WorldWideScience

Sample records for random ocean waves

  1. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  2. Breaking of ocean surface waves

    International Nuclear Information System (INIS)

    Babanin, A.V.

    2009-01-01

    Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)

  3. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2015-09-30

    discussed by DRI participants may aid our understanding as well, e.g. those conducted in the Hamburg Ship Model Basin. Our theoretical advances benefit...the project are – continued modifications to the Arctic wide WIM code in association with advances relating to a new ice/ocean model known as... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of

  4. Breather Rogue Waves in Random Seas

    Science.gov (United States)

    Wang, J.; Ma, Q. W.; Yan, S.; Chabchoub, A.

    2018-01-01

    Rogue or freak waves are extreme wave events that have heights exceeding 8 times the standard deviation of surrounding waves and emerge, for instance, in the ocean as well as in other physical dispersive wave guides, such as in optical fibers. One effective and convenient way to model such an extreme dynamics in laboratory environments within a controlled framework as well as for short process time and length scales is provided through the breather formalism. Breathers are pulsating localized structures known to model extreme waves in several nonlinear dispersive media in which the initial underlying process is assumed to be narrow banded. On the other hand, several recent studies suggest that breathers can also persist in more complex environments, such as in random seas, beyond the attributed physical limitations. In this work, we study the robustness of the Peregrine breather (PB) embedded in Joint North Sea Wave Project (JONSWAP) configurations using fully nonlinear hydrodynamic numerical simulations in order to validate its practicalness for ocean engineering applications. We provide a specific range for both the spectral bandwidth of the dynamical process as well as the background wave steepness and, thus, quantify the applicability of the PB in modeling rogue waves in realistic oceanic conditions. Our results may motivate analogous studies in fields of physics such as optics and plasma to quantify the limitations of exact weakly nonlinear models, such as solitons and breathers, within the framework of the fully nonlinear governing equations of the corresponding medium.

  5. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  6. ONR Ocean Wave Dynamics Workshop

    Science.gov (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  7. Modeling internal wave generation by seamounts in oceans

    Science.gov (United States)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.

    2017-12-01

    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  8. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  9. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  10. The Interaction of Ocean Waves and Wind

    Science.gov (United States)

    Janssen, Peter

    2004-10-01

    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  11. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    The measurement of ocean waves has been of particular interest, as wave data and understanding of wave phenomena are essential to ocean engineering, coastal engineering and to many marine operations. The National Institute of Oceanography, Goa...

  12. Near-inertial waves and deep ocean mixing

    Science.gov (United States)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  13. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  14. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model

    Science.gov (United States)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.

    2018-03-01

    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  15. Directional spectrum of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Gouveia, A; Nagarajan, R.

    This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...

  16. Power from Ocean Waves.

    Science.gov (United States)

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  17. Ocean waves monitor system by inland microseisms

    Science.gov (United States)

    Lin, L. C.; Bouchette, F.; Chang, E. T. Y.

    2016-12-01

    Microseisms are continuous ground oscillations which have been wildly introduced for decades. It is well known that the microseismicity in the frequency band from 0.05 to about 1 Hz partly results from ocean waves, which has been first explained by Longuet-Higgins [1950]. The generation mechanism for such a microseismicity is based on nonlinear wave-wave interactions which drive pressure pulses within the seafloor. The resulting ground pressure fluctuations yield ground oscillations at a double frequency (DF) with respect to that of current ocean waves. In order to understand the characteristics of DF microseisms associated with different wave sources, we aim to analyze and interpret the spectra of DF microseisms by using the simple spectrum method [Rabinovich, 1997] at various inland seismometer along the Taiwan coast. This is the first monitoring system of ocean waves observed by inland seismometers in Taiwan. The method is applied to identify wave sources by estimating the spectral ratios of wave induced microseisms associated with local winds and typhoons to background spectra. Microseism amplitudes above 0.2 Hz show a good correlation with wind-driven waves near the coast. Comparison of microseism band between 0.1 and 0.2 Hz with buoys in the deep sea shows a strong correlation of seismic amplitude with storm generated waves, implying that such energy portion originates in remote regions. Results indicate that microseisms observed at inland sites can be a potential tool for the tracking of typhoon displacements and the monitoring of extreme ocean waves in real time. Real- time Microseism-Ocean Waves Monitoring Website (http://mwave.droppages.com/) Reference Rabinovich, A. B. (1997) "Spectral analysis of tsunami waves: Separation of source and topography effects," J. Geophys. Res., Vol. 102, p. 12,663-12,676. Longuet-Higgins, M.S. (1950) "A theory of origin of microseisms," Philos. Trans. R. Soc., A. 243, pp. 1-35.

  18. Book review: Rogue waves in the ocean

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    Rogue Waves in the Ocean (2009) is a follow-on text to Extreme Ocean Waves (2008) edited by Pelinovsky and Kharif, both published by Springer. Unlike the earlier text, which is a compilation of papers on a variety of extreme waves that was the subject of a scientific conference in 2007, Rogues Waves in the Ocean is written, rather than edited, by Kharif, Pelinovsky, and Slunyaev and is focused on rogue waves in particular. The book consists of six chapters covering 216 pages. As the subject matter of each chapter is distinct, references appear at the end of each chapter rather than at the end of the book. The preface shows how each of the chapters relates to the larger study of rogue waves. The result is a book with a nice mix of eyewitness observations, physical theory, and statistics.

  19. Evidence for infragravity wave-tide resonance in deep oceans.

    Science.gov (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  20. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  1. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  2. Rogue waves in the ocean - review and progress

    Science.gov (United States)

    Pelinovsky, Efim; Kharif, Christian; Slunyaev, Alexey

    2010-05-01

    Rogue waves in the ocean and physical mechanisms of their appearance are discussed. Theyse waves are among waves naturally observed by people on the sea surface that represent inseparable feature of the Ocean. Rogue waves appear from nowhere, cause danger and disappear at once. They may occur at the surface of a relatively calm sea, reach not very high amplitudes, but be fatal for ships and crew due to their unexpectedness and abnormal features. The billows appear suddenly exceeding the surrounding waves twice and more, and obtained many names: abnormal, exceptional, extreme, giant, huge, sudden, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves; cape rollers, holes in the sea, walls of water, three sisters… Freak monsters, though living for seconds, were able to arouse superstitious fear of the crew, cause damage, death of heedless sailors or the whole ship. All these epithets are full of human fear and feebleness. The serious studies of the phenomenon started about 20-30 years ago and have been intensified during the recent decade. The research is being conducted in different fields: in physics (search of physical mechanisms and adequate models of wave enhancement and statistics), in geoscience (determining the regions and weather conditions when rogue waves are most probable), and in ocean and coastal engineering (estimations of the wave loads on fixed and drifting floating structures). Thus, scientists and engineers specializing in different subject areas are involved in the solution of the problem. The state-of-art of the rogue wave study is summarized in our book [Kharif, Ch., Pelinovsky, E., and Slunyaev, A. Rogue Waves in the Ocean. Springer, 2009] and presented in given review. Firstly, we start with a brief introduction to the problem of freak waves aiming at formulating what is understood as rogue or freak waves, what consequences their existence imply in our life, why people are so worried about them. Then we discuss existing

  3. Ocean wave-radar modulation transfer functions from the West Coast experiment

    Science.gov (United States)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  4. Evolution of ocean wave statistics in shallow water : Refraction and diffraction over seafloor topography

    NARCIS (Netherlands)

    Janssen, T.T.; Herbers, T.H.C.; Battjes, J.A.

    2008-01-01

    We present a stochastic model for the evolution of random ocean surface waves in coastal waters with complex seafloor topography. First, we derive a deterministic coupled-mode model based on a forward scattering approximation of the nonlinear mild slope equation; this model describes the evolution

  5. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  6. Riding the ocean waves

    International Nuclear Information System (INIS)

    Yemm, Richard

    2000-01-01

    It is claimed that important developments over the past five years mean that there will be a range of competing pre-commercial wave-energy systems by 2002. The generation costs should be on a par with biomass schemes and offshore wind systems. The environmental advantages of wave energy are extolled. Ocean Power Delivery (OPD) have produced a set of criteria to be satisfied for a successful wave power scheme and these are listed. OPD is responsible for the snake-like Pelamis device which is a semi-submerged articulated series of cylindrical sections connected through hinged joints. How the wave-induced movement of the hinges is used to generate electricity is explained. The system is easily installed and can be completely removed at the end of its life

  7. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    Science.gov (United States)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  8. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  9. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  10. Breaking Waves on the Ocean Surface

    Science.gov (United States)

    Schwendeman, Michael S.

    In the open ocean, breaking waves are a critical mechanism for the transfer of energy, momentum, and mass between the atmosphere and the ocean. Despite much study, fundamental questions about wave breaking, such as what determines whether a wave will break, remain unresolved. Measurements of oceanic breakers, or "whitecaps," are often used to validate the hypotheses derived in simplified theoretical, numerical, or experimental studies. Real-world measurements are also used to improve the parameterizations of wave-breaking in large global models, such as those forecasting climate change. Here, measurements of whitecaps are presented using ship-based cameras, from two experiments in the North Pacific Ocean. First, a method for georectifying the camera imagery is described using the distant horizon, without additional instrumentation. Over the course of the experiment, this algorithm correctly identifies the horizon in 92% of images in which it is visible. In such cases, the calculation of camera pitch and roll is accurate to within 1 degree. The main sources of error in the final georectification are from mislabeled horizons due to clouds, rain, or poor lighting, and from vertical "heave" motions of the camera, which cannot be calculated with the horizon method. This method is used for correcting the imagery from the first experiment, and synchronizing the imagery from the second experiment to an onboard inertial motion package. Next, measurements of the whitecap coverage, W, are shown from both experiments. Although W is often used in models to represent whitecapping, large uncertainty remains in the existing parameterizations. The data show good agreement with recent measurements using the wind speed. Although wave steepness and dissipation are hypothesized to be more robust predictors of W, this is shown to not always be the case. Wave steepness shows comparable success to the wind parameterizations only when using a mean-square slope variable calculated over the

  11. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  12. The viscous lee wave problem and its implications for ocean modelling

    Science.gov (United States)

    Shakespeare, Callum J.; Hogg, Andrew McC.

    2017-05-01

    Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.

  13. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    Science.gov (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  14. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  15. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  16. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  17. Rogue Waves in the Ocean

    Science.gov (United States)

    Waseda, Takuji

    2010-03-01

    Giant episodic ocean waves that suddenly soar like a wall of water out of an otherwise calm sea are not just a legend. Such waves—which in the past have been called “abnormal,” “exceptional,” “extreme,” and even “vicious killer” waves—are now commonly known as “rogue waves” or “freak waves.” These waves have sunk or severely damaged 22 supercarriers in the world and caused the loss of more than 500 lives in the past 40 years. The largest wave registered by reliable instruments reached 30 meters in height, and the largest wave recorded by visual observation reached about 34 meters, equivalent to the height of an eight-story building. Tales of seafarers from Christopher Columbus to the passengers of luxury cruise ships had long been undervalued by scientists, but in the past 10 or so years, those historical notes and modern testimonies have been scientifically dissected to reveal the nature of these monster waves.

  18. Monstrous ocean waves during typhoon Krosa

    Directory of Open Access Journals (Sweden)

    P. C. Liu

    2008-06-01

    Full Text Available This paper presents a set of ocean wave time series data recorded from a discus buoy deployed near northeast Taiwan in western Pacific that was operating during the passage of Typhoon Krosa on 6 October 2007. The maximum trough-to-crest wave height was measured to be 32.3 m, which could be the largest Hmax ever recorded.

  19. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  20. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  1. Linking source region and ocean wave parameters with the observed primary microseismic noise

    Science.gov (United States)

    Juretzek, C.; Hadziioannou, C.

    2017-12-01

    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  2. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  3. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  4. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  5. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  6. Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods

    DEFF Research Database (Denmark)

    Reikard, Gordon; Pinson, Pierre; Bidlot, Jean

    2011-01-01

    Recently, the technology has been developed to make wave farms commercially viable. Since electricity is perishable, utilities will be interested in forecasting ocean wave energy. The horizons involved in short-term management of power grids range from as little as a few hours to as long as several...... days. In selecting a method, the forecaster has a choice between physics-based models and statistical techniques. A further idea is to combine both types of models. This paper analyzes the forecasting properties of a well-known physics-based model, the European Center for Medium-Range Weather Forecasts...... (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...

  7. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

    OpenAIRE

    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime

    2015-01-01

    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  8. Two new ways of mapping sea ice thickness using ocean waves

    Science.gov (United States)

    Wadhams, P.

    2010-12-01

    TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given

  9. On the interaction between ocean surface waves and seamounts

    Science.gov (United States)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  10. Simulating Freak Waves in the Ocean with CFD Modeling

    Science.gov (United States)

    Manolidis, M.; Orzech, M.; Simeonov, J.

    2017-12-01

    Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.

  11. Verification of model wave heights with long-term moored buoy data: Application to wave field over the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.

    . Res. 106(C6), 11659-11676 Babanin, A.V., 2011. Breaking and Dissipation of Ocean Surface Waves. Book, Cambridge University Press, 480p Banner, M. L., Gemmrich, J. R., and Farmer, D. M., 2002. Multiscale measurements of ocean wave breaking...

  12. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  13. Managing Information Uncertainty in Wave Height Modeling for the Offshore Structural Analysis through Random Set

    Directory of Open Access Journals (Sweden)

    Keqin Yan

    2017-01-01

    Full Text Available This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling. Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure. The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability bounds are compared with the conventional probabilistic approach.

  14. CMIP5-based global wave climate projections including the entire Arctic Ocean

    Science.gov (United States)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  15. Retrieval of the ocean wave spectrum in open and thin ice covered ocean waters from ERS Synthetic Aperture Radar images

    International Nuclear Information System (INIS)

    De Carolis, G.

    2001-01-01

    This paper concerns with the task of retrieving ocean wave spectra form imagery provided by space-borne SAR systems such as that on board ERS satellite. SAR imagery of surface wave fields travelling into open ocean and into thin sea ice covers composed of frazil and pancake icefields is considered. The major purpose is to gain insight on how the spectral changes can be related to sea ice properties of geophysical interest such as the thickness. Starting from SAR image cross spectra computed from Single Look Complex (SLC) SAR images, the ocean wave spectrum is retrieved using an inversion procedure based on the gradient descent algorithm. The capability of this method when applied to satellite SAR sensors is investigated. Interest in the SAR image cross spectrum exploitation is twofold: first, the directional properties of the ocean wave spectra are retained; second, external wave information needed to initialize the inversion procedure may be greatly reduced using only information included in the SAR image cross spectrum itself. The main drawback is that the wind waves spectrum could be partly lost and its spectral peak wave number underestimated. An ERS-SAR SLC image acquired on April 10, 1993 over the Greenland Sea was selected as test image. A pair of windows that include open-sea only and sea ice cover, respectively, were selected. The inversions were carried out using different guess wave spectra taken from SAR image cross spectra. Moreover, care was taken to properly handle negative values eventually occurring during the inversion runs. This results in a modification of the gradient descending the technique that is required if a non-negative solution of the wave spectrum is searched for. Results are discussed in view of the possibility of SAR data to detect ocean wave dispersion as a means for the retrieval of ice thickness

  16. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1 the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2 the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.Key words. Oceanography: general (climate and interannual variability; equatorial oceanography. Oceanography: physical (eastern boundary currents.

  17. Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments

    Science.gov (United States)

    Khosla, Sunny Rajendra

    This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave

  18. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW ...

    Indian Academy of Sciences (India)

    Wave prediction and hindcast studies are important in ocean engineering, coastal ... wave data can be used for the assessment of wave climate in offshore and coastal areas. In the .... for the change in performance during SW monsoon.

  19. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    Science.gov (United States)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  20. Variation with age of anisotropy under oceans, from great circle surface waves

    International Nuclear Information System (INIS)

    Journet, B.; Jobert, N.

    1982-01-01

    Global great circle measurements of regionalized mantle Love wave phase velocities are interpreted in terms of regional models. The same study had been made by J. J. Leveque (1980) for Rayleigh waves, and the resulting models for the two oceanic regions of different ages are used as a basis for comparison: the observed Love wave dispersion cannot be explained with these models if isotropic. The models obtained by inversion of Love wave data are compared with the models mentioned; the discrepancy appearing in the 250 km depth range between the velocities β/sub H/ and β/sub V/ of respectively SH and SV waves is indicative of polarization anisotropy. Moreover, we put forward a significant variation from young to old oceans: the difference between β/sub H/, and β/sub V/ is of the order of 1% for the former, compared to 3% for the latter. This variation can bring information about the behaviour of upper mantle materials in connection with the motion of oceanic plates

  1. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  2. The Global Signature of Ocean Wave Spectra

    Science.gov (United States)

    Portilla-Yandún, Jesús

    2018-01-01

    A global atlas of ocean wave spectra is developed and presented. The development is based on a new technique for deriving wave spectral statistics, which is applied to the extensive ERA-Interim database from European Centre of Medium-Range Weather Forecasts. Spectral statistics is based on the idea of long-term wave systems, which are unique and distinct at every geographical point. The identification of those wave systems allows their separation from the overall spectrum using the partition technique. Their further characterization is made using standard integrated parameters, which turn out much more meaningful when applied to the individual components than to the total spectrum. The parameters developed include the density distribution of spectral partitions, which is the main descriptor; the identified wave systems; the individual distribution of the characteristic frequencies, directions, wave height, wave age, seasonal variability of wind and waves; return periods derived from extreme value analysis; and crossing-sea probabilities. This information is made available in web format for public use at http://www.modemat.epn.edu.ec/#/nereo. It is found that wave spectral statistics offers the possibility to synthesize data while providing a direct and comprehensive view of the local and regional wave conditions.

  3. The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean

    Science.gov (United States)

    Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.

    2017-12-01

    This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.

  4. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  5. A Wave Glider for Studies of Biofouling and Ocean Productivity

    Science.gov (United States)

    2017-11-07

    Report: A Wave Glider for Studies of Biofouling and Ocean Productivity The views, opinions and/or findings contained in this report are those of the...Biofouling and Ocean Productivity Report Term: 0-Other Email: john.breier@utrgv.edu Distribution Statement: 1-Approved for public release; distribution is...sensors, and engineered test surfaces was procured to study controls on ocean productivity , plankton distribution, larval settling, and biofouling. We

  6. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  7. Wave climatology of the Indian Ocean derived from altimetry and wave model

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.

    are found to be low compared to model values. As expected, central Indian Ocean region is found to have higher waves, generally swells, generated by strong winds prevailing over there in all seasons. In July, the entire Arabian Sea is under the influence...

  8. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    Science.gov (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  9. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  10. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    Science.gov (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  11. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  12. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  13. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  14. Reserve Requirement Impacts of Microgrid Integration of Wind, Solar, and Ocean Wave Power Generation

    OpenAIRE

    Ortego Trujillo, Patxi

    2016-01-01

    The ocean wave energy is a free and abundant resource which has led to exploring new methods to take advantage of the energy in an efficient and profitable way. The wave energy harnessing techniques are not as mature as other renewable energy resources ones such as wind or solar. Nevertheless, in recent years wave energy converters (WECs) have been gaining attention and restoring confidence worldwide in their role to meet the increasing demands and strict environmental standards Ocean wave po...

  15. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M

    2017-05-01

    Full Text Available optical imagery from the RapidEye satellite can be used to extract ocean wave characteristics such as wave direction, wavelength, wave period and wave velocity. If successful, the advantage of the proposed remote sensing-based approach would...

  16. Ocean wave generation by collapsing ice shelves

    Science.gov (United States)

    Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.

    2008-12-01

    The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the

  17. Ocean wave parameters estimation using backpropagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Raju, D.H.

    : the RPROP algorithm. San Francisco: ICNN; 1993. p. 586–591. [15] Demuth H, Beale M. Neural network toolbox for use with MATLAB, user guide. USA: The Math Works Inc.; 2000 (http://www.mathworks.com). [16] Baba M, Dattatri J. Ocean wave spectra off cochin...

  18. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  19. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon

    2011-07-01

    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  20. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    Science.gov (United States)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  1. Interaction of random wave-current over uneven and porous bottoms

    International Nuclear Information System (INIS)

    Suo Yaohong; Zhang Zhonghua; Zhang Jiafan; Suo Xiaohong

    2009-01-01

    Starting from linear wave theory and applying Green's second identity and considering wave-current interaction for porous bottoms and variable water depth, the comprehensive mild-slope equation model theory of wave-current interaction is developed, then paying attention to the effect of random waves, by use of Kubo et al.'s method, a model theory of the interaction between random waves and current over uneven and porous bottoms is established. Finally the characteristics of the random waves are discussed numerically from both the geometric-optics approximation and the target spectrum.

  2. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    to the theoretical solution of the equatorial waves [Matsuno, 1966] and the phase speed of the baroclinic mode, the wave that has meridional current on the equator with a quasi-biweekly period is the anti-symmetric mixed Rossby-gravity wave. In the wave... and conclusions are given in section 5. 2. Field Experiment, Data, and Methods 2.1. MISMO Ocean Observation [8] The goal of MISMO was to observe atmospheric conditions and variability associated with intraseasonal disturbances and resulting ocean responses...

  3. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...

  4. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  5. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  6. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  7. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    Science.gov (United States)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  8. Nonlinear diffuse scattering of the random-phased wave

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.

    1983-01-01

    First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)

  9. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  10. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    Science.gov (United States)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  11. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 1: sea forecasting

    Science.gov (United States)

    Whitford, Dennis J.

    2002-05-01

    Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.

  12. Nonlinear evolution equations for waves in random media

    International Nuclear Information System (INIS)

    Pelinovsky, E.; Talipova, T.

    1994-01-01

    The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs

  13. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  14. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1989-05-01

    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  15. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting

    Science.gov (United States)

    Whitford, Dennis J.

    2002-05-01

    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  16. Harnessing the Ocean's Power : Energy from Waves and Currents (Part I)

    OpenAIRE

    Yukihisa, Washio; Japan Marine Science and Technology Center

    1985-01-01

    The oceans are a potential source of renewable and pollution-free energy of particular importance to Japan. In this Issue we look at current development work to harness wave energy for power generation.

  17. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    Science.gov (United States)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  18. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    Science.gov (United States)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  19. WAVE DIRECTION and Other Data from FIXED PLATFORM From North Pacific Ocean and Others from 19810817 to 19940323 (NODC Accession 9400105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains Wave Energy (wave height and wave period) Data from Hawaiian coast collected over 13 years in North Pacific Ocean, NE Pacific (limit-180)....

  20. Spatio-temporal variability of internal waves in the northern Gulf of Mexico studied with the Navy Coastal Ocean Model, NCOM

    Science.gov (United States)

    Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.

    2016-02-01

    Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave

  1. On the influence of ocean waves on simulated GNSS-R delay-doppler maps

    Science.gov (United States)

    Clarizia, M. P.; di Bisceglie, M.; Galdi, C.; Gommenginger, C.; Srokosz, M.

    2012-04-01

    Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and could help dramatically improve the monitoring of ocean wind and waves. GNSS-R offers the prospect of high density global measurements of directional sea surface roughness, which are essential for scientific purposes (i.e. quantifying the air-sea exchanges of gases), operational weather and ocean forecasting (i.e. prediction of high winds, dangerous sea states, risk of flooding and storm surges) and to support important climate-relevant Earth Observation techniques (IR SST, or surface salinity retrieval). The retrieval of ocean roughness from GNSS-R data has now been demonstrated with a reasonable level of accuracy from both airborne [1] and spaceborne [2] platforms. In both cases, Directional Mean Square Slopes (DMSS) of the ocean surface have been retrieved from GNSS-R data, in the form of Delay-Doppler Maps (DDMs), using an established theoretical scattering model by Zavorotny and Voronovich (Z-V) [3]. The need for a better assessment of the way the ocean waves influence the scattering of GPS signals has recently led to a different approach, consisting of simulating the scattering of such signals, using a more sophisticated large-scale scattering model than Z-V, and explicit simulations of realistic seas. Initial results produced from these simulations have been recently published in [4], where the emphasis has been put on the effects of different sea states on Radar Cross Section (RCS) and Polarization Ratio (PR) in space domain. Linear wind wave surfaces have been simulated using the Elfouhaily wind wave spectrum [5], for different wind speeds and directions, and with

  2. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    Science.gov (United States)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  3. Investigation of the density wave oscillation in ocean motions with reduced order models

    International Nuclear Information System (INIS)

    Yan, B.H.; Li, R.

    2018-01-01

    Highlights: •The parameter about the degree of instability is defined. •The results are in satisfactory agreement with experimental results. •The effect of ocean motions on DWO is analyzed quantitatively. •The results are of good universality and generality. -- Abstract: The two phase flow instability is an important phenomenon in nuclear power and thermal systems. In the research and design of small modular reactor, the effect of ocean motions on the two phase flow instability should be evaluated. In this work, the density wave oscillation in a uniformly heated channel in ocean motions is investigated with reduced order model by transforming the partial differential equations to ordinary differential equations. This kind of frequency domain method is complementary to the time domain analysis with system codes, not as alternatives. The parameter about the degree of instability is defined for the quantitative analysis of two phase flow instability. The results are in satisfactory agreement with experimental results. The effect of ocean motions on density wave oscillation in a uniformly heated channel is analyzed quantitatively. The parametric study is also carried out.

  4. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean

    Science.gov (United States)

    Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.; hide

    2016-01-01

    Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.

  5. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    Science.gov (United States)

    2017-05-09

    USA, 2Naval Research Laboratory, Ocean Dynamics and Prediction Branch, Stennis Space Center, Hancock County, Mississippi, USA, 3Department of Physics ...IO and predominantly located south of the equator. The intraseasonal currents associated with downwelling ER waves act on the temperature gradient to...yield warm anomalies in the western IO, even in the presence of cooling by surface fluxes. The SST gradient is unique to the western IO and likely

  6. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    Science.gov (United States)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  7. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  8. Indian Ocean dipole modulated wave climate of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.; Glejin, J.; Amrutha, M.M.

    –378, 2016 www.ocean-sci.net/12/369/2016/ doi:10.5194/os-12-369-2016 © Author(s) 2016. CC Attribution 3.0 License. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea T. R. Anoop1, V. Sanil Kumar1, P. R. Shanas1,2, J. Glejin1, and M. M. Amrutha1... are available on the website of the Japanese Agency of Marine–Earth Science and Technology (www.jamstec.go.jp). The tropical IO displays strong inter-annual climate vari- ability associated with the El Niño–Southern Oscillation (ENSO) and the IOD (Murtugudde et...

  9. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    Science.gov (United States)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m

  10. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    Science.gov (United States)

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  11. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  12. Electromagnetic Wave Propagation in Random Media

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1984-01-01

    The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...

  13. Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides

    CERN Document Server

    Schneider, Wilhelm; Trulsen, Karsten

    2006-01-01

    Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.

  14. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean

    Science.gov (United States)

    Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric

    2016-04-01

    Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.

  15. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  16. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    Science.gov (United States)

    2013-08-26

    Comparison between vertical shear mixing and surface wave-induced mixing in the extratropical ocean. J. Geophys. Res.-Oceans 117, C00J16. Rosmond, T.E...cycle for the World Ocean based on the 1=10 STORM /NCEP simulation. J. Phys. Oceanogr. 42, 2185–2205. Wallcraft, A.J., Kara, A.B., Hurlburt, H.E., 2005

  17. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    Science.gov (United States)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  18. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  19. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    Science.gov (United States)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  20. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    Science.gov (United States)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  1. Analysis of Modal Travel Time Variability Due to Mesoscale Ocean Structure

    National Research Council Canada - National Science Library

    Smith, Amy

    1997-01-01

    .... First, for an open ocean environment away from strong boundary currents, the effects of randomly phased linear baroclinic Rossby waves on acoustic travel time are shown to produce a variable overall...

  2. The Navy’s Coupled Atmosphere-Ocean-Wave Prediction System

    Science.gov (United States)

    2011-04-15

    7300 Security, Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only...Office as both a global model and relocatable regional model. The wave components of the system are run operationally at production centers at both...utilizes meteorological observations including radiosondes, satellite data, ship reports, and ocean observations with time-dependent global

  3. Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand

    2017-04-01

    Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.

  4. Effect of surface wave propagation in a four-layered oceanic crust model

    Science.gov (United States)

    Paul, Pasupati; Kundu, Santimoy; Mandal, Dinbandhu

    2017-12-01

    Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.

  5. Reliability Study of Energy Harvesting from Sea Waves by Piezoelectric Patches Consideraing Random JONSWAP Wave Theory

    Directory of Open Access Journals (Sweden)

    M. Ettefagh

    2018-03-01

    Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.  

  6. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  7. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    Science.gov (United States)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).

  8. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer

    1998-01-01

    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  9. Wave Power Demonstration Project at Reedsport, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Downie, Bruce [Project Manager

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  10. Revenue Optimization for the Ocean Grazer Wave Energy Converter through Storage Utilization

    NARCIS (Netherlands)

    Dijkstra, H.T.; Barradas Berglind, J.J.; Meijer, H.; van Rooij, Marijn; Prins, W.A.; Vakis, A. I.; Jayawardhana, B.

    2016-01-01

    Increased penetration of renewable energy generation motivates a change of paradigm in the way power systems are structured and operated, as advocated by the smart grid concept. Accordingly, in this paper we investigate the lossless storage capabilities of the Ocean Grazer wave energy converter

  11. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  12. Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling

    Science.gov (United States)

    Wünnemann, K.; Collins, G. S.; Weiss, R.

    2010-12-01

    The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.

  13. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  14. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    Science.gov (United States)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  15. Investigating the generation of Love waves in secondary microseisms using 3D numerical simulations

    Science.gov (United States)

    Wenk, Stefan; Hadziioannou, Celine; Pelties, Christian; Igel, Heiner

    2014-05-01

    Longuet-Higgins (1950) proposed that secondary microseismic noise can be attributed to oceanic disturbances by surface gravity wave interference causing non-linear, second-order pressure perturbations at the ocean bottom. As a first approximation, this source mechanism can be considered as a force acting normal to the ocean bottom. In an isotropic, layered, elastic Earth model with plain interfaces, vertical forces generate P-SV motions in the vertical plane of source and receiver. In turn, only Rayleigh waves are excited at the free surface. However, several authors report on significant Love wave contributions in the secondary microseismic frequency band of real data measurements. The reason is still insufficiently analysed and several hypothesis are under debate: - The source mechanism has strongest influence on the excitation of shear motions, whereas the source direction dominates the effect of Love wave generation in case of point force sources. Darbyshire and Okeke (1969) proposed the topographic coupling effect of pressure loads acting on a sloping sea-floor to generate the shear tractions required for Love wave excitation. - Rayleigh waves can be converted into Love waves by scattering. Therefore, geometric scattering at topographic features or internal scattering by heterogeneous material distributions can cause Love wave generation. - Oceanic disturbances act on large regions of the ocean bottom, and extended sources have to be considered. In combination with topographic coupling and internal scattering, the extent of the source region and the timing of an extended source should effect Love wave excitation. We try to elaborate the contribution of different source mechanisms and scattering effects on Love to Rayleigh wave energy ratios by 3D numerical simulations. In particular, we estimate the amount of Love wave energy generated by point and extended sources acting on the free surface. Simulated point forces are modified in their incident angle, whereas

  16. Revisiting tropical instability wave variability in the Atlantic ocean using SODA reanalysis

    Science.gov (United States)

    de Decco, Hatsue Takanaca; Torres Junior, Audalio Rebelo; Pezzi, Luciano Ponzi; Landau, Luiz

    2018-03-01

    The spatial and temporal variability of energy exchange in Tropical Instability Waves (TIWs) in the Atlantic Ocean were investigated. A spectral analysis was used to filter the 5-day mean results from Simple Ocean Data Assimilation (SODA) reanalysis spanning from 1958 to 2008. TIWs were filtered over periods of 15 to 60 days and between wavelengths of 4 and 20 longitude degrees. The main approach of this study was the use of bidirectionally filtered TIW time series as the perturbation fields, and the difference in these time series from the SODA total results was considered to be the basic state for energetics analysis. The main result was that the annual cycle (period of 360 days) was the main source of variability of the waves, and the semi-annual cycle (period of 180 days) was a secondary variation, which indicated that TIWs occurred throughout the year but with intensity that varies seasonally. In SODA, barotropic instability acts as the mechanism that feeds and extracts energy to/from TIWs at equatorial Atlantic. Baroclinic instability is the main mechanism that extracts energy from TIWs to the equatorial circulation north of the Equator. All TIW patterns of variability were observed western of 10° W. The present study reveals new evidences regarding TIW variability and suggests that future investigations should include a detailed description of TIW dynamics as part of Atlantic Ocean equatorial circulation.

  17. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.

    1989-12-01

    Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs

  18. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  19. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction

    Science.gov (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John

    2014-05-01

    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  20. Comparison of Microwave Backscatter Measurements and Small-scale Surface Wave Measurements Made from the Dutch Ocean Research Tower "Noordwijk"

    NARCIS (Netherlands)

    Snoeij, P.; Halsema, D. van; Oost, W.A.; Calkoen, C.J.; Vogelzang, J.; Waas, S.; Jaehne, B.

    1991-01-01

    To improve the understanding of the interaction between microwaves and water waves the VIERS-l project started in 1986 with the preparation of two wind/wave tank experiments and an ocean tower experiment. In February 1988, combined measurements of microwave backscatter, wind, waves and gas exchange

  1. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  2. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Neary, Vincent S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  3. On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps

    Science.gov (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, M. D.

    2017-08-01

    Surfactants are ubiquitous in the global oceans: they help form the materially-distinct sea surface microlayer (SML) across which global ocean-atmosphere exchanges take place, and they reside on the surfaces of bubbles and whitecap foam cells prolonging their lifetime thus altering ocean albedo. Despite their importance, the occurrence, spatial distribution, and composition of surfactants within the upper ocean and the SML remains under-characterized during conditions of vigorous wave breaking when in-situ sampling methods are difficult to implement. Additionally, no quantitative framework exists to evaluate the importance of surfactant activity on ocean whitecap foam coverage estimates. Here we use individual laboratory breaking waves generated in filtered seawater and seawater with added soluble surfactant to identify the imprint of surfactant activity in whitecap foam evolution. The data show a distinct surfactant imprint in the decay phase of foam evolution. The area-time-integral of foam evolution is used to develop a time-varying stabilization function, ϕ>(t>) and a stabilization factor, Θ, which can be used to identify and quantify the extent of this surfactant imprint for individual breaking waves. The approach is then applied to wind-driven oceanic whitecaps, and the laboratory and ocean Θ distributions overlap. It is proposed that whitecap foam evolution may be used to determine the occurrence and extent of oceanic surfactant activity to complement traditional in-situ techniques and extend measurement capabilities to more severe sea states occurring at wind speeds in excess of about 10 m/s. The analysis procedure also provides a framework to assess surfactant-driven variability within and between whitecap coverage data sets.Plain Language SummaryThe foam patches made by breaking waves, also known as "whitecaps", are an important source of marine sea spray, which impacts weather and climate through the formation of cloud drops and ice. Sea spray

  4. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    Science.gov (United States)

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave

  5. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    Directory of Open Access Journals (Sweden)

    G. Jordà

    2007-07-01

    Full Text Available The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions project. A one way sequential coupling approach is adopted to link the wave model (WAM to the circulation model (SYMPHONIE. The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bottom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean, a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  6. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    Science.gov (United States)

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  7. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    Science.gov (United States)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  8. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  9. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...

  10. Optimal Control of a Surge-Mode WEC in Random Waves

    Energy Technology Data Exchange (ETDEWEB)

    Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Ceberio, Olivier [Resolute Marine Energy, Inc., Boston, MA (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Previsic, Mirko [Re Vision Consulting, Sacramento, CA (United States); Scruggs, Jeffrey [Univ. of Michigan, Ann Arbor, MI (United States); Van de Ven, James [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-30

    The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from an array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.

  11. Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean

    Science.gov (United States)

    Choi, Byung Ho; Hong, Sung Jin; Pelinovsky, Efim

    2006-07-01

    A massive earthquake with magnitude 9.3 occurred on December 26, 2004 off the northern Sumatra generated huge tsunami waves affected many coastal countries in the Indian Ocean. A number of field surveys have been performed after this tsunami event; in particular, several surveys in the south/east coast of India, Andaman and Nicobar Islands, Sri Lanka, Sumatra, Malaysia, and Thailand have been organized by the Korean Society of Coastal and Ocean Engineers from January to August 2005. Spatial distribution of the tsunami runup is used to analyze the distribution function of the wave heights on different coasts. Theoretical interpretation of this distribution is associated with random coastal bathymetry and coastline led to the log-normal functions. Observed data also are in a very good agreement with log-normal distribution confirming the important role of the variable ocean bathymetry in the formation of the irregular wave height distribution along the coasts.

  12. Technological and Economic Aspects of Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Rahul Basu

    2018-01-01

    Full Text Available The geographical regions contiguous to the Indian Ocean, Bay of Bengal and the Arabian Sea are prone to natural disasters and poor electric supply especially in rural and hard to reach coastal regions. Utilization of ocean resources for power generation such as tidal, thermal solar and wind for energy need to be incorporated in a broad framework for the region. Development of ocean-based energy systems can be integrated with early warning networks linked by satellite which can give a few hours to days warning to help mitigate the severity of natural disasters on human life. Ocean-based electricity extraction has; however, remained elusive for various reasons. Interest in these systems resumed after the oil crisis of the 1970’s, but was uncoordinated. Extraction of ocean energy from the kinetic energy of waves and ocean currents depends on various mechanical devices with variable efficiencies. Apart from the efficiency, one must match the output phase of the feeder waveforms with that of the electrical grid. Also, the wavelengths of the typical wave are of the order of a few meters, the interception of which requires large devices. The mechanical efficiency of the turbine extraction system is further limited by the flow momentum considerations. Some applications and their implementation are looked at, specifically with reference to the difficulties of implementation in the region, and other factors like economic efficiency (rate of returns in place of mechanical efficiency. Individual wave energy harvesters are thus bound to suffer from inefficiencies and it may be beneficial to use wave farm configurations from the point of view of the randomness of wave motion, the large wavelengths, and the added advantage of averaging fluctuations from large numbers of generators.

  13. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  14. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    2001-01-01

    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  15. Revenue maximisation and storage utilisation for the Ocean Grazer wave energy converter : A sensitivity analysis

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Dijkstra, H.T.; Wei, Yanji; van Rooij, Marijn; Meijer, Harmen; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2018-01-01

    This paper presents a revenue maximisation strategy for market integration of a novel wave energy converter (WEC), part of the Ocean Grazer platform. In particular, we evaluate and validate the aforementioned revenue maximisation model predictive control (MPC) strategy through extensive simulations

  16. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    Science.gov (United States)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  17. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  18. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  19. Simulated Interannual Modulation of Intraseasonal Kelvin Waves in the Equatorial Indian Ocean

    Directory of Open Access Journals (Sweden)

    Iskhaq Iskandar

    2016-12-01

    Full Text Available Outputs from a high-resolution ocean general circulation model (OGCM for the period of 1990-2003 indicate an interannual modulation of intraseasonal Kelvin waves along the equatorial Indian Ocean. During normal conditions without IOD event, the first mode explains about 30-40% of the total variance in the western (60-65ºE and central (75-80ºE basin, while the second mode contributes up to 45% to the total variance in the central basin around the longitude of 82ºE. In contrast, during the 1997/98 IOD event, the fourth mode caused about 40% of the total variance in the central and eastern basin. During the 1994 IOD event, the contribution from the fourth baroclinic mode in the eastern basin caused 45% of the total variance. In the central basin, the second and the fourth baroclinic mode caused almost the same variance (~40%. The variations in the characteristics of the intraseasonal Kelvin waves are related to variations in the vertical stratification. During the IOD event, the pycnocline in the eastern basin was raised by about 50 m and the stratification at the upper level is strengthened, while it is weakened at lower levels. These changes lead to an increase in the contribution of higher-order baroclinic modes.

  20. A novel method for predicting the power outputs of wave energy converters

    Science.gov (United States)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  1. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  2. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  3. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  4. The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A case study for pass 1339m

    Science.gov (United States)

    Beal, R. C.

    1980-01-01

    A well organized low energy 11 sec. swell system off the East Coast of the U.S. was detected with the Seasat Synthetic Aperture Radar and successfully tracked from deep water, across the continental shelf, and into shallow water. In addition, a less organized 7 sec. system was tentatively identified in the imagery. Both systems were independently confirmed with simultaneous wave spectral measurements from a research pier, aircraft laser profilometer data, and Fleet Numerical Spectral Ocean Wave Models.

  5. Design wave estimation considering directional distribution of waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C

    .elsevier.com/locate/oceaneng Technical Note Design wave estimation considering directional distribution of waves V. Sanil Kumar a,C3 , M.C. Deo b a OceanEngineeringDivision,NationalInstituteofOceanography,Donapaula,Goa-403004,India b Civil... of Physical Oceanography Norway, Report method for the routine 18, 1020–1034. ocean waves. Division of No. UR-80-09, 187 p. analysis of pitch and roll Conference on Coastal Engineering, 1. ASCE, Taiwan, pp. 136–149. Deo, M.C., Burrows, R., 1986. Extreme wave...

  6. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    Science.gov (United States)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  7. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul

    2016-01-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  8. Novel Methods for Optically Measuring Whitecaps Under Natural Wave Breaking Conditions in the Southern Ocean

    Science.gov (United States)

    Randolph, K. L.; Dierssen, H. M.; Cifuentes-Lorenzen, A.; Balch, W. M.; Monahan, E. C.; Zappa, C. J.; Drapeau, D.; Bowler, B.

    2016-02-01

    Breaking waves on the ocean surface mark areas of significant importance to air-sea flux estimates of gas, aerosols, and heat. Traditional methods of measuring whitecap coverage using digital photography can miss features that are small in size or do not show high enough contrast to the background. The geometry of the images collected captures the near surface, bright manifestations of the whitecap feature and miss a portion of the bubble plume that is responsible for the production of sea salt aerosols and the transfer of lower solubility gases. Here, a novel method for accurately measuring both the fractional coverage of whitecaps and the intensity and decay rate of whitecap events using above water radiometry is presented. The methodology was developed using data collected during the austral summer in the Atlantic sector of the Southern Ocean under a large range of wind (speeds of 1 to 15 m s-1) and wave (significant wave heights 2 to 8 m) conditions as part of the Southern Ocean Gas Exchange experiment. Whitecap metrics were retrieved by employing a magnitude threshold based on the interquartile range of the radiance or reflectance signal for a single channel (411 nm) after a baseline removal, determined using a moving minimum/maximum filter. Breaking intensity and decay rate metrics were produced from the integration of, and the exponential fit to, radiance or reflectance over the lifetime of the whitecap. When compared to fractional whitecap coverage measurements obtained from high resolution digital images, radiometric estimates were consistently higher because they capture more of the decaying bubble plume area that is difficult to detect with photography. Radiometrically-retrieved whitecap measurements are presented in the context of concurrently measured meteorological (e.g., wind speed) and oceanographic (e.g., wave) data. The optimal fit of the radiometrically estimated whitecap coverage to the instantaneous wind speed, determined using ordinary least

  9. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  10. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  11. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  12. Surface wave effect on the upper ocean in marine forecast

    Science.gov (United States)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable

  13. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  14. Scattering of elastic waves on fractures randomly distributed in a three-dimensional medium

    Science.gov (United States)

    Strizhkov, S. A.; Ponyatovskaya, V. I.

    1985-02-01

    The purpose of this work is to determine the variation in basic characteristics of the wave field formed in a jointed medium, such as the intensity of fluctuations of amplitude, correlation radius, scattering coefficient and frequency composition of waves, as functions of jointing parameters. Fractures are simulated by flat plates randomly distributed and chaotically oriented in a three-dimensional medium. Experiments were performed using an alabaster model, a rectangular block measuring 50 x 50 x 120 mm. The plates were introduced into liquid alabaster which was then agitated. Models made in this way contain randomly distributed and chaotically oriented fractures. The influence of these fractures appears as fluctuations in the wave field formed in the medium. The data obtained in experimental studies showed that the dimensions of heterogeneities determined by waves in the jointed medium and the dimensions of the fractures themselves coincide only if the distance between fractures is rather great. If the distance between fractures is less than the wavelength, the dimensions of the heterogeneities located by the wave depend on wavelength.

  15. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    Science.gov (United States)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  16. Internal Ocean Waves

    Science.gov (United States)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90

  17. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    Science.gov (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  18. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  19. A multiple scattering theory for EM wave propagation in a dense random medium

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.; Wong, K. W.

    1985-01-01

    For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.

  20. Analysis and computation of the elastic wave equation with random coefficients

    KAUST Repository

    Motamed, Mohammad; Nobile, Fabio; Tempone, Raul

    2015-01-01

    We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics

  1. Crossing seas and occurrence of rogue waves

    Science.gov (United States)

    Bitner-Gregersen, Elzbieta; Toffoli, Alessandro

    2017-04-01

    The study is addressing crossing wave systems which may lead to formation of rogue waves. Onorato et al. (2006, 2010) have shown using the Nonlinear Schr?dringer (NLS) equations that the modulational instability and rogue waves can be triggered by a peculiar form of directional sea state, where two identical, crossing, narrow-banded random wave systems interact with each other. Such results have been underpinned by numerical simulations of the Euler equations solved with a Higher Order Spectral Method (HOSM) and experimental observations (Toffoli et al., 2011). They substantiate a dependence of the angle between the mean directions of propagation of the two crossing wave systems, with a maximum rogue wave probability for angles of approximately 40 degrees. Such an unusual sea state of two almost identical wave systems (approximately the same significant wave height and mean frequency) with high steepness and different directions was observed during the accident to the cruise ship Louis Majesty (Cavaleri et al. 2012). Occurrence of wind sea and swell having almost the same spectral period and significant wave height and crossing at the angle 40o low and intermediate wave conditions. They have not been found in a location off coast of Australia and Nigeria. There are some indications that in the future climate we may expect an increase number of occurrence of rogue-prone crossing sea states in some ocean regions An adopted partitioning procedure of a wave spectrum will impact the results. References Bitner-Gregersen, E.M. and Toffoli, A., 2014. Probability of occurrence of rogue sea states and consequences for design of marine structures. Special Issue of Ocean Dynamics, ISSN 1616-7341, 64(10), DOI 10.1007/s10236-014-0753-2. Cavaleri, L., Bertotti, L., Torrisi, L. Bitner-Gregersen, E., Serio, M. and Onorato, M., 2012. Rogue Waves in Crossing Seas: The Louis Majesty accident. J. Geophysical Research, 117, C00J10, doi:10.1029/2012JC007923 Onorato, M., A. Osborne, A

  2. Analysis and Computation of Acoustic and Elastic Wave Equations in Random Media

    KAUST Repository

    Motamed, Mohammad

    2014-01-06

    We propose stochastic collocation methods for solving the second order acoustic and elastic wave equations in heterogeneous random media and subject to deterministic boundary and initial conditions [1, 4]. We assume that the medium consists of non-overlapping sub-domains with smooth interfaces. In each sub-domain, the materials coefficients are smooth and given or approximated by a finite number of random variable. One important example is wave propagation in multi-layered media with smooth interfaces. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems [2, 3], the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence is only algebraic. A fast spectral rate of convergence is still possible for some quantities of interest and for the wave solutions with particular types of data. We also show that the semi-discrete solution is analytic with respect to the random variables with the radius of analyticity proportional to the grid/mesh size h. We therefore obtain an exponential rate of convergence which deteriorates as the quantity h p gets smaller, with p representing the polynomial degree in the stochastic space. We have shown that analytical results and numerical examples are consistent and that the stochastic collocation method may be a valid alternative to the more traditional Monte Carlo method. Here we focus on the stochastic acoustic wave equation. Similar results are obtained for stochastic elastic equations.

  3. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    Science.gov (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  4. Direct AC–AC grid interface converter for ocean wave energy system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • Novel power grid interface converter for ocean wave energy system. • Unlike conventional approach, generator output is directly converted into fixed frequency AC for synchronous connection. • High conversion efficient and power quality could be achieved. - Abstract: Ocean wave energy is very promising. However, existing systems are using rectifying circuits to convert variable voltage and variable frequency output of electric generator into DC voltage and then use grid-tied inverter to connect to the power grid. Such arrangement will not only reduce the overall efficient but also increase the cost of the system. A direct AC–AC converter is a desirable solution. In this paper, a six-switch AC–AC converter has been proposed as a single phase grid-connected interface. New switching scheme has been derived for the converter such that the virtual input AC–DC conversion and the output DC–AC conversion can be decoupled. State-space averaging model and pulse width modulation scheme have been derived for the converter. As the input and the output operations can be decoupled, two independent controllers have been designed to handle the input AC–DC regulation and the output DC–AC regulation. The proposed scheme demands for two separate duty ratios and novel switching scheme has been derived to realize the combined duty ratios in one switching cycle. Power regulation, harmonics elimination and power factor correction control algorithms have also been derived for the converter when it is connected to the supply grid. Experimental results of a small scale model are included to demonstrate the effectiveness of the proposed switching and control schemes

  5. Temperature profile data from STD/CTD casts from the MOANA WAVE from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 22 February to 1975-05-27 (NODC Accession 7800703)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MOANA WAVE in the Pacific Ocean from February 22, 1975 to May 27, 1975. Data were...

  6. Elastic wave localization in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity

    International Nuclear Information System (INIS)

    Yan Zhizhong; Zhang Chuanzeng; Wang Yuesheng

    2011-01-01

    The band structures of in-plane elastic waves propagating in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity are analyzed in this paper. The localization of wave propagation is discussed by introducing the concept of the localization factor, which is calculated by the plane-wave-based transfer-matrix method. By treating the random disorder and aperiodicity as the deviation from the periodicity in a special way, three kinds of aperiodic phononic crystals that have normally distributed random disorder, Thue-Morse and Rudin-Shapiro sequence in one direction and translational symmetry in the other direction are considered and the band structures are characterized using localization factors. Besides, as a special case, we analyze the band gap properties of a periodic planar layered composite containing a periodic array of square inclusions. The transmission coefficients based on eigen-mode matching theory are also calculated and the results show the same behaviors as the localization factor does. In the case of random disorders, the localization degree of the normally distributed random disorder is larger than that of the uniformly distributed random disorder although the eigenstates are both localized no matter what types of random disorders, whereas, for the case of Thue-Morse and Rudin-Shapiro structures, the band structures of Thue-Morse sequence exhibit similarities with the quasi-periodic (Fibonacci) sequence not present in the results of the Rudin-Shapiro sequence.

  7. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    Science.gov (United States)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  8. Ground States of Random Spanning Trees on a D-Wave 2X

    Science.gov (United States)

    Hall, J. S.; Hobl, L.; Novotny, M. A.; Michielsen, Kristel

    The performances of two D-Wave 2 machines (476 and 496 qubits) and of a 1097-qubit D-Wave 2X were investigated. Each chip has a Chimera interaction graph calG . Problem input consists of values for the fields hj and for the two-qubit interactions Ji , j of an Ising spin-glass problem formulated on calG . Output is returned in terms of a spin configuration {sj } , with sj = +/- 1 . We generated random spanning trees (RSTs) uniformly distributed over all spanning trees of calG . On the 476-qubit D-Wave 2, RSTs were generated on the full chip with Ji , j = - 1 and hj = 0 and solved one thousand times. The distribution of solution energies and the average magnetization of each qubit were determined. On both the 476- and 1097-qubit machines, four identical spanning trees were generated on each quadrant of the chip. The statistical independence of these regions was investigated. In another study, on the D-Wave 2X, one hundred RSTs with random Ji , j ∈ { - 1 , 1 } and hj = 0 were generated on the full chip. Each RST problem was solved one hundred times and the number of times the ground state energy was found was recorded. This procedure was repeated for square subgraphs, with dimensions ranging from 7 ×7 to 11 ×11. Supported in part by NSF Grants DGE-0947419 and DMR-1206233. D-Wave time provided by D-Wave Systems and by the USRA Quantum Artificial Intelligence Laboratory Research Opportunity.

  9. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  10. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    Science.gov (United States)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  11. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  12. A stochastic collocation method for the second order wave equation with a discontinuous random speed

    KAUST Repository

    Motamed, Mohammad; Nobile, Fabio; Tempone, Raul

    2012-01-01

    In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical

  13. Modeling and simulation of ocean wave propagation using lattice Boltzmann method

    Science.gov (United States)

    Nuraiman, Dian

    2017-10-01

    In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.

  14. Wave Overtopping over Crown Walls and Run-up on Rubble Mound Breakwaters with Kolos Armour under Random Waves

    Directory of Open Access Journals (Sweden)

    A. Arunjith

    2013-06-01

    Full Text Available The design of rubble mound structures like breakwaters and seawalls are influenced by the wave run-up and overtopping over them. The above phenomena largely depend on the type of the armour units as they directly interact with the incident waves. The hydrodynamic characteristics of various concrete armour units have been established by several researchers. A new armour block, ‘Kolos’, a modified version of Dolos, is considered in this study for a detailed investigation. An attempt is made to establish empirical relationships for the estimation of wave overtopping discharges over crown wall and run-up on Kolosarmoured slope exposed to random wave from the results of a comprehensive experimental program. Further, the results are compared with that of a tested section with natural rocks as armour layer and with that of other investigators.

  15. Virtual Seafloor Reduces Internal Wave Generation by Tidal Flow

    Science.gov (United States)

    Zhang, Likun; Swinney, Harry L.

    2014-03-01

    Our numerical simulations of tidal flow of a stratified fluid over periodic knife-edge ridges and random topography reveal that the time-averaged tidal energy converted into internal gravity wave radiation arises only from the section of a ridge above a virtual seafloor. The average radiated power is approximated by the power predicted by linear theory if the height of the ridge is measured relative to the virtual floor. The concept of a virtual floor can extend the applicability of linear theory to global predictions of the conversion of tidal energy into internal wave energy in the oceans.

  16. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  17. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    Science.gov (United States)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m

  18. Probability for human intake of an atom randomly released into ground, rivers, oceans and air

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1984-08-01

    Numerical estimates are developed for the probability of an atom randomly released in the top ground layers, in a river, or in the oceans to be ingested orally by a human, and for an atom emitted from an industrial source to be inhaled by a human. Estimates are obtained for both probability per year and for total eventual probability. Results vary considerably for different elements, but typical values for total probabilities are: ground, 3 X 10/sup -3/, oceans, 3 X 10/sup -4/; rivers, 1.7 x 10/sup -4/; and air, 5 X 10/sup -6/. Probabilities per year are typcially 1 X 10/sup -7/ for releases into the ground and 5 X 10/sup -8/ for releases into the oceans. These results indicate that for material with very long-lasting toxicity, it is important to include the pathways from the ground and from the oceans.

  19. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  20. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  1. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  2. Propagation of magnetoacoustic waves in the solar atmosphere with random inhomogeneities of density and magnetic fields

    International Nuclear Information System (INIS)

    Ryutova, M.

    1990-08-01

    Effects of strong and random inhomogeneities of the magnetic fields, plasma density, and temperature in the solar atmosphere on the properties of magnetoacoustic waves of arbitrary amplitudes are studied. The procedure which allows one to obtain the averaged equation containing the nonlinearity of a wave, dispersion properties of a system, and dissipative effects is described. It is shown that depending on the statistical properties of the medium, different scenarios of wave propagation arise: in the predominance of dissipative effects the primary wave is damped away in the linear stage and the efficiency of heating due to inhomogeneities is much greater than that in homogeneous medium. Depending on the interplay of nonlinear and dispersion effects, the process of heating can be afforded through the formation of shocks or through the storing of energy in a system of solitons which are later damped away. Our computer simulation supports and extends the above theoretical investigations. In particular the enhanced dissipation of waves due to the strong and random inhomogeneities is observed and this is more pronounced for shorter waves

  3. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems

    International Nuclear Information System (INIS)

    Wang, Ken Kang-Hsin; Ye Zhen

    2003-01-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems

  4. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    Science.gov (United States)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  5. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  6. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity

    Science.gov (United States)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2014-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in

  7. Smithsonian Ocean Portal | Find Your Blue

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor life. These two are in the middle of a courtship. VIEW ARCHIVE Ocean Optimism Success Stories in Ocean

  8. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    Science.gov (United States)

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  9. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  10. Analysis and Computation of Acoustic and Elastic Wave Equations in Random Media

    KAUST Repository

    Motamed, Mohammad; Nobile, Fabio; Tempone, Raul

    2014-01-01

    ], the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence is only algebraic. A fast spectral rate of convergence is still possible for some quantities of interest and for the wave

  11. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    Science.gov (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  12. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  13. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  14. Internal wave mode resonant triads in an arbitrarly stratified finite-depth ocean with background rotation

    Science.gov (United States)

    Varma, Dheeraj; Mathur, Manikandan

    2017-11-01

    Internal tides generated by barotropic tides on bottom topography or the spatially compact near-inertial mixed layer currents excited by surface winds can be conveniently represented in the linear regime as a superposition of vertical modes at a given frequency in an arbitrarily stratified ocean of finite depth. Considering modes (m , n) at a frequency ω in the primary wave field, we derive the weakly nonlinear solution, which contains a secondary wave at 2 ω that diverges when it forms a resonant triad with the primary waves. In nonuniform stratifications, resonant triads are shown to occur when the horizontal component of the classical RTI criterion k->1 +k->2 +k->3 = 0 is satisfied along with a non-orthogonality criterion. In nonuniform stratifications with a pycnocline, infinitely more pairs of primary wave modes (m , n) result in RTI when compared to a uniform stratification. Further, two nearby high modes at around the near-inertial frequency often form a resonant triad with a low mode at 2 ω , reminiscent of the features of PSI near the critical latitude. The theoretical framework is then adapted to investigate RTI in two different scenarios: low-mode internal tide scattering over topography, and internal wave beams incident on a pycnocline. The authors thank the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.

  15. Numerical simulation of multi-directional random wave transformation in a yacht port

    Science.gov (United States)

    Ji, Qiaoling; Dong, Sheng; Zhao, Xizeng; Zhang, Guowei

    2012-09-01

    This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.

  16. Parametric interaction of waves in the plasma with random large-scale inhomogeneities

    International Nuclear Information System (INIS)

    Abramovich, B.S.; Tamojkin, V.V.

    1980-01-01

    Parametric processes of the decay and fusion of three waves in a weakly turbulent plasma with random inhomogeneities, the size of which is too big as compared with wave-lengths are considered. Under the diffusive approximation applicability closed equations are obtained, which determine the behaviour of all the intensity moments of parametrically bound waves. It is shown that under the conditions when the characteristic length of the multiple scattering is considerably less than the nonlinear interaction, length the effective increment of average intensity increase and its moments at dissociation processes is too small as compared with the homogeneous plasma case. At fusion processes the same increment (decrement) determines the distance at which all intensity moments are in the saturation regime

  17. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    Science.gov (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  18. In Pursuit of Internal Waves

    Science.gov (United States)

    Peacock, Thomas

    2014-11-01

    Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.

  19. On the fourth moment of Hecke Maass forms and the Random Wave Conjecture

    OpenAIRE

    Buttcane, Jack; Khan, Rizwanur

    2016-01-01

    Conditionally on the Generalized Lindel\\"of Hypothesis, we obtain an asymptotic for the fourth moment of Hecke Maass cusp forms of large Laplacian eigenvalue for the full modular group. This lends support to the Random Wave Conjecture.

  20. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  1. Determining Ocean-Bottom Seismometer Orientations from the RHUM-RUM experiment from P-wave and Rayleigh wave polarizations

    Science.gov (United States)

    Scholz, John-Robert; Barruol, Guilhem; Fontaine, Fabrice R.; Sigloch, Karin

    2016-04-01

    To image the upper mantle structure beneath La Réunion hotspot, a large-scale seismic network has been deployed on land and at sea in the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel). This French-German passive seismic experiment was designed to investigate and image the deep structure beneath La Réunion, from crust to core, to precise the shape and depth origin of a mantle plume, if any, and to precise the horizontal and vertical mantle flow associated to a possible plume upwelling, to its interaction with the overlying plate and with the neighboring Indian ridges. For this purpose, 57 Ocean-Bottom Seismometers (OBS) were installed around La Réunion and along the Central and Southwest Indian ridges. Broad-band instruments were deployed with the French R/V Marion Dufresne in late 2012 (cruise MD192), and recovered 13 months later by the German R/V Meteor (cruise M101). The pool of OBS was complemented by ~60 terrestrial stations, installed on different islands in the western Indian Ocean, such as La Réunion, Madagascar, Mauritius, Seychelles, Mayotte and the Îles Éparses in the Mozambique channel. The OBS installation is a free-fall down to the seafloor, where they landed in an unknown orientation. Since seismologic investigations of crustal and upper mantle structure (e.g., receiver functions) and azimuthal anisotropy (e.g., SKS-splitting and Rayleigh waves) rely on the knowledge of the correct OBS orientation with respect to the geographic reference frame, it is of importance to determine the orientations of the OBS while recording on the seafloor. In an isotropic, horizontally homogeneous and non-dipping layered globe, the misorientation of each station refers to the offset between theoretical and recorded back-azimuth angle of a passive seismic event. Using large earthquakes (MW > 5.0), it is possible to establish multiple successful measurements per station and thus to determine with good confidence the

  2. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  3. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    Science.gov (United States)

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  4. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    Science.gov (United States)

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.

  5. Arctic Climate and Atmospheric Planetary Waves

    Science.gov (United States)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  6. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California

    Science.gov (United States)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  7. Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer

    Science.gov (United States)

    Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.

    2018-03-01

    Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.

  8. Low-wave-number statistics of randomly advected passive scalars

    International Nuclear Information System (INIS)

    Kerstein, A.R.; McMurtry, P.A.

    1994-01-01

    A heuristic analysis of the decay of a passive scalar field subject to statistically steady random advection, predicts two low-wave-number spectral scaling regimes analogous to the similarity states previously identified by Chasnov [Phys. Fluids 6, 1036 (1994)]. Consequences of their predicted coexistence in a single flow are examined. The analysis is limited to the idealized case of narrow band advection. To complement the analysis, and to extend the predictions to physically more realistic advection processes, advection diffusion is simulated using a one-dimensional stochastic model. An experimental test of the predictions is proposed

  9. Experimental study of the formation of steep waves and breakers

    Directory of Open Access Journals (Sweden)

    Stanis³aw R. Massel

    2001-09-01

    Full Text Available Breaking waves (whitecaps are one of the most important and least understood processes associated with the evolution of the surface gravity wave field in the open sea. This process is the principal means by which energy and momentum are transferred away from a developing sea. However, an estimation of the frequency of breaking waves or the fraction of sea surface covered by whitecaps and the amount of dissipated energy induced by breaking is very difficult to carry out under real sea conditions. A controlled experiment, funded by the European Commission under the Improving Human Potential Access Infrastructures programme, was carried out in the Ocean Basin Laboratory at MARINTEK, Trondheim (Norway. Simulation of random waves of the prescribed spectra by wave makers provided a very realistic pattern of the sea surface. The number of breaking waves was estimated by photographing the sea surface and recording the noise caused by the breaking waves. The experimental data will serve for calibration of the theoretical models of the sea surface fraction related to the whitecaps.

  10. Diurnal tides in the Arctic Ocean

    Science.gov (United States)

    Kowalik, Z.; Proshutinsky, A. Y.

    1993-01-01

    A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.

  11. Energy from rivers and oceans

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  12. Regional Wave Climates along Eastern Boundary Currents

    Science.gov (United States)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or

  13. Internal Waves, South China Sea

    Science.gov (United States)

    1983-01-01

    Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.

  14. Pneumatic Performance of a Non-Axisymmetric Floating Oscillating Water Column Wave Energy Conversion Device in Random Waves

    OpenAIRE

    Bull, Diana

    2014-01-01

    A stochastic approach is used to gain a sophisticated understanding of a non-axisymmetric floating oscillating water column's response to random waves. A linear, frequency-domain performance model that links the oscillating structure to air-pressure fluctuations with a Wells Turbine in 3-dimensions is used to study the device performance at a northern California deployment location. Both short-term, sea-state, and long-term, annual, predictions are made regarding the devices performance. U...

  15. Optimal spatial filtering and transfer function for SAR ocean wave spectra

    Science.gov (United States)

    Beal, R. C.; Tilley, D. G.

    1981-01-01

    The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.

  16. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  17. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  18. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  19. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    Science.gov (United States)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the

  20. Random-Access Technique for Self-Organization of 5G Millimeter-Wave Cellular Communications

    Directory of Open Access Journals (Sweden)

    Jasper Meynard Arana

    2016-01-01

    Full Text Available The random-access (RA technique is a key procedure in cellular networks and self-organizing networks (SONs, but the overall processing time of this technique in millimeter-wave (mm-wave cellular systems with directional beams is very long because RA preambles (RAPs should be transmitted in all directions of Tx and Rx beams. In this paper, two different types of preambles (RAP-1 and RAP-2 are proposed to reduce the processing time in the RA stage. After analyzing the correlation property, false-alarm probability, and detection probability of the proposed RAPs, we perform simulations to show that the RAP-2 is suitable for RA in mm-wave cellular systems with directional beams because of the smaller processing time and high detection probability in multiuser environments.

  1. Dynamical criteria for rogue waves in nonlinear Schrödinger models

    International Nuclear Information System (INIS)

    Calini, Annalisa; Schober, Constance M

    2012-01-01

    We investigate rogue waves in deep water in the framework of the nonlinear Schrödinger (NLS) and Dysthe equations. Amongst the homoclinic orbits of unstable NLS Stokes waves, we seek good candidates to model actual rogue waves. In this paper we propose two selection criteria: stability under perturbations of initial data, and persistence under perturbations of the NLS model. We find that requiring stability selects homoclinic orbits of maximal dimension. Persistence under (a particular) perturbation selects a homoclinic orbit of maximal dimension all of whose spatial modes are coalesced. These results suggest that more realistic sea states, described by JONSWAP power spectra, may be analyzed in terms of proximity to NLS homoclinic data. In fact, using the NLS spectral theory, we find that rogue wave events in random oceanic sea states are well predicted by proximity to homoclinic data of the NLS equation. (invited article)

  2. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    Science.gov (United States)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  3. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  4. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  5. Spontaneous Wave Generation from Submesoscale Fronts and Filaments

    Science.gov (United States)

    Shakespeare, C. J.; Hogg, A.

    2016-02-01

    Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.

  6. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  7. Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures

    NARCIS (Netherlands)

    Zou, T.; Kaminski, M.L.

    2016-01-01

    In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated

  8. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  9. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  10. A stochastic collocation method for the second order wave equation with a discontinuous random speed

    KAUST Repository

    Motamed, Mohammad

    2012-08-31

    In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems. © 2012 Springer-Verlag.

  11. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  12. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  13. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  14. Rogue waves in nonlinear science

    International Nuclear Information System (INIS)

    Yan Zhenya

    2012-01-01

    Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.

  15. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  16. Wind and wave dataset for Matara, Sri Lanka

    Science.gov (United States)

    Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei

    2018-01-01

    We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447).

  17. Wind and wave dataset for Matara, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2018-01-01

    Full Text Available We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1 is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017 is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447.

  18. Optical Rogue Waves: Theory and Experiments

    Science.gov (United States)

    Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.

    2010-05-01

    In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons

  19. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    Science.gov (United States)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  20. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    Science.gov (United States)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  1. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  2. Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors

    Science.gov (United States)

    Yang, J.

    2017-12-01

    GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching

  3. Energy conversion of orbital motions in gravitational waves: Simulation and test of the Seaspoon wave energy converter

    International Nuclear Information System (INIS)

    Di Fresco, L.; Traverso, A.

    2014-01-01

    Highlights: • We investigate an innovative wave energy converter. • We study a robust technology derived from wind power sector. • We increased the performance of a drag type rotor exploiting the motion of ocean waves and a simple flat plate component. • We proved the working principle with a numerical model first and with experimental test in wave flume later. • We aim to obtain a robust large energy harvester able to operate in mild energy sea and with an extended operating range. - Abstract: The conversion of ocean wave power into sustainable electrical power represents a major opportunity to Nations endowed with such a kind of resource. At the present time the most of the technological innovations aiming at converting such resources are at early stage of development, with only a handful of devices close to be at the commercial demonstration stage. The Seaspoon device, thought as a large energy harvester, catches the kinetic energy of ocean waves with promising conversion efficiency, and robust technology, according to specific “wave-motion climate”. University of Genoa aims to develop a prototype to be deployed in medium average energy content seas (i.e. Mediterranean or Eastern Asia seas). This paper presents the first simulation and experimental results carried out on a reduced scale proof-of-concept model tested in the laboratory wave flume

  4. Overview of Wave to Wire Models

    DEFF Research Database (Denmark)

    Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco

    A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...

  5. Spanish leadership in marine renewable energies. The project Ocean Lider; Liderazgo espanol en energias renovables oceanicas. El proyecto Ocean Lider

    Energy Technology Data Exchange (ETDEWEB)

    Amante, J.

    2012-07-01

    The Cenit-e Ocean Lider project is an ambitious R+D technological initiative promoted by a consortium of companies with a strong research capability which addresses the challenge of developing the necessary technologies to set up integrated large scale installations that can harness energies of marine renewable sources, such as waves, tidal currents and wind. Ocean Lider developed knowledge and technologies would provide some new power plant concepts, devices, structures, data acquisition and site characterization systems, vessels, etc. In this way, some new technologies for harnessing ocean energy generation, distribution and transmission would be developed and sized according to a large scale scheme, to make this hybrid harvest (wave, current and wind) as profitable as possible. (Author)

  6. Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system

    Science.gov (United States)

    Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi

    2017-12-01

    We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.

  7. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  8. Estimation of directional wave spreading

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    Directional properties of ocean waves are of great economic interest. The knowledge of wave directionality is important for the design of maritime structures and offshore operations. Two main aspects are considered for this study for the data...

  9. Oceanic forcing of coral reefs.

    Science.gov (United States)

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  10. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  11. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy

    2011-07-01

    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  12. Temperature profile and other data collected using bottle casts from the MOANA WAVE and other platforms from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 20 February to 1975-05-27 (NODC Accession 8700066)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profile, and other data were collected using meteorological sensors, secchi disks, and bottle casts from MOANA WAVE and...

  13. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  14. Rogue waves, rational solitons and wave turbulence theory

    International Nuclear Information System (INIS)

    Kibler, Bertrand; Hammani, Kamal; Michel, Claire; Finot, Christophe; Picozzi, Antonio

    2011-01-01

    Considering a simple one-dimensional nonlinear Schroedinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soliton solutions is compatible with an accurate statistical description of the random wave provided by the wave turbulence theory. Furthermore, the simulations reveal that even in the weakly nonlinear regime, the nonlinearity can play a key role in the emergence of an individual rogue wave event in a turbulent environment. -- Highlights: → Rogue wave events are studied in the highly incoherent regime of interaction. → We show that rogue waves can emerge in the genuine turbulent regime. → Their coherent deterministic description is provided by the rational solutions. → It coexists with a statistical description provided of the random wave. → The nonlinearity plays a key role even in a turbulent environment.

  15. An ocean current inversion accuracy analysis based on a Doppler spectrum model

    Institute of Scientific and Technical Information of China (English)

    BAO Qingliu; ZHANG Youguang; LIN Mingsen; GONG Peng

    2017-01-01

    Microwave remote sensing is one of the most useful methods for observing the ocean parameters.The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars.While the effect of the ocean currents and waves is interactional.It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly.In order to study the relationship between the ocean surface current speed and the Doppler frequency shift,a numerical ocean surface Doppler spectrum model is established and validated with a reference.The input parameters of ocean Doppler spectrum include an ocean wave elevation model,a directional distribution function,and wind speed and direction.The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function (CDOP).What is more,the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed.All these simulations are in Ku band.The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors.With VV polarization,the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s,and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.

  16. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  17. Characteristics of inertial currents observed in offshore wave records

    Science.gov (United States)

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  18. Interactions of the tropical oceans. Rev.ed.

    International Nuclear Information System (INIS)

    Latif, M.; Barnett, T.P.

    1994-01-01

    We have investigated the interactions of the tropical oceans on interannual time scales by conducting a series of uncoupled atmospheric and oceanic general circulation experiments and hybrid coupled model simulations. Our results illustrate the key role of the El Nino/Southern Oscillation (ENSO) phenomenon in generating interannual variability in all three tropical ocean basins. Sea surface temperature (SST) anomalies in the tropical Pacific force via a changed atmospheric circulation SST anomalies of the same sign in the Indian Ocean and SST anomalies of the opposite sign in the Atlantic. However, although air-sea interactions in the Indian and Atlantic Oceans are much weaker than those in the Pacific, they contribute significantly to the variability in these two regions. The role of these air-sea interactions is mainly that of an amplifyer by which the ENSO induced signals are enhanced in ocean and atmosphere. This process is particularly important in the tropical Atlantic region. We investigated also whether ENSO is part of a zonally propagating ''wave'' which travels around the globe with a time scale of several years. Consistent with observations, the upper ocean heat content in the various numerical simulations seems to propagate slowly around the globe. SST anomalies in the Pacific Ocean introduce a global atmospheric response which in turn forces variations in the other tropical oceans. Since the different oceans exhibit different response characteristics to low-frequency wind changes, the individual tropical ocean responses can add up coincidentally to look like a global wave, and that appears to be the situation. In particular, no evidence is found that the Indian Ocean can significantly affect the ENSO cycle in the Pacific. Finally, the potential for climate forecasts in the Indian and Atlantic Oceans appears to be enhanced if one includes, in a coupled way, remote influences from the Pacific. (orig.)

  19. Drifting and meandering of Olive Ridley Sea turtles in the Bay of Bengal: Role of oceanic Rossby waves

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, P.S.; Rao, S.A.; Sadhuram, Y.

    in the direction of geostrophic currents. It is found that the locations of these thermal fronts in the Bay of Bengal are primarily determined by the Oceanic Rossby waves and local Ekman pumping. Key Words: Bay of Bengal, Circulation, Cyclonic and Anti... drawn with black dots shows the meandering path of the rest of the three turtles. Locations of the turtles at different times are also shown as white stars. A strong anti-cyclonic gyre (warm core eddy) centered at 17º N with SSHD above 30 cm...

  20. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  1. Waves in the seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J

    , steep nonsymmetric cnoidal waves, solitons and random waves. They have different properties too. Any wave form has a wave period (T), wave height (H) and speed (C) which depends on T. Still another type of waves are breaking waves near a coast...

  2. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  3. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  4. Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions

    Directory of Open Access Journals (Sweden)

    G. Emmanouil

    2007-03-01

    Full Text Available An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.

  5. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

    Science.gov (United States)

    Le Bihan, Nicolas; Margerin, Ludovic

    2009-07-01

    In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

  6. Assessing the Feasibility and Risks of Using Wave-Driven Upwelling Pumps to Enhance the Biological Sequestration of Carbon in Open Oceans

    Science.gov (United States)

    White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.

    2008-12-01

    In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.

  7. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  8. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  9. Ocean and laboratory observations on waves over topography

    NARCIS (Netherlands)

    Lam, F.P. A.

    2007-01-01

    This thesis addresses the observation, analysis and dynamics of waves as being trapped, generated and focused by sloping topography. ---Shelf waves with diurnal tidal frequency off Greenland--- Tidal analysis has been carried out on current measurements at a “cross-shelf” transect off Greenland at

  10. The study of the ocean from space

    Energy Technology Data Exchange (ETDEWEB)

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S

    1978-01-01

    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  11. Coherence of river and ocean conditions along the US West Coast during storms

    Science.gov (United States)

    Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.

    2011-01-01

    The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West

  12. Generation and Analysis of Random Waves

    DEFF Research Database (Denmark)

    Liu, Zhou; Frigaard, Peter

    applied to hydrology, wind mechanics, ice mechanics, etc., not to mention the fact that spectral analysis comes originally from optics and electronics. The book intents to be a textbook for senior and graduate students who have interest in coastal and offshore structures. The only pre......Sea waves are the most important phenomenon to be considered in the design of coastal and offshore structures. It should be stressed that, even though all contents in the book are related to sea waves, they have a broader application in practice. For example, the extreme theory has also been......-requirement for the book is the knowledge of linear wave theory....

  13. Analysis and computation of the elastic wave equation with random coefficients

    KAUST Repository

    Motamed, Mohammad

    2015-10-21

    We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics of some given quantities of interest. We study the convergence rate of the error in the stochastic collocation method. In particular, we show that, the rate of convergence depends on the regularity of the solution or the quantity of interest in the stochastic space, which is in turn related to the regularity of the deterministic data in the physical space and the type of the quantity of interest. We demonstrate that a fast rate of convergence is possible in two cases: for the elastic wave solutions with high regular data; and for some high regular quantities of interest even in the presence of low regular data. We perform numerical examples, including a simplified earthquake, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo sampling method for approximating quantities with high stochastic regularity.

  14. Trapped waves on the mid-latitude β-plane

    Science.gov (United States)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  15. A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III (registered trademark): IC4

    Science.gov (United States)

    2017-06-07

    blue and 4 locations in the ice: 1, 2, 5, and 10 km. Notice the steepening of the high frequency face and the shift of the peak to slightly lower...Term for Wave Attenuation by Sea Ice in WAVEWATCH III®: IC4 ClarenCe O. COllins iii W. eriCk rOgers Ocean Dynamics and Prediction Branch Oceanography...Wave model Sea ice Ocean surface waves Arctic Ocean WAVEWATCH III Spectral wave modeling Source terms Wave hindcasting 73-N2K2-07-5 Naval Research

  16. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  17. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  18. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system.

    Science.gov (United States)

    Gjerstad, Karl Idar; Stamnes, Jakob J; Hamre, Børge; Lotsberg, Jon K; Yan, Banghua; Stamnes, Knut

    2003-05-20

    We compare Monte Carlo (MC) and discrete-ordinate radiative-transfer (DISORT) simulations of irradiances in a one-dimensional coupled atmosphere-ocean (CAO) system consisting of horizontal plane-parallel layers. The two models have precisely the same physical basis, including coupling between the atmosphere and the ocean, and we use precisely the same atmospheric and oceanic input parameters for both codes. For a plane atmosphere-ocean interface we find agreement between irradiances obtained with the two codes to within 1%, both in the atmosphere and the ocean. Our tests cover case 1 water, scattering by density fluctuations both in the atmosphere and in the ocean, and scattering by particulate matter represented by a one-parameter Henyey-Greenstein (HG) scattering phase function. The CAO-MC code has an advantage over the CAO-DISORT code in that it can handle surface waves on the atmosphere-ocean interface, but the CAO-DISORT code is computationally much faster. Therefore we use CAO-MC simulations to study the influence of ocean surface waves and propose a way to correct the results of the CAO-DISORT code so as to obtain fast and accurate underwater irradiances in the presence of surface waves.

  19. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market

    OpenAIRE

    MAGAGNA DAVIDE; TZIMAS Evangelos; HANMER Clare; BADCOCK-BROE Abbie; MACGILLIVRAY Andy; JEFFREY Henry; RAVENTOS Alex

    2014-01-01

    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  20. Wave-Breaking Turbulence in the Ocean Surface Layer

    Science.gov (United States)

    2016-06-01

    2004) used direct numerical simulation ( DNS ) to show that a single breaking wave can energize the surface layer for more than 50 wave periods, and...1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSR, 30, 301–305. Kukulka, T., and K. Brunner, 2015: Passive

  1. A laboratory experiment assessing the effect of sea ice on wave dumping

    Science.gov (United States)

    Cavaliere, Claudio; Alberello, Alberto; Bennetts, Luke; Meylan, Mike; Babanin, Alexander; Malavasi, Stefano; Toffoli, Alessandro

    2014-05-01

    Wave-ice interaction is a critical factor in the dynamics of the marginal ice zone (MIZ), the region between open ocean and an expanse of ice floes of varying size and shape. This interaction works both ways: while waves cause the fractures of ice floes, the presence of ice floes affects waves through scattering and various dissipative processes. In order to assess the latter, a laboratory experiment has been carried out in the coastal directional basin at Plymouth University. Sea ice has been simulated with two deformable plates: 1mX1m plastic sheet with variable thickness of polypropylene, which holds the same density (~0.9 g/cm3) of ice, and PVC Forex, which hold the same mechanical property of ice. Experiments have been conducted using monochromatic as well as random wave fields with different steepness and wavelengths (both shorter and larger than the floe). The wave field has been monitored before and after the simulated ice floe with a number of wave probes deployed along the basin, including a 6-probe array to track directional properties. On the whole, results show a substantial scattering and dissipation of the wave field, which appears to be dependent on the amount of overwash on the ice floe.

  2. Utilization of statistical table for waves in North-west Pacific Ocean and a long-term estimation on hull responses; Seihoku Taiheiyo haro tokeihyo no riyo to sentai oto choki yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, A [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    Designing a vessel to sail oceans for an extended period of time requires statistical estimation on different hull responses to waves. To meet the requirement, it is necessary to accurately identify hydrographic conditions (particularly waves) which are considered to be encountered by the vessel. This paper makes clear the statistical characteristics of the wave statistics table presented by Fang et al, and compares them with other processes for discussion. This statistics collection is based on data collected in China, Hong Kong and Japan, including those collected in the Sea of Japan, the Yellow Sea, the North Sea, the East China Sea and the South China Sea. It was found that these data provide results slightly lower than the long-term estimation values derived from data of the global wave statistics (GWS) prepared by Hogben et al. The cause for this was found attributable to the format of the statistical data, especially setting of wave height classes. However, since the data provided by Fang et al include items of detailed information on small sea areas near the Chinese coast lines, the data are thought to provide useful information source in investigating long-term hull response characteristics relative to spatial spread of the sea areas in the North-west Pacific Ocean. 15 refs., 5 figs., 2 tabs.

  3. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  4. Three dimensional investigation of oceanic active faults. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1998-02-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  5. Three dimensional investigation of oceanic active faults. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio

    1998-01-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  6. Propagation of Atlantic Ocean swells in the north Indian Ocean: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Vethamony, P.; Aboobacker, V.M.; Rashmi, R.

    An analysis of altimeter significant wave height data of May 2007 revealed the occurrence of an extreme weather event off southern tip of South Africa in the Atlantic Ocean, and generation of a series of very high swells at 40 degrees S...

  7. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    Science.gov (United States)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of

  8. The Damage To The Armour Layer Due To Extreme Waves

    Science.gov (United States)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka

    2010-05-01

    Engineering With Emphasis On Random Wave Approach', Coastal Engineering Journal, vol.40, No:1, pp. 1-21, World Scientific Pub. and JSCE Tuah, H, Hudspeth, RT (1982).'Comparisons of Numerical Random Sea Simulations,' Jour. Waterway, Port, Coastal and Ocean Engineering, Vol. 108, pp 569-584. Van der Meer, J.W,(1988). Rock Slopes and gravel beaches under wave attack. Ph.D thesis, Netherland.

  9. Performance of an autonomously deployable telemetered deep ocean seismic observatory

    Science.gov (United States)

    Berger, Jonathan; Laske, Gabe; Orcutt, John; Babcock, Jeffrey

    2016-04-01

    We describe a transformative technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, which harvests wave and solar energy for motive and electrical power. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, AIS ship detection receiver, weather station, and an Iridium satellite modem. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. The system comprises ocean bottom package (OBP) and an ocean surface gateway (OSG). Acoustic communications connect the OBP instruments with OSG while communications between the gateway and land are provided by the Iridium satellite constellation. The most recent deployment of the OBP was off the edge of the Patton Escarpment some 300 km west of San Diego in 4000 m of water. The OSG was launched about 30 km west of San Diego harbor and programmed to navigate to the site of the ocean bottom package. Arriving after 161 hours, the OSG then commenced holding station at the site for the next 68 days. Speeds over-the-ground varied with wind, wave, and surface current conditions but averaged 0.5 m/s while winds varied between 0 m/s and 17 m/s and wave heights between 0.2 m and 5.9 m. Over this period the median total data latency was 260 s and the data loss less that 0.2% when the wave glider was within 1.5 km of the central point. We have also tested a full-scale model of a towable ocean bottom package, which demonstrated that a wave glider could tow and navigate an autonomously deployable ocean bottom package. Taken together, these tests have demonstrated that the concept is viable for long

  10. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.

    Science.gov (United States)

    Yi, Xiang; Li, Zan; Liu, Zengji

    2015-02-20

    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  11. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  12. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    Science.gov (United States)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some

  13. Aperture averaging in strong oceanic turbulence

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  14. Rational homoclinic solution and rogue wave solution for the ...

    Indian Academy of Sciences (India)

    –4]. Rogue waves were first observed in deep ocean [5]. A wave can be called a rogue wave when its height and steepness is much greater than the average crest, and appears from nowhere and disappears without a trace [6]. Rogue waves ...

  15. Survey technology for ocean engineering applications

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.; Chandramohan, P.

    Various types of sophisticated instruments available at the National Institute of Oceanography, Goa, India, for obtaining precise information on waves, ocean currents, water level variations, meteorological parameters, etc. are described...

  16. Submesoscale Rossby waves on the Antarctic circumpolar current.

    Science.gov (United States)

    Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo

    2018-03-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.

  17. Is Tamsulosin Effective after Shock Wave Lithotripsy for Pediatric Renal Stones? A Randomized, Controlled Study.

    Science.gov (United States)

    Shahat, Ahmed; Elderwy, Ahmad; Safwat, Ahmed S; Abdelkawi, Islam F; Reda, Ahmed; Abdelsalam, Yasser; Sayed, Mohamed; Hammouda, Hisham

    2016-04-01

    We assessed the effect of tamsulosin as an adjunctive therapy after shock wave lithotripsy for pediatric single renal pelvic stones. A total of 120 children with a unilateral single renal pelvic stone were included in a prospective randomized, controlled study. All children were randomized to 2 equal groups. Group 1 received tamsulosin (0.01 mg/kg once daily) as adjunctive therapy after shock wave lithotripsy in addition to paracetamol while group 2 received paracetamol only. Stone clearance was defined as no renal stone fragments or fragments less than 3 mm and no pelvicalyceal system dilatation. Our study included 69 boys and 51 girls with a median age of 3.5 years and a median stone size of 1.2 cm. There was no statistically significant difference between groups 1 and 2 in stone or patient criteria. Of the children 99 (82.5%) achieved stone clearance after the first session, including 50 in group 1 and 49 in group 2. All children in each group were cleared of stones after the second session. The overall complication rate was 14.2%. There was no statistically significant difference between single session stone clearance rates (p = 0.81) and complications rates (p = 0.432) in either group. On multivariate analysis using logistic regression smaller stone size (p = 0.016) and radiopaque stones (p = 0.019) were the only predictors of stone clearance at a single shock wave lithotripsy session. Tamsulosin therapy did not affect stone clearance (p = 0.649). Tamsulosin does not seem to improve renal stone clearance. Smaller and radiopaque renal stones have more chance of clearance after shock wave lithotripsy for pediatric single renal pelvic stones. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Design and characterization of an ocean wave powered lifejacket using 2DOF floating boards

    Science.gov (United States)

    Mi, Jia; Xu, Lin; Yang, Yaling; Zuo, Lei

    2018-04-01

    Lifejacket is an indispensable life-saving equipment for ships and airplanes. Traditional lifejacket is designed to prevent human from drowning. However, the water temperature is usually low, especially in winter, which significantly reduces the human body temperature and leads to death. Meanwhile, power is critical for drowning people to use emergency communication equipment. This paper proposed an ocean wave powered lifejacket using 2DOF floating boards to provide both buoyance and electricity for drowning people. Hence, they can use this continuous electric power to keep key body warm and send distress signal. This lifejacket is featured with two 2DOF floating boards and the mechanical motion rectifier (MMR) can convert the 2-DOF motions to the unidirectional rotation of generator. The design principle is illustrated and the dynamic modelling for the 2-DOF motions has been analyzed. Bench test and lake test have been conducted to validate the design concept.

  19. Performance of a direct drive hydro turbine for wave power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y-H; Kim, C-G [Division of Mechanical and Information Engineering, Korea Maritime University Dongsam-dong 1, Youngdo-ku, Busan, 606-791 (Korea, Republic of); Choi, Y-D; Kim, I-S [Department of Mechanical Engineering, Mokpo National University Muan-ro 560, Chunggye-myun, Jeonnam, 534-729 (Korea, Republic of); Hwang, Y-C, E-mail: lyh@hhu.ac.k [R and D Institute, Shinhan Precision Co. Ltd. Gomo-ri 313, Jinle-myun, Kimhae, 621-881 (Korea, Republic of)

    2010-08-15

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in both cases of with wave and no wave conditions. As the turbine performance is influenced considerably by the wave condition, designed point of the turbine should be determined according to the wave condition at an expected installation site. Most of the output power generates at the runner passage of the Stage 2.

  20. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  1. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  2. Open-Ocean and Coastal Properties of Recent Major Tsunamis

    Science.gov (United States)

    Rabinovich, A.; Thomson, R.; Zaytsev, O.

    2017-12-01

    The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).

  3. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  4. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    gradient in the upper ocean. This strengthens the geostrophically balanced westward currents in both side of the equatorial wave-guide (within 5 degree bands). Once these currents reach the western Pacific coast, they feed the Equatorial undercurrent (EUC...

  5. Wind speed, wind direction, air temperature, wave energy spectra, significant wave height, dominant wave period and direction, peak wave period and direction, currents, temperature, conductivity, pressure, sigma-theta, river level, sonar readings, and backscatter data collected at Myrtle Beach in the North Atlantic Ocean from instruments deployed on MOORINGS using platforms NOAA Ship NANCY FOSTER and RV DAN MOORE from 2003-10-01 to 2004-05-01 (NODC Accession 0066109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bottom current, wave and associated observations were collected as part of a larger study to understand the physical processes that control the transport of...

  6. The oceanic tides in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. Genco

    Full Text Available The finite element ocean tide model of Le Provost and Vincent (1986 has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski's solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.

  7. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  8. Modeling the SAR Signature of Nonlinear Internal Waves

    National Research Council Canada - National Science Library

    Lettvin, Ellen E

    2008-01-01

    Nonlinear Internal Waves are pervasive globally, particularly in coastal waters. The currents and displacements associated with internal waves influence acoustic propagation and underwater navigation, as well as ocean transport and mixing...

  9. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  10. Forecasting Water Waves and Currents: A Space-time Approach

    NARCIS (Netherlands)

    Ambati, V.R.

    2008-01-01

    Forecasting water waves and currents in near shore and off shore regions of the seas and oceans is essential to maintain and protect our environment and man made structures. In wave hydrodynamics, waves can be classified as shallow and deep water waves based on its water depth. The mathematical

  11. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2016-08-01

    Full Text Available In this paper, a semi-empirical algorithm for significant wave height (Hs and mean wave period (Tmw retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE of Hs with a 18.6% of scatter index (SI and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

  12. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from MOANA WAVE in the North Pacific Ocean and Philippine Sea from 1989-02-06 to 1989-05-19 (NCEI Accession 0157429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157429 includes chemical, discrete sample, physical and profile data collected from MOANA WAVE in the North Pacific Ocean and Philippine Sea from...

  13. Unified Approach of Unmanned Surface Vehicle Navigation in Presence of Waves

    Directory of Open Access Journals (Sweden)

    Oren Gal

    2011-01-01

    Full Text Available Most of the present work for unmanned surface vehicle (USV navigation does not take into account environmental disturbances such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves' formulation with the probabilistic velocity obstacle (PVO method for autonomous navigation. A simple navigation algorithm is presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and obstacles avoidance is introduced.

  14. Wave-particle interaction in the Faraday waves.

    Science.gov (United States)

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  15. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  16. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    Science.gov (United States)

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  17. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    Science.gov (United States)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  18. Wave and Wind Model Performance Metrics Tools

    Science.gov (United States)

    Choi, J. K.; Wang, D. W.

    2016-02-01

    Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base

  19. Mediterranea Forecasting System: a focus on wave-current coupling

    Science.gov (United States)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  20. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  1. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  2. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    of sinusoidal component waves; a consequent idea arising out of Fourier analysis. It is hypothesised that a sea state which is always nonlinear to various degrees is a result of interaction, both linear and nonlinear, between nonlinear component waves...

  3. Meteorite impact in the ocean

    Science.gov (United States)

    Strelitz, R.

    1979-01-01

    In the present study, the dynamic of hypervelocity impacts and crater formation in water are examined with allowance for the unique properties of water. More precisely, the transient crater calculated is permitted to relax and act as a source of oceanic surface waves.

  4. Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator

    Science.gov (United States)

    Bravo, A.

    2017-12-01

    Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.

  5. Efficient computations of wave loads on offshore structures

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp

    -toolbox OpenFoam R, the fully nonlinear potential flow solver OceanWave3D and finally a fully nonlinear domain decomposed solver, which was developed as part of this project. In the domain decomposed solver, the outer wave field is described by the potential flow solver, whereas the inner wave field...

  6. The formation and fate of internal waves in the South China Sea

    Science.gov (United States)

    Alford, Matthew H.; Peacock, Thomas; MacKinnon, Jennifer A.; Nash, Jonathan D.; Buijsman, Maarten C.; Centuroni, Luca R.; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M.; Fringer, Oliver B.; Fu, Ke-Hsien; Gallacher, Patrick C.; Graber, Hans C.; Helfrich, Karl R.; Jachec, Steven M.; Jackson, Christopher R.; Klymak, Jody M.; Ko, Dong S.; Jan, Sen; Johnston, T. M. Shaun; Legg, Sonya; Lee, I.-Huan; Lien, Ren-Chieh; Mercier, Matthieu J.; Moum, James N.; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I.; Pinkel, Robert; Rainville, Luc; Ramp, Steven R.; Rudnick, Daniel L.; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L.; St Laurent, Louis C.; Venayagamoorthy, Subhas K.; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J.; Paluszkiewicz, Theresa; (David) Tang, Tswen-Yung

    2015-05-01

    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

  7. Simulations of short-crested harbour waves with variational Boussinesq modelling

    NARCIS (Netherlands)

    Adytia, D.

    2014-01-01

    Waves propagating from the deep ocean to the coast show large changes in wave height, wave length and direction. The challenge to simulate the essential wave characteristics is in particular to model the speed and nonlinear interaction correctly. All these physical phenomena are present, but hidden,

  8. NODC Standard Format NOS Coastal Wave Program (F182) Data (1979-1983) (NODC Accession 0014203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type was designed for analyzed wave data originating from the National Ocean Service (NOS) Coastal Wave Program. The data are organized into 3 record...

  9. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  10. A numerical study of the wave shoaling effect on wind-wave momentum flux

    Science.gov (United States)

    Hao, Xuanting; Shen, Lian

    2017-11-01

    Momentum transfer between wind and waves is crucial to many physical processes in air-sea interactions. For decades, there has been a number of observational evidence that the surface roughness in the nearshore region is notably higher than in the open sea. In order to explain the mechanism behind this important phenomenon, in particular the wave shoaling effect on surface roughness, we conduct a series of numerical experiments using the wind-wave module of WOW (Wave-Ocean-Wind), a high-fidelity computational framework developed in house. We use prescribed monochromatic waves with linear shoaling effect incorporated, while the wind field is simulated using wall-resolved large-eddy simulation. A comparison between a shallow water wave case and deep water wave cases shows remarkably stronger wave effects on the wind for the former. Detailed analyses show that the increased surface roughness is closely associated with the increased form drag that is mainly due to the reduced wave age in wave shoaling.

  11. Assessing the performance of wave breaking parameterizations in shallow waters in spectral wave models

    Science.gov (United States)

    Lin, Shangfei; Sheng, Jinyu

    2017-12-01

    Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.

  12. Developing Malaysian Ocean Wave Database Using Satellite

    National Research Council Canada - National Science Library

    Yaakob, Omar; Zainudin, Norazimar; Samian, Yahya; Malik, Adi M; Palaraman, Robiahtul A

    2004-01-01

    Correct wave data is a very important input to predict the performances of the marine vehicles and structures at preliminary design stages particularly regarding safety effectiveness and comfort of passengers and crews...

  13. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  14. Seasonality of P wave microseisms from NCF-based beamforming using ChinArray

    Science.gov (United States)

    Wang, Weitao; Gerstoft, Peter; Wang, Baoshan

    2018-06-01

    Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.

  15. Spinal Cord Injuries in Wave-Riding Sports: The Influence of Environmental and Sport-Specific Factors.

    Science.gov (United States)

    Falconi, Audrey; Flick, David; Ferguson, Jason; Glorioso, John E

    2016-01-01

    Spinal cord injury is a nonfatal, catastrophic consequence of wave-riding sports. With surfing at the core, a multitude of activities have evolved that attempt to harness the power of ocean waves. The unique qualities of each wave-riding sport, in combination with the environmental factors of the ocean, define the risk for potential injuries. As wave-riding sports have become more advanced, athletes continue to push physical barriers. Taller waves are attempted while incorporating aerial maneuvers, all without protective equipment.

  16. Multi-directional random wave interaction with an array of cylinders

    DEFF Research Database (Denmark)

    Ji, Xinran; Liu, Shuxue; Bingham, Harry B.

    2015-01-01

    Based on the linear theory of wave interaction with an array of circular bottom-mounted vertical cylinders, systematic calculations are made to investigate the effects of the wave directionality on wave loads in short-crested seas. The multi-directional waves are specified using a discrete form...... of the Mitsuyasu-type spreading function. The time series of multi-directional wave loads, including both the wave run-up and wave force, can be simulated. The effect of wave directionality on the wave run-up and wave loading on the cylinders is investigated. For multi-directional waves, as the distribution...

  17. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  18. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    Wells, N.

    1986-01-01

    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  19. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  20. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  1. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  2. Modeling aspects of wave kinematics in offshore structures dynamics

    International Nuclear Information System (INIS)

    Spanos, P.D.; Ghanem, R.; Bhattacharjee, S.

    1993-01-01

    Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response of a simple model of a guyed tower

  3. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    NARCIS (Netherlands)

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we

  4. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array

    Science.gov (United States)

    Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor’s respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person’s head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors. PMID:27073860

  5. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  6. Sea level variability in the eastern tropical Pacific as observed by TOPEX and Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean Experiment

    Science.gov (United States)

    Giese, Benjamin S.; Carton, James A.; Holl, Lydia J.

    1994-01-01

    Sea surface height measurements from the TOPEX altimeter and dynamic height from Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean (TOGA TAO) moorings are used to explore sea level variability in the northeastern tropical Pacific Ocean. Afetr the annual harmonic is removed, there are two distinct bands of variability: one band is centered at 5 deg N to 7 deg N and extends from 165 deg W to 110 deg W, and the other band is centered at 10 deg N to 12 deg N and extends from 120 deg W to the coast of Central America. The correspondence between the two independent observation data sets at 5 deg N is excellent with correlations of about 90%. The variability at 5 deg-7 deg N is identified as instability waves formed just south of the North Equatorial Countercurrent during the months of July and March. Wave amplitudes are largest in the range of longitudes 160 deg-140 deg W, where they can exceed 10 cm. The waves disappear when the equatorial current system weakens, during the months of March and May. The variability at 11 deg N in 1993 has the form of anticyclone eddies. These eddies propagate westward at a speed of about 17 cm/s, consistent with the dispersion characteristics of free Rossby waves. The eddies are shown to have their origin near the coast of central America during northern fall and winter. Their formation seems to result from intense wind bursts across the Gulfs of Tehuantepec and Papagayo which generate strong anticyclonic ocean eddies. The disappearance of the eddies in the summer of 1993 coincidences with the seasonal intensification of equatorial currents. Thus the variability at 11 deg N has very little overlap in time with the variability at 5 deg N.

  7. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes

    2016-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...

  8. On the instability of wave-fields with JONSWAP spectra to inhomogeneous disturbances, and the consequent long-time evolution

    Science.gov (United States)

    Ribal, A.; Stiassnie, M.; Babanin, A.; Young, I.

    2012-04-01

    The instability of two-dimensional wave-fields and its subsequent evolution in time are studied by means of the Alber equation for narrow-banded random surface-waves in deep water subject to inhomogeneous disturbances. A linear partial differential equation (PDE) is obtained after applying an inhomogeneous disturbance to the Alber's equation and based on the solution of this PDE, the instability of the ocean wave surface is studied for a JONSWAP spectrum, which is a realistic ocean spectrum with variable directional spreading and steepness. The steepness of the JONSWAP spectrum depends on γ and α which are the peak-enhancement factor and energy scale of the spectrum respectively and it is found that instability depends on the directional spreading, α and γ. Specifically, if the instability stops due to the directional spreading, increase of the steepness by increasing α or γ can reactivate it. This result is in qualitative agreement with the recent large-scale experiment and new theoretical results. In the instability area of α-γ plane, a long-time evolution has been simulated by integrating Alber's equation numerically and recurrent evolution is obtained which is the stochastic counterpart of the Fermi-Pasta-Ulam recurrence obtained for the cubic Schrödinger equation.

  9. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    Science.gov (United States)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  10. The Nazaré Wave: a trigger for learning

    Science.gov (United States)

    Carapuço, M. M.; Cunha, A.; Taborda, R.; Andrade, C.; Maurício, C.

    2016-02-01

    Ocean management faces relevant sustainability challenges. It is consensual that a wiser governance of the oceans can only be achieved by the involvement of all key-players. In this scope scientists, as knowledge generators, have a vital role in ocean governance. Scientists are therefore called to share their knowledge outside the scientific community. This effort, framed under the Responsible Research and Innovation approach, will contribute to a more informed society, which in turn will be able to make better decisions. However, communicating science is a challenging task as is often necessary to inspire the audience and assure their receptivity, which may not be tuned to scientific contents. The present work focuses on the importance of the use of communication triggers in scientific knowledge transfer in ocean sciences. In this work the Nazaré wave - the highest wave ever surfed - was used as the communication trigger as it is a very popular subject with the media and is given great media coverage. Results show that the use of this subject can be an excellent trigger for the transfer of scientific knowledge on basic wave dynamics to the students. Additionally to the theme itself, it was found that short scientific animation videos voiced-over by students performed very well as the communication channel. The scripts used were written by scientists and commented by the students, previously to recording, assuring that the adequate language was used, and that the essential principles and fundamental concepts of waves reach the audience. Results of using the Nazaré´ wave as a communication trigger have been extremely positive and resulted in a well-succeeded engagement platform.

  11. Performance of ERA-Interim wave data in the nearshore waters around India

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Naseef, T.M.

    Bulk wave parameters, such as wave height and wave period, are required for engineering and environmental applications. In this study, measured wave data from six shallow-water locations in the data-sparse north Indian Ocean are used to assess...

  12. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  13. Mathematical model of snake-type multi-directional wave generation

    Science.gov (United States)

    Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan

    2018-01-01

    Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.

  14. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  15. Temperature fluctuations in the Atlantic Ocean

    International Nuclear Information System (INIS)

    Hjoello, Solfrid Saetre

    2005-01-01

    The article discusses the temperature fluctuations in connection with drought in Africa, the climate in North America, the European heat waves and the frequent tropical hurricanes in the Atlantic Ocean. Problems with climate modelling and some pollution aspects are mentioned

  16. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept

    Science.gov (United States)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping

    2018-05-01

    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  17. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  18. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  19. Breaking phase focused wave group loads on offshore wind turbine monopiles

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Dixen, M.

    2016-01-01

    The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled...

  20. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  1. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  2. NOAA NDBC SOS - waves

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...

  3. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...

  4. The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

    KAUST Repository

    Langodan, Sabique

    2016-12-01

    Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind

  5. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  6. Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal

    Science.gov (United States)

    Sreenivas, P.; Gnanaseelan, C.; Prasad, K. V. S. R.

    2012-01-01

    Zonally oscillating seasonal equatorial winds generate pairs of upwelling and downwelling Kelvin waves in the Equatorial Indian Ocean, which then advance in to the coastal Bay of Bengal. The first (second) equatorial upwelling Kelvin wave has its origin in the western (eastern) basin, whereas the downwelling Kelvin waves originate in the central basin. The observed interannual variability of these Kelvin waves is highly governed by the associated zonal wind changes in the central and eastern equatorial Indian Ocean during the anomalous years. The second downwelling (upwelling) Kelvin wave is absent (weak) during El Niño (La Niña) years, whereas the second upwelling Kelvin wave strengthened during El Niño years both in the equatorial Indian Ocean and Bay of Bengal. The large scale off equatorial Rossby waves occasionally feedback the equatorial Kelvin waves, which then strengthen the Bay of Bengal coastal Kelvin waves. The coastal Kelvin waves and the associated radiated Rossby waves from east play a dominant role in the mesoscale eddy generation in Bay of Bengal. The analysis of cyclogenesis characteristics in the bay over the past 65 years revealed that the active (suppressed) phases of cyclogenesis are coinciding with the downwelling (upwelling) planetary waves which influence the cyclone heat potential by altering the thermocline depth.

  7. Synthesizing Waves from Animated Height Fields

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Söderström, Andreas; Bridson, Robert

    2013-01-01

    Computer animated ocean waves for feature films are typically carefully choreographed to match the vision of the director and to support the telling of the story. The rough shape of these waves is established in the previsualization (previs) stage, where artists use a variety of modeling tools wi...... of deep water waves), and compute a physically reasonable velocity field of the water analytically. These properties are demonstrated with several examples, including a previs scene from a visual effects production environment....

  8. Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model

    Science.gov (United States)

    Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.

    2018-02-01

    We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is

  9. Unexpected difficulties in randomizing patients in a surgical trial: A prospective study comparing extracorporeal shock wave lithotripsy with open cholecystectomy

    NARCIS (Netherlands)

    P.W. Plaisier; M.Y. Berger (Marjolein); R.L. van der Hul (René); H.G. Nijs (Huub); R. den Toom (Rene); O.T. Terpstra (Onno); H.A. Bruining (Hajo); S.M. Strasberg (S.)

    1994-01-01

    textabstractShortly after extracorporeal shock wave lithotripsy (ESWL) was introduced as a promising new treatment modality for gallstone disease, a randomized controlled study was performed to assess the cost-effectiveness of ESWL compared to open cholecystectomy, the gold standard. During the

  10. GOW2.0: A global wave hindcast of high resolution

    Science.gov (United States)

    Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E

  11. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    Science.gov (United States)

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  12. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  13. Two dimensional estimates from ocean SAR images

    Directory of Open Access Journals (Sweden)

    J. M. Le Caillec

    1996-01-01

    Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete

  14. Modelling guided waves in the Alaskan-Aleutian subduction zone

    Science.gov (United States)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  15. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas

    Science.gov (United States)

    Rixen, M.; Ferreira-Coelho, E.; Signell, R.

    2008-01-01

    Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).

  16. Internal wave turbulence near a Texel beach.

    Directory of Open Access Journals (Sweden)

    Hans van Haren

    Full Text Available A summer bather entering a calm sea from the beach may sense alternating warm and cold water. This can be felt when moving forward into the sea ('vertically homogeneous' and 'horizontally different', but also when standing still between one's feet and body ('vertically different'. On a calm summer-day, an array of high-precision sensors has measured fast temperature-changes up to 1 °C near a Texel-island (NL beach. The measurements show that sensed variations are in fact internal waves, fronts and turbulence, supported in part by vertical stable stratification in density (temperature. Such motions are common in the deep ocean, but generally not in shallow seas where turbulent mixing is expected strong enough to homogenize. The internal beach-waves have amplitudes ten-times larger than those of the small surface wind waves. Quantifying their turbulent mixing gives diffusivity estimates of 10(-4-10(-3 m(2 s(-1, which are larger than found in open-ocean but smaller than wave breaking above deep sloping topography.

  17. An Optimization Method for Virtual Globe Ocean Surface Dynamic Visualization

    Directory of Open Access Journals (Sweden)

    HUANG Wumeng

    2016-12-01

    Full Text Available The existing visualization method in the virtual globe mainly uses the projection grid to organize the ocean grid. This special grid organization has the defects in reflecting the difference characteristics of different ocean areas. The method of global ocean visualization based on global discrete grid can make up the defect of the projection grid method by matching with the discrete space of the virtual globe, so it is more suitable for the virtual ocean surface simulation application.But the available global discrete grids method has many problems which limiting its application such as the low efficiency of rendering and loading, the need of repairing grid crevices. To this point, we propose an optimization for the global discrete grids method. At first, a GPU-oriented multi-scale grid model of ocean surface which develops on the foundation of global discrete grids was designed to organize and manage the ocean surface grids. Then, in order to achieve the wind-drive wave dynamic rendering, this paper proposes a dynamic wave rendering method based on the multi-scale ocean surface grid model to support real-time wind field updating. At the same time, considering the effect of repairing grid crevices on the system efficiency, this paper presents an efficient method for repairing ocean surface grid crevices based on the characteristics of ocean grid and GPU technology. At last, the feasibility and validity of the method are verified by the comparison experiment. The experimental results show that the proposed method is efficient, stable and fast, and can compensate for the lack of function of the existing methods, so the application range is more extensive.

  18. UNEXPECTED DIFFICULTIES IN RANDOMIZING PATIENTS IN A SURGICAL TRIAL - A PROSPECTIVE-STUDY COMPARING EXTRACORPOREAL SHOCK-WAVE LITHOTRIPSY WITH OPEN CHOLECYSTECTOMY

    NARCIS (Netherlands)

    PLAISIER, PW; BERGER, MY; VANDERHUL, RL; NIJS, HGT; DENTOOM, R; TERPSTRA, OT; BRUINING, HA

    1994-01-01

    Shortly after extracorporeal shock wave lithotripsy (ESWL) was introduced as a promising new treatment modality for gallstone disease, a randomized controlled study was performed to assess the cost-effectiveness of ESWL compared to open cholecystectomy, the gold standard. During the performance of

  19. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  20. Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion

    KAUST Repository

    Tom, Nathan; Yeung, Ronald W.

    2015-01-01

    To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.

  1. Wave characteristics off Visakhapatnam coast during a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; AshokKumar, K.; Raju, N.S.N.

    CURRENT SCIENC E, VOL. 86, NO. 11, 10 JUNE 2004 *For correspondence. (e - mail: sanil@darya.nio.org) Wave characteristics off Visakhapatnam coast du r ing a cyclone V. Sanil Kumar*, K. Ashok Kumar and N. S. N. Raju Ocean Engineering Division.... Wave period The variation of average wave period ( T 02 ), period corr e- sponding to maximum wave height ( T H max ) and wave p e- riod corresponding to maximum spectral energy ( T p ) during the observation period are shown in Figure 4. Du r- i ng...

  2. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Phytoflash

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Phytoflash. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that...

  3. Solitary waves in fluids

    CERN Document Server

    Grimshaw, RHJ

    2007-01-01

    After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...

  4. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.

  5. Remote sensing signatures of oceanic whitecap at different wavelengths

    Science.gov (United States)

    Anguelova, M. D.; Dowgiallo, D. J.; Smith, G. B.; Means, S. L.; Savelyev, I.; Frick, G. M.; Snow, C. M.; Schindall, J. A.; Bobak, J. P.

    2012-12-01

    Oceanic whitecaps are the most direct surface expression of breaking wind waves in the ocean. Whitecap fraction quantifies the breaking events and is thus a suitable forcing variable for parameterizing and predicting various air-sea interaction processes. To this end, we have compiled a database of whitecap fraction W from satellites-borne microwave radiometric observations. These observations provide the total W including foam generated during active breaking of wind-driven waves and residual foam left behind by these breaking waves. However, the whitecap fraction associated with the actively breaking waves WA is needed for dynamic air-sea processes in the upper ocean such as turbulent mixing, gas exchange, ocean ambient noise, and spray-mediated intensification of tropical storms. To parameterize such processes, a database of WA separate from W is needed. We pursue this separation of WA from W by combining the Phillips concept of breaking wave statistics which connects WA with the energy dissipation rate of breaking waves and parametric estimates of energy dissipation from wave spectra measured from buoys. We seek additional physical understanding of, and experimental support for, this separation with a multi-instrumental field campaign. The instrumentation deployed includes a suite of sensors recording the whitecaps and breaking waves on the surface over wide range of the electromagnetic spectrum: visible (video cameras), infrared (IR camera), and microwave (radiometers at two frequencies, 10 GHz and 37 GHz). An acoustic array with three nested-aperture array at frequencies up to 2.4 kHz and aerosol/particle counter provide data for the bubbles generated beneath and sea spray produced above the whitecaps. We also deployed a transmitter horn to collect data useful to asses Radio Frequency Interference (RFI), which affects the collection and accuracy of satellite-based data. Various auxiliary data such as wind speed, air temperature, humidity, wave field, and

  6. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  7. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  8. Electrical design for ocean wave and tidal energy systems

    CERN Document Server

    Alcorn, Raymond

    2013-01-01

    Provides an electrical engineering perspective on offshore power stations and their integration to the grid. With contributions from a panel of leading international experts, this book is essential reading for those working in ocean energy development and renewable energy.

  9. Acoustic-gravity waves in atmospheric and oceanic waveguides.

    Science.gov (United States)

    Godin, Oleg A

    2012-08-01

    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  10. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Weather. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops...

  11. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Telemetry. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops...

  12. Leading Wave Amplitude of a Tsunami

    Science.gov (United States)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  13. Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model

    Science.gov (United States)

    2016-04-19

    Bateman c , Joseph Calantoni c , James T. Kirby b a NRL Code 7320, 1009 Balch Blvd, Stennis Space Center, MS 39529 USA b Center for Applied Coastal...wave prop- agation. J. Waterway Port Coast. Ocean Eng. 119, 618–638 . rzech, M., Shi, F., Calantoni, J., Bateman , S., Veeramony, J., 2014. Small-scale...F., Bateman , S., Calantoni, J., 2016. Modeling small- scale physics of waves and ice in the MIZ. AGU 2016 Ocean Sciences Meeting, Session 9483

  14. Investigation on the possibility of extracting wave energy from the Texas coast

    Science.gov (United States)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  15. Application of CFD based wave loads in aeroelastic calculations

    DEFF Research Database (Denmark)

    Schløer, Signe; Paulsen, Bo Terp; Bredmose, Henrik

    2014-01-01

    Two fully nonlinear irregular wave realizations with different significant wave heights are considered. The wave realizations are both calculated in the potential flow solver Ocean-Wave3D and in a coupled domain decomposed potential-flow CFD solver. The surface elevations of the calculated wave...... domain decomposed potentialflow CFD solver result in different dynamic forces in the tower and monopile, despite that the static forces on a fixed monopile are similar. The changes are due to differences in the force profiles and wave steepness in the two solvers. The results indicate that an accurate...

  16. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    Science.gov (United States)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  17. Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume; Bonnefoy, Félicien

    2017-11-01

    This study investigates a wave-breaking onset criteria to be implemented in the non-linear potential flow solver HOS-NWT. The model is a computationally efficient, open source code, which solves for the free surface in a numerical wave tank using the High-Order Spectral (HOS) method. The goal of this study is to determine the best method to identify the onset of random single and multiple breaking waves over a large domain at the exact time they occur. To identify breaking waves, a breaking onset criteria based on the ratio of local energy flux velocity to the local crest velocity, introduced by Barthelemy et al. (2017) is selected. The breaking parameter is uniquely applied in the numerical model in that calculations of the breaking onset criteria ratio are not made only at the location of the wave crest, but at every point in the domain and at every time step. This allows the model to calculate the onset of a breaking wave the moment it happens, and without knowing anything about the wave a priori. The application of the breaking criteria at every point in the domain and at every time step requires the phase velocity to be calculated instantaneously everywhere in the domain and at every time step. This is achieved by calculating the instantaneous phase velocity using the Hilbert transform and dispersion relation. A comparison between more traditional crest-tracking techniques shows the calculation of phase velocity using Hilbert transform at the location of the breaking wave crest provides a good approximation of crest velocity. The ability of the selected wave breaking criteria to predict single and multiple breaking events in two dimensions is validated by a series of large-scale experiments. Breaking waves are generated by energy focusing and modulational instability methods, with a wide range of primary frequencies. Steep irregular waves which lead to breaking waves, and irregular waves with an energy focusing wave superimposed are also generated. This set of

  18. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, MOSE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, MOSE. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops near...

  19. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, AIS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, AIS. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops near...

  20. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, CTD

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, CTD. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops near...

  1. Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear

    Directory of Open Access Journals (Sweden)

    H. Z. Baumert

    2009-03-01

    Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.

    The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E2. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E1. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.

  2. Synthesis study of an erosion hot spot, Ocean Beach, California

    Science.gov (United States)

    Barnard, Patrick L.; Hansen, Jeff E.; Erikson, Li H.

    2012-01-01

    A synthesis of multiple coastal morphodynamic research efforts is presented to identify the processes responsible for persistent erosion along a 1-km segment of 7-km-long Ocean Beach in San Francisco, California. The beach is situated adjacent to a major tidal inlet and in the shadow of the ebb-tidal delta at the mouth of San Francisco Bay. Ocean Beach is exposed to a high-energy wave climate and significant alongshore variability in forcing introduced by varying nearshore bathymetry, tidal forcing, and beach morphology (e.g., beach variably backed by seawall, dunes, and bluffs). In addition, significant regional anthropogenic factors have influenced sediment supply and tidal current strength. A variety of techniques were employed to investigate the erosion at Ocean Beach, including historical shoreline and bathymetric analysis, monthly beach topographic surveys, nearshore and regional bathymetric surveys, beach and nearshore grain size analysis, two surf-zone hydrodynamic experiments, four sets of nearshore wave and current experiments, and several numerical modeling approaches. Here, we synthesize the results of 7 years of data collection to lay out the causes of persistent erosion, demonstrating the effectiveness of integrating an array of data sets covering a huge range of spatial scales. The key findings are as follows: anthropogenic influences have reduced sediment supply from San Francisco Bay, leading to pervasive contraction (i.e., both volume and area loss) of the ebb-tidal delta, which in turn reduced the regional grain size and modified wave focusing patterns along Ocean Beach, altering nearshore circulation and sediment transport patterns. In addition, scour associated with an exposed sewage outfall pipe causes a local depression in wave heights, significantly modifying nearshore circulation patterns that have been shown through modeling to be key drivers of persistent erosion in that area.

  3. Magma ocean formation due to giant impacts

    Science.gov (United States)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

  4. Ocean biogeochemistry modeled with emergent trait-based genomics

    Science.gov (United States)

    Coles, V. J.; Stukel, M. R.; Brooks, M. T.; Burd, A.; Crump, B. C.; Moran, M. A.; Paul, J. H.; Satinsky, B. M.; Yager, P. L.; Zielinski, B. L.; Hood, R. R.

    2017-12-01

    Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and “omics” data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.

  5. Assessment of current effect on waves in a semi-enclosed basin

    Science.gov (United States)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2012-04-01

    The wave-current interaction process in the semi-enclosed Adriatic Sea is studied using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, which is used to exchange data fields between the ocean model ROMS (Regional Ocean Modeling System) and the wave model SWAN (Simulating WAves Nearshore). The 2-way data transfer between circulation and wave models is synchronous with ROMS providing current fields, free surface elevation, and bathymetry to SWAN. In particular, the 3-D current profiles are averaged using a formulation that integrates the near-surface velocity over a depth controlled by the spectral mean wave number. This coupling procedure is carried out up to coastal areas by means of an offline grid nesting. The parent grid covers the whole Adriatic Sea and has a horizontal resolution of 2.0 km, whereas the child grid resolution increases to 0.5 km but it is limited to the northern Adriatic Sea (Gulf of Venice), where the current effect on waves is investigated. The most frequent winds blowing on the Adriatic Sea are the so-called Bora and Sirocco which cause high waves in the Adriatic Sea, although Bora waves are generally fetch-limited. In fact, Bora winds blow orthogonal to the main basin axis (approximately aligned with the NW-SE direction), while Sirocco has large spatial scale being a southeasterly wind. For the numerical simulations, the meteorological forcings are provided by the operational meteorological model COSMO-I7, which is the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium. During the analysis period, the simulated wind, current and wave are compared with observations at the ISMAR oceanographic tower located off the Venice littoral. Wave heights and sea surface winds are also compared with satellite-derived data. To account for the variability of sea states during a storm, the expected maximum individual wave height in a sea storm with a given history is also

  6. Significant wave height retrieval from synthetic radar images

    NARCIS (Netherlands)

    Wijaya, Andreas Parama; van Groesen, Embrecht W.C.

    2014-01-01

    In many offshore activities radar imagery is used to observe and predict ocean waves. An important issue in analyzing the radar images is to resolve the significant wave height. Different from 3DFFT methods that use an estimate related to the square root of the signal-to-noise ratio of radar images,

  7. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  8. TWO- AND THREE-DIMENSIONAL SIMULATIONS OF ASTEROID OCEAN IMPACTS

    Directory of Open Access Journals (Sweden)

    Michael Gittings

    2003-01-01

    Full Text Available We have performed a series of two-dimensional and three-dimensional simulations of asteroid impacts into an ocean using the SAGE code from Los Alamos National Laboratory and Science Applications International Corporation. The SAGE code is a compressible Eulerian hydrodynamics code using continuous adaptive mesh refinement for following discontinuities with a fine grid while treating the bulk of the simulation more coarsely. We have used realistic equations of state for the atmosphere, sea water, the oceanic crust, and the mantle. In two dimensions, we simulated asteroid impactors moving at 20 km/s vertically through an exponential atmosphere into a 5 km deep ocean. The impactors were composed of mantle material (3.32 g/cc or iron (7.8 g/cc with diameters from 250m to 10 km. In our three-dimensional runs we simulated asteroids of 1 km diameter composed of iron moving at 20 km/s at angles of 45 and 60 degrees from the vertical. All impacts, including the oblique ones, produce a large underwater cavities with nearly vertical walls followed by a collapse starting from the bottom and subsequent vertical jetting. Substantial amounts of water are vaporized and lofted high into the atmosphere. In the larger impacts, significant amounts of crustal and even mantle material are lofted as well. Tsunamis up to a kilometer in initial height are generated by the collapse of the vertical jet. These waves are initially complex in form, and interact strongly with shocks propagating through the water and the crust. The tsunami waves are followed out to 100 km from the point of impact. Their periods and wavelengths show them to be intermediate type waves, and not (in general shallow-water waves. At great distances, the waves decay as the inverse of the distance from the impact point, ignoring sea-floor topography. For all impactors smaller than about 2 km diameter, the impacting body is highly fragmented and its remains lofted into the stratosphere with the water

  9. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.

    2009-01-01

    When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain a bet...

  10. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    Energy Technology Data Exchange (ETDEWEB)

    LiVecchi, Albert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  11. South China Sea Wave Characteristics During Typhoon Muifa Passage in Winter 2004

    National Research Council Canada - National Science Library

    Chu, Peter C; Cheng, Kuo-Feng

    2008-01-01

    Ocean wave characteristics in the western Atlantic Ocean (Hurricane Region) to tropical cyclones have been investigated extensively, but not the regional seas in the western Pacific such as the South China Sea (Typhoon Region...

  12. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  13. On the probability of occurrence of rogue waves

    Directory of Open Access Journals (Sweden)

    E. M. Bitner-Gregersen

    2012-03-01

    Full Text Available A number of extreme and rogue wave studies have been conducted theoretically, numerically, experimentally and based on field data in the last years, which have significantly advanced our knowledge of ocean waves. So far, however, consensus on the probability of occurrence of rogue waves has not been achieved. The present investigation is addressing this topic from the perspective of design needs. Probability of occurrence of extreme and rogue wave crests in deep water is here discussed based on higher order time simulations, experiments and hindcast data. Focus is given to occurrence of rogue waves in high sea states.

  14. Kawase & McDermott revisited with a proper ocean model.

    Science.gov (United States)

    Jochum, Markus; Poulsen, Mads; Nuterman, Roman

    2017-04-01

    A suite of experiments with global ocean models is used to test the hypothesis that Southern Ocean (SO) winds can modify the strength of the Atlantic Meridional Overturning Circulation (AMOC). It is found that for 3 and 1 degree resolution models the results are consistent with Toggweiler & Samuels (1995): stronger SO winds lead to a slight increase of the AMOC. In the simulations with 1/10 degree resolution, however, stronger SO winds weaken the AMOC. We show that these different outcomes are determined by the models' representation of topographic Rossby and Kelvin waves. Consistent with previous literature based on theory and idealized models, first baroclinic waves are slower in the coarse resolution models, but still manage to establish a pattern of global response that is similar to the one in the eddy-permitting model. Because of its different stratification, however, the Atlantic signal is transmitted by higher baroclinic modes. In the coarse resolution model these higher modes are dissipated before they reach 30N, whereas in the eddy-permitting model they reach the subpolar gyre undiminished. This inability of non-eddy-permitting ocean models to represent planetary waves with higher baroclinic modes casts doubt on the ability of climate models to represent non-local effects of climate change. Ideas on how to overcome these difficulties will be discussed.

  15. Wavenumber Spectrum of Intermediate-Scale Ocean Surface Waves

    National Research Council Canada - National Science Library

    Hwang, Paul A

    2005-01-01

    ... (wavelengths between 0.02 and 6 m) under various sea-state conditions. The main result of the analysis is that the dependence of the dimensionless wave spectrum on the dimensionless wind friction velocity follows a power-law function...

  16. African Easterly Wave Climatology, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AEWC dataset was created using a new algorithm developed by researchers at Georgia Tech and represents the first attempt to produce a standard easterly wave...

  17. Extreme wave impacts on monopiles: Re-analysis of experimental data by a coupled CFD solver

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    Two different numerical models, OceanWave3D and a coupled solver, OceanWave3D-OpenFOAM (Waves2Foam), are used to reproduce extreme events in one sea state. The events are chosen as, the measured event that generates the largest peak moment (exceedance probability of 0.05%) and one event with a sl...... agreement with the measurements. The secondary load cycles are observed in the measured force and bending moment time series and the reproduced times series using OpenFOAM....

  18. Airborne Optical Remote Sensing of Ocean Surface Current Variability

    Science.gov (United States)

    Anderson, S. P.; Zuckerman, S.; Stuart, G.

    2016-02-01

    Accurate and timely knowledge of open ocean surface currents are needed for a variety of engineering and emergency missions, as well as for improving scientific understanding of ocean dynamics. This paper presents surface current observations from a new airborne current measurement capability called the Remote Ocean Current Imaging System (ROCIS). ROCIS exploits space-time processing of airborne ocean wave imagery to produce real-time maps of surface currents every 1 km along the flight track. Post-processing of the data allows for more in depth sensitivity studies than can be undertaken with the real-time measurements alone, providing swaths of current retrievals at higher spatial resolutions. Currents can be calculated on scales down to 100 m, across swaths 3 km wide, along the entire flight path. Here, we report on results for multiple ROCIS data collection flights over the Gulf of Mexico conducted in 2012, 2014 and 2015. We show comparisons to in situ current measurements, explore performance as a function of altitude, dwell, wind speed, and wave height, and discuss sources of error. We present examples of current retrievals revealing mesoscale and submesoscale variability. Lastly, we present horizontal kinetic energy spectra from select flights covering a range of spatial scales from hundreds of meters to hundreds of kilometers.

  19. The effect of neurofeedback on a brain wave and visual perception in stroke: a randomized control trial.

    Science.gov (United States)

    Cho, Hwi-Young; Kim, Kitae; Lee, Byounghee; Jung, Jinhwa

    2015-03-01

    [Purpose] This study investigated a brain wave and visual perception changes in stroke subjects using neurofeedback (NFB) training. [Subjects] Twenty-seven stroke subjects were randomly allocated to the NFB (n = 13) group and the control group (n=14). [Methods] Two expert therapists provided the NFB and CON groups with traditional rehabilitation therapy in 30 thirst-minute sessions over the course of 6 weeks. NFB training was provided only to the NFB group. The CON group received traditional rehabilitation therapy only. Before and after the 6-week intervention, a brain wave test and motor free visual perception test (MVPT) were performed. [Results] Both groups showed significant differences in their relative beta wave values and attention concentration quotients. Moreover, the NFB group showed a significant difference in MVPT visual discrimination, form constancy, visual memory, visual closure, spatial relation, raw score, and processing time. [Conclusion] This study demonstrated that NFB training is more effective for increasing concentration and visual perception changes than traditional rehabilitation. In further studies, detailed and diverse investigations should be performed considering the number and characteristics of subjects, and the NFB training period.

  20. Yanai waves in the western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, A.; Shankar, D.; McCreary, J.P.; Vinayachandran, P.N.

    ; interference between the interior and boundary responses results in a complex surface pattern that propagates eastward and has nodes. Yanai waves are also forced by instabilities primarily during June/July in a region offshore from the western boundary (52...

  1. SAR Wave Mode Processing- Improvements Towards Sentinel-1 Mission

    Science.gov (United States)

    Johnsen, Harald; Collard, Fabrice

    2013-03-01

    The Sentinel-1 level-2 (L2) ocean product (OCN) has been designed to deliver geophysical parameters related to the wind, waves and surface velocity to a large panel of end-users. Each L2 OCN product contains up to three geophysical components: the radial velocity (RVL), the ocean surface wind field (OWI) and the ocean swell wave spectra (OSW) components. The Sentinel-1 Level 2 OSW component is the two-dimensional ocean surface wave spectra estimated from a Sentinel-1 Level 1 Single-Look Complex (SLC) SAR image by inversion of the corresponding image cross-spectra. The cross spectra are computed by performing inter-looking in azimuth followed by co- and cross-spectra estimation among the detected individual look images. The image from which a single OSW is computed can be a SLC vignette from the WV mode, or a co-polarized subimage extracted from a SM SLC image. The experiences with ASAR have shown the need to improve the modulation transfer functions (MTF), especially the wind dependency in the RAR MTF. The OSW processing scheme is an upgraded version of the ASAR WM Level 2 processing accounting for these findings. The Sentinel-1 Level 2 OSW processing has been evaluated using ASAR WM and ASAR SM data, and preliminary key results are presented in this paper.

  2. A review of ocean energy converters, with an Australian focus

    Directory of Open Access Journals (Sweden)

    Chris Knight

    2014-08-01

    Full Text Available The requirement to move away from carbon based fossil fuels has led to a renewed interest in unconventional energy sources. Of interest in this article are ocean waves and current and tidal flows. This paper reviews the numerous options for ocean energy conversion systems that are currently available. A basic nomenclature for the variety of systems is utilized to classify the devices. A variety of issues including competing use, boating, fishing, commercial shipping and tourism are discussed with respect to impacts on and from ocean renewable energy.

  3. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Vialard, J.; Shenoi, S.S.C.; Mc; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R.

    Author version: Geophys. Res. Lett.: 36(14); 2009; doi:10.1029/2009GL038450; 5 pp Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation J. Vialard 1 2 , S.S.C Shenoi 2 , J.P. McCreary 3 , D. Shankar 2... involving both equatorial wave dynamics and coastal wave propagation around the perimeter of the northern Indian Ocean [McCreary et al., 1993]. The East India Coastal Current (EICC), for example, is strongly influenced by remote wind forcing from...

  4. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  5. Global ocean modeling on the Connection Machine

    International Nuclear Information System (INIS)

    Smith, R.D.; Dukowicz, J.K.; Malone, R.C.

    1993-01-01

    The authors have developed a version of the Bryan-Cox-Semtner ocean model (Bryan, 1969; Semtner, 1976; Cox, 1984) for massively parallel computers. Such models are three-dimensional, Eulerian models that use latitude and longitude as the horizontal spherical coordinates and fixed depth levels as the vertical coordinate. The incompressible Navier-Stokes equations, with a turbulent eddy viscosity, and mass continuity equation are solved, subject to the hydrostatic and Boussinesq approximations. The traditional model formulation uses a rigid-lid approximation (vertical velocity = 0 at the ocean surface) to eliminate fast surface waves. These waves would otherwise require that a very short time step be used in numerical simulations, which would greatly increase the computational cost. To solve the equations with the rigid-lid assumption, the equations of motion are split into two parts: a set of twodimensional ''barotropic'' equations describing the vertically-averaged flow, and a set of three-dimensional ''baroclinic'' equations describing temperature, salinity and deviations of the horizontal velocities from the vertically-averaged flow

  6. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM concept

    Directory of Open Access Journals (Sweden)

    F. Ardhuin

    2018-05-01

    Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  7. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    Science.gov (United States)

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  8. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    Science.gov (United States)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  9. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition

    Science.gov (United States)

    2017-03-30

    Golinval, 2002, Physical interpretation of the proper orthogonal modes using the singular value decomposition, Journal of Sound and Vibration, 249...complex and contain contributions from the environment (e.g., wind, waves, currents) as well as artifacts associated with electromagnetic (EM) (wave...Although there is no physical basis/ interpretation inherent to the method because it is purely a mathematical tool, there has been an increasing

  10. Projection of wave conditions in response to climate change: A community approach to global and regional wave downscaling

    Science.gov (United States)

    Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith

    2015-01-01

    Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.

  11. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  12. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    OpenAIRE

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we consider internal gravity waves at the lunar semidiurnal (M-2) tidal frequency, omega(M2). Profiles of N-2(z) (the quantity in the equations of motion) are computed using conductivity, temperature, and de...

  13. The use of a wave boundary layer model in SWAN

    DEFF Research Database (Denmark)

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  14. Underway pressure, temperature, and salinity data from the MOANA WAVE from the Pacific warm pool in support of the Coupled Ocean-Atmosphere Response Experiment (COARE) from 02 February 1993 to 21 February 1993 (NODC Accession 9600090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure, temperature, and salinity data were collected while underway from the MOANA WAVE from the Pacific warm pool. Data were collected in support of the Coupled...

  15. Ocean Research Enabled by Underwater Gliders.

    Science.gov (United States)

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  16. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  17. Preface "Nonlinear processes in oceanic and atmospheric flows"

    Directory of Open Access Journals (Sweden)

    E. García-Ladona

    2010-05-01

    Full Text Available Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.

  18. Doppler Frequency Shift in Ocean Wave Measurements: Frequency Downshift of a Fixed Spectral Wave Number Component by Advection of Wave Orbital Velocity

    National Research Council Canada - National Science Library

    Hwang, Paul

    2006-01-01

    ... at he expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...

  19. Rogue waves in shallow water

    Science.gov (United States)

    Soomere, T.

    2010-07-01

    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  20. Temperature profiles from XBT casts from the MOANA WAVE from the Toga Area - Pacific (30 N to 30 S) as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 1986-12-18 to 1987-03-01 (NODC Accession 8700129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the MOANA WAVE and other platforms in the Toga Area - Pacific (30 N to 30 S) from 18 December 1986 to 01...

  1. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  2. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  3. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  4. Wave transmission in mangrove forests

    NARCIS (Netherlands)

    Schiereck, G.J.; Booij, N.

    1995-01-01

    There is an increasing awareness of the role of mangrove forests in coastal ecosystems and coastal protection. At the transition between ocean and land, they have to absorb the energy that comes from the motion of the water. Little quantitative in formation is available, however, on wave

  5. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  6. The destructive impact of the rogue waves

    Science.gov (United States)

    Shamin, Roman

    2013-04-01

    In our talk rogue waves at the ocean will be considered. By means of numerical modeling dangerous impact of rogue waves on the ships and oil rigs is calculated. Cases when these waves can bring in accident are considered. Using statistics of emergence of waves (see [1]-[2]), it is possible to estimate risks in each case. These results can be used for safety of the ships and oil rigs from rogue waves. References [1] V.E. Zakharov, A.I. Dyachenko, R.V. Shamin. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y [2] V.E. Zakharov, R.V. Shamin. Statistics of rogue waves in computer experiments // JETP Letters, 2012, V. 96, Issue 1, pp 66-69.

  7. Waves and particles two essays on fundamental physics

    CERN Document Server

    Newton, Roger G

    2014-01-01

    The book consists of two separate parts, the first part is on waves and the second part on particles. In part 1, after describing the awesome power of tsunami and the history of their occurrences, the book turns to the history of explaining phenomena by means of mathematical equations. Then it describes other wave phenomena and the laws governing them: the vibration of strings and drums in musical instruments, the sound waves making them audible, ultrasound and its uses, sonar, and shock waves; electromagnetic waves: light waves, refraction, diffraction, why the sky is blue, the rainbow, and the glory; microwaves and radio waves: radar, radio astronomy, the discovery of the cosmic microwave background radiation, microwave ovens and how a radio works, lasers and masers; waves in modern physics: the Schrödinger wave function and gravitational waves in general relativity; water waves in the ocean, tides and tidal waves, and the quite different solitary waves, solitons discovered in canals. Finally we return to ...

  8. Stratified Coastal Trapped Waves and Mean Flows

    National Research Council Canada - National Science Library

    Thompson, LuAnne

    1998-01-01

    Our long term goals are to identify the roles that rectified subinertial waves and mesoscale motions play in the mean-flow transport of fluid properties in the coastal ocean and to apply these ideas...

  9. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A; Basu, S.K.; Kumar, R.; Sarkar, A

    prediction when NCMRWF winds blended with MSMR winds are utilised in the wave model. A comparison between buoy and TOPEX wave heights of May 2000 at 4 buoy locations provides a good match, showing the merit of using altimeter data, wherever it is difficult...

  10. Results of the first Wave Glider experiment in the southern Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    Giuseppe Aulicino

    2016-04-01

    Full Text Available A wave-propelled autonomous vehicle (Wave Glider instrumented with a variety of oceanographic and meteorological sensors was launched from Gulf of Naples on the 12th of September 2012 for a two-week mission in the Southern Tyrrhenian Sea. The main objective of the mission was a preliminary evaluation of the potential of commercial autonomous platforms to provide reliable measurements of sea surface parameters which can complement existing satellite based products moving from the local to the synoptic scale. To this aim Wave Glider measurements were compared to equivalent, or near-equivalent, satellite products achieved from MODIS (Moderate Resolution Imaging Spectroradiometer sensors onboard the EOS (Earth Observing System satellite platforms and from AVISO (Archiving Validation and Interpretation of Satellite Oceanographic Data. Level-3 near real time and Level-4 reprocessed sea surface foundation temperature products provided by the CMEMS (Copernicus Marine Environment Monitoring Service were also included in this study as well as high resolution model output supplied by NEMO (Nucleus for European Modelling of the Ocean. The Wave Glider was equipped with sensors to measure temperature, salinity, currents, as well as Colored Dissolved Organic Matter (CDOM, turbidity and refined fuels fluorescence. The achieved results confirmed the emerging value of Wave Gliders in the framework of multiplatform monitoring systems of the ocean surface parameters. In particular, they showed that Wave Glider measurements captured the southern Tyrrhenian Sea major surface oceanographic features, including the coast to open sea haline gradient and the presence of a cyclone-anticyclone system in the southeastern sub-region. The Wave Glider also had the capability to monitor upper ocean currents at finer spatial and temporal scales than satellite altimetric observations and model outputs. Nonetheless, results stressed the existence of several limits in the combined

  11. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  12. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives

    Science.gov (United States)

    Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans

    2018-05-01

    The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.

  13. Ocean Bottom Seismic Scattering

    Science.gov (United States)

    1989-11-01

    EPR, the Clipperton and Orozco fracture zones , and along the coast of Mexico, were recorded for a two month period using ocean bottom seismometers...67. Tuthill, J.D., Lewis, B.R., and Garmany, J.D., 1981, Stonely waves, Lopez Island noise, and deep sea noise from I to 5 hz, Marine Geophysical...Patrol Pell Marine Science Library d/o Coast Guard R & D Center University of Rhode Island Avery Point Narragansett Bay Campus Groton, CT 06340

  14. Deterministic chaos at the ocean surface: applications and interpretations

    Directory of Open Access Journals (Sweden)

    A. J. Palmer

    1998-01-01

    Full Text Available Ocean surface, grazing-angle radar backscatter data from two separate experiments, one of which provided coincident time series of measured surface winds, were found to exhibit signatures of deterministic chaos. Evidence is presented that the lowest dimensional underlying dynamical system responsible for the radar backscatter chaos is that which governs the surface wind turbulence. Block-averaging time was found to be an important parameter for determining the degree of determinism in the data as measured by the correlation dimension, and by the performance of an artificial neural network in retrieving wind and stress from the radar returns, and in radar detection of an ocean internal wave. The correlation dimensions are lowered and the performance of the deterministic retrieval and detection algorithms are improved by averaging out the higher dimensional surface wave variability in the radar returns.

  15. Observation and parametrization of wave attenuation through the MIZ

    Science.gov (United States)

    Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.

    2016-02-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.

  16. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  17. Panorama 2011: Ocean renewable energies

    International Nuclear Information System (INIS)

    Demoulin, P.; Vinot, S.

    2011-01-01

    Our society is looking increasingly to renewable energy sources in the face of the energy and environmental challenges with which it is grappling. As far as ocean renewable energies are concerned, a wide range of technologies is currently being experimented with, including wind power and energy derived from waves and tidal currents. They are all at varying levels of maturity, and bring with them very different technical and economic challenges. (author)

  18. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  19. Dynamic characteristics between waves and a floating cylindrical body connected to a tension-leg mooring cable placed in a simulated offshore environment

    Directory of Open Access Journals (Sweden)

    Juhun Song

    2016-07-01

    Full Text Available Given the rapid progress made in understanding the dynamics of an offshore floating body in an ocean environment, the present study aimed to simulate ocean waves in a small-sized wave flume and to observe the motion of a cylindrical floating body placed in an offshore environment. To generate regular ocean waves in a wave flume, we combined a wave generator and a wave absorber. In addition, to precisely visualise the oscillation of the body, a set of light-emitting diode illuminators and a high-speed charge-coupled device camera were installed in the flume. This study also focuses on the spectral analysis of the movement of the floating body. The wave generator and absorbers worked well to simulate stable regular waves. In addition, the simulated waves agreed well with the plane waves predicted by shallow-water theory. As the period of the oncoming waves changed, the movement of the floating body was substantially different when tethered to a tension-leg mooring cable. In particular, when connected to the tension-leg mooring cable, the natural frequency of the floating body appeared suddenly at 0.391 Hz as the wave period increased.

  20. Atypical anticlockwise internal tidal motions in the deep ocean

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    In the ocean, horizontal motions associated with freely propagating semidiurnal tidal inertia-gravity waves mainly describe an ellipse that is traversed in a clockwise direction in the Northern Hemisphere. In this article, rare observations of anticlockwise polarised semidiurnal motions are

  1. Physical, chemical and meteorological data from CTD and other instruments from Wave Gliders in the Pacific Ocean in support of the Pacific Crossing (PacX) Challenge from 18 November 2011 to 14 February 2013 (NODC Accession 0114435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset was generated by a group of 4 Wave Gliders, referred to as Papa Mau, Benjamin, Piccard Maru, and Fontaine Maru. The vehicles were launched from San...

  2. The role of the complete Coriolis force in weakly stratified oceanic flows

    Science.gov (United States)

    Tort, M.; Winters, K. B.; Ribstein, B.; Zeitlin, V.

    2016-02-01

    Ocean dynamics is usually described using the primitive equations based on the so-called traditional approximation (TA), where the Coriolis force associated with the horizontal component of the planetary rotation is neglected (also called non-traditional (NT) part proportional to cosΦ, see Fig 1.). However, recent studies have shown that the NT part of the Coriolis force plays a non-negligible dynamical role in some particular oceanic flows (see Gerkema et al., 2008 for an extensive review of NT effects for geophysical and astrophysical flows). Here we explore the relevance of including the NT component of the Coriolis force in ocean models, by presenting particular results regarding two different mid-latitude flow configurations after relaxing the TA: Propagation of wind-induced near-inertial waves (NIWs). Under the TA, NIWs propagate toward the equator, the inertially poleward propagation being internally reflected at a depth-independent critical latitude. The combined effects of the NT Coriolis force and weak stratification in the deep ocean leads to the existence of waveguides for sub-inertial waves, which get trapped and propagate further poleward (Winters et al., 2011). Here we consider storm-induced NIWs and their evolution in a non-linear Boussinesq model on the β-plane in the NT approximation. Preliminary results are presented concerning the behavior of the waves in a weakly stratified mixed-layer, where NT effects are expected to be significant. Inertial instability. A detailed linear stability analysis of the Bickley jet at large Rossby numbers in the NT approximation on the f-plane is performed for long waves in a continuously stratified Boussinesq model. For a sufficiently weak stratification, both symmetric and asymmetric inertial instabilities have substantially higher growth rates than in the TA while no discernible differences between the two approximations are observed for strong enough stratifications (Tort et al., 2015).

  3. The role of ocean phenomenon in music compositions

    Science.gov (United States)

    Liu, Chi-Min

    2016-04-01

    This is a preliminarily interdisciplinary study for exploring the elements of ocean phenomenon appearing in some compositions of classical music. The so-called ocean phenomenon contain wave conditions, climate change, coastal landform, and other natural events around or over the sea. In some music compositions, it is apparent that natural phenomenon over the sea influence the composers' moods and the music pieces they composed. In this poster, some music compositions in the 19th and the early 20th centuries will be introduced to demonstrate the relation between ocean and music works. These works include Meeresstille by Schubert, Étude Op.25 No.12 by Chopin, Fingal's Cave Overture by Mendelssohn, Der Fliegende Holländer by Wagner and La Mer by Debussy. In addition, present idea may give a novel way for music teachers to elucidate the knowledge of ocean science in classes.

  4. Natural and anthropogenic ocean noise recorded at long-term and temporary observatories

    Science.gov (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony B.; Geissler, Wolfram

    2017-04-01

    Most people worldwide would assume that the oceans are silent. However, a number of natural phenomenon's like ocean waves, wind, lightening, ice noise, earthquakes, and submarine volcanic activity contributes to the ambient ocean noise. During their evolution, marine animals like fish and mammals have adopted in many ways to the acoustic properties of the sea. Yet in recent decades, anthropogenic and hence manmade ocean noise level has risen profoundly. Due to extreme reliance of fish and mammals on underwater sounds for basic life functions, including searching for food or mate and the absence of any mechanism to safeguard them against it, underwater noise pollution may disrupt marine life. The primary sources of low-frequency anthropogenic noise include sounds associated with shipping, military operations, oil and gas exploration and production, and even research activities. Some scientists suggest that today virtually no marine environment is without any noise pollution. Thus, all marine life forms that rely heavily on the integrity of their acoustic habitat may have to adapt to new conditions. Of greatest concern for whales are low-frequency sounds that travel long distances in the ocean. Ship propellers and motors, for instance, produce sound at low frequencies, as do natural and manmade seismic activity. These profound, loud noises reverberate in the deep ocean and can effectively mask or block vital whale communication. However, in general very little is known about the world-wide distribution of ambient ocean noise. Thus, on a global scale and considering the vast areas of the world's oceans, we know virtually nothing about noise levels in different parts of the oceans and how anthropogenic noise contributes to ambient noise. Here, we use hydrophone recordings from the UN's Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO) and ocean-bottom seismometers to provide an assessment of noise in all major basins, including the Pacific, Atlantic and Indian

  5. Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO

    Science.gov (United States)

    Shukla, Ravi P.; Kinter, James L.; Shin, Chul-Su

    2018-03-01

    This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for 1979-2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important features of the observed composite SWHA during El Niño events in January, including negative SWHA in the central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations, the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the observations over the equatorial western Pacific, equatorial and southern IO, and SO.

  6. On statistical properties of wave amplitudes in stormy sea. Effect of short-crestedness; Daihakoji no haro no tokeiteki seishitsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, H. [Ship Research Inst., Tokyo (Japan)

    1996-12-31

    Since ocean waves encountered by ocean vessels or offshore structures in actual sea areas present extremely irregular variations, a stochastic method is necessary to estimate their statistical properties. This paper first shows a calculation method for probability density function for water level variation which strictly incorporates a secondary non-linear effect containing directional dispersibility by modeling ocean waves as short-crested irregular waves. Then, the paper specifically elucidates effects of the directional dispersibility of ocean waves on statistical amount of amplitudes by deriving the statistical amount of the amplitudes based on the probability density function of the water level variation and by using a numerical simulation. The paper finally takes up data of waves in stormy sea observed in an experiment in an actual sea area, compares the result with that of theoretical calculations, and evaluates reasonability of this method. With this estimation method, individual secondary components or components of difference and sum may be subjected to influence of the directional dispersibility, but they do not differ much from the case of long-crested irregular waves on the whole. 21 refs., 11 figs., 2 tabs.

  7. A Machine LearningFramework to Forecast Wave Conditions

    Science.gov (United States)

    Zhang, Y.; James, S. C.; O'Donncha, F.

    2017-12-01

    Recently, significant effort has been undertaken to quantify and extract wave energy because it is renewable, environmental friendly, abundant, and often close to population centers. However, a major challenge is the ability to accurately and quickly predict energy production, especially across a 48-hour cycle. Accurate forecasting of wave conditions is a challenging undertaking that typically involves solving the spectral action-balance equation on a discretized grid with high spatial resolution. The nature of the computations typically demands high-performance computing infrastructure. Using a case-study site at Monterey Bay, California, a machine learning framework was trained to replicate numerically simulated wave conditions at a fraction of the typical computational cost. Specifically, the physics-based Simulating WAves Nearshore (SWAN) model, driven by measured wave conditions, nowcast ocean currents, and wind data, was used to generate training data for machine learning algorithms. The model was run between April 1st, 2013 and May 31st, 2017 generating forecasts at three-hour intervals yielding 11,078 distinct model outputs. SWAN-generated fields of 3,104 wave heights and a characteristic period could be replicated through simple matrix multiplications using the mapping matrices from machine learning algorithms. In fact, wave-height RMSEs from the machine learning algorithms (9 cm) were less than those for the SWAN model-verification exercise where those simulations were compared to buoy wave data within the model domain (>40 cm). The validated machine learning approach, which acts as an accurate surrogate for the SWAN model, can now be used to perform real-time forecasts of wave conditions for the next 48 hours using available forecasted boundary wave conditions, ocean currents, and winds. This solution has obvious applications to wave-energy generation as accurate wave conditions can be forecasted with over a three-order-of-magnitude reduction in

  8. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-01-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  9. Wave-Current Interactions in the Vicinity of the Sea Bed

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lars Erik

    2002-01-01

    The intention of the work carried out in the present thesis is to span a part of the range of sea bed boundary layer research by three separate parts. The two first parts deal with the sea bed boundary layer beneath random waves and current, while the third part represents a more fundamental approach towards the smooth turbulent boundary layer under a horizontally uniform sinusoidal plus steady forcing. The first part focuses on the bottom shear stress amplitudes under random waves plus current. Shear stresses on a rough seabed under irregular waves plus current are calculated. Parameterized models valid for regular waves plus current have been used in Monte Carlo simulations, assuming the wave amplitudes to be Rayleigh distributed. Numerical estimates of the probability distribution functions are presented. For waves only, the shear stress maxima follow a two-parameter Weibull distribution, while for waves plus current, both the maximum and time-averaged shear stresses are well represented by a three-parameter Weibull distribution. The behaviour of the maximum shear stresses under a wide range of wave-current conditions has been investigated, and it appears that under certain conditions the current has a significant influence on the maximum shear stresses. Results of comparison between predictions and measurements of the maximum bottom shear stresses from laboratory and field experiments are presented. The second part extends the first approach by applying a dynamic eddy viscosity model; the boundary layer under random waves alone as well as under random waves plus current have been examined by a dynamic turbulent boundary layer model based on the linearized boundary layer equations with horizontally uniform forcing. The turbulence closure is provided by a high Reynolds number k - {epsilon} model. The model appears to be verified as far as data exists, i.e., for sinusoidal waves alone as well as for sinusoidal waves plus a mean current. The time and space

  10. Wave reflections from breakwaters

    OpenAIRE

    Dickson, William S.

    1994-01-01

    A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...

  11. On the wave energy potential along the southern coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Leandro Eduardo; Beluco, Alexandre; de Almeida, Luiz Emilio B. [Inst. Pesquisas Hidraulicas, Univ. Fed Rio Grande do Sul, Porto Alegre (Brazil)

    2013-07-01

    The ocean wave energy resource is a real alternative to supply part of the energy demand in various countries, since some locations have a remarkable capacity to generate electricity. The objective of this study is to evaluate the energy resource of ocean waves in the coast of Rio Grande do Sul, the southern state of Brazil. This note presents the first results. The wave data used were collected in the sea area near the Port of Rio Grande during the years 1996 to 1999, amounting to sixteen months of monitoring. The data set was treated and grouped resulting information monthly, seasonal and annual basis. The annual average was found to be 8.6 kW per meter of wave front, reaching 14.0 kW per meter for the month of May and 4.0 kW per meter for the month of January. The results indicate good perspectives in obtaining power supplies.

  12. WAVE DIRECTION and Other Data from GILLISS from 19740903 to 19740918 (NODC Accession 7601715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean wave property data collected from the SAIL Pitch-roll Buoy as part of the 1974 Atlantic Tropical Experiment (GATE) project that was part of the Global...

  13. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  14. Integration of coastal inundation modeling from storm tides to individual waves

    Science.gov (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  15. The timescales of global surface-ocean connectivity.

    Science.gov (United States)

    Jönsson, Bror F; Watson, James R

    2016-04-19

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  16. The international workshop on wave hindcasting and forecasting and the coastal hazards symposium

    Science.gov (United States)

    Breivik, Øyvind; Swail, Val; Babanin, Alexander V.; Horsburgh, Kevin

    2015-05-01

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  17. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  18. Wave energy for the 21st century: status and prospects

    International Nuclear Information System (INIS)

    Thorpe, Tom

    2000-01-01

    This article reviews the current technical and commercial status of wave energy, and discusses the design of near shore devices such as the 2MW OSPREY, and offshore devices including the McCabe wave pump, the Ocean Power Technology Wave Energy Converter, the Archimedes Wave Swing, the Pelamis, and wave energy schemes under development by other commercial firms. The predicted generating costs, the potential market, environmental impacts, and institution factors such as planning and consent, grid connection,and safety in design and operation are considered. The operating principles of an oscillating water column, and some promising offshore devices are illustrated

  19. Shoaling internal solitary waves of depression over gentle slopes

    Science.gov (United States)

    Rivera, Gustavo; Diamessis, Peter

    2017-11-01

    The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations using a high resolution/accuracy deformed spectral multidomain penalty method. During shoaling, the wave does not disintegrate as in the case of steeper slope but, instead, maintains its symmetric shape. At the core of the wave, an unstable region forms, characterized by the entrapment of heavier-over-light fluid. The formation of this convective instability is attributed to the vertical stretching by the ISW of the near-surface vorticity layer associated with the baroclinic background current. According to recent field observations in the South China Sea, the unstable region drives localized turbulent mixing within the wave, estimated to be up to four times larger than that in the open ocean, in the form of a recirculating trapped core. In this talk, emphasis is placed on the structure of the unstable region and the persistence of a possible recirculating core using simulations which capture 2D wave propagation combined with 3D representation of the transition to turbulence. As such, a preliminary understanding of the underlying fluid mechanics and the potential broader oceanic significance of ISWs with trapped cores is offered. Financial support gratefully acknowledged to NSF OCE Grant 1634257.

  20. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar