[Intel random number generator-based true random number generator].
Huang, Feng; Shen, Hong
2004-09-01
To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
International Nuclear Information System (INIS)
Coveyou, R.R.
1974-01-01
The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)
Quantum random number generator
Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin
2001-03-01
Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.
Uniform random number generators
Farr, W. R.
1971-01-01
Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.
DEFF Research Database (Denmark)
Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik
2006-01-01
Random numbers are used for a great variety of applications in almost any field of computer and economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic traffic modelling in operations research to photon and ray tracing in graphics. The construction...... distributions into others with most of the required characteristics. In essence, a uniform sequence which is transformed into a new sequence with the required distribution. The subject of this article is to consider the well known highly uniform Halton sequence and modifications to it. The intent is to generate...
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Investigating the Randomness of Numbers
Pendleton, Kenn L.
2009-01-01
The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…
Random numbers from vacuum fluctuations
International Nuclear Information System (INIS)
Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda
2016-01-01
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
Random numbers from vacuum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)
2016-07-25
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
Random number generation and creativity.
Bains, William
2008-01-01
A previous paper suggested that humans can generate genuinely random numbers. I tested this hypothesis by repeating the experiment with a larger number of highly numerate subjects, asking them to call out a sequence of digits selected from 0 through 9. The resulting sequences were substantially non-random, with an excess of sequential pairs of numbers and a deficit of repeats of the same number, in line with previous literature. However, the previous literature suggests that humans generate random numbers with substantial conscious effort, and distractions which reduce that effort reduce the randomness of the numbers. I reduced my subjects' concentration by asking them to call out in another language, and with alcohol - neither affected the randomness of their responses. This suggests that the ability to generate random numbers is a 'basic' function of the human mind, even if those numbers are not mathematically 'random'. I hypothesise that there is a 'creativity' mechanism, while not truly random, provides novelty as part of the mind's defence against closed programming loops, and that testing for the effects seen here in people more or less familiar with numbers or with spontaneous creativity could identify more features of this process. It is possible that training to perform better at simple random generation tasks could help to increase creativity, through training people to reduce the conscious mind's suppression of the 'spontaneous', creative response to new questions.
Random numbers spring from alpha decay
International Nuclear Information System (INIS)
Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Clark, N.A.; Tyler, S.A.
1980-05-01
Congruential random number generators, which are widely used in Monte Carlo simulations, are deficient in that the number they generate are concentrated in a relatively small number of hyperplanes. While this deficiency may not be a limitation in small Monte Carlo studies involving a few variables, it introduces a significant bias in large simulations requiring high resolution. This bias was recognized and assessed during preparations for an accident analysis study of nuclear power plants. This report describes a random number device based on the radioactive decay of alpha particles from a 235 U source in a high-resolution gas proportional counter. The signals were fed to a 4096-channel analyzer and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts (0 for an even count and 1 for an odd count) were then assembled in sequence to form 31-bit binary random numbers and transcribed to a magnetic tape. This cycle was repeated as many times as were necessary to create 3 million random numbers. The frequency distribution of counts from the present device conforms to the Brockwell-Moyal distribution, which takes into account the dead time of the counter (both the dead time and decay constant of the underlying Poisson process were estimated). Analysis of the count data and tests of randomness on a sample set of the 31-bit binary numbers indicate that this random number device is a highly reliable source of truly random numbers. Its use is, therefore, recommended in Monte Carlo simulations for which the congruential pseudorandom number generators are found to be inadequate. 6 figures, 5 tables
Microcomputer Unit: Generating Random Numbers.
Haigh, William E.
1986-01-01
Presents an activity, suitable for students in grades 6-12, on generating random numbers. Objectives, equipment needed, list of prerequisite experiences, instructional strategies, and ready-to-copy student worksheets are included. (JN)
Digital random-number generator
Brocker, D. H.
1973-01-01
For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.
The MIXMAX random number generator
Savvidy, Konstantin G.
2015-11-01
In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.
Pseudo-Random Number Generators
Howell, L. W.; Rheinfurth, M. H.
1984-01-01
Package features comprehensive selection of probabilistic distributions. Monte Carlo simulations resorted to whenever systems studied not amenable to deterministic analyses or when direct experimentation not feasible. Random numbers having certain specified distribution characteristic integral part of simulations. Package consists of collector of "pseudorandom" number generators for use in Monte Carlo simulations.
Random Generators and Normal Numbers
Bailey, David H.; Crandall, Richard E.
2002-01-01
Pursuant to the authors' previous chaotic-dynamical model for random digits of fundamental constants, we investigate a complementary, statistical picture in which pseudorandom number generators (PRNGs) are central. Some rigorous results are achieved: We establish b-normality for constants of the form $\\sum_i 1/(b^{m_i} c^{n_i})$ for certain sequences $(m_i), (n_i)$ of integers. This work unifies and extends previously known classes of explicit normals. We prove that for coprime $b,c>1$ the...
Ben-Ari, Morechai
2004-01-01
The term "random" is frequently used in discussion of the theory of evolution, even though the mathematical concept of randomness is problematic and of little relevance in the theory. Therefore, since the core concept of the theory of evolution is the non-random process of natural selection, the term random should not be used in teaching the…
Astronomical random numbers for quantum foundations experiments
Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason
2018-04-01
Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.
Pseudo-random number generator for the Sigma 5 computer
Carroll, S. N.
1983-01-01
A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.
Fast integration using quasi-random numbers
International Nuclear Information System (INIS)
Bossert, J.; Feindt, M.; Kerzel, U.
2006-01-01
Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples
Fast integration using quasi-random numbers
Bossert, J.; Feindt, M.; Kerzel, U.
2006-04-01
Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.
Self-correcting random number generator
Humble, Travis S.; Pooser, Raphael C.
2016-09-06
A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.
Analysis of android random number generator
Sarıtaş, Serkan
2013-01-01
Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 61-65. Randomness is a crucial resource for cryptography, and random number generators are critical building blocks of almost all cryptographic systems. Therefore, random number generation is one of the key parts of secure communication. Random number generatio...
Generation of pseudo-random numbers
Howell, L. W.; Rheinfurth, M. H.
1982-01-01
Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed.
Microcomputer-Assisted Discoveries: Random Numbers.
Kimberling, Clark
1983-01-01
A programing contest was designed to promote interest in mathematical randomness. Student-developed programs making clever uses of random numbers are presented. Modifications users might make are suggested. (MNS)
Quality pseudo-random number generator
International Nuclear Information System (INIS)
Tarasiuk, J.
1996-01-01
The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented
The RANDOM computer program: A linear congruential random number generator
Miles, R. F., Jr.
1986-01-01
The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.
All-optical fast random number generator.
Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong
2010-09-13
We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.
Source-Independent Quantum Random Number Generation
Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng
2016-01-01
Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .
Source-Independent Quantum Random Number Generation
Directory of Open Access Journals (Sweden)
Zhu Cao
2016-02-01
Full Text Available Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×10^{3} bit/s.
True random numbers from amplified quantum vacuum.
Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V
2011-10-10
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
Using Random Numbers in Science Research Activities.
Schlenker, Richard M.; And Others
1996-01-01
Discusses the importance of science process skills and describes ways to select sets of random numbers for selection of subjects for a research study in an unbiased manner. Presents an activity appropriate for grades 5-12. (JRH)
How random are random numbers generated using photons?
International Nuclear Information System (INIS)
Solis, Aldo; Angulo Martínez, Alí M; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U’Ren, Alfred B; Hirsch, Jorge G
2015-01-01
Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined. (paper)
Lifescience Database Archive (English)
Full Text Available List Contact us Gclust Server Table of Cluster and Organism Species Number Data detail Data name Table of Cluster and Organism...resentative sequence ID of cluster, its length, the number of sequences contained in the cluster, organism s...pecies, the number of sequences belonging to the cluster for each of 95 organism ...t Us Table of Cluster and Organism Species Number - Gclust Server | LSDB Archive ...
Krewer, Carmen; Luther, Marianne; Koenig, Eberhard; Müller, Friedemann
2015-01-01
One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC) is to enhance patients' arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R) showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo). The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com), identifier number ISRCTN72853718.
Directory of Open Access Journals (Sweden)
Carmen Krewer
Full Text Available One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC is to enhance patients' arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo. The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com, identifier number ISRCTN72853718.
On contact numbers in random rod packings
Wouterse, A.; Luding, Stefan; Philipse, A.P.
2009-01-01
Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well
A Table-Based Random Sampling Simulation for Bioluminescence Tomography
Directory of Open Access Journals (Sweden)
Xiaomeng Zhang
2006-01-01
Full Text Available As a popular simulation of photon propagation in turbid media, the main problem of Monte Carlo (MC method is its cumbersome computation. In this work a table-based random sampling simulation (TBRS is proposed. The key idea of TBRS is to simplify multisteps of scattering to a single-step process, through randomly table querying, thus greatly reducing the computing complexity of the conventional MC algorithm and expediting the computation. The TBRS simulation is a fast algorithm of the conventional MC simulation of photon propagation. It retained the merits of flexibility and accuracy of conventional MC method and adapted well to complex geometric media and various source shapes. Both MC simulations were conducted in a homogeneous medium in our work. Also, we present a reconstructing approach to estimate the position of the fluorescent source based on the trial-and-error theory as a validation of the TBRS algorithm. Good agreement is found between the conventional MC simulation and the TBRS simulation.
Random walk of the baryon number
International Nuclear Information System (INIS)
Kazaryan, A.M.; Khlebnikov, S.Y.; Shaposhnikov, M.E.
1989-01-01
A new approach is suggested for the anomalous nonconservation of baryon number in the electroweak theory at high temperatures. Arguments are presented in support of the idea that the baryon-number changing reactions may be viewed as random Markov processes. Making use of the general theory of Markov processes, the Fokker--Planck equation for the baryon-number distribution density is obtained and kinetic coefficients are calculated
Random Number Generation for High Performance Computing
2015-01-01
number streams, a quality metric for the parallel random number streams. * * * * * Atty. Dkt . No.: 5660-14400 Customer No. 35690 Eric B. Meyertons...responsibility to ensure timely payment of maintenance fees when due. Pagel of3 PTOL-85 (Rev. 02/11) Atty. Dkt . No.: 5660-14400 Page 1 Meyertons...with each subtask executed by a separate thread or process (henceforth, process). Each process has Atty. Dkt . No.: 5660-14400 Page 2 Meyertons
Learning Random Numbers: A Matlab Anomaly
Czech Academy of Sciences Publication Activity Database
Savický, Petr; Robnik-Šikonja, M.
2008-01-01
Roč. 22, č. 3 (2008), s. 254-265 ISSN 0883-9514 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : random number s * machine learning * classification * attribute evaluation * regression Subject RIV: BA - General Mathematics Impact factor: 0.795, year: 2008
Standard random number generation for MBASIC
Tausworthe, R. C.
1976-01-01
A machine-independent algorithm is presented and analyzed for generating pseudorandom numbers suitable for the standard MBASIC system. The algorithm used is the polynomial congruential or linear recurrence modulo 2 method. Numbers, formed as nonoverlapping adjacent 28-bit words taken from the bit stream produced by the formula a sub m + 532 = a sub m + 37 + a sub m (modulo 2), do not repeat within the projected age of the solar system, show no ensemble correlation, exhibit uniform distribution of adjacent numbers up to 19 dimensions, and do not deviate from random runs-up and runs-down behavior.
Motzkin numbers out of Random Domino Automaton
Energy Technology Data Exchange (ETDEWEB)
Białecki, Mariusz, E-mail: bialecki@igf.edu.pl [Institute of Geophysics, Polish Academy of Sciences, ul. Ks. Janusza 64, 01-452 Warszawa (Poland)
2012-10-01
Motzkin numbers are derived from a special case of Random Domino Automaton – recently proposed a slowly driven system being a stochastic toy model of earthquakes. It is also a generalisation of 1D Drossel–Schwabl forest-fire model. A solution of the set of equations describing stationary state of Random Domino Automaton in inverse-power case is presented. A link with Motzkin numbers allows to present explicit form of asymptotic behaviour of the automaton. -- Highlights: ► Motzkin numbers are derived from stochastic cellular automaton with avalanches. ► Explicit solution of toy model of earthquakes is presented. ► Case with inverse-power distribution of avalanches is found.
Quantifiers for randomness of chaotic pseudo-random number generators.
De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A
2009-08-28
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.
Cellular Automata-Based Parallel Random Number Generators Using FPGAs
Directory of Open Access Journals (Sweden)
David H. K. Hoe
2012-01-01
Full Text Available Cellular computing represents a new paradigm for implementing high-speed massively parallel machines. Cellular automata (CA, which consist of an array of locally connected processing elements, are a basic form of a cellular-based architecture. The use of field programmable gate arrays (FPGAs for implementing CA accelerators has shown promising results. This paper investigates the design of CA-based pseudo-random number generators (PRNGs using an FPGA platform. To improve the quality of the random numbers that are generated, the basic CA structure is enhanced in two ways. First, the addition of a superrule to each CA cell is considered. The resulting self-programmable CA (SPCA uses the superrule to determine when to make a dynamic rule change in each CA cell. The superrule takes its inputs from neighboring cells and can be considered itself a second CA working in parallel with the main CA. When implemented on an FPGA, the use of lookup tables in each logic cell removes any restrictions on how the super-rules should be defined. Second, a hybrid configuration is formed by combining a CA with a linear feedback shift register (LFSR. This is advantageous for FPGA designs due to the compactness of the LFSR implementations. A standard software package for statistically evaluating the quality of random number sequences known as Diehard is used to validate the results. Both the SPCA and the hybrid CA/LFSR were found to pass all the Diehard tests.
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
Generation of Random Numbers and Parallel Random Number Streams for Monte Carlo Simulations
Directory of Open Access Journals (Sweden)
L. Yu. Barash
2012-01-01
Full Text Available Modern methods and libraries for high quality pseudorandom number generation and for generation of parallel random number streams for Monte Carlo simulations are considered. The probability equidistribution property and the parameters when the property holds at dimensions up to logarithm of mesh size are considered for Multiple Recursive Generators.
Application of quasi-random numbers for simulation
International Nuclear Information System (INIS)
Kazachenko, O.N.; Takhtamyshev, G.G.
1985-01-01
Application of the Monte-Carlo method for multidimensional integration is discussed. The main goal is to check the statement that the application of quasi-random numbers instead of regular pseudo-random numbers provides more rapid convergency. The Sobol, Richtmayer and Halton algorithms of quasi-random sequences are described. Over 50 tests to compare these quasi-random numbers as well as pseudo-random numbers were fulfilled. In all cases quasi-random numbers have clearly demonstrated a more rapid convergency as compared with pseudo-random ones. Positive test results on quasi-random trend in Monte-Carlo method seem very promising
Long period pseudo random number sequence generator
Wang, Charles C. (Inventor)
1989-01-01
A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).
Anell, Anders; Hagberg, Oskar; Liedberg, Fredrik; Ryden, Stefan
2016-12-01
Comparison of provider performance is commonly used to inform health care decision-making. Little attention has been paid to how data presentations influence decisions. This study analyzes differences in suggested actions by decision-makers informed by league tables or funnel plots. Decision-makers were invited to a survey and randomized to compare hospital performance using either league tables or funnel plots for four different measures within the area of cancer care. For each measure, decision-makers were asked to suggest actions towards 12-16 hospitals (no action, ask for more information, intervene) and provide feedback related to whether the information provided had been useful. Swedish health care. Two hundred and twenty-one decision-makers at administrative and clinical levels. Data presentations in the form of league tables or funnel plots. Number of actions suggested by participants. Proportion of appropriate actions. For all four measures, decision-makers tended to suggest more actions based on the information provided in league tables compared to funnel plots (44% vs. 21%, P decision-makers more often missed to react even when appropriate. The form of data presentation had an influence on decision-making. With league tables, decision-makers tended to suggest more actions compared to funnel plots. A difference in sensitivity and specificity conditioned by the form of presentation could also be identified, with different implications depending on the purpose of comparisons. Explanations and visualization aids are needed to support appropriate actions. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
A Method of Erasing Data Using Random Number Generators
井上,正人
2012-01-01
Erasing data is an indispensable step for disposal of computers or external storage media. Except physical destruction, erasing data means writing random information on entire disk drives or media. We propose a method which erases data safely using random number generators. These random number generators create true random numbers based on quantum processes.
A random number generator for continuous random variables
Guerra, V. M.; Tapia, R. A.; Thompson, J. R.
1972-01-01
A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.
Testing, Selection, and Implementation of Random Number Generators
National Research Council Canada - National Science Library
Collins, Joseph C
2008-01-01
An exhaustive evaluation of state-of-the-art random number generators with several well-known suites of tests provides the basis for selection of suitable random number generators for use in stochastic simulations...
Graphical analysis of some pseudo-random number generators
Lewis, Peter A. W.
1986-01-01
There exist today many 'good' pseudo-random number generators; the problem is to retrieve them. This document discusses three commonly used pseudo- random number generators, the first being RANDU, a notoriously bad generator, but one which is still occasionally used. The next is the widely used prime modulus, multiplicative congruential generator used in LL-RANDOMII, the Naval Postgraduate School random number package, and the last is the random number generator provided for microcomputers wi...
Extracting random numbers from quantum tunnelling through a single diode.
Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J
2017-12-19
Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Towards a high-speed quantum random number generator
Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco
2013-10-01
Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.
Evidence of significant bias in an elementary random number generator
International Nuclear Information System (INIS)
Borgwaldt, H.; Brandl, V.
1981-03-01
An elementary pseudo random number generator for isotropically distributed unit vectors in 3-dimensional space has ben tested for bias. This generator uses the IBM-suplied routine RANDU and a transparent rejection technique. The tests show clearly that non-randomness in the pseudo random numbers generated by the primary IBM generator leads to bias in the order of 1 percent in estimates obtained from the secondary random number generator. FORTRAN listings of 4 variants of the random number generator called by a simple test programme and output listings are included for direct reference. (orig.) [de
Pseudo-Random Number Generator Based on Coupled Map Lattices
Lü, Huaping; Wang, Shihong; Hu, Gang
A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.
An integrable low-cost hardware random number generator
Ranasinghe, Damith C.; Lim, Daihyun; Devadas, Srinivas; Jamali, Behnam; Zhu, Zheng; Cole, Peter H.
2005-02-01
A hardware random number generator is different from a pseudo-random number generator; a pseudo-random number generator approximates the assumed behavior of a real hardware random number generator. Simple pseudo random number generators suffices for most applications, however for demanding situations such as the generation of cryptographic keys, requires an efficient and a cost effective source of random numbers. Arbiter-based Physical Unclonable Functions (PUFs) proposed for physical authentication of ICs exploits statistical delay variation of wires and transistors across integrated circuits, as a result of process variations, to build a secret key unique to each IC. Experimental results and theoretical studies show that a sufficient amount of variation exits across IC"s. This variation enables each IC to be identified securely. It is possible to exploit the unreliability of these PUF responses to build a physical random number generator. There exists measurement noise, which comes from the instability of an arbiter when it is in a racing condition. There exist challenges whose responses are unpredictable. Without environmental variations, the responses of these challenges are random in repeated measurements. Compared to other physical random number generators, the PUF-based random number generators can be a compact and a low-power solution since the generator need only be turned on when required. A 64-stage PUF circuit costs less than 1000 gates and the circuit can be implemented using a standard IC manufacturing processes. In this paper we have presented a fast and an efficient random number generator, and analysed the quality of random numbers produced using an array of tests used by the National Institute of Standards and Technology to evaluate the randomness of random number generators designed for cryptographic applications.
A Shot Number Based Approach to Performance Analysis in Table Tennis
Directory of Open Access Journals (Sweden)
Tamaki Sho
2017-01-01
Full Text Available The current study proposes a novel approach that improves the conventional performance analysis in table tennis by introducing the concept of frequency, or the number of shots, of each shot number. The improvements over the conventional method are as follows: better accuracy of the evaluation of skills and tactics of players, additional insights into scoring and returning skills and ease of understanding the results with a single criterion. The performance analysis of matches played at the 2012 Summer Olympics in London was conducted using the proposed method. The results showed some effects of the shot number and gender differences in table tennis. Furthermore, comparisons were made between Chinese players and players from other countries, what threw light on the skills and tactics of the Chinese players. The present findings demonstrate that the proposed method provides useful information and has some advantages over the conventional method.
Program pseudo-random number generator for microcomputers
International Nuclear Information System (INIS)
Ososkov, G.A.
1980-01-01
Program pseudo-random number generators (PNG) intended for the test of control equipment and communication channels are considered. In the case of 8-bit microcomputers it is necessary to assign 4 words of storage to allocate one random number. The proposed economical algorithms of the random number generation are based on the idea of the ''mixing'' of such quarters of the preceeding random number to obtain the next one. Test results of the PNG are displayed for two such generators. A FORTRAN variant of the PNG is presented along with a program realizing the PNG made on the base of the INTEL-8080 autocode
Quantum random-number generator based on a photon-number-resolving detector
International Nuclear Information System (INIS)
Ren Min; Wu, E; Liang Yan; Jian Yi; Wu Guang; Zeng Heping
2011-01-01
We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.
Quantum random number generation for loophole-free Bell tests
Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar
2015-05-01
We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.
A Repetition Test for Pseudo-Random Number Generators
Gil, Manuel; Gonnet, Gaston H.; Petersen, Wesley P.
2017-01-01
A new statistical test for uniform pseudo-random number generators (PRNGs) is presented. The idea is that a sequence of pseudo-random numbers should have numbers reappear with a certain probability. The expectation time that a repetition occurs provides the metric for the test. For linear congruential generators (LCGs) failure can be shown theoretically. Empirical test results for a number of commonly used PRNGs are reported, showing that some PRNGs considered to have good statistical propert...
A hybrid-type quantum random number generator
Hai-Qiang, Ma; Wu, Zhu; Ke-Jin, Wei; Rui-Xue, Li; Hong-Wei, Liu
2016-05-01
This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178010 and 11374042), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China, and the Fundamental Research Funds for the Central Universities of China (Grant No. bupt2014TS01).
Semi-device-independent random-number expansion without entanglement
International Nuclear Information System (INIS)
Li Hongwei; Yin Zhenqiang; Wu Yuchun; Zou Xubo; Wang Shuang; Chen Wei; Guo Guangcan; Han Zhengfu
2011-01-01
By testing the classical correlation violation between two systems, true random numbers can be generated and certified without applying classical statistical method. In this work, we propose a true random-number expansion protocol without entanglement, where the randomness can be guaranteed only by the two-dimensional quantum witness violation. Furthermore, we only assume that the dimensionality of the system used in the protocol has a tight bound, and the whole protocol can be regarded as a semi-device-independent black-box scenario. Compared with the device-independent random-number expansion protocol based on entanglement, our protocol is much easier to implement and test.
Microcomputer-Assisted Discoveries: Generate Your Own Random Numbers.
Kimberling, Clark
1984-01-01
Having students try to generate their own random numbers can lead to much discovery learning as one tries to create 'patternlessness' from formulas. Developing an equidistribution test and runs test, plus other ideas for generating random numbers, is discussed, with computer programs given. (MNS)
Generating random numbers by means of nonlinear dynamic systems
Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi
2018-07-01
To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.
Analysis of random number generators in abnormal usage conditions
International Nuclear Information System (INIS)
Soucarros, M.
2012-01-01
Random numbers have been used through the ages for games of chance, more recently for secret codes and today they are necessary to the execution of computer programs. Random number generators have now evolved from simple dices to electronic circuits and algorithms. Accordingly, the ability to distinguish between random and non-random numbers has become more difficult. Furthermore, whereas in the past dices were loaded in order to increase winning chances, it is now possible to influence the outcome of random number generators. In consequence, this subject is still very much an issue and has recently made the headlines. Indeed, there was talks about the PS3 game console which generates constant random numbers and redundant distribution of secret keys on the internet. This thesis presents a study of several generators as well as different means to perturb them. It shows the inherent defects of their conceptions and possible consequences of their failure when they are embedded inside security components. Moreover, this work highlights problems yet to be solved concerning the testing of random numbers and the post-processing eliminating bias in these numbers distribution. (author) [fr
RANDOMNUMBERS, Random Number Sequence Generated from Gas Ionisation Chamber Data
International Nuclear Information System (INIS)
Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Tyler, S.A.; Clark, N.A.; Wang, J.
1989-01-01
1 - Description of problem or function: RANDOM NUMBERS is a data collection of almost 2.7 million 31-bit random numbers generated by using a high resolution gas ionization detector chamber in conjunction with a 4096-channel multichannel analyzer to record the radioactive decay of alpha particles from a U-235 source. The signals from the decaying alpha particles were fed to the 4096-channel analyzer, and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts, 0 for an even count and 1 for and odd count, were then assembled in sequence to form 31-bit random numbers and transcribed onto magnetic tape. This cycle was repeated to obtain the random numbers. 2 - Method of solution: The frequency distribution of counts from the device conforms to the Brockwell-Moyal distribution which takes into account the dead time of the counter. The count data were analyzed and tests for randomness on a sample indicate that the device is a highly reliable source of truly random numbers. 3 - Restrictions on the complexity of the problem: The RANDOM NUMBERS tape contains 2,669,568 31-bit numbers
Parallel random number generator for inexpensive configurable hardware cells
Ackermann, J.; Tangen, U.; Bödekker, B.; Breyer, J.; Stoll, E.; McCaskill, J. S.
2001-11-01
A new random number generator ( RNG) adapted to parallel processors has been created. This RNG can be implemented with inexpensive hardware cells. The correlation between neighboring cells is suppressed with smart connections. With such connection structures, sequences of pseudo-random numbers are produced. Numerical tests including a self-avoiding random walk test and the simulation of the order parameter and energy of the 2D Ising model give no evidence for correlation in the pseudo-random sequences. Because the new random number generator has suppressed the correlation between neighboring cells which is usually observed in cellular automaton implementations, it is applicable for extended time simulations. It gives an immense speed-up factor if implemented directly in configurable hardware, and has recently been used for long time simulations of spatially resolved molecular evolution.
A pseudo-random number generator and its spectral test
International Nuclear Information System (INIS)
Wang Lai
1998-01-01
The author introduces a pseudo-random number generator and describes its algorithm and C language implementation. The performance of the generator is tested and compared with some well known LCG generators
Hardware implementation of a GFSR pseudo-random number generator
Aiello, G. R.; Budinich, M.; Milotti, E.
1989-12-01
We describe the hardware implementation of a pseudo-random number generator of the "Generalized Feedback Shift Register" (GFSR) type. After brief theoretical considerations we describe two versions of the hardware, the tests done and the performances achieved.
Random number generation based on digital differential chaos
Zidan, Mohammed A.; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing
Correlations of pseudo-random numbers of multiplicative sequence
International Nuclear Information System (INIS)
Bukin, A.D.
1989-01-01
An algorithm is suggested for searching with a computer in unit n-dimensional cube the sets of planes where all the points fall whose coordinates are composed of n successive pseudo-random numbers of multiplicative sequence. This effect should be taken into account in Monte-Carlo calculations with definite constructive dimension. The parameters of these planes are obtained for three random number generators. 2 refs.; 2 tabs
Recoverable Random Numbers in an Internet of Things Operating System
Directory of Open Access Journals (Sweden)
Taeill Yoo
2017-03-01
Full Text Available Over the past decade, several security issues with Linux Random Number Generator (LRNG on PCs and Androids have emerged. The main problem involves the process of entropy harvesting, particularly at boot time. An entropy source in the input pool of LRNG is not transferred into the non-blocking output pool if the entropy counter of the input pool is less than 192 bits out of 4098 bits. Because the entropy estimation of LRNG is highly conservative, the process may require more than one minute for starting the transfer. Furthermore, the design principle of the estimation algorithm is not only heuristic but also unclear. Recently, Google released an Internet of Things (IoT operating system called Brillo based on the Linux kernel. We analyze the behavior of the random number generator in Brillo, which inherits that of LRNG. In the results, we identify two features that enable recovery of random numbers. With these features, we demonstrate that random numbers of 700 bytes at boot time can be recovered with the success probability of 90% by using time complexity for 5.20 × 2 40 trials. Therefore, the entropy of random numbers of 700 bytes is merely about 43 bits. Since the initial random numbers are supposed to be used for sensitive security parameters, such as stack canary and key derivation, our observation can be applied to practical attacks against cryptosystem.
Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators
Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.
2018-05-01
Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.
The intermittency of vector fields and random-number generators
Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.
2017-09-01
We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.
On the number of spanning trees in random regular graphs
DEFF Research Database (Denmark)
Greenhill, Catherine; Kwan, Matthew; Wind, David Kofoed
2014-01-01
Let d >= 3 be a fixed integer. We give an asympotic formula for the expected number of spanning trees in a uniformly random d-regular graph with n vertices. (The asymptotics are as n -> infinity, restricted to even n if d is odd.) We also obtain the asymptotic distribution of the number of spanning...
A fast random number generator for the Intel Paragon supercomputer
Gutbrod, F.
1995-06-01
A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.
Unbiased All-Optical Random-Number Generator
Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja
2017-10-01
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.
Search for a perfect generator of random numbers
International Nuclear Information System (INIS)
Musyck, E.
1977-01-01
Theoretical tests have been carried out by COVEYOU and MAC PHERSON to verify the applications of the LEHMER algorithm. In a similar way, a theoretical method is proposed to evaluate in a rigorous way the random character of numbers generated by a shift register. This theory introduces the concept of ''degree of randomness'' of the elements, taken in a definite order, of a shift register. It permits making the judicious choice of the elements of the shift register which will produce the bits of the random numbers. On the other hand, a calculation method is developed in order to verify the primitive character of any shift register of high complexity. A new test, called ''slice test'', of empirical and theoretical use is also described; it constitutes a significant contribution to the understanding of certain properties of pseudo-random sequences. As a practical example, a random number generator structure formed with 32 bits, built out of a shift register with 61 elements and 60 modulo-2 adder circuits was made. The author is convinced that this generator can be considered to be practically perfect for all empirical applications of random numbers, particularly for the solution of Monte-Carlo problems. (author)
Brain potentials index executive functions during random number generation.
Joppich, Gregor; Däuper, Jan; Dengler, Reinhard; Johannes, Sönke; Rodriguez-Fornells, Antoni; Münte, Thomas F
2004-06-01
The generation of random sequences is considered to tax different executive functions. To explore the involvement of these functions further, brain potentials were recorded in 16 healthy young adults while either engaging in random number generation (RNG) by pressing the number keys on a computer keyboard in a random sequence or in ordered number generation (ONG) necessitating key presses in the canonical order. Key presses were paced by an external auditory stimulus to yield either fast (1 press/800 ms) or slow (1 press/1300 ms) sequences in separate runs. Attentional demands of random and ordered tasks were assessed by the introduction of a secondary task (key-press to a target tone). The P3 amplitude to the target tone of this secondary task was reduced during RNG, reflecting the greater consumption of attentional resources during RNG. Moreover, RNG led to a left frontal negativity peaking 140 ms after the onset of the pacing stimulus, whenever the subjects produced a true random response. This negativity could be attributed to the left dorsolateral prefrontal cortex and was absent when numbers were repeated. This negativity was interpreted as an index for the inhibition of habitual responses. Finally, in response locked ERPs a negative component was apparent peaking about 50 ms after the key-press that was more prominent during RNG. Source localization suggested a medial frontal source. This effect was tentatively interpreted as a reflection of the greater monitoring demands during random sequence generation.
Testing random number generators for Monte Carlo applications
International Nuclear Information System (INIS)
Sim, L.H.
1992-01-01
Central to any system for modelling radiation transport phenomena using Monte Carlo techniques is the method by which pseudo random numbers are generated. This method is commonly referred to as the Random Number Generator (RNG). It is usually a computer implemented mathematical algorithm which produces a series of numbers uniformly distributed on the interval [0,1]. If this series satisfies certain statistical tests for randomness, then for practical purposes the pseudo random numbers in the series can be considered to be random. Tests of this nature are important not only for new RNGs but also to test the implementation of known RNG algorithms in different computer environments. Six RNGs have been tested using six statistical tests and one visual test. The statistical tests are the moments, frequency (digit and number), serial, gap, and poker tests. The visual test is a simple two dimensional ordered pair display. In addition the RNGs have been tested in a specific Monte Carlo application. This type of test is often overlooked, however it is important that in addition to satisfactory performance in statistical tests, the RNG be able to perform effectively in the applications of interest. The RNGs tested here are based on a variety of algorithms, including multiplicative and linear congruential, lagged Fibonacci, and combination arithmetic and lagged Fibonacci. The effect of the Bays-Durham shuffling algorithm on the output of a known bad RNG has also been investigated. 18 refs., 11 tabs., 4 figs. of
GASPRNG: GPU accelerated scalable parallel random number generator library
Gao, Shuang; Peterson, Gregory D.
2013-04-01
Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or
Ultrafast quantum random number generation based on quantum phase fluctuations.
Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong
2012-05-21
A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.
On the Periods of the {ranshi} Random Number Generator
Gutbrod, F.
The stochastic properties of the pseudo-random number generator {ranshi} are discussed, with emphasis on the average period. Within a factor 2 this turns out to be the root of the maximally possible period. The actual set of periods depends on minor details of the algorithm, and the system settles down in one of only a few different cycles. These features are in perfect agreement with absolute random motion in phase space, to the extent allowed by deterministic dynamics.
Simulation of a directed random-walk model: the effect of pseudo-random-number correlations
Shchur, L. N.; Heringa, J. R.; Blöte, H. W. J.
1996-01-01
We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several types of pseudo-random-number sequences. This model provides qualitative understanding of the bias mechanism in a class of cluster Monte Carlo algorithms.
Study on random number generator in Monte Carlo code
International Nuclear Information System (INIS)
Oya, Kentaro; Kitada, Takanori; Tanaka, Shinichi
2011-01-01
The Monte Carlo code uses a sequence of pseudo-random numbers with a random number generator (RNG) to simulate particle histories. A pseudo-random number has its own period depending on its generation method and the period is desired to be long enough not to exceed the period during one Monte Carlo calculation to ensure the correctness especially for a standard deviation of results. The linear congruential generator (LCG) is widely used as Monte Carlo RNG and the period of LCG is not so long by considering the increasing rate of simulation histories in a Monte Carlo calculation according to the remarkable enhancement of computer performance. Recently, many kinds of RNG have been developed and some of their features are better than those of LCG. In this study, we investigate the appropriate RNG in a Monte Carlo code as an alternative to LCG especially for the case of enormous histories. It is found that xorshift has desirable features compared with LCG, and xorshift has a larger period, a comparable speed to generate random numbers, a better randomness, and good applicability to parallel calculation. (author)
Accelerating Pseudo-Random Number Generator for MCNP on GPU
Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu
2010-09-01
Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.
New Trends in Pseudo-Random Number Generation
Gutbrod, F.
Properties of pseudo-random number generators are reviewed. The emphasis is on correlations between successive random numbers and their suppression by improvement steps. The generators under discussion are the linear congruential generators, lagged Fibonacci generators with various operations, and the improvement techniques combination, shuffling and decimation. The properties of the RANSHI generator are reviewed somewhat more extensively. The transition to 64-bit technology is discussed in several cases. The generators are subject to several tests, which look both for short range and for long range correlations. Some performance figures are given for a Pentium Pro PC. Recommendations are presented in the final chapter.
Lyusternik, L A
1965-01-01
Ten-Decimal Tables of the Logarithms of Complex Numbers and for the Transformation from Cartesian to Polar Coordinates contains Tables of mathematical functions up to ten-decimal value. These tables are compiled in the Department for Approximate Computations of the Institute of Exact Mechanics and Computational Methods of the U.S.S.R. Academy of Sciences. The computations are carried out by this department in conjunction with the Computational-Experimental Laboratory of the Institute.This book will be of value to mathematicians and researchers.
Security of Semi-Device-Independent Random Number Expansion Protocols.
Li, Dan-Dan; Wen, Qiao-Yan; Wang, Yu-Kun; Zhou, Yu-Qian; Gao, Fei
2015-10-27
Semi-device-independent random number expansion (SDI-RNE) protocols require some truly random numbers to generate fresh ones, with making no assumptions on the internal working of quantum devices except for the dimension of the Hilbert space. The generated randomness is certified by non-classical correlation in the prepare-and-measure test. Until now, the analytical relations between the amount of the generated randomness and the degree of non-classical correlation, which are crucial for evaluating the security of SDI-RNE protocols, are not clear under both the ideal condition and the practical one. In the paper, first, we give the analytical relation between the above two factors under the ideal condition. As well, we derive the analytical relation under the practical conditions, where devices' behavior is not independent and identical in each round and there exists deviation in estimating the non-classical behavior of devices. Furthermore, we choose a different randomness extractor (i.e., two-universal random function) and give the security proof.
Analysis of entropy extraction efficiencies in random number generation systems
Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu
2016-05-01
Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.
DNA-based random number generation in security circuitry.
Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C
2010-06-01
DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.
The average crossing number of equilateral random polygons
International Nuclear Information System (INIS)
Diao, Y; Dobay, A; Kusner, R B; Millett, K; Stasiak, A
2003-01-01
In this paper, we study the average crossing number of equilateral random walks and polygons. We show that the mean average crossing number ACN of all equilateral random walks of length n is of the form (3/16)n ln n + O(n). A similar result holds for equilateral random polygons. These results are confirmed by our numerical studies. Furthermore, our numerical studies indicate that when random polygons of length n are divided into individual knot types, the for each knot type K can be described by a function of the form = a(n-n 0 )ln(n-n 0 ) + b(n-n 0 ) + c where a, b and c are constants depending on K and n 0 is the minimal number of segments required to form K. The profiles diverge from each other, with more complex knots showing higher than less complex knots. Moreover, the profiles intersect with the profile of all closed walks. These points of intersection define the equilibrium length of K, i.e., the chain length n e (K) at which a statistical ensemble of configurations with given knot type K-upon cutting, equilibration and reclosure to a new knot type K'-does not show a tendency to increase or decrease . This concept of equilibrium length seems to be universal, and applies also to other length-dependent observables for random knots, such as the mean radius of gyration g >
A random-matrix theory of the number sense.
Hannagan, T; Nieder, A; Viswanathan, P; Dehaene, S
2017-02-19
Number sense, a spontaneous ability to process approximate numbers, has been documented in human adults, infants and newborns, and many other animals. Species as distant as monkeys and crows exhibit very similar neurons tuned to specific numerosities. How number sense can emerge in the absence of learning or fine tuning is currently unknown. We introduce a random-matrix theory of self-organized neural states where numbers are coded by vectors of activation across multiple units, and where the vector codes for successive integers are obtained through multiplication by a fixed but random matrix. This cortical implementation of the 'von Mises' algorithm explains many otherwise disconnected observations ranging from neural tuning curves in monkeys to looking times in neonates and cortical numerotopy in adults. The theory clarifies the origin of Weber-Fechner's Law and yields a novel and empirically validated prediction of multi-peak number neurons. Random matrices constitute a novel mechanism for the emergence of brain states coding for quantity.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).
Quantum random number generator based on quantum tunneling effect
Zhou, Haihan; Li, Junlin; Pan, Dong; Zhang, Weixing; Long, Guilu
2017-01-01
In this paper, we proposed an experimental implementation of quantum random number generator(QRNG) with inherent randomness of quantum tunneling effect of electrons. We exploited InGaAs/InP diodes, whose valance band and conduction band shared a quasi-constant energy barrier. We applied a bias voltage on the InGaAs/InP avalanche diode, which made the diode works under Geiger mode, and triggered the tunneling events with a periodic pulse. Finally, after data collection and post-processing, our...
Building Kindergartners' Number Sense: A Randomized Controlled Study.
Jordan, Nancy C; Glutting, Joseph; Dyson, Nancy; Hassinger-Das, Brenna; Irwin, Casey
2012-08-01
Math achievement in elementary school is mediated by performance and growth in number sense during kindergarten. The aim of the present study was to test the effectiveness of a targeted small group number sense intervention for high-risk kindergartners from low-income communities. Children were randomly assigned to one of three groups ( n = 44 in each group): a number sense intervention group, a language intervention group, or a business as usual control group. Accounting for initial skill level in mathematical knowledge, children who received the number sense intervention performed better than controls at immediate post test, with meaningful effects on measures of number competencies and general math achievement. Many of the effects held eight weeks after the intervention was completed, suggesting that children internalized what they had learned. There were no differences between the language and control groups on any math-related measures.
Building Kindergartners’ Number Sense: A Randomized Controlled Study
Jordan, Nancy C.; Glutting, Joseph; Dyson, Nancy; Hassinger-Das, Brenna; Irwin, Casey
2015-01-01
Math achievement in elementary school is mediated by performance and growth in number sense during kindergarten. The aim of the present study was to test the effectiveness of a targeted small group number sense intervention for high-risk kindergartners from low-income communities. Children were randomly assigned to one of three groups (n = 44 in each group): a number sense intervention group, a language intervention group, or a business as usual control group. Accounting for initial skill level in mathematical knowledge, children who received the number sense intervention performed better than controls at immediate post test, with meaningful effects on measures of number competencies and general math achievement. Many of the effects held eight weeks after the intervention was completed, suggesting that children internalized what they had learned. There were no differences between the language and control groups on any math-related measures. PMID:25866417
Miszczak, Jarosław Adam
2013-01-01
The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random
Solution-Processed Carbon Nanotube True Random Number Generator.
Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C
2017-08-09
With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.
Chaos-based Pseudo-random Number Generation
Barakat, Mohamed L.
2014-04-10
Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.
Chaos-based Pseudo-random Number Generation
Barakat, Mohamed L.; Mansingka, Abhinav S.; Radwan, Ahmed Gomaa Ahmed; Salama, Khaled N.
2014-01-01
Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.
Monte Carlo learning/biasing experiment with intelligent random numbers
International Nuclear Information System (INIS)
Booth, T.E.
1985-01-01
A Monte Carlo learning and biasing technique is described that does its learning and biasing in the random number space rather than the physical phase-space. The technique is probably applicable to all linear Monte Carlo problems, but no proof is provided here. Instead, the technique is illustrated with a simple Monte Carlo transport problem. Problems encountered, problems solved, and speculations about future progress are discussed. 12 refs
Note on Marsaglia\\'s Xorshift Random Number Generators
Directory of Open Access Journals (Sweden)
Richard P. Brent
2004-08-01
Full Text Available Marsaglia (2003 has described a class of Xorshift random number generators (RNGs with periods 2n - 1 for n = 32, 64, etc. We show that the sequences generated by these RNGs are identical to the sequences generated by certain linear feedback shift register (LFSR generators using "exclusive or" (xor operations on n-bit words, with a recurrence defined by a primitive polynomial of degree n.
An investigation of the uniform random number generator
Temple, E. C.
1982-01-01
Most random number generators that are in use today are of the congruential form X(i+1) + AX(i) + C mod M where A, C, and M are nonnegative integers. If C=O, the generator is called the multiplicative type and those for which C/O are called mixed congruential generators. It is easy to see that congruential generators will repeat a sequence of numbers after a maximum of M values have been generated. The number of numbers that a procedure generates before restarting the sequence is called the length or the period of the generator. Generally, it is desirable to make the period as long as possible. A detailed discussion of congruential generators is given. Also, several promising procedures that differ from the multiplicative and mixed procedure are discussed.
Energy Technology Data Exchange (ETDEWEB)
Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)
2016-03-15
In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.
Low-wave-number statistics of randomly advected passive scalars
International Nuclear Information System (INIS)
Kerstein, A.R.; McMurtry, P.A.
1994-01-01
A heuristic analysis of the decay of a passive scalar field subject to statistically steady random advection, predicts two low-wave-number spectral scaling regimes analogous to the similarity states previously identified by Chasnov [Phys. Fluids 6, 1036 (1994)]. Consequences of their predicted coexistence in a single flow are examined. The analysis is limited to the idealized case of narrow band advection. To complement the analysis, and to extend the predictions to physically more realistic advection processes, advection diffusion is simulated using a one-dimensional stochastic model. An experimental test of the predictions is proposed
Quantum Statistical Testing of a Quantum Random Number Generator
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Random number generation based on digital differential chaos
Zidan, Mohammed A.
2012-07-29
In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing technique to improve the distribution and statistical properties of the generated data. The post-processed output passes the NIST Sp. 800-22 statistical tests. The system is written in Verilog VHDL and realized on Xilinx Virtex® FPGA. The generator can fit into a very small area and have a maximum throughput of 2.1 Gb/s.
Very high performance pseudo-random number generation on DAP
Smith, K. A.; Reddaway, S. F.; Scott, D. M.
1985-07-01
Since the National DAP Service began at QMC in 1980, extensive use has been made of pseudo-random numbers in Monte Carlo simulation. Matrices of uniform numbers have been produced by various generators: (a) multiplicative ( x+ 1 = 13 13xn mod 2 59); (b) very long period shift register ( x4423 + x271 + 1); (c) multiple shorter period ( x127 + x7 + 1) shift registers generating several matrices per iteration. The above uniform generators can also feed a normal distribution generator that uses the Box-Muller transformation. This paper describes briefly the generators, their implementation and speed. Generator (b) has been greatly speeded-up by re-implementation, and now produces more than 100 × 10 6 high quality 16-bit numbers/s. Generator (c) is under development and will achieve even higher performance, mainly due to producing data in greater bulk. High quality numbers are expected, and performance will range from 400 to 800 × 10 6 numbers/s, depending on how the generator is used.
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
Pseudo random number generator based on quantum chaotic map
Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.
2014-01-01
For many years dissipative quantum maps were widely used as informative models of quantum chaos. In this paper, a new scheme for generating good pseudo-random numbers (PRNG), based on quantum logistic map is proposed. Note that the PRNG merely relies on the equations used in the quantum chaotic map. The algorithm is not complex, which does not impose high requirement on computer hardware and thus computation speed is fast. In order to face the challenge of using the proposed PRNG in quantum cryptography and other practical applications, the proposed PRNG is subjected to statistical tests using well-known test suites such as NIST, DIEHARD, ENT and TestU01. The results of the statistical tests were promising, as the proposed PRNG successfully passed all these tests. Moreover, the degree of non-periodicity of the chaotic sequences of the quantum map is investigated through the Scale index technique. The obtained result shows that, the sequence is more non-periodic. From these results it can be concluded that, the new scheme can generate a high percentage of usable pseudo-random numbers for simulation and other applications in scientific computing.
Effects of changing the random number stride in Monte Carlo calculations
International Nuclear Information System (INIS)
Hendricks, J.S.
1991-01-01
This paper reports on a common practice in Monte Carlo radiation transport codes which is to start each random walk a specified number of steps up the random number sequence from the previous one. This is called the stride in the random number sequence between source particles. It is used for correlated sampling or to provide tree-structured random numbers. A new random number generator algorithm for the major Monte Carlo code MCNP has been written to allow adjustment of the random number stride. This random number generator is machine portable. The effects of varying the stride for several sample problems are examined
Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation
Mansingka, Abhinav S.
2012-05-01
adapted for pseudo random number generation by truncating statistically defective bits. Finally, a novel post-processing technique using the Fibonacci series is proposed and implemented with a non-autonomous driven hyperchaotic system to provide pseudo random number generators with high nonlinear complexity and controllable period length that enables full utilization of all branches of the chaotic output as statistically secure pseudo random output.
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Generative Learning Objects Instantiated with Random Numbers Based Expressions
Directory of Open Access Journals (Sweden)
Ciprian Bogdan Chirila
2015-12-01
Full Text Available The development of interactive e-learning content requires special skills like programming techniques, web integration, graphic design etc. Generally, online educators do not possess such skills and their e-learning products tend to be static like presentation slides and textbooks. In this paper we propose a new interactive model of generative learning objects as a compromise betweenstatic, dull materials and dynamic, complex software e-learning materials developed by specialized teams. We find that random numbers based automatic initialization learning objects increases content diversity, interactivity thus enabling learners’ engagement. The resulted learning object model is at a limited level of complexity related to special e-learning software, intuitive and capable of increasing learners’ interactivity, engagement and motivation through dynamic content. The approach was applied successfully on several computer programing disciplines.
Statistical evaluation of PACSTAT random number generation capabilities
Energy Technology Data Exchange (ETDEWEB)
Piepel, G.F.; Toland, M.R.; Harty, H.; Budden, M.J.; Bartley, C.L.
1988-05-01
This report summarizes the work performed in verifying the general purpose Monte Carlo driver-program PACSTAT. The main objective of the work was to verify the performance of PACSTAT's random number generation capabilities. Secondary objectives were to document (using controlled configuration management procedures) changes made in PACSTAT at Pacific Northwest Laboratory, and to assure that PACSTAT input and output files satisfy quality assurance traceability constraints. Upon receipt of the PRIME version of the PACSTAT code from the Basalt Waste Isolation Project, Pacific Northwest Laboratory staff converted the code to run on Digital Equipment Corporation (DEC) VAXs. The modifications to PACSTAT were implemented using the WITNESS configuration management system, with the modifications themselves intended to make the code as portable as possible. Certain modifications were made to make the PACSTAT input and output files conform to quality assurance traceability constraints. 10 refs., 17 figs., 6 tabs.
Ghersi, Dario; Parakh, Abhishek; Mezei, Mihaly
2017-12-05
Four pseudorandom number generators were compared with a physical, quantum-based random number generator using the NIST suite of statistical tests, which only the quantum-based random number generator could successfully pass. We then measured the effect of the five random number generators on various calculated properties in different Markov-chain Monte Carlo simulations. Two types of systems were tested: conformational sampling of a small molecule in aqueous solution and liquid methanol under constant temperature and pressure. The results show that poor quality pseudorandom number generators produce results that deviate significantly from those obtained with the quantum-based random number generator, particularly in the case of the small molecule in aqueous solution setup. In contrast, the widely used Mersenne Twister pseudorandom generator and a 64-bit Linear Congruential Generator with a scrambler produce results that are statistically indistinguishable from those obtained with the quantum-based random number generator. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Random-Number Generator Validity in Simulation Studies: An Investigation of Normality.
Bang, Jung W.; Schumacker, Randall E.; Schlieve, Paul L.
1998-01-01
The normality of number distributions generated by various random-number generators were studied, focusing on when the random-number generator reached a normal distribution and at what sample size. Findings suggest the steps that should be followed when using a random-number generator in a Monte Carlo simulation. (SLD)
Random number generation as an index of controlled processing.
Jahanshahi, Marjan; Saleem, T; Ho, Aileen K; Dirnberger, Georg; Fuller, R
2006-07-01
Random number generation (RNG) is a functionally complex process that is highly controlled and therefore dependent on Baddeley's central executive. This study addresses this issue by investigating whether key predictions from this framework are compatible with empirical data. In Experiment 1, the effect of increasing task demands by increasing the rate of the paced generation was comprehensively examined. As expected, faster rates affected performance negatively because central resources were increasingly depleted. Next, the effects of participants' exposure were manipulated in Experiment 2 by providing increasing amounts of practice on the task. There was no improvement over 10 practice trials, suggesting that the high level of strategic control required by the task was constant and not amenable to any automatization gain with repeated exposure. Together, the results demonstrate that RNG performance is a highly controlled and demanding process sensitive to additional demands on central resources (Experiment 1) and is unaffected by repeated performance or practice (Experiment 2). These features render the easily administered RNG task an ideal and robust index of executive function that is highly suitable for repeated clinical use. ((c) 2006 APA, all rights reserved).
A method for generating skewed random numbers using two overlapping uniform distributions
International Nuclear Information System (INIS)
Ermak, D.L.; Nasstrom, J.S.
1995-02-01
The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence
2010-07-01
... Measurements Required, and Maximum Discrepancy Specification C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges..., June 22, 2010, table C-1 to subpart C was revised, effective Aug. 23, 2010. For the convenience of the...
Novel pseudo-random number generator based on quantum random walks
Yang, Yu-Guang; Zhao, Qian-Qian
2016-02-01
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.
Novel pseudo-random number generator based on quantum random walks.
Yang, Yu-Guang; Zhao, Qian-Qian
2016-02-04
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.
25 CFR 547.14 - What are the minimum technical standards for electronic random number generation?
2010-04-01
... random number generation? 547.14 Section 547.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF... CLASS II GAMES § 547.14 What are the minimum technical standards for electronic random number generation...) Unpredictability; and (3) Non-repeatability. (b) Statistical Randomness.(1) Numbers produced by an RNG shall be...
Using Computer-Generated Random Numbers to Calculate the Lifetime of a Comet.
Danesh, Iraj
1991-01-01
An educational technique to calculate the lifetime of a comet using software-generated random numbers is introduced to undergraduate physiques and astronomy students. Discussed are the generation and eligibility of the required random numbers, background literature related to the problem, and the solution to the problem using random numbers.…
An empirical test of pseudo random number generators by means of an exponential decaying process
International Nuclear Information System (INIS)
Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A.; Mora F, L.E.
2007-01-01
Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)
Super fast physical-random number generation using laser diode frequency noises
Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2011-02-01
Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.
Persaud, Navindra
2005-01-01
Computer algorithms can only produce seemingly random or pseudorandom numbers whereas certain natural phenomena, such as the decay of radioactive particles, can be utilized to produce truly random numbers. In this study, the ability of humans to generate random numbers was tested in healthy adults. Subjects were simply asked to generate and dictate random numbers. Generated numbers were tested for uniformity, independence and information density. The results suggest that humans can generate random numbers that are uniformly distributed, independent of one another and unpredictable. If humans can generate sequences of random numbers then neural networks or forms of artificial intelligence, which are purported to function in ways essentially the same as the human brain, should also be able to generate sequences of random numbers. Elucidating the precise mechanism by which humans generate random number sequences and the underlying neural substrates may have implications in the cognitive science of decision-making. It is possible that humans use their random-generating neural machinery to make difficult decisions in which all expected outcomes are similar. It is also possible that certain people, perhaps those with neurological or psychiatric impairments, are less able or unable to generate random numbers. If the random-generating neural machinery is employed in decision making its impairment would have profound implications in matters of agency and free will.
Pseudo-random number generation using a 3-state cellular automaton
Bhattacharjee, Kamalika; Paul, Dipanjyoti; Das, Sukanta
This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.
Fast random-number generation using a diode laser's frequency noise characteristic
Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2012-02-01
Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".
Simulation and study of small numbers of random events
Shelton, R. D.
1986-01-01
Random events were simulated by computer and subjected to various statistical methods to extract important parameters. Various forms of curve fitting were explored, such as least squares, least distance from a line, maximum likelihood. Problems considered were dead time, exponential decay, and spectrum extraction from cosmic ray data using binned data and data from individual events. Computer programs, mostly of an iterative nature, were developed to do these simulations and extractions and are partially listed as appendices. The mathematical basis for the compuer programs is given.
Properties making a chaotic system a good Pseudo Random Number Generator
Falcioni, Massimo; Palatella, Luigi; Pigolotti, Simone; Vulpiani, Angelo
2005-01-01
We discuss two properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy and high-dimensionality. We propose the multi dimensional Anosov symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic features of this map are useful for generating Pseudo Random Numbers and investigate numerically which of them survive in the discrete version of the map. Testing and comparisons with other generat...
A generator for unique quantum random numbers based on vacuum states
DEFF Research Database (Denmark)
Gabriel, C.; Wittmann, C.; Sych, D.
2010-01-01
the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably......Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational...... unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...
Anosov C-systems and random number generators
Savvidy, G. K.
2016-08-01
We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
Mathematical conversations multicolor problems, problems in the theory of numbers, and random walks
Dynkin, E B
2006-01-01
Comprises Multicolor Problems, dealing with map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; Random Walks, addressing basic problems in probability theory. 1963 edition.
Number-conserving random phase approximation with analytically integrated matrix elements
International Nuclear Information System (INIS)
Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.
1990-01-01
In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem
High-speed true random number generation based on paired memristors for security electronics
Zhang, Teng; Yin, Minghui; Xu, Changmin; Lu, Xiayan; Sun, Xinhao; Yang, Yuchao; Huang, Ru
2017-11-01
True random number generator (TRNG) is a critical component in hardware security that is increasingly important in the era of mobile computing and internet of things. Here we demonstrate a TRNG using intrinsic variation of memristors as a natural source of entropy that is otherwise undesirable in most applications. The random bits were produced by cyclically switching a pair of tantalum oxide based memristors and comparing their resistance values in the off state, taking advantage of the more pronounced resistance variation compared with that in the on state. Using an alternating read scheme in the designed TRNG circuit, the unbiasedness of the random numbers was significantly improved, and the bitstream passed standard randomness tests. The Pt/TaO x /Ta memristors fabricated in this work have fast programming/erasing speeds of ˜30 ns, suggesting a high random number throughput. The approach proposed here thus holds great promise for physically-implemented random number generation.
a Pseudo-Random Number Generator Employing Multiple RÉNYI Maps
Lui, Oi-Yan; Yuen, Ching-Hung; Wong, Kwok-Wo
2013-11-01
The increasing risk along with the drastic development of multimedia data transmission has raised a big concern on data security. A good pseudo-random number generator is an essential tool in cryptography. In this paper, we propose a novel pseudo-random number generator based on the controlled combination of the outputs of several digitized chaotic Rényi maps. The generated pseudo-random sequences have passed both the NIST 800-22 Revision 1a and the DIEHARD tests. Moreover, simulation results show that the proposed pseudo-random number generator requires less operation time than existing generators and is highly sensitive to the seed.
Problems with the random number generator RANF implemented on the CDC cyber 205
Kalle, Claus; Wansleben, Stephan
1984-10-01
We show that using RANF may lead to wrong results when lattice models are simulated by Monte Carlo methods. We present a shift-register sequence random number generator which generates two random numbers per cycle on a two pipe CDC Cyber 205.
Molotkov, S. N.
2017-03-01
Various methods for the clustering of photocounts constituting a sequence of random numbers are considered. It is shown that the clustering of photocounts resulting in the Fermi-Dirac distribution makes it possible to achieve the theoretical limit of the random number generation rate.
International Nuclear Information System (INIS)
Chakraborty, Brahmananda
2009-01-01
Random number plays an important role in any Monte Carlo simulation. The accuracy of the results depends on the quality of the sequence of random numbers employed in the simulation. These include randomness of the random numbers, uniformity of their distribution, absence of correlation and long period. In a typical Monte Carlo simulation of particle transport in a nuclear reactor core, the history of a particle from its birth in a fission event until its death by an absorption or leakage event is tracked. The geometry of the core and the surrounding materials are exactly modeled in the simulation. To track a neutron history one needs random numbers for determining inter collision distance, nature of the collision, the direction of the scattered neutron etc. Neutrons are tracked in batches. In one batch approximately 2000-5000 neutrons are tracked. The statistical accuracy of the results of the simulation depends on the total number of particles (number of particles in one batch multiplied by the number of batches) tracked. The number of histories to be generated is usually large for a typical radiation transport problem. To track a very large number of histories one needs to generate a long sequence of independent random numbers. In other words the cycle length of the random number generator (RNG) should be more than the total number of random numbers required for simulating the given transport problem. The number of bits of the machine generally limits the cycle length. For a binary machine of p bits the maximum cycle length is 2 p . To achieve higher cycle length in the same machine one has to use either register arithmetic or bit manipulation technique
Non-periodic pseudo-random numbers used in Monte Carlo calculations
Barberis, Gaston E.
2007-09-01
The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 1013 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 1013 numbers and that they are not correlated.
Non-periodic pseudo-random numbers used in Monte Carlo calculations
International Nuclear Information System (INIS)
Barberis, Gaston E.
2007-01-01
The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 10 13 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 10 13 numbers and that they are not correlated
Realistic noise-tolerant randomness amplification using finite number of devices
Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna
2016-04-01
Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.
The linking number and the writhe of uniform random walks and polygons in confined spaces
International Nuclear Information System (INIS)
Panagiotou, E; Lambropoulou, S; Millett, K C
2010-01-01
Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n 2 ). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(√n). Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length.
Beliakov, G.; Creighton, D.; Johnstone, M.; Wilkin, T.
2013-08-01
This paper describes an implementation of a Linear Congruential Generator (LCG) based on the binary representation of the normal number α, and of a combined generator based on that LCG. The base LCG with the modulus 333 provides a quality sequence with the period ≈3.7ṡ1015, which passes all but two statistical tests from BigCrush test suite. We improved on the original implementation by adapting Barrett's modular reduction method, which resulted in four-fold increase in efficiency. The combined generator has the period of ≈1023 and passes all tests from BigCrush suite.
A true random number generator based on mouse movement and chaotic cryptography
International Nuclear Information System (INIS)
Hu Yue; Liao Xiaofeng; Wong, Kwok-wo; Zhou Qing
2009-01-01
True random number generators are in general more secure than pseudo random number generators. In this paper, we propose a novel true random number generator which generates a 256-bit random number by computer mouse movement. It is cheap, convenient and universal for personal computers. To eliminate the effect of similar movement patterns generated by the same user, three chaos-based approaches, namely, discretized 2D chaotic map permutation, spatiotemporal chaos and 'MASK' algorithm, are adopted to post-process the captured mouse movements. Random bits generated by three users are tested using NIST statistical tests. Both the spatiotemporal chaos approach and the 'MASK' algorithm pass the tests successfully. However, the latter has a better performance in terms of efficiency and effectiveness and so is more practical for common personal computer applications.
Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation
Energy Technology Data Exchange (ETDEWEB)
England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J., E-mail: ben.sussman@nrc.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)
2014-02-03
The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
International Nuclear Information System (INIS)
Nie, You-Qi; Liu, Yang; Zhang, Jun; Pan, Jian-Wei; Huang, Leilei; Payne, Frank
2015-01-01
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage
Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro
2006-04-01
A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).
Direct generation of all-optical random numbers from optical pulse amplitude chaos.
Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong
2012-02-13
We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.
Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array
International Nuclear Information System (INIS)
Li Yang; Liao Sheng-Kai; Liang Fu-Tian; Shen Qi; Liang Hao; Peng Cheng-Zhi
2016-01-01
Quantum random number generators adopting single photon detection have been restricted due to the non-negligible dead time of avalanche photodiodes (APDs). We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32 × 32 APD array is up to tens of Gbits/s. (paper)
On the number of subgraphs of the Barabasi-Albert random graph
Energy Technology Data Exchange (ETDEWEB)
Ryabchenko, Aleksandr A; Samosvat, Egor A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region, Russian Frderation (Russian Federation)
2012-06-30
We study a model of a random graph of the type of the Barabasi-Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.
On the number of subgraphs of the Barabási-Albert random graph
International Nuclear Information System (INIS)
Ryabchenko, Aleksandr A; Samosvat, Egor A
2012-01-01
We study a model of a random graph of the type of the Barabási-Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.
Strong Laws of Large Numbers for Arrays of Rowwise NA and LNQD Random Variables
Directory of Open Access Journals (Sweden)
Jiangfeng Wang
2011-01-01
Full Text Available Some strong laws of large numbers and strong convergence properties for arrays of rowwise negatively associated and linearly negative quadrant dependent random variables are obtained. The results obtained not only generalize the result of Hu and Taylor to negatively associated and linearly negative quadrant dependent random variables, but also improve it.
Pseudo-random-number generators and the square site percolation threshold.
Lee, Michael J
2008-09-01
Selected pseudo-random-number generators are applied to a Monte Carlo study of the two-dimensional square-lattice site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of p_{c}=0.59274598(4) is obtained for the percolation threshold.
Raw and Central Moments of Binomial Random Variables via Stirling Numbers
Griffiths, Martin
2013-01-01
We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…
Three-dimensional pseudo-random number generator for implementing in hybrid computer systems
International Nuclear Information System (INIS)
Ivanov, M.A.; Vasil'ev, N.P.; Voronin, A.V.; Kravtsov, M.Yu.; Maksutov, A.A.; Spiridonov, A.A.; Khudyakova, V.I.; Chugunkov, I.V.
2012-01-01
The algorithm for generating pseudo-random numbers oriented to implementation by using hybrid computer systems is considered. The proposed solution is characterized by a high degree of parallel computing [ru
Strenge, Hans; Niederberger, Uwe
2008-06-01
The interference effect between Grooved Pegboard task with either hand and the executive task of cued verbal random number generation was investigated. 24 normal right-handed subjects performed each task under separate (single-task) and concurrent (dual-task) conditions. Articulatory suppression was required as an additional secondary task during pegboard performance. Analysis indicated an unambiguous distinction between the two hands. Comparisons of single-task and dual-task conditions showed an asymmetrical pattern of unidirectional interference with no practice effects during pegboard performance. Concurrent performance with nondominant hand but not the dominant hand of random number generation performance became continuously slower. There was no effect of divided attention on pegboard performance. Findings support the idea that the nondominant hand on the pegboard and random number tasks draw from the same processing resources but that for the executive aspect random number generation is more sensitive to changes in allocation of attentional resources.
Private random numbers produced by entangled ions and certified by Bell's theorem
Hayes, David; Matsukevich, Dzmitry; Maunz, Peter; Monroe, Chris; Olmschenk, Steven
2010-03-01
It has been shown that entangled particles can be used to generate numbers whose privacy and randomness are guaranteed by the violation of a Bell inequality [1,2]. The authenticity of the bit stream produced is guaranteed when the system used can close the detection loophole and when the entangled particles are non-interacting. We report the use of remotely located trapped ions with near perfect state detection efficiency as a private random number generator. By entangling the ions through photon interference and choosing the measurement settings using a pseudo-random number generator, we measure a CHSH correlation function that is more than seven standard deviations above the classical limit. With a total of 3016 events, we are able to certify the generation of 42 new random numbers with 99% confidence. [1] S. Pironio et al.(submitted to Nature, arXiv:0911.3427) [2] Colbeck, R. PhD Dissertation (2007)
Recommendations and illustrations for the evaluation of photonic random number generators
Hart, Joseph D.; Terashima, Yuta; Uchida, Atsushi; Baumgartner, Gerald B.; Murphy, Thomas E.; Roy, Rajarshi
2017-09-01
The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h (𝜖 ,τ ) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.
Recommendations and illustrations for the evaluation of photonic random number generators
Directory of Open Access Journals (Sweden)
Joseph D. Hart
2017-09-01
Full Text Available The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(,τ as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.
Using pseudo-random number generator for making iterative algorithms of hashing data
International Nuclear Information System (INIS)
Ivanov, M.A.; Vasil'ev, N.P.; Kozyrskij, B.L.
2014-01-01
The method of stochastic data transformation made for usage in cryptographic methods of information protection has been analyzed. The authors prove the usage of cryptographically strong pseudo-random number generators as a basis for Sponge construction. This means that the analysis of the quality of the known methods and tools for assessing the statistical security of pseudo-random number generators can be used effectively [ru
High-Performance Pseudo-Random Number Generation on Graphics Processing Units
Nandapalan, Nimalan; Brent, Richard P.; Murray, Lawrence M.; Rendell, Alistair
2011-01-01
This work considers the deployment of pseudo-random number generators (PRNGs) on graphics processing units (GPUs), developing an approach based on the xorgens generator to rapidly produce pseudo-random numbers of high statistical quality. The chosen algorithm has configurable state size and period, making it ideal for tuning to the GPU architecture. We present a comparison of both speed and statistical quality with other common parallel, GPU-based PRNGs, demonstrating favourable performance o...
Stephan, Carl N
2014-03-01
By pooling independent study means (x¯), the T-Tables use the central limit theorem and law of large numbers to average out study-specific sampling bias and instrument errors and, in turn, triangulate upon human population means (μ). Since their first publication in 2008, new data from >2660 adults have been collected (c.30% of the original sample) making a review of the T-Table's robustness timely. Updated grand means show that the new data have negligible impact on the previously published statistics: maximum change = 1.7 mm at gonion; and ≤1 mm at 93% of all landmarks measured. This confirms the utility of the 2008 T-Table as a proxy to soft tissue depth population means and, together with updated sample sizes (8851 individuals at pogonion), earmarks the 2013 T-Table as the premier mean facial soft tissue depth standard for craniofacial identification casework. The utility of the T-Table, in comparison with shorths and 75-shormaxes, is also discussed. © 2013 American Academy of Forensic Sciences.
The average inter-crossing number of equilateral random walks and polygons
International Nuclear Information System (INIS)
Diao, Y; Dobay, A; Stasiak, A
2005-01-01
In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = 3ln2/8 ∼ 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance ρ apart and ρ is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of ρ. Our simulation result shows that the model in fact works very well for the entire range of ρ. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well
Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling
Bierhorst, Peter; Shalm, Lynden K.; Mink, Alan; Jordan, Stephen; Liu, Yi-Kai; Rommal, Andrea; Glancy, Scott; Christensen, Bradley; Nam, Sae Woo; Knill, Emanuel
Random numbers are an important resource for applications such as numerical simulation and secure communication. However, it is difficult to certify whether a physical random number generator is truly unpredictable. Here, we exploit the phenomenon of quantum nonlocality in a loophole-free photonic Bell test experiment to obtain data containing randomness that cannot be predicted by any theory that does not also allow the sending of signals faster than the speed of light. To certify and quantify the randomness, we develop a new protocol that performs well in an experimental regime characterized by low violation of Bell inequalities. Applying an extractor function to our data, we obtain 256 new random bits, uniform to within 10- 3 .
Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo
2018-02-01
A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.
Directory of Open Access Journals (Sweden)
Zahra Bisadi
2018-02-01
Full Text Available A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.
A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications
Grauer, Jared A.
2017-01-01
Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.
Modular Transformations, Order-Chaos Transitions and Pseudo-Random Number Generation
Bonelli, Antonio; Ruffo, Stefano
Successive pairs of pseudo-random numbers generated by standard linear congruential transformations display ordered patterns of parallel lines. We study the "ordered" and "chaotic" distribution of such pairs by solving the eigenvalue problem for two-dimensional modular transformations over integers. We conjecture that the optimal uniformity for pair distribution is obtained when the slope of linear modular eigenspaces takes the value n opt =maxint (p/√ {p-1}), where p is a prime number. We then propose a new generator of pairs of independent pseudo-random numbers, which realizes an optimal uniform distribution (in the "statistical" sense) of points on the unit square (0, 1] × (0, 1]. The method can be easily generalized to the generation of k-tuples of random numbers (with k>2).
True random number generation from mobile telephone photo based on chaotic cryptography
International Nuclear Information System (INIS)
Zhao Liang; Liao Xiaofeng; Xiao Di; Xiang Tao; Zhou Qing; Duan Shukai
2009-01-01
A cheap, convenient and universal TRNG based on mobile telephone photo for producing random bit sequence is proposed. To settle the problem of sequential pixels and comparability, three chaos-based approaches are applied to post-process the generated binary image. The random numbers produced by three users are tested using US NIST RNG statistical test software. The experimental results indicate that the Arnold cat map is the fastest way to generate a random bit sequence and can be accepted on general PC. The 'MASK' algorithm also performs well. Finally, comparing with the TRNG of Hu et al. [Hu Y, Liao X, Wong KW, Zhou Q. A true random number generator based on mouse movement and chaotic cryptography. Chaos, Solitons and Fractals 2007. doi: 10.1016/j.chaos.2007.10.022] which is presented by Hu et al., many merits of the proposed TRNG in this paper has been found.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
International Nuclear Information System (INIS)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng
2016-01-01
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.
Robust random number generation using steady-state emission of gain-switched laser diodes
International Nuclear Information System (INIS)
Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.
2014-01-01
We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)
2016-07-15
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.
High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole
Liu, Yang; Yuan, Xiao; Li, Ming-Han; Zhang, Weijun; Zhao, Qi; Zhong, Jiaqiang; Cao, Yuan; Li, Yu-Huai; Chen, Luo-Kan; Li, Hao; Peng, Tianyi; Chen, Yu-Ao; Peng, Cheng-Zhi; Shi, Sheng-Cai; Wang, Zhen; You, Lixing; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei
2018-01-01
Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits /s , with a failure probability less than 10-5. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.
Thompson, J. R.; Taylor, M. S.
1982-01-01
Let X be a K-dimensional random variable serving as input for a system with output Y (not necessarily of dimension k). given X, an outcome Y or a distribution of outcomes G(Y/X) may be obtained either explicitly or implicity. The situation is considered in which there is a real world data set X sub j sub = 1 (n) and a means of simulating an outcome Y. A method for empirical random number generation based on the sample of observations of the random variable X without estimating the underlying density is discussed.
Quantum random number generator based on quantum nature of vacuum fluctuations
Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.
2017-11-01
Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.
A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism
International Nuclear Information System (INIS)
Fu-Lai, Wang
2010-01-01
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0–1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator. (general)
A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism
Wang, Fu-Lai
2010-09-01
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.
Pólya number and first return of bursty random walk: Rigorous solutions
Wan, J.; Xu, X. P.
2012-03-01
The recurrence properties of random walks can be characterized by Pólya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we investigate Pólya number and first return for bursty random walk on a line, in which the walk has different step size and moving probabilities. Using the concept of the Catalan number, we obtain exact results for first return probability, the average first return time and Pólya number for the first time. We show that Pólya number displays two different functional behavior when the walk deviates from the recurrent point. By utilizing the Lagrange inversion formula, we interpret our findings by transferring Pólya number to the closed-form solutions of an inverse function. We also calculate Pólya number using another approach, which corroborates our results and conclusions. Finally, we consider the recurrence properties and Pólya number of two variations of the bursty random walk model.
40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample selection by random number... Â§ 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square... area created in accordance with paragraph (a) of this section, select two random numbers: one each for...
Xing, Lizhi; Dong, Xianlei; Guan, Jun
2017-04-01
Input-output table is very comprehensive and detailed in describing the national economic system with lots of economic relationships, which contains supply and demand information among industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can describe the structural characteristics of the internal structure of the research object by measuring the structural indicators of the social and economic system, revealing the complex relationship between the inner hierarchy and the external economic function. This paper builds up GIVCN-WIOT models based on World Input-Output Database in order to depict the topological structure of Global Value Chain (GVC), and assumes the competitive advantage of nations is equal to the overall performance of its domestic sectors' impact on the GVC. Under the perspective of econophysics, Global Industrial Impact Coefficient (GIIC) is proposed to measure the national competitiveness in gaining information superiority and intermediate interests. Analysis of GIVCN-WIOT models yields several insights including the following: (1) sectors with higher Random Walk Centrality contribute more to transmitting value streams within the global economic system; (2) Half-Value Ratio can be used to measure robustness of open-economy macroeconomics in the process of globalization; (3) the positive correlation between GIIC and GDP indicates that one country's global industrial impact could reveal its international competitive advantage.
Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units
Demchik, Vadim
2011-03-01
Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is presented.
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
Bayraktar, Turgay
2017-01-01
In this note, we obtain asymptotic expected number of real zeros for random polynomials of the form $$f_n(z)=\\sum_{j=0}^na^n_jc^n_jz^j$$ where $a^n_j$ are independent and identically distributed real random variables with bounded $(2+\\delta)$th absolute moment and the deterministic numbers $c^n_j$ are normalizing constants for the monomials $z^j$ within a weighted $L^2$-space induced by a radial weight function satisfying suitable smoothness and growth conditions.
Directory of Open Access Journals (Sweden)
Edward Nuhfer
2016-01-01
Full Text Available Self-assessment measures of competency are blends of an authentic self-assessment signal that researchers seek to measure and random disorder or "noise" that accompanies that signal. In this study, we use random number simulations to explore how random noise affects critical aspects of self-assessment investigations: reliability, correlation, critical sample size, and the graphical representations of self-assessment data. We show that graphical conventions common in the self-assessment literature introduce artifacts that invite misinterpretation. Troublesome conventions include: (y minus x vs. (x scatterplots; (y minus x vs. (x column graphs aggregated as quantiles; line charts that display data aggregated as quantiles; and some histograms. Graphical conventions that generate minimal artifacts include scatterplots with a best-fit line that depict (y vs. (x measures (self-assessed competence vs. measured competence plotted by individual participant scores, and (y vs. (x scatterplots of collective average measures of all participants plotted item-by-item. This last graphic convention attenuates noise and improves the definition of the signal. To provide relevant comparisons across varied graphical conventions, we use a single dataset derived from paired measures of 1154 participants' self-assessed competence and demonstrated competence in science literacy. Our results show that different numerical approaches employed in investigating and describing self-assessment accuracy are not equally valid. By modeling this dataset with random numbers, we show how recognizing the varied expressions of randomness in self-assessment data can improve the validity of numeracy-based descriptions of self-assessment.
NNDSS - Table III. Tuberculosis
U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2018.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...
NNDSS - Table IV. Tuberculosis
U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...
NNDSS - Table IV. Tuberculosis
U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...
NNDSS - Table III. Tuberculosis
U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2017.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...
NNDSS - Table IV. Tuberculosis
U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...
On the design of henon and logistic map-based random number generator
Magfirawaty; Suryadi, M. T.; Ramli, Kalamullah
2017-10-01
The key sequence is one of the main elements in the cryptosystem. True Random Number Generators (TRNG) method is one of the approaches to generating the key sequence. The randomness source of the TRNG divided into three main groups, i.e. electrical noise based, jitter based and chaos based. The chaos based utilizes a non-linear dynamic system (continuous time or discrete time) as an entropy source. In this study, a new design of TRNG based on discrete time chaotic system is proposed, which is then simulated in LabVIEW. The principle of the design consists of combining 2D and 1D chaotic systems. A mathematical model is implemented for numerical simulations. We used comparator process as a harvester method to obtain the series of random bits. Without any post processing, the proposed design generated random bit sequence with high entropy value and passed all NIST 800.22 statistical tests.
A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator
Directory of Open Access Journals (Sweden)
Han Shuangshuang
2013-07-01
Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.
A robust random number generator based on differential comparison of chaotic laser signals.
Zhang, Jianzhong; Wang, Yuncai; Liu, Ming; Xue, Lugang; Li, Pu; Wang, Anbang; Zhang, Mingjiang
2012-03-26
We experimentally realize a robust real-time random number generator by differentially comparing the signal from a chaotic semiconductor laser and its delayed signal through a 1-bit analog-to-digital converter. The probability density distribution of the output chaotic signal based on the differential comparison method possesses an extremely small coefficient of Pearson's median skewness (1.5 × 10⁻⁶), which can yield a balanced random sequence much easily than the previously reported method that compares the signal from the chaotic laser with a certain threshold value. Moveover, we experimently demonstrate that our method can stably generate good random numbers at rates of 1.44 Gbit/s with excellent immunity from external perturbations while the previously reported method fails.
Experimental study of a quantum random-number generator based on two independent lasers
Sun, Shi-Hai; Xu, Feihu
2017-12-01
A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.
A portable high-quality random number generator for lattice field theory simulations
International Nuclear Information System (INIS)
Luescher, M.
1993-09-01
The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE-754 standard for single precision floating point arithmetic. (orig.)
Similarity and number of alternatives in the random-dot motion paradigm
van Maanen, L.; Grasman, R.P.P.P.; Forstmann, B.U.; Keuken, M.C.; Brown, S.D.; Wagenmakers, E.-J.
2012-01-01
The popular random-dot motion (RDM) task has recently been applied to multiple-choice perceptual decisionmaking. However, changes in the number of alternatives on an RDM display lead to changes in the similarity between the alternatives, complicating the study of multiple-choice effects. To
Pseudo-Random Number Generators for Vector Processors and Multicore Processors
DEFF Research Database (Denmark)
Fog, Agner
2015-01-01
Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways...
Learning Binomial Probability Concepts with Simulation, Random Numbers and a Spreadsheet
Rochowicz, John A., Jr.
2005-01-01
This paper introduces the reader to the concepts of binomial probability and simulation. A spreadsheet is used to illustrate these concepts. Random number generators are great technological tools for demonstrating the concepts of probability. Ideas of approximation, estimation, and mathematical usefulness provide numerous ways of learning…
Random Numbers Demonstrate the Frequency of Type I Errors: Three Spreadsheets for Class Instruction
Duffy, Sean
2010-01-01
This paper describes three spreadsheet exercises demonstrating the nature and frequency of type I errors using random number generation. The exercises are designed specifically to address issues related to testing multiple relations using correlation (Demonstration I), t tests varying in sample size (Demonstration II) and multiple comparisons…
Bosch, Holger; Steinkamp, Fiona; Boller, Emil
2006-01-01
Seance-room and other large-scale psychokinetic phenomena have fascinated humankind for decades. Experimental research has reduced these phenomena to attempts to influence (a) the fall of dice and, later, (b) the output of random number generators (RNGs). The meta-analysis combined 380 studies that assessed whether RNG output correlated with human…
Generating Random Samples of a Given Size Using Social Security Numbers.
Erickson, Richard C.; Brauchle, Paul E.
1984-01-01
The purposes of this article are (1) to present a method by which social security numbers may be used to draw cluster samples of a predetermined size and (2) to describe procedures used to validate this method of drawing random samples. (JOW)
Reduction of the number of parameters needed for a polynomial random regression test-day model
Pool, M.H.; Meuwissen, T.H.E.
2000-01-01
Legendre polynomials were used to describe the (co)variance matrix within a random regression test day model. The goodness of fit depended on the polynomial order of fit, i.e., number of parameters to be estimated per animal but is limited by computing capacity. Two aspects: incomplete lactation
Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.
2016-11-01
Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.
ACORN—A new method for generating sequences of uniformly distributed Pseudo-random Numbers
Wikramaratna, R. S.
1989-07-01
A new family of pseudo-random number generators, the ACORN ( additive congruential random number) generators, is proposed. The resulting numbers are distributed uniformly in the interval [0, 1). The ACORN generators are defined recursively, and the ( k + 1)th order generator is easily derived from the kth order generator. Some theorems concerning the period length are presented and compared with existing results for linear congruential generators. A range of statistical tests are applied to the ACORN generators, and their performance is compared with that of the linear congruential generators and the Chebyshev generators. The tests show the ACORN generators to be statistically superior to the Chebyshev generators, while being statistically similar to the linear congruential generators. However, the ACORN generators execute faster than linear congruential generators for the same statistical faithfulness. The main advantages of the ACORN generator are speed of execution, long period length, and simplicity of coding.
Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators
Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua
2017-12-01
Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.
Efficient pseudo-random number generation for monte-carlo simulations using graphic processors
Mohanty, Siddhant; Mohanty, A. K.; Carminati, F.
2012-06-01
A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.
Efficient pseudo-random number generation for Monte-Carlo simulations using graphic processors
International Nuclear Information System (INIS)
Mohanty, Siddhant; Mohanty, A K; Carminati, F
2012-01-01
A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.
Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin
2016-12-27
Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.
Covariance of the number of real zeros of a random trigonometric polynomial
Directory of Open Access Journals (Sweden)
K. Farahmand
2006-01-01
Full Text Available For random coefficients aj and bj we consider a random trigonometric polynomial defined as Tn(θ=∑j=0n{ajcosjθ+bjsinjθ}. The expected number of real zeros of Tn(θ in the interval (0,2π can be easily obtained. In this note we show that this number is in fact n/3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value for the covariance of the number of real zeros of the above polynomial in intervals (0,π and (π,2π. It can be seen that our method in fact remains valid to obtain the result for any two disjoint intervals. The applicability of our method to the classical random trigonometric polynomial, defined as Pn(θ=∑j=0naj(ωcosjθ, is also discussed. Tn(θ has the advantage on Pn(θ of being stationary, with respect to θ, for which, therefore, a more advanced method developed could be used to yield the results.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.
Stipčević, Mario; Ursin, Rupert
2015-06-09
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.
Generating log-normally distributed random numbers by using the Ziggurat algorithm
International Nuclear Information System (INIS)
Choi, Jong Soo
2016-01-01
Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method
A revision of the subtract-with-borrow random number generators
Sibidanov, Alexei
2017-12-01
The most popular and widely used subtract-with-borrow generator, also known as RANLUX, is reimplemented as a linear congruential generator using large integer arithmetic with the modulus size of 576 bits. Modern computers, as well as the specific structure of the modulus inferred from RANLUX, allow for the development of a fast modular multiplication - the core of the procedure. This was previously believed to be slow and have too high cost in terms of computing resources. Our tests show a significant gain in generation speed which is comparable with other fast, high quality random number generators. An additional feature is the fast skipping of generator states leading to a seeding scheme which guarantees the uniqueness of random number sequences. Licensing provisions: GPLv3 Programming language: C++, C, Assembler
Random number generators in support of Monte Carlo problems in physics
International Nuclear Information System (INIS)
Dyadkin, I.G.
1993-01-01
The ability to support a modern users' expectations of random number generators to solve problems in physics is analyzed. The capabilities of the newest concepts and the old pseudo-random algorithms are compared. The author is in favor of multiplicative generators. Due to the 64-bit arithmetic of a modern PC, multiplicative generators have a sufficient number of periods (up to 2 62 ) and are quicker to generate and to govern independent sequences for parallel processing. In addition they are able to replicate sub-sequences (without storing their seeds) for each standard trial in any code and to simulate spatial and planar directions and EXP(-x) distributions often needed as ''bricks'' for simulating events in physics. Hundreds of multipliers for multiplicative generators have been tabulated and tested, and the required speeds have been obtained. (author)
Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments
Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.
In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.
Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.
2018-04-01
Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.
Recurrence and Polya Number of General One-Dimensional Random Walks
International Nuclear Information System (INIS)
Zhang Xiaokun; Wan Jing; Lu Jingju; Xu Xinping
2011-01-01
The recurrence properties of random walks can be characterized by Polya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities l and r, or remain at the same position with probability o (l + r + o = 1). We calculate Polya number P of this model and find a simple expression for P as, P = 1 - Δ, where Δ is the absolute difference of l and r (Δ = |l - r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability l equals to the right-moving probability r. (general)
Johnson, Mike
1998-01-01
Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…
International Nuclear Information System (INIS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-01-01
Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Distributed Pseudo-Random Number Generation and Its Application to Cloud Database
Chen, Jiageng; Miyaji, Atsuko; Su, Chunhua
2014-01-01
Cloud database is now a rapidly growing trend in cloud computing market recently. It enables the clients run their computation on out-sourcing databases or access to some distributed database service on the cloud. At the same time, the security and privacy concerns is major challenge for cloud database to continue growing. To enhance the security and privacy of the cloud database technology, the pseudo-random number generation (PRNG) plays an important roles in data encryptions and privacy-pr...
Pseudo-random number generator based on mixing of three chaotic maps
François, M.; Grosges, T.; Barchiesi, D.; Erra, R.
2014-04-01
A secure pseudo-random number generator three-mixer is proposed. The principle of the method consists in mixing three chaotic maps produced from an input initial vector. The algorithm uses permutations whose positions are computed and indexed by a standard chaotic function and a linear congruence. The performance of that scheme is evaluated through statistical analysis. Such a cryptosystem lets appear significant cryptographic qualities for a high security level.
Boonsathorn, Wasita; Charoen, Danuvasin; Dryver, Arthur L.
2014-01-01
E-Learning brings access to a powerful but often overlooked teaching tool: random number generation. Using random number generation, a practically infinite number of quantitative problem-solution sets can be created. In addition, within the e-learning context, in the spirit of the mastery of learning, it is possible to assign online quantitative…
Lawnik, Marcin
2018-01-01
The scope of the paper is the presentation of a new method of generating numbers from a given distribution. The method uses the inverse cumulative distribution function and a method of flattening of probabilistic distributions. On the grounds of these methods, a new construction of chaotic maps was derived, which generates values from a given distribution. The analysis of the new method was conducted on the example of a newly constructed chaotic recurrences, based on the Box-Muller transformation and the quantile function of the exponential distribution. The obtained results certify that the proposed method may be successively applicable for the construction of generators of pseudo-random numbers.
Reconstruction of photon number conditioned states using phase randomized homodyne measurements
International Nuclear Information System (INIS)
Chrzanowski, H M; Assad, S M; Bernu, J; Hage, B; Lam, P K; Symul, T; Lund, A P; Ralph, T C
2013-01-01
We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeezed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging. (paper)
The additive congruential random number generator--A special case of a multiple recursive generator
Wikramaratna, Roy S.
2008-07-01
This paper considers an approach to generating uniformly distributed pseudo-random numbers which works well in serial applications but which also appears particularly well-suited for application on parallel processing systems. Additive Congruential Random Number (ACORN) generators are straightforward to implement for arbitrarily large order and modulus; if implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. Previously published theoretical analysis has demonstrated that a kth order ACORN sequence approximates to being uniformly distributed in up to k dimensions, for any given k. ACORN generators can be constructed to give period lengths exceeding any given number (for example, with period length in excess of 230p, for any given p). Results of empirical tests have demonstrated that, if p is greater than or equal to 2, then the ACORN generator can be used successfully for generating double precision uniform random variates. This paper demonstrates that an ACORN generator is a particular case of a multiple recursive generator (and, therefore, also a special case of a matrix generator). Both these latter approaches have been widely studied, and it is to be hoped that the results given in the present paper will lead to greater confidence in using the ACORN generators.
Generation of pseudo-random numbers with the use of inverse chaotic transformation
Directory of Open Access Journals (Sweden)
Lawnik Marcin
2018-02-01
Full Text Available In (Lawnik M., Generation of numbers with the distribution close to uniform with the use of chaotic maps, In: Obaidat M.S., Kacprzyk J., Ören T. (Ed., International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH (28-30 August 2014, Vienna, Austria, SCITEPRESS, 2014 Lawnik discussed a method of generating pseudo-random numbers from uniform distribution with the use of adequate chaotic transformation. The method enables the “flattening” of continuous distributions to uniform one. In this paper a inverse process to the above-mentioned method is presented, and, in consequence, a new manner of generating pseudo-random numbers from a given continuous distribution. The method utilizes the frequency of the occurrence of successive branches of chaotic transformation in the process of “flattening”. To generate the values from the given distribution one discrete and one continuous value of a random variable are required. The presented method does not directly involve the knowledge of the density function or the cumulative distribution function, which is, undoubtedly, a great advantage in comparison with other well-known methods. The described method was analysed on the example of the standard normal distribution.
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2016-12-01
We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of random number generators in genetic algorithms to improve rainfall-runoff modelling
Chlumecký, Martin; Buchtele, Josef; Richta, Karel
2017-10-01
The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.
Sheppard, David P; Woods, Steven Paul; Doyle, Katie L; Verduzco, Marizela
2017-02-01
HIV is associated with frontostriatal dysregulation and executive dysfunction. This study evaluated whether HIV-infected individuals evidence deficits in random number generation (RNG), which is a strategic task requiring paced, rule-guided production of digits. In total, 74 HIV+ adults and 54 seronegative comparison participants completed a comprehensive research neuropsychological battery. Participants produced a random digit sequence by avoiding any order and using numbers 1 through 10 for 100 s at a pace of 1 digit/s. Outcomes included intrusions, repetitions, seriation (1-2-3-4), and cycling (median length of gaps between repeating digits). HIV disease was associated with higher levels of seriation and cycling (ps .10). Among HIV+ individuals, higher seriation was associated with neuropsychological performance including poorer auditory attention, verbal learning, and delayed memory, whereas higher cycling scores were associated with poorer delayed memory and verbal fluency (ps random sequences, which showed medium associations with higher order verbal abilities and may contribute to greater declines in everyday functioning outcomes. Future studies might examine RNG's role in health behaviors such as medical decision-making or medication adherence. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.
Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi
2014-08-12
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
Theoretical and empirical convergence results for additive congruential random number generators
Wikramaratna, Roy S.
2010-03-01
Additive Congruential Random Number (ACORN) generators represent an approach to generating uniformly distributed pseudo-random numbers that is straightforward to implement efficiently for arbitrarily large order and modulus; if it is implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. This paper briefly reviews existing results concerning ACORN generators and relevant theory concerning sequences that are well distributed mod 1 in k dimensions. It then demonstrates some new theoretical results for ACORN generators implemented in integer arithmetic with modulus M=2[mu] showing that they are a family of generators that converge (in a sense that is defined in the paper) to being well distributed mod 1 in k dimensions, as [mu]=log2M tends to infinity. By increasing k, it is possible to increase without limit the number of dimensions in which the resulting sequences approximate to well distributed. The paper concludes by applying the standard TestU01 test suite to ACORN generators for selected values of the modulus (between 260 and 2150), the order (between 4 and 30) and various odd seed values. On the basis of these and earlier results, it is recommended that an order of at least 9 be used together with an odd seed and modulus equal to 230p, for a small integer value of p. While a choice of p=2 should be adequate for most typical applications, increasing p to 3 or 4 gives a sequence that will consistently pass all the tests in the TestU01 test suite, giving additional confidence in more demanding applications. The results demonstrate that the ACORN generators are a reliable source of uniformly distributed pseudo-random numbers, and that in practice (as suggested by the theoretical convergence results) the quality of the ACORN sequences increases with increasing modulus and order.
Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk
International Nuclear Information System (INIS)
Milinazzo, F.; Saffman, P.G.
1977-01-01
The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster
Siegel, Z.; Siegel, Edward Carl-Ludwig
2011-03-01
RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-01
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Using random matrix theory to determine the number of endmembers in a hyperspectral image
CSIR Research Space (South Africa)
Cawse, K
2010-06-01
Full Text Available apply our method to synthetic images, including a standard test image developed by Chein-I Chang, with good results for Gaussian independent noise. Index Terms— Hyperspectral Unmixing, Random Ma- trix Theory, Linear Mixture Model, Virtual Dimension... function, and K is the number of endmembers. We assume Gaussian noise following the methods of [1] [5]. The first step in unmixing the image is to determine how many endmembers or constituents are contained in the scene. This is known as the Virtual...
Scope of Various Random Number Generators in ant System Approach for TSP
Sen, S. K.; Shaykhian, Gholam Ali
2007-01-01
Experimented on heuristic, based on an ant system approach for traveling salesman problem, are several quasi- and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is mainly to seek an answer to the controversial issue "which generator is the best in terms of quality of the result (accuracy) as well as cost of producing the result (time/computational complexity) in a probabilistic/statistical sense."
Law of large numbers and central limit theorem for randomly forced PDE's
Shirikyan, A
2004-01-01
We consider a class of dissipative PDE's perturbed by an external random force. Under the condition that the distribution of perturbation is sufficiently non-degenerate, a strong law of large numbers (SLLN) and a central limit theorem (CLT) for solutions are established and the corresponding rates of convergence are estimated. It is also shown that the estimates obtained are close to being optimal. The proofs are based on the property of exponential mixing for the problem in question and some abstract SLLN and CLT for mixing-type Markov processes.
Saver, Jeffrey L; Gornbein, Jeffrey; Grotta, James; Liebeskind, David; Lutsep, Helmi; Schwamm, Lee; Scott, Phillip; Starkman, Sidney
2009-07-01
Measures of a therapy's effect size are important guides to clinicians, patients, and policy-makers on treatment decisions in clinical practice. The ECASS 3 trial demonstrated a statistically significant benefit of intravenous tissue plasminogen activator for acute cerebral ischemia in the 3- to 4.5-hour window, but an effect size estimate incorporating benefit and harm across all levels of poststroke disability has not previously been derived. Joint outcome table specification was used to derive number needed to treat to benefit (NNTB) and number needed to treat to harm (NNTH) values summarizing treatment impact over the entire outcome range on the modified Rankin scale of global disability, including both expert-dependent and expert-independent (algorithmic and repeated random sampling) array generation. For the full 7-category modified Rankin scale, algorithmic analysis demonstrated that the NNTB for 1 additional patient to have a better outcome by >or=1 grades than with placebo must lie between 4.0 and 13.0. In bootstrap simulations, the mean NNTB was 7.1. Expert joint outcome table analyses indicated that the NNTB for improved final outcome was 6.1 (95% CI, 5.6-6.7) and the NNTH 37.5 (95% CI, 34.6-40.5). Benefit per 100 patients treated was 16.3 and harm per 100 was 2.7. The likelihood of help to harm ratio was 6.0. Treatment with tissue plasminogen activator in the 3- to 4.5-hour window confers benefit on approximately half as many patients as treatment <3 hours, with no increase in the conferral of harm. Approximately 1 in 6 patients has a better and 1 in 35 has a worse outcome as a result of therapy.
Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin
2015-10-16
Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.
Directory of Open Access Journals (Sweden)
Dongfang Li
2015-10-01
Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.
The distribution of the number of node neighbors in random hypergraphs
International Nuclear Information System (INIS)
López, Eduardo
2013-01-01
Hypergraphs, the generalization of graphs in which edges become conglomerates of r nodes called hyperedges of rank r ⩾ 2, are excellent models to study systems with interactions that are beyond the pairwise level. For hypergraphs, the node degree ℓ (number of hyperedges connected to a node) and the number of neighbors k of a node differ from each other in contrast to the case of graphs, where counting the number of edges is equivalent to counting the number of neighbors. In this paper, I calculate the distribution of the number of node neighbors in random hypergraphs in which hyperedges of uniform rank r have a homogeneous (equal for all hyperedges) probability p to appear. This distribution is equivalent to the degree distribution of ensembles of graphs created as projections of hypergraph or bipartite network ensembles, where the projection connects any two nodes in the projected graph when they are also connected in the hypergraph or bipartite network. The calculation is non-trivial due to the possibility that neighbor nodes belong simultaneously to multiple hyperedges (node overlaps). From the exact results, the traditional asymptotic approximation to the distribution in the sparse regime (small p) where overlaps are ignored is rederived and improved; the approximation exhibits Poisson-like behavior accompanied by strong fluctuations modulated by power-law decays in the system size N with decay exponents equal to the minimum number of overlapping nodes possible for a given number of neighbors. It is shown that the dense limit cannot be explained if overlaps are ignored, and the correct asymptotic distribution is provided. The neighbor distribution requires the calculation of a new combinatorial coefficient Q r−1 (k, ℓ), which counts the number of distinct labeled hypergraphs of k nodes, ℓ hyperedges of rank r − 1, and where every node is connected to at least one hyperedge. Some identities of Q r−1 (k, ℓ) are derived and applied to the
Czernik, Pawel
2013-10-01
The hardware random number generator based on the 74121 monostable multivibrators for applications in cryptographically secure distributed measurement and control systems with asymmetric resources was presented. This device was implemented on the basis of the physical electronic vibration generator in which the circuit is composed of two "loop" 74121 monostable multivibrators, D flip-flop and external clock signal source. The clock signal, witch control D flip-flop was generated by a computer on one of the parallel port pins. There was presented programmed the author's acquisition process of random data from the measuring system to a computer. The presented system was designed, builded and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. Real cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results was here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
On the strong law of large numbers for $\\varphi$-subgaussian random variables
Zajkowski, Krzysztof
2016-01-01
For $p\\ge 1$ let $\\varphi_p(x)=x^2/2$ if $|x|\\le 1$ and $\\varphi_p(x)=1/p|x|^p-1/p+1/2$ if $|x|>1$. For a random variable $\\xi$ let $\\tau_{\\varphi_p}(\\xi)$ denote $\\inf\\{a\\ge 0:\\;\\forall_{\\lambda\\in\\mathbb{R}}\\; \\ln\\mathbb{E}\\exp(\\lambda\\xi)\\le\\varphi_p(a\\lambda)\\}$; $\\tau_{\\varphi_p}$ is a norm in a space $Sub_{\\varphi_p}=\\{\\xi:\\;\\tau_{\\varphi_p}(\\xi)1$) there exist positive constants $c$ and $\\alpha$ such that for every natural number $n$ the following inequality $\\tau_{\\varphi_p}(\\sum_{i=1...
Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo
2016-01-01
This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...
DEFF Research Database (Denmark)
Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren
2010-01-01
for the functionalization were applied. The first one involved direct functionalization of the template backbone through alkylation of the phenolic groups with suitable reagents. The second modification approach was based on "click" chemistry, where the introduction of alkyne groups onto the template backbone was followed......Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches...... by copper-catalyzed 1,3 cycloaddition of aliphatic sulfonate- or amine-contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by H-1-NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced...
Directory of Open Access Journals (Sweden)
Paul eMiller
2013-05-01
Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.
Directory of Open Access Journals (Sweden)
M. Varchola
2009-12-01
Full Text Available This paper deals with an evaluation platform for cryptographic True Random Number Generators (TRNGs based on the hardware implementation of statistical tests for FPGAs. It was developed in order to provide an automatic tool that helps to speed up the TRNG design process and can provide new insights on the TRNG behavior as it will be shown on a particular example in the paper. It enables to test sufﬁcient statistical properties of various TRNG designs under various working conditions on the ﬂy. Moreover, the tests are suitable to be embedded into cryptographic hardware products in order to recognize TRNG output of weak quality and thus increase its robustness and reliability. Tests are fully compatible with the FIPS 140 standard and are implemented by the VHDL language as an IP-Core for vendor independent FPGAs. A recent Flash based Actel Fusion FPGA was chosen for preliminary experiments. The Actel version of the tests possesses an interface to the Actel’s CoreMP7 softcore processor that is fully compatible with the industry standard ARM7TDMI. Moreover, identical tests suite was implemented to the Xilinx Virtex 2 and 5 in order to compare the performance of the proposed solution with the performance of already published one based on the same FPGAs. It was achieved 25% and 65% greater clock frequency respectively while consuming almost equal resources of the Xilinx FPGAs. On the top of it, the proposed FIPS 140 architecture is capable of processing one random bit per one clock cycle which results in 311.5 Mbps throughput for Virtex 5 FPGA.
Ossola, Giovanni; Sokal, Alan D
2004-08-01
We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner. It also helps to use a generator of large modulus (e.g., 60 or more bits).
Directory of Open Access Journals (Sweden)
Marcin Piotr Pawlowski
2015-10-01
Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.
Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej
2015-01-01
Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357
Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej
2015-10-22
Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.
International Nuclear Information System (INIS)
Zurek, W H
2013-01-01
I show that random distributions of vortex–antivortex pairs (rather than of individual vortices) lead to scaling of typical winding numbers W trapped inside a loop of circumference C with the square root of that circumference, W∼√C, when the expected winding numbers are large, |W| ≫ 1. Such scaling is consistent with the Kibble–Zurek mechanism (KZM), with 〈W 2 〉 inversely proportional to ξ-hat , the typical size of the domain that can break symmetry in unison. (The dependence of ξ-hat on quench rate is predicted by KZM from critical exponents of the phase transition.) Thus, according to KZM, the dispersion √ 2 > scales as √(C/ ξ-hat ) for large W. By contrast, a distribution of individual vortices with randomly assigned topological charges would result in the dispersion scaling with the square root of the area inside C (i.e., √ 2 > ∼ C). Scaling of the dispersion of W as well as of the probability of detection of non-zero W with C and ξ-hat can be also studied for loops so small that non-zero windings are rare. In this case I show that dispersion varies not as 1/√( ξ-hat ), but as 1/ ξ-hat , which results in a doubling of the scaling of dispersion with the quench rate when compared to the large |W| regime. Moreover, the probability of trapping of non-zero W becomes approximately equal to 〈W 2 〉, and scales as 1/ ξ-hat 2 . This quadruples—as compared with √ 2 > ≃ √C/ξ-circumflex valid for large W—the exponent in the power law dependence of the frequency of trapping of |W| = 1 on ξ-hat when the probability of |W| > 1 is negligible. This change of the power law exponent by a factor of four—from 1/√( ξ-hat ) for the dispersion of large W to 1/ ξ-hat 2 for the frequency of non-zero W when |W| > 1 is negligibly rare—is of paramount importance for experimental tests of KZM. (paper)
International Nuclear Information System (INIS)
Mironowicz, Piotr; Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed; Pawłowski, Marcin
2016-01-01
Quantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements of the post-processing of experimental data. In particular, we consider semi-device independent randomness certification from an experiment using a four dimensional quantum system to violate the classical bound of a random access code. Using state-of-the-art techniques, a smaller quantum violation requires more computational power to demonstrate randomness, which at some point becomes impossible with today’s computers although the randomness is (probably) still there. We show that by dedicating more input settings of the experiment to randomness certification, then by more computational postprocessing of the experimental data which corresponds to a quantum violation, one may increase the amount of certified randomness. Furthermore, we introduce a method that significantly lowers the computational complexity of randomness certification. Our results show how more randomness can be generated without altering the hardware and indicate a path for future semi-device independent protocols to follow. (paper)
Vicious random walkers in the limit of a large number of walkers
International Nuclear Information System (INIS)
Forrester, P.J.
1989-01-01
The vicious random walker problem on a line is studied in the limit of a large number of walkers. The multidimensional integral representing the probability that the p walkers will survive a time t (denoted P t (p) ) is shown to be analogous to the partition function of a particular one-component Coulomb gas. By assuming the existence of the thermodynamic limit for the Coulomb gas, one can deduce asymptotic formulas for P t (p) in the large-p, large-t limit. A straightforward analysis gives rigorous asymptotic formulas for the probability that after a time t the walkers are in their initial configuration (this event is termed a reunion). Consequently, asymptotic formulas for the conditional probability of a reunion, given that all walkers survive, are derived. Also, an asymptotic formula for the conditional probability density that any walker will arrive at a particular point in time t, given that all p walkers survive, is calculated in the limit t >> p
Jahanshahi, M; Profice, P; Brown, R G; Ridding, M C; Dirnberger, G; Rothwell, J C
1998-08-01
Random number generation is an attention-demanding task that engages working memory and executive processes. Random number generation requires holding information 'on line', suppression of habitual counting, internally driven response generation and monitoring of responses. Evidence from PET studies suggests that the dorsolateral prefrontal cortex (DLPFC) is involved in the generation of random responses. We examined the effects of short trains of transcranial magnetic stimulation (TMS) over the left or right DLPFC or medial frontal cortex on random number generation in healthy normal participants. As in previous evidence, in control trials without stimulation participants performed poorly on the random number generation task, showing repetition avoidance and a tendency to count. Brief disruption of processing with TMS over the left DLPFC changed the balance of the individuals' counting bias, increasing the most habitual counting in ones and reducing the lower probability response of counting in twos. This differential effect of TMS over the left DLPFC on the balance of the subject's counting bias was not obtained with TMS over the right DLPFC or the medial frontal cortex. The results suggest that, with disruption of the left DLPFC with TMS, habitual counting in ones that has previously been suppressed is released from inhibition. From these findings a network modulation model of random number generation is proposed, whereby suppression of habitual responses is achieved through the modulatory influence of the left DLPFC over a number-associative network in the superior temporal cortex. To allow emergence of appropriate random responses, the left DLPFC inhibits the superior temporal cortex to prevent spreading activation and habitual counting in ones.
National Oceanic and Atmospheric Administration, Department of Commerce — This table includes the effective dates by vessel and permit number for each issued letter of authorization (LOA) by the Permit Office (APSD)
International Nuclear Information System (INIS)
Procassini, R J; Beck, B R
2004-01-01
It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results
Directory of Open Access Journals (Sweden)
Lara Ortiz-Martin
2018-01-01
Full Text Available The proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these systems and the environment in which they operate. One area that has received much attention lately is the use of (human biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. The heart signal (e.g., as recorded in an electrocardiogram has been used by several researchers in the last few years. Specifically, the so-called Inter-Pulse Intervals (IPIs, which is the time between two consecutive heartbeats, have been repeatedly pointed out as a potentially good source of entropy and are at the core of various recent authentication protocols. In this work, we report the results of a large-scale statistical study to determine whether such an assumption is (or not upheld. For this, we have analyzed 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from 1353 subjects sampled at different frequencies and with lengths that vary between a few minutes and several hours. We believe this is the largest dataset on this topic analyzed in the literature. We have then applied a standard battery of randomness tests to the extracted IPIs. Under the algorithms described in this paper and after analyzing these 19 public ECG datasets, our results raise doubts about the use of IPI values as a good source of randomness for cryptographic purposes. This has repercussions both in the security of some of the protocols proposed up to now and also in the design of future IPI-based schemes.
Exact simulation of Brown-Resnick random fields at a finite number of locations
DEFF Research Database (Denmark)
Dieker, Ton; Mikosch, Thomas Valentin
2015-01-01
We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure.......We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure....
Directory of Open Access Journals (Sweden)
Dirks Maaike
2010-11-01
Full Text Available Abstract Background Economic evaluation of stroke services indicates that such services may lead to improved quality of life at affordable cost. The present study assesses lifetime health impact and cost consequences of stroke in an integrated service setting. Methods The EDISSE study is a prospective non-randomized controlled cluster trial that compared stroke services (n = 151 patients to usual care (n = 187 patients. Health status and cost trial-data were entered in multi-dimensional stroke life-tables. The tables distinguish four levels of disability which are defined by the modified Rankin scale. Quality-of-life scores (EuroQoL-5D, transition and survival probabilities are based on concurrent Dutch follow-up studies. Outcomes are quality-adjusted life years lived and lifetime medical cost by disability category. An economic analysis compares outcomes from a successful stroke service to usual care, by bootstrapping individual costs and effects data from patients in each arm. Results Lifetime costs and QALYs after stroke depend on age-of-onset of first-ever stroke. Lifetime QALYs after stroke are 2.42 (90% CI - 0.49 - 2.75 for male patients in usual care and 2.75 (-0.61; 6.26 for females. Lifetime costs for men in the usual care setting are €39,335 (15,951; 79,837 and €42,944 (14,081; 95,944 for women. A comparison with the stroke service results in an ICER of €11,685 saved per QALY gained (€14,211 and €7,745 for men and women respectively. This stroke service is with 90% certainty cost-effective. Conclusions Our analysis shows the potential of large health benefits and cost savings of stroke services, taking a lifetime perspective, also in other European settings.
Reike, Dennis; Schwarz, Wolf
2016-01-01
The time required to determine the larger of 2 digits decreases with their numerical distance, and, for a given distance, increases with their magnitude (Moyer & Landauer, 1967). One detailed quantitative framework to account for these effects is provided by random walk models. These chronometric models describe how number-related noisy…
On a direct algorithm for the generation of log-normal pseudo-random numbers
Chamayou, J M F
1976-01-01
The random variable ( Pi /sub i=1//sup n/X/sub i//X/sub i+n/)/sup 1/ square root 2n/ is used to generate standard log normal variables Lambda (0, 1), where the X/sub i/ are independent uniform variables on (0, 1). (8 refs).
Directory of Open Access Journals (Sweden)
Auwal Abdullahi
2018-01-01
Full Text Available Background. Constraint-induced movement therapy (CIMT is effective in improving motor outcomes after stroke. However, its existing protocols are resource-intensive and difficult to implement. The aim of this study is to design an easier CIMT protocol using number of repetitions of shaping practice. Method. The study design was randomized controlled trial. Participants within 4 weeks after stroke were recruited at Murtala Muhammad Specialist Hospital. They were randomly assigned to groups A, B, C, and D. Group A received 3 hours of traditional therapy. Groups B, C, and D received modified CIMT consisting of 3 hours of shaping practice per session, 300 repetitions of shaping practice in 3 sessions, and 600 repetitions of shaping practice in 3 sessions per day, respectively, and constraint for 90% of the waking hours. All treatment protocols were administered 5 times per week for 4 weeks. The primary outcome was measured using upper limb Fugl-Meyer assessment, while the secondary outcome was measured using motor activity log, Wolf Motor Function Test, and upper limb self-efficacy test at baseline, 2 weeks, and 4 weeks after intervention. Result. There were 48 participants 4 weeks after intervention. The result showed that there was no significant difference between groups at baseline (p>0.05. Within-group improvements attained minimal clinically important difference (MCID in modified CIMT and 300 repetitions and 600 repetitions groups. Conclusion. Number of repetitions of shaping practice significantly improved motor function, real-world arm use, and upper limb self-efficacy after stroke. Therefore, it seems to be a simple alternative for the use of number of hours. Trial Registration. This trial is registered with Pan African Clinical Trial Registry (registration number: PACTR201610001828172 (date of registration: 21/10/2016.
Directory of Open Access Journals (Sweden)
Bilan Stepan
2017-01-01
Full Text Available To date, there are many tasks that are aimed at studying the dynamic changes in physical processes. These tasks do not give advance known result. The solution of such problems is based on the construction of a dynamic model of the object. Successful structural and functional implementation of the object model can give a positive result in time. This approach uses the task of constructing artificial biological objects. To solve such problems, pseudo-random number generators are used, which also find wide application for information protection tasks. Such generators should have good statistical properties and give a long repetition period of the generated pseudo-random bit sequence. This work is aimed at improving these characteristics. The paper considers the method of forming pseudo-random sequences of numbers on the basis of aperiodic cellular automata with two active cells. A pseudo-random number generator is proposed that generates three bit sequences. The first two bit sequences are formed by the corresponding two active cells in the cellular automaton. The third bit sequence is the result of executing the XOR function over the bits of the first two sequences and it has better characteristics compared to them. The use of cellular automata with two active cells allowed to improve the statistical properties of the formed bit sequence, as well as its repetition period. This is proved by using graphical tests for generators built based on cellular automata using the neighborhoods of von Neumann and Moore. The tests showed high efficiency of the generator based on an asynchronous cellular automaton with the neighborhood of Moore. The proposed pseudo-random number generators have good statistical properties, which makes it possible to use them in information security systems, as well as for simulation tasks of various dynamic processes.
On random number generators providing convergence more rapid than 1/√N
International Nuclear Information System (INIS)
Belov, V.A.
1982-01-01
To realize the simulation of processes in High Energy Physics a practical test of the efficiency in applying quasirandom numbers to check multiple integration with Monte-Karlo method is presented together with the comparison of the wellknown generators of quasirandom and pseudorandom numbers [ru
Application of random numbers at computerized simulation of proton magnetic resonance signals
International Nuclear Information System (INIS)
Populyakh, S.N.; Sapiga, A.V.
2006-01-01
One calculated numerically spectra of proton magnetic resonance of water molecules diffusing along the regular positions in a natrolite. One reached adequate conformity of the experimental and the calculated spectra within wide temperature range including a transition region. To ensure calculations one used generators of the pseudorandom Markov sequences. The numerical analysis, in particular, has shown that at the binary Markov process the time period when physical value remains unchanged is described by the random value with exponential distribution [ru
Application of random number generators in genetic algorithms to improve rainfall-runoff modelling
Czech Academy of Sciences Publication Activity Database
Chlumecký, M.; Buchtele, Josef; Richta, K.
2017-01-01
Roč. 553, October (2017), s. 350-355 ISSN 0022-1694 Institutional support: RVO:67985874 Keywords : genetic algorithm * optimisation * rainfall-runoff modeling * random generator Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.483, year: 2016 https://ac.els-cdn.com/S0022169417305516/1-s2.0-S0022169417305516-main.pdf?_tid=fa1bad8a-bd6a-11e7-8567-00000aab0f27&acdnat=1509365462_a1335d3d997e9eab19e23b1eee977705
Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu
2008-08-01
The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.
Strenge, Hans; Lesmana, Cokorda Bagus Jaya; Suryani, Luh Ketut
2009-08-01
Verbal random number generation is a procedurally simple task to assess executive function and appears ideally suited for the use under diverse settings in cross-cultural research. The objective of this study was to examine ethnic group differences between young adults in Bali (Indonesia) and Kiel (Germany): 50 bilingual healthy students, 30 Balinese and 20 Germans, attempted to generate a random sequence of the digits 1 to 9. In Balinese participants, randomization was done in Balinese (native language L1) and Indonesian (first foreign language L2), in German subjects in the German (L1) and English (L2) languages. 10 of 30 Balinese (33%), but no Germans, were unable to inhibit habitual counting in more than half of the responses. The Balinese produced significantly more nonrandom responses than the Germans with higher rates of counting and significantly less occurrence of the digits 2 and 3 in L1 compared with L2. Repetition and cycling behavior did not differ between the four languages. The findings highlight the importance of taking into account culture-bound psychosocial factors for Balinese individuals when administering and interpreting a random number generation test.
Implementation of a RANLUX Based Pseudo-Random Number Generator in FPGA Using VHDL and Impulse C
Agnieszka Dąbrowska-Boruch; Grzegorz Gancarczyk; Kazimierz Wiatr
2014-01-01
Monte Carlo simulations are widely used e.g. in the field of physics and molecular modelling. The main role played in these is by the high performance random number generators, such as RANLUX or MERSSENE TWISTER. In this paper the authors introduce the world's first implementation of the RANLUX algorithm on an FPGA platform for high performance computing purposes. A significant speed-up of one generator instance over 60 times, compared with a graphic card based solution, can be noticed. Compa...
2010-10-01
... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of Chinook...
DEFF Research Database (Denmark)
Feng, Ju; Shen, Wen Zhong; Xu, Chang
2016-01-01
A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximi...
2010-10-01
... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the opt-out...
2010-10-01
... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... of Chinook salmon for the opt-out allocation (2,220) Column F Number of Chinook salmon for the opt...
International Nuclear Information System (INIS)
Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.
2010-01-01
The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.
Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado
2010-03-01
The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.
1960-01-01
Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.
International Nuclear Information System (INIS)
Fluck, E.; Heumann, K.G.
1985-01-01
Following a recommendation by the International Union for Pure and Applied Chemistry (IUPAC), the groups of the periodic table shall be numbered from 1 to 18, instead of I to VIII as before. The recommendations has been approved of by the Committee on Nomenclature of the American Chemical Society. The new system abandons the distinction between main groups (a) and auxiliary groups (b), which in the past frequently has been the reason for misunderstandings between European and American chemists, due to different handling. The publishing house VCH Verlagsgesellschaft recently produced a new periodic table that shows the old and the new numbering system together at a glance, so that chemists will have time to get familiar with the new system. In addition the new periodic table represents an extensive data compilation arranged by elements. The front page lists the chemical properties of elements, the back page their physical properties. (orig./EF) [de
International Nuclear Information System (INIS)
Kamaeva, O.B.; Polevoj, V.B.
1983-01-01
Realization of BESM-6 computer of a technique is described for calculating a wide class of reactivity disturbances by plotting trajectories in undisturbed and disturbed systems using one sequence of random numbers. The technique was realized on the base of earlier created programs of calculation of widespreed (PERL) and local (LAVR) reactivity disturbances. The efficiency of the technique and programs is demonstrated by calculation of change of effective neutron-multiplication factor when absorber is substituted for fuel element in a BFS-40 critical assembly and by calculation of control drum characteristics
Characteristics of Tables for Disseminating Biobehavioral Results.
Schneider, Barbara St Pierre; Nagelhout, Ed; Feng, Du
2018-01-01
To report the complexity and richness of study variables within biological nursing research, authors often use tables; however, the ease with which consumers understand, synthesize, evaluate, and build upon findings depends partly upon table design. To assess and compare table characteristics within research and review articles published in Biological Research for Nursing and Nursing Research. A total of 10 elements in tables from 48 biobehavioral or biological research or review articles were analyzed. To test six hypotheses, a two-level hierarchical linear model was used for each of the continuous table elements, and a two-level hierarchical generalized linear model was used for each of the categorical table elements. Additionally, the inclusion of probability values in statistical tables was examined. The mean number of tables per article was 3. Tables in research articles were more likely to contain quantitative content, while tables in review articles were more likely to contain both quantitative and qualitative content. Tables in research articles had a greater number of rows, columns, and column-heading levels than tables in review articles. More than one half of statistical tables in research articles had a separate probability column or had probability values within the table, whereas approximately one fourth had probability notes. Authors and journal editorial staff may be generating tables that better depict biobehavioral content than those identified in specific style guidelines. However, authors and journal editorial staff may want to consider table design in terms of audience, including alternative visual displays.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong; Xu, Chao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)
2016-04-15
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.
Floyd A. Johnson; R. M. Kallander; Paul G. Lauterbach
1949-01-01
The increasing importance of red alder as a commercial species in the Pacific Northwest has prompted the three agencies listed above to pool their tree measurement data for the construction of standard regional red alder volume tables. The tables included here were based on trees from a variety of sites and form classes. Approximately one quarter of the total number of...
Spearing, Debra; Woehlke, Paula
To assess the effect on discriminant analysis in terms of correct classification into two groups, the following parameters were systematically altered using Monte Carlo techniques: sample sizes; proportions of one group to the other; number of independent variables; and covariance matrices. The pairing of the off diagonals (or covariances) with…
Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat
2016-11-01
Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Nicholas J. Sexton
2014-07-01
Full Text Available Random number generation (RNG is a complex cognitive task for human subjects, requiring deliberative control to avoid production of habitual, stereotyped sequences. Under various manipulations (e.g., speeded responding, transcranial magnetic stimulation, or neurological damage the performance of human subjects deteriorates, as reflected in a number of qualitatively distinct, dissociable biases. For example, the intrusion of stereotyped behaviour (e.g., counting increases at faster rates of generation. Theoretical accounts of the task postulate that it requires the integrated operation of multiple, computationally heterogeneous cognitive control ('executive' processes. We present a computational model of RNG, within the framework of a novel, neuropsychologically-inspired cognitive architecture, ESPro. Manipulating the rate of sequence generation in the model reproduced a number of key effects observed in empirical studies, including increasing sequence stereotypy at faster rates. Within the model, this was due to time limitations on the interaction of supervisory control processes, namely, task setting, proposal of responses, monitoring, and response inhibition. The model thus supports the fractionation of executive function into multiple, computationally heterogeneous processes.
Karpov, V. Ya.; Shpatakovskaya, G. V.
2017-03-01
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr-Sommerfeld quantization rule within the Thomas-Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.
Energy Technology Data Exchange (ETDEWEB)
Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)
2017-03-15
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.
Directory of Open Access Journals (Sweden)
Wouter eOomens
2015-06-01
Full Text Available The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA, a nonlinear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation.
Morse, Melvin L; Beem, Lance W
2011-12-01
Reiki therapy is documented for relief of pain and stress. Energetic healing has been documented to alter biologic markers of illness such as hematocrit. True random number generators are reported to be affected by energy healers and spiritually oriented conscious awareness. The patient was a then 54-year-old severely ill man who had hepatitis C types 1 and 2 and who did not improve with conventional therapy. He also suffered from obesity, the metabolic syndrome, asthma, and hypertension. He was treated with experimental high-dose interferon/riboviron therapy with resultant profound anemia and neutropenia. Energetic healing and Reiki therapy was administered initially to enhance the patient's sense of well-being and to relieve anxiety. Possible effects on the patient's absolute neutrophil count and hematocrit were incidentally noted. Reiki therapy was then initiated at times of profound neutropenia to assess its possible effect on the patient's absolute neutrophil count (ANC). Reiki and other energetic healing sessions were monitored with a true random number generator (RNG). Statistically significant relationships were documented between Reiki therapy, a quieting of the electronically created white noise of the RNG during healing sessions, and improvement in the patient's ANC. The immediate clinical result was that the patient could tolerate the high-dose interferon regimen without missing doses because of absolute neutropenia. The patient was initially a late responder to interferon and had been given a 5% chance of clearing the virus. He remains clear of the virus 1 year after treatment. The association between changes in the RNG, Reiki therapy, and a patient's ANC is the first to the authors' knowledge in the medical literature. Future studies assessing the effects of energetic healing on specific biologic markers of disease are anticipated. Concurrent use of a true RNG may prove to correlate with the effectiveness of energetic therapy.
Some Reflections on the Periodic Table and Its Use.
Fernelius, W. Conard
1986-01-01
Discusses early periodic tables; effect on the periodic table of atomic numbers; the periodic table in relation to electron distribution in the atoms of elements; terms and concepts related to the table; and the modern basis of the periodic table. Additional comments about these and other topics are included. (JN)
Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph
Xue, Xiaofeng
2017-11-01
In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.
Directory of Open Access Journals (Sweden)
Brenner Alison RT
2008-01-01
Full Text Available Abstract Background Decision aids can improve decision making processes, but the amount and type of information that they should attempt to communicate is controversial. We sought to compare, in a pilot randomized trial, two colorectal cancer (CRC screening decision aids that differed in the number of screening options presented. Methods Adults ages 48–75 not currently up to date with screening were recruited from the community and randomized to view one of two versions of our previously tested CRC screening decision aid. The first version included five screening options: fecal occult blood test (FOBT, sigmoidoscopy, a combination of FOBT and sigmoidoscopy, colonoscopy, and barium enema. The second discussed only the two most frequently selected screening options, FOBT and colonoscopy. Main outcomes were differences in screening interest and test preferences between groups after decision aid viewing. Patient test preference was elicited first without any associated out-of-pocket costs (OPC, and then with the following costs: FOBT-$10, sigmoidoscopy-$50, barium enema-$50, and colonoscopy-$200. Results 62 adults participated: 25 viewed the 5-option decision aid, and 37 viewed the 2-option version. Mean age was 54 (range 48–72, 58% were women, 71% were White, 24% African-American; 58% had completed at least a 4-year college degree. Comparing participants that viewed the 5-option version with participants who viewed the 2-option version, there were no differences in screening interest after viewing (1.8 vs. 1.9, t-test p = 0.76. Those viewing the 2-option version were somewhat more likely to choose colonoscopy than those viewing the 5-option version when no out of pocket costs were assumed (68% vs. 46%, p = 0.11, but not when such costs were imposed (41% vs. 42%, p = 1.00. Conclusion The number of screening options available does not appear to have a large effect on interest in colorectal cancer screening. The effect of offering differing
Sheridan, Stacey L; Pignone, Michael P; Lewis, Carmen L
2003-11-01
Commentators have suggested that patients may understand quantitative information about treatment benefits better when they are presented as numbers needed to treat (NNT) rather than as absolute or relative risk reductions. To determine whether NNT helps patients interpret treatment benefits better than absolute risk reduction (ARR), relative risk reduction (RRR), or a combination of all three of these risk reduction presentations (COMBO). Randomized cross-sectional survey. University internal medicine clinic. Three hundred fifty-seven men and women, ages 50 to 80, who presented for health care. Subjects were given written information about the baseline risk of a hypothetical "disease Y" and were asked (1) to compare the benefits of two drug treatments for disease Y, stating which provided more benefit; and (2) to calculate the effect of one of those drug treatments on a given baseline risk of disease. Risk information was presented to each subject in one of four randomly allocated risk formats: NNT, ARR, RRR, or COMBO. When asked to state which of two treatments provided more benefit, subjects who received the RRR format responded correctly most often (60% correct vs 43% for COMBO, 42% for ARR, and 30% for NNT, P =.001). Most subjects were unable to calculate the effect of drug treatment on the given baseline risk of disease, although subjects receiving the RRR and ARR formats responded correctly more often (21% and 17% compared to 7% for COMBO and 6% for NNT, P =.004). Patients are best able to interpret the benefits of treatment when they are presented in an RRR format with a given baseline risk of disease. ARR also is easily interpreted. NNT is often misinterpreted by patients and should not be used alone to communicate risk to patients.
Directory of Open Access Journals (Sweden)
ALTINOZ, O. T.
2014-08-01
Full Text Available Nature-inspired optimization algorithms can obtain the optima by updating the position of each member in the population. At the beginning of the algorithm, the particles of the population are spread into the search space. The initial distribution of particles corresponds to the beginning points of the search process. Hence, the aim is to alter the position for each particle beginning with this initial position until the optimum solution will be found with respect to the pre-determined conditions like maximum iteration, and specific error value for the fitness function. Therefore, initial positions of the population have a direct effect on both accuracy of the optima and the computational cost. If any member in the population is close enough to the optima, this eases the achievement of the exact solution. On the contrary, individuals grouped far away from the optima might yield pointless efforts. In this study, low-discrepancy quasi-random number sequence is preferred for the localization of the population at the initialization phase. By this way, the population is distributed into the search space in a more uniform manner at the initialization phase. The technique is applied to the Gravitational Search Algorithm and compared via the performance on benchmark function solutions.
High speed true random number generator with a new structure of coarse-tuning PDL in FPGA
Fang, Hongzhen; Wang, Pengjun; Cheng, Xu; Zhou, Keji
2018-03-01
A metastability-based TRNG (true random number generator) is presented in this paper, and implemented in FPGA. The metastable state of a D flip-flop is tunable through a two-stage PDL (programmable delay line). With the proposed coarse-tuning PDL structure, the TRNG core does not require extra placement and routing to ensure its entropy. Furthermore, the core needs fewer stages of coarse-tuning PDL at higher operating frequency, and thus saves more resources in FPGA. The designed TRNG achieves 25 Mbps @ 100 MHz throughput after proper post-processing, which is several times higher than other previous TRNGs based on FPGA. Moreover, the robustness of the system is enhanced with the adoption of a feedback system. The quality of the designed TRNG is verified by NIST (National Institute of Standards and Technology) and also accepted by class P1 of the AIS-20/31 test suite. Project supported by the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2016C31078), the National Natural Science Foundation of China (Nos. 61574041, 61474068, 61234002), and the K.C. Wong Magna Fund in Ningbo University, China.
Carranza, Emmanuel John M.; Laborte, Alice G.
2015-01-01
Machine learning methods that have been used in data-driven predictive modeling of mineral prospectivity (e.g., artificial neural networks) invariably require large number of training prospect/locations and are unable to handle missing values in certain evidential data. The Random Forests (RF) algorithm, which is a machine learning method, has recently been applied to data-driven predictive mapping of mineral prospectivity, and so it is instructive to further study its efficacy in this particular field. This case study, carried out using data from Abra (Philippines), examines (a) if RF modeling can be used for data-driven modeling of mineral prospectivity in areas with a few (i.e., individual layers of evidential data. Furthermore, RF modeling can handle missing values in evidential data through an RF-based imputation technique whereas in WofE modeling values are simply represented by zero weights. Therefore, the RF algorithm is potentially more useful than existing methods that are currently used for data-driven predictive mapping of mineral prospectivity. In particular, it is not a purely black-box method like artificial neural networks in the context of data-driven predictive modeling of mineral prospectivity. However, further testing of the method in other areas with a few mineral occurrences is needed to fully investigate its usefulness in data-driven predictive modeling of mineral prospectivity.
Mohr, Christine; Koutrakis, Nikolaos; Kuhn, Gustav
2015-01-01
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events. PMID:25653626
Directory of Open Access Journals (Sweden)
Christine eMohr
2015-01-01
Full Text Available Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn sceptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgements of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious and non-traditional (e.g. paranormal beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g. repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group or a psychic (psychic group. The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Guide to mathematical tables supplement no 1
Burunova, N M; Fedorova, R M
1960-01-01
A Guide to Mathematical Tables is a supplement to the Guide to Mathematical Tables published by the U.S.S.R. Academy of Sciences in 1956. The tables contain information on subjects such as powers, rational and algebraic functions, and trigonometric functions, as well as logarithms and polynomials and Legendre functions. An index listing all functions included in both the Guide and the Supplement is included.Comprised of 15 chapters, this supplement first describes mathematical tables in the following order: the accuracy of the table (that is, the number of decimal places or significant
International Nuclear Information System (INIS)
Calvayrac, Florent
2005-01-01
We present known and new applications of pseudo random numbers and of the Metropolis algorithm to phenomena of physical and mechanical interest, such as the search of simple clusters isomers with interactive visualization, or vehicle motion planning. The progression towards complicated problems was used with first-year graduate students who wrote most of the programs presented here. We argue that the use of pseudo random numbers in simulation and extrema research programs in teaching numerical methods in physics allows one to get quick programs and physically meaningful and demonstrative results without recurring to the advanced numerical analysis methods
Directory of Open Access Journals (Sweden)
Meena Shah
Full Text Available It is unclear how high-protein (HP and high-monounsaturated fat (HMF meals affect postprandial blood lipids and lipoprotein particle numbers (LPN.To compare a HP versus a HMF meal on postprandial lipid and LPN responses.Twenty-four participants (age: 36.3±15.0 years; body mass index: 23.6±2.0 kg/m2; 45.8% female were fed a HP (31.9% energy from protein and a HMF (35.2% fat and 20.7% monounsaturated fat meal in a randomized cross-over trial design. Energy and carbohydrate content were the same across meals. Blood samples were drawn in the fasting state and 3 hour postprandial state, and assessed for lipids and LPN.Repeated measures analysis showed a significant (p<0.05 treatment by time interaction effect for triglycerides (TG, the primary variable, total high-density lipoprotein particles (T-HDLP and T-HDLP minus large-buoyant high-density lipoprotein 2b (T-HDLP-LB-HDL2b. HP versus HMF condition led to significantly lower TG at 120 (geometric mean: 90.1 (95% confidence interval (CI: 76.4-106.3 vs. 146.5 (124.2-172.9 mg/dL and 180 (101.4 (83.1-123.8 vs. 148.7 (121.9-181.4 mg/dL min and higher T-HDLP at 120 (mean difference: 297.3 (95% CI: 48.6-545.9 nmol/L and 180 (291.6 (15.8-567.5 nmol/L min. The difference in T-HDLP by condition was due to the significantly higher small-dense HDLP (T-HDLP-LB-HDL2b during HP versus HMF condition at 120 (mean difference: 452.6 (95% CI: 177.4-727.9 nmol/L and 180 (496.8 (263.1-730.6 nmol/L min. Area under the curve analysis showed that HP versus HMF condition led to significantly lower TG, non-HDLP, and very-low-density lipoprotein particles (VLDLP responses but significantly less favorable responses in LB-HDL2b particles, T-HDLP-LB-HDL2b, and LB-HDL2b/T-HDLP ratio.The HP meal led to lower TG, non-HDLP, and VLDLP but less favorable LB-HDL2b, small-dense HDLP, and LB-HDL2b/T-HDLP ratio responses versus a HMF meal. Further studies are needed to confirm these findings over multiple meals.
Half-life distribution table of radioactive nuclei
International Nuclear Information System (INIS)
Gugenberger, P.
1954-01-01
This table allows to identify an element if its period is known. Data for this table were taken from the half-life values adopted by Hollander, PERLMAN and SEABORG (Rev. mod. Phys., 1953, 22 number 2). Moreover for each nucleus, the mass number, the charge number and the type of decay are given in the table. (author) [fr
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
Rinehart, Nicole J.; Bradshaw, John L.; Moss, Simon A.; Brereton, Avril V.; Tonge, Bruce J.
2006-01-01
The repetitive, stereotyped and obsessive behaviours, which are core diagnostic features of autism, are thought to be underpinned by executive dysfunction. This study examined executive impairment in individuals with autism and Asperger's disorder using a verbal equivalent of an established pseudo-random number generating task. Different patterns…
Energy Technology Data Exchange (ETDEWEB)
Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, A.P. 475, Xalapa, Veracruz (Mexico); Mora F, L.E. [CIMAT, A.P. 402, 36000 Guanajuato (Mexico)]. e-mail: hcoronel@uv.mx
2007-07-01
Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)
The limit of small Rossby numbers for randomly forced quasi-geostrophic equation on $\\beta$-plane
Kuksin, Sergei; Maiocchi, Alberto
2014-01-01
We consider the 2d quasigeostrophic equation on the $\\beta$-plane for the stream function $\\psi$, with dissipation and a random force: $$ (*)\\qquad (-\\Delta +K)\\psi_t - \\rho J(\\psi, \\Delta\\psi) -\\beta\\psi_x= \\langle \\text{random force}\\rangle -\\kappa\\Delta^2\\psi +\\Delta\\psi, $$ where $\\psi=\\psi(t,x,y), \\ x\\in\\mathbb{R}/2\\pi L\\mathbb{Z}, \\ y\\in \\mathbb{R}/2\\pi \\mathbb{Z}$. For typical values of the horizontal period $L$ we prove that the law of the action-vector of a solution for $(*)$ (formed...
Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael
2013-12-01
Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.
A table top exercise and workshop
International Nuclear Information System (INIS)
Lakey, J.R.A.
1992-01-01
Table top exercises are widely applied in training for emergency preparedness and have long been a feature of Courses on Planning for Nuclear Emergencies. Experience of a large number of table top exercises is used to provide a classification of the types of exercise indicating the application and the disadvantages. The use of workshops is considered to be complementary rather than an alternative to teaching methods available from table top exercises. (author)
Pension Benefit Guaranty Corporation — Find out about retirement trends in PBGC's data tables. The tables include statistics on the people and pensions that PBGC protects, including how many Americans are...
U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected...
U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected...
Energy Technology Data Exchange (ETDEWEB)
Willcock, J J; Lumsdaine, A; Quinlan, D J
2008-08-19
Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.
International Nuclear Information System (INIS)
Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian; Egelhaaf, Stefan U.; Sengupta, Ankush; Sengupta, Surajit
2016-01-01
Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g (1) (r) and an analogue of the Edwards-Anderson order parameter g (2) (r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.
Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers
Breuer, Kathrin; Meyer, Cord B.; Breuer, Felix A.; Richter, Anne; Exner, Florian; Weng, Andreas M.; Ströhle, Serge; Polat, Bülent; Jakob, Peter M.; Sauer, Otto A.; Flentje, Michael; Weick, Stefan
2018-04-01
The purpose of this work is the development of a robust and reliable three-dimensional (3D) Cartesian imaging technique for fast and flexible retrospective 4D abdominal MRI during free breathing. To this end, a non-uniform quasi random (NU-QR) reordering of the phase encoding (k y –k z ) lines was incorporated into 3D Cartesian acquisition. The proposed sampling scheme allocates more phase encoding points near the k-space origin while reducing the sampling density in the outer part of the k-space. Respiratory self-gating in combination with SPIRiT-reconstruction is used for the reconstruction of abdominal data sets in different respiratory phases (4D-MRI). Six volunteers and three patients were examined at 1.5 T during free breathing. Additionally, data sets with conventional two-dimensional (2D) linear and 2D quasi random phase encoding order were acquired for the volunteers for comparison. A quantitative evaluation of image quality versus scan times (from 70 s to 626 s) for the given sampling schemes was obtained by calculating the normalized mutual information (NMI) for all volunteers. Motion estimation was accomplished by calculating the maximum derivative of a signal intensity profile of a transition (e.g. tumor or diaphragm). The 2D non-uniform quasi-random distribution of phase encoding lines in Cartesian 3D MRI yields more efficient undersampling patterns for parallel imaging compared to conventional uniform quasi-random and linear sampling. Median NMI values of NU-QR sampling are the highest for all scan times. Therefore, within the same scan time 4D imaging could be performed with improved image quality. The proposed method allows for the reconstruction of motion artifact reduced 4D data sets with isotropic spatial resolution of 2.1 × 2.1 × 2.1 mm3 in a short scan time, e.g. 10 respiratory phases in only 3 min. Cranio-caudal tumor displacements between 23 and 46 mm could be observed. NU-QR sampling enables for stable 4D
Directory of Open Access Journals (Sweden)
mojtaba jafarvand
2017-06-01
Full Text Available Introduction and purpose: Improper posture while working is one of the most important risk factors for musculoskeletal disorders. Regarding this, the aim of this study was to assess the posture of students studying at Qazvin University of Medical Sciences when using the existing best-selling laptop tables using rapid upper limb assessment (RULA method. Methods: This analytic, cross-sectional study was conducted on 50 male and female dormitory students in 2017. The study population was selected through stratified random sampling technique. The participants’ postures in two different work stations (tables number one and two were evaluated by means of RULA method. Data analysis was performed in SPSS version 16 using the independent sample t-test and ANOVA test. Results: According to the results, 36% and 46% of the students obtained scores of 3 and 4, respectively in case of table number one. Furthermore, regarding table number two, scores 3 and 4 were recorded for 48% and 44% of the participants, respectively. Therefore, tables number one and two were found to have 82% and 92% of level two corrective measure, respectively. In addition, a significant relationship was obtained between the demographic variables and RULA score (P<0.05. Conclusion: As the findings of the present study indicated, table number one was a better case than table number two for fitting with different body structures since it allowed for the adjustment of the height and inclination of the work surface. However, corrective measures were necessary for both tables to provide the users with comfort, convenience, health, and productivity when using these laptop tables.
DEFF Research Database (Denmark)
Dibbern, Simon; Rasmussen, Kasper Vestergaard; Ortiz-Arroyo, Daniel
2017-01-01
In this paper we describe AcuTable, a new tangible user interface. AcuTable is a shapeable surface that employs capacitive touch sensors. The goal of AcuTable was to enable the exploration of the capabilities of such haptic interface and its applications. We describe its design and implementation...
Table Tennis Club
2013-01-01
Apparently table tennis plays an important role in physics, not so much because physicists are interested in the theory of table tennis ball scattering, but probably because it provides useful breaks from their deep intellectual occupation. It seems that many of the greatest physicists took table tennis very seriously. For instance, Heisenberg could not even bear to lose a game of table tennis, Otto Frisch played a lot of table tennis, and had a table set up in his library, and Niels Bohr apparently beat everybody at table tennis. Therefore, as the CERN Table Tennis Club advertises on a poster for the next CERN Table Tennis Tournament: “if you want to be a great physicist, perhaps you should play table tennis”. Outdoor table at restaurant n° 1 For this reason, and also as part of the campaign launched by the CERN medical service “Move! & Eat better”, to encourage everyone at CERN to take regular exercise, the CERN Table Tennis Club, with the supp...
Sutawanir
2015-12-01
Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.
CERN Table Tennis Club
2014-01-01
CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014 The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...
STATUS OF RADIOACTIVE ELEMENTS IN THE ATOMIC WEIGHTS TABLE
International Nuclear Information System (INIS)
HOLDEN, N.E.
2003-01-01
During discussions within the Inorganic Chemistry Division Committee, that dealt with the Periodic Table of the Chemical Elements and the official IUPAC position on its presentation, the following question was raised. When the various chemical elements are presented, each with their appropriate atomic weight value, how should the radioactive elements be presented? The Atomic Weights Commission has treated this question in a number of different ways during the past century, almost in a random manner. This report reviews the position that the Commission has taken as a function of time, as a prelude to a discussion in Ottawa about how the Commission should resolve this question for the future
Radwan, Ahmed Gomaa
2014-06-18
This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.
Radwan, Ahmed Gomaa; Mansingka, Abhinav S.; Salama, Khaled N.; Zidan, Mohammed A.
2014-01-01
This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.
TABLE TENNIS CLUB
2010-01-01
2010 CERN Table Tennis Tournament The CERN Table Tennis Club organizes its traditional CERN Table Tennis Tournament, at the Meyrin club, 2 rue de livron, in Meyrin, Saturday August 21st, in the afternoon. The tournament is open to all CERN staff, users, visitors and families, including of course summer students. See below for details. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You can also download the registration form from the Club Web page (http://www.cern.ch/tabletennis), and send it via internal mail. Photo taken on August 22, 2009 showing some of the participants in the 2nd CERN Table Tennis tournament. INFORMATION ON CERN TABLE TENNIS CLUB CERN used to have a tradition of table tennis activities at CERN. For some reason, at the beginning of the 1980’s, the CERN Table Tennis club merged with the Meyrin Table Tennis club, a member of the Association Genevoise de Tennis de Table (AGTT). Therefore, if you want to practice table tennis, you...
Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators
Mansingka, Abhinav S.
2012-10-07
This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.
Directory of Open Access Journals (Sweden)
Joop eHox
2014-02-01
Full Text Available Cluster randomized trials assess the effect of an intervention that is carried out at the group or cluster level. Ajzen’s theory of planned behaviour is often used to model the effect of the intervention as an indirect effect mediated in turn by attitude, norms and behavioural intention. Structural equation modelling (SEM is the technique of choice to estimate indirect effects and their significance. However, this is a large sample technique, and its application in a cluster randomized trial assumes a relatively large number of clusters. In practice, the number of clusters in these studies tends to be relatively small, e.g. much less than fifty. This study uses simulation methods to find the lowest number of clusters needed when multilevel SEM is used to estimate the indirect effect. Maximum likelihood estimation is compared to Bayesian analysis, with the central quality criteria being accuracy of the point estimate and the confidence interval. We also investigate the power of the test for the indirect effect. We conclude that Bayes estimation works well with much smaller cluster level sample sizes such as 20 cases than maximum likelihood estimation; although the bias is larger the coverage is much better. When only 5 to 10 clusters are available per treatment condition even with Bayesian estimation problems occur.
International Nuclear Information System (INIS)
Sokolow, Adam; Sen, Surajit
2007-01-01
An energy pulse refers to a spatially compact energy bundle. In nonlinear pulse propagation, the nonlinearity of the relevant dynamical equations could lead to pulse propagation that is nondispersive or weakly dispersive in space and time. Nonlinear pulse propagation through layered media with widely varying pulse transmission properties is not wave-like and a problem of broad interest in many areas such as optics, geophysics, atmospheric physics and ocean sciences. We study nonlinear pulse propagation through a semi-infinite sequence of layers where the layers can have arbitrary energy transmission properties. By assuming that the layers are rigid, we are able to develop exact expressions for the backscattered energy received at the surface layer. The present study is likely to be relevant in the context of energy transport through soil and similar complex media. Our study reveals a surprising connection between the problem of pulse propagation and the number patterns in the well known Pascal's and Catalan's triangles and hence provides an analytic benchmark in a challenging problem of broad interest. We close with comments on the relationship between this study and the vast body of literature on the problem of wave localization in disordered systems
Department of Transportation — The Standard Reference Tables (SRT) provide consistent reference data for the various applications that support Flight Standards Service (AFS) business processes and...
40 CFR Table 3 of Subpart Aaaaaaa... - Test Methods
2010-07-01
... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Test Methods 3 Table 3 of Subpart..., Subpt. AAAAAAA, Table 3 Table 3 of Subpart AAAAAAA of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in...
Mansingka, Abhinav S.
2014-06-18
This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.
International Nuclear Information System (INIS)
Matsuda, Hideharu; Minato, Susumu
2002-01-01
The accuracy of statistical quantity like the mean value and contour map obtained by measurement of the environmental gamma-ray dose rate was evaluated by random sampling of 5 different model distribution maps made by the mean slope, -1.3, of power spectra calculated from the actually measured values. The values were derived from 58 natural gamma dose rate data reported worldwide ranging in the means of 10-100 Gy/h rates and 10 -3 -10 7 km 2 areas. The accuracy of the mean value was found around ±7% even for 60 or 80 samplings (the most frequent number) and the standard deviation had the accuracy less than 1/4-1/3 of the means. The correlation coefficient of the frequency distribution was found 0.860 or more for 200-400 samplings (the most frequent number) but of the contour map, 0.502-0.770. (K.H.)
Directory of Open Access Journals (Sweden)
Maria Giné-Garriga
Full Text Available Effective promotion of exercise could result in substantial savings in healthcare cost expenses in terms of direct medical costs, such as the number of medical appointments. However, this is hampered by our limited knowledge of how to achieve sustained increases in physical activity.To assess the effectiveness of a Primary Health Care (PHC based physical activity program in reducing the total number of visits to the healthcare center among inactive patients, over a 15-month period.Randomized controlled trial.Three hundred and sixty-two (n = 362 inactive patients suffering from at least one chronic condition were included. One hundred and eighty-three patients (n = 183; mean (SD; 68.3 (8.8 years; 118 women were randomly allocated to the physical activity program (IG. One hundred and seventy-nine patients (n = 179; 67.2 (9.1 years; 106 women were allocated to the control group (CG. The IG went through a three-month standardized physical activity program led by physical activity specialists and linked to community resources.The total number of medical appointments to the PHC, during twelve months before and after the program, was registered. Self-reported health status (SF-12 version 2 was assessed at baseline (month 0, at the end of the intervention (month 3, and at 12 months follow-up after the end of the intervention (month 15.The IG had a significantly reduced number of visits during the 12 months after the intervention: 14.8 (8.5. The CG remained about the same: 18.2 (11.1 (P = .002.Our findings indicate that a 3-month physical activity program linked to community resources is a short-duration, effective and sustainable intervention in inactive patients to decrease rates of PHC visits.ClinicalTrials.gov NCT00714831.
Nahlik, Mary Schrodt
2005-01-01
To help make the abstract world of chemistry more concrete eighth-grade students, the author has them create a living periodic table that can be displayed in the classroom or hallway. This display includes information about the elements arranged in the traditional periodic table format, but also includes visual real-world representations of the…
Random Number Generation in Autism.
Williams, Mark A.; Moss, Simon A.; Bradshaw, John L.; Rinehart, Nicole J.
2002-01-01
This study explored the ability of 14 individuals with autism to generate a unique series of digits. Individuals with autism were more likely to repeat previous digits than comparison individuals, suggesting they may exhibit a shortfall in response inhibition. Results support the executive dysfunction theory of autism. (Contains references.)…
Neave, Henry R
2012-01-01
This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat
Empirical yield tables for Michigan.
Jerold T. Hahn; Joan M. Stelman
1984-01-01
Describes the tables derived from the 1980 Forest Survey of Michigan and presents ways the tables can be used. These tables are broken down according to Michigan's four Forest Survey Units, 14 forest types, and 5 site-index classes.
Empirical yield tables for Wisconsin.
Jerold T. Hahn; Joan M. Stelman
1989-01-01
Describes the tables derived from the 1983 Forest Survey of Wisconsin and presents ways the tables can be used. These tables are broken down according to Wisconsin`s five Forest Survey Units and 14 forest types.
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1988-01-01
Using the realistic single-particle energy spectrum obtained in the Woods-Saxon nucleon mean-field potential, we calculate the BCS pairing gap for 58 Ni as a function of temperature taking into account the thermal and particle-number fluctuations. The strength distributions of the electric dipole transitions and the centroids of the isovector giant dipole resonance (IV-GDR) are computed in the framework of the finite-temperature random-phase approximation (RPA) based on the Hamiltonian of the quasiparticle-phonon nuclear model with separate dipole forces. It is shown that the change of the pairing gap at finite temperature can noticeably influence the IV-GDR localisation in realistic nuclei. By taking both thermal and quasiparticle fluctuations in the pairing gap into account the effect of the phase transition from superfluid to normal in the temperature dependence of the IV-GDR centroid is completely smeared out. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...
Banks, Alton J.; Holmes, Jon L.
1995-01-01
Describes the characteristics of the digitized version of The Periodic Table Videodisc. Provides details about the organization of information and access to the data via Macintosh and Windows computers. (DDR)
Saturnelli, Annette
1985-01-01
Examines problems resulting from different forms of the periodic table, indicating that New York State schools use a form reflecting the International Union of Pure and Applied Chemistry's 1984 recommendations. Other formats used and reasons for standardization are discussed. (DH)
... Families ( We Can! ) Health Professional Resources Body Mass Index Table 1 for BMI greater than 35, go ... Health Information Email Alerts Jobs and Careers Site Index About NHLBI National Institute of Health Department of ...
Beiske, Kornelia K; Sand, Trond; Rugland, Eyvind; Stavem, Knut
2017-05-01
Comparison of mean sleep latencies and number of sleep-onset rapid eye movement periods (SOREMPs) between modified multiple sleep latency test (MSLT) performed in the unattended home and in-hospital laboratory setting. A randomized crossover single-blinded design. Thirty-four subjects referred to MSLT for suspected hypersomnia or narcolepsy were included. Participants were randomized to perform modified MSLT in the unattended home or in the hospital first. Scores in the two settings were compared using Wilcoxon signed-rank test or exact McNemar test. Agreement between home and hospital categorized mean sleep latency and number of SOREMPs was assessed using simple kappa (κ) and proportion agreement. Agreement between home and hospital mean sleep latency was assessed using a Bland-Altman plot and an intraclass correlation coefficient. There was no difference between home and hospital assessment of mean sleep latency (P = 0.86). Two or more SOREMPs were found more frequently on modified MSLTs performed at home compared with those at the hospital (7 and 2, respectively; P = 0.025). Agreement was moderate for categorized sleep latency (κ = 0.53) and fair for categorized SOREMPs (κ = 0.39) in the 2 settings. Analysis of mean sleep latency using intraclass correlation coefficient showed a very good agreement between the two settings. Group mean sleep latency for home modified MSLTs seems to be reliable compared with that for the attended sleep-laboratory setting. Higher rate of SOREMP in the unattended home suggests that napping in a familiar environment facilitates the transition into REM sleep. Further studies are needed to assess the normal limit, sensitivity, and specificity for SOREMP at home before the clinical utility of home-based napping can be determined.
Decision table languages and systems
Metzner, John R
1977-01-01
ACM Monograph Series: Decision Table Languages and Systems focuses on linguistic examination of decision tables and survey of the features of existing decision table languages and systems. The book first offers information on semiotics, programming language features, and generalization. Discussions focus on semantic broadening, outer language enrichments, generalization of syntax, limitations, implementation improvements, syntactic and semantic features, decision table syntax, semantics of decision table languages, and decision table programming languages. The text then elaborates on design im
Dei Cas, Alessandra; Spigoni, Valentina; Cito, Monia; Aldigeri, Raffaella; Ridolfi, Valentina; Marchesi, Elisabetta; Marina, Michela; Derlindati, Eleonora; Aloe, Rosalia; Bonadonna, Riccardo C; Zavaroni, Ivana
2017-02-23
Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown. Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34 + /CD133 + /KDR + /10 6 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed. Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers. V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013.
Energy Technology Data Exchange (ETDEWEB)
Gugenberger, P [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires
1954-07-01
This table allows to identify an element if its period is known. Data for this table were taken from the half-life values adopted by Hollander, PERLMAN and SEABORG (Rev. mod. Phys., 1953, 22 number 2). Moreover for each nucleus, the mass number, the charge number and the type of decay are given in the table. (author) [French] Cette table permet l'identification d'un element dont la periode est connue. Elle a ete etablie en utilisant les valeurs des periodes donnees par HOLLANDER, PERLMAN et SEABORG dans Rev. mod. Phys., 1953, 25 numero 2. On y trouve en outre, pour chaque nuclide, les caracteristiques suivantes: Z, A, modes de desintegration. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Gugenberger, P. [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires
1954-07-01
This table allows to identify an element if its period is known. Data for this table were taken from the half-life values adopted by Hollander, PERLMAN and SEABORG (Rev. mod. Phys., 1953, 22 number 2). Moreover for each nucleus, the mass number, the charge number and the type of decay are given in the table. (author) [French] Cette table permet l'identification d'un element dont la periode est connue. Elle a ete etablie en utilisant les valeurs des periodes donnees par HOLLANDER, PERLMAN et SEABORG dans Rev. mod. Phys., 1953, 25 numero 2. On y trouve en outre, pour chaque nuclide, les caracteristiques suivantes: Z, A, modes de desintegration. (auteur)
Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan
2015-01-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson's disease (PD). However, some aspects of executive control are impaired with STN DBS. We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing.
Empirical yield tables for Minnesota.
Jerold T. Hahn; Gerhard K. Raile
1982-01-01
Describes the tables derived from the 1977 Forest Survey of Minnesota and presents examples of how the tables can be used. These tables are broken down according to Minnesota's four Forest Survey Units, 14 forest types, and 5 site index classes. Presents 210 of the 350 possible tables that contained sufficient data to justify publication.
Tables extracted from Messel and Crawford for electrons incident on 1 radiation length Pb plates
International Nuclear Information System (INIS)
Loos, J.
1977-01-01
Tables were extracted from the extensive tables of Messel and Crawford. The numbers given should be good for 1 r.1. Ta plates and may be helpful when looking at showers in these plates. The tables should be largely self-explanatory. An example is given of how to use these tables given a 1000-MeV incident electron
International Nuclear Information System (INIS)
Craig, J.R.; Otto, G.W.
1980-01-01
An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)
Table Tennis Club
2012-01-01
The CERN Table Tennis club and the Meyrin CTT are organizing two Table Tennis workshops from 2 to 6 July and from 20 to 24 August 2012 inclusive in Meyrin. A professional would be with your children from 14.00 pm to 18.00 pm: an instructor J + S category A. Training courses with specific themes, individual courses would be given depending on the level of the child’s game, “discoveries –table tennis games” courses and games with the robot. Other activities (stretching, relaxation). Afternoons (from 18 to 20 children): 40 CHF per workshop and per child. Evenings (from 18 to 20 adults): 60 CHF per workshop and per adult. For further information, please contact Mr. Monteil : Mobile: (+33) 06 61 31 70 47 E-mail: wilfried.monteil@free.fr.
Platt, Adam; Morten, John; Ji, Qunsheng; Elvin, Paul; Womack, Chris; Su, Xinying; Donald, Emma; Gray, Neil; Read, Jessica; Bigley, Graham; Blockley, Laura; Cresswell, Carl; Dale, Angela; Davies, Amanda; Zhang, Tianwei; Fan, Shuqiong; Fu, Haihua; Gladwin, Amanda; Harrod, Grace; Stevens, James; Williams, Victoria; Ye, Qingqing; Zheng, Li; de Boer, Richard; Herbst, Roy S; Lee, Jin-Soo; Vasselli, James
2015-03-23
To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with
Apanasovich, Tatiyana V.
2012-03-01
We introduce a valid parametric family of cross-covariance functions for multivariate spatial random fields where each component has a covariance function from a well-celebrated Matérn class. Unlike previous attempts, our model indeed allows for various smoothnesses and rates of correlation decay for any number of vector components.We present the conditions on the parameter space that result in valid models with varying degrees of complexity. We discuss practical implementations, including reparameterizations to reflect the conditions on the parameter space and an iterative algorithm to increase the computational efficiency. We perform various Monte Carlo simulation experiments to explore the performances of our approach in terms of estimation and cokriging. The application of the proposed multivariate Matérnmodel is illustrated on two meteorological datasets: temperature/pressure over the Pacific Northwest (bivariate) and wind/temperature/pressure in Oklahoma (trivariate). In the latter case, our flexible trivariate Matérn model is valid and yields better predictive scores compared with a parsimonious model with common scale parameters. © 2012 American Statistical Association.
Climate change : transportation table
International Nuclear Information System (INIS)
Ogilvie, K.
1999-01-01
The Kyoto Protocol sets greenhouse gas (GHG) reduction targets for the post-2000 period. If ratified, Canada will be committed to reduce emissions of GHGs by 6 per cent below 1990 levels during the period 2008-2012. A recommended national strategy is to establish 'issue tables' that will advise the Ministers of Energy and Environment on preferred options to reach the Kyoto target and to identify early actions that can be taken. The 'Transportation Table' which is the focus of this paper, is one of the 15 sectoral tables. The Transportation Table will identify by July 1999, specific measures to mitigate GHG emissions from Canada's transportation sector. Currently, GHG emissions from the transportation sector are predicted to be 27 per cent above 1990 levels by 2010. Fuel taxes, emissions trading, and research into improved vehicle technologies and automotive fuels are some of the recommended options which can help reduce emissions trading from the transportation sector. Studies are underway to deal with emissions from transport in two sub-groups, freight and passenger. 1 fig
International Nuclear Information System (INIS)
2003-01-01
The energy statistical table is a selection of statistical data for energies and countries from 1997 to 2002. It concerns the petroleum, the natural gas, the coal, the electric power, the production, the external market, the consumption per sector, the energy accounting 2002 and graphs on the long-dated forecasting. (A.L.B.)
Herrenden-Harker, B. D.
1997-01-01
Presents a modern Periodic Table based on the electron distribution in the outermost shell and the order of filling of the sublevels within the shells. Enables a student to read off directly the electronic configuration of the element and the order in which filling occurs. (JRH)
International Nuclear Information System (INIS)
McKerrell, H.
1975-01-01
Tables are presented for the conversion of standard (5568 year half-life) C-14 dates to calendar years. The major part of the data converts C-14 dates to tree-ring years: additional data are given, based on the Egyptian historical curve. (U.K.)
Cosmic radiation algorithm utilizing flight time tables
International Nuclear Information System (INIS)
Katja Kojo, M.Sc.; Mika Helminen, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Katja Kojo, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Gerhard Leuthold, D.Sc.
2006-01-01
Cosmic radiation is considerably higher on cruising altitudes used in aviation than at ground level. Exposure to cosmic radiation may increase cancer risk among pilots and cabin crew. The International Commission on Radiation Protection (ICRP) has recommended that air crew should be classified as radiation workers. Quantification of cosmic radiation doses is necessary for assessment of potential health effects of such occupational exposure. For Finnair cabin crew (cabin attendants and stewards), flight history is not available for years prior to 1991 and therefore, other sources of information on number and type of flights have to be used. The lack of systematically recorded information is a problem for dose estimation for many other flight companies personnel as well. Several cosmic radiation dose estimations for cabin crew have been performed using different methods (e.g. 2-5), but they have suffered from various shortcomings. Retrospective exposure estimation is not possible with personal portable dosimeters. Methods that employ survey data for occupational dose assessment are prone to non-differential measurement error i.e. the cabin attendants do not remember correctly the number of past flights. Assessment procedures that utilize surrogate measurement methods i.e. the duration of employment, lack precision. The aim of the present study was to develop an assessment method for individual occupational exposure to cosmic radiation based on flight time tables. Our method provides an assessment method that does not require survey data or systematic recording of flight history, and it is rather quick, inexpensive, and possible to carry out in all other flight companies whose past time tables for the past periods exist. Dose assessment methods that employ survey data are prone to random error i.e. the cabin attendants do not remember correctly the number or types of routes that they have flown during the past. Our method avoids this since survey data are not needed
International Nuclear Information System (INIS)
Redington, R.W.; Henkes, J.L.
1979-01-01
Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)
Institute, Marine
2013-01-01
Develop an increasing awareness of plants and animals that live in local marine environments including the seashore, seas and oceans of Ireland. After learning all about the seashore and other marine related lessons, this quiz can be used to evaluate the student’s knowledge of the marine related living things and natural environments. The table quiz can be used as a guide, highlighting facts about the marine environment and some of the animals that live there.
Table Tennis Club
2012-01-01
2012 CERN Table Tennis Tournament As the campaign launched by the CERN medical service “Move! & Eat better” is designed in particular to encourage people at CERN to take more regular exercise, the CERN Table Tennis Club, with its traditional CERN Table Tennis Tournament is providing an excellent opportunity to practice moving. The tournament will take place at the Meyrin CTT, 2 rue de Livron, Saturday August 25, 2012, in the afternoon (starting at 13:30). It is open to all CERN staff, users, visitors and families, including of course summer students, who are strongly encouraged to participate. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You may also find useful information on the Club Web page http://www.cern.ch/tabletennis CERN 2011 champion Savitha Flaecher, between the finalist Bertrand Mouches on her left, the winner of the consolation draw on her right (Sudarshan Paramesvaran), and far left, Denis Moriaud (semi-finalist a...
International Nuclear Information System (INIS)
M.L. Johnson
2005-01-01
The purpose of this document is to review the existing SRTC design against the ''Nuclear Safety Design Bases for License Application'' (NSDB) [Ref. 10] requirements and to identify codes and standards and supplemental requirements to meet these requirements. If these codes and standards and supplemental requirements can not fully meet these safety requirements then a ''gap'' is identified. These gaps will be identified here and addressed using the ''Site Rail Transfer Cart (SRTC) Design Development Plan'' [Ref. 14]. The codes and standards, supplemental requirements, and design development requirements are provided in the SRTC and associated rails gap analysis table in Appendix A. Because SRTCs are credited with performing functions important to safety (ITS) in the NSDB [Ref. 10], design basis requirements are applicable to ensure equipment is available and performs required safety functions when needed. The gap analysis table is used to identify design objectives and provide a means to satisfy safety requirements. To ensure that the SRTC and rail design perform required safety Functions and meet performance criteria, this portion of the gap analysis table supplies codes and standards sections and the supplemental requirements and identifies design development requirements, if needed
Global Reference Tables Services Architecture
Social Security Administration — This database stores the reference and transactional data used to provide a data-driven service access method to certain Global Reference Table (GRT) service tables.
Aggregation Algorithms in Heterogeneous Tables
Directory of Open Access Journals (Sweden)
Titus Felix FURTUNA
2006-01-01
Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.
Wetherell, Chris
2017-01-01
This is an edited extract from the keynote address given by Dr. Chris Wetherell at the 26th Biennial Conference of the Australian Association of Mathematics Teachers Inc. The author investigates the surprisingly rich structure that exists within a simple arrangement of numbers: the times tables.
Mathematics of Periodic Tables for Benzenoid Hydrocarbons.
Dias, Jerry Ray
2007-01-01
The upper and lower bounds for invariants of polyhex systems based on the Harary and Harborth inequalities are studied. It is shown that these invariants are uniquely correlated by the Periodic Table for Benzenoid Hydrocarbons. A modified periodic table for total resonant sextet (TRS) benzenoids based on the invariants of Ds and r(empty) is presented; Ds is the number of disconnections among the empty rings for fused TRS benzenoid hydrocarbons. This work represents a contribution toward deciphering the topological information content of benzenoid formulas.
44 CFR 208.12 - Maximum Pay Rate Table.
2010-10-01
...) Physicians. DHS uses the latest Special Salary Rate Table Number 0290 for Medical Officers (Clinical... Personnel, in which case the Maximum Pay Rate Table would not apply. (3) Compensation for Sponsoring Agency... organizations, e.g., HMOs or medical or engineering professional associations, under the revised definition of...
VirtualTable: a projection augmented reality game
DEFF Research Database (Denmark)
Dal Corso, Alessandro; Olsen, Mikkel Damgaard; Steenstrup, Kasper Hornbak
2015-01-01
VirtualTable is a projection augmented reality installation where users are engaged in an interactive tower defense game. The installation runs continuously and is designed to attract people to a table, which the game is projected onto. Any number of players can join the game for an optional period...
40 CFR Table 3 of Subpart Bbbbbbb... - Test Methods
2010-07-01
... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Test Methods 3 Table 3 of Subpart... 3 Table 3 of Subpart BBBBBBB of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in appendix A to part 60. 2...
Apanasovich, Tatiyana V.; Genton, Marc G.; Sun, Ying
2012-01-01
We introduce a valid parametric family of cross-covariance functions for multivariate spatial random fields where each component has a covariance function from a well-celebrated Matérn class. Unlike previous attempts, our model indeed allows
The Periodic Round Table (by Gary Katz)
Rodgers, Reviewed By Glen E.
2000-02-01
Unwrapping and lifting the Periodic Round Table out of its colorful box is an exciting experience for a professional chemist or a chemistry student. Touted as a "new way of looking at the elements", it is certainly thatat least at first blush. The "table" consists of four sets of two finely finished hardwood discs each with the following elemental symbols and their corresponding atomic numbers pleasingly and symmetrically wood-burned into their faces. The four sets of two discs are 1 1/2, 3, 4 1/2, and 6 in. in diameter, each disc is 3/4 in. thick, and therefore the entire "round table" stands 6 in. high and is 6 in. in diameter at its base. The eight beautifully polished discs (represented below) are held together by center dowels that allow each to be rotated separately.
Derandomizing from random strings
Buhrman, H.; Fortnow, L.; Koucký, M.; Loff, B.
2010-01-01
In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R(K). It was previously known that PSPACE, and hence BPP is Turing-reducible to R(K). The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial
Supplementary data: Table 1. Identification numbers of sequences ...
Indian Academy of Sciences (India)
Lenovo
. -. -. SP1. Stimulating protein 1, ubiquitous zinc finger transcription factor. +. +. GSH2. Homeodomain transcription factor Gsh-2. -. +. RUSH. SWI/SNF related nucleophosphoproteins with a RING finger DNA binding motif. +. +. TAL1. T-cell acute ...
Periodic table as a powerful tool for radiation education
International Nuclear Information System (INIS)
Aratani, Michi; Osanai, Yuko; Uchiumi, Fumiko; Tsushima, Kazuko; Kamayachi, Tei; Kudo, Michiko
2005-01-01
The periodic tables ordinarily start with an element of atomic number 1, hydrogen. Hydrogen atoms, however, are derived from neutrons by way of β decay. Consequently, neutron should be located at a zero position of atomic number, which corresponds to the left side and above helium. A periodic table, especially with the zero position for neutron, is essential from present view of matter and serves as a powerful tool for radiation education. (author)
Real-time multiparameter pulse processing with decision tables
International Nuclear Information System (INIS)
Hull, K.; Griffin, H.
1986-01-01
Decision tables offer several advantages over other real-time multiparameter, data processing techniques. These include very high collection rates, minimum number of computer instructions, rates independent of the number of conditions applied per parameter, ease of adding or removing conditions during a session, and simplicity of implementation. Decisions table processing is important in multiparameter nuclear spectroscopy, coincidence experiments, multiparameter pulse processing (HgI 2 resolution enhancement, pulse discrimination, timing spectroscopy), and other applications can be easily implemented. (orig.)
International Nuclear Information System (INIS)
Legrand, Jean; Perolat, J.-P.; Lagoutine, Frederic; Le Gallic, Yves.
The evaluation of the following 29 radionuclides is presented: 22 Na, 24 Na, sup(24m)Na, 51 Cr, 54 Mn, 57 Co, 58 Co, sup(58m)Co, 60 Co, sup(60m)Co, 75 Se, 103 Ru, sup(103m)Rh, sup(110m)Ag- 110 Ag, 109 Cd, 125 Sb, sup(125mTe), 125 I, 133 Xe, sup(133m)Xe, 131 Cs, 134 Cs, sup(134m)Cs, 139 Ce, 144 Ce- 144 Pr, 144 Pr, 169 Er, 186 Re, 203 Hg. The introduction contains a brief description of radioactive processes and the evaluation rules followed. The best values and associated uncertainties are given for each radionuclide for the major parameters of the decay scheme and the radiation intensities emitted, together with a decay table. Gamma, X-rays and sometimes conversion electron spectra are also provided [fr
Isomers chart; Table des isomeres
Energy Technology Data Exchange (ETDEWEB)
Dupont-Gautier, P; Chantelot, S; Moisson, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)
Isomers chart; Table des isomeres
Energy Technology Data Exchange (ETDEWEB)
Dupont-Gautier, P.; Chantelot, S.; Moisson, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)
Symbol Tables and Branch Tables: Linking Applications Together
Handler, Louis M.
2011-01-01
This document explores the computer techniques used to execute software whose parts are compiled and linked separately. The computer techniques include using a branch table or indirect address table to connect the parts. Methods of storing the information in data structures are discussed as well as differences between C and C++.
DEFF Research Database (Denmark)
Kristensen, L E; Christensen, R; Bliddal, H
2011-01-01
To compare the efficacy of adalimumab, etanercept, and infliximab in patients with established rheumatoid arthritis (RA) taking concomitant methotrexate (MTX) by calculating the number needed to treat (NNT) using three different methods.......To compare the efficacy of adalimumab, etanercept, and infliximab in patients with established rheumatoid arthritis (RA) taking concomitant methotrexate (MTX) by calculating the number needed to treat (NNT) using three different methods....
DEFF Research Database (Denmark)
Kristensen, L E; Christensen, R; Bliddal, H
2007-01-01
To compare the efficacy of adalimumab, etanercept, and infliximab in patients with established rheumatoid arthritis (RA) taking concomitant methotrexate (MTX) by calculating the number needed to treat (NNT) using three different methods.......To compare the efficacy of adalimumab, etanercept, and infliximab in patients with established rheumatoid arthritis (RA) taking concomitant methotrexate (MTX) by calculating the number needed to treat (NNT) using three different methods....
MIL-HDBK-338-Environmental Conversion Table Correction
Hark, Frank; Novack, Steve
2017-01-01
In reliability analysis for space launch vehicles, limited data is frequently a challenge due to the pure number of launches. A common solution is to use surrogate historical data of similar components from other industries (military data). The operating environment of the common data may be different from that of the necessary target analysis. The military electronic design handbook (MIL-HDBK-338) has a table for converting Mean Time Between Failure (MTBF) data from one environment to another. However, the table has some discrepancies and rounding of complementary conversions; namely going from environment A to B does not given the same result as going from B to A. This presentation will show the discrepancies in the original conversation table, the greater than expected magnitude, the problem with the updated published table and a suggested corrected table to reference when doing MTBF data environment conversion.
Estimation and testing in large binary contingency tables
Kallenberg, W.C.M.
1989-01-01
Very sparse contingency tables with a multiplicative structure are studied. The number of unspecified parameters and the number of cells are growing with the number of observations. Consistency and asymptotic normality of natural estimators are established. Also uniform convergence of the estimators
Use of probability tables for propagating uncertainties in neutronics
International Nuclear Information System (INIS)
Coste-Delclaux, M.; Diop, C.M.; Lahaye, S.
2017-01-01
Highlights: • Moment-based probability table formalism is described. • Representation by probability tables of any uncertainty distribution is established. • Multiband equations for two kinds of uncertainty propagation problems are solved. • Numerical examples are provided and validated against Monte Carlo simulations. - Abstract: Probability tables are a generic tool that allows representing any random variable whose probability density function is known. In the field of nuclear reactor physics, this tool is currently used to represent the variation of cross-sections versus energy (neutron transport codes TRIPOLI4®, MCNP, APOLLO2, APOLLO3®, ECCO/ERANOS…). In the present article we show how we can propagate uncertainties, thanks to a probability table representation, through two simple physical problems: an eigenvalue problem (neutron multiplication factor) and a depletion problem.
Sampling procedures and tables
International Nuclear Information System (INIS)
Franzkowski, R.
1980-01-01
Characteristics, defects, defectives - Sampling by attributes and by variables - Sample versus population - Frequency distributions for the number of defectives or the number of defects in the sample - Operating characteristic curve, producer's risk, consumer's risk - Acceptable quality level AQL - Average outgoing quality AOQ - Standard ISQ 2859 - Fundamentals of sampling by variables for fraction defective. (RW)
Kohei Arai; Yuji Yamada
2011-01-01
An attempt is made for improvement of secret image invisibility in circulation images with dyadic wavelet based data hiding with run-length coded secret images of which location of codes are determined by random number. Through experiments, it is confirmed that secret images are almost invisible in circulation images. Also robustness of the proposed data hiding method against data compression of circulation images is discussed. Data hiding performance in terms of invisibility of secret images...
DEFF Research Database (Denmark)
Danielsen, Anne Kjaergaard; Okholm, Cecilie; Pommergaard, Hans-Christian
2014-01-01
: The object of this study was to investigate the development in the organization of multicenter studies, the distribution of studies within different clinical specialties, across continents, and investigate the differences related to testing various interventions. METHODS AND MATERIALS: A literature search...... was done in MEDLINE for multicenter studies published in 1995, 2000, 2005, and 2010, respectively. Data extraction identified data related to clinical specialties, interventions, participating patients, departments, countries, and continents. RESULTS: The number of multicenter studies increased from 112...... as the number of participating departments increased during the time span, though the increase in studies was most evident in Europe and North America compared with the rest of the world....
International Nuclear Information System (INIS)
Hendricks, J.S.
2003-01-01
MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data tables are used for oxygen and models are used for uranium. The mix-and-match capability became available with MCNPX2.5.b (November 2002). For the first time, we present here comparisons that calculate radiation transport in materials with various combinations of data charts and model physics. The physics models are poor at low energies (<150 MeV); thus, data tables should be used when available. Our comparisons demonstrate the importance of the mix-and-match capability and indicate how well physics models work in the absence of data tables
International Nuclear Information System (INIS)
Rossi, Laura; Watson, Dana; Escandarani, Soledad; Miranda, Andrea; Troncoso, Alcides
2009-01-01
Zero tolerance to bacterial contamination means considering the acceptance of 'radiation on the table'. The process of food irradiation has been extensively studied, nevertheless its use remains a matter of some controversy. Despite unanimous agreement within the medical community of the safety of this procedure, occasional concerns arise from the consumers. A common consumer misconception is that irradiation may turn the food 'radioactive'. A significant number of scientific studies on the topic were analyzed. We found no scientific study demonstrating that consumption of irradiated food might pose a risk to consumers. All studies conclude that food irradiation at the appropriate dose required to reduce contamination is safe and does not affect its nutritional value. In order to emphasize the issue we discuss the potential benefit vs harm of irradiation of food contaminated with E. coli 0157: H7. The association of this bacteria with severe disease and death has been clearly established in contrast with the lack of a demonstrated risk due to meat irradiation. We conclude that the risks of food irradiation remains 'unknown' simply because, after four decades of research, none has been identified. In contrast to the risks of acquiring a food transmitted bacterial disease, the risk of irradiation is negligible
... connected by wires to an electrocardiogram (ECG or EKG) machine that monitors your heart rate. Place a ... pressure (the bottom number in a blood pressure reading), lowers peripheral vascular resistance, increases your heart rate ...
Hendricks, J S
2003-01-01
MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO sub 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data t...
Elekta Precise Table characteristics of IGRT remote table positioning
International Nuclear Information System (INIS)
Riis, Hans L.; Zimmermann, Sune J.
2009-01-01
Cone beam CT is a powerful tool to ensure an optimum patient positioning in radiotherapy. When cone beam CT scan of a patient is acquired, scan data of the patient are compared and evaluated against a reference image set and patient position offset is calculated. Via the linac control system, the patient is moved to correct for position offset and treatment starts. This procedure requires a reliable system for movement of patient. In this work we present a new method to characterize the reproducibility, linearity and accuracy in table positioning. The method applies to all treatment tables used in radiotherapy. Material and methods. The table characteristics are investigated on our two recent Elekta Synergy Platforms equipped with Precise Table installed in a shallow pit concrete cavity. Remote positioning of the table uses the auto set-up (ASU) feature in the linac control system software Desktop Pro R6.1. The ASU is used clinically to correct for patient positioning offset calculated via cone beam CT (XVI)-software. High precision steel rulers and a USB-microscope has been used to detect the relative table position in vertical, lateral and longitudinal direction. The effect of patient is simulated by applying external load on the iBEAM table top. For each table position an image is exposed of the ruler and display values of actual table position in the linac control system is read out. The table is moved in full range in lateral direction (50 cm) and longitudinal direction (100 cm) while in vertical direction a limited range is used (40 cm). Results and discussion. Our results show a linear relation between linac control system read out and measured position. Effects of imperfect calibration are seen. A reproducibility within a standard deviation of 0.22 mm in lateral and longitudinal directions while within 0.43 mm in vertical direction has been observed. The usage of XVI requires knowledge of the characteristics of remote table positioning. It is our opinion
Scalable Packet Classification with Hash Tables
Wang, Pi-Chung
In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.
Directory of Open Access Journals (Sweden)
Raos, N.
2011-12-01
Full Text Available The Croatian (Yugoslav Academy of Sciences and Arts was the first academy to elect D. I. Mendeleev as its honorary member (1882, whereas the periodic table of the elements has been taught regularly at the Zagreb University since 1888. The early interest of Croatian chemists in the periodic table should be attributed primarily to their pan-Slavic attitude, particularly as proof that Slavic people were able to produce "their own Newtons" (M. V. Lomonosov and D. I. Mendeleev. Such enthusiastic views, however, did not help in analyzing the contribution of Mendeleev and other scientists to the discovery and development of the periodic table of the elements.
Tables of nuclear constants for gamma activation analysis
International Nuclear Information System (INIS)
Randa, Z.; Kreisinger, F.
1980-01-01
The tables of photonuclear reactions presented, designed for gamma activation analysis, list accurate data on energy of photons emitted by radionuclides, gamma line intensity, half-lives, photonuclear reactions, or the genetic relationship leading to the formation of the given radionuclide together with the respective reaction thresholds. They also list natural isotopic occurrence of the individual target nuclides. The tables are arranged by increasing atomic numbers of newly formed radionuclides and by increasing gamma energies. (B.S.)
Automation of BESSY scanning tables
International Nuclear Information System (INIS)
Hanton, J.; Kesteman, J.
1981-01-01
A micro processor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the micro processor are: 1. control of spooling of the four asynchronous film winding devices and switching on and off the 4 projections lamps, 2. pre-processing of the data coming from a bi-polar coordinates measuring device, 3. bi-directional interchange of informations between the operator, the BESSY table and the DEC PDP 11/34 mini computer controling the scanning operations, 4. control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with point 4, study is being made for the use of BESSY tables for accurate measurements (+/-5 microns), by encoding the displacements of the projections lenses. (orig.)
Federal Laboratory Consortium — The Table Mountain Field Site, located north of Boulder, Colorado, is designated as an area where the magnitude of strong, external signals is restricted (by State...
The redoubtable ecological periodic table
Ecological periodic tables are repositories of reliable information on quantitative, predictably recurring (periodic) habitat–community patterns and their uncertainty, scaling and transferability. Their reliability derives from their grounding in sound ecological principle...
Table 1: Biofuels simulation scenarios
U.S. Environmental Protection Agency — A spreadsheet containing information used to generate Table 1. Agricultural Market sector results presented in the spreadsheet were generated elsewhere (non-EPA) and...
NNDSS - Table I. infrequently reported notifiable diseases
U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2016. In this Table, provisional* cases of selected† infrequently reported notifiable diseases...
Directory of Open Access Journals (Sweden)
Mohammad Abbasinia
2014-09-01
Full Text Available Introduction: Endotracheal tube suctioning is essential for improve oxygenation in the patients undergoing mechanical ventilation. There are two types of shallow and deep endotracheal tube suctioning. This study aimed to evaluate the effect of shallow and deep suctioning methods on respiratory rate (RR, arterial blood oxygen saturation (SpO2 and number of suctioning in patients hospitalized in the intensive care units of Al-Zahra Hospital, Isfahan, Iran. Methods: In this randomized controlled trial, 74 patients who hospitalized in the intensive care units of Isfahan Al-Zahra Hospital were randomly allocated to the shallow and deep suctioning groups. RR and SpO2 were measured immediately before, immediately after, 1 and 3 minute after each suctioning. Number of suctioning was also noted in each groups. Data were analyzed using repeated measures analysis of variance (RMANOVA, chi-square and independent t-tests. Results: RR was significantly increased and SpO2 was significantly decreased after each suctioning in the both groups. However, these changes were not significant between the two groups. The numbers of suctioning was significantly higher in the shallow suctioning group than in the deep suctioning group. Conclusion: Shallow and deep suctioning had a similar effect on RR and SpO2. However, shallow suctioning caused further manipulation of patient’s trachea than deep suctioning method. Therefore, it seems that deep endotracheal tube suctioning method can be used to clean the airway with lesser manipulation of the trachea.
Abbasinia, Mohammad; Irajpour, Alireza; Babaii, Atye; Shamali, Mehdi; Vahdatnezhad, Jahanbakhsh
2014-09-01
Endotracheal tube suctioning is essential for improve oxygenation in the patients undergoing mechanical ventilation. There are two types of shallow and deep endotracheal tube suctioning. This study aimed to evaluate the effect of shallow and deep suctioning methods on respiratory rate (RR), arterial blood oxygen saturation (SpO2) and number of suctioning in patients hospitalized in the intensive care units of Al-Zahra Hospital, Isfahan, Iran. In this randomized controlled trial, 74 patients who hospitalized in the intensive care units of Isfahan Al-Zahra Hospital were randomly allocated to the shallow and deep suctioning groups. RR and SpO2 were measured immediately before, immediately after, 1 and 3 minute after each suctioning. Number of suctioning was also noted in each groups. Data were analyzed using repeated measures analysis of variance (RMANOVA), chi-square and independent t-tests. RR was significantly increased and SpO2 was significantly decreased after each suctioning in the both groups. However, these changes were not significant between the two groups. The numbers of suctioning was significantly higher in the shallow suctioning group than in the deep suctioning group. Conclusion : Shallow and deep suctioning had a similar effect on RR and SpO2. However, shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, it seems that deep endotracheal tube suctioning method can be used to clean the airway with lesser manipulation of the trachea.
Mathematical tables tables of in g [z] for complex argument
Abramov, A A
1960-01-01
Mathematical Tables of In ? (z) for Complex Argument is a compilation of tables of In ? (z), z = x + iy, calculated for steps in x and y of 0.01 and with an accuracy of one unit in the last (the sixth) decimal place. Interpolation is used to calculate In ? (z) for intermediate values and is carried out separately for the real and imaginary parts of In ? (z). Six places are retained in interpolation.This book first explains how the values of In ? (z) are calculated using the asymptotic formula in a wide lattice with step h = 0.16, and how the tables and the nomograph are used. The values in the
Vanmarcke, Erik
1983-03-01
Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.
INTRODUCTION Outline of Round Tables Outline of Round Tables
Abarzhi, Snezhana I.; Sreenivasan, Katepalli R.
2010-12-01
(Los Alamos National Laboratory, USA) Gupta, Anupam (Indian Institute of Science, India) Hazak, Giora (Negev Nuclear Research Center, Israel) Jayakumar, J S (Bhabha Atomic Research Centre, India) Kaneda, Yukio (Nagoya University, Japan) Klimenko, Alexander Y (University of Queensland, Australia) Krommes, John A (Princeton University, USA) Lvov, Victor (Weizmann Institute of Science, Israel) Meshram, Mayoordhwaj (Rashtrasant Tukadoji Maharaj Nagpur University, India) Minnini, Pablo (University of Buenos Aires, Argentina) Mukund, Vasudevan (Jawaharlal Nehru Centre for Advanced Scientific Research, India) Nadiga, Balu (Los Alamos National Laboratory, USA) Nepomnyaschy, Alexander (Technion, Israel) Niemela, Joseph J (International Centre for Theoretical Physics, Trieste, Italy) Nishihara, Katsunobu (Institute for Laser Engineering, Osaka University, Japan) Orlov, Sergei S (Stanford University and InPhase Technologies, USA) Petrosyan, Arakel (Space Research Institute of the Russian Academy of Sciences, Russia) Pouquet, Annick (National Center for Atmospheric Research, USA) Procaccia, Itamar (Weizmann Institute of Science, Israel) Pudritz, Ralph E (McMaster University, Canada) Pullin, Dale (California Institute of Technology, USA) Sreenivasan, Katepalli R (International Centre for Theoretical Physics, Trieste, Italy) Sukoriansky, Semion (Ben-Gurion University of the Negev, Israel) Thornber, B (Cranfield University, UK) van Duin, Adri (Pennsylvania State University, USA) Velikovich, Alexander (Naval Research Laboratory, USA) Williams, Robin (Atomic Weapons Establishment, UK) Youngs, David L (Atomic Weapons Establishment, UK) Zweibel, Ellen (University of Wisconsin-Madison, USA) Based of suggestions of the TMB invited speakers, lecturers and Scientific Advisory Committee members, a number of key issues were selected for in-depth discussion at the Round Tables. Specifically, participants of the Round Tables considered similarities and differences between "canonical" and "non
A periodic table of coiled-coil protein structures.
Moutevelis, Efrosini; Woolfson, Derek N
2009-01-23
Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.
30 CFR 250.1401 - Index table.
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Index table. 250.1401 Section 250.1401 Mineral... OPERATIONS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf (OCS) Civil Penalties § 250.1401 Index table. The following table is an index of the sections in this subpart: § 250.1401Table Definitions...
Models for Rational Number Bases
Pedersen, Jean J.; Armbruster, Frank O.
1975-01-01
This article extends number bases to negative integers, then to positive rationals and finally to negative rationals. Methods and rules for operations in positive and negative rational bases greater than one or less than negative one are summarized in tables. Sample problems are explained and illustrated. (KM)
The Alfonsine tables of Toledo
Chabás, José
2003-01-01
The Alfonsine Tables of Toledo is for historians working in the fields of astronomy, science, the Middle Ages, Spanish and other Romance languages. It is also of interest to scholars interested in the history of Castile, in Castilian-French relations in the Middle Ages and in the history of patronage. It explores the Castilian canons of the Alfonsine Tables and offers a study of their context, language, astronomical content, and diffusion. The Alfonsine Tables of Toledo is unique in that it: includes an edition of a crucial text in history of science; provides an explanation of astronomy as it was practiced in the Middle Ages; presents abundant material on early scientific language in Castilian; presents new material on the diffusion of Alfonsine astronomy in Europe; describes the role of royal patronage of science in a medieval context.
Statistical probability tables CALENDF program
International Nuclear Information System (INIS)
Ribon, P.
1989-01-01
The purpose of the probability tables is: - to obtain dense data representation - to calculate integrals by quadratures. They are mainly used in the USA for calculations by Monte Carlo and in the USSR and Europe for self-shielding calculations by the sub-group method. The moment probability tables, in addition to providing a more substantial mathematical basis and calculation methods, are adapted for condensation and mixture calculations, which are the crucial operations for reactor physics specialists. However, their extension is limited by the statistical hypothesis they imply. Efforts are being made to remove this obstacle, at the cost, it must be said, of greater complexity
Random Number Generation: A Practitioner's Overview
CERN. Geneva
2012-01-01
About the speaker Dr. Mascagni is full professor at Florida State University, where he runs a research group consisting of post-doctoral associates, graduate students, and undergraduate workers. The areas they work on are p...
Bennett, Ruth, Ed.; And Others
An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…
Indian Academy of Sciences (India)
Admin
Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2015-02-01
Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.
Breakdown concepts for contingency tables
Kuhnt, S.
2010-01-01
Loglinear Poisson models are commonly used to analyse contingency tables. So far, robustness of parameter estimators as well as outlier detection have rarely been treated in this context. We start with finite-sample breakdown points. We yield that the breakdown point of mean value estimators
Empirical method for simulation of water tables by digital computers
International Nuclear Information System (INIS)
Carnahan, C.L.; Fenske, P.R.
1975-09-01
An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada
Contamination of Dining Tables with Pesticides in Kibirigwi Irrigation Scheme
International Nuclear Information System (INIS)
Kimani, V.W; McDermont, J.J
1999-01-01
Kibirigwi irrigation scheme is a small holder area in Central Kenya, where the main activity is production of horticultural crops. Pesticides are widely misused. This study investigated the extent of house hold pesticide exposure in 40 randomly selected farms in JUly-August, 1995. Exposure measures collected included pesticide levels on dining table swabs. Fifty coytton clothes measuring 30 cm *30cm were prepared in the laboratory by soaking overnight in methanol. In each of the selected homesteads, the table used for meals was swabbed with the piece of cloth. In the laboratory, the residues chemicals extracted from these swabs using conventional residual analysis procedures and the extracts were analysed by gas liquid chromatography. Information on which pesticide (s) were recently handled in the home and when, were also recorded. Cypermethrin (9/40), malathion (9/40), Diazinon (5/40), dimethoate (4/40), chloropyrifos (4/40) and fenitrothion (1/40) were detected in these samples. The range of individual organophosphate pesticides detected was 0.01-8.7ug/cm 2 of table area and for cypermethrin the range was 0.0024 ng-5.8 ng/cm 2 . It was concluded that farmers and their family members are likely to be contaminated with pesticides from tables either dermally or through contamination of food placed on such tables
Beaver Mediated Water Table Dynamics in Mountain Peatlands
Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.
2016-12-01
Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.
Mendonça, J. Ricardo G.
2012-01-01
We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
This Project COPERNICUS (Cooperation Programme in Europe for Research on Nature and Industry through Coordinated University Studies) Round Table report considers efforts to identify priorities and objectives of the new alliance between the higher education community, industry, and international organizations in addressing today's environmental…
Chiva-Blanch, Gemma; Condines, Ximena; Magraner, Emma; Roth, Irene; Valderas-Martínez, Palmira; Arranz, Sara; Casas, Rosa; Martínez-Huélamo, Miriam; Vallverdú-Queralt, Anna; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Estruch, Ramon
2014-04-01
Moderate alcohol consumption is associated with a decrease in cardiovascular risk, but fermented beverages seem to confer greater cardiovascular protection due to their polyphenolic content. Circulating endothelial progenitor cells (EPC) are bone-marrow-derived stem cells with the ability to repair and maintain endothelial integrity and function and are considered as a surrogate marker of vascular function and cumulative cardiovascular risk. Nevertheless, no study has been carried out on the effects of moderate beer consumption on the number of circulating EPC in high cardiovascular risk patients. To compare the effects of moderate consumption of beer, non-alcoholic beer and gin on the number of circulating EPC and EPC-mobilizing factors. In this crossover trial, 33 men at high cardiovascular risk were randomized to receive beer (30 g alcohol/d), the equivalent amount of polyphenols in the form of non-alcoholic beer, or gin (30 g alcohol/d) for 4 weeks. Diet and physical exercise were carefully monitored. The number of circulating EPC and EPC-mobilizing factors were determined at baseline and after each intervention. After the beer and non-alcoholic beer interventions, the number of circulating EPC significantly increased by 8 and 5 units, respectively, while no significant differences were observed after the gin period. In correlation, stromal cell derived factor 1 increased significantly after the non-alcoholic and the beer interventions. The non-alcoholic fraction of beer increases the number of circulating EPC in peripheral blood from high cardiovascular risk subjects. http://www.controlled-trials.com/ISRCTN95345245 ISRCTN95345245. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Petersen, T Kyle
2015-01-01
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...
Juhasz, Stephen; And Others
Table of contents (TOC) practices of some 120 primary journals were analyzed. The journals were randomly selected. The method of randomization is described. The samples were selected from a university library with a holding of approximately 12,000 titles published worldwide. A questionnaire was designed. Purpose was to find uniformity and…
MIT wavelength tables. Volume 2. Wavelengths by element
International Nuclear Information System (INIS)
Phelps, F.M. III.
1982-01-01
This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape
Model selection for contingency tables with algebraic statistics
Krampe, A.; Kuhnt, S.; Gibilisco, P.; Riccimagno, E.; Rogantin, M.P.; Wynn, H.P.
2009-01-01
Goodness-of-fit tests based on chi-square approximations are commonly used in the analysis of contingency tables. Results from algebraic statistics combined with MCMC methods provide alternatives to the chi-square approximation. However, within a model selection procedure usually a large number of
Upper Limit in the Periodic Table of Elements
Directory of Open Access Journals (Sweden)
Khazan A.
2007-01-01
Full Text Available The method of rectangular hyperbolas is developed for the first time, by which a means for estimating the upper bound of the Periodic Table is established in calculating that its last element has an atom mass of 411.663243 and an atomic number (the nuclear charge of 155. The formulating law is given.
Technetium: The First Radioelement on the Periodic Table
Johnstone, Erik V.; Yates, Mary Anne; Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R.
2017-01-01
The radioactive nature of technetium is discussed using a combination of introductory nuclear physics concepts and empirical trends observed in the chart of the nuclides and the periodic table of the elements. Trends such as the enhanced stability of nucleon pairs, magic numbers, and Mattauch's rule are described. The concepts of nuclear binding…
Indian Academy of Sciences (India)
Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.
Superconductivity and the Periodic Table
International Nuclear Information System (INIS)
Chapnik, I.M.
1985-01-01
In view of the inability of the present theory of superconductivity to make reliable predictions for the magnitude of Tsub(c) it seems useful to search for empirical relationships between the composition of the compound and the Tsub(c) value. Table I gives a list of the available Tsub(c) data for transition metals (TM) having from 3 to 9 outer electrons and Tsub(c) data for non-transition elements (NTE) of groups IIB, IIIB and IVB, including data for amorphous (Am) structures and structures (marked by triangles) obtained at high pressures. The analogous metals have therefore the same structure. In Tables II to IV the Tsub(c) data are presented for analogous compounds of NTE from IB - VIB group. Conclusions are presented. (author)
NNDSS - Table I. infrequently reported notifiable diseases
U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2017. In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...
NNDSS - Table I. infrequently reported notifiable diseases
U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2014.In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...
NNDSS - Table I. infrequently reported notifiable diseases
U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2015. In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...
NNDSS - Table I. infrequently reported notifiable diseases
U.S. Department of Health & Human Services — NNDSS - Table I. infrequently reported notifiable diseases - 2018. In this Table, provisional cases of selected infrequently reported notifiable diseases (<1,000...
Toddlers at the Table: Avoiding Power Struggles
... Search English Español Toddlers at the Table: Avoiding Power Struggles KidsHealth / For Parents / Toddlers at the Table: ... common concerns into opportunities to teach healthy eating habits. Most Toddlers Are Picky Eaters Many toddlers express ...
NNDSS - Table II. Babesiosis to Campylobacteriosis
U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Campylobacteriosis - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Cryptosporidiosis to Dengue
U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Cryptosporidiosis to Dengue
U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Shiga toxin to Shigellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2015. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. West Nile virus disease
U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
Handbook of thermodynamic tables and charts
International Nuclear Information System (INIS)
Raznjevic, K.
1976-01-01
A compilation of thermodynamic and thermophysical tables and charts is presented. Numerical values are cited in both technical and SI units. Solid, liquid, vapor, and gaseous forms of organic and inorganic materials are included. 12 figures, 137 tables
Global Reference Tables for Management Information Systems
Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardize code structures and code usage of SSA...
NNDSS - Table II. Mumps to Rabies, animal
U.S. Department of Health & Human Services — NNDSS - Table II. Mumps to Rabies, animal - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000 cases but...
NNDSS - Table II. Mumps to Rabies, animal
U.S. Department of Health & Human Services — NNDSS - Table II. Mumps to Rabies, animal - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Mumps to Rabies, animal
U.S. Department of Health & Human Services — NNDSS - Table II. Mumps to Rabies, animal - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Legionellosis to Malaria
U.S. Department of Health & Human Services — NNDSS - Table II. Legionellosis to Malaria - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Hepatitis (viral, acute) C
U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) C - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Babesiosis to Campylobacteriosis
U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Campylobacteriosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. West Nile virus disease
U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Giardiasis to Haemophilus influenza
U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Meningococcal to Pertussis
U.S. Department of Health & Human Services — NNDSS - Table II. Meningococcal to Pertussis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Ehrlichiosis and Anaplasmosis
U.S. Department of Health & Human Services — NNDSS - Table II. Ehrlichiosis and Anaplasmosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Cryptosporidiosis to Dengue
U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Tetanus to Varicella
U.S. Department of Health & Human Services — NNDSS - Table II. Tetanus to Varicella - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Chlamydia to Coccidioidomycosis
U.S. Department of Health & Human Services — NNDSS - Table II. Chlamydia to Coccidioidomycosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Salmonellosis to Shigellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Salmonellosis to Shigellosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. West Nile to Zika
U.S. Department of Health & Human Services — NNDSS - Table II. West Nile to Zika - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and...
NNDSS - Table II. Babesiosis to Coccidioidomycosis
U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Coccidioidomycosis - 2014.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
Global Reference Tables for Production Systems
Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardized code structures and code usage of SSA...
NNDSS - Table II. Giardiasis to Haemophilus influenza
U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2014. In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000...
NNDSS - Table II. Giardiasis to Haemophilus influenza
U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Giardiasis to Haemophilus influenza
U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Giardiasis to Haemophilus influenza
U.S. Department of Health & Human Services — NNDSS - Table II. Giardiasis to Haemophilus influenza - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Hepatitis (viral, acute)
U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Hepatitis (viral, acute)
U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Hepatitis (viral, acute)
U.S. Department of Health & Human Services — NNDSS - Table II. Hepatitis (viral, acute) - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000 cases but...
NNDSS - Table II. Meningococcal disease to Pertussis
U.S. Department of Health & Human Services — NNDSS - Table II. Meningococcal disease to Pertussis - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Chlamydia to Coccidioidomycosis
U.S. Department of Health & Human Services — NNDSS - Table II. Chlamydia to Coccidioidomycosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Tetanus to Varicella
U.S. Department of Health & Human Services — NNDSS - Table II. Tetanus to Varicella - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Invasive Pneumococcal to Legionellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Invasive Pneumococcal to Legionellosis - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals...
Stream Tables and Watershed Geomorphology Education.
Lillquist, Karl D.; Kinner, Patricia W.
2002-01-01
Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)
NNDSS - Table II. Legionellosis to Malaria
U.S. Department of Health & Human Services — NNDSS - Table II. Legionellosis to Malaria - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Lyme disease to Meningococcal
U.S. Department of Health & Human Services — NNDSS - Table II. Lyme disease to Meningococcal - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Lyme disease to Meningococcal
U.S. Department of Health & Human Services — NNDSS - Table II. Lyme disease to Meningococcal - 2014In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000 cases...
NNDSS - Table II. Lyme disease to Meningococcal
U.S. Department of Health & Human Services — NNDSS - Table II. Lyme disease to Meningococcal - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Salmonellosis to Shigellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Salmonellosis to Shigellosis - 2014.In this Table, all conditions with a 5-year average annual national total of more than or equals 1,000 cases...
NNDSS - Table II. West Nile virus disease
U.S. Department of Health & Human Services — NNDSS - Table II. West Nile virus disease - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Rubella to Salmonellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Rubella to Salmonellosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Ehrlichiosis/Anaplasmosis
U.S. Department of Health & Human Services — NNDSS - Table II. Ehrlichiosis/Anaplasmosis - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Tetanus to Vibriosis
U.S. Department of Health & Human Services — NNDSS - Table II. Tetanus to Vibriosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Shiga toxin to Shigellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Babesiosis to Campylobacteriosis
U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Campylobacteriosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Babesiosis to Campylobacteriosis
U.S. Department of Health & Human Services — NNDSS - Table II. Babesiosis to Campylobacteriosis - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Rubella to Salmonellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Rubella to Salmonellosis - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year),...
NNDSS - Table II. Tetanus to Vibriosis
U.S. Department of Health & Human Services — NNDSS - Table II. Tetanus to Vibriosis - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and...
NNDSS - Table II. Chlamydia to Coccidioidomycosis
U.S. Department of Health & Human Services — NNDSS - Table II. Chlamydia to Coccidioidomycosis - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Ehrlichiosis/Anaplasmosis
U.S. Department of Health & Human Services — NNDSS - Table II. Ehrlichiosis/Anaplasmosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...
NNDSS - Table II. Invasive Pneumococcal to Legionellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Invasive Pneumococcal to Legionellosis - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the...
NNDSS - Table II. Invasive Pneumococcal to Legionellosis
U.S. Department of Health & Human Services — NNDSS - Table II. Invasive Pneumococcal to Legionellosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the...
Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela
2015-01-01
In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
A scalable lock-free hash table with open addressing
DEFF Research Database (Denmark)
Nielsen, Jesper Puge; Karlsson, Sven
2016-01-01
and concurrent operations without any locks. In this paper, we present a new fully lock-free open addressed hash table with a simpler design than prior published work. We split hash table insertions into two atomic phases: first inserting a value ignoring other concurrent operations, then in the second phase......Concurrent data structures synchronized with locks do not scale well with the number of threads. As more scalable alternatives, concurrent data structures and algorithms based on widely available, however advanced, atomic operations have been proposed. These data structures allow for correct...