted corporoplasty is performed at the site established at preoperative assessment. The tunica albuginea is prepared, an incision is made, and the cavernous tissue is isolated from the albuginea to obtain two flaps that are then overlaid and sutured asymmetrically with interrupted 2-0 polyglactin 910 (Vicryl®) sutures. After the free edge of the albuginea is sutured with a running polyglactin 910 suture, a non-absorbable monofilament and uncoated suture made of polypropylene (Premicron®) suture is placed at the point of maximum traction. Complete correction of penile curvature was achieved in 96% of patients; recurrence occurred in 4%. No major complications were reported, nor were there neurovascular lesions or change in erectile function. Palpable subcutaneous irregularities at the site of the corporoplasty, without functional or aesthetic impairment, were reported by 35% of patients. There was no change in the appearance of the penis as circumcision was not performed and the residual scar was barely noticeable as it was hidden in the infrapubic fold. The corporoplasty technique can

  12. The Effects of Margin Curvature on Load at Fracture of Ceramic Crowns. (United States)

    Øilo, Marit; Kvam, Ketil; Reisegg, Kjetil; Gjerdet, Nils Roar


    Despite the high fracture strength of modern dental core ceramics, fractures are a common cause of clinical failures. The aim of this study was to use a clinically relevant test method to evaluate the effect of the curvature of the cervical crown margins on load at fracture. Thirty zirconia crowns and 30 glass-ceramic crowns were produced for three premolar preparations with variation in the approximal crown margin curvature: low curvature (r=12 mm), moderate curvature (r=2.5 mm), and high curvature (r=1.5). The crowns were loaded until fracture with a method that mimics clinical fracture modes. Statistically significant differences were found among both crown margin curvature and material groups (Pcrown margins increases crown strength compared with a high curvature.

  13. Mixed lipid bilayers with locally varying spontaneous curvature and bending. (United States)

    Gueguen, Guillaume; Destainville, Nicolas; Manghi, Manoel


    A model of lipid bilayers made of a mixture of two lipids with different average compositions on both leaflets, is developed. A Landau Hamiltonian describing the lipid-lipid interactions on each leaflet, with two lipidic fields ψ 1 and ψ 2, is coupled to a Helfrich one, accounting for the membrane elasticity, via both a local spontaneous curvature, which varies as C 0 + C 1(ψ 1 - ψ 2/2), and a bending modulus equal to κ 0 + κ 1(ψ 1 + ψ 2)/2. This model allows us to define curved patches as membrane domains where the asymmetry in composition, ψ 1 - ψ 2, is large, and thick and stiff patches where ψ 1 + ψ 2 is large. These thick patches are good candidates for being lipidic rafts, as observed in cell membranes, which are composed primarily of saturated lipids forming a liquid-ordered domain and are known to be thick and flat nano-domains. The lipid-lipid structure factors and correlation functions are computed for globally spherical membranes and planar ones and for a whole set of parameters including the surface tension and the coupling in the two leaflet compositions. Phase diagrams are established, within a Gaussian approximation, showing the occurrence of two types of Structure Disordered phases, with correlations between either curved or thick patches, and an Ordered phase, corresponding to the divergence of the structure factor at a finite wave vector. The varying bending modulus plays a central role for curved membranes, where the driving force κ 1 C 0 (2) is balanced by the line tension, to form raft domains of size ranging from 10 to 100 nm. For planar membranes, raft domains emerge via the cross-correlation with curved domains. A global picture emerges from curvature-induced mechanisms, described in the literature for planar membranes, to coupled curvature- and bending-induced mechanisms in curved membranes forming a closed vesicle.

  14. Pelvic Floor Symptoms and Spinal Curvature in Women (United States)

    Meyer, Isuzu; McArthur, Tatum A; Tang, Ying; McKinney, Jessica L; Morgan, Sarah L; Richter, Holly E


    Objectives To characterize the association between thoracic (T) and lumbar (L) spinal curvature and pelvic floor (PF) symptoms (pelvic organ prolapse [POP], urinary incontinence [UI], fecal incontinence [FI]). Methods Of women undergoing a bone mineral density scan from 1/2007 to 10/2010, patients who completed PF symptom questionnaires and had T and/or L spine radiographs or computerized tomography (CT) exams within 3 years of questionnaire completion were included in this study. The spine angles were measured using the Cobb angle method. The T and L curvature were categorized as hypo-kyphosis (40°), hypo-lordosis (70°). The presence and type of UI were identified with the 3 Incontinence Questionnaire and FI with the Modified Manchester Questionnaire. POP was defined as a positive response to the presence of a bulge question from the PF Distress Inventory-20. Results Of 1665 eligible women, 824 and 302 (mean age 64±10 for both) had T and L spine images, respectively. No differences in PF symptoms were observed in the T or L spine groups categorized by hypo-, normal, and hyper-kyphosis/lordosis except for urgency UI being more prevalent in the hypo-lordosis group (p=0.01). However, upon further characterization using logistic regression, no association was noted between PF symptoms and T or L spine angles; no differences in the mean angles were found between women with versus without PF symptoms (p≥0.05). Conclusions The current study shows that the thoracic and lumbar spinal curvature is not associated with the presence of pelvic floor symptoms. PMID:27054800

  15. New modes from higher curvature corrections in holography

    Energy Technology Data Exchange (ETDEWEB)

    Aksteiner, Steffen; Korovin, Yegor [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm (Germany)


    In gravitational theories involving higher curvature corrections the metric describes additional degrees of freedom beyond the graviton. Holographic duality maps these to operators in the dual CFT. We identify infinite families of theories for which these new modes cannot be truncated and the usual Fefferman-Graham expansion needs to be modified. New massive gravity in three dimensions and critical gravity in four dimensions are particular representatives of these families. We propose modified expansion, study the near-boundary behaviour of the metric and derive fall-off properties of the additional modes in theories involving higher derivative corrections.

  16. Great sphere foliations and manifolds with curvature bounded above

    CERN Document Server

    Rovenskii, V Y; Rovenskii, Vladimir Y.; Toponogov, Victor A.


    The survey is devoted to Toponogov's conjecture, that {\\it if a complete simply connected Riemannian manifold with sectional curvature $\\le 4$ and injectivity radius $\\ge \\pi/2$ has extremal diameter $\\pi/2$, then it is isometric to CROSS}. In Section 1 the relations of problem with geodesic foliations of a round sphere are considered, but the proof of conjecture on this way is not complete. In Section 2 the proof based on recent results and methods for topology and volume of Blaschke manifolds is given.

  17. Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers (United States)

    Tourdot, Richard W.; Ramakrishnan, N.; Radhakrishnan, Ravi


    Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane—in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer

  18. Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers. (United States)

    Tourdot, Richard W; Ramakrishnan, N; Radhakrishnan, Ravi


    Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane-in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer

  19. Determination of instantaneous curvature and twist by digital shearography (United States)

    Fu, Yu; Guo, Min; Liu, Huan


    Shearography is a whole-field, noncontact optical technique that allows the direct measurement of first-order derivatives of deflection on spatial coordinates, depending on the measurement setup. In many cases, the curvatures and twists of an object provide more interesting parameters, as they are directly related to the induced stresses when an object is subjected to external loads. We describe the use of digital shearography for the measurement of these stress-related parameters through phase retrieval when an object is undergoing continuous deformation. A sequence of shearograms is captured by a high-speed camera during the deformation. To avoid the problem of phase ambiguity, either a spatial or temporal carrier is introduced. A comparison of spatial and temporal carrier is also presented. The obtained three-dimensional matrix is then analyzed by Fourier and windowed-Fourier transform in a spatial and temporal domain and a high-quality spatial distribution of the deflection derivative, curvature and twist are extracted at any instant.

  20. Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO (United States)

    Catanach, R. A.; Hill, L. G.


    Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm (approximately failure diameter) to 205 mm, with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn, and local total curvature kappa, were generated as a function of radius R, then plotted parametrically to generate a Dn(kappa) function. The observed behavior deviates substantially from that of previous explosives, for which curves for different diameters overlay well for small kappa but diverge for large kappa, and for which kappa increases monotonically with R. For ANFO, we find that Dn(kappa) curves for individual sticks 1) show little or no overlap--with smaller sticks lying to the right of larger ones, 2) exhibit a large velocity deficit with little kappa variation, and 3) reach a peak kappa at an intermediate R.

  1. Memory for curvature of objects: Haptic touch vs. vision (United States)

    Ittyerah, Miriam; Marks, Lawrence E.


    The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic–haptic (T–T) and haptic–visual (T–V) discrimination of curvature in a short-term memory paradigm, using 30-second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial-motor representation. Experiment 2 compared visual–visual (V–V) and visual–haptic (V–T) short-term memory, again using 30-second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra-modal visual performance and cross-modal performance were similar. Comparing the four modality conditions (inter-modal V–T, T–V; intra-modal V–V, T–T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2). PMID:17535462

  2. The size and direction of saccadic curvatures during reading. (United States)

    Inhoff, Albrecht W; Seymour, Bradley A; Schad, Daniel; Greenberg, Seth


    Eye movements during the reading of multi-line pages of texts were analyzed to determine the trajectory of reading saccades. The results of two experiments showed that the trajectory of the majority of forward-directed saccades was negatively biased, i.e., the trajectory fell below the start and end location of the saccadic movement. This is attributed to a global top-to-bottom orienting of attention. The curvature size and the proportion of negative trajectories were diminished when linguistic processing demands were high and when the beginning lines of a page were read. Longer pre-saccadic fixations also yielded smaller saccadic curvatures, and they resulted in fewer negatively curved forward-directed saccades in Experiment 1 although not in Experiment 2. These findings indicate that the top-to-bottom pull of saccadic trajectories is modulated by processing demands and processing opportunities. The results are in general agreement with a time-locked attraction-inhibition hypothesis, according to which the horizontal movement component of a saccade is initially subject to an automatic top-to-bottom orienting of attention that is subsequently inhibited. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Accuracy evaluation of automatic quantification of the articular cartilage surface curvature from MRI

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F


    RATIONALE AND OBJECTIVES: To study the articular cartilage surface curvature determined automatically from magnetic resonance (MR) knee scans, evaluate accuracy of the curvature estimates on digital phantoms, and an evaluation of their potential as disease markers for different stages of osteoart......RATIONALE AND OBJECTIVES: To study the articular cartilage surface curvature determined automatically from magnetic resonance (MR) knee scans, evaluate accuracy of the curvature estimates on digital phantoms, and an evaluation of their potential as disease markers for different stages...... for intersubject comparisons. Digital phantoms were created to establish the accuracy of the curvature estimation methods. RESULTS: A comparison of the two curvature estimation methods to ground truth yielded absolute pairwise differences of 1.1%, and 4.8%, respectively. The interscan reproducibility for the two...

  4. Directional curvature sensor based on long period gratings in multicore optical fiber (United States)

    Madrigal, Javier; Barrera, David; Hervás, Javier; Chen, Hailan; Sales, S.


    Multicore optical fiber can be used to implement multidimensional optical fiber sensors including curvature sensors. In this paper, a selective core inscription technique is used in order to inscribe a single long period grating in each of the outer cores of the optical fiber. A set of three different long period gratings is inscribed for implementing the curvature sensor. The ability of the sensor for measuring the magnitude and the direction of curvature is demonstrated. The optical fiber sensor is characterized experimentally for curvature magnitudes from 0 m-1 to 1.77 m-1 and curvature directions from 0° to 360°.The maximum curvature sensitivity of the developed sensor is -4.85 nm/m-1.

  5. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves


    nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...... emerge as an important means for a protein to sense membrane curvature. Measurements on single liposomes allowed us to document heterogeneous binding behaviour within the ensemble and quantify the influence of liposome polydispersity on bulk membrane curvature sensing experiments. The latter results...

  6. Non-linear curvature inhomogeneities and backreaction for relativistic viscous fluids

    CERN Document Server

    Giovannini, Massimo


    The non-perturbative curvature inhomogeneities induced by relativistic viscous fluids are not conserved in the large-scale limit. However when the bulk viscosity is a function of the total energy density of the plasma (or of the trace of the extrinsic curvature) the relevant evolution equations develop a further symmetry preventing the non-linear growth of curvature perturbations. In this situation the fully inhomogeneous evolution can be solved to leading order in the gradient expansion. Over large-scales both the acceleration and the curvature inhomogeneities are determined by the bulk viscosity coefficients. Conversely the shear viscosity does not affect the evolution of the curvature and does not produce any acceleration. The curvature modes analyzed here do not depend on the choice of time hypersurfaces and are invariant for infinitesimal coordinate transformations in the perturbative regime.

  7. A major QTL controls susceptibility to spinal curvature in the curveback guppy

    Directory of Open Access Journals (Sweden)

    Dreyer Christine


    Full Text Available Abstract Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts.

  8. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins

    DEFF Research Database (Denmark)

    Varkey, Jobin; Isas, Jose Mario; Mizuno, Naoko


    structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging...... and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein...... density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined....

  9. Measurement of curvature and twist of a deformed object using digital holography. (United States)

    Chen, Wen; Quan, Chenggen; Jui Tay, Cho


    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method.

  10. Thermodynamic Study of the Role of Interface Curvature on Multicomponent Vapor-Liquid Phase Equilibrium. (United States)

    Shardt, Nadia; Elliott, Janet A W


    The effect of interface curvature on phase equilibrium has been much more studied for single-component than multicomponent systems. We isolate the effect of curvature on multicomponent vapor-liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the ideal system methanol/ethanol and the nonideal system ethanol/water as illustrative examples. An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in future nanoscale prediction and design.

  11. Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism (United States)

    Malik, M. R.; Balakumar, P.


    In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.

  12. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang


    Full Text Available Unmanned Aerial Vehicles (UAVs play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.

  13. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs. (United States)

    Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao


    Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.

  14. Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

    Directory of Open Access Journals (Sweden)

    Xiang Shen


    Full Text Available This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.

  15. Converting entropy to curvature perturbations after a cosmic bounce

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,14476 Potsdam-Golm (Germany)


    We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

  16. Reachability by paths of bounded curvature in a convex polygon

    KAUST Repository

    Ahn, Heekap


    Let B be a point robot moving in the plane, whose path is constrained to forward motions with curvature at most 1, and let P be a convex polygon with n vertices. Given a starting configuration (a location and a direction of travel) for B inside P, we characterize the region of all points of P that can be reached by B, and show that it has complexity O(n). We give an O(n2) time algorithm to compute this region. We show that a point is reachable only if it can be reached by a path of type CCSCS, where C denotes a unit circle arc and S denotes a line segment. © 2011 Elsevier B.V.

  17. Design of footbridge with double curvature made of UHPC (United States)

    Kněž, P.; Tej, P.; Čítek, D.; Kolísko, J.


    This paper presents design of footbridge with double curvature made of UHPC. The structure is designed as a single-span bridge. The span of the bridge is 10.00 m, and the width of the deck is 1.50 m. The thickness of shell structure is 0.03 m for walls and 0.045 m for deck. The main structure of the bridge is one arch shell structure with sidewalls made of UHPC with dispersed steel fibers with conventional reinforcement only at anchoring areas. The structure was designed on the basis of the numerical model. Model was subsequently clarified on the basis of the first test elements. Paper presents detailed course on design of the bridge and presentation will contain also installation in landscape and results of static and dynamic loading tests.

  18. Higher Curvature Gravity in TeV-Scale Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.


    We begin a general exploration of the phenomenology of TeV-scale extra-dimensional models with gravitational actions that contain higher curvature terms. In particular, we examine how the classic collider signatures of the models of Arkani-Hamed, Dimopoulos and Dvali (missing energy and new dimension-8 contact interactions) and of Randall and Sundrum (TeV-scale graviton Kaluza-Klein resonances) are altered by these modifications to the usual Einstein-Hilbert action. We find that not only are the detailed signatures for these gravitationally induced processes altered but new contributions are found to arise due to the existence of additional scalar Kaluza-Klein states in the spectrum.

  19. Curvature-driven morphing of non-Euclidean shells. (United States)

    Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D P


    We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

  20. Curvature instability of chiral colloidal membranes on crystallization. (United States)

    Saikia, Lachit; Sarkar, Tanmoy; Thomas, Meera; Raghunathan, V A; Sain, Anirban; Sharma, Prerna


    Buckling and wrinkling instabilities are failure modes of elastic sheets that are avoided in the traditional material design. Recently, a new paradigm has appeared where these instabilities are instead being utilized for high-performance applications. Multiple approaches such as heterogeneous gelation, capillary stresses, and confinement have been used to shape thin macroscopic elastic sheets. However, it remains a challenge to shape two-dimensional self-assembled monolayers at colloidal or molecular length scales. Here, we show the existence of a curvature instability that arises during the crystallization of finite-sized monolayer membranes of chiral colloidal rods. While the bulk of the membrane crystallizes, its edge remains fluid like and exhibits chiral ordering. The resulting internal stresses cause the flat membrane to buckle macroscopically and wrinkle locally. Our results demonstrate an alternate pathway based on intrinsic stresses instead of the usual external ones to assemble non-Euclidean sheets at the colloidal length scale.

  1. Noncontact Measurement for Radius of Curvature of Unpolished Lens

    Directory of Open Access Journals (Sweden)

    Haifeng Liang


    Full Text Available A noncontact mathematical model to measure radius of curvature (ROC of an unpolished spherical lens was proposed and also proved by experiments. This model gives ROC as a function of arcs radii and their separation distance, where the radii of the corresponding arcs could be acquired by taking coordinates of points on the arcs when two parallel lines of light project onto a lens surface. Our experiments demonstrated that the measured maximum relative error was 0.027% for a concave surface with a 38.19 mm ROC and 0.021% for a convex surface with a 97.75 mm ROC, which were all in agreement with those of theory prediction error. The suggested method presented a fast noncontact method for testing ROC of lens during coarse grinding and fine grinding.

  2. The Weyl curvature conjecture and black hole entropy

    Energy Technology Data Exchange (ETDEWEB)

    Rudjord, Oeystein [Institute of Theoretical Astrophysics, University of Oslo, Box 1029 Blindern, N-0315 Oslo (Norway); Oeyvind, Groen [Department of Physics, University of Oslo, Box 1048 Blindern, 0316 Oslo (Norway); Hervik, Sigbjoern [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada)], E-mail:, E-mail:, E-mail:


    The universe today, containing stars, galaxies and black holes, seems to have evolved from a very homogeneous initial state. From this it appears as if the entropy of the universe is decreasing, in violation of the second law of thermodynamics. It has been suggested by Roger Penrose that this inconsistency can be solved if one assigns an entropy to the spacetime geometry. He also pointed out that the Weyl tensor has the properties one would expect to find in a description of a gravitational entropy. In this paper, we make an attempt to use this so-called Weyl curvature conjecture to describe the Hawking-Bekenstein entropy of black holes and the entropy of horizons due to a cosmological constant. Our analysis indicates that in the static spherically symmetric case this is not possible.

  3. Magnetization of fluid phonons and large-scale curvature perturbations

    CERN Document Server

    Giovannini, Massimo


    The quasinormal mode of a gravitating and magnetized fluid in a spatially flat, isotropic and homogeneous cosmological background is derived in the presence of the fluid sources of anisotropic stress and of the entropic fluctuations of the plasma. The obtained gauge-invariant description involves a system of two coupled differential equations whose physical content is analyzed in all the most relevant situations. The Cauchy problem of large-scale curvature perturbations during the radiation dominated stage of expansion can be neatly formulated and its general solution is shown to depend on five initial data assigned when the relevant physical wavelengths are larger than the particle horizon. The consequences of this approach are explored.

  4. Corneal curvatures and refractions of central American frogs. (United States)

    Howland, H C; Howland, M; Giunta, A; Cronin, T W


    We employed neutralizing infrared videophotorefraction and photokeratometry to examine the manifest refractions and corneal curvatures of 21 species of anurans (frogs and toads) in five families (Dendrobatidae, Bufonidae, Centrolenidae, Leptodactylidae, and Hylidae) resident in Central America. We found that all of the anurans exhibited hyperopic refractions in air, but that the observed hyperopia was not totally explained by the small eye artefact (Glickstein & Millodot, 1970). An allometric comparison of the corneal radii of these small anurans with those of a large number of other vertebrates, inferred from ocular axial lengths, showed that their corneal radii increased significantly more rapidly with increasing body size than that of other vertebrates generally (allometric slope constants: anurans: 0.270 +/- 0.032; other vertebrates: 0.151 +/- 0.004). Among the anurans examined, nocturnal Hylids had significantly larger eyes than diurnal Dendrobatid frogs and Bufonid toads.

  5. Palatini versus metric formulation in higher-curvature gravity

    Energy Technology Data Exchange (ETDEWEB)

    Borunda, Monica; Janssen, Bert; Bastero-Gil, Mar, E-mail:, E-mail:, E-mail: [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales, Universidad de Granada, E-18071 Granada (Spain)


    We compare the metric and the Palatini formalism to obtain the Einstein equations in the presence of higher-order curvature corrections that consist of contractions of the Riemann tensor, but not of its derivatives. We find that there is a class of theories for which the two formalisms are equivalent. This class contains the Palatini version of Lovelock theory, but also more Lagrangians that are not Lovelock, but respect certain symmetries. For the general case, we find that imposing the Levi-Civita connection as an ansatz, the Palatini formalism is contained within the metric formalism, in the sense that any solution of the former also appears as a solution of the latter, but not necessarily the other way around. Finally we give the conditions the solutions of the metric equations should satisfy in order to solve the Palatini equations.

  6. DNA curvature and flexibility in vitro and in vivo (United States)

    Peters, Justin P.; Maher, L. James


    It has been more than 50 years since the elucidation of the structure of double-helical DNA. Despite active research and progress in DNA biology and biochemistry, much remains to be learned in the field of DNA biophysics. Predicting the sequence-dependent curvature and flexibility of DNA is difficult. Applicability of the conventional worm-like chain polymer model of DNA has been challenged. The fundamental forces responsible for the remarkable resistance of DNA to bending and twisting remain controversial. The apparent “softening” of DNA measured in vivo in the presence of kinking proteins and superhelical strain is incompletely understood. New methods and insights are being applied to these problems. This review places current work on DNA biophysics in historical context and illustrates the ongoing interplay between theory and experiment in this exciting field. PMID:20478077

  7. Possible Bubbles of Spacetime Curvature in the South Pacific

    CERN Document Server

    Tippett, Benjamin K


    In 1928, the late Francis Wayland Thurston published a scandalous manuscript in purport of warning the world of a global conspiracy of occultists. Among the documents he gathered to support his thesis was the personal account of a sailor by the name of Gustaf Johansen, describing an encounter with an extraordinary island. Johansen`s descriptions of his adventures upon the island are fantastic, and are often considered the most enigmatic (and therefore the highlight) of Thurston`s collection of documents. We contend that all of the credible phenomena which Johansen described may be explained as being the observable consequences of a localized bubble of spacetime curvature. Many of his most incomprehensible statements (involving the geometry of the architecture, and variability of the location of the horizon) can therefore be said to have a unified underlying cause. We propose a simplified example of such a geometry, and show using numerical computation that Johansen`s descriptions were, for the most part, not ...

  8. A new formula of the Gravitational Curvature for the prism (United States)

    Grazia D'Urso, Maria


    Gravitational Curvatures (GC) are the components of the third-order gravitational tensor and physically represent the rate of change of the gravity gradient. While scalar, vector and second-order tensor quantities of the Earth's gravitational field have extensively been studied and their properties have been well understood [1], the first successful terrestrial measurements of the third-order vertical gravitational gradients have been recently performed in [2] by atom interferometry sensors in laboratory environment. Possible benefits of the airborne third-order gravitational gradients for exploration geophysics are discussed in [3] while Brieden et al. (2010) [4] have proposed a new satellite mission called OPTical Interferometry for global Mass change detection from space (OPTIMA) sensing the third-order gravitational gradients in space. Moreover, exploitation of GC for modelling the Earth's gravitational field has been object of recent studies [5-7]. We extend the approach presented by the author in previous papers [8-10] by evaluating the algebraic expression of the third-order gravitational tensor for a prism. Comparisons with previous results [11-12] are also included. [1] Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin [2] Rosi G, Cacciapuoti L, Sorrentino F, Menchetti M, Prevedelli M, Tino GM (2015) Measurements of the gravity-field curvature by atom interferometry. Phys Rev Lett 114:013001 [3] Di Francesco D, Meyer T, Christensen A, FitzGerald D (2009) Gravity gradiometry - today and tomorrow. In: 11th SAGA Biennial technical meeting and exhibition, 13-18 September 2009, Switzerland, pp 80-83 [4] Brieden P, Müller J, Flury J, Heinzel G (2010) The mission OPTIMA - novelties and benefit. In: Geotechnologien science report No. 17, Potsdam, pp 134-139 [5] Šprlák M, Novák P (2015) Integral

  9. Observational constraints on the primordial curvature power spectrum (United States)

    Emami, Razieh; Smoot, George F.


    CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would

  10. Internal curvature signal and noise in low- and high-level vision (United States)

    Grabowecky, Marcia; Kim, Yee Joon; Suzuki, Satoru


    How does internal processing contribute to visual pattern perception? By modeling visual search performance, we estimated internal signal and noise relevant to perception of curvature, a basic feature important for encoding of three-dimensional surfaces and objects. We used isolated, sparse, crowded, and face contexts to determine how internal curvature signal and noise depended on image crowding, lateral feature interactions, and level of pattern processing. Observers reported the curvature of a briefly flashed segment, which was presented alone (without lateral interaction) or among multiple straight segments (with lateral interaction). Each segment was presented with no context (engaging low-to-intermediate-level curvature processing), embedded within a face context as the mouth (engaging high-level face processing), or embedded within an inverted-scrambled-face context as a control for crowding. Using a simple, biologically plausible model of curvature perception, we estimated internal curvature signal and noise as the mean and standard deviation, respectively, of the Gaussian-distributed population activity of local curvature-tuned channels that best simulated behavioral curvature responses. Internal noise was increased by crowding but not by face context (irrespective of lateral interactions), suggesting prevention of noise accumulation in high-level pattern processing. In contrast, internal curvature signal was unaffected by crowding but modulated by lateral interactions. Lateral interactions (with straight segments) increased curvature signal when no contextual elements were added, but equivalent interactions reduced curvature signal when each segment was presented within a face. These opposing effects of lateral interactions are consistent with the phenomena of local-feature contrast in low-level processing and global-feature averaging in high-level processing. PMID:21209356

  11. Development of a convective instability as wavy rolls in a Poiseuille-Rayleigh-Benard flow; Observations d'une instabilite convective apparaissant sous la forme de rouleaux sinueux dans un ecoulement de Poiseuille-Rayleigh-Benard

    Energy Technology Data Exchange (ETDEWEB)

    Pabiou, H.; Mergui, S. [Paris-11 Univ., FAST, CNRS-UPMC-UPS, 91 - Orsay (France); Nicolas, X. [Universite de Marne la Vallee, LETEM, 77 (France); Shihe, Xin [Paris-11 Univ., LIMSI, CNRS, 91 - Orsay (France)


    A both experimental and numerical study of a mixed convective flow in a rectangular channel heated at the bottom and cooled at the top is reported. In such configuration, it is well known that for a Rayleigh number above a critical value and for sufficiently high Reynolds number, longitudinal counter-rotating rolls develop. A linear temporal stability analysis conducted in 1991 detected the onset of a wavy instability of the longitudinal rolls. In our study, experimental results and 3D direct simulations clearly show the development of the wavy pattern and point out the convective behaviour of this instability. To the knowledge of the authors, it is the first time that this instability is observed. (authors)

  12. Protein shape and crowding drive domain formation and curvature in biological membranes

    NARCIS (Netherlands)

    Frese, R.N.; Pamies, Josep C.; Olsen, John D.; Bahatyrova, S.; van der Weij-de Wit, Chantal D.; Aartsma, Thijs J.; Otto, Cornelis; Hunter, C. Neil; Frenkel, Daan; van Grondelle, Rienk


    Folding, curvature, and domain formation are characteristics of many biological membranes. Yet the mechanisms that drive both curvature and the formation of specialized domains enriched in particular protein complexes are unknown. For this reason, studies in membranes whose shape and organization


    Directory of Open Access Journals (Sweden)

    Suranjan Ganguly


    Full Text Available In this paper, we present a novel approach for three-dimensional face recognition by extracting the curvature maps from range images. There are four types of curvature maps: Gaussian, Mean, Maximum and Minimum curvature maps. These curvature maps are used as a feature for 3D face recognition purpose. The dimension of these feature vectors is reduced using Singular Value Decomposition (SVD technique. Now from calculated three components of SVD, the non-negative values of ‘S’ part of SVD is ranked and used as feature vector. In this proposed method, two pair-wise curvature computations are done. One is Mean, and Maximum curvature pair and another is Gaussian and Mean curvature pair. These are used to compare the result for better recognition rate. This automated 3D face recognition system is focused in different directions like, frontal pose with expression and illumination variation, frontal face along with registered face, only registered face and registered face from different pose orientation across X, Y and Z axes. 3D face images used for this research work are taken from FRAV3D database. The pose variation of 3D facial image is being registered to frontal pose by applying one to all registration technique then curvature mapping is applied on registered face images along with remaining frontal face images. For the classification and recognition purpose five layer feed-forward back propagation neural network classifiers is used, and the corresponding result is discussed in section 4.

  14. Higher curvature gravities, unlike GR, cannot be bootstrapped from their (usual) linearizations (United States)

    Deser, S.


    We show that higher curvature order gravities, in particular the propagating quadratic curvature models, cannot be derived by self-coupling from their linear, flat space, forms, except through an unphysical version of linearization; only GR can. Separately, we comment on an early version of the self-coupling bootstrap.

  15. Flow Curvature Effects for VAWT: a Review of Virtual Airfoil Transformations and Implementation in XFOIL

    DEFF Research Database (Denmark)

    van der Horst, Sander; van de Wiel, Jelmer E.; Ferreira, Carlos Simao


    Blades on a Vertical Axis Wind Turbine (VAWT) experience curved streamlines, caused by the rotation of the turbine. This phenomenon is known as flow curvature and has effects on the aerodynamic loading of the blades. Several authors have proposed methods to account for flow curvature, resulting i...

  16. Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu, E-mail: [Dongbei University of Finance and Economics, School of Mathematics and Quantitative Economics (China)


    In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces.

  17. Constant curvature surfaces of the supersymmetric ℂP{sup N−1} sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Delisle, L., E-mail: [Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Hussin, V., E-mail: [Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Yurduşen, İ., E-mail: [Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zakrzewski, W. J., E-mail: [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE,United Kingdom (United Kingdom)


    Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂP{sup N−1} sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.

  18. On the mean curvature of semi-Riemannian graphs in semi ...

    Indian Academy of Sciences (India)

    ... product M × f R , where is a semi-Riemannian manifold, R is the real line R with metric d t 2 ( = ± 1 ) , and f : M → R + is the warping function. We obtain an integral formula for mean curvature and some results dealing with estimates of mean curvature, among these results is a Heinz–Chern type inequality.

  19. Heritability of Thoracic Spine Curvature and Genetic Correlations With Other Spine Traits: The Framingham Study

    National Research Council Canada - National Science Library

    Yau, Michelle S; Demissie, Serkalem; Zhou, Yanhua; Anderson, Dennis E; Lorbergs, Amanda L; Kiel, Douglas P; Allaire, Brett T; Yang, Laiji; Cupples, L Adrienne; Travison, Thomas G; Bouxsein, Mary L; Karasik, David; Samelson, Elizabeth J


    ... spine curvature in older women. However, aging‐related changes in the anatomic structures of the spine, particularly loss of height in the vertebral bodies and intervertebral discs, have been consistently associated with thoracic spine curvature severity. For example, women with vertebral fracture have a six‐degree higher kyphosis angle and a tw...

  20. On the stability of the Lp -norm of the Riemannian curvature tensor

    Indian Academy of Sciences (India)

    on the space of Riemannian metrics with unit volume on a closed smooth manifold M where R(g) and dvg denote the corresponding Riemannian curvature tensor and vol- ume form and p ∈ (0, ∞). First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for Rp for certain ...

  1. The role of the epidermis and cortex in gravitropic curvature of maize roots (United States)

    Bjorkman, T.; Cleland, R. E.


    In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53 degrees in 5 h) than in intact roots (82 degrees), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.

  2. Real-time GPU surface curvature estimation on deforming meshes and volumetric data sets. (United States)

    Griffin, Wesley; Wang, Yu; Berrios, David; Olano, Marc


    Surface curvature is used in a number of areas in computer graphics, including texture synthesis and shape representation, mesh simplification, surface modeling, and nonphotorealistic line drawing. Most real-time applications must estimate curvature on a triangular mesh. This estimation has been limited to CPU algorithms, forcing object geometry to reside in main memory. However, as more computational work is done directly on the GPU, it is increasingly common for object geometry to exist only in GPU memory. Examples include vertex skinned animations and isosurfaces from GPU-based surface reconstruction algorithms. For static models, curvature can be precomputed and CPU algorithms are a reasonable choice. For deforming models where the geometry only resides on the GPU, transferring the deformed mesh back to the CPU limits performance. We introduce a GPU algorithm for estimating curvature in real time on arbitrary triangular meshes. We demonstrate our algorithm with curvature-based NPR feature lines and a curvature-based approximation for an ambient occlusion. We show curvature computation on volumetric data sets with a GPU isosurface extraction algorithm and vertex-skinned animations. We present a graphics pipeline and CUDA implementation. Our curvature estimation is up to ~18x faster than a multithreaded CPU benchmark.

  3. Effect of soft contact lens curvature on dry eye of flight attendants

    Directory of Open Access Journals (Sweden)

    Chang-Liang Meng


    Full Text Available AIM: To discuss the effect of wearing customized curvature soft corneal contact lens to dry eye degree of flight attendants.METHODS: Eighty cases(160 eyesof flight attendants from China Southern were divided into two groups: control group 40 cases(80 eyeswearing ready-made Bausch soft corneal contact lens(curvature 8.4; the experiment group 40 cases(80 eyes, wearing Bausch soft corneal contact lens with customized curvature. Tear break-up time(BUT, Schirmer Ⅰ test(SⅠtand fluorescein(FLstaining were as dry eye evaluation index. The results was statistically analyzed.RESULTS: BUT, SⅠt average shortening value of the experimental group were less than that of the control group, there was statistical significance(PPCONCLUSION: Wearing customized curvature soft corneal contact lens can prevent the flight dry eye more effectively than fixed curvature product.

  4. Admissible curvature continuous areas for fair curves using G2 Hermite PH quintic polynomial

    Directory of Open Access Journals (Sweden)

    Zulfiqar Habib


    Full Text Available In this paper we derive admissible curvature continuous areas for monotonically increasing curvature continuous smooth curve by using a single Pythagorean hodograph (PH quintic polynomial of G2 contact matching Hermite end conditions. Curves with monotonically increasing or decreasing curvatures are considered highly smooth (fair and are very useful in geometric design. Making the design by using smooth curves is a fascinating problem of computing with significant physical and esthetic applications especially in high speed transportation and robotics. First we derive sufficient conditions for curvature continuity on a single PH quintic polynomial with given Hermite end conditions then we find the admissible area for the smooth curve with respect to the curvatures at its endpoints.

  5. Impact of oculomotor retraining on the visual perception of curvature. (United States)

    Miller, J; Festinger, L


    Observers viewed a computer-generated display consisting of horizontally oriented, concave-up curved lines. The position of these curves was contingent on the horizontal position of the eye so that, in order to change fixation errorlessly, from one point to another on the curve, the eye would have to execute a purely horizontal movement. In Condition H this was achieved by moving the curves horizontally, so that the minimum point was always at the horizontal eye position location, thus simulating the effect of viewing a line through a wedge prism on a contact lens. In Condition V it was achieved by moving the curves vertically so that the point fixated always had the same vertical location. In both conditions eye movements were reprogrammed rapidly to eliminate the vertical components of the saccades that were present at the start. While a small, but significant, amount of perceptual adaptation was obtained in Condition H, none at all was obtained in Condition V. The results are interpreted as not in support of such theories of perceptual adaptation to curvature distortion as require a close relationship between motor learning and perceptual change.

  6. Dual curvature acoustically damped concentrating collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.A.; Rausch, R.A.


    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  7. Toward a theory of curvature-scaling gravity

    CERN Document Server

    Nguyen, Hoang Ky


    A salient feature of Horava gravity is the anisotropic time variable. We propose an alternative construction of the spacetime manifold which naturally enables time anisotropy. We promote the role of curvature: the Ricci scalar R at a given point sets the length scales for physical processes - including gravity - in the local inertial frames enclosing that point. The manifold is a patchwork of local regions; each region is Lorentz invariant and adopts a local scale a_R defined as a_R = 1/sqrt|R|. In each local patch, the length scales of physical processes are measured relatively to a_R, and only their dimensionless ratios partake in the dynamics of physical processes. Time anisotropy arises by requiring that the form - but not necessarily the parameters - of physical laws be unchanged under variations of the local a_R as one moves on the manifold. The time scaling is found to be dt ~ a_R^(3/2) whereas the spatial part scales as dx ~ a_R. We show how to conjoin the local patches of the manifold in a way which ...

  8. Late Time Acceleration From Matter-Curvature Coupling

    CERN Document Server

    Zaregonbadi, Raziyeh


    We consider f(R,T) modified theory of gravity, in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We mainly focus on a particular model wherein matter is minimally coupled to the geometry in the metric formalism. In this type of the theory, the coupling energy-momentum tensor is not conserved; it determines the appearance of an extra force acting on the particles, and can cause the late time acceleration in the evolution of the universe. To check such a kind of effect, we obtain the corresponding Raychaudhuri dynamical equation that gives the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can cover the dynamic of the universe in the late time accelerating phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the...

  9. The hybrid inflation waterfall and the primordial curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Lyth, David H., E-mail: [Consortium for Fundamental Physics, Cosmology and Astroparticle Group, Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)


    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k{sub *}, and goes like k{sup 3} for k << k{sub *}, making it typically negligible on cosmological scales. The scale k{sub *} can be outside the horizon at the end of inflation, in which case ζ = −(g{sup 2}−(g{sup 2})) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if m∼

  10. Increase in cratering efficiency with target curvature in strength-controlled craters (United States)

    Suzuki, A. I.; Okamoto, C.; Kurosawa, K.; Kadono, T.; Hasegawa, S.; Hirai, T.


    Impact-cratering processes on small bodies are thought to be mainly controlled by the local material strength because of their low surface gravity, and craters that are as large as the parent bodies should be affected by the target curvature. Although cratering processes on planar surfaces in the strength-controlled regime have been studied extensively, the mechanism by which target curvature affects the cratering processes remains unclear. Herein, we report on a series of impact experiments that used spherical targets with various diameters. The resultant craters consisted of a deep circular pit and an irregular-shaped spall region around the pit, which is consistent with the features reported in a number of previous cratering experiments on planar surfaces. However, the volume and radius of the craters increased with the normalized curvature. The results indicate that the increase in the spall-region volume and radius mainly contributes to the increase in the whole crater volume and radius, although the volume, depth, and radius of pits remain constant with curvature. The results of our model indicate that the geometric effect due to curvature (i.e., whereby the distance from the equivalent center to the target free surface is shorter for higher curvature values) contributes to increases in the cratering efficiency. Our results suggest that the impactors that produce the largest craters (basins) on some asteroids are thus smaller than what is estimated by current scaling laws, which do not take into account the curvature effects.

  11. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari


    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  12. Long-term Results of Ventral Penile Curvature Repair in Childhood. (United States)

    Golomb, Dor; Sivan, Bezalel; Livne, Pinhas M; Nevo, Amihay; Ben-Meir, David


    To assess the postpubertal outcome of ventral penile curvature repaired in infancy in terms of recurrence and aesthetics. Postpubertal patients treated for hypospadias and ventral penile curvature in infancy at a tertiary medical center were invited to undergo assessment of the quality of the repair. Findings were compared between patients with a straight penis after skin release and patients who required dorsal plication. The cohort included 27 patients of mean age 16.5 years who were reported with straight penis after surgery. Postpubertal curvature was found in 6 of 14 patients (43%) successfully treated by skin release and 10 of 13 patients (77%) who underwent dorsal plication (P = .087). Significant curvature (≥30 degrees) was found in 1 of 14 patients in the skin-release group and 4 of 13 in the dorsal plication group (P = .16). Rates of redo urethroplasty were 2 of 14 (14%) and 5 of 10 (50%), respectively. Patient satisfaction with the appearance of the penis did not differ significantly. Ventral penile curvature repaired in infancy often recurs after puberty. The need for dorsal plication has a trend-level association with recurrence of penile curvature in puberty. It might also be related to the degree of postpubertal penile curvature and the need for redo urethroplasty. Procedure type does not affect patient satisfaction with the postpubertal appearance of the penis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Constant Gaussian curvature surfaces in the 3-sphere via loop groups

    DEFF Research Database (Denmark)

    Brander, David; Inoguchi, Jun-Ichi; Kobayashi, Shimpei


    In this paper we study constant positive Gauss curvature K surfaces in the 3-sphere S3 with 0constant negative curvature surfaces. We show that the so-called normal Gauss map for a surface in S3 with Gauss curvature K... by the second fundamental form if and only if K is constant. We give a uniform loop group formulation for all such surfaces with K≠0, and use the generalized d’Alembert method to construct examples. This representation gives a natural correspondence between such surfaces with K

  14. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao


    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  15. Shape discrimination by total curvature, with a view to cancer diagnostics

    DEFF Research Database (Denmark)

    Gardner, R J; Hobolth, A; Jensen, E B V


    This paper investigates the use of total curvature for shape discrimination of objects via profiles of their planar sections (not assumed to be star shaped). Methods of estimating total curvature from observation of a finite number of points on the boundary of the object are investigated, including...... a simple discrete approximation method and various interpolation methods. Total curvature is capable of revealing shape differences on a local scale, as demonstrated by the analysis of two data sets of malignant and normal or benign tumour cell nuclear profiles....

  16. Increased Curvature of the Tentorium Cerebelli in Idiopathic Intracranial Hypertension. (United States)

    Morris, P P; Lachman, N; Black, D F; Carter, R A; Port, J; Campeau, N


    Transverse sinus effacement is detectable on MRV examinations in almost all patients with idiopathic intracranial hypertension. This effacement of the transverse sinus is presumed to be mediated by elevation of intracranial pressure, resulting in compression and inward collapse of the dural margins of the sinus. We sought to establish whether supratentorial broad-based downward deformity of the tentorium might explain transverse sinus effacement in idiopathic intracranial hypertension. MRV examinations of 53 adult patients with idiopathic intracranial hypertension were reviewed retrospectively and compared with 58 contemporaneously acquired controls. The curvature of the tentorium with reference to a line connecting the transverse sinus laterally with the confluence of the tentorial leaves medially was calculated as a segment of a circle. The height and area of the segment and the angle subtended by the midpoint of the tentorium from the falx were calculated. The height and area of the segment described by the chord connecting the transverse sinus with the apex of the tentorial confluence and subtended midtentorial angle were greater in the idiopathic intracranial hypertension group; this finding supports the hypothesis that increased tentorial bowing is present in idiopathic intracranial hypertension. Increased bowing of the tentorium in patients with idiopathic intracranial hypertension compared with controls is a new observation, lending itself to new hypotheses on the nature and localization of elevated intracranial pressure in idiopathic intracranial hypertension. Bowing of the tentorium may play a part in distorting the contour of the transverse sinuses, resulting, at least in part, in the effacement of the transverse sinuses in idiopathic intracranial hypertension. © 2017 by American Journal of Neuroradiology.

  17. Spinal curvatures of children and adolescents – a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Grabara Małgorzata


    Full Text Available Study aim: The aim was to assess the spinal curvatures of primary and lower secondary male and female students from Silesia and to identify individual variations that can determine spinal posture.

  18. Optimization research of sextant fan baffle curvature radius in shell and tube heat exchanger (United States)

    Jin, M.; Liu, H. J.; Wang, X. Y.


    For a high shell side pressure drop of the conventional segmental baffles in shell and tube heat exchanger, a novel sextant fan baffle was put forward. To research the influence of baffle curvature radius of the sextant fan baffled shell and tube heat exchanger (SFTHX) on the shell side pressure drop, the heat transfer coefficient and the comprehensive heat transfer performance, six different curvature radius baffles were numerically simulated and experimental studied in this paper. Based on the numerically simulation results, under the same inlet flow conditions, a better comprehensive heat transfer performance can be found in SFTHX with the baffle curvature radius of 1 D, which is higher by 0.84-6.85% more than that of the others. Moreover, the experimental investigation data of SFTHX with baffle curvature radius of 1 D indicates that the numerically simulation can well predict the flow and heat transfer characteristics with the experiment.

  19. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature

    Directory of Open Access Journals (Sweden)

    Amilal Bhat


    Conclusions : Preputioplasty with TIP is feasible in proximal hypospadias with curvature without increasing the complication rate. Postoperative phimosis can be prevented by on-table testing of the adequacy of preputial skin by 3 stay sutures.

  20. The head leads the body: a curvature-based kinematic description of C. elegans

    CERN Document Server

    Padmanabhan, Venkat; Solomon, Deepak E; Armstrong, Andrew; Rumbaugh, Kendra P; Vanapalli, Siva A; Blawzdziewicz, Jerzy


    Caenorhabditis elegans, a free-living soil nematode, propels itself by producing undulatory body motion and displays a rich variety of body shapes and trajectories during its locomotion in complex environments. Here we show that the complex shapes and trajectories of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase.

  1. Curvature driven motion of a bubble in a toroidal Hele-Shaw cell. (United States)

    Mughal, A; Cox, S J; Schröder-Turk, G E


    We investigate the equilibrium properties of a single area-minimizing bubble trapped between two narrowly separated parallel curved plates. We begin with the case of a bubble trapped between concentric spherical plates. We develop a model which shows that the surface energy of the bubble is lower when confined between spherical plates than between flat plates. We confirm our findings by comparing against Surface Evolver simulations. We then derive a simple model for a bubble between arbitrarily curved parallel plates. The energy is found to be higher when the local Gaussian curvature of the plates is negative and lower when the curvature is positive. To check the validity of the model, we consider a bubble trapped between concentric tori. In the toroidal case, we find that the sensitivity of the bubble's energy to the local curvature acts as a geometric potential capable of driving bubbles from regions with negative to positive curvature.

  2. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang


    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  3. The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature

    Directory of Open Access Journals (Sweden)

    Enli Guo


    Full Text Available By using the Hawking Taub-NUT metric, this note gives an explicit construction of a 3-parameter family of Einstein Finsler metrics of non-constant flag curvature in terms of navigation representation.

  4. Regularity and stability results for the level set flow via the mean curvature flow with surgery


    Mramor, Alexander


    In this article we us the mean curvature flow with surgery to derive regularity estimates going past Brakke regularity for the level set flow. We also show a stability result for the plane under the level set flow.

  5. Generalization of the swelling method to measure the intrinsic curvature of lipids (United States)

    Barragán Vidal, I. A.; Müller, M.


    Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).

  6. Elastic energy of curvature-driven bump formation on red blood cell membrane.


    Waugh, R.E.


    Model calculations were performed to explore quantitative aspects of the discocyte-echinocyte shape transformation in red blood cells. The shape transformation was assumed to be driven by changes in the preferred curvature of the membrane bilayer and opposed by the elastic shear rigidity of the membrane skeleton. The energy required for echinocyte bump formation was calculated for a range of bump shapes for different preferred curvatures. Energy minima corresponding to nonzero bump heights we...

  7. Substrate Deformation Curvatures Due to Film Mismatch Strain for Spatially Varying Substrate and Film Thicknesses (Preprint) (United States)



  8. ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL


    Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.

  9. Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature

    Directory of Open Access Journals (Sweden)

    Arnaldo S. Nascimento


    Full Text Available We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N-dimensional Riemannian manifolds without boundary and non-negative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant local minimizers for the same class of functionals.

  10. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller


    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...... curvature was essential for enrichment in raft-like liquid-ordered phases; enrichment was driven by relief of lateral pressure upon anchor insertion and most likely affects the localization of lipidated proteins in general....

  11. Long-term follow-up of penile curvature correction utilizing autologous albugineal crural graft

    Directory of Open Access Journals (Sweden)

    Carlos Teodósio Da Ros


    Full Text Available PURPOSE: Peyronie's disease is an acquired connective tissue disorder of the penile tunica albuginea with fibrosis and inflammation. The disease produces palpable plaques, penile curvature and pain during erections. Usually it results in impairment of the quality of life. Our objective is to review the long-term results of the albugineal grafting harvested from the penile crura for the treatment of severe penile curvature. MATERIALS AND METHODS: Thirty-three patients with Peyronie's disease were submitted to a grafting with tunica albuginea from the penile crura for the correction of penile curvature. The results were evaluated after 6 months of the procedure. Variables studied were overall satisfaction with the procedure, correction of the penile curvature, erectile capacity, penile shortening and the presence of surgical complications. RESULTS: Mean follow-up after surgery was 41 months. Complete correction of the curvature was achieved in 30 patients (90%. The mean preoperative curvature was 91.8 degrees and median plaque length was 2 cm (ranged from 1 to 5 cm. Three patients (9% experienced recurrence of the penile curvature and required a new procedure. In 30 men (90% the procedure fulfilled their expectations and in 31 patients (93.9% their opinions were that sexual partners were satisfied with the penile correction. Penile shortening or augmentation was referred in 6 (18.1% and 1 (3% patient, respectively. CONCLUSION: Our series demonstrated that grafting the albugineal defect after incision of the tunica albuginea with tunica from the crus for the correction of penile curvature is safe and results in satisfactory straight erections duringa long-term follow-up.

  12. Measurement of penile curvature in Peyronie's disease patients: comparison of three methods. (United States)

    Ohebshalom, Michael; Mulhall, John; Guhring, Patricia; Parker, Marilyn


    Peyronie's disease (PD) may be treated in a medical or surgical fashion. Factors involved in the decision of which treatment to choose include duration of disease and magnitude of penile deformity. Curvature can be measured using at-home photography (AHP), vacuum erection device (VED), or intracavernosal injection (ICI). This study was undertaken to determine the concordance between the three methods of deformity assessment. Patients were also questioned regarding the presence of erectile dysfunction (ED) based on self-report and the International Index of Erectile Function. A total of 68 men presented to their urologist after taking penile photographs from three angles during maximal erectile rigidity. In the office, a VED was used to induce erection, and a goniometer was utilized to measure degree of curvature. ICI with trimix was then used to induce artificial erection, which was measured with a goniometer as well. There was a statistically significant difference in self-report curvature magnitude compared with measured ICI-assisted curvature. Curvature profiles included dorsal plaques in 50 patients (73.5%), ventral plaques in 10 (15%), and lateral in eight (11%). Using ICI, the mean curvature measured was 42 degrees. Mean degree of curvature using VED was 33 degrees, while that of photography was 34 degrees. Photographic measurements differed most from ICI in men with concurrent ED (P 60 degrees. Our results show that the degree of curvature measured using vacuum-assisted device and AHP is underestimated as compared with the gold standard ICI. We therefore recommend that ICI be used to most accurately determine degree of deformity. If ICI is not available, it is imperative that the same manner of measurement be used between all patients in a study group, as well as during serial evaluation in a trial.

  13. Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kaichen, E-mail:, E-mail: [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lou, Shuai; Choe, Hwan Sung; Yao, Jie; Wu, Junqiao, E-mail:, E-mail: [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, Kai [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); You, Zheng [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084 (China)


    Due to its thermally driven structural phase transition, vanadium dioxide (VO{sub 2}) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO{sub 2} actuators severely obstructs the actuation performance and application. Here, we introduce a “seesaw” method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO{sub 2} actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO{sub 2} actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This “seesaw” method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.

  14. [Analysis and Correction of Spectral Curvature in Hadamard Transform Spectrometer with DMD]. (United States)

    Quan, Xiang-qian; Liu, Hua; Lu, Zhen-wu; Wang, Xiao-duo; Dang, Bo-shi; Chen, Xiang-zi; Wang, Fang


    Due to the advantages of its low cost and high utilization rate of light energy and no moving parts, Hadamard transform spectrometer with DMD has become a focus in the research of spectrometer. In order to solve the reduction of spectral resolution caused by the spectral curvature of Hadamard transform spectrometer with DMD (Digital Micro-mirror Device), the spectral aliasing in the spectrometer was investigated. Firstly, the mathematical relationship of spectral aliasing to radius of spectral curvature was deduced. Then, two procedures were proposed to solve the spectral aliasing. One is making the DMD encoded spectral band accordant with the standard spectral band as far as possible by adjusting the DMD-encoded stripe, and another is correcting remaining spectral aliasing by means of data processing. Finally, by analyzing and correcting spectral curvature in six situations of the curvature radius of 15.8 x 10⁴, 7.8 x 10⁴, 9.7 x 10⁴ µm and etc, we fit out the relationship of spectral aliasing and spectrum correction effect of spectral-curvature to the curvature radius. The simulation indicates that the spectral resolution increases to the resolution of optical system. It shows that the proposed methods are universal, simple and effective in the improvement of spectral resolution.

  15. Cervical spine curvature and craniofacial morphology in an adult Caucasian group: a multiple regression analysis. (United States)

    Tecco, Simona; Festa, Felice


    The aim of this study was to investigate the relationship between cervical curvature and skeletal facial morphology. Pre-treatment lateral cephalograms in natural head position were obtained from 98 orthodontic adult subjects (56 males and 42 females; mean age = 31.5 years, standard deviation +/-5.8 years). The amount of concavity of the cervical curvature was calculated by a second-order quadratic interpolation of the most infero-posterior points of the bodies of the seven cervical vertebrae on the radiographs. Linear regression with stepwise elimination was carried out to evaluate the sagittal and vertical craniofacial dimensions. The results revealed that the amount of curvature was related to (1) the horizontal position of the upper incisors with respect to the maxillary and mandibular skeletal bases and (2) the sagittal millimetric dimension of the maxillary base. These cephalometric variables explained 51 per cent of the total variance of cervical curvature. There was no significant correlation between cervical curvature and any other cephalometric variable. Cervical curvature was not influenced by age or gender.

  16. Manipulation of cell mechanotaxis by designing curvature of the elasticity boundary on hydrogel matrix. (United States)

    Ueki, Ayaka; Kidoaki, Satoru


    Directional cell migration induced by the stiffness gradient of cell culture substrates is known as a subset of the mechanical-cue-induced taxis, so-called mechanotaxis, typically durotaxis toward hard region. To establish the general conditions of biomaterials to manipulate the mechanotaxis, the effect of the shape of the elasticity transition boundary between hard and soft regions of a substrate on mechanotaxis should be systematically determined as well as the conditions of elasticity gradient strength. Here, as a simplified factor of expressing variations in the shape of the elasticity boundary in living tissues, we focus on the curvature of the elasticity boundary. Mask-free photolithographic microelasticity patterning of photocurable gelatin gel was employed to systematically prepare elasticity boundaries with various curvatures, and the efficiency of mechanotaxis of fibroblast cells around each curved boundary was examined. Highly efficient usual durotaxis was induced on a convex boundary with 100 μm in radius and on a concave boundary with 750 μm in radius of curvature. Interestingly, biased migration toward soft regions of the gel, i.e., inverse durotaxis, was first observed for concave boundaries with 50 μm or 100 μm in radius of curvature, which was named as "negative mechanotaxis". The curvature of the elasticity boundary was found to markedly affect the efficiency of induction and the direction of mechanotaxis. The mechanism responsible for this phenomenon and the implication for the curvature effect in in vivo systems are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays (United States)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.


    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  18. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence (United States)

    Zheng, Tianhang; You, Jiaping; Yang, Yue


    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  19. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays (United States)

    Lee, J. S.; Evans, M. L.


    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  20. Flexoelectric response in soft polyurethane films and their use for large curvature sensing (United States)

    Merupo, V. I.; Guiffard, B.; Seveno, R.; Tabellout, M.; Kassiba, A.


    The flexoelectric effect is simply defined as the coupling between the strain gradient and polarization in solid dielectrics. It may be seen as an alternative transduction mechanism to the piezoelectric effect to directly sense the curvature of bent flexible thin structures. In the case of large curvatures, flexible and compliant sensors are required and soft polar elastomers may be suitable for curvature sensing. In this study, we report the flexoelectric characterization of soft semi-crystalline polyurethane (PU) films with thicknesses ranging from 1.7 μm to 350 μm. Dynamic bending experiments have been performed on PU films deposited onto rigid steel substrates in the vicinity of the mechanical resonance frequency of the cantilever beams. Quasi-static flexoelectric coefficients of PU films could be obtained by using a classical oscillating model. A global large increase of μ12 ' with the decreasing film thickness was found, especially for thicknesses lower than 25 μm. The variation of μ12 ' is explained by the presence of a Young's Modulus gradient through the thickness of PU films. Besides, a concomitant uncommon dramatic decrease in the dielectric constant is observed. The combination of these two effects contributes to enhancing the flexocoupling "F" constant with the decreasing thickness. At last, the potential use of a 6.6 μm-thick soft PU film as a large curvature sensor has been experimentally demonstrated by subjecting a flexible Aluminum foil/Polyethylene terephthalate bilayered cantilever to large deflections. A curvature of about 80 m-1 (radius of curvature of ˜1.2 cm) could be sensed under low frequency (3 Hz) bending motion. These results may pave the way for the development of low cost and easy to implement soft flexoelectric elastomer-based large curvature sensors on highly flexible metallic structures.

  1. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays (United States)

    Young, L. M.; Evans, M. L.; Hertel, R.


    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  2. The effect of silicone hydrogel bandage soft contact lens base curvature on comfort and outcomes after photorefractive keratectomy. (United States)

    Taylor, Kenneth R; Molchan, Ryan P; Townley, J Richard; Caldwell, Matthew C; Panday, Vasudha A


    To evaluate the relative pain and the relative amount of contact lens loss experienced using two different base curvatures (BCs) of the Acuvue Oasys bandage soft contact lens (BSCL) after photorefractive keratectomy (PRK). One hundred forty patients undergoing PRK on either the Allegretto or the VISX laser at the Joint Warfighter Refractive Surgery Center in Lackland AFB, TX, were randomized to one of the two different BCs of the Acuvue Oasys BSCL: 8.4 or 8.8 mm. Patients were evaluated on postoperative days 1 and 4 during which they completed a survey rating absolute pain in each eye on a visual analog pain scale. Lens loss was recorded throughout the study. Patients treated on the Allegretto laser preferred the 8.4-mm BC lens, whereas comfort after treatment on the VISX depended on corneal shape. For VISX, patients with very flat corneas (steep K ≤42 preoperative or ≤38 postoperatively) preferred an 8.8-mm BC lens while patients with very steep corneas (steep K >45 preoperative or >42 postoperative) preferred an 8.4-mm BC lens, though these results were largely not statistically significant. Patients who lost their lenses prematurely tended to be those whose corneal curvature did not match their contact lens BC. Individuals treated with the Allegretto laser or individuals with more prolate corneas should likely be fit with an 8.4-mm BC Acuvue Oasys BSCL while individuals with more oblate corneas should likely be fit with an 8.8-mm BC lens to minimize postoperative pain and premature BSCL loss.

  3. Anatomical study of the radius and center of curvature of the distal femoral condyle

    KAUST Repository

    Kosel, Jürgen


    In this anatomical study, the anteroposterior curvature of the surface of 16 cadaveric distal femurs was examined in terms of radii and center point. Those two parameters attract high interest due to their significance for total knee arthroplasty. Basically, two different conclusions have been drawn in foregoing studies: (1) The curvature shows a constant radius and (2) the curvature shows a variable radius. The investigations were based on a new method combining three-dimensional laser-scanning and planar geometrical analyses. This method is aimed at providing high accuracy and high local resolution. The high-precision laser scanning enables the exact reproduction of the distal femurs - including their cartilage tissue - as a three-dimensional computer model. The surface curvature was investigated on intersection planes that were oriented perpendicularly to the surgical epicondylar line. Three planes were placed at the central part of each condyle. The intersection of either plane with the femur model was approximated with the help of a b-spline, yielding three b-splines on each condyle. The radii and center points of the circles, approximating the local curvature of the b-splines, were then evaluated. The results from all three b-splines were averaged in order to increase the reliability of the method. The results show the variation in the surface curvatures of the investigated samples of condyles. These variations are expressed in the pattern of the center points and the radii of the curvatures. The standard deviations of the radii for a 90 deg arc on the posterior condyle range from 0.6 mm up to 5.1 mm, with an average of 2.4 mm laterally and 2.2 mm medially. No correlation was found between the curvature of the lateral and medial condyles. Within the range of the investigated 16 samples, the conclusion can be drawn that the condyle surface curvature is not constant and different for all specimens when viewed along the surgical epicondylar axis. For the portion

  4. Cell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies. (United States)

    Hague, Charlotte V; Postle, Anthony D; Attard, George S; Dymond, Marcus K


    One of the most developed theories of phospholipid homeostasis is the intrinsic curvature hypothesis, which, in broad terms, postulates that cells regulate their lipid composition so as to keep constant the membrane stored curvature elastic energy. The implication of this hypothesis is that lipid composition is determined by a ratio control function consisting of the weighted sum of concentrations of type II lipids in the numerator and the weighted sum of concentrations of Type 0 lipids in the denominator. In previous work we used a data-driven approach, based on lipidomic data from asynchronous cell cultures, to determine a criterion that allows the different lipid species to be assigned to the set of type 0 or of type II lipids, and hence construct a ratio control function that serves as a proxy for the lipid contribution to total membrane stored curvature elastic energy in vivo. Here we apply the curvature elastic energy proxy to the analysis of lipid composition data from synchronous HeLa cells as they traverse the cell cycle. Our analysis suggests HeLa cells modify their membrane stored elastic energy through the cell cycle. In S-phase type 0 lipids are the most abundant, whilst in G2 type II lipids are most abundant. Changes in our proxy for membrane stored elastic energy correlate with membrane curvature dependent processes in the HeLa cell around division, providing some insights into the interplay between the individual lipid and protein contributions to membrane free energy.

  5. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia. (United States)

    Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S


    The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.

  6. 2-D Hybrid Model to Study Flow Curvature Effect on Low Frequency Plasma Turbulence (United States)

    Sen, S.; Lin, D.; Scales, W.; Goldstein, M.


    In this study of flow curvature effects, a two-dimensional hybrid model is used to simulate the Kelvin-Helmholtz instability (KHI). The hybrid model treats the ions as particles, and electrons as massless fluid. Pressure and resistivity are assumed as isotropic. A classical configuration for the study of KHI is investigated, i.e. transverse shear flow to uniform background magnetic field. This is thought as the most unstable situation in magnetohydrodynamic (MHD) theory. There are 50 super particles per cell in the current simulations, which number could be increased to as much as 200 in the future. The boundary is periodic along the flow direction and reflective in the perpendicular direction. The code was originally developed by the Los Alamos National Laboratory and has been successfully applied to the study of Kelvin-Helmholtz instability on the Earth's magnetopause. In this study, the code has been running on the Advanced Research Computing (ARC) platforms of Virginia Tech. Four distinct shear profiles are simulated to investigate the effects of flow curvature on the growth of the KH instability: uniform flow, linear shear without curvature, quadratic profile with positive curvature, and quadratic profile with negative curvature. This work is supported by the DOE Grant DE-SC0016397.

  7. Curvature-driven stability of defects in nematic textures over spherical disks (United States)

    Duan, Xiuqing; Yao, Zhenwei


    Stabilizing defects in liquid-crystal systems is crucial for many physical processes and applications ranging from functionalizing liquid-crystal textures to recently reported command of chaotic behaviors of active matters. In this work, we perform analytical calculations to study the curvature-driven stability mechanism of defects based on the isotropic nematic disk model that is free of any topological constraint. We show that in a growing spherical disk covering a sphere the accumulation of curvature effect can prevent typical +1 and +1/2 defects from forming boojum textures where the defects are repelled to the boundary of the disk. Our calculations reveal that the movement of the equilibrium position of the +1 defect from the boundary to the center of the spherical disk occurs in a very narrow window of the disk area, exhibiting the first-order phase-transition-like behavior. For the pair of +1/2 defects by splitting a +1 defect, we find the curvature-driven alternating repulsive and attractive interactions between the two defects. With the growth of the spherical disk these two defects tend to approach and finally recombine towards a +1 defect texture. The sensitive response of defects to curvature and the curvature-driven stability mechanism demonstrated in this work in nematic disk systems may have implications towards versatile control and engineering of liquid-crystal textures in various applications.

  8. Curvature-driven lateral segregation of membrane constituents in Golgi cisternae (United States)

    Derganc, Jure


    Lateral segregation of mobile membrane constituents (e.g. lipids, proteins or membrane domains) into the regions of their preferred curvature relaxes stresses in the membrane. The equilibrium distribution of the constituents in the membrane is thus a balance between the gains in the membrane elastic energy and the segregation-induced loss of entropy. The membrane in the Golgi cisternae is particularly susceptible to the curvature-driven segregation because it possesses two very different curvatures—the highly curved membrane in the cisternal rims and the flat membrane in the cisternal sides. In this work, we calculate the extent of lateral segregation in the Golgi cisternae in the case where the segregation is driven by the Helfrich bending energy. It is assumed that the membrane bending constant and spontaneous curvature depend on the local membrane composition. A simple analytical expression for the extent of the lateral segregation is derived. The results show that the segregation depends on the ratio between the bending constant and the thermal energy, the difference of the preferred curvatures of the constituents and the sizes of the constituents. Applying the model to a typical Golgi cisterna, it was found that entropy can effectively limit the extent of the curvature-driven lateral segregation.

  9. Flow-induced buckling of flexible shells with non-zero Gaussian curvatures and thin spots. (United States)

    Chang, Gary Han; Modarres-Sadeghi, Yahya


    We study the influence of one or multiple thin spots on the flow-induced instabilities of flexible shells of revolution with non-zero Gaussian curvatures. The shell's equation of motion is described by a thin doubly-curved shell theory and is coupled with perturbed flow pressure, calculated based on an inviscid flow model. We show that for shells with positive Gaussian curvatures conveying fluid, the existence of a thin spot results in a localized flow-induced buckling response of the shell in the neighborhood of the thin spot, and significantly reduces the critical flow velocity for buckling instability. For shells with negative Gaussian curvatures, the buckling response is extended along the shell's characteristic lines and the critical flow velocity is only slightly reduced. We also show that the length scale of the localized deformation generated by a thin spot is proportional to the shell's global thickness when the stiffness of the thin spot is negligible compared with the stiffness of the rest of the shell. When two thin spots exist at a distance, their influences are independent from each other for shells with positive Gaussian curvatures, but large-scale deformations can be created due to multiple thin spots on shells with negative curvatures, depending on the thin spots' relative position.

  10. Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media. (United States)

    Kay, Matthew W; Gray, Richard A


    Excitable media theory predicts the effect of electrical wavefront morphology on the dynamics of propagation in cardiac tissue. It specifies that a convex wavefront propagates slower and a concave wavefront propagates faster than a planar wavefront. Because of this, wavefront curvature is thought to be an important functional mechanism of cardiac arrhythmias. However, the curvature of wavefronts during an arrhythmia are generally unknown. We introduce a robust, automated method to measure the curvature vector field of discretely characterized, arbitrarily shaped, two-dimensional (2-D) wavefronts. The method relies on generating a smooth, continuous parameterization of the shape of a wave using cubic smoothing splines fitted to an isopotential at a specified level, which we choose to be -30 mV. Twice differentiating the parametric form provides local curvature vectors along the wavefront and waveback. Local conduction velocities are computed as the wave speed along lines normal to the parametric form. In this way, the curvature and velocity vector field for wavefronts and wavebacks can be measured. We applied the method to data sampled from a 2-D numerical model and several examples are provided to illustrate its usefulness for studying the dynamics of cardiac propagation in 2-D media.

  11. Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction. (United States)

    Božič, Bojan; Das, Sovan L; Svetina, Saša


    Cell membrane proteins, both bound and integral, are known to preferentially accumulate at membrane locations with curvatures favorable to their shape. This is mainly due to the curvature dependent interaction between membrane proteins and their lipid environment. Here, we analyze the effects of the protein-lipid bilayer interaction energy due to mismatch between the protein shape and the principal curvatures of the surrounding bilayer. The role of different macroscopic parameters that define the interaction energy term is elucidated in relation to recent experiment in which the lateral distribution of a membrane embedded protein potassium channel KvAP is measured on a giant unilamellar lipid vesicle (reservoir) and a narrow tubular extension - a tether - kept at constant length. The dependence of the sorting ratio, defined as the ratio between the areal density of the protein on the tether and on the vesicle, on the inverse tether radius is influenced by the strength of the interaction, the intrinsic shape of the membrane embedded protein, and its abundance in the reservoir. It is described how the values of these constants can be extracted from experiments. The intrinsic principal curvatures of a protein are related to the tether radius at which the sorting ratio attains its maximum value. The estimate of the principal intrinsic curvature of the protein KvAP, obtained by comparing the experimental and theoretical sorting behavior, is consistent with the available information on its structure.

  12. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures (United States)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.


    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  13. The effect of stem curvature on torsional stability of a generalized cemented joint replacement system. (United States)

    Hosein, Yara K; Clynick, Meghan P; McLachlin, Stewart D; King, Graham J W; Dunning, Cynthia E


    Implant loosening is a common complication that compromises the stability of joint replacement systems. Stem geometry is particularly influential in the stability of cemented implants, both before and after debonding occurs at the stem-cement interface. There are few studies assessing the effect of stem longitudinal curvature as a geometric factor in cemented implant stability. The purpose of this study was to compare the torsional stability of four generalized cemented implant stems (i.e., non-specific to joint), with varying degrees of longitudinal curvatures--zero, two, four, and six degrees. Twelve specimens of each curvature angle were potted to a depth of 20 mm using bone cement, given 24 hours to cure, and then tested in a materials testing machine. Torque was applied to the stems under monotonic loading at a rate of 2.5 degrees/min, until five degrees of rotation had occurred. There were no differences in torsional stability among the four stem curvature angles, when the magnitudes of peak torque (P=.72; 1-β = 0.13), rotation of the stem at peak torque (P=0.23; 1-β = 0.38) and work required for five degrees of stem rotation (P=.58; 1-β = 0.07) were compared. The findings from this study demonstrate that for short stems, stem curvature angles up to six degrees does not improve torsional stability when compared to the straight stem design.

  14. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou


    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  15. The geometric curvature of the lumbar spine during restricted and unrestricted squats. (United States)

    Hebling Campos, Mário; Furtado Alaman, Laizi I; Seffrin-Neto, Aldo A; Vieira, Carlos A; Costa de Paula, Marcelo; Barbosa de Lira, Claudio A


    The main purpose of this study was to analyze the behavior of the geometric curvature of the lumbar spine during restricted and unrestricted squats, using a novel investigative method. The rationale for our hypothesis is that the lumbar curvature has different patterns at different spine levels depending on the squat technique used. Spine motion was collected via stereo-photogrammetric analysis in nineteen participants (11 males, 8 females). The reconstructed spine points at the upright neutral position and at the deepest position of the squat exercise were projected onto the sagittal plane of the trunk, a polynomial was fitted to the data, and were quantified the two-dimensional geometric curvature at lower, central and higher lumbar levels, besides the inclination of trunk and lumbosacral region, the overall geometric curvature and overall angle of the lumbar spine. The mean values for each variable were analysed with paired t-test (Plumbar presents a flexion from upright neutral posture to deepest point of the movement, but for the lower lumbar the flexion is less intense if the knees travel anteriorly past the toes. The trunk and the lumbosacral region lean forward in both squat techniques and these effects are also reduced in unrestricted squats. The data collected in the study are evidence that during barbell squats the lumbar curvature has different patterns at different spinal levels depending on the exercise technique. The lower lumbar spine appears to be less overloaded during unrestricted squats.

  16. Determination of slope, curvature, and twist from a single shearography fringe pattern using derivative-based regularized phase tracker (United States)

    Deepan, Balakrishnan; Quan, Chenggen; Tay, Cho Jui


    A fringe analysis algorithm for determination of slope, curvature, and twist from a single fringe pattern in digital speckle-shearing interferometry is proposed. A method for estimation of biased curvature and twist maps from fringe orientation and fringe density maps is employed. The curvature and twist maps obtained are further processed by B-spline interpolation to achieve high quality curvature and twist maps. A derivative-based regularized phase tracker (RPT) utilizes these predetermined curvature and twist maps for determination of a slope map from a single shearography fringe pattern. The proposed model requires less computational time and it overcomes the limitations of the RPT model. The method is validated with an experimental fringe pattern. The results show that this method is robust against speckle noise and it is able to retrieve accurate slope, curvature, and twist maps from a single shearography fringe pattern.

  17. The 3D trajectory of the body centre of mass during adult human walking: evidence for a speed-curvature power law. (United States)

    Tesio, Luigi; Rota, Viviana; Perucca, Laura


    During straight walking, the body centre of mass (CM) follows a 3D figure-of-eight ("bow-tie") trajectory about 0.2 m long and with sizes around 0.05 m on each orthogonal axis. This was shown in 18 healthy adults walking at 0.3 to 1.4 ms⁻¹ on a force-treadmill (Tesio and Rota, 2008). Double integration of force signals can provide both the changes of mechanical energy of the CM and its 3D displacements (Tesio et al., 2010). In the same subjects, the relationship between the tangential speed of the CM, Vt, the curvature, C, and its inverse--the radius of curvature, r(c), were analyzed. A "power law" (PL) model was applied, i.e. logVt was regressed over logr(c). A PL is known to apply to the most various goal-directed planar movements (e.g. drawing), where the coefficient of logr(c), β, usually takes values around 13. When the PL was fitted to the whole dataset, β was 0.346 and variance explanation, R², was 59.8%. However, when the data were split into low- and high-curvature subsets (LC, HC, arbitrary cut-off of C=0.05 mm⁻¹, r(c)=20mm), β was 0.185 in the LC (R² 0.214) and 0.486 in the HC (R² 0.536) tracts. R² on the whole dataset increased to 0.763 if the LC-HC classification of the forward speed and their interaction entered the model. The β coefficient, the curvature C, and the pendulum-like recovery of mechanical energy were lower during the double foot-ground contact phase, compared to the single contact. Along the CM trajectory, curvature and muscle power output peaked together around the inversions of lateral direction. Non-zero torsion values were randomly distributed along 60% of the trajectory, suggesting that this is not segmented into piecewise planar tracts. It is proposed that the trajectory can be segmented into one tract that is more actively controlled (tie) where a PL fits poorly and another tract which is more ballistic (bow) where a PL fits well. Results need confirmation through more appropriate 3D PL modelling. Copyright © 2010

  18. Modelling the effect of curvature on the collective behaviour of cells growing new tissue

    CERN Document Server

    Alias, Almie


    The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissue's evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumour growth. While previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesising cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and th...

  19. Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature. (United States)

    Sarin, V B


    Curvature forms an important feature of thoracic aorta and this paper deals with the flow of an idealized elastico-viscous liquid in a curved pipe of circular cross-section and slowly varying curvature, under a pressure gradient. The flow is assumed to be steady and at low Reynolds numbers. By using the series expansion method of Dean (Phil Mag 4 (1927) 208-223; Phil Mag 5 (1928) 673-693) in powers of a parameter L, which can be considered as the square of ratio of the centrifugal force induced by the circular motion of the fluid to the viscous force, it is shown that in a tube of increasing curvature, there will be delay in setting up of the secondary motion. The wall shear stress, an important parameter in physiological flows, is calculated. The flow of Newtonian fluid in a tube of circular cross section is discussed, as a particular case.

  20. The Response of Model and Astrophysical Thermonuclear Flames to Curvature and Stretch (United States)

    Dursi, L. J.; Zingale, M.; Calder, A. C.; Fryxell, B.; Timmes, F. X.; Vladimirova, N.; Rosner, R.; Caceres, A.; Lamb, D. Q.; Olson, K.; Ricker, P. M.; Riley, K.; Siegel, A.; Truran, J. W.


    Critically understanding the standard candle-like behavior of Type Ia supernovae requires understanding their explosion mechanism. One family of models for Type Ia supernovae begins with a deflagration in a carbon-oxygen white dwarf that greatly accelerates through wrinkling and flame instabilities. While the planar speed and behavior of astrophysically relevant flames is increasingly well understood, more complex behavior, such as the flame's response to stretch and curvature, has not been extensively explored in the astrophysical literature; this behavior can greatly enhance or suppress instabilities and local flame-wrinkling, which in turn can increase or decrease the bulk burning rate. In this paper, we explore the effects of curvature on both nuclear flames and simpler model flames to understand the effect of curvature on the flame structure and speed.

  1. Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories

    CERN Document Server

    Burns, Daniel; Pilaftsis, Apostolos


    We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, H...

  2. Principal normal curvature of surfaces. [electromagnetic scattering and the geometrical theory of diffraction (United States)

    Schmidt, R. F.


    Certain principal normal curvatures of differential geometry were developed for use in curvature matrices associated with the asymptotic solution of electromagnetic diffraction problems. The effort is directed toward microwave antenna simulations and high speed digital computer analysis of radiometric instruments used to obtain soil moisture, sea state, salinity and temperature data. It is shown that the methods used to develop the principal normal curvatures for paraboloid, hyperboloid, ellipsoid, sphere, and cone can be applied to other radiometer geometries such as the parabolic torus, even though the surface parameterizations are different. It is concluded that deployable offset geometries, distorted by rotational forces and solar loads may be analyzed by similar means given a suitable surface description.

  3. Three-Dimensional Analysis of the Curvature of the Femoral Canal in 426 Chinese Femurs (United States)

    Su, Xiu-Yun; Zhao, Zhe; Zhao, Jing-Xin; Zhang, Li-Cheng; Long, An-Hua; Zhang, Li-Hai; Tang, Pei-Fu


    Purpose. The human femur has long been considered to have an anatomical anterior curvature in the sagittal plane. We established a new method to evaluate the femoral curvature in three-dimensional (3D) space and reveal its influencing factors in Chinese population. Methods. 3D models of 426 femurs and the medullary canal were constructed using Mimics software. We standardized the positions of all femurs using 3ds Max software. After measuring the anatomical parameters, including the radius of femoral curvature (RFC) and banking angle, of the femurs using the established femur-specific coordinate system, we analyzed and determined the relationships between the anatomical parameters of the femur and the general characteristics of the population. Results. Pearson's correlation analyses showed that there were positive correlations between the RFC and height (r = 0.339, p femur was significantly larger in female than in male. PMID:26640785

  4. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans (United States)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.


    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  5. Characteristic Evaluation of Impact Responses and Damages in Composite Shell with Various Curvatures (United States)

    Kim, Y. N.; Im, K. H.; Park, J. W.; Kim, K. S.; Yang, I. Y.


    Composites are considered for many structural (aerospace vehicles, automobiles, trains and ships) applications structural weight. However, impacted composite structures have 50-75% less strength than undamaged structures. The present work experimentally characterizes and explores the response of composite structures with a wide range of structural configurations to both impact and quasi-static loadings. In this study, CF/Epoxy(Carbon Fiber/Epoxy Resin) composite laminates with various curvatures was used. The objective of this study is to find a method for changing the radius of the curvature and to determine how the impact velocity affects the contact force-deflection, damage area and absorbed energy under low-velocity impact loadings. By experimenting with composite structures, we found that there were substantial differences between the responses of a flat-plate and shell to transverse loading. And contact force, damage area, and absorbed energy of the composite shells were a function of curvature radius and impact energy.

  6. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment

    DEFF Research Database (Denmark)

    Larsen, Jannik B.; Kennard, Celeste; Pedersen, Søren L.


    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We...... recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation......, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC...

  7. Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement. (United States)

    Sun, Bing; Huang, Yijian; Liu, Shen; Wang, Chao; He, Jun; Liao, Changrui; Yin, Guolu; Zhao, Jing; Liu, Yinjie; Tang, Jian; Zhou, Jiangtao; Wang, Yiping


    We demonstrated a compact and highly-sensitive curvature sensor based on a Mach-Zehnder interferometer created in a photonic crystal fiber. Such a Mach-Zehnder interferometer consisted of a peanut-like section and an abrupt taper achieved by use of an optimized electrical arc discharge technique, where only one dominating cladding mode was excited and interfered with the fundamental mode. The unique structure exhibited a high curvature sensitivity of 50.5 nm/m-1 within a range from 0 to 2.8 m-1, which made it suitable for high-sensitivity curvature sensing in harsh environments. Moreover, it also exhibited a temperature sensitivity of 11.7 pm/°C.

  8. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn : Berry Curvature and Entropy Flow (United States)

    Li, Xiaokang; Xu, Liangcai; Ding, Linchao; Wang, Jinhua; Shen, Mingsong; Lu, Xiufang; Zhu, Zengwei; Behnia, Kamran


    We present a study of electric, thermal and thermoelectric response in noncollinear antiferromagnet Mn3Sn , which hosts a large anomalous Hall effect (AHE). Berry curvature generates off-diagonal thermal (Righi-Leduc) and thermoelectric (Nernst) signals, which are detectable at room temperature and invertible with a small magnetic field. The thermal and electrical Hall conductivities respect the Wiedemann-Franz law, implying that the transverse currents induced by the Berry curvature are carried by Fermi surface quasiparticles. In contrast to conventional ferromagnets, the anomalous Lorenz number remains close to the Sommerfeld number over the whole temperature range of study, excluding any contribution by inelastic scattering and pointing to the Berry curvature as the unique source of AHE. The anomalous off-diagonal thermo-electric and Hall conductivities are strongly temperature dependent and their ratio is close to kB/e .

  9. Influence of implant rod curvature on sagittal correction of scoliosis deformity

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro


    BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...

  10. Influence of displacement and its first- and second-order derivative components on curvature fringe formations in speckle shearography. (United States)

    Wang, Kaifu; Tieu, Anh Kiet; Li, Enbang


    The influence of displacement and its first- and second-order derivative components on curvature fringe formations in speckle shearography is discussed. The results show that (a) all the displacement components have no direct influence on curvature fringe formations; (b) only the first-order derivative component along the centerline of three apertures has an influence on curvature fringe formations, whereas all the other first-order components have no influence; and (c) all the second-order derivative components have no influence on curvature fringe formations. Results from theory and experiments are in good agreement.

  11. Penile septoplasty for congenital ventral penile curvature: results in 51 patients. (United States)

    Colpi, Giovanni; Piediferro, Guido; Castiglioni, Fabrizio; Contalbi, Gianfranco; Carmignani, Luca


    The technique most widely used to correct congenital ventral penile curvature is still corporoplasty as originally described by Nesbit. We present results in patients treated with a variation of Nesbit corporoplasty used specifically for congenital ventral penile curvature. From June 2000 to June 2007 we treated 51 patients with congenital ventral penile curvature using modified corporoplasty (septoplasty), consisting of accessing the bed of the penile dorsal vein and excising 1 or more diamonds of tunica albuginea from it, extending in wedge-like formation 4 to 5 mm deep into the septum, until the penis is completely straightened. Patient history, clinical findings, self-photography results and the International Index of Erectile Function score were assessed. Curvature grade is expressed using the equation, 180 degrees - X, where X represents the deviation in degrees from the penis axis. Mean preoperative ventral curvature was 131.4 degrees (median 135, range 145 to 110). Of the patients 13 also had erectile dysfunction. At followup postoperative mean ventral curvature was 178.3 degrees (median 179.1, range 180 to 175). A total of 49 stated that they were completely satisfied. Penile shortening was 5 to 15 mm. Compared to preoperative values there were marked improvements in the International Index of Erectile Function score in the various groups. No major postoperative complications developed. In 4 patients wound healing occurred by secondary intent. This technique provides excellent straightening of the curved penis. By avoiding isolation of the whole dorsal neurovascular bundle there is no risk of neurovascular lesions. Suture perception is minimized.

  12. Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Omid Bavi


    Full Text Available Mechanosensitive (MS channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50 and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels.

  13. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King


    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  14. Constant curvature black holes in Einstein-AdS gravity: Conserved quantities (United States)

    Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.


    We study physical properties of constant curvature black holes in Einstein-anti-de Sitter (AdS) gravity. These objects, which are locally AdS throughout the space, are constructed from identifications of global AdS spacetime, in a similar fashion as the Banados-Teitelboim-Zanelli black hole in three dimensions. We find that, in dimensions equal to or greater than 4, constant curvature black holes have zero mass and angular momentum. Only in odd dimensions are we able to associate a nonvanishing conserved quantity to these solutions, which corresponds to the vacuum (Casimir) energy of the spacetime.

  15. FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX

  16. Prediction of the Critical Curvature for LX-17 with the Time of Arrival Data from DNS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, Laurence E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moss, William C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    We extract the detonation shock front velocity, curvature and acceleration from time of arrival data measured at grid points from direct numerical simulations of a 50mm rate-stick lit by a disk-source, with the ignition and growth reaction model and a JWL equation of state calibrated for LX-17. We compute the quasi-steady (D, κ) relation based on the extracted properties and predicted the critical curvatures of LX-17. We also proposed an explicit formula that contains the failure turning point, obtained from optimization for the (D, κ) relation of LX-17.

  17. The Effect of Corneal Epithelium on Corneal Curvature in Patients with Keratoconus. (United States)

    Akcay, Emine Kalkan; Uysal, Betul Seher; Sarac, Ozge; Ugurlu, Nagehan; Yulek, Fatma; Cagil, Nurullah; Aslan, Nabi


    To investigate the effects of corneal epithelium on corneal curvature in patients with keratoconus. This is a prospective, nonrandomized study. Fifty-nine eyes of 47 patients diagnosed as keratoconus and for whom corneal collagen crosslinking (CXL) was recruited in this study. This study is a single-center clinical trial. Pregnancy, lactation, connective tissue disease, corneal thickness below 350 μm, severe dry eyes, or scar of corneal surgery were exclusion criteria. Before and during CXL procedure after removing the corneal epithelium, maximum values of corneal apical curvature, simulated keratometry 1 (Sim-K1), simulated keratometry 2 (Sim-K2), temporal and inferior curvature values, all of which are 1.5 mm from the corneal center, were calculated. These values before and after removal of epithelium were compared statistically. Mean age of patients was 23.30 ± 5.5 (12-38) years. Twenty-eight (59%) were male while 19 (41%) were female. Mean values measured before and after removing the corneal epithelium were: apical curvature; 59.19 ± 7.2 (47.06-82.40) diopter (D) and 61.70 ± 8.8 (49.19-92.66) D (p = 0.001), SimK1; 47.57 ± 4.3 (39.14-64.57) D and 48.23 ± 4.3 (41.89-66.70) D (p = 0.001), SimK2; 52.04 ± 5.3 (43.56-69.34) D and 53.34 ± 5.6 (43.73-70.89) D (p = 0.001), inferior curvature; 53,85 ± 5.2 (43.47-76.56) D and 55.05 ± 5.8 (44.56-81.93) D (p = 0.002), temporal curvature 49.49 ± 5.1 (41.50-71.03) D and 51.53 ± 5.4 (41.58-73.34) D (p = 0.001), respectively. In keratoconus patients during CXL treatment, after removing the corneal epithelium, more steepness is detected in the curvature of the steeper area of the cornea. When evaluating patients with keratoconus, the masking effect of corneal epithelium on values of curvature should be taken into consideration.

  18. The Gauss Map of Complete Minimal Surfaces with Finite Total Curvature

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper we are concerned with the image of the normal Gauss map of a minimal surface immersed in ℝ3 with finite total curvature. We give a different proof of the following theorem of R. Osserman: The normal Gauss map of a minimal surface immersed in ℝ3 with finite total curvature, which is not a plane, omits at most three points of2 Moreover, under an additional hypothesis on the type of ends, we prove that this number is exactly 2.

  19. On the Effect of Curvature in Debonded Sandwich Panels Subjected to Compressive Loading

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Branner, Kim


    with a circular debond. The Crack Surface Displacement Extrapolation (CSDE) method is used to calculate fracture parameters in the interface. Compression tests were carried out on two types of debonded curved panels with different curvature using Digital Image Correlation (DIC) measurements to determine the full......The aim of this study is to obtain an understanding of the effect of panel curvature on residual compressive strength in debond damaged sandwich panels. Finite element analysis and linear elastic fracture mechanics are employed to analyze the residual compressive strength of curved panels...

  20. arXiv Non-linear Realizations and Higher Curvature Supergravity

    CERN Document Server

    Farakos, F.; Kehagias, A.; Lust, D.


    We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss--Bonnet multiplet and discuss the emergence of a new scalar degree of freedom.

  1. Large-scale magnetic fields, curvature fluctuations and the thermal history of the Universe

    CERN Document Server

    Giovannini, Massimo


    It is shown that gravitating magnetic fields affect the evolution of curvature perturbations in a way that is reminiscent of a pristine non-adiabatic pressure fluctuation. The gauge-invariant evolution of curvature perturbations is used to constrain the magnetic power spectrum. Depending on the essential features of the thermodynamic history of the Universe, the explicit derivation of the bound is modified. The theoretical uncertainty in the constraints on the magnetic energy spectrum is assessed by comparing the results obtained in the case of the conventional thermal history with the estimates stemming from less conventional (but phenomenologically allowed) post-inflationary evolutions.

  2. Curved nanocarbon materials: probing the curvature and topology effects using phonon spectra

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Avadh Baheri [Los Alamos National Laboratory; Gupta, Sanju [UNIV OF MISSOURI


    In spite of detailed structural characterization of nanoscale carbons, they still possess some features that are not entirely understood particularly in terms of topological characteristics. By means of resonance Raman spectroscopy, we elucidated the notion of global topology and curvature by determining the prominent Raman bands variation for various carbon nanostructures including tubular (single-, double- and multiwalled nanotubes, peapod), spherical (hypo- and hyperfullerenes, onion-like carbon) and complex (nanocones, nanohorns, nanodisks and nanorings) geometries. This knowledge points to an unprecedented emergent paradigm of global topology/curvature {yields} property {yields} functionality relationship.

  3. Curvature measurement using three-aperture digital shearography and fast Fourier transform (United States)

    Bhaduri, Basanta; Kothiyal, M. P.; Krishna Mohan, N.


    Curvature measurement using a three-aperture digital shearography (DS) system is reported in this paper. The outer apertures are covered with wedge plates for introducing shear. Four images by sequentially blocking the outer apertures are used for quantitative measurement. Fourier transform technique is used to determine two sheared slope phase maps from two images at a time representing initial and deformed states. Subtraction of these two-phase maps yields the curvature phase map. Experimental results are presented for a circular diaphragm clamped along the edges and loaded at the center.

  4. The effect of curvature on detonation waves in Type Ia supernovae (United States)

    Sharpe, Gary J.


    The effect of curvature on detonation speed and structure for detonation waves in C-O is investigated. Weakly curved detonation fronts have a sonic point inside the reaction zone. In such waves the detonation speed depends on the detailed internal structure and not on simple jump conditions. Hence, in order to obtain the correct propagation speed and products of burning, the reaction length-scales must be resolved in any numerical simulation involving curved detonations in C-O. For each value of the initial density there is a corresponding extinction curvature above which quasi-steady detonations cannot propagate. For densities less than 2×107gcm-3, where the self-sustaining planar waves are Chapman-Jouguet, and for realistic values of the curvature, the sonic point moves from the end of silicon burning to the end of oxygen burning. Hence the effective detonation length, i.e. the length-scale of the burning between the shock and the sonic point which can affect the front, is several orders of magnitudes less than the planar waves predict. However, silicon burning, which occurs downstream of the sonic point, is increased in length by a few orders of magnitude owing to lower detonation speeds and temperatures. Therefore more intermediate-mass elements will be produced by incomplete burning if curvature is taken into account. Recent advances in detonation theory and modelling are also discussed in the context of Type Ia supernovae.

  5. Complex structures and zero-curvature equations for σ-models

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Dmitri, E-mail: [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany); Steklov Mathematical Institute of Russ. Acad. Sci., Gubkina str. 8, 119991 Moscow (Russian Federation)


    We construct zero-curvature representations for the equations of motion of a class of σ-models with complex homogeneous target spaces, not necessarily symmetric. We show that in the symmetric case the proposed flat connection is gauge-equivalent to the conventional one.

  6. Test of the FLRW Metric and Curvature with Strong Lens Time Delays (United States)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long


    We present a new model-independent strategy for testing the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ˜0.057 or ˜0.041 (1σ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  7. Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space

    DEFF Research Database (Denmark)

    Brander, David


    We study singularities of spacelike, constant (non-zero) mean curvature (CMC) surfaces in the Lorentz-Minkowski 3-space L-3. We show how to solve the singular Bjorling problem for such surfaces, which is stated as follows: given a real analytic null-curve f(0)(x), and a real analytic null vector...

  8. Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential

    DEFF Research Database (Denmark)

    Brander, David; Dorfmeister, Josef


    We define certain deformations between minimal and non-minimal constant mean curvature (CMC) surfaces in Euclidean space E3 which preserve the Hopf differential. We prove that, given a CMC H surface f, either minimal or not, and a fixed basepoint z0 on this surface, there is a naturally defined...

  9. The Björling problem for non-minimal constant mean curvature surfaces

    DEFF Research Database (Denmark)

    Brander, David; Dorfmeister, Josef


    The classical Bjorling problem is to find the minimal surface containing a given real analytic curve with tangent planes prescribed along the curve. We consider the generalization of this problem to non-minimal constant mean curvature (CMC) surfaces, and show that it can be solved via the loop...

  10. The Lp Lp Lp-curvature images of convex bodies and Lp Lp Lp ...

    Indian Academy of Sciences (India)

    Abstract. Associated with the Lp-curvature image defined by Lutwak, some inequali- ties for extended mixed p-affine surface areas of convex bodies and the support functions of Lp-projection bodies are established. As a natural extension of a result due to Lutwak, an Lp-type affine isoperimetric inequality, whose special ...

  11. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. (United States)

    Smrt, Sean T; Draney, Adrian W; Lorieau, Justin L


    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Influence of the Track Axis Curvature at Railway Filler-Beam Deck Bridges

    Directory of Open Access Journals (Sweden)

    Răzvan Marian Stănescu


    Full Text Available The article presents a comparative study between the simplified method calculation proposed by the prescriptions of design codes and the analysis with the FEM program LUSAS [1], regarding the influence of the curvature of the track axis at railway bridges with steel beams embedded in concrete.

  13. Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials. (United States)

    Gu, Zonglin; Yang, Zaixing; Chong, Yu; Ge, Cuicui; Weber, Jeffrey K; Bell, David R; Zhou, Ruhong


    The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.

  14. Bimanual curvature discrimination of hand-sized surfaces placed at different positions

    NARCIS (Netherlands)

    Sanders, A. F J; Kappers, A. M L


    This study explores bimanual curvature discrimination of cylindrically curved, hand-sized surfaces. The setup was designed so that the postures of the observers' left and right arms and hands were the same as if the observers were holding a large object in their hands. We measured psychometric

  15. Bimanual curvature discrimination of hand-sized surfaces placed at different positions

    NARCIS (Netherlands)

    Sanders, A.F.J.; Kappers, A.M.L.


    This study explores bimanual curvature discrimination of cylindrically curved, hand-sized surfaces. The setup was designed so that the postures of the observers’ left and right arms and hands were the same as if the observers were holding a large object in their hands. We measured psychometric

  16. Invariance of the distributional curvature of the cone under smooth diffeomorphisms (United States)

    Vickers, J. A.; Wilson, J. P.


    An explicit calculation is carried out to show that the distributional curvature of a 2-cone, calculated by Clarke et al (Clarke C J S, Vickers J A and Wilson J P 1996 Class. Quantum Grav. 13 2485-98), using Colombeau's new generalized functions is invariant under nonlinear 0264-9381/16/2/019/img1 coordinate transformations.

  17. Influence of surface attitude and curvature scaling on discrimination of binocularly presented curved surfaces

    NARCIS (Netherlands)

    Vries, Sjoerd C. de; Kappers, A.M.L.; Koenderink, J.J.


    We report on the ability of human observers to discriminate local second-order shape of quadratic stereo-defined surfaces. Local second-order shape can be specified by two parameters: the curvedness (a scale-dependent quantity describing overall curvature of a shape) and the shape index

  18. Curvature computation in volume-of-fluid method based on point-cloud sampling (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.


    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  19. A "Paperclip" Approach to Curvature, Torsion, and the Frenet-Serret Formulas (United States)

    Hoensch, Ulrich A.


    We explore how curvature and torsion determine the shape of a curve via the Frenet-Serret formulas. The connection is made explicit using the existence of solutions to ordinary differential equations. We use a paperclip as a concrete, visual example and generate its graph in 3-space using a CAS. We also show how certain physical deformations to…

  20. Diameter effect and detonation front curvature of ideal and non-ideal explosives (United States)

    Sandstrom, F. W.; Abernathy, R. L.; Leone, M. G.; Banks, M. L.


    Diameter effect and detonation front curvature data are presented for several representative ideal and non-ideal explosives, including cast TNT, Tritonal, urea nitrate (UN), ANFO, and two variants of ammonium nitrate (AN)/solid fuel explosives. The ideal vs. non-ideal detonation characteristics of these various explosives are compared and contrasted with respect to particle size and chemical composition.

  1. The Kramers-Moyal Equation of the Cosmological Comoving Curvature Perturbation

    DEFF Research Database (Denmark)

    Riotto, Antonio; Sloth, Martin Snoager


    the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators...

  2. Conformation of charged vesicles: the Debye Huckel and the low curvature limit (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M., , Prof.

    The shape as well as tension and pressure inside an uncharged vesicle are determined by the reduced volume. These parameters are important for a vesicle or a biological cell, since it can affect bio-physical processes such as osmosis and permeation, interaction with external agents such as bio- macromolecules and thermal fluctuations of the bilayer membrane of a vesicle. Charged membranes are ubiquitous in nature, most biological cell bio-membranes are charged, and therefore the knowledge of shape, tension and pressure of charged vesicles is critical. Additionally, the distribution of charges in the inner and outer leaflets is also important as it can affect the spatial interaction of a bilayer membrane with proteins. This work addresses these issues in the low charge and curvature limit. Our analysis indicates that despite a very strong two-way coupling between the charge and the curvature, the shapes of charged vesicles remain similar to that of uncharged vesicles at comparable reduced volumes, even for reasonable values of total charge. However, the tension and pressure values are higher, and are accurately estimated. Similarly the charge distribution on the outer and inner leaflet is strongly affected by the curvature. The value of spontaneous curvature due to charge redistribution is estimated. The insensitivity of the shape to charges persists even when only the outer leaflet is charged instead of charged inner and outer leaflets

  3. First-order structure induces the 3-D curvature contrast effect

    NARCIS (Netherlands)

    Pas, S.F. te; Kappers, A.M.L.


    A 3-D curvature contrast effect has been reported in shading-and-texture-defined (Curran & Johnson (1996). Vision Research 36, 3641–3653) and in stereoscopically defined (te Pas, Rogers, & Ledgeway (2000). Current Psychology Letters: Brain, Beha iour and Cognition 1, 117–126) stimuli. Our

  4. Unsteady behavior of locally strained diffusion flames affected by curvature and preferential diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kenji; Takagi, Toshimi


    Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.

  5. 3D Facial Similarity Measure Based on Geodesic Network and Curvatures

    Directory of Open Access Journals (Sweden)

    Junli Zhao


    Full Text Available Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices.

  6. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study. (United States)

    Xu, Jinyu; Wu, Zhichen; Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai


    Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm.

  7. Spontaneous curvature of comb copolymers strongly adsorbed at a flat interface : A computer simulation study

    NARCIS (Netherlands)

    de Jong, Johan; Subbotin, A; ten Brinke, G


    Using a modified bond fluctuation model, with only excluded-volume interactions, we demonstrate spontaneous curvature of 2D comb copolymer molecules, provided the side chains are allowed to flip from one side of the backbone to the other. When the side chains are not allowed to flip, the polymer

  8. Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity

    DEFF Research Database (Denmark)

    Bertolami, O.; Ferreira, R. Z.


    In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...

  9. Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity

    Directory of Open Access Journals (Sweden)

    Bertolami Orfeu


    Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.

  10. Application of the normalized curvature ratio to an in-service structure (United States)

    Kliewer, Kaitlyn; Glisic, Branko


    Fiber optic sensors (FOS) offer numerous advantages for structural health monitoring. In addition to being durable, lightweight, and capable of multiplexing, they offer the ability to simultaneously monitor both static and dynamic strain. FOS also allow for the instrumentation of large areas of a structure with long-gages sensors which helps enable global monitoring of the structure. Drawing upon these benefits, the Normalized Curvature Ratio (NCR), a curvature based damage detection method, has been developed. This method utilizes a series of long-gage fiber Bragg grating (FBG) strain sensors for damage detection of a structure through dynamic strain measurements and curvature analysis. While dynamic SHM methods typically rely up frequency and acceleration based analysis, it has been found that strain and curvature based analysis may be a more reliable means for structural monitoring. Previous research was performed through small scale experimental testing and analytical models were developed and provided promising results for the NCR as a potential damage sensitive feature. Based on this success, this research focuses on the application of the NCR to an existing in-service structure, the US202/NJ23 highway overpass located in Wayne, NJ. The overpass is currently instrumented with a series of long-gage FBG strains sensors and periodic strain measurements for dynamic events induced by heavy weight vehicles have been recorded for more than 5 years. This research shows encouraging results and the potential for the NCR to be used as a simplistic metric for damage detection using FBG strain sensors.

  11. The Lp Lp Lp-curvature images of convex bodies and Lp Lp Lp ...

    Indian Academy of Sciences (India)

    Associated with the -curvature image defined by Lutwak, some inequalities for extended mixed -affine surface areas of convex bodies and the support functions of -projection bodies are established. As a natural extension of a result due to Lutwak, an -type affine isoperimetric inequality, whose special cases are ...

  12. Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments

    DEFF Research Database (Denmark)

    Faes, Antonin; Frandsen, Henrik Lund; Pihlatie, Mikko


    One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel-yttria-stabilized-zi......One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel......-yttria-stabilized-zirconia (Ni-YSZ) support, a Ni-YSZ anode, and an 8YSZ electrolyte. Five different treatments are studied: (i) reduction at 600°C, (ii) reduction at 1000°C, (iii) 1RedOx cycle at 750°C, (iv) 5RedOx cycles at 750°C, and (v) 5RedOx cycles at 600°C. The strength is measured by the ball-on-ring method, where...... it is calculated analytically from the force. In this calculation the thermal stresses are estimated from the curvature of the half-cell. For each treatment, more than 30 samples are tested. About 20 ball-on-ring samples are laser cut from one original 12×12 cm2 half-cell. Curvature and porosity are measured...

  13. Flight path-driven mitigation of wavefront curvature effects in SAR images (United States)

    Doerry, Armin W [Albuquerque, NM


    A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.


    Directory of Open Access Journals (Sweden)



    Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.

  15. Computer simulation of corneal curvature change caused by intrastromal ablations using a pico-second lasersystem (United States)

    Hennighausen, H.; Bille, Josef F.


    In order to predict corneal curvature change after intrastromal surgery three finite element models are developed and compared. The models differ essentially in the underlying assumptions about the mechanical behavior of the cornea. The first model assumes an isotropic corneal structure with a nonlinear stress/strain behavior, thus providing a lower limit for the corneal curvature change. Contrary model two assumes transverse isotropy combined with a linear stress/strain behavior, in order to provide an upper limit for corneal curvature change. Although differing in their structural assumptions, model one and two consider the cornea as being a solid structure. A third model, based on a multilayered thin shell theory, shows that this might not be sufficient. In addition the calculations are run for two different ablation patterns. The performed analyses are extremely useful in choosing ablation patterns and dimensions for intrastromal refractive surgery. But as the model predictions of corneal curvature change differ in about 4 dpt for a given pattern, more subtle modifications and a better knowledge of the mechanical parameters of the cornea are necessary in order to obtain applicability of model calculations to predict the actual outcome of a performed surgery.

  16. Aligning and measuring the curvature and thickness of high-precision lens (United States)

    Wu, Kun-Huan; Chang, Shenq-Tsong; Hsu, Ming-Ying; Huang, Ting-Ming; Hsu, Wei-Yao; Tseng, Shih-Feng


    The radius of curvature is one of the most important specifications for spherical optics [1]. There are several methods and devices currently on the market that can be used to measure it, including optical level, non-contact laser interferometer (Interferometer), a probe-contact profiler (Profilometer), the centering machine and three-point contact ball diameter meter (Spherometer). The amount that can be measured with a radius of curvature of the lens aperture range depends on the interferometer standard lens f / number and lens of R / number (radius of curvature divided by the clear aperture of the spherical surface ratio between them). Unfortunately, for lens with diameter greater than 300 mm, the device is limited by the size of the holding fixture lenses or space. This paper aims to provide a novel surface contour detection method and machine, named "CMM spherometry by probe compensation," to measure the radius and thickness of the curvature of the optical surface by a coordinate measurement machine (CMM). In order to obtain more accurate optimization results, we used probe and temperature compensation to discuss the effect. The trace samples and the measurement results of CMM and the centering machine, which has top and bottom autocollimators, are compared.

  17. Automatic segmentation of lung parenchyma based on curvature of ribs using HRCT images in scleroderma studies (United States)

    Prasad, M. N.; Brown, M. S.; Ahmad, S.; Abtin, F.; Allen, J.; da Costa, I.; Kim, H. J.; McNitt-Gray, M. F.; Goldin, J. G.


    Segmentation of lungs in the setting of scleroderma is a major challenge in medical image analysis. Threshold based techniques tend to leave out lung regions that have increased attenuation, for example in the presence of interstitial lung disease or in noisy low dose CT scans. The purpose of this work is to perform segmentation of the lungs using a technique that selects an optimal threshold for a given scleroderma patient by comparing the curvature of the lung boundary to that of the ribs. Our approach is based on adaptive thresholding and it tries to exploit the fact that the curvature of the ribs and the curvature of the lung boundary are closely matched. At first, the ribs are segmented and a polynomial is used to represent the ribs' curvature. A threshold value to segment the lungs is selected iteratively such that the deviation of the lung boundary from the polynomial is minimized. A Naive Bayes classifier is used to build the model for selection of the best fitting lung boundary. The performance of the new technique was compared against a standard approach using a simple fixed threshold of -400HU followed by regiongrowing. The two techniques were evaluated against manual reference segmentations using a volumetric overlap fraction (VOF) and the adaptive threshold technique was found to be significantly better than the fixed threshold technique.

  18. Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation. (United States)

    Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method.

  19. On the stability of the Lp-norm of the Riemannian curvature tensor

    Indian Academy of Sciences (India)

    First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for R p for certain values of . Then we conclude that they are strict local minimizers for R p for those values of . Finally generalizing this result we prove that product of space forms of same type and dimension are strict ...

  20. On Ricci curvature of C-totally real submanifolds in Sasakian space ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    (c) satisfies S ≤ ((n−1)(c+3). 4. + n2. 4 H2)g, where H2 and g are the square mean curvature function and metric tensor on Mn. , respectively. The equality holds identically if and only if either Mn is totally geodesic submanifold or n = 2 and Mn.

  1. Using geometric algebra to represent curvature in shell theory with applications to Starling resistors. (United States)

    Gregory, A L; Agarwal, A; Lasenby, J


    We present a novel application of rotors in geometric algebra to represent the change of curvature tensor that is used in shell theory as part of the constitutive law. We introduce a new decomposition of the change of curvature tensor, which has explicit terms for changes of curvature due to initial curvature combined with strain, and changes in rotation over the surface. We use this decomposition to perform a scaling analysis of the relative importance of bending and stretching in flexible tubes undergoing self-excited oscillations. These oscillations have relevance to the lung, in which it is believed that they are responsible for wheezing. The new analysis is necessitated by the fact that the working fluid is air, compared to water in most previous work. We use stereographic imaging to empirically measure the relative importance of bending and stretching energy in observed self-excited oscillations. This enables us to validate our scaling analysis. We show that bending energy is dominated by stretching energy, and the scaling analysis makes clear that this will remain true for tubes in the airways of the lung.

  2. Effect of curvature on a statistical model of quark-gluon-plasma ...

    Indian Academy of Sciences (India)

    It is in the wake of striking conformity with the results of latest lattice QCD simulations [10]. The model still shows weakly first-order phase transition at the temperature in the range (160 ± 5) MeV with the effect of curvature in the free energy and this is expected with the current feature of QGP– hadron phase transition too [1].

  3. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager


    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...

  4. Determination of the J integral for laminated double cantilever beam specimens: The curvature approach

    DEFF Research Database (Denmark)

    Rask, Morten; Sørensen, Bent F.


    the accuracy of the proposed approach, double cantilever beam specimen loaded with uneven bending moments (DCB-UBM) specimens were tested and analysed using the curvature approach and a method based on laminate beam theory. Beam curvatures were determined using a configuration of strain gauges. Good agreement...

  5. A three-dimensional analysis of the geometry and curvature of the proximal tibial articular surface of hominoids (United States)

    Landis, Emily K.; Karnick, Pushpak


    This study uses new three-dimensional imaging techniques to compare the articular curvature of the proximal tibial articular surface of hominoids. It has been hypothesized that the curvature of the anteroposterior contour of the lateral condyle in particular can be used to differentiate humans and apes and reflect locomotor function. This study draws from a large comparative sample of extant hominoids to obtain quantitative curvature data. Three-dimensional models of the proximal tibiae of 26 human, 15 chimpanzee, 15 gorilla, 17 orangutan, 16 gibbon and four Australopithecus fossil casts (AL 129-1b, AL 288-1aq, AL 333x-26, KNM-KP 29285A) were acquired with a Cyberware Model 15 laser digitizer. Curvature analysis was accomplished using a software program developed at Arizona State University's Partnership for Research In Stereo Modeling (PRISM) lab, which enables the user to extract curvature profiles and compute the difference between analogous curves from different specimens. Results indicate that the curvature of chimpanzee, gorilla and orangutan tibiae is significantly different from the curvature of human tibiae, thus supporting the hypothesized dichotomy between humans and great apes. The non-significant difference between gibbons and all other taxa indicates that gibbons have an intermediate pattern of articular curvature. All four Australopithecus tibia were aligned with the great apes.

  6. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong


    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  7. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

    Directory of Open Access Journals (Sweden)

    Hawes Martha C


    Full Text Available Abstract Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes, by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with

  8. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment (United States)

    Hawes, Martha C; O'Brien, Joseph P


    Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes), by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only) published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with potential to cause symptoms

  9. Principal Curvature Measures Estimation and Application to 3D Face Recognition

    KAUST Repository

    Tang, Yinhang


    This paper presents an effective 3D face keypoint detection, description and matching framework based on three principle curvature measures. These measures give a unified definition of principle curvatures for both smooth and discrete surfaces. They can be reasonably computed based on the normal cycle theory and the geometric measure theory. The strong theoretical basis of these measures provides us a solid discrete estimation method on real 3D face scans represented as triangle meshes. Based on these estimated measures, the proposed method can automatically detect a set of sparse and discriminating 3D facial feature points. The local facial shape around each 3D feature point is comprehensively described by histograms of these principal curvature measures. To guarantee the pose invariance of these descriptors, three principle curvature vectors of these principle curvature measures are employed to assign the canonical directions. Similarity comparison between faces is accomplished by matching all these curvature-based local shape descriptors using the sparse representation-based reconstruction method. The proposed method was evaluated on three public databases, i.e. FRGC v2.0, Bosphorus, and Gavab. Experimental results demonstrated that the three principle curvature measures contain strong complementarity for 3D facial shape description, and their fusion can largely improve the recognition performance. Our approach achieves rank-one recognition rates of 99.6, 95.7, and 97.9% on the neutral subset, expression subset, and the whole FRGC v2.0 databases, respectively. This indicates that our method is robust to moderate facial expression variations. Moreover, it also achieves very competitive performance on the pose subset (over 98.6% except Yaw 90°) and the occlusion subset (98.4%) of the Bosphorus database. Even in the case of extreme pose variations like profiles, it also significantly outperforms the state-of-the-art approaches with a recognition rate of 57.1%. The

  10. The Spatial Structure of Planform Migration - Curvature Relation of Meandering Rivers (United States)

    Guneralp, I.; Rhoads, B. L.


    Planform dynamics of meandering rivers have been of fundamental interest to fluvial geomorphologists and engineers because of the intriguing complexity of these dynamics, the role of planform change in floodplain development and landscape evolution, and the economic and social consequences of bank erosion and channel migration. Improved understanding of the complex spatial structure of planform change and capacity to predict these changes are important for effective stream management, engineering and restoration. The planform characteristics of a meandering river channel are integral to its planform dynamics. Active meandering rivers continually change their positions and shapes as a consequence of hydraulic forces exerted on the channel banks and bed, but as the banks and bed change through sediment transport, so do the hydraulic forces. Thus far, this complex feedback between form and process is incompletely understood, despite the fact that the characteristics and the dynamics of meandering rivers have been studied extensively. Current theoretical models aimed at predicting planform dynamics relate rates of meander migration to local and upstream planform curvature where weighting of the influence of curvature on migration rate decays exponentially over distance. This theoretical relation, however, has not been rigorously evaluated empirically. Furthermore, although models based on exponential-weighting of curvature effects yield fairly realistic predictions of meander migration, such models are incapable of reproducing complex forms of bend development, such as double heading or compound looping. This study presents the development of a new methodology based on parametric cubic spline interpolation for the characterization of channel planform and the planform curvature of meandering rivers. The use of continuous mathematical functions overcomes the reliance on bend-averaged values or piece-wise discrete approximations of planform curvature - a major limitation

  11. Declining tibial curvature parallels ∼6150 years of decreasing mobility in Central European agriculturalists. (United States)

    Macintosh, Alison A; Davies, Thomas G; Pinhasi, Ron; Stock, Jay T


    Long bones respond to mechanical loading through functional adaptation in a suite of morphological characteristics that together ensure structural competence to in vivo loading. As such, adult bone structure is often used to make inferences about past behavior from archaeological remains. However, such biomechanical approaches often investigate change in just one aspect of morphology, typically cross-sectional morphology or trabecular structure. The relationship between longitudinal bone curvature and mobility patterns is less well understood, particularly in the tibia, and it is unknown how tibial curvature and diaphyseal cross-sectional geometry interact to meet the structural requirements of loading. This study examines tibial curvature and its relationship with diaphyseal cross-sectional geometry (CSG) and body size in preindustrial Central Europeans spanning ∼6150 years following the introduction of agriculture in the region. Anteroposterior centroid displacement from the proximo-distal longitudinal axis was quantified at nine diaphyseal section locations (collectively representative of diaphyseal curvature) in 216 tibial three-dimensional laser scans. Results documented significant and corresponding temporal declines in midshaft centroid displacement and CSG properties. Significant correlations were found between mid-diaphyseal centroid displacement and all mobility-related CSG properties, while the relationship weakened toward the diaphyseal ends. No significant relationship was found between centroid displacement and body size variables with the exception of the most distal section location. Results support a relationship between tibial curvature and cross-sectional geometry among prehistoric Central European agricultural populations, and suggest that changes in mechanical loading may have influenced a suite of morphological features related to bone adaptation in the lower limb. © 2015 Wiley Periodicals, Inc.

  12. Analytical And Numerical Approaches For Diffraction Efficiency In Low-curvature Curved Crystals (United States)

    Bellucci, V.; Camattari, R.; Guidi, V.; Neri, I.


    Crystals with curved diffraction planes (CDPC) are an emerging technology in X-ray optics. CDPC allow manipulating the trajectories of high-energy photons with efficiency near the unity in a broad energy range. An elective application of CDPC is the construction of hard X-ray lenses. Up to now, the impossibility to focalize hard X-rays left the observation of the sky in this energy range to direct-view instruments, featuring low sensitivity and resolution. In fact, only the spectra of few and strongest sources is known above 70 keV. Mosaic crystals have already been implemented for the construction of focusing optics, but they show low reproducibility in the fabrication, and diffraction efficiency is physically limited to 50% at most. The theory of diffraction in curved crystals was developed in the past half century in the frame of the dynamical theory of diffraction, with particular contribution by C. Malgrange If the curvature is quite strong, is possible to find a simple expression to quantitatively determine the fraction of diffracted photons. To date, it exists no analytical theory that quantitatively calculates the diffraction efficiency for crystals of low curvature. Indeed, the applications of CDPC sometimes requires a curvature radius in this range. For this reason, we developed a model, which is able to produce realistic previsions of the diffraction efficiency of a thick crystal in Laue geometry for any curvature radius. The model agrees with the results of the dynamical theory when this latter is applicable. It also leads to the same results of the flat crystal case when the curvature radius is very large, and gives a realistic and quantitative description of diffraction efficiency when these two cases are not applicable.

  13. Effects of axial length and corneal curvature on corneal biomechanics in elderly population

    Directory of Open Access Journals (Sweden)

    Sha-Sha Song


    Full Text Available AIM:To explore the corneal biomechanical properties of the elderly with different axial length(ALand corneal curvature by corneal visualization Scheimpflug Technology(Corvis ST. METHODS: Cross-sectional study. A total of 161 patients(297 eyesundergoing phacoemulsification were collected in this study. They were divided into 22-24mm, 24-26mm, more than 26mm groups according to axial length(190 eyes, 54 eyes and 53 eyes, respectively. Those of whom axial length was 22-24mm and the corneal curvature was 42-44D were divided into male and female groups(44 eyes and 49 eyes, respectively. Those of whom axial length was 22-24mm were divided into 42-44D group, more than 44D group according to corneal curvature(88 eyes, 102 eyes, respectively. Corvis ST was used to measure the biomechanical parameters of the cornea. The differences in the parameters between different groups were analyzed using the independent-samples t test or one-way analysis of variance and correlation analyses were performed using Pearson correlation analysis. RESULTS: When comparing the corneal biomechanical parameters, no statistically significant differences were found between male and female groups(P>0.05. The first applanation length and second applanation length among different corneal curvatures were statistically significant(PPr=0.429, 0.278; Pr=-0.291, -0.415; PCONCLUSION: The corneal curvature and ocular axial length may be the factors affecting the corneal biomechanical characteristics. The longer axial length, the thinner corneal thickness, the more easily the corneal is deformed, and with the increase of the axial length, intraocular pressure also increases.

  14. Curvature of co-links uncovers hidden thematic layers in the World Wide Web. (United States)

    Eckmann, Jean-Pierre; Moses, Elisha


    Beyond the information stored in pages of the World Wide Web, novel types of "meta-information" are created when pages connect to each other. Such meta-information is a collective effect of independent agents writing and linking pages, hidden from the casual user. Accessing it and understanding the interrelation between connectivity and content in the World Wide Web is a challenging problem [Botafogo, R. A. & Shneiderman, B. (1991) in Proceedings of Hypertext (Assoc. Comput. Mach., New York), pp. 63-77 and Albert, R. & Barabási, A.-L. (2002) Rev. Mod. Phys. 74, 47-97]. We demonstrate here how thematic relationships can be located precisely by looking only at the graph of hyperlinks, gleaning content and context from the Web without having to read what is in the pages. We begin by noting that reciprocal links (co-links) between pages signal a mutual recognition of authors and then focus on triangles containing such links, because triangles indicate a transitive relation. The importance of triangles is quantified by the clustering coefficient [Watts, D. J. & Strogatz, S. H. (1999) Nature (London) 393, 440-442], which we interpret as a curvature [Bridson, M. R. & Haefliger, A. (1999) Metric Spaces of Non-Positive Curvature (Springer, Berlin)]. This curvature defines a World Wide Web landscape whose connected regions of high curvature characterize a common topic. We show experimentally that reciprocity and curvature, when combined, accurately capture this meta-information for a wide variety of topics. As an example of future directions we analyze the neural network of Caenorhabditis elegans, using the same methods.

  15. Direct numerical simulation of flow separation behind a rounded leading edge: Study of curvature effects

    Energy Technology Data Exchange (ETDEWEB)

    Lamballais, Eric, E-mail: lamballais@univ-poitiers.f [Institute PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Silvestrini, Jorge, E-mail: jorgehs@pucrs.b [Faculdade de Engenharia, Pontificia Universidade Catolica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre - RS (Brazil); Laizet, Sylvain, E-mail: [Institute PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Department of Aeronautics, Institute for Mathematical Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)


    The separation bubble formed over a 2D half-body is studied by direct numerical simulation. The aim of this work is to consider the physical influence of the shape of the body that can be viewed as a thick half-plate with a front edge more or less rounded. The present generic body geometry is defined with a unique parameter {eta}=R/H corresponding to the ratio of the curvature radius R of the front edge over the body height H. In this paper, 18 calculations are presented depending on: (i) the value of {eta} with {eta}=0.125,0.25,0.5,1; (ii) the 2D/3D nature of the computation; (iii) the inflow perturbations used to mimic residual turbulence in the free stream velocity U{sub {infinity}.} Only one Reynolds number Re=U{sub {infinity}H}/{nu} is used for every simulation, allowing us to focus on the curvature effects over the separation bubble dynamics. The value of the Reynolds number (Re=2000) combined with the resolution demand of the front edge (close to a sharp corner for the highest curvature case) requires to simulate the flow using up to 876 million mesh nodes. The curvature effects are found to deeply influence the separation bubble dynamics, with a significant expansion of the separated region size predicted by 3D computations. This expansion is driven by the separation angle rise combined with the reinforcement of turbulence levels as the curvature is increased. These trends are associated with a change of bubble sensitivity with respect to upstream/downstream perturbations that can be interpreted in terms of convective/absolute stability.

  16. Randomization tests

    CERN Document Server

    Edgington, Eugene


    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  17. Effect of stretch positions on hamstring muscle length, lumbar flexion range of motion, and lumbar curvature in healthy adults. (United States)

    Borman, Nicole P; Trudelle-Jackson, Elaine; Smith, Susan S


    Hamstring stretching is a common practice in physical therapy to change not only hamstring muscle length (HML), but also lumbar flexion range of motion (LROM) or lumbar curvature (LC). Yet limited published research compares the effectiveness of two commonly used hamstring stretch positions, sitting and standing. The purposes of this study were to determine the effect of (1) stretch position on HML; and 2) HML on LROM and LC. Thirty-six participants (M=44.8 years, SD=17.1) with short HML (i.e., with shortness for men ≥45° and for women ≥ 24° of active knee flexion with 90° hip flexion) were measured for HML, LROM, and LC; randomly allocated to one of three groups: (1) hamstring stretching in sitting (SI); (2) standing (ST); or (3) no stretching (control); and remeasured after 4 weeks. Participants in the stretching groups performed two 30-second static stretches 4 days per week for 4 weeks. Multivariate analysis of covariance (MANCOVA) showed significance between the stretching groups and nonstretching group for HML only. Nonsignificance was shown for HML between the stretch positions (i.e., SI-active knee extension (AKE) and ST-AKE), indicating that both were equally effective for increasing HML. However, there was no change in LROM or in LC even though HML increased.

  18. Cyclic Fatigue of ProFile Vortex and Vortex Blue Nickel-Titanium Files in Single and Double Curvatures. (United States)

    Duke, Frederic; Shen, Ya; Zhou, Huimin; Ruse, N Dorin; Wang, Zhe-jun; Hieawy, Ahmed; Haapasalo, Markus


    The aims of this study were to determine the flexibility of ProFile Vortex (VX) and Vortex Blue (VB) files (Dentsply Tulsa Dental Specialties, Tulsa, OK) and then to evaluate and compare their fatigue resistance in artificial single curvature and 2 different artificial double curvature canals. Flexibility of the files (size 25/.04) in bending was assessed according to ISO 3630-1. Both files were subjected to fatigue tests inside artificial canals with a single curvature (group 1: 60° curvature, 5-mm radius) and with 2 different double curvatures (group 2: first [coronal] curve of 60° curvature and 5-mm radius and the second one [apical] of 30° curvature and 2-mm radius and group 3: first curve of 60° curvature and 5-mm radius and the second one of 60° curvature and 2-mm radius). The number of cycles to fracture (NCF) was recorded, and the fracture surface of all fragments was examined with a scanning electron microscope. The bending load was significantly lower for VB files than VX files (P < .05), and the 2 types of files followed different trajectories in identical canals. In group 1, the 2 files had significantly higher NCF than in groups 2 and 3 (P < .05). Both files had significantly higher NCF in group 2 than in group 3 (P < .05). In group 1, VB files had fatigue resistance superior to VX files (P < .05), whereas in groups 2 and 3 their fatigue resistance was not statistically different from each other. The crack initiation of a vast majority of files that fractured in double curvature canals (groups 2 and 3) was localized on either 1 of 2 of the 3 cutting edges. Double curvature canals represent a much more stressful and challenging anatomy than single curvature canals, and, in them, fatigue resistance may be affected by the degrees and the radii of curvatures as well as by the bending properties of the files. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Quantifying the quality of hand movement in stroke patients through three-dimensional curvature

    Directory of Open Access Journals (Sweden)

    Osu Rieko


    Full Text Available Abstract Background To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test scores ranging from 2 (incomplete performance to 4 (mild clumsiness were recruited. Nine healthy participant with a SIAS score of 5 (normal also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable

  20. Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhun, E-mail:; Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Reiser, Ingrid [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Boone, John M.; Lindfors, Karen K. [Department of Radiology, University of California Davis Medical Center, Sacramento, California 95817 (United States)


    Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimal feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C{sub T}) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C{sub T} yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C{sub T} were conducted. The results showed that C{sub T} was able to replace the other four image features for the classification task. Conclusions: The normalized

  1. Reconstruction of a bony bankart lesion: best fit based on radius of curvature. (United States)

    Dehaan, Alexander; Munch, Jacqueline; Durkan, Michael; Yoo, Jung; Crawford, Dennis


    The inferior coracoid process has traditionally been considered to be the gold standard for glenoid augmentation after anteroinferior bone loss. Other autograft sites, and more recently, osteochondral allograft sites, have been described as potential donor sources. Potential autograft and osteochondral allograft sites were compared to identify the graft source that would provide the best fit for glenoid augmentation. Controlled laboratory study. Mose circles, a geometric tool found on a standard goniometer, were used to make radius of curvature measurements of 10 anatomic locations in 17 cadaveric specimens. The bony surface of the glenoid, measured from superior to inferior (G-SI) and from anterior to posterior (G-AP), was used as the standard for comparison. Autograft sites were the inferior coracoid, lateral coracoid, and inner table of the iliac crest. Potential osteochondral allograft sites were the radial head, scaphoid fossa of the distal radius (S-DR), lunate fossa of the distal radius (L-DR), medial tibial plateau, and lateral distal tibia. An acceptable match for autograft sites was based on a paired analysis and defined as a radius of curvature within 5 mm of the G-SI or the G-AP of the same cadaveric specimen. Allograft sites were evaluated using an unpaired analysis in which an ideal fit was defined as a radius of curvature of 25 to 30 mm, based on the interquartile range of the G-SI and G-AP. The median (interquartile range) radii of curvature for the G-SI and G-AP were 30 mm (range, 25-30 mm) and 25 mm (range, 25-25 mm), respectively. The inferior coracoid was within 5 mm of the G-SI 59% of the time and the G-AP 94% of the time; no measurements from the lateral coracoid or iliac crest were within the range of the glenoid radius of curvature. Analysis of the allograft sites demonstrated an acceptable fit for 94% of the distal tibia, 68% of the medial tibial plateau, 12% of the S-DR, and 0% of the L-DR and the radial head specimens. An autograft of the

  2. QT/RR curvatures in healthy subjects: sex differences and covariates (United States)

    Hnatkova, Katerina; Kowalski, Donna; Keirns, James J.; van Gelderen, E. Marcel


    Data of a large clinical study were used to investigate how much are the QT/RR patterns in healthy subjects curved and whether these curvatures differ between women and men. Daytime drug-free 12-lead Holter recordings were repeated 4 times in each of 176 female healthy subjects and 176 male healthy subjects aged 32.7 ± 9.1 yr. In each of the subjects, up to 1,440 carefully verified QT interval measurements were obtained with QT/RR hysteresis-corrected RR intervals. Individual subject data were used to fit the following regression equation: QT = χ + (δ/γ)(1 − RRγ) + ε, where QT and RR are QT and RR measurements (in s), χ is regression intercept, δ is the QT/RR slope, γ is the QT/RR curvature and provides the lowest regression residual, and ε represents normally distributed zero-centered errors. The bootstrap technique showed the intrasubject reproducibility of QT/RR slopes and curvatures. In women and men, QT/RR curvatures were 0.544 ± 0.661 and 0.797 ± 0.706, respectively (P = 0.0006). The corresponding QT/RR slopes were 0.158 ± 0.030 and 0.139 ± 0.023, respectively (P QT/RR curvatures were related to QT/RR slopes but not to individually corrected mean QTc intervals or individual QT/RR hysteresis profiles. The individual heart rate correction formula derived from the curvilinear regression provided a significantly lower intrasubject variability of QTc interval than individual optimisation of linear or log-linear QT/RR heart rate corrections. The QT/RR curvature can be reliable measured and expressed numerically. The corresponding heart rate correction formula provides more compact data than the previously proposed approaches. There are substantial sex differences in QT/RR patterns. Women have a QT/RR pattern that is not only steeper than men but also more curved. PMID:24163079

  3. Monitoring of spine curvatures and posture during pregnancy using surface topography - case study and suggestion of method. (United States)

    Michoński, Jakub; Walesiak, Katarzyna; Pakuła, Anna; Glinkowski, Wojciech; Sitnik, Robert


    Low back and pelvic pain is one of the most frequently reported disorders in pregnancy, however etiology and pathology of this problem have not been fully determined. The relationship between back pain experienced during pregnancy and posture remains unclear. It is challenging to measure reliably postural and spinal changes at the time of pregnancy, since most imaging studies cannot be used due to the radiation burden. 3D shape measurement, or surface topography (ST), systems designed for posture evaluation could potentially fill this void. A pilot study was conducted to test the potential of monitoring the change of spine curvatures and posture during pregnancy using surface topography. A single case was studied to test the methodology and preliminarily assess the usefulness of the procedure before performing a randomized trial. The apparatus used in this study was metrologically tested and utilized earlier in scoliosis screening. The subject was measured using a custom-made structured light illumination scanner with accuracy of 0.2 mm. Measurement was taken every 2 weeks, between 17th and 37th week of pregnancy, 11 measurements in total. From the measurement the thoracic kyphosis and lumbar lordosis angles, and vertical balance angle were extracted automatically. Custom-written software was used for analysis. Oswestry Low Back Pain Disability Questionnaire (ODI) was done with every measurement. The values were correctly extracted from the measurement. The results were: 50.9 ± 2.4° for kyphosis angle, 58.1 ± 2.1° for lordosis angle and 4.7 ± 1.7° for vertical balance angle. The registered change was 7.4° in kyphosis angle, 8.4° in lordosis angle and 5.5° in vertical balance angle. The calculated ODI values were between moderate disability and severe disability (22 to 58 %). This case study presents that surface topography may be suitable for monitoring of spinal curvature and posture change in pregnant women. The ionizing radiation studies

  4. Monitoring of spine curvatures and posture during pregnancy using surface topography – case study and suggestion of method

    Directory of Open Access Journals (Sweden)

    Jakub Michoński


    Full Text Available Abstract Background Low back and pelvic pain is one of the most frequently reported disorders in pregnancy, however etiology and pathology of this problem have not been fully determined. The relationship between back pain experienced during pregnancy and posture remains unclear. It is challenging to measure reliably postural and spinal changes at the time of pregnancy, since most imaging studies cannot be used due to the radiation burden. 3D shape measurement, or surface topography (ST, systems designed for posture evaluation could potentially fill this void. A pilot study was conducted to test the potential of monitoring the change of spine curvatures and posture during pregnancy using surface topography. A single case was studied to test the methodology and preliminarily assess the usefulness of the procedure before performing a randomized trial. The apparatus used in this study was metrologically tested and utilized earlier in scoliosis screening. Case presentation The subject was measured using a custom-made structured light illumination scanner with accuracy of 0.2 mm. Measurement was taken every 2 weeks, between 17th and 37th week of pregnancy, 11 measurements in total. From the measurement the thoracic kyphosis and lumbar lordosis angles, and vertical balance angle were extracted automatically. Custom-written software was used for analysis. Oswestry Low Back Pain Disability Questionnaire (ODI was done with every measurement. The values were correctly extracted from the measurement. The results were: 50.9 ± 2.4° for kyphosis angle, 58.1 ± 2.1° for lordosis angle and 4.7 ± 1.7° for vertical balance angle. The registered change was 7.4° in kyphosis angle, 8.4° in lordosis angle and 5.5° in vertical balance angle. The calculated ODI values were between moderate disability and severe disability (22 to 58 %. Conclusions This case study presents that surface topography may be suitable for monitoring of spinal curvature

  5. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction. (United States)

    Ho, Ruoya; Stroupe, Christopher


    Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Hysteresis compensation technique applied to polymer optical fiber curvature sensor for lower limb exoskeletons (United States)

    Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz


    Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.

  7. Poxviruses Encode a Reticulon-Like Protein that Promotes Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Karl J. Erlandson


    Full Text Available Poxviruses are enveloped DNA viruses that replicate within the cytoplasm. The first viral structures are crescents and spherical particles, with a lipoprotein membrane bilayer, that are thought to be derived from the ER. We determined that A17, a conserved viral transmembrane protein essential for crescent formation, forms homo-oligomers and shares topological features with cellular reticulon-like proteins. The latter cell proteins promote membrane curvature and contribute to the tubular structure of the ER. When the purified A17 protein was incorporated into liposomes, 25 nm diameter vesicles and tubules formed at low and high A17 concentrations, respectively. In addition, intracellular expression of A17 in the absence of other viral structural proteins transformed the ER into aggregated three-dimensional (3D tubular networks. We suggest that A17 is a viral reticulon-like protein that contributes to curvature during biogenesis of the poxvirus membrane.

  8. Geometric Thermodynamics: Black Holes and the Meaning of the Scalar Curvature

    Directory of Open Access Journals (Sweden)

    Miguel Ángel García-Ariza


    Full Text Available In this paper we show that the vanishing of the scalar curvature of Ruppeiner-like metrics does not characterize the ideal gas. Furthermore, we claim through an example that flatness is not a sufficient condition to establish the absence of interactions in the underlying microscopic model of a thermodynamic system, which poses a limitation on the usefulness of Ruppeiner’s metric and conjecture. Finally, we address the problem of the choice of coordinates in black hole thermodynamics. We propose an alternative energy representation for Kerr-Newman black holes that mimics fully Weinhold’s approach. The corresponding Ruppeiner’s metrics become degenerate only at absolute zero and have non-vanishing scalar curvatures.

  9. Determination of curvature and twist by digital shearography and wavelet transforms. (United States)

    Tay, Cho Jui; Fu, Yu


    A new technique based on digital shearography for determining the transient curvature and twist of a continuously deforming object from a series of speckle patterns is presented. The intensity variation of each pixel is analyzed along the time axis by using a complex Morlet wavelet transform. The absolute sign of the phase variation is determined by introduction of a temporal carrier when the speckle patterns are captured by a high-speed camera. A high-quality spatial distribution of the deflection derivative is extracted at any instant without the need for temporal or spatial phase unwrapping. The continuous Haar wavelet transform is subsequently processed as a differentiation operator to reconstruct the instantaneous curvature and twist of a continuously deforming object.

  10. Digital elevation modeling via curvature interpolation for LiDAR data

    Directory of Open Access Journals (Sweden)

    Hwamog Kim


    Full Text Available Digital elevation model (DEM is a three-dimensional (3D representation of a terrain's surface - for a planet (including Earth, moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-posed problem and most computational algorithms become overly expensive as the number of sample points increases. This article studies an effective partial differential equation (PDE-based algorithm, called the curvature interpolation method (CIM. The new method iteratively utilizes curvature information, estimated from an intermediate surface, to construct a reliable image surface that contains all of the data points. The CIM is applied for DEM for point cloud data acquired by light detection and ranging (LiDAR technology. It converges to a piecewise smooth image, requiring O(N operations independently of the number of sample points, where $N$ is the number of grid points.

  11. Curvature Effect in Shear Flow: Slowdown of Turbulent Flame Speeds with Markstein Number (United States)

    Lyu, Jiancheng; Xin, Jack; Yu, Yifeng


    It is well-known in the combustion community that curvature effect in general slows down flame propagation speeds because it smooths out wrinkled flames. However, such a folklore has never been justified rigorously. In this paper, as the first theoretical result in this direction, we prove that the turbulent flame speed (an effective burning velocity) is decreasing with respect to the curvature diffusivity (Markstein number) for shear flows in the well-known G-equation model. Our proof involves several novel and rather sophisticated inequalities arising from the nonlinear structure of the equation. On a related fundamental issue, we solve the selection problem of weak solutions or find the "physical fluctuations" when the Markstein number goes to zero and solutions approach those of the inviscid G-equation model. The limiting solution is given by a closed form analytical formula.

  12. The motion of a vortex on a closed surface of constant negative curvature. (United States)

    Ragazzo, C Grotta


    The purpose of this work is to present an algorithm to determine the motion of a single hydrodynamic vortex on a closed surface of constant curvature and of genus greater than one. The algorithm is based on a relation between the Laplace-Beltrami Green function and the heat kernel. The algorithm is used to compute the motion of a vortex on the Bolza surface. This is the first determination of the orbits of a vortex on a closed surface of genus greater than one. The numerical results show that all the 46 vortex equilibria can be explicitly computed using the symmetries of the Bolza surface. Some of these equilibria allow for the construction of the first two examples of infinite vortex crystals on the hyperbolic disc. The following theorem is proved: 'a Weierstrass point of a hyperellitic surface of constant curvature is always a vortex equilibrium'.

  13. Intramodal and cross-modal discrimination of curvature: Haptic touch versus vision (United States)

    Ittyerah, Miriam; Marks, Lawrence E.


    A total of 60 subjects, 20 in each experimental condition, gave ‘same-different’ judgments to pairs of stimuli differing in radius of curvature. Stimuli were presented intramodally to vision, intramodally to haptic touch, and cross-modally to vision and haptic touch. Results showed that performance, quantified by the measure d’, differed among the three modality conditions, being best in vision and poorest in haptics, with cross-modal performance falling roughly mid-way between. Unimodal visual performance exceeded cross-modal performance by about one d’ unit, and cross-modal performance similarly exceeded unimodal haptic performance by about one d’ unit. The study reveals the relative differences in the discrimination of curvatures of objects in vision and haptics. PMID:18504512

  14. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria


    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  15. Biconical-taper-assisted fiber interferometer with modes coupling enhancement for high-sensitive curvature measurement (United States)

    Wo, Jianghai; Sun, Qizhen; Li, Xiaolei; Liu, Deming; Shum, Perry Ping


    A modal interferometer based on multimode-singlemode-multimode fiber structure built with a biconical taper for fiber curvature measurement is proposed and experimentally demonstrated. Due to the tapered singlemode fiber acting as a high-efficient mode power converter to enhance the modes coupling, curvature sensor with improved sensitivity is achieved by monitoring the defined fringe visibility of the interference spectrum. The measuring range can be tuned by changing the waist diameter of the fiber taper. Meanwhile, the sensor shows an intrinsic ability to overcome the influence of temperature cross-sensitivity and the power fluctuation of light source. The advantages of easy fabrication, high-quality spectrum with improved sensitivity, and small hysteresis will provide great potential for practical applications of the sensor.

  16. On the Evaluation of the Elastic Modulus of Soft Materials Using Beams with Unknown Initial Curvature (United States)

    Khatam, Hamed; Ravi-Chandar, K.


    A nonlinear optimization procedure is established to determine the elastic modulus of slender, soft materials using beams with unknown initial curvature in the presence of large rotations. Specifically, the deflection of clamped-free beams under self-weight – measured at different orientations with respect to gravity – is used to determine the modulus of elasticity and the intrinsic curvature in the unloaded state. The approach is validated with experiments on a number of different materials – steel, polyetherimide, rubber and pig skin. Since the loading is limited to self-weight, the strain levels attained in these tests are small enough to assume a linear elastic material behavior. This nondestructive methodology is also applicable to engineered tissues and extremely delicate materials in order to obtain a quick estimate of the material’s elastic modulus. PMID:24159244

  17. Small target detection based on difference accumulation and Gaussian curvature under complex conditions (United States)

    Zhang, He; Niu, Yanxiong; Zhang, Hao


    Small target detection is a significant subject in infrared search and track and other photoelectric imaging systems. The small target is imaged under complex conditions, which contains clouds, horizon and bright part. In this paper, a novel small target detection method is proposed based on difference accumulation, clustering and Gaussian curvature. Difference accumulation varies from regions. Therefore, after obtaining difference accumulations, clustering is applied to determine whether the pixel belongs to the heterogeneous region, and eliminate heterogeneous region. Then Gaussian curvature is used to separate target from the homogeneous region. Experiments are conducted for verification, along with comparisons to several other methods. The experimental results demonstrate that our method has an advantage of 1-2 orders of magnitude on SCRG and BSF than others. Given that the false alarm rate is 1, the detection probability can be approximately 0.9 by using proposed method.

  18. The effect of a small initial curvature on the free vibration of clamped, rectangular plates (United States)

    Adeniji-Fashola, A. A.; Oyediran, A. A.


    An analytical method of obtaining the natural frequencies and mode shapes of clamped, rectangular plates having a small initial curvature is presented. Specifically, the singular perturbation technique is used to reduce the fourth-order plate vibration problem to the simpler membrane problem with modified boundary conditions that account for the bending effects. The eigenfrequencies for plates with inverse aspect ratios varying between 0.1 and 1.0 and for the dimensionless normal prestress between 0.1 and 1.0 have been presented for values of epsilon, the normalized bending rigidity, ranging between 0.0010 and 0.2500. It is established that a small initial curvature has no effect on the frequency of vibration of the plate. However, its effect is manifested in the eigenmodes.

  19. Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus

    CERN Document Server

    Rossman, W; Yamada, K; Rossman, Wayne; Umehara, Masaaki; Yamada, Kotaro


    In this work we give a method for constructing a one-parameter family of complete CMC-1 (i.e. constant mean curvature 1) surfaces in hyperbolic 3-space that correspond to a given complete minimal surface with finite total curvature in Euclidean 3-space. We show that this one-parameter family of surfaces with the same symmetry properties exists for all given minimal surfaces satisfying certain conditions. The surfaces we construct in this paper are irreducible, and in the process of showing this, we also prove some results about the reducibility of surfaces. Furthermore, in the case that the surfaces are of genus 0, we are able to make some estimates on the range of the parameter for the one-parameter family.

  20. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin


    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...... for the development of devices with controllable adhesive properties. In this paper, we present a theory describing the adhesive behavior of an artificial system consisting of an inflatable membrane clamped to a metallic cylinder and filled with air. In such a system, by controlling the internal pressure acting...... on the membrane, it is possible to modulate the adhesive strength. In particular, an increase of the internal pressure and, hence, the curvature of the membrane, results in a decrease of the pull-off force. Results predicted by the theoretical model are in good agreement with experimental data. The model explains...

  1. A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Deok Su; Jean, Sang Gyu; Mamatov, Sanjar [Hyosung Goodsprings, Inc., Busan (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)


    This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (εDs) had the highest effect on head increase, while the hub inlet length (d1i) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

  2. Effect of Tension and Curvature of Skin on Insertion Characteristics of Microneedle Array (United States)

    Tachikawa, Hiroto; Takano, Naoki; Nishiyabu, Kazuaki; Miki, Norihisa; Ami, Yoshimichi

    Recent MEMS (micro electro mechanical system) fabrication techniques have made it possible to produce painless microneedles precisely enough to be inserted into epidermis layer penetrating the stratum corneum of human skin. This paper presents a testing procedure to evaluate the insertion characteristics of microneedle array using cultured human skin considering the tension and the curvature. First, the biaxial strain applied to the cultured human skin was measured by optical technique with image processing. It was found that almost constant strain could be successfully given within a certain area and that error factors in the experiment except the thickness variation of the cultured skin were negligible. Next, using a microneedle square array for brain machine interface (BMI) application, the effects of biaxial tension and the curvature on insertion characteristics were discussed. Within the above mentioned area with high strain, the needles were successfully inserted.

  3. Assessment of the effect of vessel curvature on Doppler measurements in steady flow. (United States)

    Balbis, S; Guiot, C; Roatta, S; Arina, R; Todros, T


    Blood vessel curvature is responsible for the appearance of nonaxial velocity components and for minor changes in the pattern of the axial flow. All the velocity components are expected to contribute to the Doppler signal produced by the ultrasound (US) backscattered by the insonated blood cells, the axial velocity, contributing to the actual volumetric blood flow, and the transverse velocity, causing the recirculating vortices. A detailed, separate analysis of the velocity components is, therefore, mandatory to quantify how vessel curvature can affect results and clinical diagnosis. Both experimental in vitro measures and numerical simulations were performed on a curved tube and the Doppler power spectra so obtained were compared. The satisfactorily agreement of the above spectra shows that the nonaxial velocity components are easily detectable with clinical equipment and that their amplitude, as expected, is not negligible and can bias Doppler measurements and resulting clinical diagnosis.

  4. Stability of the Horizontal Curvature of the LHC Cryodipoles During Cold Tests

    CERN Document Server

    Cano, E D Fernandez; García-Pérez, J; Jeanneret, Jean Bernard; Poncet, A; Seyvet, F; Tovar-Gonzalez, A; Wildner, E; IEEE Trans. Nucl. Sci.


    The LHC will be composed of 1232 horizontally curved, 15 meter long, superconducting dipole magnets cooled at 1.9 K. They are supported within their vacuum vessel by three Glass Fiber Reinforced Epoxy (GFRE) support posts. Each cryodipole is individually cold tested at CERN before its installation and interconnection in the LHC 27 km circumference tunnel. As the magnet geometry under cryogenic operation is extremely important for the LHC machine aperture, a new method has been developed at CERN in order to monitor the magnet curvature change between warm and cold states. It enabled us to conclude that there is no permanent horizontal curvature change of the LHC dipole magnet between warm and cold states, although a systematic horizontal transient deformation during cool-down was detected. This deformation generates loads in the dipole supporting system; further investigation permitted us to infer this behavior to the asymmetric thermal contraction of the rigid magnet thermal shield during cool-down. Controlli...

  5. Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens (United States)

    Alam, J.; Mendelson, A.


    The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge.

  6. Heisenberg equation for a nonrelativistic particle on a hypersurface: From the centripetal force to a curvature induced force

    Directory of Open Access Journals (Sweden)

    D. K. Lian


    Full Text Available In classical mechanics, a nonrelativistic particle constrained on an N − 1 curved hypersurface embedded in N flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is ”driven” by not only the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.

  7. Estimation of surface curvature from full-field shape data using principal component analysis (United States)

    Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.


    Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.

  8. Weyl-invariant Higher Curvature Gravity Theories in n Dimensions and Mass Generation by Symmetry Breaking


    Dengiz, Suat


    Weyl-invariant extensions of three-dimensional New Massive Gravity, generic n-dimensional Quadratic Curvature Gravity theories and three-dimensional Born-Infeld gravity theory are analyzed in details. As required by Weyl-invariance, the actions of these gauge theories do not contain any dimensionful parameter; therefore the local symmetry is spontaneously broken in (Anti) de Sitter vacua in analogy with the Standard Model Higgs mechanism. About the flat vacuum, symmetry breaking mechanism is ...

  9. Effect of curvature on a statistical model of quark-gluon-plasma ...

    Indian Academy of Sciences (India)

    The surface tension with this curvature effect is found to be 0.17 T c 3 , which is two times the earlier value of surface tension which is 0.078 T c 3 , and this new result is nearly close to the lattice value 0.24 T c 3 . As far as transition is concerned, a thermodynamic variable like entropy shows weakly first-order phase transition ...

  10. Local Multiresolution Trajectory Optimization for Micro AerialVehicles Employing Continuous Curvature Transitions (United States)


    Siegwart, “Motion- and uncertainty-aware path planning for micro aerial ve- hicles,” J. of Field Robotics , vol. 31, no. 4, pp. 676–698, 2014. [7] B...planning for micro aerial vehicles,” in Int. Conf. on Robotics and Automation, 2013. [9] I. Şucan and L. Kavraki, “Kinodynamic motion planning by...Local Multiresolution Trajectory Optimization for Micro Aerial Vehicles Employing Continuous Curvature Transitions Matthias Nieuwenhuisen and Sven

  11. Steep Decay Phase Shaped by the Curvature Effect. I. Flux Evolution (United States)

    Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing; Liu, Tong; Gu, Wei-Min; Liang, Yun-Feng; Wang, Xiang-Gao; Liang, En-Wei


    The curvature effect may be responsible for the steep decay phase observed in gamma-ray bursts. To test the curvature effect with observations, the zero time point t 0 adopted to plot the observer time and flux on a logarithmic scale should be appropriately selected. In practice, however, the true t 0 cannot be directly constrained from the data. Thus, we move t 0 to a certain time in the steep decay phase, which can be easily identified. In this situation, we derive an analytical formula to describe the flux evolution of the steep decay phase. The analytical formula reads as {F}ν \\propto {(1+{\\tilde{t}}{obs}/{\\tilde{t}}c)}-α , with α ({\\tilde{t}}{obs})=2+{\\int }0{log(1+{\\tilde{t}}{obs}/{\\tilde{t}}c)} β (τ )d[{log}(1+τ /{\\tilde{t}}c)]/{log}(1+{\\tilde{t}}{obs}/{\\tilde{t}}c), where F ν is the flux observed at frequency ν, {\\tilde{t}}{obs} is the observer time by setting t 0 at a certain time in the steep decay phase, β is the spectral index estimated around ν, and {\\tilde{t}}c is the decay timescale of the phase with {\\tilde{t}}{obs}≥slant 0. We test the analytical formula with the data from numerical calculations. It is found that the analytical formula presents a good estimate of the evolution of the flux shaped by the curvature effect. Our analytical formula can be used to confront the curvature effect with observations and estimate the decay timescale of the steep decay phase.

  12. On the mean curvature of semi-Riemannian graphs in semi ...

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 3, August 2012, pp. 385–397. c Indian Academy of Sciences. On the mean curvature of semi-Riemannian graphs in semi-Riemannian warped products .... can be described as a level set of some function on ¯M. In fact it is easy to see that. = ω−1(0) where ω is the function given by.

  13. Investigation of the concave curvature effect for an impinging jet flow (United States)

    Aillaud, P.; Gicquel, L. Y. M.; Duchaine, F.


    The concave curvature effect for an impinging jet flow is discussed in this paper. To do so, a submerged axisymmetric isothermal impinging jet at a Reynolds number (based on the nozzle diameter and the bulk velocity at the nozzle outlet) Re=23 000 and for a nozzle to plate distance of two jet diameters H =2 D is considered. This investigation is done numerically using a wall-resolved large-eddy simulation. Two geometrical arrangements are studied. These correspond to a jet impinging on a flat plate and a jet impinging on a hemispherical concave plate with a relative curvature D /d =0.089 , where d is the concave plate diameter. A detailed comparison shows that both flow configurations are very similar in terms of flow dynamics and heat transfer behaviors. The same mechanisms, coming from the initial jet instability and driving the heat transfer at the wall, are found for both geometries. However, a reduction of the mean wall heat transfer is reported for the jet impinging on the concave surface when compared to the flat plate impingement. This reduction mainly comes from the alleviation of the secondary peak. The deterioration of wall heat transfer is shown to be caused by a reduction in the intensity of the intermittent cold fluid injections generated by the secondary structures. These weaker events are assumed to be the consequence of the stabilizing normal pressure gradient, in the outer layer of the wall jet, induced by the concave curvature of the plate. This result goes against the current consensus, inherited from boundary layer studies, that is to say, that concave curvature enhances the heat transfer rate at the wall due to the formation of Görtler vortices. In an attempt to explain the contradictory result of the present study, a discussion is proposed in this paper showing that the commonly used analogy with boundary layer results must be made with care owing to several inherent differences between impinging jet and boundary layer flows.

  14. Contributions to biometrics : curvatures, heterogeneous cross-resolution FR and anti spoofing


    Tang, Yinhang


    Face is one of the best biometrics for person recognition related application, because identifying a person by face is human instinctive habit, and facial data acquisition is natural, non-intrusive, and socially well accepted. In contrast to traditional appearance-based 2D face recognition, shape-based 3D face recognition is theoretically more stable and robust to illumination variance, small head pose changes, and facial cosmetics. The curvatures are the most important geometric attributes t...

  15. Nonlinear Sorting, Curvature Generation, and Crowding of Endophilin N-BAR on Tubular Membranes


    Zhu, Chen; Das, Sovan L.; Baumgart, Tobias


    The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin functio...

  16. Encoding Gaussian Curvature in Glassy and Elastomeric Liquid Crystal Solids (Postprint) (United States)


    response to stimulus was found to be robust and reproducible. We hope that our results will encourage and stimulate further experimental research in...0188 The public reporting burden for this collection of information is estimated to average 1 hour per response , including the time for reviewing...curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory

  17. Multi-scale curvature for automated identification of glaciated mountain landscapes (United States)

    Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David; Schrott, Lothar


    Automated morphometric interpretation of digital terrain data based on impartial rule sets holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys is analyzed quantitatively using the relation of multi-scale curvature and drainage area. Glacial and fluvial erosion shapes mountain landscapes in a long-recognized and characteristic way. Valleys incised by fluvial processes typically have V-shaped cross-sections with uniform and moderately steep slopes, whereas glacial valleys tend to have U-shaped profiles and topographic gradients steepening with distance from valley floor. On a DEM, thalweg cells are determined by a drainage area cutoff and multiple moving window sizes are used to derive per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. The relation of the curvatures calculated for the user-defined minimum scale and the automatically detected maximum scale is presented as a novel morphometric variable termed Difference of Minimum Curvature (DMC). DMC thresholds determined from typical glacial and fluvial sample catchments are employed to identify quadrats of glaciated and non-glaciated mountain landscapes and the distinctions are validated by field-based geological and geomorphological maps. A first test of the novel algorithm at three study sites in the western United States and a subsequent application to Europe and western Asia demonstrate the transferability of the approach.

  18. Cosmological backreaction within the Szekeres model and emergence of spatial curvature (United States)

    Bolejko, Krzysztof


    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature ΩScript R (in the FLRW limit ΩScript R → Ωk). If averaged over global scales the result depends on the assumed global model of the Universe. Within the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from ΩScript R =0 at the CMB to ΩScript R ~ 0.1 at 0z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ωk ≠ 0, even if in the early Universe Ωk = 0) and therefore when analysing low-z cosmological data one should keep Ωk as a free parameter and independent from the CMB constraints.

  19. Efficacy of prophylactic splenectomy for proximal advanced gastric cancer invading greater curvature. (United States)

    Ohkura, Yu; Haruta, Shusuke; Shindoh, Junichi; Tanaka, Tsuyoshi; Ueno, Masaki; Udagawa, Harushi


    For proximal gastric cancer invading the greater curvature, concomitant splenectomy is frequently performed to secure the clearance of lymph node metastases. However, prognostic impact of prophylactic splenectomy remains unclear. The aim of this study was to clarify the oncological significance of prophylactic splenectomy for advanced proximal gastric cancer invading the greater curvature. Retrospective review of 108 patients who underwent total or subtotal gastrectomy for advanced proximal gastric cancer involving the greater curvature was performed. Short-term and long-term outcomes were compared between the patients who underwent splenectomy (n = 63) and those who did not (n = 45). Patients who underwent splenectomy showed higher amount of blood loss (538 vs. 450 mL, p = 0.016) and morbidity rate (30.2 vs. 13.3, p = 0.041) compared with those who did not undergo splenectomy. In particular, pancreas-related complications were frequently observed among patients who received splenectomy (17.4 vs. 0%, p = 0.003). However, no significant improvement of long-term outcomes were confirmed in the cases with splenectomy (5-year recurrence-free rate, 60.2 vs. 67.3%; p = 0.609 and 5-year overall survival rates, 63.7 vs. 73.6%; p = 0.769). On the other hand, splenectomy was correlated with marginally better survival in patients with Borrmann type 1 or 2 gastric cancer (p = 0.072). For advanced proximal gastric cancer involving the greater curvature, prophylactic splenectomy may have no significant prognostic impact despite the increased morbidity rate after surgery. Such surgical procedure should be avoided as long as lymph node involvement is not evident.

  20. Using hidden Markov models to characterize termite traveling behavior in tunnels with different curvatures. (United States)

    Sim, SeungWoo; Kang, Seung-Ho; Lee, Sang-Hee


    Subterranean termites live underground and build tunnel networks to obtain food and nesting space. After obtaining food, termites return to their nests to transfer it. The efficiency of termite movement through the tunnels is directly connected to their survival. Tunnels should therefore be optimized to ensure highly efficient returns. An optimization factor that strongly affects movement efficiency is tunnel curvature. In the present study, we investigated traveling behavior in tunnels with different curvatures. We then characterized traveling behavior at the level of the individual using hidden Markov models (HMMs) constructed from the experimental data. To observe traveling behavior, we designed 5-cm long artificial tunnels that had different curvatures. The tunnels had widths (W) of 2, 3, or 4mm, and the linear distances between the two ends of the tunnels were (D) 20, 30, 40, or 50mm. High values of D indicate low curvature. We systematically observed the traveling behavior of Coptotermes formosanus shiraki and Reticulitermes speratus kyushuensis and measured the time (τ) required for a termite to pass through the tunnel. Using HMM models, we calculated τ for different tunnels and compared the results with the τ of real termites. We characterized the traveling behavior in terms of transition probability matrices (TPM) and emission probability matrices (EPM) of HMMs. We briefly discussed the construction of a sinusoidal-like tunnels in relation to the energy required for termites to pass through tunnels and provided suggestions for the development of more sophisticated HMMs to better understand termite foraging behavior. Copyright © 2015 Elsevier B.V. All rights reserved.