WorldWideScience

Sample records for random magnetic anisotropy

  1. Model C critical dynamics of random anisotropy magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dudka, M [Institute for Condensed Matter Physics, National Acad. Sci. of Ukraine, UA-79011 Lviv (Ukraine); Folk, R [Institut fuer Theoretische Physik, Johannes Kepler Universitaet Linz, A-4040 Linz (Austria); Holovatch, Yu [Institute for Condensed Matter Physics, National Acad. Sci. of Ukraine, UA-79011 Lviv (Ukraine); Moser, G [Institut fuer Physik und Biophysik, Universitaet Salzburg, A-5020 Salzburg (Austria)

    2007-07-20

    We study the relaxational critical dynamics of the three-dimensional random anisotropy magnets with the non-conserved n-component order parameter coupled to a conserved scalar density. In the random anisotropy magnets, the structural disorder is present in the form of local quenched anisotropy axes of random orientation. When the anisotropy axes are randomly distributed along the edges of the n-dimensional hypercube, asymptotical dynamical critical properties coincide with those of the random-site Ising model. However the structural disorder gives rise to considerable effects for non-asymptotic critical dynamics. We investigate this phenomenon by a field-theoretical renormalization group analysis in the two-loop order. We study critical slowing down and obtain quantitative estimates for the effective and asymptotic critical exponents of the order parameter and scalar density. The results predict complex scenarios for the effective critical exponent approaching the asymptotic regime.

  2. Microstructure and random magnetic anisotropy in Fe-Ni based nanocrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Senoy; Anantharaman, M R [Department of Physics, Cochin University of Science and Technology, Cochin, India-682022 (India); Al-Harthi, S H; Al-Omari, I A [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Sultanate of Oman (Oman); Sakthikumar, D; Yoshida, Yasuhiko [Bio-Nano Electronics Research Centre, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama 350-8585 (Japan); Ramanujan, R V [School of Materials Science and Engineering, Nanyang Avenue, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: senoythomas@yahoo.co.in, E-mail: mra@cusat.ac.in

    2008-08-07

    Nanocrystalline Fe-Ni thin films were prepared by partial crystallization of vapour deposited amorphous precursors. The microstructure was controlled by annealing the films at different temperatures. X-ray diffraction, transmission electron microscopy and energy dispersive x-ray spectroscopy investigations showed that the nanocrystalline phase was that of Fe-Ni. Grain growth was observed with an increase in the annealing temperature. X-ray photoelectron spectroscopy observations showed the presence of a native oxide layer on the surface of the films. Scanning tunnelling microscopy investigations support the biphasic nature of the nanocrystalline microstructure that consists of a crystalline phase along with an amorphous phase. Magnetic studies using a vibrating sample magnetometer show that coercivity has a strong dependence on grain size. This is attributed to the random magnetic anisotropy characteristic of the system. The observed coercivity dependence on the grain size is explained using a modified random anisotropy model.

  3. Loss of long-range magnetic order in a nanoparticle assembly due to random anisotropy

    Science.gov (United States)

    Binns, C.; Howes, P. B.; Baker, S. H.; Marchetto, H.; Potenza, A.; Steadman, P.; Dhesi, S. S.; Roy, M.; Everard, M. J.; Rushforth, A.

    2008-02-01

    We have used soft x-ray photoemission electron microscopy (XPEEM) combined with x-ray magnetic circular dichroism (XMCD) and DC SQUID (superconducting quantum interference device) magnetometry to probe the magnetic ground state in Fe thin films produced by depositing size-selected gas-phase Fe nanoparticles with a diameter of 1.7 nm (~200 atoms) onto Si substrates. The depositions were carried out in ultrahigh vacuum conditions and thicknesses of the deposited film in the range 5-50 nm were studied. The magnetometry data are consistent with the film forming a correlated super-spin glass with a magnetic correlation length ~5 nm. The XPEEM magnetic maps from the cluster-assembled films were compared to those for a conventional thin Fe film with a thickness of 20 nm produced by a molecular beam epitaxy (MBE) source. Whereas a normal magnetic domain structure is observed in the conventional MBE thin film, no domain structure could be observed in any of the nanoparticle films down to the resolution limit of the XMCD based XPEEM (100 nm) confirming the ground state indicated by the magnetometry measurements. This observation is consistent with the theoretical prediction that an arbitrarily weak random anisotropy field will destroy long-range magnetic order.

  4. Loss of long-range magnetic order in a nanoparticle assembly due to random anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Binns, C [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Howes, P B [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Baker, S H [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Marchetto, H [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Potenza, A [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Steadman, P [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Dhesi, S S [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Roy, M [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Everard, M J [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Rushforth, A [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2008-02-06

    We have used soft x-ray photoemission electron microscopy (XPEEM) combined with x-ray magnetic circular dichroism (XMCD) and DC SQUID (superconducting quantum interference device) magnetometry to probe the magnetic ground state in Fe thin films produced by depositing size-selected gas-phase Fe nanoparticles with a diameter of 1.7 nm ({approx}200 atoms) onto Si substrates. The depositions were carried out in ultrahigh vacuum conditions and thicknesses of the deposited film in the range 5-50 nm were studied. The magnetometry data are consistent with the film forming a correlated super-spin glass with a magnetic correlation length {approx}5 nm. The XPEEM magnetic maps from the cluster-assembled films were compared to those for a conventional thin Fe film with a thickness of 20 nm produced by a molecular beam epitaxy (MBE) source. Whereas a normal magnetic domain structure is observed in the conventional MBE thin film, no domain structure could be observed in any of the nanoparticle films down to the resolution limit of the XMCD based XPEEM (100 nm) confirming the ground state indicated by the magnetometry measurements. This observation is consistent with the theoretical prediction that an arbitrarily weak random anisotropy field will destroy long-range magnetic order.

  5. Magnetic surface anisotropy

    Science.gov (United States)

    Rado, George T.

    1992-02-01

    Selected aspects of magnetic surface anisotropy are reviewed. The emphasis is on methods for deducing reliable surface anisotropy values from experiments such as ferromagnetic resonance at microwave frequencies and Brillouin scattering at optical frequencies. The methods used are the "general exchange boundary condition method" and the "effective volume anisotropy method". The essence of the former is the supplementing of the equation of motion of the magnetization with the general exchange boundary condition whereas the latter consists of using the "stratagem" of effective volume anisotropy. We find that use of the general exchange boundary condition method is not only preferable in principle but often actually necessary to prevent the prediction of wrong surface anisotropy values and to permit the prediction of some observable Brillouin shifts.

  6. Spintronic magnetic anisotropy

    OpenAIRE

    Misiorny, Maciej; Hell, Michael; Wegewijs, Maarten R.

    2014-01-01

    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamag...

  7. Magnetic anisotropy in nanostructures

    CERN Document Server

    Eisenbach, M

    2001-01-01

    method for solving the LDA Kohn-Sham equation. This extended code allows us to perform fully relativistic calculations to enable us to investigate the spin orbit coupling effects leading to anisotropies and potentially non collinear ordering of magnetic moments in these systems of magnetic inclusions in copper. With this approach we find that depending on the orientation of the atoms along the 100 or 110 direction in copper the ground state orientation of the magnetic moments in the chain is either perpendicular or parallel to the chain direction, when the magnetic dipolar interaction energy is added to the final ab initio result. In this thesis we investigate the effect of magnetic anisotropies in nanostructured materials. The main emphasis in our work presented here is on systems that have an underlying one dimensional structure, like nanowires or atomic chains. In a simple classical one dimensional model we show the rich ground state structure of magnetic orientations one might expect to find in such syste...

  8. Voltage Control of Magnetic Anisotropy

    Science.gov (United States)

    Hao, Guanhua; Cao, Shi; Noviasky, Nick; Ilie, Carolina; Sokolov, Andre; Yin, Yuewei; Xu, Xiaoshan; Dowben, Peter

    Pd/Co/Gd2O3/Si heterostructures were fabricated via pulsed laser deposition and e-beam evaporation. Hysteresis loops, obtained by longitudinal magneto-optical Kerr-effect (MOKE) measurements, indicates an initial in-plane magnetic anisotropy. Applying a perpendicular voltage on the sample, the differences between the polar and longitudinal MOKE and anomalous Hall effect data indicates there is a reversible change in magnetic anisotropy, from in-plane to out-of-plane, with applied voltage. Prior work by others suggests that the change in magnetic anisotropy is due to redox reactions at the Co/Gd2O3 interference. Voltage controlled magnetism can result from changing interfacial chemistry and does not always require a magneto-electric coupling tensor.

  9. Magnetized CMB anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [Centro ' Enrico Fermi' , Compendio del Viminale, Via Panisperna 89/A, 00184 Rome (Italy); Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)

    2006-01-21

    Possible effects of large-scale magnetic fields on the cosmic microwave background (CMB) are reviewed. Depending on the specific branch of the spectrum of plasma excitations, magnetic fields are treated either within a two-fluid plasma description or within an effective (one-fluid) approach. The uniform field approximation is contrasted with the fully inhomogeneous field approximation. It is argued that the interplay between CMB physics and large-scale magnetic fields will represent a rather interesting cross-disciplinary arena over the next few years. (topical review)

  10. Magnetic anisotropy of ferrosmectic phases

    Science.gov (United States)

    Ponsinet, Virginie; Fabre, Pascale; Veyssié, Madeleine; Cabanel, Régis

    1994-10-01

    A new anisotropic magnetic fluid, called ferrosmectic, is obtained when using a colloidal suspension of submicronic magnetic particles (ferrofluid), as a component in a smectic phase of fluid membranes. These lamellar phases present specific magnetic properties. The anisotropy of their magnetic susceptilities as a function of particles concentration is studied and interpreted : a microscopic mechanism involving a steric hindrance between particles and membranes is used to understand the experimental results. Un nouveau fluide magnétique anisotrope, appelé ferrosmectique, est obtenu lorsque nous utilisons un ferrofluide, c'est-à-dire une suspension colloïdale de particules magnétiques de taille inférieure au micron, comme composant dans la fabrication d'une phase smectique de membranes fluides. Ces phases adoptent des comportements spécifiques sous champ magnétique, et nous présentons ici une étude de l'anisotropie de leur susceptibilité magnétique en fonction de la concentration en particules. Nous interprétons les résultats obtenus par un mécanisme microscopique basé sur l'existence d'une gêne stérique entre membranes et particules.

  11. Voltage Controlled Perpendicular Magnetic Anisotropy.

    Science.gov (United States)

    Noviasky, Nicholas; Sabirianov, Ildar; Cao, Shi; Zhang, Xiaozhe; Sokolov, Andrei; Kirianov, Eugene; Dowben, Peter; Ilie, Carolina C.; University of Nebraska at Lincoln Team; State University of New York at Oswego Collaboration

    Here we report the voltage controlled perpendicular magnetic anisotropy of a multilayer stack composed of P-type silicon substrate/ Gd2O3/ Co/ Pt grown by pulsed laser deposition (PLD) under ultra-high vacuum conditions. For examination of the voltage effect on magnetic properties of the samples, we performed magneto optical Kerr effect (MOKE) measurements. The results show a clear inverse relationship between voltage and coercivity. The exchange of oxygen ions which occurs at the interface between gadolinium oxide and cobalt may increase the cobalt oxide concentration within the optical interface layer. One potential application for this research could be the creation of a voltage controlled magnetic tunneling junction memory storage device. Proper implementation may be able to combine non-volatility with higher areal densities and low power consumption. NSF Research Experience for Faculty and Students at Undergraduate Institutions Program, UNL- MRSEC.

  12. Epitaxial magnetite nanorods with enhanced room temperature magnetic anisotropy.

    Science.gov (United States)

    Chandra, Sayan; Das, Raja; Kalappattil, Vijaysankar; Eggers, Tatiana; Harnagea, Catalin; Nechache, Riad; Phan, Manh-Huong; Rosei, Federico; Srikanth, Hariharan

    2017-06-14

    Nanostructured magnetic materials with well-defined magnetic anisotropy are very promising as building blocks in spintronic devices that operate at room temperature. Here we demonstrate the epitaxial growth of highly oriented Fe3O4 nanorods on a SrTiO3 substrate by hydrothermal synthesis without the use of a seed layer. The epitaxial nanorods showed biaxial magnetic anisotropy with an order of magnitude difference between the anisotropy field values of the easy and hard axes. Using a combination of conventional magnetometry, transverse susceptibility, magnetic force microscopy (MFM) and magneto-optic Kerr effect (MOKE) measurements, we investigate magnetic behavior such as temperature dependent magnetization and anisotropy, along with room temperature magnetic domain formation and its switching. The interplay of epitaxy and enhanced magnetic anisotropy at room temperature, with respect to randomly oriented powder Fe3O4 nanorods, is discussed. The results obtained identify epitaxial nanorods as useful materials for magnetic data storage and spintronic devices that necessitate tunable anisotropic properties with sharp magnetic switching phenomena.

  13. Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer.

    OpenAIRE

    Scholz, F.; Boroske, E; Helfrich, W.

    1984-01-01

    Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This...

  14. Exchange anisotropy of ferromagnetic/antiferromagnetic bilayers intrinsic magnetic anisotropy of antiferromagnetic layer and single spin ensemble model

    CERN Document Server

    Tsunoda, M

    2002-01-01

    The origin of the magnetic anisotropy of the antiferromagnetic (AF) layer and the role of it in the magnetization process of exchange coupled ferromagnetic/antiferromagnetic bilayers are discussed. Through the magnetic torque analysis of a pseudo-single crystalline Ni-Fe/Mn-Ni bilayer and a polycrystalline Ni-Fe/Mn-Ir bilayer, the magnetocrystalline anisotropy of the antiferromagnet is strongly suggested to be the origin of the magnetic anisotropy of the antiferromagnetic (AF) layer. The single spin ensemble model is newly introduced for polycrystalline bilayers, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the AF grains. The mechanism of a well-known experimental fact, the reversible induction of the exchange anisotropy along desirable directions by field cooling procedure, is successfully elucidated with the new model.

  15. Magnetic anisotropy in pyroxene single crystals

    Science.gov (United States)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas; Bender Koch, Christian

    2014-05-01

    Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for the mineral fabric in a rock. This requires understanding the intrinsic magnetic anisotropy of the minerals that define the rock fabric. With their prismatic habit, pyroxenes describe the texture in mafic and ultramafic rocks. Magnetic anisotropy in pyroxene crystals often arises from both paramagnetic and ferromagnetic components that can be separated from high-field magnetic data. The paramagnetic component is related to the silicate lattice, whereas the ferromagnetic part arises from the magnetic properties of ferromagnetic inclusions that were further characterized by isothermal remanent magnetization measurements. These inclusions often have needle-like habit and are located on the well-defined cleavage planes within the pyroxenes. We characterize low-field and high-field AMS in pyroxene single crystals of diverse orthopyroxene and clinopyroxene minerals. In addition to the magnetic measurements, we analyzed their chemical composition and Fe2+/Fe3+ distribution. The anisotropy arising from inclusions in some augite crystals displays consistent principal susceptibility directions, whereas no preferred orientation is found in other crystals. The principal susceptibilities of the paramagnetic component can be related to the crystal lattice, with the intermediate susceptibility parallel to the b-axis, and minimum and maximum in the a-c-plane for diopside, augite and spodumene. The degree of anisotropy increases with iron concentration. Aegirine shows a different behavior; not only is its maximum susceptibility parallel to the c-axis, but the anisotropy degree is also lower in relation to its iron concentration. This possibly relates to a predominance of Fe3+ in aegirine, whereas Fe2+ is dominant in the other minerals. In orthopyroxene, the maximum susceptibility is parallel to the c-axis and the minimum is parallel to b. The degree of anisotropy increases linearly with iron concentration. The

  16. Magnetic random anisotropy model approach on nanocrystalline Fe{sub 88}Sm{sub 9}Mo{sub 3} and Fe{sub 88}Sm{sub 9}Mo{sub 3}C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yamkane, Z., E-mail: zinebyamkane@yahoo.fr [LPMMAT, Université Hassan II – Ain Chock, Faculté des Sciences, B.P. 5366 Maarif, Casablanca (Morocco); Lassri, H.; Menai, A. [LPMMAT, Université Hassan II – Ain Chock, Faculté des Sciences, B.P. 5366 Maarif, Casablanca (Morocco); Khazzan, S.; Mliki, N. [Laboratoire Matériaux Organisation et Propriétés, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Bessais, L. [CMTR, ICMPE, UMR7182, CNRS − Université Paris Est, 2-8 rue Henri Dunant, F-94320 Thiais (France)

    2014-01-25

    Highlights: • The magnetic properties of Fe{sub 88}Sm{sub 9}Mo{sub 3} and Fe{sub 88}Sm{sub 9}Mo{sub 3}C alloys have been investigated. • The results have been interpreted in the framework of random magnetic anisotropy model. • The model gives a good fit of the experimental M(H). • Some fundamental parameters have been extracted. • Carbon insertion leads to a decrease of K{sub L} and M. -- Abstract: The structure and magnetic properties of nanocrystalline Fe{sub 88}Sm{sub 9}Mo{sub 3} and Fe{sub 88}Sm{sub 9}Mo{sub 3}C alloys have been investigated by means of X-ray diffraction coupled with magnetic measurements. We report here our study of approach to saturation magnetization. The results have been interpreted in the framework of random magnetic anisotropy model. From such analysis, some fundamental parameters have been extracted. We have determined the local magnetic anisotropy constant K{sub L} which are found to be 2.1 × 10{sup 7} erg/cm{sup 3} for the nanocrystalline Fe{sub 88}Sm{sub 9}Mo{sub 3} alloy at 10 K. Carbon insertion leads to a decrease of the K{sub L} and magnetization.

  17. Magnetic logic using nanowires with perpendicular anisotropy.

    Science.gov (United States)

    Jaworowicz, J; Vernier, N; Ferré, J; Maziewski, A; Stanescu, D; Ravelosona, D; Jacqueline, A S; Chappert, C; Rodmacq, B; Diény, B

    2009-05-27

    In addition to a storage function through the magnetization of nanowires, domain wall propagation can be used to trigger magnetic logic functions. Here, we present a new way to realize a pure magnetic logic operation by using magnetic nanowires with perpendicular anisotropy. Emphasis is given on the generation of the logic function 'NOT' that is based on the dipolar interaction between two neighbouring magnetic wires, which favours the creation of a domain wall. This concept has been validated on several prototypes and the results fit well with the expectations.

  18. Magnetic anisotropy in rare-earth metals

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans; Lindgård, Per-Anker

    1970-01-01

    The magnetic field dependence of the energy of long- wavelength magnons in Tb-10%Ho has been studied by inelastic neutron scattering. The results agree with the `frozen-lattice' model, provided that the second-order magnetoelastic effect is taken into account. The planar anisotropy is almost enti...

  19. Tuning the Magnetic Anisotropy at a Molecule-Metal Interface

    DEFF Research Database (Denmark)

    Bairagi, K.; Bellec, A.; Repain, V.

    2015-01-01

    We demonstrate that a C60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C60/Co interfacial magnetic anisotropy that we have measured quantitatively in situ......) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems....

  20. Magnetic anisotropy of isolated Cobalt nanoplatelets

    Science.gov (United States)

    Strandberg, Tor Olof; Canali, Carlo M.; MacDonald, Allan H.

    2005-03-01

    Motivated by experiments performed by M.H. Pan et al. [1], we have undertaken a theoretical study of the the magnetic properties of two-monolayer-thick Co nanoplatelets with an equilateral triangular shape. We are using a microscopic Slater-Koster tight-binding model with atomic exchange and spin-orbit interactions, that has been designed to realistically capture the salient magnetic features of large magnetic nanoclusters [2]. Two different truncations of the fcc lattice have been studied, in which the nanoplatelet surface is aligned parallel to the [111] and [001] planes respectively. We find that the higher coordination number in the [111] truncation is more likely to reproduce the perpendicular easy direction found in experiment. Qualitatively, the most important model parameter governing the anisotropy is found to be the intra-atomic exchange integral J. If we set the value of J so as to reproduce the experimentally observed magnitude of the magnetic moments, we find both quasi-easy-planes and perpendicular easy directions. Increasing J, we find that, in agreement with experiment, the easy-axis of magnetization is predominantly perpendicular to the surface, and the magnetic anisotropy energy is anomalously large. The possible role of hybridization with substrate surface states in the experimental systems will be discussed. [1] M.H. Pan et al, Nanoletters V5, no 1, 87-90 (2005) [2] A. Cehovin et al, Phys. Rev. B, 66, 094430 (2002)

  1. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, DM and EM for single molecule magnets in any given spin eigenstate of exchange spin Hami- ltonian. We first describe a hybrid constant MS-valence bond (VB) technique of solving spin Hamilto- nians employing ...

  2. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  3. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    2017-06-01

    Full Text Available The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ∼50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ∼30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  4. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Science.gov (United States)

    Lee, Kyoung-Min; Choi, Jun Woo; Sok, Junghyun; Min, Byoung-Chul

    2017-06-01

    The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ˜ 3 nm)/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ˜50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ˜30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  5. Nanoscale magnetic ratchets based on shape anisotropy

    Science.gov (United States)

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  6. Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets

    Science.gov (United States)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2017-01-01

    We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter. PMID:28596998

  7. Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges

    Directory of Open Access Journals (Sweden)

    Mengxing Wang

    2015-08-01

    Full Text Available Magnetic tunnel junction (MTJ, which arises from emerging spintronics, has the potential to become the basic component of novel memory, logic circuits, and other applications. Particularly since the first demonstration of current induced magnetization switching in MTJ, spin transfer torque magnetic random access memory (STT-MRAM has sparked a huge interest thanks to its non-volatility, fast access speed, and infinite endurance. However, along with the advanced nodes scaling, MTJ with in-plane magnetic anisotropy suffers from modest thermal stability, high power consumption, and manufactural challenges. To address these concerns, focus of research has converted to the preferable perpendicular magnetic anisotropy (PMA based MTJ, whereas a number of conditions still have to be met before its practical application. This paper overviews the principles of PMA and STT, where relevant issues are preliminarily discussed. Centering on the interfacial PMA in CoFeB/MgO system, we present the fundamentals and latest progress in the engineering, material, and structural points of view. The last part illustrates potential investigations and applications with regard to MTJ with interfacial PMA.

  8. Low-temperature magnetic anisotropy in micas and chlorite

    DEFF Research Database (Denmark)

    Biedermann, Andrea R.; Bender Koch, Christian; Lorenz, Wolfram E A

    2014-01-01

    use the magnetic anisotropy to understand a rock fabric, it is necessary to identify the minerals responsible for the magnetic anisotropy. Techniques have been developed to separate contributions of the ferrimagnetic, antiferromagnetic, paramagnetic, and diamagnetic susceptibilities to the anisotropy...... of magnetic susceptibility. Because diamagnetic and paramagnetic susceptibility are both linearly dependent on field, separation of the anisotropic contributions requires understanding how the degree of anisotropy of the paramagnetic susceptibility changes as a function of temperature. Note that diamagnetic...... susceptibility is not dependent on temperature. The increase in paramagnetic anisotropy at low temperature is used to separate the paramagnetic and diamagnetic subfabrics, and can be expressed by the p 77 factor. In this study, we determined p 77, which is the change in the degree of anisotropy (δk) between room...

  9. Field-ball milling induced anisotropy in magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Poudyal, Narayan [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altuncevahir, Baki [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chakka, Vamsi [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chen Kanghua [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Black, Truman D [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Liu, J Ping [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ding, Yong [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wang Zhonglin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2004-12-21

    Nd{sub 2}Fe{sub 14}B and Sm{sub 2}Co{sub 17} particles of submicrometre sizes have been prepared by ball milling in a magnetic field. Structural and magnetic characterization reveal that these submicrometre particles milled in a magnetic field, consisting of nanosize grains, exhibit strong magnetic anisotropy compared with the particles milled without a magnetic field. Based on in situ observations of the field-ball milling in a transparent container, the mechanism of field-induced anisotropy in the nanostructured hard magnetic particles is discussed. (rapid communication)

  10. Canonical Transform Method for Treating Strongly Anisotropy Magnets

    DEFF Research Database (Denmark)

    Cooke, J. F.; Lindgård, Per-Anker

    1977-01-01

    An infinite-order perturbation approach to the theory of magnetism in magnets with strong single-ion anisotropy is given. This approach is based on a canonical transformation of the system into one with a diagonal crystal field, an effective two-ion anisotropy, and reduced ground-state corrections....... A matrix-element matching procedure is used to obtain an explicit expression for the spin-wave energy to second order. The consequences of this theory are illustrated by an application to a simple example with planar anisotropy and an external magnetic field. A detailed comparison between the results...

  11. Effects of surface anisotropy on magnetic vortex core

    Energy Technology Data Exchange (ETDEWEB)

    Pylypovskyi, Oleksandr V., E-mail: engraver@univ.net.ua [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Sheka, Denis D. [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Kravchuk, Volodymyr P.; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine)

    2014-06-01

    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin–lattice simulations. - Highlights: • The shape of magnetic vortex core is essentially influenced by SA (surface anisotropy). • We predict barrel- or pillow-shaped deformation of the vortex depending on SA. • The variational approach fully describes the vortex core deformation. • We performed spin–lattice simulations to detect SA influence on the vortex core.

  12. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  13. Anisotropy of the magnetic susceptibility of gallium

    Science.gov (United States)

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  14. Magnetic anisotropies of (Ga,Mn)As films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Frank

    2011-02-02

    In this work the magnetic anisotropies of the diluted magnetic semiconductor (Ga,Mn)As were investigated experimentally. (Ga,Mn)As films show a superposition of various magnetic anisotropies which depend sensitively on various parameters such as temperature, carrier concentration or lattice strain. However, the anisotropies of lithographically prepared (Ga,Mn)As elements differ significantly from an unpatterned (Ga,Mn)As film. In stripe-shaped structures this behaviour is caused by anisotropic relaxation of the compressive lattice strain. In order to determine the magnetic anisotropies of individual (Ga,Mn)As nanostructures a combination of ferromagnetic resonance and time-resolved scanning Kerr microscopy was employed in this thesis. In addition, local changes of the magnetic anisotropy in circular and rectangular structures were visualized by making use of spatially resolved measurements. Finally, also the influence of the laterally inhomogeneous magnetic anisotropies on the static magnetic properties, such as coercive fields, was investigated employing spatially resolved static MOKE measurements on individual (Ga,Mn)As elements. (orig.)

  15. Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites

    DEFF Research Database (Denmark)

    Mørup, Steen; Christiansen, Gunnar Dan

    1993-01-01

    Magnetic interaction between ultrafine particles may result in superferromagnetism, i.e., ordering of the magnetic moments of particles which would be superparamagnetic if they were noninteracting. In this article we discuss the influence of the magnetic anisotropy on the temperature dependence o...... of the order parameter. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  16. Linear electric field effects in magnetic anisotropy and ferromagnetic resonance

    Science.gov (United States)

    Rado, George T.

    1980-01-01

    The concept, theory and measurement of electric-field-dependent macroscopic magnetic anisotropy energies are reviewed with examples involving magnetite and lithium ferrite. Also discussed are applications to the elucidation of magnetization processes, the determination of magnetic symmetry and the shifting of a ferromagnetic resonance with an applied electric field.

  17. A mixed domain structure in magnetic films with large anisotropy

    Science.gov (United States)

    Akimov, M. L.; Polyakov, P. A.; Rusakova, N. E.

    2018-01-01

    Influence of anisotropy on a bending of a magnetic stripe domain wall due to a magnetostatic stray field of a cylindrical magnetic domain (CMD) that is located within the stripe one is under investigation. It is revealed that for a specific set of physical parameters of the domain structure, energy of domain wall bending anisotropy can suppress the bending. An analytical expression for the bending shape is obtained on account of a change of both magnetostatic energy of the configuration and energy of anisotropy of the domain wall.

  18. Electric field controlled magnetic anisotropy in a single molecule.

    Science.gov (United States)

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-08

    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  19. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  20. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  1. The quantification of crystallographic preferred orientation using magnetic anisotropy

    Science.gov (United States)

    Richter, Carl; van Der Pluijm, Ben A.; Housen, Bernard A.

    1993-01-01

    Magnetic anisotropy analysis presents an alternative and fast method for obtaining and quantifying crystallographic preferred orientations in rocks, using relatively simple equipment. Two natural examples and numerical modeling demonstrate that magnetic anisotropy increases with increasing degree of crystallographic preferred orientation. The normalized magnetic parameters M i = ln( {k i}/{(k max} ∗ k int ∗ k min) {1}/{3}) (k max ≥ k int ≥ k min are the principal magnetic susceptibilities) correlate directly with March 'strains' obtained from X-ray texture goniometry. The additional advantage of our method is that the preferred fabrics are determined from large sample volumes (typically about 11 cm 3) rather than the essentially two-dimensional slice used in optical and X-ray methods. Thus, magnetic anisotropy provides a reliable measure of bulk crystallographic preferred orientation in rocks.

  2. CoTaZr/Pd multilayer with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Yong Chang Lau

    2013-08-01

    Full Text Available We report a novel perpendicularly magnetized thin film [Co91.5Ta4.5Zr4/Pd]5 multilayer, which exhibits strong perpendicular magnetic anisotropy when grown on 5 nm of Pd and Ru seed layers. The Pd-seeded multilayer annealed at 300 °C shows an effective uniaxial anisotropy constant, Keff = 1.1 MJ m−3, with an anisotropy field as high as 1.6 T. The perpendicular anisotropy is sustained on annealing at 400 °C for 1 h. X-ray diffraction on multilayers with 30 repeats suggests that the use of amorphous CoTaZr reduces the stress of the stack, compared to [Co/Pd] multilayer.

  3. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    Abstract. Heavy ion irradiation in the electronic stopping power region induces macroscopic di- mensional change in metallic glasses and introduces magnetic anisotropy in some magnetic mate- rials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and ...

  4. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  5. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ke [Washington State University, P.O. BOX 642920, Pullman, Washington 99164, USA; Schreiber, Daniel K. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA; Li, Yulan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA; Johnson, Bradley R. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA; McCloy, John [Washington State University, P.O. BOX 642920, Pullman, Washington 99164, USA

    2017-02-10

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  6. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-05-01

    Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  7. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    National Research Council Canada - National Science Library

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J S; Porod, Wolfgang; Field, Stuart B; Tang, Jinke; Marconi, Mario C; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-01-01

    .... Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy...

  8. LDA+DMFT Approach to Magnetocrystalline Anisotropy of Strong Magnets

    Directory of Open Access Journals (Sweden)

    Jian-Xin Zhu

    2014-05-01

    Full Text Available The new challenges posed by the need of finding strong rare-earth-free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE. We argue that correlated electron effects, which are normally underestimated in band-structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here, we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement, and the MAE of YCo_{5}.

  9. Determination and prediction of the magnetic anisotropy of Mn ions.

    Science.gov (United States)

    Duboc, Carole

    2016-10-24

    This tutorial is dedicated to the investigation of magnetic anisotropy using both electron paramagnetic resonance (EPR) spectroscopy for its experimental determination and quantum chemistry for its theoretical prediction. Such an approach could lead to the definition of magneto-structural correlation essential for the rational design of complexes with targeted magnetic properties or for the identification of unknown reactive metallic species involved in catalysis. To illustrate this combined approach the high spin MnII, MnIII and MnIV ions have been taken as specific examples. The first part deals with the analysis of the EPR experiments as a function of the ions under investigation and the conditions of the measurements, specifically: (i) EPR spectra recorded under high vs. low frequency conditions with respect to magnetic anisotropy, (ii) EPR spectra of non-integer (Kramers) vs. integer (non-Kramers) spin states and (iii) mono- vs. multi-frequency EPR spectra. In the second part, two main quantum chemical approaches, which have proven their capability to predict magnetic anisotropy, are described. More importantly, these calculations give access to the different contributions of zero field splitting, key information for the full understanding of magnetic anisotropy. The last part demonstrates that such a combined experimental and theoretical approach allows for the definition of magneto-structural correlations.

  10. Exotic skyrmion crystals in chiral magnets with compass anisotropy.

    Science.gov (United States)

    Chen, J P; Zhang, Dan-Wei; Liu, J-M

    2016-07-05

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC.

  11. Magnetic anisotropy in geometrically frustrated kagome staircase lattices

    Energy Technology Data Exchange (ETDEWEB)

    Szymczak, R.; Aleshkevych, P. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Adams, C.P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia (Canada); Barilo, S.N. [Institute of Solid State and Semiconductor Physics, NAS, Minsk (Belarus); Berlinsky, A.J. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Canadian Institute for Advanced Research, Toronto, Ontario (Canada); Clancy, J.P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Domuchowski, V.; Fink-Finowicki, J. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Canadian Institute for Advanced Research, Toronto, Ontario (Canada); Ramazanoglu, M. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Shiryaev, S.V. [Institute of Solid State and Semiconductor Physics, NAS, Minsk (Belarus); Yamani, Z. [Canadian Neutron Beam Centre, NRC, Chalk River, Ontario (Canada); Szymczak, H. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland)], E-mail: szymh@ifpan.edu.pl

    2009-04-15

    This paper reviews experimental results concerning magnetic anisotropy in geometrically frustrated kagome staircase lattices. Following problems are discussed: high-temperature susceptibility measurements of kagome single crystals; inelastic neutron scattering measurements on Co{sub 3}V{sub 2}O{sub 8} single crystals; EPR of Co{sup 2+} ions in kagome staircase Mg{sub 3}V{sub 2}O{sub 8} single crystals. The single-ion anisotropy Hamiltonian is used to analyze experimental results. It is suggested that the magnetic anisotropy in kagome staircase M{sub 3}V{sub 2}O{sub 8} (M=Co, Ni, Mn) oxides has mainly single-ion origin.

  12. Anisotropy of photon production: initial eccentricity or magnetic field.

    Science.gov (United States)

    Bzdak, Adam; Skokov, Vladimir

    2013-05-10

    Recent measurements of the azimuthal anisotropy of direct photons in heavy-ion collisions at the energies of Relativistic Heavy Ion Collider show that it is of the same order as the hadronic one. This finding appears to contradict the expected dominance of photon production from a quark-gluon plasma at an early stage of a heavy-ion collision. A possible explanation of the strong azimuthal anisotropy of the photons, given recently, is based on the presence of a large magnetic field in the early phase of a collision. In this Letter, we propose a method to experimentally measure the degree to which a magnetic field in heavy-ion collisions is responsible for the observed anisotropy of photon production. The experimental test proposed in this Letter may potentially change our understanding of the nonequilibrium stage and possible thermalization in heavy-ion collisions.

  13. Magnetization Process of High Anisotropy CoPt Nanosized Dots

    NARCIS (Netherlands)

    Kikuchi, Nobuaki; Murillo Vallejo, R.; Lodder, J.C.; Mitsuzuka, K.; Shimatsu, T.; Shimatsu, T.

    2005-01-01

    Dot arrays with diameter ranging from 80 to 245 nm are made of Co80Pt20 films with large perpendicular anisotropy. Magnetic properties are investigated by detecting the anomalous Hall effect. The all arrays show angular dependence of remanent coercivity similar to coherent rotation. The result shows

  14. Magnetic relaxation in Barium ferrite films with perpendicular anisotropy

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; de Haan, P.; Bolhuis, Thijs; Roesthuis, F.J.G.

    1999-01-01

    Magnetic relaxation analysis have been carried out on barium ferrite films with perpendicular anisotropy, grown by pulsed laser deposition. Logarithmic behaviour on the time dependence of the magnetisation has been observed. The measured and corrected viscosity exhibit a large difference because of

  15. Magnetic surface anisotropy of amorphous Fe-B ultrathin films

    Science.gov (United States)

    Zhang, L.; Rado, G. T.; Liou, S. H.; Chien, C. L.

    1986-02-01

    The magnetic surface anisotropy constants KS of amorphous Fe xB 100- x was determined by performing ferromagnetic resonance (FMR) measurements on ultrathin films and adapting a recent FMR theory to amorphous materials. For a given Fe content x the same value of KS is obtained at two frequencies and two FMR configurations.

  16. Anisotropy of magnetic susceptibility (AMS) studies of Campanian ...

    Indian Academy of Sciences (India)

    tions in Dikes of the Koolau Complex, Oahu, determined from magnetic fabric studies; J. Geophys. Res. 93 (B5). 4301–4319. Liu B, Saito Y, Yamazaki T, Abdeldayem A, Oda H,. Hori K and Zhao Q 2001 Paleocurrent analysis for late. Pleistocene–Holocene incised-valley fill of the Yangtze delta, China by using anisotropy of ...

  17. Effect of anisotropy on the evolution of magnetic configuration in a helimagnet nanodisk

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Min; Yan, Huan; Liu, Yan, E-mail: liuyanphys@mail.neu.edu.cn

    2017-03-15

    We study the effect of magnetic anisotropy on the field-driven evolution of magnetic structure in a nanodisk with existence of Dzyaloshinskii-Moriya interaction by using micromagnetic simulations. We obtain the phase diagram of magnetic state in the magnetic field-magnetic anisotropy constant (H{sub z}-K) plane. It is found that target skyrmion can stably exist at zero external magnetic field when the magnetic anisotropy constant changing in a large range. The evolution of magnetic state with the perpendicular magnetic field strongly depends on the magnetic anisotropy constant. - Highlights: • We study the field-driven evolution of the magnetic state in a nanodisk with DMI. • The phase diagram in the perpendicular field-magnetic anisotropy plane is obtained. • The typical evolution of magnetic states for different anisotropy constant are shown.

  18. Enhanced magnetic anisotropy energy density for superparamagnetic particles of cobalt

    Science.gov (United States)

    Hickey, B. J.; Howson, M. A.; Greig, D.; Wiser, N.

    1996-01-01

    We use our measurements of the magnetization and the magnetoresistance for very small superparamagnetic particles of Co to obtain the low-temperature value of the magnetic anisotropy energy density, C~=3×108 erg/cm3. This is nearly two orders of magnitude larger than the corresponding value for C for bulk Co. The enormous enhancement of C for very small particles of Co is consistent with results previously reported for very small particles of Fe and of FeNi.

  19. Inkjet printing of magnetic materials with aligned anisotropy

    Science.gov (United States)

    Song, Han; Spencer, Jeremy; Jander, Albrecht; Nielsen, Jeffrey; Stasiak, James; Kasperchik, Vladek; Dhagat, Pallavi

    2014-05-01

    3-D printing processes, which use drop-on-demand inkjet printheads, have great potential in designing and prototyping magnetic materials. Unlike conventional deposition and lithography, magnetic particles in the printing ink can be aligned by an external magnetic field to achieve both high permeability and low hysteresis losses, enabling prototyping and development of novel magnetic composite materials and components, e.g., for inductor and antennae applications. In this work, we report an inkjet printing technique with magnetic alignment capability. Magnetic films with and without particle alignment are printed, and their magnetic properties are compared. In the alignment-induced hard axis direction, an increase in high frequency permeability and a decrease in hysteresis losses are observed. Our results suggest that unique magnetic structures with arbitrary controllable anisotropy, not feasible otherwise, may be fabricated via inkjet printing.

  20. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  1. Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates

    Science.gov (United States)

    Lefrançois, E.; Simonet, V.; Ballou, R.; Lhotel, E.; Hadj-Azzem, A.; Kodjikian, S.; Lejay, P.; Manuel, P.; Khalyavin, D.; Chapon, L. C.

    2015-06-01

    The magnetic behavior of polycrystalline samples of Er2Ir2O7 and Tb2Ir2O7 pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K, respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb2Ir2O7 , we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in-all-out magnetic arrangement. No sign of magnetic long-range order on the Er sublattice is evidenced in Er2Ir2O7 down to 0.6 K where a spin freezing is detected. These contrasting behaviors result from the competition between the Ir molecular field and the different single-ion anisotropy of the rare-earth elements on which it is acting. Additionally, this strongly supports the all-in-all-out iridium magnetic order.

  2. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    Science.gov (United States)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  3. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    Science.gov (United States)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  4. Magnetic anisotropy and high-field magnetization process of CeCo[sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Bartashevich, M.I. (Tokyo Univ. (Japan). Inst. for Solid State Physics (ISSP)); Goto, T. (Tokyo Univ. (Japan). Inst. for Solid State Physics (ISSP)); Radwanski, R.J. (Centre for Solid State Physics, Krakow (Poland)); Korolyov, A.V. (Inst. of Metal Physics, Ekaterinburg (Russian Federation))

    1994-03-01

    The magnetization process of single-crystalline CeCo[sub 5] has been measured at various temperatures from 4.2 to 300 K in high magnetic fields up to 40 T. The uniaxial magnetocrystalline anisotropy constant K[sub 1] is found to be about 35% higher than that of YCo[sub 5]. The magnetization anisotropy reaches p = 0.12 at 4.2 K, which is also higher than that of YCo[sub 5]. Both the anisotropies decrease with increasing temperature. These experimental results indicate that Ce in CeCo[sub 5] is in a mixed-valence state. (orig.)

  5. Mosaic anisotropy model for magnetic interactions in mesostructured crystals

    Directory of Open Access Journals (Sweden)

    Abby R. Goldman

    2017-10-01

    Full Text Available We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms and coercivity (Hc compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets.

  6. Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals

    Science.gov (United States)

    Biedermann, Andrea R.; Pettke, Thomas; Bender Koch, Christian; Hirt, Ann M.

    2015-03-01

    Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock's AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

  7. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Energy Technology Data Exchange (ETDEWEB)

    Perna, P., E-mail: paolo.perna@imdea.org; Guerrero, R.; Niño, M. A. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); Ajejas, F.; Maccariello, D.; Cuñado, J. L. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Muñoz, M. [IMM-CSIC, Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid (Spain); ISOM, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Prieto, J. L. [ISOM, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Miranda, R.; Camarero, J. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2016-05-15

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  8. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Directory of Open Access Journals (Sweden)

    P. Perna

    2016-05-01

    Full Text Available We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM/ antiferromagnetic (AFM bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR and giant magnetoresistance (GMR, chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  9. Thickness-induced spin-reorientation originated from competing magnetic shape anisotropies

    Directory of Open Access Journals (Sweden)

    Jin Tang

    2017-05-01

    Full Text Available Engineering the surface morphology of magnetic film is one of the important methods to tune the magnetic anisotropy of ultrathin magnetic material. However, the influence of competing shape effects on magnetic anisotropy of ultrathin film is still not clearly demonstrated. Here, we investigated the magnetic anisotropy of obliquely deposited Fe films on vicinal Si(111 substrate by using in-situ and ex-situ surface magneto-optical Kerr effect (MOKE. Thickness-induced in-plane spin-reorientation transition, i.e. magnetization easy axis gradually rotates away from the step direction, was observed. MOKE measurements and micromagnetic simulation demonstrate this spin-reorientation transition process largely originated from the competition between step-induced magnetic shape anisotropy and oblique-deposition-induced magnetic shape anisotropy. Our study indicates the possibility of tuning magnetic spin order orientation by the competing magnetic shape anisotropies.

  10. Thickness-induced spin-reorientation originated from competing magnetic shape anisotropies

    Science.gov (United States)

    Tang, Jin; He, Wei; Zhang, Yong-Sheng; Zhang, Wei; Li, Yan; Ahmad, S. Sheraz; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2017-05-01

    Engineering the surface morphology of magnetic film is one of the important methods to tune the magnetic anisotropy of ultrathin magnetic material. However, the influence of competing shape effects on magnetic anisotropy of ultrathin film is still not clearly demonstrated. Here, we investigated the magnetic anisotropy of obliquely deposited Fe films on vicinal Si(111) substrate by using in-situ and ex-situ surface magneto-optical Kerr effect (MOKE). Thickness-induced in-plane spin-reorientation transition, i.e. magnetization easy axis gradually rotates away from the step direction, was observed. MOKE measurements and micromagnetic simulation demonstrate this spin-reorientation transition process largely originated from the competition between step-induced magnetic shape anisotropy and oblique-deposition-induced magnetic shape anisotropy. Our study indicates the possibility of tuning magnetic spin order orientation by the competing magnetic shape anisotropies.

  11. Write operation in MRAM with voltage controlled magnetic anisotropy

    Science.gov (United States)

    Munira, Kamaram; Pandey, Sumeet; Sandhu, Gurtej

    In non-volatile Magnetic RAM, information is saved in the bistable configuration of the free layer in a magnetic tunnel junction (MTJ). New information can be written to the free layer through magnetic induction (Toggle MRAM) or manipulation of magnetization using electric currents (Spin Transfer Torque MRAM or STT-MRAM). Both of the writing methods suffer from a shortcoming in terms of energy efficiency. This limitation on energy performance is brought about by the need for driving relatively large electrical charge currents through the devices for switching. In STT-MRAM, the nonzero voltage drop across the resistive MTJ leads to significant power dissipation. An energy efficient way to write may be with the assistance of voltage controlled magnetic anisotropy (VCMA), where voltage applied across the MTJ creates an electric field that modulates the interfacial anisotropy between the insulator and free layer. However, VCMA cannot switch the free layer completely by 180 degree rotation of magnetization. It can lower the barrier between the two stable configurations or at best, cancel the barrier, allowing 90 degree rotation. A second mechanism, spin torque or magnetic field, is needed to direct the final switching destination.

  12. Conditional replaceability of magnetic surface anisotropies by effective volume anisotropies in the ferromagnetic resonance of ultrathin films

    Science.gov (United States)

    Rado, George T.

    1987-04-01

    Specific conditions are proposed for the replaceability of magnetic surface anisotropies by effective volume anisotropies and for the concomitant replaceability of the actual ferromagnetic resonance (FMR) surface mode or spin wave mode by a uniform mode. These conditions are then applied to the parallel and perpendicular FMR configurations in monocrystalline and amorphous ferromagnetic films. The significance and limitations of the results are discussed.

  13. Anisotropies in magnetic field evolution and local Lyapunov exponents

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.Z.; Boozer, A.H.

    2000-01-13

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.

  14. Structural and Magnetic Anisotropy in Amorphous Terbium-Iron Thin Films

    Science.gov (United States)

    Hufnagel, Todd Clayton

    1995-01-01

    High density, removable media magnetooptic disk drives have recently begun to make significant gains in the information mass storage market. The media in these disks are amorphous rare-earth/transition-metal (RE-TM) alloys. One vital property of these materials is a large perpendicular magnetic anisotropy; that is, an easy axis of magnetization which is perpendicular to the plane of the film. A variety of theories, sometimes contradictory, have been proposed to account for this surprising presence of an anisotropic property in an amorphous material. Recent research indicates that there is an underlying atomic-scale structural anisotropy which is responsible for the observed magnetic anisotropy. Several different types of structural anisotropy have been proposed to account for the observed magnetic anisotropy, including pair-ordering anisotropy (anisotropic chemical short-range order) and bond orientation anisotropy (an anisotropy in coordination number or distances independent of chemical ordering). We have studied the structural origins of perpendicular magnetic anisotropy in amorphous Tb-Fe thin films by employing high-energy and anomalous dispersion x-ray scattering. The as-deposited films show a clear structural anisotropy, with a preference for Tb-Fe near neighbors to align in the out-of-plane direction. These films also have a large perpendicular magnetic anisotropy. Upon annealing, the magnetic anisotropy energy drops significantly, and we see a corresponding reduction in the structural anisotropy. The radial distribution functions indicate that the number of Tb-Fe near-neighbors increases in the in-plane direction, but does not change in the out-of-plane direction. Therefore, the distribution of Tb-Fe near-neighbors becomes more uniform upon annealing. We propose that the observed reduction in perpendicular magnetic anisotropy energy is a result of this change in structure. Our results support the pair -ordering anisotropy model of the structural anisotropy

  15. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    Science.gov (United States)

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  16. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy.

    Science.gov (United States)

    Gopman, D B; Dennis, C L; Chen, P J; Iunin, Y L; Finkel, P; Staruch, M; Shull, R D

    2016-06-14

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

  17. Magnetic anisotropy and quantized spin waves in hematite nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker

    2004-01-01

    We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... the temperature dependence of the magnetic anisotropy, which is strongly related to the suppression of the Morin transition in nanoparticles of hematite. Further, the localization of the signal in both energy and momentum transfer brings evidence for finite-size quantization of spin waves in the system....

  18. Impact of magnetic surface anisotropy on the precessional switching of magnetization in Pt-alloy nanofilms

    Science.gov (United States)

    Daniel, M.; Arun, R.; Sabareesan, P.

    2012-09-01

    Precessional switching of magnetization in CoPt and FePt nanofilms is investigated by solving the Landau-Lifshitz-Gilbert (LLG) equation analytically and numerically. Switching in these films occurs only above a critical value of the magnetic field, and it further depends on the magnetocrystalline anisotropy and saturation magnetization of the film. The presence of magnetic surface anisotropy in these films reduces the switching time significantly. Also, the switching time in the case of Pt-alloys of Co and Fe is low compared to that in the case of pure Co and Fe films.

  19. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    independent of temperature. Ms increases with decreasing temperature according to an effective Bloch law with an exponent larger than 1.5, as expected for fine magnetic particles. The model of magnetic particles with uniaxial anisotropy and the actual size distribution gives a consistent description...... of independent measurements of the temperature dependence of the hyperfine field and the isothermal magnetization versus field. From this an effective anisotropy constant of about 4.5x10 4 J m-3 is estimated for a particle with diameter 7.5 nm. The magnetic relaxation, as observed in zero...

  20. Recent advances in anisotropy of magnetic remanence: New software and practical examples

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    -, special issue (2012), s. 59-60 ISSN 1335-2806. [Castle meeting New Trends in Geomagnetism : Paleo, rock and environmental magnetism/13./. 17.06.2012-23.06.2012, Zvolen] Institutional support: RVO:67985831 Keywords : magnetic susceptibility * anisotropy * anisotropy of magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://gauss.savba.sk/GPIweb/conferences/Castle2012/abstrCastle.pdf

  1. Perpendicular magnetic anisotropy of CoFeB\\Ta bilayers on ALD HfO2

    Directory of Open Access Journals (Sweden)

    Bart F. Vermeulen

    2017-05-01

    Full Text Available Perpendicular magnetic anisotropy (PMA is an essential condition for CoFe thin films used in magnetic random access memories. Until recently, interfacial PMA was mainly known to occur in materials stacks with MgO\\CoFe(B interfaces or using an adjacent crystalline heavy metal film. Here, PMA is reported in a CoFeB\\Ta bilayer deposited on amorphous high-κ dielectric (relative permittivity κ=20 HfO2, grown by atomic layer deposition (ALD. PMA with interfacial anisotropy energy Ki up to 0.49 mJ/m2 appears after annealing the stacks between 200°C and 350°C, as shown with vibrating sample magnetometry. Transmission electron microscopy shows that the decrease of PMA starting from 350°C coincides with the onset of interdiffusion in the materials. High-κ dielectrics are potential enablers for giant voltage control of magnetic anisotropy (VCMA. The absence of VCMA in these experiments is ascribed to a 0.6 nm thick magnetic dead layer between HfO2 and CoFeB. The results show PMA can be easily obtained on ALD high-κ dielectrics.

  2. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    Energy Technology Data Exchange (ETDEWEB)

    Nawa, Kenji, E-mail: nawa12@nd.phen.mie-u.ac.jp; Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan)

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  3. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    Science.gov (United States)

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-04-21

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  4. Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Weisheng Zhao

    2016-01-01

    Full Text Available Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.

  5. Tailoring perpendicular magnetic anisotropy with graphene oxide membranes

    KAUST Repository

    Ning, Keyu

    2017-11-15

    Graphene oxide (GO) membranes have been widely explored for their excellent physical and chemical properties, and abundant functional groups. In this work, we report the improvement of the perpendicular magnetic anisotropy (PMA) of CoFeB thin films by applying a coating of GO membranes. We observe that the PMA of the CoFeB/MgAl–O stacks is strongly enhanced by the coating of GO membranes and even reaches 0.6 mJ m−2 at room temperature after an annealing process. The critical thickness of the membrane-coated CoFeB for switching the magnetization from the out-of-plane to the in-plane axis exceeds 1.6 nm. First-principle calculations are performed to investigate the contribution of the GO membranes to the magnetic anisotropy energy (MAE). Due to changes in the hybridization of 3d orbitals, varying the location of the C atomic layer with Co changes the contribution of the Co–C stacks to PMA. Thus, the large PMA achieved with GO membranes can be attributed to the orbital hybridization of the C and O atoms with the Co orbitals. These results provide a comprehensive understanding of the PMA and point towards opportunities to achieve multifunctional graphene-composite spintronic devices.

  6. Modelling magnetic anisotropy of single-chain magnets in |d/J| ≥ 1 regime

    Science.gov (United States)

    Haldar, Sumit; Raghunathan, Rajamani; Sutter, Jean-Pascal; Ramasesha, S.

    2017-11-01

    Single molecule magnets (SMMs) with single-ion anisotropies $\\mathbf d$, comparable to exchange interactions J, between spins have recently been synthesized. In this paper, we provide theoretical insights into the magnetism of such systems. We study spin chains with site spins, s=1, 3/2 and 2 and on-site anisotropy $\\mathbf d$ comparable to the exchange constants between the spins. We find that large $\\mathbf d$ leads to crossing of the states with different $M_S$ values in the same spin manifold of the $\\mathbf d = 0$ limit. For very large $\\mathbf d$'s we also find that the $M_S$ states of the higher energy spin states descend below the $M_S$ states of the ground state spin manifold. Total spin in this limit is no longer conserved and describing the molecular anisotropy by the constants $D_M$ and $E_M$ is not possible. However, the total spin of the low-lying large $M_S$ states is very nearly an integer and using this spin value it is possible to construct an effective spin Hamiltonian and compute the molecular magnetic anisotropy constants $D_M$ and $E_M$. We report effect of finite sizes, rotations of site anisotropies and chain dimerization on the effective anisotropy of the spin chains.

  7. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications

    Science.gov (United States)

    Dieny, B.; Chshiev, M.

    2017-04-01

    Spin electronics is a rapidly expanding field stimulated by a strong synergy between breakthrough basic research discoveries and industrial applications in the fields of magnetic recording, magnetic field sensors, nonvolatile memories [magnetic random access memories (MRAM) and especially spin-transfer-torque MRAM (STT-MRAM)]. In addition to the discovery of several physical phenomena (giant magnetoresistance, tunnel magnetoresistance, spin-transfer torque, spin-orbit torque, spin Hall effect, spin Seebeck effect, etc.), outstanding progress has been made on the growth and nanopatterning of magnetic multilayered films and nanostructures in which these phenomena are observed. Magnetic anisotropy is usually observed in materials that have large spin-orbit interactions. However, in 2002 perpendicular magnetic anisotropy (PMA) was discovered to exist at magnetic metal/oxide interfaces [for instance Co (Fe )/alumina ]. Surprisingly, this PMA is observed in systems where spin-orbit interactions are quite weak, but its amplitude is remarkably large—comparable to that measured at Co /Pt interfaces, a reference for large interfacial anisotropy (anisotropy˜1.4 erg /cm2=1.4 mJ /m2 ). Actually, this PMA was found to be very common at magnetic metal/oxide interfaces since it has been observed with a large variety of amorphous or crystalline oxides, including AlOx, MgO, TaOx, HfOx, etc. This PMA is thought to be the result of electronic hybridization between the oxygen and the magnetic transition metal orbit across the interface, a hypothesis supported by ab initio calculations. Interest in this phenomenon was sparked in 2010 when it was demonstrated that the PMA at magnetic transition metal/oxide interfaces could be used to build out-of-plane magnetized magnetic tunnel junctions for STT-MRAM cells. In these systems, the PMA at the CoFeB /MgO interface can be used to simultaneously obtain good memory retention, thanks to the large PMA amplitude, and a low write current

  8. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guojun [Department of Physics, Xiangtan University, Hunan 411105 (China); Zhang, Yun [Department of Physics and Information Technology, Baoji University of Arts and Sciences, Baoji 721016 (China); Xiao, Huaping, E-mail: hpxiao@xtu.edu.cn [Department of Physics, Xiangtan University, Hunan 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics, Xiangtan University, Hunan 411105 (China)

    2016-06-15

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μ{sub B} with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of −2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application. - Graphical abstract: The charge density redistribution (ρ{sub MPc}-ρ{sub M}-ρ{sub Pc}) and spin density of the CoPc molecule, from top- and side-views. Purple and green isosurfaces indicate charge depletion and accumulation, respectively. Display Omitted.

  9. Magnetic anisotropy and anisotropic damping in LSMO/STO(001)

    Science.gov (United States)

    Lee, Hankyu; Barsukov, Igor; Yang, Liu; Swartz, Adrian; Kim, Bongju; Hwang, Harold; Krivorotov, Ilya

    2015-03-01

    La0.7Sr0.3MnO3 (LSMO) is a promising material for spintronics applications due to its half-metallic nature. To successively exploit LSMO, both the magnetic anisotropy (MA) and damping need to be well understood and, ultimately, controlled. Here, we study 30 nm epitaxial LSMO thin films grown by pulsed laser deposition on TiO2 terminated (001)SrTiO3. By means of angle- and frequency dependent ferromagnetic resonance (FMR) at room temperature, we separate various contributions to the in-plane MA: i) The four-fold magnetocrystalline anisotropy is present but negligibly small. ii) The strongest contribution Buni = 4.2 mT is uniaxial with EA along [010]. While uniaxial MA in LSMO systems is commonly related to terrace formation from the substrate miscut, we find that the terrace direction and the MA symmetry axes do not correlate, indicating a different origin of the MA. By evaluating the FMR linewidth, three nonlinear magnetic damping channels due to the two-magnon scattering are found: j) The dominant four-fold contribution with maxima along axes emerges due to the crystalline defects. jj) A two-fold contribution with the maximum along [010] and jjj) a small two-fold contribution with maximum perpendicular to the terraces are identified.

  10. Magnetic anisotropy in GaMnAs; Magnetische Anisotropie in GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim

    2009-07-02

    The goal of the present work was the detailed investigation of the impact of parameters like vertical strain, hole concentration, substrate orientation and patterning on the MA in GaMnAs. At first a method is introduced enabling us to determine the MA from angle-dependent magnetotransport measurements. This method was used to analyze the impact of vertical strain {epsilon}{sub zz} on the MA in a series of GaMnAs layers with a Mn content of 5% grown on relaxed InGaAs-templates. While hole concentration and Curie temperature were found to be unaffected by vertical strain, a significant dependence of the MA on {epsilon}{sub zz} was found. The most pronounced dependence was observed for the anisotropy parameter B{sub 2} {sub perpendicular} {sub to}, representing the intrinsic contribution to the MA perpendicular to the layer plane. For this parameter a linear dependence on {epsilon}{sub zz} was found, resulting in a strain-induced transition of the magnetic easy axis with increasing strain from in-plane to out-of-plane at {epsilon}{sub zz} {approx} -0.13%. Post-growth annealing of the samples leads to an outdiffusion and/or regrouping of the highly mobile Mn interstitial donor defects, resulting in an increase in both p and T{sub C}. For the annealed samples, the transition from in-plane to out-of-plane easy axis takes place at {epsilon}{sub zz} {approx} -0.07%. From a comparison of as-grown and annealed samples, B{sub 2} {sub perpendicular} {sub to} was found to be proportional to both p and {epsilon}{sub zz}, B{sub 2} {sub perpendicular} {sub to} {proportional_to} p .{epsilon}{sub zz}. To study the influence of substrate orientation on the magnetic properties of GaMnAs, a series of GaMnAs layers with Mn contents up to 5% was grown on (001)- and (113)A-oriented GaAs substrates. The hole densities and Curie temperatures, determined from magnetotransport measurements, are drastically reduced in the (113)A layers. The differences in the magnetic properties of (113)A- and

  11. Perpendicular magnetic anisotropy and the magnetization process in CoFeB/Pd multilayer films

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Quach, Duy-Truong; Hung, Tran Quang

    2014-01-01

    The perpendicular magnetic anisotropy (PMA) and dynamic magnetization-reversal process in [CoFeB t nm/Pd 1.0 nm]n(t = 0.4, 0.6, 0.8, 1.0 and 1.2 nm; n = 2 − 20) multilayer films have been studied by means of magnetic hysteresis and Kerr effect measurements. Strong and controllable PMA with an eff...... with the number of CoFeB/Pd bilayers. Observation of the magnetic domains during a magnetization-reversal process, using polar magneto-optical Kerr microscopy, reveals the detailed behavior of the nucleation and displacement of the domain walls....

  12. Micromagnetic study of magnetic domain structure and magnetization reversal in amorphous wires with circular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, I., E-mail: israelb@correo.unam.m [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Hrkac, G. [Department of Engineering Materials, University of Sheffield, Mappin St., Sheffield S1 3JD (United Kingdom); Schrefl, T. [Department of Engineering Materials, University of Sheffield, Mappin St., Sheffield S1 3JD (United Kingdom); St. Poelten University of Applied Sciences (Austria)

    2011-05-15

    In this work we present a detailed numerical investigation on the magnetic domain formation and magnetization reversal mechanism in sub-millimeter amorphous wires with negative magnetostriction by means of micromagnetic calculations. The formation of circular magnetic domains surrounding a multidomain axially oriented central nucleus was observed for the micromagnetic model representing the amorphous wire. The magnetization reversal explained by micromagnetic computations for the M-H curve is described in terms of a combined nucleation-propagation-rotational mechanism after the saturated state. Results are interpreted in terms of the effective magnetic anisotropy. - Research highlights: > Magnetic domain formation in small amorphous wires is studied by micromagnetic calculations. > Magnetization reversal in small amorphous wires is studied by micromagnetic calculations. > Formation of circular domains around an axially oriented central core was observed. > Magnetization reversal is described in terms of nucleation-propagation-rotational mechanisms. > Magnetic domains and reversal mechanism are consistent with experimental reports.

  13. Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy

    National Research Council Canada - National Science Library

    Liu, T; Zhang, Y; Cai, J W; Pan, H Y

    2014-01-01

    The recent discovery of perpendicular magnetic anisotropy (PMA) at the CoFeB/MgO interface has accelerated the development of next generation high-density non-volatile memories by utilizing perpendicular magnetic tunnel junctions (p-MTJs...

  14. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    National Research Council Canada - National Science Library

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-01-01

    .... The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA...

  15. Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Vijay, E-mail: shuklavs@rrcat.gov.in [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mukherjee, C. [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Chari, R. [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Rai, S. [Indus Synchrotron Utilization Division, Raja Ramnna Centre for Advanced Technology, Indore 452013 (India); Bindra, K.S. [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Banerjee, A. [BARC training school at RRCAT and Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-12-15

    Cobalt thin films were deposited on GaAs, Si and Glass substrates by RF-magnetron sputtering. The structure was studied using atomic force microscopy, X-ray reflectivity and grazing incidence X-ray diffraction. Magnetic properties were determined with the magneto-optic Kerr effect. The deposited films have in-plane uniaxial anisotropy and after annealing the anisotropy reduces. The reduction in anisotropy may be due to release of stress and the remaining anisotropy after annealing may be due to shape anisotropy of the particulates. - Highlights: • Deposited cobalt thin films on different substrates and annealed at 300 °C. • Characterized as-grown and annealed films by GIXRD, AFM and MOKE. • Uniaxial magnetic anisotropy observed for all the samples. • Decrease in anisotropy on annealing may be due to release of stress during deposition.

  16. Magnetic anisotropy of Co thin films: Playing with the shadowing effect, magnetic field and substrate spinning

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, T.P. [Universidade Federal do Espírito Santo, Departamento de Física, CCE, Vitória, ES 29075-910 (Brazil); Bueno, T.E.P., E-mail: thiago.bueno@ufes.br [Universidade Federal do Espírito Santo, Departamento de Física, CCE, Vitória, ES 29075-910 (Brazil); Krohling, A.C. [Universidade Federal do Espírito Santo, Departamento de Física, CCE, Vitória, ES 29075-910 (Brazil); Silva, B.C. [Universidade Federal de Minas Gerais, Departamento de Física, ICEx, Belo Horizonte, MG 31270-901 (Brazil); Rodríguez-Suárez, R.L. [Facultad de Física, Pontifícia Universidad Católica de Chile, Casilla 306, Santiago (Chile); Nascimento, V.P. [Universidade Federal do Espírito Santo, Departamento de Física, CCE, Vitória, ES 29075-910 (Brazil); Paniago, R.; Krambrock, K. [Universidade Federal de Minas Gerais, Departamento de Física, ICEx, Belo Horizonte, MG 31270-901 (Brazil); Larica, C.; Passamani, E.C. [Universidade Federal do Espírito Santo, Departamento de Física, CCE, Vitória, ES 29075-910 (Brazil)

    2017-03-15

    The shape and magneto-crystalline anisotropies of 10 nm thick Co sputtered films have shown to be dependent on the oblique deposition angle (α{sub i}), the angular velocity of the substrate-holder (ω{sub S}) and the applied magnetic field (H{sub 0}) during the deposition. Oblique deposition geometry is natural in our sputtering setup, being α equal to 22° at the edge of 4 in. sample-holder and 32° at its central part. X-ray diffraction analysis has evidenced a (111) texturized fcc structure for all films. Ferromagnetic resonance has shown that samples prepared under H{sub 0} of 250 Oe present dominantly the uniaxial H{sub U} field contribution independent of the ω{sub S}-value, however its magnitude depends on α{sub i}. For a non-magnetic holder, Co films show a mixture of twofold (uniaxial) with fourfold (cubic) in-plane magnetic anisotropies. The fourfold contribution is small and it is not influenced by α{sub i} or ω{sub S} within the experimental error, while the dominant twofold contribution, which is governed by the shadowing effect, is reduced for higher ω{sub S} and for samples positioned at the center of the sample-holder. In addition, the intrinsic isotropic Gilbert damping dominates the relaxation process, which is followed by anisotropic twofold scattering mechanism due to stripes and defects, interestingly not influenced by the substrate rotation during depositions. - Highlights: • Co magnetic anisotropies (cubic and uniaxial) controlled by film growth parameters. • Co uniaxial magnetic anisotropy depends on in-field and/or oblique deposition parameters. • Co uniaxial strength is determined by oblique deposition angle value. • Co cubic magnetic anisotropy only dominates when the substrate spinning is higher than 40 rpm. • Two magnons scattering process is responsible for the FMR line broadening behavior.

  17. Magnetic anisotropy study of UGe{sub 2}in a static high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sakon, T [Center for Geo-Enviromental Science, Akita University, Akita City, 010-8502 (Japan); Saito, S [Center for Geo-Enviromental Science, Akita University, Akita City, 010-8502 (Japan); Koyama, K [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577 (Japan); Awaji, S [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577 (Japan); Sato, I [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577 (Japan); Nojima, T [Center for Low Temperature Science, Tohoku University, Katahira 2-1-1, Sendai, 980-8577 (Japan); Watanabe, K [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577 (Japan); Motokawa, M [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577 (Japan); Sato, N K [Department of Physics, Graduated School of Science, Nagoya University, Nagoya 464-8602 (Japan)

    2006-11-15

    UGe{sub 2} has orthorhombic C{sub mmm} crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T{sub c} = 54 K. Spontaneous magnetization is 1.4 {mu}{sub B}/U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 {mu} {sub B}/U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T {mu}{sub B}] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd{sub 2}Fe{sub 17}, which is typical strongly correlated ferromagnet.

  18. Influence of Shape Anisotropy on Magnetization Dynamics Driven by Spin Hall Effect

    Directory of Open Access Journals (Sweden)

    X. G. Li

    2016-01-01

    Full Text Available As the lateral dimension of spin Hall effect based magnetic random-access memory (SHE-RAM devices is scaled down, shape anisotropy has varied influence on both the magnetic field and the current-driven switching characteristics. In this paper, we study such influences on elliptic film nanomagnets and theoretically investigate the switching characteristics for SHE-RAM element with in-plane magnetization. The analytical expressions for critical current density are presented and the results are compared with those obtained from macrospin and micromagnetic simulation. It is found that the key performance indicators for in-plane SHE-RAM, including thermal stability and spin torque efficiency, are highly geometry dependent and can be effectively improved by geometric design.

  19. Voltage-Controlled Magnetic Anisotropy in Heavy Metal/Ferromagnet/Insulator-Based Structures

    Science.gov (United States)

    Li, Xiang

    Electric-field assisted writing of magnetic memory that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers a great potential for high density and low power applications. Magnetoelectric Random Access Memory (MeRAM) has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. In this thesis, different heavy metal|ferromagnet|insulator-based structures are grown by magnetron sputtering to improve the VCMA effect over the traditional Ta|CoFeB|MgO-based structures. We also established an accurate measurement technique for VCMA characterization. An improved thermal annealing stability of VCMA over 400°C is achieved in Mo|CoFeB|MgO-based structures. In addition, we observed a weak CoFeB thickness dependence of both VCMA coefficient and interfacial perpendicular magnetic anisotropy (PMA) in both Ta|CoFeB|MgO and Mo|CoFeB|MgO-based structures.

  20. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433 (China); Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114 (China); Hu, J. [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Wang, H. [State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, R. Q., E-mail: wur@uci.edu [State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433 (China); Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  1. Uniaxial magnetic anisotropy induced low field anomalous anisotropic magnetoresistance in manganite thin films

    Directory of Open Access Journals (Sweden)

    Zhaoliang Liao

    2014-09-01

    Full Text Available La2/3Sr1/3MnO3 films with uniaxial magnetic anisotropy were coherently grown on NdGaO3 (110 substrates. The uniaxial anisotropy has strong effect on magnetoresistance (MR. A positive MR was observed when the current is along magnetic easy axis under the current-field perpendicular geometry. In contrast, no positive MR is observed when current is along the magnetic hard axis regardless of the field direction. Our analysis indicates that the anomalous anisotropic MR effect arises from the uniaxial magnetic anisotropy caused stripe domains which contribute to strong anisotropic domain wall resistivity.

  2. Cubic anisotropy created by defects of "random local anisotropy" type, and phase diagram of the O( n) Model

    Science.gov (United States)

    Berzin, A. A.; Morosov, A. I.; Sigov, A. S.

    2017-12-01

    The expression for the cubic-type-anisotropy constant created by defects of "random local anisotropy" type is derived. It is shown that the Imry-Ma theorem stating that in space dimensions d equilibrium one. At the defect concentration lower than the critical one the long-range order takes place in the system. For a strongly anisotropic distribution of the easy axes, the Imry-Ma state is suppressed completely and the long-range order state takes place at any defect concentration.

  3. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  4. Magnetic anisotropy and magnetostriction in nanocrystalline Fe–Al alloys obtained by melt spinning technique

    Energy Technology Data Exchange (ETDEWEB)

    García, J.A.; Carrizo, J. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Lago-Cachón, D.; Rivas, M. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Castrillo, D. [Depto. de Ciencias de los Materiales de la Universidad de Oviedo, c/Independencia, 33004 Oviedo (Spain); Pierna, A.R. [Depto. de Ingeniería Química y Medio Ambiente, EUPSS, UPV/EHU, San Sebastián (Spain)

    2014-12-15

    A study about the magnetic anisotropy and magnetostriction in ribbons of composition Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} obtained by the melt spinning technique is presented. The hysteresis loops indicate that the easy magnetization direction lies in both cases on the plane of the ribbon. Torque magnetometry measurements show that the in-plane magnetic anisotropy constant results 10100 J m{sup −3} and 490 J m{sup −3} for the Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} respectively. After a thermal treatment of 2 h at 473 K to remove the residual stresses, the in-plane magnetic anisotropy constants falls down to 2500 J m{sup −3} in the first composition and remains the same in the second one, while the easy direction remains the same. Measurements of the magnetostriction and the residual stresses of both ribbons allow us to explain the above mentioned results about the magnetic anisotropy and to conclude that the residual stresses via magnetostriction are the main source of magnetic anisotropy in the case of Fe{sub 81}Al{sub 19} ribbon but they do not influence this property in the ribbon of composition Fe{sub 70}Al{sub 30}. - Highlights: • The origin of magnetic anisotropy of Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} ribbons has been studied. • The magnetic anisotropy lies in the plane of the ribbons. • A huge difference in magnetic anisotropy between two ribbons has been observed. • Magnetostriction and residual stresses explain the magnetic anisotropy in Fe{sub 81}Al{sub 19} ribbon.

  5. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

    Science.gov (United States)

    Hu, Qiaodan; Zhou, Zhenni; Yang, Liang; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-11-01

    The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z ( Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

  6. Engineered Heusler Ferrimagnets with a Large Perpendicular Magnetic Anisotropy

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2015-09-01

    Full Text Available Synthetic perpendicular magnetic anisotropy (PMA ferrimagnets consisting of 30-nm-thick D022-MnGa and Co2MnSi (CMS cubic Heusler alloys with different thicknesses of 1, 3, 5, 10 and 20 nm, buffered and capped with a Cr film, are successfully grown epitaxially on MgO substrate. Two series samples with and without post annealing at 400 °C are fabricated. The (002 peak of the cubic L21 structure of CMS films on the MnGa layer is observed, even for the 3-nm-thick CMS film for both un-annealed and annealed samples. The smaller remnant magnetization and larger switching field values of CMS (1–20 nm/MnGa (30 nm bilayers compared with 30-nm-thick MnGa indicates antiferromagnetic (AFM interfacial exchange coupling (Jex between MnGa and CMS films for both un-annealed and annealed samples. The critical thickness of the CMS film for observing PMA with AFM coupling in the CMS/MnGa bilayer is less than 10 nm, which is relatively large compared to previous studies.

  7. Magnetic domains in epitaxial BaFe12O19 thin films with perpendicular anisotropy

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.

    2002-01-01

    Magnetic domains, microstructure and magnetic properties of highly oriented barium ferrite thin films with perpendicular anisotropy have been investigated with magnetic force microscopy (MFM), VSM, SEM and TEM. Two kinds of magnetic domain are energetically favourable: (a) cluster-like structure in

  8. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  9. New insight in the nature of surface magnetic anisotropy in iron borate

    Science.gov (United States)

    Strugatsky, M.; Seleznyova, K.; Zubov, V.; Kliava, J.

    2018-02-01

    The theory of surface magnetism of iron borate, FeBO3, has been extended by taking into consideration a crystal field contribution to the surface magnetic anisotropy energy. For this purpose, a model of distortion of the six-fold oxygen environment of iron ions in the near-surface layer of iron borate has been put forward. The spin Hamiltonian parameters for isolated Fe3+ ions in the distorted environment of the near-surface layer have been calculated using the Newman's superposition model. The crystal field contribution to the surface magnetic anisotropy energy has been calculated in the framework of the perturbation theory. The model developed allows concluding that the distortions of the iron environment produce a significant crystal field contribution to the surface magnetic anisotropy constant. The results of experimental studies of the surface magnetic anisotropy in iron borate can be described assuming the existence of relative contractions in the near-surface layer of the order of 1 %.

  10. On the Origin of the Large Magnetic Anisotropy of Rare Earth-Cobalt Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1979-01-01

    Experimental data on the magnetocrystalline anisotropy in Co, YCo5, GdCo5, SmCo5 and Y2Co17 is analysed using a single-ion crystal field and isotropic exchange interaction. The large magnetic anisotropy at high temperatures in the alloys is due to significant deviations in the alloy lattices of t...

  11. Magnetic domain structure in thin CoPt perpendicular magnetic anisotropy films

    Directory of Open Access Journals (Sweden)

    Komine T.

    2013-01-01

    Full Text Available The relation between thickness and domain structure of Co80Pt20 perpendicular magnetic anisotropy films was investigated through experiments and micromagnetic simulation. The films with thickness over 10 nm exhibited clear maze domain structure, while for the films thinner than 10 nm the domain structure abruptly changed from maze domain to irregular and large domain as the thickness became thinner. The irregular domain had narrower domain wall width than maze domain.

  12. Controlling the competing magnetic anisotropy energies in FineMET amorphous thin films with ultra-soft magnetic properties

    Directory of Open Access Journals (Sweden)

    Ansar Masood

    2017-05-01

    Full Text Available Thickness dependent competing magnetic anisotropy energies were investigated to explore the global magnetic behaviours of FineMET amorphous thin films. A dominant perpendicular magnetization component in the as-deposited state of thinner films was observed due to high magnetoelastic anisotropy energy which arises from stresses induced at the substrate-film interface. This perpendicular magnetization component decreases with increasing film thickness. Thermal annealing at elevated temperature revealed a significant influence on the magnetization state of the FineMET thin films and controlled annealing steps leads to ultra-soft magnetic properties, making these thin films alloys ideal for a wide range of applications.

  13. Impact of organic capping layer on the magnetic anisotropy of ultrathin Co films

    Science.gov (United States)

    Gladczuk, L.; Lasek, K.; Puzniak, R.; Sawicki, M.; Aleshkevych, P.; Paszkowicz, W.; Minikayev, R.; Demchenko, I. N.; Syryanyy, Y.; Przyslupski, P.

    2017-12-01

    Using combined magnetometry and ferromagnetic resonance studies, it is shown that introduction of a hydrocarbon cover layer leads to an increase of the contribution of the surface anisotropy to the effective magnetic anisotropy energy of hexagonal close-packed (0 0 0 1) cobalt films, largely enhancing the perpendicular anisotropy. Due to a weak electronic interaction of the organic molecules with the Co atoms, an increase of surface anisotropy could be explained by the presence of an electric field at the organic-material/Co interface and by modification of surface atoms charge configuration.

  14. Magnetocrystalline anisotropy in FePd alloys studied using transverse X-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Dhesi, S.S. E-mail: dhesi@esrf.fr; Laan, G. van der; Duerr, H.A.; Belakhovsky, M.; Marchesini, S.; Kamp, P.; Marty, A.; Gilles, B.; Rogalev, A

    2001-05-01

    The structural and magnetic properties of Fe{sub 0.5}Pd{sub 0.5} alloys have been correlated using X-ray diffraction (XD), vibrating sample magnetometry (VSM) and transverse X-ray magnetic circular dichroism (TXMCD) at the Pd L{sub 2,3} edges. XD indicates that codeposition of Fe and Pd, at elevated temperatures (350 deg. C), results in a well-ordered L1{sub 0} phase which exhibits perpendicular magnetic anisotropy (PMA). On the other hand, codeposition at room temperature results in a disordered phase with in-plane easy-axis of magnetization. By codepositing at intermediate temperatures, a series of alloys has been produced with varying degree of compositional order. The TXMCD results show that increased compositional ordering leads to an increased orbital moment anisotropy favouring PMA. The magnetocrystalline anisotropy energy resulting from the orbital anisotropy is compared to VSM results.

  15. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    National Research Council Canada - National Science Library

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V; Samant, Mahesh G; Felser, Claudia; Parkin, Stuart S P

    2016-01-01

    ...-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant...

  16. Crystal Structure and Magnetic Anisotropy in the Magnetic Ordered Phases of PrB6

    Science.gov (United States)

    Sera, Masafumi; Kim, Moo-Sung; Tou, Hideki; Kunii, Satoru

    2004-12-01

    We have studied the magnetization and the thermal expansion of PrB6 in both C and IC phases. In the IC phase, the crystal is found to be nearly cubic. This is because the magnitude of av is different from site to site in the IC phase. In the C phase, the crystal is easily deformed into the diamond shaped one by a small external field such as a magnetic field or a uniaxial stress along the two-fold axis. This indicates the small AFQ interaction in PrB6. The magnetization exhibits the anisotropy, M>M>M in the IC phase and M>M>M in the C phase. The former is explained by a difference of the domain distribution for three field directions, i.e., the larger the population of the χ\\bot configuration, the larger the magnitude of M. In the C phase, the planer type Kxy domain state and the χ\\bot configuration are realized for three magnetic field directions. For H\\parallel and , the 1-k collinear magnetic structure is realized and the moment is rotated in the xy plane, while for H\\parallel, the moment is canted towards z axis from the xy plane. Altough in both cases, χ\\bot is associated with the Zeeman energy gain, χ\\bot in the former is smaller than that in the latter. This difference makes the anisotropy of M in the C phase as M>M>M.

  17. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  18. Room-temperature magnetic anisotropy of lanthanide complexes: A model study for various coordination polyhedra

    OpenAIRE

    Mironov, Vladimir S.; Galyametdinov, Yury G.; Ceulemans, Arnout; Görller-Walrand, Christiane; Binnemans, Koen

    2002-01-01

    The dependence of the room-temperature magnetic anisotropy Deltachi of lanthanide complexes on the type of the coordination polyhedron and on the nature of the lanthanide ion is quantitatively analyzed in terms of a model approach based on numerical calculations. The aim of this study is to establish general regularities in the variation of the sign and magnitude of the magnetic anisotropy of lanthanide complexes at room-temperature and to estimate its maximal value. Except for some special c...

  19. Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Castro, M.A.; Allende, S., E-mail: sebastian.allende@usach.cl

    2016-11-01

    A detailed analytical and numerical analysis of the skyrmion core size dependence as a function of the uniaxial perpendicular anisotropy and radius in magnetic nanodots has been carried out. Results from micromagnetic calculations show a non-monotonic behavior between the skyrmion core size and the uniaxial perpendicular anisotropy. The increment of the radius reduces the skyrmion core size at constant uniaxial perpendicular anisotropy. Thus, these results can be used for the control of the core sizes in magnetic artificial skyrmion crystals or spintronic devices that need to use a skyrmion configuration at room temperature. - Highlights: • We observed a non-monotonic behavior between the core size and the perpendicular anisotropy. • The increment of the radius reduces the skyrmion core size at constant uniaxial perpendicular. • The end-width size has a monotonic behavior with the perpendicular anisotropy. • We study the transition between the vortex and the skyrmion states.

  20. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  1. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    Energy Technology Data Exchange (ETDEWEB)

    Guihéry, Nathalie; Ruamps, Renaud [Laboratoire de Chimie et Physique Quantiques, UMR5625, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse (France); Maurice, Rémi [SUBATECH, IN2P3/EMN Nantes/University of Nantes, 4 rue Alfred Kastler, BP 20722 44307, Nantes, Cedex 3 (France); Graaf, Coen de [University Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  2. Controlling the magnetic anisotropy in epitaxial Cr2O3 clusters by an electric field

    Science.gov (United States)

    Halley, David; Najjari, Nabil; Godel, Florian; Hamieh, Mohamad; Doudin, Bernard; Henry, Yves

    2015-06-01

    Magnetic properties of Cr2O3 epitaxial clusters inserted in an Fe/MgO/Fe tunnel barrier are revealed by their tunnel magnetoresistance signature. The cluster assembly has been shown in a previous work to behave as a superparamagnet when a magnetic field was applied in the plane of the tunnel junction. We here demonstrate that an external large out-of plane electric field (in the order of 0.5 GV/m) favors in-plane magnetization orientation. This is due to an electric-field-induced magnetic anisotropy along the normal to the plane, corresponding to large anisotropy fields reaching up to 2 T. The assembly of clusters is thus strictly speaking not superparamagnetic and its magnetization cannot be exactly described by a Langevin law. This is attributed either to a strain-induced enhanced magnetoelectric effect or to a voltage-induced change of the magnetic anisotropy at interfaces with MgO.

  3. Analogue sandbox experiments, anisotropy of magnetic susceptibility (AMS) and paleomagnetism

    Science.gov (United States)

    Almqvist, Bjarne; Koyi, Hemin

    2017-04-01

    In this contribution we present results from AMS measurements on samples from analogue models simulating fold-thrust belts. The models are made of 99 % well sorted beach sand, consisting of quartz and feldspar and 1 % magnetite, by volume. The sand is contained within a model space with initial size of 30 cm width, 60 cm length and 2 cm height. Four models with identical setup were deformed by bulk shortening (compression) ranging from 8 % to 33 %. In each model, three different tectonic domains were studied, representing the state of deformation, analogous to the compression experienced by a mountain belt. The hinterland, closest to the "pushing" side of the model (backstop) accommodate the largest deformation where thrust wedges develop. The foreland, being farthest away from the backstop, remains weakly affected by the compression. A transition zone separates these two end-member domains, where deformation is apparent by layer-parallel shortening and thickening, but thrusting is absent (deformation is accommodated by penetrative strain). With progressive shortening (compression), more of the model is deformed and the hinterland gradually expands. The analyzed AMS closely reflects the deformation in the models, and can be quantitatively used to study the development of model deformation. The initial undeformed fabric is oblate (depositional) and uniform throughout the model, where the k3 axes tightly group as a pole to the bedding/foliation plane. During shortening, the original magnetic fabric becomes gradually overprinted, with a reduction in the degree of anisotropy in the transition zone and development of a triaxial susceptibility ellipsoid. Principal susceptibility axes become more scattered. The degree of anisotropy increases in the hinterland, and the fabric consist of a mix of prolate and oblate susceptibility ellipsoids. The k1 axes obtain a grouping that is parallel to the backstop (i.e., parallel to the strike of the "orogenic wedge"). AMS analysis

  4. Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy.

    Science.gov (United States)

    Zhang, Yue; Luo, Shijiang; Yan, Baiqian; Ou-Yang, Jun; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long

    2017-07-27

    Magnetic skyrmions have potential applications in novel information devices with excellent energy efficiency. However, the skyrmion Hall effect (SkHE) could cause skyrmions moving in a nanotrack to get annihilated at the track edge. In this work, we discovered that the SkHE is depressed by modifying the magnetic structure at the edge of a track, and thus the skyrmion can move in almost a straight line at a high speed. Unlike the inner part of a track with perpendicular magnetic anisotropy, the edge layer exhibits in-plane magnetic anisotropy, and the orientation of edge moments is opposite that at the perimeter of skyrmions nearby. As a result, an enhanced repulsive force acts on the skyrmion to oppose the Magnus force that causes the SkHE. Additionally, the Dzyaloshinskii-Moriya interaction (DMI) constant of the edge layer also matters. When there is no DMI at the edge layer, the transverse displacement of the skyrmion can be depressed effectively when the width of the edge layer is sufficiently large. However, when the inner part and the edge share the same DMI constant, non-monotonically varied transverse displacement occurs because of the Néel-wall-like structure at the edge layer.

  5. Influence of surface anisotropy on domain wall dynamics in magnetic nanotube

    Science.gov (United States)

    Usov, N. A.; Serebryakova, O. N.

    2017-11-01

    It is shown that surface domain structure arises in magnetic nanotube with uniaxial anisotropy if surface anisotropy constant is negative and sufficiently high in absolute value. The surface magnetic anisotropy affects also the structure and dynamics of a head-to-head domain wall propagating along the nanotube axis in applied magnetic field. The hopping mode is observed for stationary movement of a head-to-head domain wall. The average speed of the domain wall in the hopping mode is found to be several times less than the stationary velocity of the wall in the absence of surface anisotropy. This effect is important for various applications where fast propagation of the domain wall along the sample is essential.

  6. In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB

    Energy Technology Data Exchange (ETDEWEB)

    Kipgen, Lalminthang; Fulara, Himanshu; Raju, M. [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2012-09-15

    The structural and magnetic properties of as-grown 5-50 nm thin ion-beam sputter deposited transition metal-metalloid Co{sub 20}Fe{sub 60}B{sub 20} (CFB) films are reported in this communication. A broad peak observed at 2{theta}{approx}45 Degree-Sign in the glancing angle X-ray diffraction pattern revealed the formation of very fine nano-sized grains embedded in majority amorphous CFB matrix. Although no magnetic field is applied during deposition, the longitudinal magneto-optic Kerr effect measurements performed at 300 K in these as-grown films clearly established the presence of in-plane uniaxial magnetic anisotropy (K{sub u}). It is argued that this observed anisotropy is strain-induced. This is supported by the observed dependence of direction of K{sub u} on the angle between applied magnetic field and crystallographic orientation of the underlying Si(100) substrate, and increase in the coercivity with the increase of the film thickness. - Highlights: Black-Right-Pointing-Pointer We study the ion-beam sputter deposited CoFeB film by MOKE and GAXRD. Black-Right-Pointing-Pointer A nanocrystalline structure is observed in the GAXRD pattern. Black-Right-Pointing-Pointer Coercivity increases with increase in film thickness. Black-Right-Pointing-Pointer In-plane magnetic anisotropy is observed. Black-Right-Pointing-Pointer The dominant contribution to magnetic anisotropy is strain induced magnetic anisotropy.

  7. Rashba spin-orbit anisotropy and the electric field control of magnetism.

    Science.gov (United States)

    Barnes, Stewart E; Ieda, Jun'ichi; Maekawa, Sadamichi

    2014-02-17

    The control of the magnetism of ultra-thin ferromagnetic layers using an electric field, rather than a current, has many potential technologically important applications. It is usually insisted that such control occurs via an electric field induced surface charge doping that modifies the magnetic anisotropy. However, it remains the case that a number of key experiments cannot be understood within such a scenario. Much studied is the spin-splitting of the conduction electrons of non-magnetic metals or semi-conductors due to the Rashba spin-orbit coupling. This reflects a large surface electric field. For a magnet, this same splitting is modified by the exchange field resulting in a large magnetic anisotropy energy via the Dzyaloshinskii-Moriya mechanism. This different, yet traditional, path to an electrically induced anisotropy energy can explain the electric field, thickness, and material dependence reported in many experiments.

  8. Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field.

    Science.gov (United States)

    Hu, Jun; Wu, Ruqian

    2013-03-01

    Through systematic density functional calculations, the mechanism of the substrate induced spin reorientation transition in FePc/O-Cu(110) is explained in terms of charge transfer and rearrangement of Fe-3d orbitals. Moreover, we find giant magnetoelectric effects in this system, manifested by the sensitive dependence of its magnetic moment and magnetic anisotropy energy on an external electric field. In particular, the direction of magnetization of FePc/O-Cu(110) is switchable between in-plane and perpendicular axes, simply by applying an external electric field of 0.5 eV/Å along the surface normal.

  9. Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures

    Directory of Open Access Journals (Sweden)

    K. Duschek

    2016-03-01

    Full Text Available Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001 underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.

  10. Fourfold magnetic anisotropy, coercivity and magnetization reversal of Co/V bilayers grown on MgO(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J F [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Muro, M GarcIa del [Departament de Fisica Fonamental and Institut de Nanociencia i Nanotecnologia IN2UB de la Universitat de Barcelona, MartIi Franques, 1, E-08028 Barcelona (Spain); Presa, B [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Matarranz, R [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Corrales, J A [Departmento de Informatica, Universidad de Oviedo, Edificio Departamental 1, Campus de Viesques s/n, 33204 Gijon (Spain); Labarta, A [Departament de Fisica Fonamental and Institut de Nanociencia i Nanotecnologia IN2UB de la Universitat de Barcelona, MartIi Franques, 1, E-08028 Barcelona (Spain); Contreras, M C [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2007-11-21

    Magnetic anisotropy and magnetization reversal of Al/Co/V/MgO(0 0 1) thin films have been investigated. The films were fabricated by magnetron sputtering. The roles of both Co and V layers thicknesses have been studied. Magnetic characterization has been carried out by transverse susceptibility (TS) measurements and hysteresis loops. Cobalt is grown in the hcp structure on V with the c axis parallel to the film plane. Two types of hcp Co crystal are grown with the c axes perpendicular to each other. This structure gives rise to a fourfold magnetic anisotropy. When the V layer thickness is below 40 A a superimposed uniaxial anisotropy develops, the effect of which is a depression in the TS, in agreement with theoretical calculations. This uniaxial anisotropy is induced by the substrate and due to a discontinuous growth of the V layer. For hcp Co grown on V, the magnetic anisotropy rapidly increases with Co layer thickness. In this case, unexpected shifted hysteresis loops along the hard axes were observed when the films were not saturated. This has been explained by taking into account the magnetization reversal along the hard axis: it proceeds via magnetization rotation of some portions of the film at high fields, and by domain wall motion of the rest of the film at lower field values.

  11. Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles

    DEFF Research Database (Denmark)

    Peddis, Davide; Vasquaz Mansilla, M.; Fiorani, D.

    2008-01-01

    The magnetic properties of cobalt ferrite nanoparticles dispersed in a silica matrix in samples with different concentrations (5 and 10 wt % CoFe2O4) and same particle size (3 nm) were studied by magnetization, DC and AC susceptibility, and Mossbauer spectroscopy measurements. The results indicate...... that the particles are very weakly interacting. The magnetic properties (saturation magnetization, anisotropy constant, and spin-canting) are discussed in relation to the cation distribution....

  12. Perpendicular magnetic anisotropy in Co{sub X}Pd{sub 100−X} alloys for magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.D.; Natarajarathinam, A.; Tadisina, Z.R. [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, AL 35487 (United States); Chen, P.J.; Shull, R.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Gupta, S., E-mail: Sgupta@eng.ua.edu [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-08-15

    Highlights: • CoPd alloy perpendicular anisotropy dependent on composition and thickness. • CIPT results show that TMR tracks with PMA of CoPd. • Potential replacement for Co/Pd multilayers. - Abstract: CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ’s) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L1{sub 0} alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular Co{sub x}Pd alloy-pinned Co{sub 20}Fe{sub 60}B{sub 20}/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the Co{sub x}Pd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied Co{sub x}Pd MTJ stacks. The Co{sub x}Pd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO{sub 2}/MgO (13)/Co{sub X}Pd{sub 100−x} (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  13. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyan [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Klem, Michael T.; Sebby, Karl B.; Singel, David J. [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Young, Mark [Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Douglas, Trevor [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States)], E-mail: Idzerda@montana.edu

    2009-02-15

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  14. Magnetic anisotropy in Fe phthalocyanine film deposited on Si(110) substrate: Standing configuration

    Science.gov (United States)

    Bartolomé, Juan; Bartolomé, Fernando; Miguel García, Luis; Gredig, Thomas; Schuller, Ivan K.; Cezar, Julio C.

    2017-08-01

    In this contribution we report on the structural and magnetic properties of an Fe phthalocyanine (FePc) thin film deposited on a silicon substrate. The planar FePc molecules order spontaneously in a standing configuration, i.e., with the molecular plane perpendicular to the substrate. The x-ray linear polarized absorption and x-ray magnetic circular dichroism experiments at the Fe-L2,3 edges at T = 6 K were performed, concluding that at this temperature the film displays magnetic anisotropy with the main easy axis perpendicular to the substrate. This result is explained in terms of the FePc single molecule anisotropy which has its larger moment in the molecule plane. Thus, the standing configuration in polycrystalline thin films favors statistically that, at the macroscopic array level, the magnetic easy anisotropy axis is normal to the substrate.

  15. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: C.Morrison.2@warwick.ac.uk; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  16. Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface

    Directory of Open Access Journals (Sweden)

    Takayuki Nozaki

    2018-02-01

    Full Text Available We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA and the voltage-controlled magnetic anisotropy (VCMA in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices.

  17. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of ...

  18. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    Science.gov (United States)

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; Demann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.

  19. A new approach for calculation of relaxation time and magnetic anisotropy of ferrofluids containing superparmagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmadi R.

    2012-01-01

    Full Text Available In this work, a new approach is described for the calculation of the relaxation time and magnetic anisotropy energy of magnetic nanoparticles. Ferrofluids containing monodispersed magnetite nanoparticles were synthesized via hydrothermal method and then heated using the 10 kA/m external AC magnetic fields in three different frequencies: 10, 50 and 100 kHz. By measuring the temperature variations during the application of the magnetic field, the total magnetic time constant including both Brownian and Neel relaxation times can be calculated. By measuring the magnetic core size and hydrodynamic size of particles, the magnetic anisotropy can be calculated too. Synthesized ferrofluids were characterized via TEM, XRD, VSM and PCS techniques and the results were used for the mentioned calculations.

  20. Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet

    Science.gov (United States)

    Sorace, L.; Boulon, M.-E.; Totaro, P.; Cornia, A.; Fernandes-Soares, J.; Sessoli, R.

    2013-09-01

    W-band (ν ≅ 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S = 6) and first two excited states (S = 5 and S = 4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a π/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called “giant spin approach” and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).

  1. Magnetic anisotropy of thin sputtered MgB2 films on MgO substrates in high magnetic fields

    Directory of Open Access Journals (Sweden)

    Savio Fabretti

    2014-03-01

    Full Text Available We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T = 0 K with an upper critical field of 31.74 T in the parallel case and 23.5 T in the perpendicular case. Direct measurements of a magnetic-field sweep at 4.2 K show a linear behavior, confirmed by a linear fit for magnetic fields perpendicular to the film plane. Furthermore, we observed a change of up to 12% of the anisotropy ratio in dependence of the film thickness.

  2. Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stebliy, Maxim E., E-mail: stebliyme@gmail.com; Kolesnikov, Alexander G.; Davydenko, Alexander V.; Ognev, Alexey V.; Samardak, Alexander S.; Chebotkevich, Ludmila A. [Laboratory of Thin Film Technologies, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950 (Russian Federation)

    2015-05-07

    Formation and existence of magnetic skyrmion-like configurations in bilayer nanodisks (Ta(3 nm)/[Co(0.37 nm)/Ni(0.58 nm)]{sub 10}){sub 2} with perpendicular magnetic anisotropy are shown experimentally at room temperature. Magnetization reversal through the skyrmion state is studied using magnetic hysteresis measurements. An evolution of skyrmion configurations in the nanodisk structure is analyzed. Experimental methods and micromagnetic simulations help to understand the magnetization reversal processes occurring through the stable skyrmion-like configurations. Formation of the intermediate C-states during magnetization reversal is demonstrated. The skyrmion number for all possible spin configurations is calculated.

  3. Magnetic properties of the molecular nanomagnet Cr7Cd: single ion and exchange anisotropy effects.

    Science.gov (United States)

    Kozłowski, P; Kamieniarz, G

    2011-10-01

    In order to verify two microscopic models of the molecular nanomagnet Cr7Cd we analyze a number of thermodynamic quantities calculated for two sets of parameters. The first model, with only single ion anisotropy, was established on the basis of the thermodynamic properties (by fitting susceptibility and magnetization) whereas the second, with single ion and bond-dependent exchange anisotropies, was based on the inelastic neutron scattering and EPR spectra. The calculations are performed by means of non-perturbative, numerically exact quantum transfer matrix technique on large scale parallel computers. We demonstrate that the predictions of the models are consistent in the region of small magnetic fields which do not exceed 10 T and differ significantly in higher fields. Comparison with the experiment leads to a conclusion that better modeling of magnetic torque requires more complex microscopic model with single ion and bond-dependent exchange anisotropies.

  4. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.

    1975-01-01

    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results....... The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin....

  5. Electric field effect on magnetic anisotropy for Fe-Pt-Pd alloys

    Science.gov (United States)

    Kikushima, S.; Seki, T.; Uchida, K.; Saitoh, E.; Takanashi, K.

    2017-08-01

    The electric field effect on magnetic anisotropy was investigated for the FePt1-xPdx alloy films with perpendicular magnetic anisotropy. The polar magneto-optical Kerr (p-MOKE) loops were measured under the electric field application in order to evaluate the electric field-induced perpendicular magnetic anisotropy change per area (Δɛperpt). A clear change in the saturation field of p-MOKE loop was observed for FePt by varying the applied electric field (ΔE). In the case of FePt, Δɛperpt divided by ΔE was evaluated to be -129 (fJ/Vm). We found that the magnitude of Δɛperpt / ΔE was significantly reduced with increasing x.

  6. Electric field effect on magnetic anisotropy for Fe-Pt-Pd alloys

    Directory of Open Access Journals (Sweden)

    S. Kikushima

    2017-08-01

    Full Text Available The electric field effect on magnetic anisotropy was investigated for the FePt1-xPdx alloy films with perpendicular magnetic anisotropy. The polar magneto-optical Kerr (p-MOKE loops were measured under the electric field application in order to evaluate the electric field-induced perpendicular magnetic anisotropy change per area (Δεperpt. A clear change in the saturation field of p-MOKE loop was observed for FePt by varying the applied electric field (ΔE. In the case of FePt, Δεperpt divided by ΔE was evaluated to be -129 (fJ/Vm. We found that the magnitude of Δεperpt / ΔE was significantly reduced with increasing x.

  7. Inducing magnetic anisotropy and optimized microstructure in rapidly solidified Nd-Fe-B based magnets by thermal gradient, magnetic field and hot deformation

    Science.gov (United States)

    Zhao, L. Z.; Li, W.; Wu, X. H.; Hussain, M.; Liu, Z. W.; Zhang, G. Q.; Greneche, J. M.

    2016-10-01

    Direct preparation of Nd-Fe-B alloys by rapid solidification of copper mold casting is a very simple and low cost process for mini-magnets, but these magnets are generally magnetically isotropic. In this work, high coercivity Nd24Co20Fe41B11Al4 rods were produced by injection casting. To induce magnetic anisotropy, temperature gradient, assisted magnetic field, and hot deformation (HD) procedures were employed. As-cast samples showed non-uniform microstructure due to the melt convection. The thermal gradient during solidification led to the formation of radially distributed acicular hard magnetic grains, which gives the magnetic anisotropy. The growth of the oriented grains was confirmed by phase field simulation. A magnetic field up to 1 T applied along the casting direction could not induce significant magnetic anisotropy, but it improved the magnetic properties by reducing the non-uniformity and forming a uniform microstructure. The annealed alloys exhibited high intrinsic coercivity but disappeared anisotropy. HD was demonstrated to be a good approach for inducing magnetic anisotropy and enhanced coercivity by deforming and refining the grains. This work provides an alternative approach for preparing fully dense Nd-rich anisotropic bulk Nd-Fe-B magnets.

  8. Magnetic Anisotropy of an Fe-Porphyrin Complex on Au(111) Surface

    Science.gov (United States)

    Wang, Weihua; Liu, Bing; Fu, Huixia; Xing, Shuya; Meng, Sheng; Guo, Jiandong

    By a combined study of low temperature scanning tunnelling microscopy (STM) and density functional theory (DFT) calculations, we have investigated the magnetic properties of an Fe-TPyP complex (i-FeTPyP) in the initial stage of metalation reaction on Au(111) substrate. The inelastic electron tunneling spectroscopy of i-FeTPyP showed typical zero-field excitation energy of 18 meV for the first excited state. Modeling the spin excitation energy in magnetic fields by spin Hamiltonian gave an easy-axis anisotropy perpendicular to the molecular plane. DFT calculations reveal that the Fe atom in i-FeTPyP is lifted from Au substrate and surrounded by elongated Fe-N bonds, and has an orbital angular momentum of L =2 and spin angular momentum of S =2. The orbital angular momentum not only contributes to the large magnetic anisotropy by spin-orbital coupling interaction, but also the in-plane orbital motion causes the easy-axis anisotropy, in agreement with experimental results. Our experiment demonstrate a new method to achieve large magnetic anisotropy by ligand fields realized in on-surface metalation reaction, and again highlights the crucial role of ligand field in determining the magnetic property of 3 d magnetic atoms. This project was supported by the Hundred Talents Program of the Chinese Academy of Sciences.

  9. A torque balance measurement of anisotropy of the magnetic susceptibility in white matter.

    Science.gov (United States)

    van Gelderen, Peter; Mandelkow, Hendrik; de Zwart, Jacco A; Duyn, Jeff H

    2015-11-01

    Recent MRI studies have suggested that the magnetic susceptibility of white matter (WM) in the human brain is anisotropic, providing a new contrast mechanism for the visualization of fiber bundles and allowing the extraction of cellular compartment-specific information. This study provides an independent confirmation and quantification of this anisotropy. Anisotropic magnetic susceptibility results in a torque exerted on WM when placed in a uniform magnetic field, tending to align the WM fibers with the field. To quantify the effect, excised spinal cord samples were placed in a torque balance inside the magnet of a 7 T MRI system and the magnetic torque was measured as function of orientation. All tissue samples (n = 5) showed orienting effects, confirming the presence of anisotropic susceptibility. Analysis of the magnetic torque resulted in reproducible values for the WM volume anisotropy that ranged from 13.6 to 19.2 ppb. The independently determined anisotropy values confirm estimates inferred from MRI experiments and validate the use of anisotropy to extract novel information about brain fiber structure and myelination. © 2014 Wiley Periodicals, Inc.

  10. Ferromagnetic (Ga,Mn)As layers and nanostructures: control of magnetic anisotropy by strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wenisch, Jan

    2008-07-01

    This work studies the fundamental connection between lattice strain and magnetic anisotropy in the ferromagnetic semiconductor (Ga,Mn)As. The first chapters provide a general introduction into the material system and a detailed description of the growth process by molecular beam epitaxy. A finite element simulation formalism is developed to model the strain distribution in (Ga,Mn)As nanostructures is introduced and its predictions verified by high-resolution X-ray diffraction methods. The influence of lattice strain on the magnetic anisotropy is explained by an magnetostatic model. A possible device application is described in the closing chapter. (orig.)

  11. On the single-ion Magnetic Anisotropy of the Rare-Earth Metals

    DEFF Research Database (Denmark)

    Kolmakova, N.P.; Tishin, A.M.; Bohr, Jakob

    1996-01-01

    The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data.......The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data....

  12. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar, E-mail: pilar.prieto@uam.es [Dpto. Física Aplicada M-12, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Prieto, José Emilio [Centro de Microanálisis de Materiales (CMAM) and Dpto. De Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gargallo-Caballero, Raquel; Marco, José Francisco; Figuera, Juan de la [Instituto de Química Física “Rocasolano”, CSIC, 28006 Madrid (Spain)

    2015-12-30

    Graphical abstract: - Highlights: • The magnetic anisotropy of magnetite thin films is controlled by the substrate induced microstructure. • Single-crystal oxide substrates induce fourfold in-plane magnetic anisotropy • MgO and SrTiO{sub 3} substrates show the same magnetic behavior despite its different mismatch with Fe{sub 3}O{sub 4} films. • Silicon and glass substrates induce in-plane magnetic isotropy and uniaxial anisotropy, respectively. - Abstract: Magnetite (Fe{sub 3}O{sub 4}) thin films were deposited on MgO (0 0 1), SrTiO{sub 3} (0 0 1), LaAlO{sub 3} (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO{sub 3} substrates, in which the lattice mismatch between the Fe{sub 3}O{sub 4} films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO{sub 3} (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  13. Protected giant magnetic anisotropy in transition-metal adatoms on defected tungsten disulfide monolayer

    Science.gov (United States)

    Li, Jie; Wang, Hui; Wu, Ruqian

    Giant magnetic anisotropy, especially in systems with magnetic units protected, is very important for the development of spintronics and quantum computing devices. Through systematic first-principles calculations, we identified that Ir@D-WS2 and Os@D-WS2 may have magnetic anisotropy energies up to 40 meV even when they are covered by graphene, sufficient to frustrate the thermal fluctuation at room temperature. Moreover, the magnetic anisotropy of Os@D-WS2 can be enhanced by 300% when an external electric field is applied in a range of 0.5 to -0.5 V/Ã. This finding of giant magnetic anisotropy in a well protected materials opens an vista of the development of data storage and spintronic devices. Work at Fudan was supported by the Chinese National Science Foundation (Grant No. 11474056) and National Basic Research Program of China (Grant No. 2015CB921400). Work at UCI was supported by DOE-BES (Grant No. DE-FG02-05ER46237).

  14. Direct measurement of the magnetic anisotropy of thin sputtered MgB{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Fabretti, Savio; Imort, Inga-Mareen; Thomas, Andy [Universitaet Bielefeld (Germany)

    2013-07-01

    The simple hexagonal crystal structure and large London penetration depth make Magnesium-diboride an excellent candidate for spin polarization measurements using the Meservey-Tedrow method. In a step towards these measurements, we investigated the magnetic anisotropy of thin MgB{sub 2} films sputtered onto cubic (001)MgO and R-cut sapphire substrates. We present the high field cooling experiments with an applied magnetic field perpendicular and parallel to the film plane for those samples. These measurements were done in the high field laboratory in Nijmegen due to the required high upper critical field for thin sputtered films of up to 30 T. Our measurements show an upper critical field of 38.31 T with field parallel to the film plane and 27.7 T with a field perpendicular to the film plane for the samples with 120 nm MgB{sub 2}. A linear fit shows a good approximation with the data points, although the parallel magnetic field could not destroy the superconductivity. We achieved a magnetic anisotropy ratio of 1.38. Literature values show an anisotropy ratio between 1.25 and 2 for thin films, which was fit with the Ginzburg Landau theory. Therefore our results agrees with the previously estimated anisotropy ratio for thin MgB{sub 2} films, where magnetic fields of up to 7 T were used.

  15. Influence of magnetocrystalline anisotropy on the magnetization dynamics of magnetic microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A; Wiemann, C; Cramm, S; Schneider, C M, E-mail: a.kaiser@fz-juelich.d [Forschungszentrum Juelich, Institut fuer Festkoerperforschung IFF-9, and JARA-FIT, 52425 Juelich (Germany)

    2009-08-05

    The study of magnetodynamics using stroboscopic time-resolved x-ray photoemission electron microscopy (TR-XPEEM) involves an intrinsic timescale provided by the pulse structure of the synchrotron radiation. In the usual multi-bunch operation mode, the time span between two subsequent light pulses is too short to allow a relaxation of the system into the ground state before the next pump-probe cycle starts. Using a deflection gating mechanism described in this paper we are able to pick the photoemission signal resulting from selected light pulses. Thus, PEEM measurements can be carried out in a flexible timing scheme with longer delays between two light pulses. Using this technique, the magnetodynamics of both Permalloy and iron structures have been investigated. The differences in the dynamic response on a short magnetic field pulse are discussed with respect to the magnetocrystalline anisotropy.

  16. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy

    KAUST Repository

    Hou, Zhipeng

    2017-06-07

    The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions can be realized. For example, being able to create and manipulate skyrmionic spin textures at room temperature is of great importance for further technological applications because they can adapt to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3 Sn2 magnet with uniaxial magnetic anisotropy is reported. The magnetization dynamics are investigated using in situ Lorentz transmission electron microscopy, revealing that the transformation between different magnetic bubbles and domains is via the motion of Bloch lines driven by an applied external magnetic field. These results demonstrate that Fe3 Sn2 facilitates a unique magnetic control of topological spin textures at room temperature, making it a promising candidate for further skyrmion-based spintronic devices.

  17. Anisotropies of anhysteretic remanence and magnetic susceptibility of marly clays from Central Italy

    Directory of Open Access Journals (Sweden)

    L. Sagnotti

    1994-06-01

    Full Text Available Marly clays from an Upper Pliocene unit at Valle Ricca (Rorne were investigated for their Anisotropy of Anhysteretic Remanence (AAR and Anisotropy of Magnetic Susceptibility (AMS. The study of AAR was accomplished for the first time in ltaly, developing a suitable laboratory technique and adapting a standard statistical procedure. The comparison between anhysteretic remanence and magnetic susceptibility anisotropies discriminates the fabric of the ferromagnetic fraction from that of the paramagnetic matrix of the rock. The separation of fabric components was applied to distinguish subsequent geological processes that affected the total rock fabric. The results indicate that the clayey units are particularly suitable for the empirical investigation of fabric to strain relationship in weakly deformed rocks.

  18. Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures

    OpenAIRE

    Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2016-01-01

    Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switch...

  19. Efficiency of Spin-Transfer-Torque Switching and Thermal-Stability Factor in a Spin-Valve Nanopillar with First- and Second-Order Uniaxial Magnetic Anisotropies

    Science.gov (United States)

    Matsumoto, Rie; Arai, Hiroko; Yuasa, Shinji; Imamura, Hiroshi

    2017-04-01

    The efficiency of spin-transfer-torque (STT) switching and the thermal-stability factor are important figures of merit in STT-based magnetoresistive random-access memory. We derive analytical expressions of the STT-switching efficiency and the thermal-stability factor for a perpendicularly magnetized spin-valve nanopillar with the first- and the second-order uniaxial magnetic anisotropy. It is shown that the STT-switching efficiency is maximized when the effective first-order anisotropy constant (Ku 1 ,eff ) is equal to the second-order anisotropy constant (Ku 2). It is also shown that the thermal-stability factor is most (least) sensitive to a variation of the applied current when Ku 2=-0.41 (0.70) Ku 1 ,eff.

  20. Thickness Dependence of Magnetic Anisotropy: An Investigation of the Magnetic Microstructure in Co/Au(111) Films

    Science.gov (United States)

    Oepen, Hans Peter

    1998-03-01

    The thickness driven spin reorientation in Co/Au(111) films has been investigated by means of the scanning electron microscope with polarization analysis (SEMPA). The magnetic microstructure of vertically magnetized films reveals the influence of the magneto-static energy. Domains are formed and the domain size collapses within a very small thickness range. Further thickness increase causes the magnetization to flip into the film plane. It turns out that the spin reorientation is controlled by higher order magnetic anisotropies. The transition proceeds via a state of coexisting phases which becomes evident from two boundaries appearing between the two phases with vertical and in-plane magnetization, respectively. A procedure is proposed that allows the determination of first and second order interface anisotropies.

  1. Reversible strain control of magnetic anisotropy in magnetoelectric heterostructures at room temperature.

    Science.gov (United States)

    Staruch, Margo; Gopman, Daniel B; Iunin, Yury L; Shull, Robert D; Cheng, Shu Fan; Bussmann, Konrad; Finkel, Peter

    2016-11-21

    The ability to tune both magnetic and electric properties in magnetoelectric (ME) composite heterostructures is crucial for multiple transduction applications including energy harvesting or magnetic field sensing, or other transduction devices. While large ME coupling achieved through interfacial strain-induced rotation of magnetic anisotropy in magnetostrictive/piezoelectric multiferroic heterostructures has been demonstrated, there are presently certain restrictions for achieving a full control of magnetism in an extensive operational dynamic range, limiting practical realization of this effect. Here, we demonstrate the possibility of generating substantial reversible anisotropy changes through induced interfacial strains driven by applied electric fields in magnetostrictive thin films deposited on (0 1 1)-oriented domain-engineered ternary relaxor ferroelectric single crystals with extended temperature and voltage ranges as compared to binary relaxors. We show, through a combination of angular magnetization and magneto-optical domain imaging measurements, that a 90° in-plane rotation of the magnetic anisotropy and propagation of magnetic domains with low applied electric fields under zero electric field bias are realized. To our knowledge, the present value attained for converse magnetoelectric coupling coefficient is the highest achieved in the linear piezoelectric regime and expected to be stable for a wide temperature range, thus representing a step towards practical ME transduction devices.

  2. Room-temperature magnetic anisotropy of lanthanide complexes: A model study for various coordination polyhedra

    Science.gov (United States)

    Mironov, Vladimir S.; Galyametdinov, Yury G.; Ceulemans, Arnout; Görller-Walrand, Christiane; Binnemans, Koen

    2002-03-01

    The dependence of the room-temperature magnetic anisotropy Δχ of lanthanide complexes on the type of the coordination polyhedron and on the nature of the lanthanide ion is quantitatively analyzed in terms of a model approach based on numerical calculations. The aim of this study is to establish general regularities in the variation of the sign and magnitude of the magnetic anisotropy of lanthanide complexes at room-temperature and to estimate its maximal value. Except for some special cases, the variation of the sign of the magnetic anisotropy over the series of isostructural lanthanide complexes is found to obey a general sign rule, according to which Ce(III), Pr(III), Nd(III), Sm(III), Tb(III), Dy(III), and Ho(III) complexes have one sign of Δχ and Eu(III), Er(III), Tm(III), and Yb(III) complexes have the opposite sign. Depending on the specific coordination polyhedron, a maximal magnetic anisotropy is observed for Tb(III), Dy(III), or Tm(III) complexes, and its absolute value can reach 50 000×10-6 cm3 mol-1 or more. Results of the present study can be helpful for the analysis of the orientational behavior of lanthanide-containing liquid crystals and lanthanide-doped bilayered micelles in an external magnetic field. The use of the Bleaney theory in the quantitative analysis of the magnetic anisotropy of lanthanide compounds is shown to have limitations because of a large ratio between the crystal-field splitting energy of the ground multiplet of the lanthanide ion and the thermal energy at room-temperature.

  3. Magnetic anisotropy and domain structure of manganese ferrite grown epitaxially on MgO

    NARCIS (Netherlands)

    van den Berg, Klaas; Lodder, J.C.; Mensinga, T.C.

    1976-01-01

    The properties of polycrystalline manganese ferrite thin films have been discussed in previous papers. The present study was undertaken to obtain supplementary information on the magnetic anisotropy and domain properties of the films. The ferrite films were grown epitaxially by an evaporation

  4. Single array of magnetic vortex disks uses in-plane anisotropy to create different logic gates

    Science.gov (United States)

    Vigo-Cotrina, H.; Guimarães, A. P.

    2017-11-01

    Using micromagnetic simulation, we show that in-plane uniaxial magnetic anisotropy (IPUA) can be used to obtain FAN-OUT, AND and OR gates in an array of coupled disks with magnetic vortex configuration. First, we studied the influence of the direction of application of the IPUA on the energy transfer time (τ) between two identical coupled nanodisks. We found that when the direction of the IPUA is along the x axis the magnetic interaction increases, allowing shorter values of τ , while the IPUA along the y direction has the opposite effect. The magnetic interactions between the nanodisks along x and y directions (the coupling integrals) as a function of the uniaxial anisotropy constant (Kσ) were obtained using a simple dipolar model. Next, we demonstrated that choosing a suitable direction of application of the IPUA, it is possible to create several different logic gates with a single array of coupled nanodisks.

  5. Observation of thickness dependence of magnetic surface anisotropy in ultrathin amorphous films

    Science.gov (United States)

    Hicken, R. J.; Rado, G. T.; Xiao, Gang; Chien, C. L.

    1990-04-01

    Ferromagnetic resonance (FMR) and SQUID magnetometry measurements have been made on multilayers of amorphous Fe70B30/Ag. The dependence of the magnetic surface anisotropy constant Ks on the magnetic layer thickness 2L has been determined in the range 1.6 Å16.5 Å, but decreases monotonically towards zero as 2L decreases from 16.5 Å towards zero. The FMR results can be well described by a theory developed for ultrathin amorphous ferromagnetic layers.

  6. Magnetization, Magnetocrystalline Anisotropy and the Crystalline Electric Field in Rare-Earth Al2 Compounds

    DEFF Research Database (Denmark)

    Purwins, H. -G.; Walker, E.; Barbara, B.

    1974-01-01

    a quantitative quantum mechanical description of the magnetization and the related magnetocrystalline anisotropy in terms of a cubic crystalline electric field and an isotropic exchange interaction. The parameters used in this description can be unified to good approximation to all REAl2 intermetallic compounds......Magnetization measurements are reported for single crystals of PrAl2 in the range from 4.2K to 30K for magnetic fields up to 150 kOe applied in the (100), (110) and (111) directions. For these measurements, together with the magnetization results obtained earlier for TbAl2 the authors give...

  7. Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism

    OpenAIRE

    Barnes, Stewart E.; Ieda, Jun'ichi; Maekawa, Sadamichi

    2013-01-01

    The control of the magnetism of ultra-thin ferromagnetic layers using an electric field rather than a current, if large enough, would lead to many technologically important applications. To date, while it is usually assumed the changes in the magnetic anisotropy, leading to such a control, arises from surface charge doping of the magnetic layer, a number of key experiments cannot be understood within such a scenario. Much studied is the fact that, for non-magnetic metals or semi-conductors, a...

  8. Comparison of Theories of Anisotropy in Transformer Oil-Based Magnetic Fluids

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2013-01-01

    Full Text Available The external magnetic field in transformer oil-based magnetic fluids leads to the aggregation of magnetic nanoparticles and formation of clusters. These aggregations are the result of the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs. However, the temperature of magnetic fluids has also very important influence on the structural changes because the mechanism of thermal motion acts against the cluster creation. The acoustic spectroscopy was used to study the anisotropy of transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature. In present the anisotropy of the magnetic fluids can be described by two theories. Taketomi theory assumes the existence of spherical clusters. These clusters form long chains, aligned in a magnetic field direction. Shliomis in his theory supposed that only nanoparticles formed chains. A comparison of the experimental results with the predictions of the Taketomi theory allowed a determination of the cluster radius and the number density of the colloidal particles. The proportions of the acoustic wave energy used for excitation of the translational and rotational motion were determined.

  9. Perpendicular magnetic anisotropy and microstructure properties of nanoscale Co/Au multilayers

    Science.gov (United States)

    Rizal, C.; Fullerton, E. E.

    2017-09-01

    We investigated the role of microstructure and Co layer thickness on the perpendicular magnetic anisotropy of as-deposited and annealed Ta (5 nm)/[Co (t Co)/Au (2 nm)]  ×  N  =  20 multilayers with 1  ⩽  t Co  ⩽  2 nm prepared using dc-magnetron sputtering. These multilayers were characterized using a vibrating sample magnetometer, a p-MOKE magnetometer and a microscopy magnetometer, small angle x-ray reflection (XRR), and wide angle x-ray diffraction (XRD) analysis. These multilayers demonstrated strong perpendicular magnetic anisotropy with their saturation magnetization close to the bulk magnetization of Co. Magnetization and magnetic anisotropy increased with annealing and this increase is directly linked to the strain relaxation and sharpening of the interfaces after annealing. Using XRR analysis before and after annealing, and fitting these XRR data, the multilayer periodicities are extracted and the refined layer thickness and surface roughness are determined. Using XRD analysis and fitting these XRD spectra, information regarding both the average lattice spacing of atoms and the strain developed on an individual layer were determined.

  10. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    Science.gov (United States)

    Prieto, Pilar; Prieto, José Emilio; Gargallo-Caballero, Raquel; Marco, José Francisco; de la Figuera, Juan

    2015-12-01

    Magnetite (Fe3O4) thin films were deposited on MgO (0 0 1), SrTiO3 (0 0 1), LaAlO3 (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO3 substrates, in which the lattice mismatch between the Fe3O4 films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO3 (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  11. Perpendicular magnetic anisotropy in amorphous NdxCo1 -x thin films studied by x-ray magnetic circular dichroism

    Science.gov (United States)

    Cid, R.; Alameda, J. M.; Valvidares, S. M.; Cezar, J. C.; Bencok, P.; Brookes, N. B.; Díaz, J.

    2017-06-01

    The origin of perpendicular magnetic anisotropy (PMA) in amorphous NdxCo1 -x thin films is investigated using x-ray magnetic circular dichroism (XMCD) spectroscopy at the Co L2 ,3 and Nd M4 ,5 edges. The magnetic orbital and spin moments of the 3 d cobalt and 4 f neodymium electrons were measured as a function of the magnetic field orientation, neodymium concentration, and temperature. In all the studied samples, the magnetic anisotropy of the neodymium subnetwork is always oriented perpendicular to the plane, whereas the anisotropy of the orbital moment of cobalt is in the basal plane. The ratio Lz/Sz of the neodymium 4 f orbitals changes with the sample orientation angle, being higher and closer to the atomic expected value at normal orientation and smaller at grazing angles. This result is well explained by assuming that the 4 f orbital is distorted by the effect of an anisotropic crystal field when it is magnetized along its hard axis, clearly indicating that the 4 f states are not rotationally invariant. The magnetic anisotropy energy associated to the neodymium subnetwork should be proportional to this distortion, which we demonstrate is accessible by applying the XMCD sum rules for the spin and intensity at the Nd M4 ,5 edges. The analysis unveils a significant portion of neodymium atoms magnetically uncoupled to cobalt, i.e., paramagnetic, confirming the inhomogeneity of the films and the presence of a highly disordered neodymium rich phase already detected by extended x-ray-absorption fine structure (EXAFS) spectroscopy. The presence of these inhomogeneities is inherent to the evaporation preparation method when the chosen concentration in the alloy is far from its eutectic concentrations. An interesting consequence of the particular way in which cobalt and neodymium segregates in this system is the enhancement of the cobalt spin moment which reaches 1.95 μB in the sample with the largest segregation.

  12. Magnetic anisotropy in the incommensurate ScFe{sub 4}Al{sub 8} system

    Energy Technology Data Exchange (ETDEWEB)

    Rećko, K., E-mail: k.recko@uwb.edu.pl [Faculty of Physics, University of Białystok, K. Ciołkowskiego 1L, 15-245 Białystok (Poland); Dobrzyński, L. [National Centre for Nuclear Research, A. Soltan 7, 05-400 Otwock-Świerk (Poland); Waliszewski, J.; Szymański, K. [Faculty of Physics, University of Białystok, K. Ciołkowskiego 1L, 15-245 Białystok (Poland)

    2015-08-15

    Neutron scattering and magnetization data are used for estimation of the spin ordering in ScFe{sub 4}Al{sub 8}. Results of experimental measurements are compared with the ground state configurations obtained by simulated annealing algorithms. The origins of the magnetocrystalline anisotropy of the scandium intermetallic alloy and the conditions of the coexistence of two different magnetic modulations as a function of the exchange integrals are discussed. The influence of the dipolar interactions for the noncollinearity and incommensurability in ScFe{sub 4}Al{sub 8} was determined. - Highlights: • We found dipolar and DM interactions as the anisotropy origins of 3d–3d–3p alloy. • We covered the explanation of incommensurability and noncollinearity of ScFe{sub 4}Al{sub 8}. • We discussed the magnetism resulting from competitiveness of exchange effects.

  13. L10-ordered MnAl thin films with high perpendicular magnetic anisotropy

    Science.gov (United States)

    Oogane, Mikihiko; Watanabe, Kenta; Saruyama, Haruaki; Hosoda, Masaki; Shahnaz, Parvin; Kurimoto, Yuta; Kubota, Miho; Ando, Yasuo

    2017-08-01

    L10-ordered MnAl thin films were epitaxially grown by sputtering. The film composition dependences of structural and magnetic properties were systematically investigated in the MnAl thin films. Both the L10-ordered parameter and the perpendicular magnetic anisotropy energy strongly depended on the composition of the MnAl thin films. The MnAl thin films with a Mn composition of 53-54 at. % showed both the highest L10-ordered parameter and the perpendicular magnetic anisotropy. The substrate and annealing temperatures were optimized to improve the magnetic properties and surface morphology. We have fabricated MnAl thin films with both a very high K u of 12 × 106 erg/cm3 and a small surface roughness of ca. 0.2 nm by optimizing the film composition and substrate and annealing temperatures. These results are useful guidelines for the fabrication of highly L10-ordered MnAl thin films with a large perpendicular magnetic anisotropy.

  14. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  15. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    Science.gov (United States)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  16. Voltage-induced strain control of the magnetic anisotropy in a Ni thin film on flexible substrate

    OpenAIRE

    Zighem, Fatih; Faurie, Damien; Mercone, Silvana; Belmeguenai, Mohamed; Haddadi, Halim

    2013-01-01

    Voltage-induced magnetic anisotropy has been quantitatively studied in polycrystalline Ni thin film deposited on flexible substrate using microstrip ferromagnetic resonance. This anisotropy is induced by a piezoelectric actuator on which the film/substrate system was glued. In our work, the control of the anisotropy through the applied elastic strains is facilitated by the compliant elastic behavior of the substrate. The in-plane strains in the film induced by the piezoelectric actuation have...

  17. Thickness dependence of microwave magnetic properties in electrodeposited Fe-Co soft magnetic films with in-plane anisotropy

    Science.gov (United States)

    Yang, Xu; Wei, Jian-Qiang; Li, Xing-Hua; Gong, Lu-Qian; Wang, Tao; Li, Fa-Shen

    2012-02-01

    In this work, the thickness effect of Fe 52Co 48 soft magnetic films with in-plane anisotropy on static and microwave magnetic properties was investigated. The hysteresis loop results indicated that the static in-plane uniaxial anisotropy field increased from almost 0-60 Oe with increasing film thickness from 100 to 540 nm and well-defined in-plane uniaxial magnetic anisotropy can be obtained as the thickness reached 540 nm or larger. Based on Landau-Lifshitz-Gilbert (LLG) equation, the microwave complex permeability spectra were analyzed and well fitted. The LLG curve-fitting results indicated that the initial permeability increased from 106 to 142 and the resonant frequency was shifted from 4.95 to 4.29 GHz as the film thickness was varied from 540 to 1500 nm. Moreover, it was found that there was a discrepancy between the static and the dynamically determined anisotropy field, which can be explained by introducing an additional effective isotropic ripple field. The decreased ripple field was suggested to result in a significant decrease of damping coefficient from 0.109 to 0.038.

  18. Thickness dependence of microwave magnetic properties in electrodeposited Fe-Co soft magnetic films with in-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xu; Wei Jianqiang; Li Xinghua; Gong Luqian [Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang Tao, E-mail: wtao@lzu.edu.cn [Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li Fashen [Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2012-02-01

    In this work, the thickness effect of Fe{sub 52}Co{sub 48} soft magnetic films with in-plane anisotropy on static and microwave magnetic properties was investigated. The hysteresis loop results indicated that the static in-plane uniaxial anisotropy field increased from almost 0-60 Oe with increasing film thickness from 100 to 540 nm and well-defined in-plane uniaxial magnetic anisotropy can be obtained as the thickness reached 540 nm or larger. Based on Landau-Lifshitz-Gilbert (LLG) equation, the microwave complex permeability spectra were analyzed and well fitted. The LLG curve-fitting results indicated that the initial permeability increased from 106 to 142 and the resonant frequency was shifted from 4.95 to 4.29 GHz as the film thickness was varied from 540 to 1500 nm. Moreover, it was found that there was a discrepancy between the static and the dynamically determined anisotropy field, which can be explained by introducing an additional effective isotropic ripple field. The decreased ripple field was suggested to result in a significant decrease of damping coefficient from 0.109 to 0.038.

  19. How strongly are the magnetic anisotropy and coordination numbers ...

    Indian Academy of Sciences (India)

    Our calculations reveal that complex 3 possesses the highest barrier height for reorientation of magnetisation (Ueff) and predict that 3 is likely to exhibit Single Molecule Magnet (SMM) behaviour. Complex 5 on the other hand is predicted to preclude any SMM behaviour as there is no intrinsic barrier for reorientation of ...

  20. Lattice and magnetic anisotropies in uranium intermetallic compounds

    DEFF Research Database (Denmark)

    Havela, L.; Mašková, S.; Adamska, A.

    2013-01-01

    Examples of UNiAlD and UCoGe illustrate that the soft crystallographic direction coincides quite generally with the shortest U-U links in U intermetallics. Added to existing experimental evidence on U compounds it leads to a simple rule, that the easy magnetization direction and the soft crystall...

  1. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic subfabrics of some minerals: an introductory study

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.; Pokorný, J.

    2017-01-01

    Roč. 208, č. 1 (2017), s. 385-402 ISSN 0956-540X R&D Projects: GA AV ČR IAAX00130801 Institutional support: RVO:67985831 Keywords : magnetic and electrical properties * magnetic fabrics and anisotropy * magnetic mineralogy and petrology * rock and mineral magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.414, year: 2016

  2. Engineering perpendicular magnetic anisotropy in Fe via interstitial nitrogenation: N choose K

    Directory of Open Access Journals (Sweden)

    Hongbin Zhang

    2016-11-01

    Full Text Available In this work, combining experimental results and first principles calculations, we show that interstitial nitrogen not only serves for inducing tetragonality in α′-Fe8Nx but is also essential for achieving a high degree of perpendicular magneto-crystalline anisotropy, K. Our results demonstrate that the orbital magnetic moments of the iron atoms above and below N in the direction of magnetization are much more susceptible to the applied magnetic field than their in-plane counterparts, leading to a giant value of K as compared to a hypothetical distorted material without N.

  3. Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation

    DEFF Research Database (Denmark)

    Tian, Bo; Wetterskog, Erik; Qiu, Zhen

    2017-01-01

    We demonstrate a homogeneous biosensor for the detection of multivalent targets by combination of magnetic nanoparticle (MNP) chains and a low-cost 405 nm laser-based optomagnetic system. The MNP chains are assembled in a rotating magnetic field and stabilized by multivalent target molecules....... The number of chains remaining in zero field is proportional to the target concentration, and can be quantified by optomagnetic measurements. The shape anisotropy of the MNP chains enhances the biosensor system in terms of providing efficient mixing, reduction of depletion effects (via magnetic shape...

  4. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  5. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  6. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  7. Magnetic surface anisotropy in ultrathin amorphous Fe70B30 and Co80B20 multilayer films

    Science.gov (United States)

    Hicken, R. J.; Rado, G. T.

    1992-11-01

    The dependence of the magnetic surface anisotropy constant KS on the magnetic layer thickness 2L has been studied in amorphous Fe70B30/Ag and amorphous C80B20/Ag multilayer films, by magnetometry and ferromagnetic resonance (FMR). Interpretation of the FMR data has required the extension of the theory of FMR in an ultrathin amorphous film so as to include the effect of an in-plane volume anisotropy. A method of determining the value of KS from perpendicular magnetization curves has been justified by introducing the surface anisotropy energy through the general exchange boundary conditions rather than as an effective volume anisotropy. The deduced values of KS for Fe70B30 and Co80B20 multilayers were found to exhibit a qualitatively similar thickness dependence but to be of opposite sign. A magnetostrictive surface anisotropy mechanism is proposed.

  8. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    Science.gov (United States)

    Młyńczak, E.; Luches, P.; Valeri, S.; Korecki, J.

    2013-06-01

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Mössbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using 57Fe-CEMS. An iron oxide phase (Fe3+4Fe2+1O7), as thick as 31 Å, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  9. Origin of uniaxial in-plane magnetic anisotropy in Fe{sub 81}Ni{sub 19}/Co superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, I.L. E-mail: inna.soroka@fysik.uu.se; Hjoervarsson, B

    2004-05-01

    We have studied the in-plane magnetic uniaxial anisotropy, for (0 0 1)-oriented Fe{sub 81}Ni{sub 19}/Co superlattices grown on MgO (0 0 1) by magnetron sputtering. The layers in the superlattices have a BCC structure with a slight orthorhombic distortion, which gives rise to a weak in-plane uniaxial anisotropy.0.

  10. Anisotropy of magnetic susceptibility (AMS) studies of Campanian ...

    Indian Academy of Sciences (India)

    The observed AMS parameters like shape factor () (prolate to oblate), value and random distribution of minimum (3) and maximum (1) susceptibility axes are supported for secondary fabrics in Kallankurichchi Formation as a result of post-depositional processes. Based on petrographic studies, it can be established ...

  11. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices

    Science.gov (United States)

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-12-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

  12. Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals

    DEFF Research Database (Denmark)

    Li, Dongzhe; Barreteau, Cyrille; Castell, Martin R.

    2014-01-01

    We report tight-binding and density functional theory calculations of magnetocrystalline anisotropy energy (MAE) of free Fe (body-centered-cubic) and Co (face-centered-cubic) slabs and nanocrystals. The nanocrystals are truncated square pyramids which can be grown experimentally by deposition...... of metal on a SrTiO3(001) substrate. For both elements our local analysis shows that the totalMAE of the nanocrystals is largely dominated by the contribution of (001) facets. However, while the easy axis of Fe(001) is out-of-plane, it is in-plane for Co(001). This has direct consequences on the magnetic...... reversal mechanism of the nanocrystals. Indeed, the very high uniaxial anisotropy of Fe nanocrystals makes them a much better potential candidate for magnetic storage devices....

  13. Ferromagnetic resonance method for determining the magnetic surface anisotropy of amorphous films

    Science.gov (United States)

    Zhang, Lu; Rado, George T.

    1987-11-01

    The theory of a ferromagnetic resonance (FMR) method for determining the magnetic surface anisotropy of amorphous films is presented. This method enables one to deduce the surface anisotropy constant Ks of an amorphous material from the dependence of the magnetic resonance field on the film thickness. The analysis includes spin-wave modes and surface-induced modes, perpendicular and parallel FMR configurations, and thin as well as ultrathin films. No approximations are made other than the linearization of the equation of motion and the assumption that skin-depth effects and electromagnetic propagation effects are negligible. Good agreement is found between the theory of the method and experimental FMR data on ultrathin films of amorphous Fe-B alloys. The reliability of the Ks values deduced by means of the theory from experimental FMR and superconducting quantum-interference device data is briefly discussed.

  14. Controlled Under Pressure: Understanding Spin Orbit Coupling and Exchange Anisotropy in Organic Magnets

    Science.gov (United States)

    Hill, Stephen

    2015-03-01

    The application of high pressure in the study of molecule-based materials has gained considerable interest, in part due to their high compressibilities, but also because the relevant electronic/magnetic degrees of freedom are often very sensitive to pressure. For example, small changes in the coordination environment around a magnetic transition metal ion can produce quite dramatic variations in both the on-site spin-orbit anisotropy as well as the exchange interactions between such ions when assembled into clusters or 3D networks. This has spurred the development of sophisticated spectroscopic tools that can be integrated with high-pressure instrumentation. The study of magnetic structure/property relations requires not only precise crystallographic data, but also detailed spectroscopic information concerning the unpaired electrons that give rise to the magnetic properties. This invited talk will begin with a brief description of the development and application of methods enabling EPR studies of oriented single-crystal samples subjected to hydrostatic pressures of up to 3.5 GPa. After an introductory example, the remainder of the talk will focus on a family of heavy atom organic radical ferromagnets (containing S and Se heteroatoms) that hold records for both the highest transition temperature and coercivity (for organic magnets). The latter is the result of an unexpectedly high magnetic anisotropy, attributable to spin-orbit-mediated exchange (hopping) processes., Ferromagnetic resonance (FMR) measurements reveal a continuous increase in the magnetic anisotropy with increasing pressure in the all Se compound, in excellent agreement with ab initio calculations based on the known pressure-dependence of its structure. The large value of anisotropic exchange terms in this heavy atom organic ferromagnet emphasizes the important role of spin-orbit coupling in a wide range of organics where this effect is usually considered to be small. This work was supported by the

  15. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    Science.gov (United States)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  16. Electric-field control of the magnetic anisotropy in an ultrathin (Ga,Mn)As/(Ga,Mn)(As,P) bilayer

    OpenAIRE

    Niazi, Tarik; Cormier, Mathieu; Lucot, Damien; Largeau, Ludovic; Jeudy, Vincent; Cibert, Joel; Lemaître, Aristide

    2012-01-01

    International audience; We report on the electric control of the magnetic anisotropy in an ultrathin ferromagnetic (Ga,Mn)As/(Ga,Mn)(As,P) bilayer with competing in-plane and out-of-plane anisotropies. The carrier distribution and therefore the strength of the effective anisotropy is controlled by the gate voltage of a field effect device. Anomalous Hall Effect measurements confirm that a depletion of carriers in the upper (Ga,Mn)As layer results in the decrease of the in-plane anisotropy. The ...

  17. Enhanced magnetization and anisotropy in Mn-Ga thin films grown on LSAT

    Science.gov (United States)

    Karel, J.; Casoli, F.; Nasi, L.; Lupo, P.; Sahoo, R.; Ernst, B.; Markou, A.; Kalache, A.; Cabassi, R.; Albertini, F.; Felser, C.

    2017-10-01

    Epitaxial thin films of MnxGa1-x (x = 0.70, 0.74) grown on single crystal (LaAlO3)0.3(Sr2TaAlO6)0.7 [LSAT] substrates exhibit an enhanced magnetic moment and magnetic anisotropy in comparison to films of the same composition grown epitaxially on SrTiO3 [STO] single crystal substrates. Atomic and magnetic force microscopy revealed films exhibiting uniform grains and magnetic domain structures, with only minor differences between the films grown on different substrates. High resolution transmission electron microscopy on the x = 0.74 sample grown on LSAT showed a well-ordered, faceted film structure with the tetragonal c-axis oriented out of the film plane. Further, misfit dislocations, accommodating the lattice mismatch, were evidenced at the film/substrate interface. The out of plane c lattice parameter is larger for all x in the films grown on LSAT, due to the smaller substrate lattice parameter compared to STO. The increase in c generates a larger distortion of the tetragonal lattice which promotes the enhanced magnetization and magnetocrystalline anisotropy. These results indicate that LSAT is a promising substrate for realizing highly tailored magnetic properties for future spintronic applications not only in MnxGa1-x but also in the broader class of tetragonal Mn-Z-Ga (Z = transition metal) materials.

  18. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    Science.gov (United States)

    Li, Jie; Wang, Hui; Hu, Jun; Wu, Ruqian

    For a magnetic units at the nanometer scale, one of the most important issues is how to hold thermal fluctuation of its magnetization, i.e., how to enhance its blocking temperature (TB) to above 300K. Through systematic density functional calculations, the structural stability and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated. We find twelve cases that may have magnetic anisotropy energies (MAEs) larger than 30 meV. In particular, Ir-Ir@Dh-BN has both large MAE (~126 meV) and high structural stability, which makes it a promising candidate of magnetic unit in spintronics and quantum computing devices. Work at Fudan was supported by the Chinese National Science Foundation (11474056) and National Basic Research Program of China (2015CB921400). Work at UCI was supported by DOE-BES (Grant No. DE-FG02-05ER46237).

  19. Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy.

    Science.gov (United States)

    Liu, R H; Lim, W L; Urazhdin, S

    2015-04-03

    We study the spectral characteristics of spin current nano-oscillators based on the Pt/[Co/Ni] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films.

  20. Nonlinear electric field effect on perpendicular magnetic anisotropy in Fe/MgO interfaces

    Science.gov (United States)

    Xiang, Qingyi; Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-10-01

    The electric field effect on magnetic anisotropy was studied in an ultrathin Fe(0 0 1) monocrystalline layer sandwiched between Cr buffer and MgO tunnel barrier layers, mainly through post-annealing temperature and measurement temperature dependences. A large coefficient of the electric field effect of more than 200 fJ (Vm)-1 was observed in the negative range of electric field, as well as an areal energy density of perpendicular magnetic anisotropy (PMA) of around 600 µJ m-2. More interestingly, nonlinear behavior, giving rise to a local minimum around  +100 mV nm-1, was observed in the electric field dependence of magnetic anisotropy, being independent of the post-annealing and measurement temperatures. The insensitivity to both the interface conditions and the temperature of the system suggests that the nonlinear behavior is attributed to an intrinsic origin such as an inherent electronic structure in the Fe/MgO interface. The present study can contribute to the progress in theoretical studies, such as ab initio calculations, on the mechanism of the electric field effect on PMA.

  1. Magnetic anisotropy and lattice dynamics in FeAs studied by Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Żukrowski, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Bukowski, Z. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, PL-50-422 Wrocław (Poland)

    2014-01-05

    Highlights: • Large anisotropy of the Fe hyperfine field along magnetic spiral. • Lattice hardening upon transition to the magnetic state. • Anisotropy of the recoilless fraction in the paramagnetic state. • Evaporation of arsenic at about 1000 K. -- Abstract: Iron mono-arsenide in the powder form has been investigated by transmission {sup 57}Fe Mössbauer spectroscopy in the temperature range 4.2–1000 K. Additional spectra have been obtained at 20 K and 100 K applying external magnetic field of 7 T. It was found that the spin spiral propagating along the c-axis leads to the complex variation of the hyperfine magnetic field amplitude with the spin orientation varying in the a–b plane. The magnitude of the hyperfine field pointing in the direction of the local magnetic moment depends on the orientation of this moment in the a–b plane. Patterns are vastly different for iron located in the [0 k 0] positions and for iron in the [0 k +1/2 0] positions within the orthorhombic cell set to the Pnma symmetry. Lattice softens upon transition to the paramagnetic state at 69.2 K primarily in the a–c plane as seen by iron atoms. This effect is quite large considering lack of the structural transition. Two previously mentioned iron sites are discernible in the paramagnetic region till 300 K by different electron densities on the iron nuclei. The anisotropy of the iron vibrations developed at the transition to the paramagnetic state increases with the temperature in accordance with the harmonic approximation, albeit tends to saturation at high temperatures indicating gradual onset of the quasi-harmonic conditions. It seems that neither hyperfine fields nor magnetic moments are correct order parameters in light of the determined static critical exponents. Sample starts to loose arsenic at about 1000 K and under vacuum.

  2. Interface magnetic anisotropy in cobalt clusters embedded in a platinum matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, M. E-mail: mjamet@dpm.univ-lyon1.fr; Negrier, M.; Dupuis, V.; Tuaillon-Combes, J.; Melinon, P.; Perez, A.; Wernsdorfer, W.; Barbara, B.; Baguenard, B

    2001-12-01

    Noninteracting cobalt clusters containing almost one thousand atoms are embedded in a platinum matrix using a co-deposition technique. This one allows us to prepare nanostructured films from miscible elements such as Co/Pt. Deposited clusters keep a pure cobalt core surrounded with an alloyed CoPt interface. Magnetic measurements performed on this cluster assembly reveal a very strong interface anisotropy. Moreover, we find that a simple core-shell model can account for the observed anomalous temperature dependence of the cluster magnetization.

  3. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología—CINN (CSIC—Universidad de Oviedo—Principado de Asturias), Parque Tecnológico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vélez, M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  4. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  5. Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Directory of Open Access Journals (Sweden)

    Chun Dong

    2011-01-01

    Full Text Available Abstract A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe and high magnetization (900–1,000 emu/cm3 characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.

  6. Magnetization switching process in a torus nanoring with easy-plane surface anisotropy

    Science.gov (United States)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-11-01

    We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.

  7. Electronic structure and magnetic anisotropy of Sm2Fe17Nx

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2014-03-01

    Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  8. Magnetic anisotropy of graphene quantum dots decorated with a ruthenium adatom

    Directory of Open Access Journals (Sweden)

    Igor Beljakov

    2013-07-01

    Full Text Available The creation of magnetic storage devices by decoration of a graphene sheet by magnetic transition-metal adatoms, utilizing the high in-plane versus out-of-plane magnetic anisotropy energy (MAE, has recently been proposed. This concept is extended in our density-functional-based modeling study by incorporating the influence of the graphene edge on the MAE. We consider triangular graphene flakes with both armchair and zigzag edges in which a single ruthenium adatom is placed at symmetrically inequivalent positions. Depending on the edge-type, the graphene edge was found to influence the MAE in opposite ways: for the armchair flake the MAE increases close to the edge, while the opposite is true for the zigzag edge. Additionally, in-plane pinning of the magnetization direction perpendicular to the edge itself is observed for the first time.

  9. Efficient skyrmion transport mediated by a voltage controlled magnetic anisotropy gradient.

    Science.gov (United States)

    Wang, Xuan; Gan, W L; Martinez, J C; Tan, F N; Jalil, M B A; Lew, W S

    2018-01-03

    Despite the inefficiencies associated with current-induced spin torques, they remain the predominant mode of skyrmion propulsion. In this work, we demonstrate numerically that skyrmions can be transported much more efficiently with a voltage-controlled magnetic anisotropy (VCMA) gradient. An analytical model was developed to understand the underlying skyrmion dynamics on a track under the VCMA conditions. Our calculations reveal that the repulsive skyrmion-edge interaction not only prevents the skyrmion from annihilating but also generates most of the skyrmion propulsion. A multiplexed array of gate electrodes can be used to create discrete anisotropy gradients over a long distance, leading to the formation of a series of translatable skyrmion potential wells. Due to the strong confining potentials, skyrmions are transported at a 70% higher packing density. Finally, we demonstrated that this form of skyrmion propulsion can also be implemented on almost any 2D geometry, providing improved versatility over current-induced methods.

  10. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure.

    Science.gov (United States)

    Merk, Vivian; Chanana, Munish; Gierlinger, Notburga; Hirt, Ann M; Burgert, Ingo

    2014-06-25

    Anisotropic and hierarchical structures are bound in nature and highly desired in engineered materials, due to their outstanding functions and performance. Mimicking such natural features with synthetic materials and methods has been a highly active area of research in the last decades. Unlike these methods, we use the native biomaterial wood, with its intrinsic anisotropy and hierarchy as a directional scaffold for the incorporation of magnetic nanoparticles inside the wood material. Nanocrystalline iron oxide particles were synthesized in situ via coprecipitation of ferric and ferrous ions within the interconnected pore network of bulk wood. Imaging with low-vacuum and cryogenic electron microscopy as well as spectral Raman mapping revealed layered nanosize particles firmly attached to the inner surface of the wood cell walls. The mineralogy of iron oxide was identified by XRD powder diffraction and Raman spectroscopy as a mixture of the spinel phases magnetite and maghemite. The intrinsic structural architecture of native wood entails a three-dimensional assembly of the colloidal iron oxide which results in direction-dependent magnetic features of the wood-mineral hybrid material. This superinduced magnetic anisotropy, as quantified by direction-dependent magnetic hysteresis loops and low-field susceptibility tensors, allows for directional lift, drag, alignment, (re)orientation, and actuation, and opens up novel applications of the natural resource wood.

  11. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001 substrate

    Directory of Open Access Journals (Sweden)

    Syed Sheraz Ahmad

    2016-11-01

    Full Text Available Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001 substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm. The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED, magneto-optical Kerr effect (MOKE and anisotropic magnetoresistance (AMR. By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA. We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer to 300 Oe (with 20 nm Cu buffer, in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  12. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001) substrate

    Science.gov (United States)

    Ahmad, Syed Sheraz; He, Wei; Zhang, Yong-Sheng; Tang, Jin; Gul, Qeemat; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2016-11-01

    Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001) substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm). The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED), magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR). By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer) one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA). We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer) to 300 Oe (with 20 nm Cu buffer), in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  13. Effect of deposition technique of Ni on the perpendicular magnetic anisotropy in Co/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, S., E-mail: sakbulut@gtu.edu.tr [Gebze Technical University, Physics Department, Istanbul Cad, PK 41400 Gebze/Kocaeli (Turkey); Akbulut, A. [Gebze Technical University, Physics Department, Istanbul Cad, PK 41400 Gebze/Kocaeli (Turkey); Özdemir, M. [Marmara University, Physics Department, Göztepe, Istanbul (Turkey); Yildiz, F., E-mail: fyildiz@gtu.edu.tr [Gebze Technical University, Physics Department, Istanbul Cad, PK 41400 Gebze/Kocaeli (Turkey)

    2015-09-15

    The perpendicular magnetic anisotropy (PMA) of Si/Pt 3.5/(Co 0.3/Ni 0.6){sub n} /Co 0.3/ Pt 3 (all thicknesses are nm) multilayers were investigated for two different sample sets by using ferromagnetic resonance (FMR) and magnetooptic Kerr effect (MOKE) techniques. In the first sample set all layers (buffer, cap, Co and Ni) were grown by magnetron sputtering technique while in the second sample set Ni sub-layers were grown by molecular beam epitaxy (MBE) at high vacuum. Apart from deposition technique of Ni, all other parameters like thicknesses and growth rates of each layers are same for both sample sets. Multilayers in these two sample sets display PMA in the as grown state until a certain value of bilayer repetition (n) and the strength of PMA decreases with increasing n. Magnetic easy axis's of the multilayered samples switched from film normal to the film plane when n is 9 and 5 for the first and second sample sets, respectively. The reason for that, PMA was decreased due to increasing roughness with increasing n. This was confirmed by X Ray Reflectivity (XRR) measurements for both sample sets. Moreover, in the first sample set coercive field values are smaller than the second sample set, which means magnetic anisotropy is lower than the latter one. This stronger PMA is arising due to existence of stronger Pt (111) and Co/Ni (111) textures in the second sample set. - Highlights: • Effect of deposition techniques for Ni sub-layers on magnetic properties in [Co/Ni]{sub n} multilayered films was studied. • Ni sub-layers were deposited by two different techniques, molecular beam epitaxy (MBE) and magnetron sputtering. • Spin reorientation thickness and magnitude of the anisotropy are strongly depending on growing techniques.

  14. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films

    Science.gov (United States)

    Kandpal, Lalit M.; Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Gupta, Anurag; Awana, V. P. S.; Singh, H. K.

    2016-06-01

    The present study reports the impact of magnetic anisotropy (MA) on magnetotransport properties such as the magnetic transitions, magnetic liquid behavior, glass transition and anisotropic magnetoresistance (AMR) in epitaxial film (thickness 42 nm) of strongly phase separated manganite La5/8-yPryCa3/8MnO3 (y≈0.4). Angle dependent magnetization measurement confirms the out-of-plane magnetic anisotropy with the magnetic easy axes aligned in the plane of the film and the magnetic hard axis along the normal to the film plane. The more prominent divergence between the zero filed cooled (ZFC) and field cooled warming (FCW) and the stronger hysteresis between the field cooled cooling (FCC) and FCW magnetization for H ∥ shows the weakening of the magnetic liquid along the magnetic hard axis. The peak at Tp≈42 K in FCW magnetization, which characterizes the onset of spin freezing shifts down to Tp≈18 K as the field direction is switched from the easy axes (H ∥) to the hard axis (H ⊥). The glass transition, which appears at Tg≈28 K for H ∥ disappears for H ⊥. The easy axis magnetization (M∣∣) appears to saturate around H~20 kOe, but the hard axis counterpart (M⊥) does not show such tendency even up to H=50 kOe. MA appears well above the ferromagnetic (FM) transition at T≈170 K, which is nearly the same as the Neel temperature (TN) of M⊥ - T . The temperature dependent resistivity measured at H=10 kOe applied along the easy axis (ρ|| - T) and the hard axis (ρ⊥ - T) shows insulator metal transition (IMT) at ≈106 K and ≈99 K in the cooling cycle, respectively. The large difference between ρ⊥ - T and ρ|| - T during the cooling cycle and in the vicinity of IMT results in huge AMR of ≈-142% and -115%. The observed properties have been explained in terms of the MA induced variation in the relative fraction of the coexisting magnetic phases.

  15. Thickness dependence of magnetic surface anisotropy in ultrathin amorphous films (abstract)

    Science.gov (United States)

    Hicken, R. J.; Rado, G. T.; Xiao, Gang; Chien, C. L.

    1990-05-01

    In searching for a possible dependence of magnetic surface anisotropy on film thickness, the magnetic surface anisotropy constant Ks of compositionally modulated amorphous Fe70B30-Ag films1 was measured by means of a method2 involving the dependence of the ferromagnetic resonance (FMR) fields on the magnetic layer thickness 2L. The ratio of the Ag to the Fe70B30 thickness was 3 to 1 while 2L ranged from 1.6 to 90 Å. Measurements were made with the applied static magnetic field parallel and perpendicular to the plane of the sample, at both X- and K-band frequencies for at least 14 values of 2L in each case. The results of magnetization measurements, made by SQUID magnetometry, have already been reported.1 Using the measured values of the thin-film magnetization and the aforementioned method, the value of Ks has been determined over the entire range of 2L. The results are consistent with a constant value of Ks for 2L>16.5 Å, while Ks is found to decrease monotonically as 2L is reduced from 16.5 to 1.6 Å. A similar decrease of Ks is found even if the bulk value rather than the thin-film values of the magnetization is used throughout. In addition, the value of Ks has been deduced for 2L=4.1, 6.7, 10.2, and 16.7 Å, from the original SQUID data. These values are in good agreement with those determined by the FMR method.

  16. Roles of bulk and surface magnetic anisotropy on the longitudinal spin Seebeck effect of Pt/YIG.

    Science.gov (United States)

    Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Srikanth, Hariharan

    2017-10-17

    A clear understanding of the temperature evolution of the longitudinal spin Seebeck effect (LSSE) in the classic Pt/yttrium iron garnet (YIG) system and its association with magnetic anisotropy is essential towards optimization of its spin-caloric functionality for spintronics applications. We report here for the first time the temperature dependences of LSSE voltage (V LSSE), magnetocrystalline anisotropy field (H K) and surface perpendicular magnetic anisotropy field (H KS) in the same Pt/YIG system. We show that on lowering temperature, the sharp drop in V LSSE and the sudden increases in H K and H KS at ~175 K are associated with the spin reorientation due to single ion anisotropy of Fe2+ ions. The V LSSE peak at ~75 K is attributed to the H KS and M S (saturation magnetization) whose peaks also occur at the same temperature. The effects of surface and bulk magnetic anisotropies are corroborated with those of thermally excited magnon number and magnon propagation length to satisfactorily explain the temperature dependence of LSSE in the Pt/YIG system. Our study also emphasizes the important roles of bulk and surface anisotropies in the LSSE in YIG and paves a new pathway for developing novel spin-caloric materials.

  17. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    Energy Technology Data Exchange (ETDEWEB)

    López-Barquero, V. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Xu, S. [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Desiati, P. [Wisconsin IceCube Particle Astrophysics Center (WIPAC), University of Wisconsin, Madison, WI 53703 (United States); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Pogorelov, N. V. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yan, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-06-10

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity to the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.

  18. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2010-01-01

    Full Text Available Abstract Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively.

  19. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    Science.gov (United States)

    López-Barquero, V.; Xu, S.; Desiati, P.; Lazarian, A.; Pogorelov, N. V.; Yan, H.

    2017-06-01

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity to the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.

  20. Ferromagnetic MnGaN thin films with perpendicular magnetic anisotropy for spintronics applications

    Science.gov (United States)

    Lee, Hwachol; Sukegawa, Hiroaki; Liu, Jun; Ohkubo, Tadakatsu; Kasai, Shinya; Mitani, Seiji; Hono, Kazuhiro

    2015-07-01

    Perpendicularly magnetized flat thin films of antiperovskite Mn67Ga24N9 were grown on an MgO(001) substrate by reactive sputtering using an argon/1% nitrogen gas mixture and a Mn70Ga30 target. The films showed a saturation magnetization of 80 -100 kA/m, an effective perpendicular magnetic anisotropy (PMA) energy of 0.1-0.2 MJ/m3, and a Curie temperature of 660-740 K. Upon increasing the N composition, the films transformed from ferromagnetic to antiferromagnetic as expected in the stoichiometric Mn3GaN phase. Point contact Andreev reflection spectroscopy revealed that the ferromagnetic MnGaN has a current spin polarization of 57%, which is comparable to D022-MnGa. These findings suggest that MnGaN is a promising PMA layer for future spintronics devices.

  1. Magnetic Response of Cobalt-Carbide Nanoparticles with large Magnetocrystalline Anisotropy.

    Science.gov (United States)

    Sutradhar, Pallabi; Khanna, Shiv N.; Atulasimha, Jayasimha

    Recent experiments showed that Co3C particles 8 nm diameter can exhibit stable long range ferromagnetic order up to 570 K. First principle theoretical investigation showed that the separation between the cobalt layers induced by the carbon atoms is responsible for large magnetocrystalline anisotropy energy, which gives Co3C this unique rare earth permanent magnet like characteristics. In this work, we build the Hamiltonian for this system, theoretically study the evolution in its hysteretic magnetic response and compare these predictions against experimental magnetic behavior at various temperatures. S.N.K. acknowledges support from U.S. Department of Energy (DOE) through Grant No. DE-FG02-11ER16213.

  2. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    V. B. Naik

    2012-12-01

    Full Text Available We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB free layer (FL on magnetic and tunneling magnetoresistance (TMR properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA. It is found that the critical thickness (tc to sustain PMA is doubled (tc = 2.6 nm in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm. While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

  3. Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss

    OpenAIRE

    Zhang, Qian;; Castellanos-Rubio, Idoia;; Munshi,Rahul;; Orue, Inaki;; Pelaz, Beatriz;; Gries, Katharina Ines;; Parak, Wolfgang J.;; del Pino, Pablo;; Pralle, Arnd

    2015-01-01

    This study provides a guide to maximizing hysteretic loss by matching the design and synthesis of superparamagnetic nanoparticles to the desired hyperthermia application. The maximal heat release from magnetic nanoparticles to the environment depends on intrinsic properties of magnetic nanoparticles (e.g., size, magnetization, and magnetic anisotropy) and extrinsic properties of the applied fields (e.g., frequency and field strength). Often, the biomedical hyperthermia application limits flex...

  4. Magnetic anisotropy of [Mo(CN)7]4- anions and fragments of cyano-bridged magnetic networks.

    Science.gov (United States)

    Chibotaru, Liviu F; Hendrickx, Marc F A; Clima, Sergiu; Larionova, Joulia; Ceulemans, Arnout

    2005-08-18

    Quantum chemistry calculations of CASSCF/CASPT2 level together with ligand field analysis are used for the investigation of magnetic anisotropy of [Mo(CN)7]4- complexes. We have considered three types of heptacyano environments: two ideal geometries, a pentagonal bipyramid and a capped trigonal prism, and the heptacyanomolybdate fragment of the cyano-bridged magnetic network K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. At all geometries the first excited Kramers doublet is found remarkably close to the ground one due to a small orbital energy gap in the ligand field spectrum, which ranges between a maximal value in the capped trigonal prism (800 cm(-1)) and zero in the pentagonal bipyramid. The small value of this gap explains (i) the axial form of the g tensor and (ii) the strong magnetic anisotropy even in strongly distorted complexes. Comparison with available experimental data for the g tensor of the mononuclear precursors reveals good agreement with the present calculations for the capped trigonal prismatic complex and a significant discrepancy for the pentagonal bipyramidal one. The calculations for the heptacyanomolybdate fragment of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O give g(perpendicular)/g(parallel) approximately 0.5 and the orientation of the local anisotropy axis close to the symmetry axis of an idealized pentagonal bipyramid. These findings are expected to be important for the understanding of the magnetism of anisotropic Mo(III)-Mn(II) cyano-bridged networks based on the [Mo(CN)7]4- building block.

  5. Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation.

    Science.gov (United States)

    Tian, Bo; Wetterskog, Erik; Qiu, Zhen; Zardán Gómez de la Torre, Teresa; Donolato, Marco; Fougt Hansen, Mikkel; Svedlindh, Peter; Strömberg, Mattias

    2017-12-15

    We demonstrate a homogeneous biosensor for the detection of multivalent targets by combination of magnetic nanoparticle (MNP) chains and a low-cost 405nm laser-based optomagnetic system. The MNP chains are assembled in a rotating magnetic field and stabilized by multivalent target molecules. The number of chains remaining in zero field is proportional to the target concentration, and can be quantified by optomagnetic measurements. The shape anisotropy of the MNP chains enhances the biosensor system in terms of providing efficient mixing, reduction of depletion effects (via magnetic shape anisotropy), and directly increasing the optomagnetic signal (via optical shape anisotropy). We achieve a limit of detection (LOD) of 5.5pM (0.82ng/mL) for the detection of a model multivalent molecule, biotinylated anti-streptavidin, in PBS. For the measurements of prostate-specific antigen (PSA) in 50% serum using the proposed method, we achieve an LOD of 21.6pM (0.65ng/mL) and a dynamic detection range up to 66.7nM (2µg/mL) with a sample-to-result time of approximately 20min. The performance for PSA detection therefore well meets the clinical requirements in terms of LOD (the threshold PSA level in blood is 4ng/mL) and detection range (PSA levels span from < 0.1-104ng/mL in blood), thus showing great promise for routine PSA diagnostics and for other in-situ applications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. First-principales calculations of the magnetic anisotropy energy of Fe-V multilayers

    CERN Document Server

    Le Bacq, O; Johansson, B; James, P; Delin, A

    2002-01-01

    The magnetic anisotropy energy (MAE) of Fe$_2$V$_6$, Fe$_3$V$_5$, and Fe$_4$V$_4$ multilayers are investigated using first-principles spin-polarized and relativistic band-structure calculations based upon the full-potential linearized muffin-tin-orbital method. A strong difference in the MAE and the easy axis of magnetization (calculated for the experimental lattice parameters) is observed between the three studied multilayer systems, with easy axes of (001), (110), and (100) for Fe$_2$V$_6$, Fe$_3$V$_5$, and Fe$_4$V$_4$, respectively. The MAE of the Fe$_2$V$_6$ and Fe$_4$V$_4$ multilayers agrees well with the experimental data. The origin of this difference of behavior is analyzed, via a study of the influence of the atomic volume as well as a relaxation study of the multilayers with respect to the tetragonal deformation. The important role played by the {\\it c/a} axial ratio, imposed by the alloying effects, is outlined. The magnetic anisotropy coefficients entering the expression of the MAE, as a function ...

  7. Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress

    Energy Technology Data Exchange (ETDEWEB)

    Agra, K.; Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Callegari, G.L.; Dorneles, L.S. [Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Correa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2016-12-15

    We investigate the dynamic magnetic response though magnetoimpedance effect of ferromagnetic flexible NiFe/Ta and FeCuNbSiB/Ta multilayers under external stress. We explore the possibility of handling magnetic anisotropy, and consequently the magnetoimpedance effect, of magnetostrictive multilayers deposited onto flexible substrates. We quantify the sensitivity of the multilayers under external stress by calculating the ratio between impedance variations and external stress changes, and show that considerable values can be reached by tuning the magnetic field, frequency, magnetostriction constant, and external stress. The results extend possibilities of application of magnetostrictive multilayers deposited onto flexible substrates when under external stress and place them as very attractive candidates as element sensor for the development of sensitive smart touch sensors. - Highlights: • We investigate the magnetoimpedance effect in magnetostrictive flexible multilayers grown on flexible substrates. • The external applied stress enables to tuning the samples anisotropies, and consequently the MI performance. • The flexible substrate becomes promising candidate for RF-frequency devices.

  8. High-coercivity magnetism in nanostructures with strong easy-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Balamurugan, E-mail: bbalasubramanian2@unl.edu, E-mail: dsellmyer@unl.edu; Manchanda, Priyanka; Skomski, Ralph; Mukherjee, Pinaki; Das, Bhaskar; Sellmyer, David J., E-mail: bbalasubramanian2@unl.edu, E-mail: dsellmyer@unl.edu [Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Valloppilly, Shah R. [Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2016-04-11

    We report the fabrication of a rare-earth-free permanent-magnet material Co{sub 3}Si in the form of nanoparticles and investigate its magnetic properties by experiments and density-functional theory (DFT). The DFT calculations show that bulk Co{sub 3}Si has an easy-plane anisotropy with a high K{sub 1} ≈ −64 Merg/cm{sup 3} (−6.4 MJ/m{sup 3}) and magnetic polarization of 9.2 kG (0.92 T). In spite of having a negative anisotropy that generally leads to negligibly low coercivities in bulk crystals, Co{sub 3}Si nanoparticles exhibit high coercivities (17.4 kOe at 10 K and 4.3 kOe at 300 K). This result is a consequence of the unique nanostructure made possible by an effective easy-axis alignment in the cluster-deposition method and explained using micromagnetic analysis as a nanoscale phenomenon involving quantum-mechanical exchange interactions.

  9. Surface-step-induced magnetic anisotropy of p(1{times}1) Fe on W(100)

    Energy Technology Data Exchange (ETDEWEB)

    Mireles, Hector C.; Erskine, J. L.

    2001-06-01

    Magneto-optic Kerr effect measurements of ultrathin p(1{times}1) Fe films on graded-step-density W(100) are used to study step-induced magnetic anisotropy. Spot-profile-analysis low-energy-electron diffraction is used to characterize the stepped W(100) surface prior to film growth and the epitaxial Fe layer after vapor deposition. The experimental results are qualitatively compatible with prior experiments and with theoretical predictions based on the Neel model and on a one-dimensional micromagnetic model proposed by Hyman, Zangwell, and Stiles (HZS). The observed evolution of hysteresis loop shape as a function of step density and anisotropy strength (which was varied by chemisorption of oxygen) is observed to be consistent with a hysteresis loop phase diagram based on the HZS model. However, the measured variation of switching field versus vicinal angle {alpha} for 2 monolayer thick Fe films differs significantly from the quadratic dependence predicted by the Neel model and from the dependence predicted by HZS. The surface-step-induced anisotropy vanishes at high vicinality ({alpha}{similar_to}10{degree}) and novel two-state switching is observed at specific vicinal angles. {copyright} 2001 American Institute of Physics.

  10. Tunable magnetic anisotropy of antiferromagnetic superlattice and resultant exchange bias of ferromagnetic layer on it

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Masakiyo [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan)]. E-mail: tsunoda@ecei.tohoku.ac.jp; Naka, Mamiko [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); Kim, Dong Young [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Takahashi, Migaku [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); New Industry Creation Hatchery Center, Tohoku University, Aobayama 6-6-10, Sendai 980-8579 (Japan)

    2006-09-15

    Exchange biasing of ferromagnetic layer deposited on the antiferromagnetic superlattice was investigated in (Co{sub 70}Fe{sub 30}/Ru){sub 29.5}/Ru/Co{sub 90}Fe{sub 10} multilayers. Uniaxial magnetic anisotropy (K {sub AF}) was induced and tuned in the antiferromagentic superlattice by uniaxial substrate bending method through the inverse effect of magnetostriction. The exchange bias increased and tended to be saturated with increasing the K {sub AF}, while it was not observed at K {sub AF}=0.

  11. Annealed FINEMET ribbons: Structure and magnetic anisotropy as revealed by the high velocity resolution Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Klencsár, Z. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest (Hungary); Semionkin, V.A. [Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Kuzmann, E.; Homonnay, Z. [Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Varga, L.K. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-09-01

    The high velocity resolution {sup 57}Fe Mössbauer spectroscopy was used in order to elucidate structural and compositional details of FINEMET (Fe{sub 73.5}Si{sub 15.5}Nb{sub 3}B{sub 7}Cu{sub 1}) alloys obtained via the annealing (with and without external magnetic field) of rapidly quenched ribbons. The analysis of the measured Mössbauer spectra was carried out, on one hand, by considering the possibility of a random distribution of iron atoms substituting Si at the D sites in the well crystallized DO{sub 3} Fe-Si phase, on the other hand, by allowing for an arbitrary-shape hyperfine magnetic field distribution for the case of the amorphous matrix. The results refer to the influence of the next-nearest-neighbor configurations on the magnitude of iron magnetic moments at the D sites in the precipitated nanocrystalline Fe-Si phase. The applied analysis method enables us to draw conclusions regarding the relative occurrence of the various iron microenvironments in the nanocrystalline phase and amorphous matrix, and the associated Si concentration of the precipitated nanocrystalline DO{sub 3} Fe-Si phase. The studied samples provide further evidence concerning the correlation between the induced magnetic anisotropy and the magnetic permeability in annealed FINEMET ribbons. - Highlights: • FINEMET ribbons annealed with and without external magnetic field. • Mössbauer spectra of FINEMET measured with a high velocity resolution. • Application of novel fit model for the FINEMET Mössbauer spectra.

  12. The effect of annealing temperature on the magnetic anisotropy in Co ultrathin film on MgO(001) substrate

    Science.gov (United States)

    Zhang, Yong-Sheng; He, Wei; Tang, Jin; Ahmad, Syed Sheraz; Zhang, Wei; Li, Yan; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2017-05-01

    Co epitaxial thin films with 2.5nm thickness were prepared on single-crystal MgO(001) substrates and annealed at different temperatures. The contribution of each interface of the MgO/Co/Cu trilayer to the in-plane magnetic anisotropy (IMA) was studied by changing interfacial coupling through annealing. The structure was measured by low energy electron diffraction (LEED), and the magnetic properties were measured using the anisotropic magnetoresistance (AMR) measurements and the longitudinal Magneto-optical Kerr effect magnetometer (MOKE). We found that the magnetic anisotropy of the as-deposited one shows superposition of a two-fold symmetry with a weak four-fold contribution caused by the stress of the interface between Co/Cu, which is along the easy axis [-110]. After annealing at 200°C, the symmetry of magnetic anisotropy was changed from uniaxial magnetic anisotropy (UMA) into four-fold symmetry due to the significant increasing of four-fold magnetocrystalline anisotropy. When the films were annealed above 300°C, the damage of the MgO/Co interface additionally decreased the IMA to isotropy. Meanwhile, the coercivity raised from 45Oe (without annealing) to 1200Oe (annealed at 400°C) along the easy axis direction. Our experimental results prove that the Co/Cu interface and the MgO/Co interface play an essential role in manipulating the four-fold and the UMA in the system.

  13. The effect of annealing temperature on the magnetic anisotropy in Co ultrathin film on MgO(001 substrate

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Zhang

    2017-05-01

    Full Text Available Co epitaxial thin films with 2.5nm thickness were prepared on single-crystal MgO(001 substrates and annealed at different temperatures. The contribution of each interface of the MgO/Co/Cu trilayer to the in-plane magnetic anisotropy (IMA was studied by changing interfacial coupling through annealing. The structure was measured by low energy electron diffraction (LEED, and the magnetic properties were measured using the anisotropic magnetoresistance (AMR measurements and the longitudinal Magneto-optical Kerr effect magnetometer (MOKE. We found that the magnetic anisotropy of the as-deposited one shows superposition of a two-fold symmetry with a weak four-fold contribution caused by the stress of the interface between Co/Cu, which is along the easy axis [-110]. After annealing at 200°C, the symmetry of magnetic anisotropy was changed from uniaxial magnetic anisotropy (UMA into four-fold symmetry due to the significant increasing of four-fold magnetocrystalline anisotropy. When the films were annealed above 300°C, the damage of the MgO/Co interface additionally decreased the IMA to isotropy. Meanwhile, the coercivity raised from 45Oe (without annealing to 1200Oe (annealed at 400°C along the easy axis direction. Our experimental results prove that the Co/Cu interface and the MgO/Co interface play an essential role in manipulating the four-fold and the UMA in the system.

  14. Electronic Structure and Magnetic Anisotropy in Lanthanoid Single-Ion Magnets with C3 Symmetry: The Ln(trenovan) Series.

    Science.gov (United States)

    Lucaccini, Eva; Baldoví, José J; Chelazzi, Laura; Barra, Anne-Laure; Grepioni, Fabrizia; Costes, Jean-Pierre; Sorace, Lorenzo

    2017-04-17

    We report the syntheses and the magnetic characterization of a new series of lanthanide complexes, in which the Ce, Nd, Gd, Dy, Er, and Yb derivatives show single-molecule magnet behavior. These complexes, named Ln(trenovan), where H3trenovan is tris(((3-methoxysalicylidene)amino)ethyl)amine, exhibit trigonal symmetry and the Ln(III) ion is heptacoordinated. Their molecular structure is then very similar to that of the previously reported Ln(trensal) series, where H3trensal is 2,2',2″-tris(salicylideneimino)triethylamine. This prompted us to use the spectroscopic and magnetic properties of the Ln(trensal) family (Ln = Nd, Tb, Dy, Ho, Er, and Tm) to obtain a set of crystal-field parameters to be used as starting point to determine the electronic structures and magnetic anisotropy of the analogous Ln(trenovan) complexes using the CONDON computational package. The obtained results were then used to discuss the electron paramagnetic resonance (EPR) and ac susceptibility results. As a whole, the obtained results indicate for this type of complexes single-molecule magnet behavior is not related to the presence of an anisotropy barrier, due to a charge distribution of the ligand around the lanthanoid, which results in highly mixed ground states in terms of MJ composition of the states. The crucial parameter in determining the slow relaxation of the magnetization is then rather the number of unpaired electrons (only Kramers ions showing in-field slow relaxation) than the shape of the charge distribution for different Ln(III).

  15. Covalent magnetism, exchange interactions and anisotropy of the high temperature layered antiferromagnet MnB₂.

    Science.gov (United States)

    Khmelevskyi, S; Mohn, P

    2012-01-11

    The investigation of the electronic structure and magnetism for the compound MnB(2) with crystal structure type AlB(2) has been revisited to resolve contradictions between various experimental and theoretical results present in the literature. We find that MnB(2) exhibits an interesting example of a Kübler's covalent magnetism (Williams et al 1981 J. Appl. Phys. 52 2069). The covalent magnetism also appears to be the source of some disagreement between the calculated values of the magnetic moments and those given by neutron diffraction experiments. We show that this shortcoming is due to the atomic sphere approximation applied in earlier calculations. The application of the disordered local moment approach and the calculation of the inter-atomic exchange interactions within the Liechtenstein formalism reveal strong local moment antiferromagnetism with a high Néel temperature predicted from Monte Carlo simulations. A fully relativistic band structure calculation and then the application of the torque method yields a strong in-plane anisotropy of the Mn magnetic moments. The agreement of these results with neutron diffraction studies rules out any possible weak itinerant electron magnetism scenarios as proposed earlier for MnB(2).

  16. Engineering the magnetic anisotropy of an ultrathin Co layer sandwiched between films of Mo or Au

    Science.gov (United States)

    Wawro, A.; Kurant, Z.; Tekielak, M.; Nawrocki, P.; Milińska, E.; Pietruczik, A.; Wójcik, M.; Mazalski, P.; Kanak, J.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Maziewski, A.

    2017-06-01

    Magnetic properties of an ultrathin Co layer deposited on the Mo(1 1 0) or Au(1 1 1) buffers crucially depend on magnetic layer thickness and a cap layer type (Au or Mo, studied in this work). Depending on the sandwich configuration, magnetization is oriented in a perpendicular direction to the plane in the range of smaller Co layer thickness (below 2 nm) or in the sample plane for a thicker layer (3 nm). Moreover, a well-developed two-fold in-plane magnetic anisotropy occurs in the Co layer deposited on the Mo buffer. These features are correlated with crystalline structure studied with the use of numerous complementary methods: reflection high-energy electron diffraction, x-ray diffraction, x-ray reflectivity, nuclear magnetic resonance, and element-sensitive synchrotron techniques, i.e. x-ray linear dichroism and x-ray absorption near edge spectroscopy. Magnetic behaviour, exhibiting volume and surface contributions, is thoroughly discussed in terms of the buffer and cap layer type, thickness-dependent crystalline structure of the Co layer, and the interface quality.

  17. Magnetization Reversal and Magnetic Anisotropy in Ordered CoNiP Nanowire Arrays: Effects of Wire Diameter

    Directory of Open Access Journals (Sweden)

    Luu Van Thiem

    2015-03-01

    Full Text Available Ordered CoNiP nanowires with the same length of 4 µm and varying diameters (d = 100 nm–600 nm were fabricated by electrodeposition of CoNiP onto polycarbonate templates. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirmed the quality of the fabricated nanowires. Magnetic measurements and theoretical analysis revealed that the magnetization reversal and magnetic anisotropy were significantly influenced by varying of the diameters of the nanowires. There existed a critical wire diameter (dc ≈ 276 nm, below which the magnetization reversal occurred via a coherent rotation mode, and above which the magnetization reversal occurred via a curling rotation mode. The easy axis of the magnetization tended to change in direction from parallel to perpendicular with respect to the wire axis as the wire diameter exceeded dc ≈ 276 nm. With increasing wire diameter, the coercive field (Hc and the remanent to saturation magnetization ratio (Mr/Ms were also found to rapidly decrease in the range d = 100–400 nm and gradually decrease for d > 400 nm.

  18. Magnetic anisotropy of L 10 -ordered FePt thin films studied by Fe and Pt L2,3 -edges x-ray magnetic circular dichroism

    Science.gov (United States)

    Ikeda, K.; Seki, T.; Shibata, G.; Kadono, T.; Ishigami, K.; Takahashi, Y.; Horio, M.; Sakamoto, S.; Nonaka, Y.; Sakamaki, M.; Amemiya, K.; Kawamura, N.; Suzuki, M.; Takanashi, K.; Fujimori, A.

    2017-10-01

    The strong perpendicular magnetic anisotropy of L 10 -ordered FePt has been the subject of extensive studies for a long time. However, it is not known which element, Fe or Pt, mainly contributes to the magnetic anisotropy energy. We have investigated the anisotropy of the orbital magnetic moments of Fe 3d and Pt 5d electrons in L 10 -ordered FePt thin films by Fe and Pt L2 ,3 -edge x-ray magnetic circular dichroism (XMCD) measurements for samples with various degrees of long-range chemical order S. Fe L2 ,3 -edge XMCD showed that the orbital magnetic moment was larger when the magnetic field was applied perpendicular to the film than parallel to it and that the anisotropy of the orbital magnetic moment increased with S. Pt L2 ,3 -edge XMCD also showed that the orbital magnetic moment was smaller when the magnetic field was applied perpendicular to the film than parallel to it, opposite to the Fe L2 ,3 -edge XMCD results although the anisotropy of the orbital magnetic moment increases with S like the Fe edge. These results are qualitatively consistent with the first-principles calculation by Solovyev et al. [Phys. Rev. B 52, 13419 (1995)], which also predicts the dominant contributions of Pt 5d to the magnetic anisotropy energy rather than Fe 3d due to the strong spin-orbit coupling and the small spin splitting of the Pt 5d bands in L 10 -ordered FePt.

  19. The van Hemmen model and effect of random crystalline anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Denes M. de [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Godoy, Mauricio, E-mail: mgodoy@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Arruda, Alberto S. de, E-mail: aarruda@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Silva, Jonathas N. da [Universidade Estadual Paulista, 14800-901, Araraquara, São Paulo (Brazil); Ricardo de Sousa, J. [Instituto Nacional de Sistemas Complexos, Departamento de Fisica, Universidade Federal do Amazona, 69077-000, Manaus, Amazonas (Brazil)

    2016-01-15

    In this work, we have presented the generalized phase diagrams of the van Hemmen model for spin S=1 in the presence of an anisotropic term of random crystalline field. In order to study the critical behavior of the phase transitions, we employed a mean-field Curie–Weiss approach, which allows calculation of the free energy and the equations of state of the model. The phase diagrams obtained here displayed tricritical behavior, with second-order phase transition lines separated from the first-order phase transition lines by a tricritical point. - Highlights: • Several phase diagrams are obtained for the model. • The influence of the random crystalline anisotropy field on the model is investigated. • Three ordered (spin-glass, ferromagnetic and mixed) phases are found. • The tricritical behavior is examined.

  20. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......-coupling between the two orthogonal directions, especially during counter-phase motion between shaft and bearings. The clear nonlinear behaviour is facilitated by the lack of damping resulting in relatively large vibrations. The overall nonlinear dynamic behaviour is well captured by the theoretical model, thereby...

  1. Surface anisotropy effects in the spontaneous magnetization of a semi-infinite ferromagnet (abstract)

    Science.gov (United States)

    Rado, George T.

    1984-03-01

    An early theory1 of the temperature and position dependence of the spontaneous magnetization near the surface of a semi-infinite ferromagnet is generalized by including the effects of surface anisotropy. Using the surface anisotropy constants Ks and Kss defined [G. T. Rado, Phys. Rev. B 26, 295 (1982)] for a {110} surface of a bcc crystal, we find that for Ks≠0, Kss≠0 the excitations at low temperatures are combined volume and surface spin waves and that at the ferromagnetic surface the deviation M0-MT of the spontaneous magnetization at temperature T from its value at 0 °K is proportional to T3/2. Such a T dependence was obtained previously1 for Ks=Kss =0 on the basis of the pure volume waves. Next we refine the conditions2 under which the entire early theory1 remains valid when Ks≠0 and Kss≠0. Finally, we consider the special case Ks =0, Kss>0 and predict that here volume and surface spin waves (both are thermally excited) can exist independently and that at the ferromagnetic surface the T dependence of M0-MT has a T3/2 component due to volume waves but a quasilinear component due to surface waves. No quasilinear component of the T dependence at the surface of a semi-infinite ferromagnet at low T has been predicted previously. Because of the lack of existing evidence for the (effective) surface anisotropy determining the type of T dependence of M0-MT at a ferromagnetic surface, the present theory may help explain why the experimentally observed3 T dependence at a {110} Fe surface is proportional T3/2 when the Fe is covered with Ag but quasilinear when it is covered with MnF2. A full account of this work will be published elsewhere.

  2. Enhancement of perpendicular magnetic anisotropy and anomalous hall effect in Co/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yiwei; Zhang, Jingyan, E-mail: jyzhang@ustb.edu.cn; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Yu, Guanghua, E-mail: ghyu@mater.ustb.edu.cn

    2016-12-15

    The perpendicular magnetic anisotropy (PMA) and the anomalous Hall effect (AHE) in Co/Ni multilayer were optimized by manipulating its interface structure (inducing HfO{sub 2} capping layer and Pt insertion) and post-annealing treatment. A strong PMA can be obtained in Co/Ni multilayers with HfO{sub 2} capping layer even after annealing at 400 °C. The heavy metal Hf may improve the interfacial spin-orbit coupling, which responsible for the enhanced PMA and high annealing stability. Moreover, the multilayer containing HfO{sub 2} capping layer also exhibited high saturation anomalous Hall resistivity through post-annealing, which is 0.85 μΩ cm after annealing at 375 °C, 211% larger than in the sample at deposited state which is only 0.27 μΩ cm. The enhancement of AHE is mainly attributed to the interface scattering through post-annealing treatment. - Highlights: • The perpendicular magnetic anisotropy and anomalous Hall effect of Co/Ni multilayer films were studied. • The PMA thermal stability of the Co/Ni ML can be enhanced by HfO{sub 2} capping layer and Pt insertion. • The anomalous Hall resistivity of Co/Ni ML covered by HfO{sub 2} was enhanced by post-annealing treatment.

  3. Perpendicular magnetic anisotropy in Fe2Cr1 - xCoxSi Heusler alloy

    Science.gov (United States)

    Wang, Yu-Pu; Qiu, Jin-Jun; Lu, Hui; Ji, Rong; Han, Gu-Chang; Teo, Kie-Leong

    2014-12-01

    Perpendicular magnetic anisotropy (PMA) was achieved in annealed Fe2Cr1 - xCoxSi (FCCS) Heusler alloys with different Co compositions x. The Co composition is varied to tune the Fermi level in order to achieve both higher spin polarization and better thermal stability. The PMA is thermally stable up to 400 oC for FCCS with x = 0, 0.3, 0.5 and 350 oC for FCCS with x = 0.7, 0.9, 1. The thickness of FCCS films with PMA ranges from 0.6 to 1.2 nm. The annealing temperature and FCCS thickness are found to greatly affect the PMA. The magnetic anisotropy energy density KU is 2.8  ×  106 erg cm-3 for 0.8 nm Fe2CrSi, and decreases as the Co composition x increases, suggesting that the PMA induced at the FCCS/MgO interface is dominated by the contribution of Fe atoms. There is a trade-off between high spin polarization and strong PMA by adjusting the Co composition.

  4. Anisotropy of Magnetic Susceptibility Studies in Lava Flows of the Eastern Anatolia Region, Turkey

    Science.gov (United States)

    Ucar, Hakan; Cengiz Cinku, Mualla

    2017-04-01

    Eastern Anatolia comprises one of the high plateaus of the Alpine-Himalaya mountain belt with an average elevation of 2 km above the sea level. Available geochronologic data indicate that the volcanism started in the south of the region around the north of Lake Van and continued towards the norths in a age interval of 15.0 Ma to 0.4 Ma. The products are exposed as stratovolcanoes like Agri, Tendurek, Suphan and Girekol with the eruption of andesitic to rhyolitic lavas, ignimbrites and basaltic lava flows. In this study, anisotropy of magnetic susceptibility measurements were carried out on different lava flows (Tendurek, Girekol and Suphan) to determine the flow direction of lavas. It has been shown that the direction of maximum susceptibility is associated with magma flow direction in the vertical direction, while a horizontal flow direction is predicted for the volcano structure of Suphan. Anisotropy of magnetic measurements show a trend of lineation towards the center of the projection and shallow-dipping foliations which are largely scattered.

  5. Strong perpendicular magnetic anisotropy energy density at Fe alloy/HfO2 interfaces

    Science.gov (United States)

    Ou, Yongxi; Ralph, D. C.; Buhrman, R. A.

    2017-05-01

    We report on the perpendicular magnetic anisotropy (PMA) behavior of heavy metal (HM)/Fe alloy/MgO thin film heterostructures when an ultrathin HfO2 passivation layer is inserted between the Fe alloy and MgO. This is accomplished by depositing one to two atomic layers of Hf onto the Fe alloy before the subsequent rf sputter deposition of the MgO layer. This Hf layer is fully oxidized during the subsequent deposition of the MgO layer, as confirmed by X-ray photoelectron spectroscopy measurements. The HfO2 insertion generates a strong interfacial perpendicular anisotropy energy density without any post-fabrication annealing treatment, for example, 1.7 erg / cm 2 for the Ta/Fe60Co20B20/HfO2/MgO heterostructure. We also demonstrate PMA even in Ni80Fe20/HfO2/MgO structures for low-damping, low-magnetostriction Ni80Fe20 thin films. Depending on the choice of the HM, further enhancements of the PMA can be realized by thermal annealing to at least 400 o C . We show that ultra-thin HfO2 layers offer a range of options for enhancing the PMA properties of magnetic heterostructures for spintronics applications.

  6. Dzyaloshinskii-Morija interaction and local magnetic anisotropies in U2Pd2In : Ground state and metamagnetic transition

    Science.gov (United States)

    Sandratskii, L. M.

    2016-11-01

    U2Pd2In is the material where the elements of the geometrical frustration of the lattice coexist with strong spin-orbit coupling (SOC). The ground state of the system is a noncollinear planar magnetic structure with orthogonal atomic magnetic moments. There are three possible physical mechanisms that can lead to this nontrivial magnetic structure: frustrated isotropic exchange interaction, Dzyaloshinskii-Morija interaction (DMI), and magnetic anisotropy. Our first-principles calculations show that in the case where the SOC is neglected, and therefore the DMI and magnetic anisotropy are absent, the ground state structure is the collinear ferromagnetic one. The leading contribution to the stabilization of the magnetically compensated configuration of orthogonal atomic moments is provided by the local magnetic anisotropy of the U moments. A weaker DMI leads to the lifting of the degeneracy between the magnetic states with different local chirality. The established hierarchy of the interactions allows us to explain the metamagnetic phase transition in the in-plane external magnetic field. The analysis of the noncollinearity of the spin and orbital moments of the same U atom appearing in the applied external field show that the trend to the antiparallel orientation of the two atomic moments following from the third Hund's rule is much stronger than the trend to the parallel orientation of the moments due to the applied external magnetic field.

  7. Simultaneous control of the Dzyaloshinskii-Moriya interaction and magnetic anisotropy in nanomagnetic trilayers.

    Science.gov (United States)

    Balk, A L; Kim, K-W; Pierce, D T; Stiles, M D; Unguris, J; Stavis, S M

    2017-08-18

    Magneto-optical Kerr effect (MOKE) microscopy measurements of magnetic bubble domains demonstrate that Ar^{+} irradiation around 100 eV can tune the Dzyaloshinskii-Moriya interaction (DMI) in Pt/Co/Pt trilayers. Varying the irradiation energy and dose changes the DMI sign and magnitude separately from the magnetic anisotropy, allowing tuning of the DMI while holding the coercive field constant. This simultaneous control emphasizes the different physical origins of these effects. To accurately measure the DMI, we propose and apply a physical model for a poorly understood peak in domain wall velocity at zero in-plane field. The ability to tune the DMI with the spatial resolution of the Ar^{+} irradiation enables new fundamental investigations and technological applications of chiral nanomagnetics.

  8. Transition States and the Energy Barrier to Magnetization Reversal of Thin Film Nanomagnets with Perpendicular Anisotropy

    Science.gov (United States)

    Chaves-O'Flynn, Gabriel; Bedau, Daniel; vanden-Eijnden, Eric; Stein, Daniel; Kent, Andrew

    2010-03-01

    We use the String Method [1] in conjunction with the micromagnetics OOMMF package to calculate the energy barrier for magnetization reversal of square thin film nanomagnets with perpendicular anisotropy. The lowest energy state consists of out of plane magnetization configurations. A field applied perpendicular to the plane lifts the degeneracy between the states. The effect of the element size and the consequences of breaking the square symmetry are investigated. We find that the transition state is not uniform: it starts with a localized nucleation, which expands to complete the reversal. The field dependence of the energy barrier is compared to that of macrospin model, and nonuniform reversal is shown to be the preferred transition configuration, providing a lower energy barrier to reversal. This result indicates the limits of the macrospin model. We present the dependence on the energy barrier on the exchange constant and simulation cell size. [1] W. E, W. Ren, E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007)

  9. Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy

    Science.gov (United States)

    Takahashi, Y. K.; Miura, Y.; Choi, R.; Ohkubo, T.; Wen, Z. C.; Ishioka, K.; Mandal, R.; Medapalli, R.; Sukegawa, H.; Mitani, S.; Fullerton, E. E.; Hono, K.

    2017-06-01

    We estimated the magnetic damping constant α of Co2FeAl (CFA) Heusler alloy films of different thicknesses with an MgO capping layer by means of time-resolved magneto-optical Kerr effect and ferromagnetic resonance measurements. CFA films with thicknesses of 1.2 nm and below exhibited perpendicular magnetic anisotropy arising from the presence of the interface with MgO. While α increased gradually with decreasing CFA film thickness down to 1.2 nm, it was increased substantially when the thickness was reduced further to 1.0 nm. Based on the microstructure analyses and first-principles calculations, we attributed the origin of the large α in the ultrathin CFA film primarily to the Al deficiency in the CFA layer, which caused an increase in the density of states and thereby in the scatterings of their spins.

  10. L10-Ordered Thin Films with High Perpendicular Magnetic Anisotropy for STT-MRAM Applications

    Science.gov (United States)

    Huang, Efrem Yuan-Fu

    The objective of the research conducted herein was to develop L10-ordered materials and thin film stack structures with high perpendicular magnetic anisotropy (PMA) for spin-transfertorque magnetoresistive random access memory (STT-MRAM) applications. A systematic approach was taken in this dissertation, culminating in exchange coupled L1 0-FePt and L10- MnAl heterogeneous structures showing great promise for developing perpendicular magnetic tunnel junctions (pMTJs) with both high thermal stability and low critical switching current. First, using MgO underlayers on Si substrates, sputtered MnAl films were systematically optimized, ultimately producing a Si substrate/MgO (20 nm)/MnAl (30)/Ta (5) film stack with a high degree of ordering and large PMA. Next, noting the incompatibility of insulating MgO underlayers with industrial-scale CMOS processes, attention was turned to using conductive underlayers. TiN was found to excel at promoting growth of L10-MnAl, with optimized films showing improved magnetic properties over those fabricated on MgO underlayers. The use of different post-annealing processes was then studied as an alternative to in situ annealing. Rapid thermal annealing (RTA) was found to produce PMA in films at lower annealing temperatures than tube furnace annealing, but tube furnace annealing produced films with higher maximum PMA than RTA. While annealed samples had lower surface roughness than those ordered by high in situ deposition temperatures, relying solely on annealing to achieve L10-ordering resulted drastically reduced PMA. Finally, heterogeneous L10-ordered FePt/MgO/MnAl film stacks were explored for pMTJs. Film stacks with MgO barrier layers thinner than 2 nm showed significant interdiffusion between the FePt and MnAl, while film stacks with thicker MgO barrier layers exhibited good ordering and high PMA in both the FePt and MnAl films. It is believed that this limitation is caused by the roughness of the underlying FePt, which was thicker

  11. Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices

    Directory of Open Access Journals (Sweden)

    Phil Diamond

    2003-01-01

    Full Text Available Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

  12. Pressure-Induced Enhanced Magnetic Anisotropy in Mn(N(CN)2)2

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, P. A. [University of Florida, Gainesville; Rajan, D. [University of Florida, Gainesville; Peprah, M. K. [University of Florida, Gainesville; Brinzari, T. V. [University of Florida, Gainesville; Fishman, Randy Scott [ORNL; Talham, Daniel R. [University of Florida, Gainesville; Meisel, Mark W. [University of Florida, Gainesville

    2015-01-01

    Using DC and AC magnetometry, the pressure dependence of the magnetization of the threedimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The magnetic transition temperature, Tc, increases dramatically with applied pressure (P), where a change from Tc(P = ambient) = 16:0 K to Tc(P = 12:1 kbar) = 23:5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P < 7:1 kbar, the differences between the field-cooled and zero-field-cooled (fc-zfc) magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P > 7:1 kbar, the behavior is inverted. Additionally, for P > 8:6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  13. Ising-type Magnetic Anisotropy in CePd2As2.

    Science.gov (United States)

    Ajeesh, M O; Shang, T; Jiang, W B; Xie, W; Dos Reis, R D; Smidman, M; Geibel, C; Yuan, H Q; Nicklas, M

    2017-08-04

    We investigated the anisotropic magnetic properties of CePd2As2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2Si2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large c-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure |±5/2〉 CEF ground-state doublet with the dominantly |±3/2〉 and the |±1/2〉 doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at T N  = 14.7 K with the crystallographic c-direction being the magnetic easy-axis. The magnetic entropy gain up to T N reaches almost R ln 2 indicating localised 4 f-electron magnetism without significant Kondo-type interactions. Below T N , the application of a magnetic field along the c-axis induces a metamagnetic transition from the AFM to a field-polarised phase at μ 0 H c0 = 0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.

  14. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tejerina, L. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Alejos, Ó., E-mail: oscaral@ee.uva.es [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Muñoz, J.M. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.

  15. Modified magnetic anisotropy at LaCoO3/La0.7Sr0.3MnO3 interfaces

    Directory of Open Access Journals (Sweden)

    M. Cabero

    2017-09-01

    Full Text Available Controlling magnetic anisotropy is an important objective towards engineering novel magnetic device concepts in oxide electronics. In thin film manganites, magnetic anisotropy is weak and it is primarily determined by the substrate, through induced structural distortions resulting from epitaxial mismatch strain. On the other hand, in cobaltites, with a stronger spin orbit interaction, magnetic anisotropy is typically much stronger. In this paper, we show that interfacing La0.7Sr0.3MnO3 (LSMO with an ultrathin LaCoO3 (LCO layer drastically modifies the magnetic anisotropy of the manganite, making it independent of the substrate and closer to the magnetic isotropy characterizing its rhombohedral structure. Ferromagnetic resonance measurements evidence a tendency of manganite magnetic moments to point out-of-plane suggesting non collinear magnetic interactions at the interface. These results may be of interest for the design of oxide interfaces with tailored magnetic structures for new oxide devices.

  16. Modified magnetic anisotropy at LaCoO3/La0.7Sr0.3MnO3 interfaces

    Science.gov (United States)

    Cabero, M.; Nagy, K.; Gallego, F.; Sander, A.; Rio, M.; Cuellar, F. A.; Tornos, J.; Hernandez-Martin, D.; Nemes, N. M.; Mompean, F.; Garcia-Hernandez, M.; Rivera-Calzada, A.; Sefrioui, Z.; Reyren, N.; Feher, T.; Varela, M.; Leon, C.; Santamaria, J.

    2017-09-01

    Controlling magnetic anisotropy is an important objective towards engineering novel magnetic device concepts in oxide electronics. In thin film manganites, magnetic anisotropy is weak and it is primarily determined by the substrate, through induced structural distortions resulting from epitaxial mismatch strain. On the other hand, in cobaltites, with a stronger spin orbit interaction, magnetic anisotropy is typically much stronger. In this paper, we show that interfacing La0.7Sr0.3MnO3 (LSMO) with an ultrathin LaCoO3 (LCO) layer drastically modifies the magnetic anisotropy of the manganite, making it independent of the substrate and closer to the magnetic isotropy characterizing its rhombohedral structure. Ferromagnetic resonance measurements evidence a tendency of manganite magnetic moments to point out-of-plane suggesting non collinear magnetic interactions at the interface. These results may be of interest for the design of oxide interfaces with tailored magnetic structures for new oxide devices.

  17. The relationship between magnetic anisotropy, rock-strength anisotropy and vein emplacement in gold-bearing metabasalts of Gadag (South India)

    Science.gov (United States)

    Vishnu, C. S.; Lahiri, Sivaji; Mamtani, Manish A.

    2018-01-01

    In this study the importance of rock strength and its anisotropy in controlling vein emplacement is evaluated by integrating anisotropy of magnetic susceptibility (AMS) with rock mechanics data from massive (visibly isotropic) metabasalts of Gadag region (Dharwar Craton, South India). Orientation of magnetic foliation (MF) is first recognized from AMS. Subsequently, rock mechanics tests viz. ultrasonic P-wave velocity (Vp), uniaxial compressive strength (UCS) and point load strength (Is(50)) are done in cores extracted parallel and perpendicular to MF. Vp is found to be higher in direction parallel to MF than perpendicular to it. In contrast rock strength (UCS and Is(50)) is greater in direction perpendicular to MF, than parallel to it. This proves that rocks from the gold mineralized belt of Gadag have rock strength anisotropy. Orientation of MF in Gadag region is NW-SE, which is also the mean orientation of quartz veins. Previous studies indicate that emplacement of veins in the region took place during regional D3 (NW-SE shortening). Based on the present study, it is concluded that vein emplacement took place in NW-SE orientation because the rocks have strength anisotropy and are weaker in this direction (orientation of MF), which dilated to accommodate fluid flow. In addition, vein intensities are measured along three traverses and found to be variable. It is argued that since mineralization is favoured when the system gets saturated with fluid, variation in fluid flow could not have been responsible for variation in vein intensities in the study area. Since the rock strength of the different blocks investigated here is not uniform, it is envisaged that variation in rock strength played an important role in controlling the vein intensities. It is concluded that rock strength variation controlled strain partitioning and channelized fluid flow thus influencing vein emplacement and mineralization and formation of lodes.

  18. NMR investigation of domain wall dynamics and hyperfine field anisotropy in magnets by the magnetic video-pulse excitation method

    Science.gov (United States)

    Gavasheli, Ts A.; Mamniashvili, GI; Gegechkori, T. O.

    2017-04-01

    Two-pulse nuclear spin echoes were studied experimentally depending on the time of application and pulse amplitudes of the DC magnetic field-magnetic video-pulses (MVP) as well as on the value of the external magnetic field. The measurements were performed with nanopowders and polycrystals of metallic cobalt, in lithium ferrite and half metal Co2MnSi. Two types of dependences of these signals on time of application of MVP with respect to moments of application of exciting radio-frequency pulses were established, which were determined by the degree of anisotropy of local hyperfine fields. The mechanisms of influence of the pinning and mobility of domain walls on the revealed specific features of the signals under study are also discussed. It is shown that temporal spectra of the MVP effect on two-pulse echoes in multidomain magnets are determined by the parameters of domain walls and can be used for qualitative and quantitative characterization of the domain wall dynamics of magnets.

  19. Magnetic and magneto-transport studies of MBE grown Cr2Te3 thin films with perpendicular magnetic anisotropy

    Science.gov (United States)

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay

    2015-03-01

    Cr2Te3 is one of the very intriguing compounds in chromium chalcogenides family because of its unusual magnetic and magneto-transport properties. Here we have presented studies of molecular beam epitaxy (MBE) grown (001)-oriented Cr2Te3 thin films on Al2O3(0001) and Si(111)-(7 ×7) surfaces. Reflection high energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry (VSM) and other physical property measurements are used to investigate the structure, morphology, magnetic and magneto-transport properties of as-grown films. Sharp streaks in RHEED patterns imply smooth film growth on both the substrates. STM studies show hexagonal arrangements of surface atoms and measured lattice parameters agree well with the bulk crystal structures. Magnetic studies confirm the film to be ferromagnetic having a Curie temperature of about 180 K and a spin glass-like behavior is observed below 35 K. The grown films are metallic and show perpendicular magnetic anisotropy (PMA). Magneto-transport measurements reveal that the film possesses a magnetic easy axis perpendicular to the surface and this may be very useful for spintronics applications. This work is funded by NRI-SWAN.

  20. Perpendicular magnetic anisotropy in Mn2CoAl thin film

    Directory of Open Access Journals (Sweden)

    N. Y. Sun

    2016-01-01

    Full Text Available Heusler compound Mn2CoAl (MCA is attracting more attentions due to many novel properties, such as high resistance, semiconducting behavior and suggestion as a spin-gapless material with a low magnetic moment. In this work, Mn2CoAl epitaxial thin film was prepared on MgO(100 substrate by magnetron sputtering. The transport property of the film exhibits a semiconducting-like behavior. Moreover, our research reveals that perpendicular magnetic anisotropy (PMA can be induced in very thin Mn2CoAl films resulting from Mn-O and Co-O bonding at Mn2CoAl/MgO interface, which coincides with a recent theoretical prediction. PMA and low saturation magnetic moment could lead to large spin-transfer torque with low current density in principle, and thus our work may bring some unanticipated Heusler compounds into spintronics topics such as the domain wall motion and the current-induced magnetization reversal.

  1. Perpendicular magnetic anisotropy in Mn{sub 2}CoAl thin film

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R. [Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Fu, H. R.; You, C. Y., E-mail: caiyinyou@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2016-01-15

    Heusler compound Mn{sub 2}CoAl (MCA) is attracting more attentions due to many novel properties, such as high resistance, semiconducting behavior and suggestion as a spin-gapless material with a low magnetic moment. In this work, Mn{sub 2}CoAl epitaxial thin film was prepared on MgO(100) substrate by magnetron sputtering. The transport property of the film exhibits a semiconducting-like behavior. Moreover, our research reveals that perpendicular magnetic anisotropy (PMA) can be induced in very thin Mn{sub 2}CoAl films resulting from Mn-O and Co-O bonding at Mn{sub 2}CoAl/MgO interface, which coincides with a recent theoretical prediction. PMA and low saturation magnetic moment could lead to large spin-transfer torque with low current density in principle, and thus our work may bring some unanticipated Heusler compounds into spintronics topics such as the domain wall motion and the current-induced magnetization reversal.

  2. Energy consumption analysis of graphene based all spin logic device with voltage controlled magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Zhizhong Zhang

    2017-05-01

    Full Text Available All spin logic device (ASLD is a promising option to realize the ultra-low power computing systems. However, the low spin transport efficiency and the non-local switching of the detector have become two key challenges of the ASLD. In this paper, we analyze the energy consumption of a graphene based ASLD with the ferromagnetic layer switching assistance by voltage control magnetic anisotropy (VCMA effect. This structure has significant potential towards ultra-low power consumption: the applied voltage can not only shorten switching time of the ferromagnetic layer, but also decreases the critical injection current; the graphene channel enhances greatly the spin transport efficiency. By applying the approximate circuit model, the impact of material configurations, interfaces and geometry can be synthetically studied. An accurate physic model was also developed, based on which, we carry out the micro-magnetic simulations to analyze the magnetization dynamics. Combining these electrical and magnetic investigations, the energy consumption of the proposed ASLD can be estimated. With the optimizing parameters, the energy consumption can be reduced to 2.5 pJ for a logic operation.

  3. Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy

    Science.gov (United States)

    Strelniker, Yakov M.; Bergman, David J.

    2017-12-01

    A calculational method based on Fourier expansion is developed and applied to the study of the strong-field galvanomagnetic thermoelectric properties of a free-electron metal, inside of which is embedded a simple cubic array of identical spheres or cylinders, which have different thermoelectric and conductivity tensors. When the magnetic field is strong enough, the effective galvanomagnetic thermoelectric properties of such composites exhibit very strong variations with the direction of the applied magnetic field with respect to the symmetry axes of the composite microstructure. This is qualitatively similar to the predicted magnetoinduced angular magnetoresistance anisotropy [D. J. Bergman and Y. M. Strelniker, Phys. Rev. B 49, 16256 (1994), 10.1103/PhysRevB.49.16256] which was verified experimentally [M. Tornow et al., Phys. Rev. Lett. 77, 147 (1996), 10.1103/PhysRevLett.77.147]. This is a purely classical effect, even though it is qualitatively similar to what is observed in some metallic crystals which have a noncompact Fermi surface. The current results can be useful for studying the possibility of increasing the thermoelectric figure of merit in periodic composites by application of a strong magnetic field. As follows from our very preliminary results, the figure of merit can be increased by application of a strong magnetic field to the composite.

  4. Magnetic and structural investigation of growth induced magnetic anisotropies in Fe50Co50 thin films

    Directory of Open Access Journals (Sweden)

    Neri I.

    2013-01-01

    Full Text Available In this paper, we investigate the magnetic properties of Fe50 Co50 polycrystalline thin films, grown by dc-magnetron sputtering, with thickness (t ranging from 2.5 nm up to 100 nm. We focused on the magnetic properties of the samples to highlight the effects of possible intrinsic stress that may develop during growth, and their dependence on film thickness. Indeed, during film deposition, due to the growth technique and growth conditions, a metallic film may display an intrinsic compressive or tensile stress. In our case, due to the Fe50Co50 magnetolastic properties, this stress may in its turn promote the development of magnetic anisotropies. Samples magnetic properties were monitored with a SQUID magnetometer and a magneto–optic Kerr effect apparatus, using both an in–plane and an out–of–plane magnetic field. Magnetoresistance measurements were collected, as well, to further investigate the magnetic behavior of the samples. Indications about the presence of intrinsic stress were obtained accessing samples curvature with an optical profilometer. For t ≤ 20 nm, the shape of the in-plane magnetization loops is squared and coercivity increases with t, possibly due to fact that, for small t values, the grain size grows with t. The magnetoresistive response is anisotropic in character. For t > 20 nm, coercivity smoothly decreases, the approach to saturation gets slower and the shape of the whole loop gets less and less squared. The magnetoresistive effect becomes almost isotropic and its intensity increases of about one order of magnitude. These results suggest that the magnetization reorientation process changes for t > 20 nm, and are in agreement with the progressive development of an out-of-plane easy axis. This hypothesis is substantiated by profilometric analysis that reveals the presence of an in-plane compressive stress.

  5. Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co{sub 2}MnAl film

    Energy Technology Data Exchange (ETDEWEB)

    Meng, K.K., E-mail: kkmeng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, J.; Xu, X.G. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, J.H. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Jiang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-04-04

    We have investigated the thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect (AHE) in single-crystalline full-Heusler alloy Co{sub 2}MnAl (CMA) grown by molecular-beam epitaxy on GaAs(001). The magnetic anisotropy is the interplay of uniaxial and the fourfold anisotropy, and the corresponding anisotropy constants have been deduced. Considering the thickness of CMA is small, we ascribe it to the influence from interface stress. The AHE in CMA is found to be well described by a proper scaling. The intrinsic anomalous conductivity is found to be smaller than the calculated one and is thickness dependent, which is ascribed to the influence of chemical ordering by affecting the band structure and Fermi surface. - Highlights: • Single-crystalline full-Heusler alloy Co{sub 2}MnAl grown by molecular-beam epitaxy. • Uniaxial and the fourfold magnetic anisotropies in Heusler alloys. • Anomalous Hall effect in Heusler alloys. • The intrinsic contributions modified by chemical ordering.

  6. Magnetic domain structure and anisotropy distribution in Al/Metglas 2605S2/Al trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Moscon, P S; Passamani, E C; Larica, C [Departamento de Fisica, Universidade Federal do Espirito Santo, (29075-910), ES, Vitoria (Brazil); Sanchez, F H; Mendoza Zelis, P [Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correos 67 (1900), La Plata (Argentina)], E-mail: edson@cce.ufes.br

    2008-11-21

    Al coatings, with thickness (x) up to 20 {mu}m, were deposited by dc sputtering on both sides of the Metglas 2605S2 precursor melt-spun ribbons. Spin reorientation, induced by the magnetoelastic effect, was clearly observed in the Al/Metglas 2605S2/Al trilayers by monitoring the 2 and 5 line intensities of the Moessbauer spectra obtained at different temperatures. The average spin orientation angles can be controlled by adjusting the Al thickness. A magneto-mechanical coefficient, which measures the rate of spin reorientation with respect to the temperature variation, was obtained and is found to be equal to -0.15{sup 0} K{sup -1} and -0.28{sup 0} K{sup -1} for x = 5 {mu}m and 20 {mu}m, respectively. Using a spin structure phenomenological model, in-plane native magnetic anisotropies ranging up to 3 kJ m{sup -3} were estimated for the Metglas 2605S2 ribbons. Energy anisotropy values higher than 20 kJ m{sup -3} are associated with inhomogeneities and defects from the sample preparation method and may correspond to about 10% of the ribbon volume.

  7. Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy

    Science.gov (United States)

    Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei

    2016-01-01

    The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called “phase mechanism” described by the Zakharov-L’vov-Starobinets “S-theory” and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the “S-theory”, which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect. PMID:27113392

  8. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field

    Science.gov (United States)

    Ghosh, Sanjoy; Roberts, D. Aaron

    2010-01-01

    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  9. The relation between anisotropy of magnetic susceptibility (AMS) and mineral filling of foraminifers

    Science.gov (United States)

    Guzhikova, Anastasia; Grishchenko, Vladimir; Surinsky, Arseny; Tselmovich, Vladimir

    2017-04-01

    The comparison of bio- and magnetostratigraphic data in four sections of Jurassic-Cretaceous sediments of Mountain Crimea and Saratov region (Russia) detected the presence of correlation between the AMS parameter T and the amount of foraminifers in rock sample: disk-shaped magnetic particles dominance is connected with high quantity of foraminifers and therefore, cigar-shaped particles signify low foraminifer content. Parameter T (shape parameter) representing the magnetic particle form: T values close to 1 indicate the plain (disc-shaped) form of magnetic particles, T values close to (-1) highlight the prolate (cigar-shaped) form. To understand the nature of this interrelation a few disc-shaped foraminifers were studied using microprobe analysis. The results of this study have shown that inner spaces of foraminifers are completely filled by pyrite, which grains are covered with thin magnetite tape (the thickness of the tape is less than 200 nanometers). We suppose that this magnetite tape provides the main influence to anisotropy's character. In the Maastrichtian of Mountain Crimea the relation between AMS and amount of foraminifers appears to be more significant after the heating of samples in the muffle furnace till 500°C during 1 hour. Primary magnetic texture was nearly chaotic, but after the heating it acquired the view peculiar to rocks containing plain ferromagnetic particles, formed in calm hydrodynamic environment. This event may be explained by transition (at the temperature of 450°C) of non-magnetic pyrite, fulfilling the inner structure of foraminifers, to the high-magnetic magnetite. The relations between petromagnetic parameters and special aspects of micropaleontological complexes involve studies that are more special because they gain much interest and perspectives in the area of sedimentological and paleoecological reconstructions. The finance part of the study was supported by RFBR: Russian Foundation for Basic Research (projects №№ 16

  10. Ion irradiation effects on the magnetic anisotropy of Fe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Josiane Bueno; Santos, Barbara Canto dos; Geshev, Julian Penkov; Schmidt, Joao Edgar; Schafer, Deise; Grande, Pedro Luis; Pereira, Luis Gustavo [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil). Inst. de Fisica

    2011-07-01

    Full text. The effects of low dimensionality can lead a system to show certain properties quite different from those observed in bulk systems. In general, some of these properties are obtained during manufacturing the sample. However, we may modify them after the deposition by several processes, for example, ion irradiation. In a recent work was observed that Fe thin films grown on Si (111) have a different magnetic behavior depending on the thickness. In our work, we analyzed Fe films with thickness of 60 angstrom and 300 angstrom, which presented the same magnetic characteristics observed previously. Later they were subjected to the irradiation of 20 MeV Au{sup +} ion, in an angle of 45 degrees to the normal of the films. The current density was 4 nA/cm{sup 2} and the fluency was 5 X 10{sup 11} ions/cm{sup 2}. Irradiated films presented an increase in the contribution of shape anisotropy due to the action of the ions. The observation of changes in magnetic behavior and morphological characteristics by ion irradiation was the main motivation for present work. In the present work we discuss the influence of ion irradiation in Fe (60 angstrom) films, whose projection of the beam direction in the plan is presents parallel and perpendicular to the easy axis of magnetization film, performed in an angle of 70 degrees to the normal of the film. We also want to understand the oxidation effects on the magnetic behavior of Fe thin films. This analysis was performed using the MEIS (Medium Energy Ion Scattering) technique, which is also interesting because it provides great accuracy in the study of depth profiles of extremely thin layers. A second work associated with the change effects in the magnetic behavior by ion irradiation is discussed based on samples that present the exchange bias phenomenon

  11. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    Energy Technology Data Exchange (ETDEWEB)

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Negri, R. Martín, E-mail: rmn@qi.fcen.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires (Argentina); Perez, Oscar E. [Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Butera, Alejandro [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica. Argentina) and Instituto Balseiro, Universidad Nacional de Cuyo, Mendoza (Argentina); Jorge, Guillermo [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Oliveira, Cristiano L. P. [Grupo de Fluidos Complexos, Instituto de Física, Universidade de São Paulo, São Paulo (Brazil)

    2013-12-07

    possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.

  12. X-ray magnetic circular dichroism and reflection anisotropy spectroscopy Kerr effect studies of capped magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cunniffe, J. P.; McNally, D.E.; Liberati, M.; Arenholz, E.; McGuinness, C.; McGilp, J. F.

    2010-03-02

    Aligned Co wires grown on Pt(997) under ultra-high vacuum conditions have been capped successfully by the epitaxial growth of Au monolayers (ML) at room temperature. The samples were kept under vacuum except when transferring between apparatus or when making some of the measurements. No degradation of the Co wires was detected during the measurements. The magneto-optic response of the system was measured using X-ray magnetic circular dichroism (XMCD) at the Co L{sub 2,3} edge and reflection anisotropy spectroscopy (RAS) at near normal incidence, which is sensitive to the normal component of the out-of-plane magnetization via the Kerr effect (MOKE). Capping the wires significantly impacts their magnetic properties. Comparison of the magneto-optic response of the system at X-ray and optical energies reveals small differences that are attributed to the induced moment in the Pt substrate and Au capping layer not picked up by the element specific XMCD measurements. The sensitivity of RAS-MOKE is sufficient to allow the determination of the easy axis direction of the capped wires to within a few degrees. The results for a 6-atom-wide Co wire sample, capped with 6 ML of Au, are consistent with the capped wires possessing perpendicular magnetization.

  13. Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations

    Directory of Open Access Journals (Sweden)

    O. Alexandrova

    2008-11-01

    Full Text Available We investigate the spectral shape, the anisotropy of the wave vector distributions and the anisotropy of the amplitudes of the magnetic fluctuations in the Earth's magnetosheath within a broad range of frequencies [10−3, 10] Hz which corresponds to spatial scales from ~10 to 105 km. We present the first observations of a Kolmogorov-like inertial range of Alfvénic fluctuations δB2}~f−5/3 in the magnetosheath flanks, below the ion cyclotron frequency fci. In the vicinity of fci, a spectral break is observed, like in solar wind turbulence. Above the break, the energy of compressive and Alfvénic fluctuations generally follows a power law with a spectral index between −3 and −2. Concerning the anisotropy of the wave vector distribution, we observe a clear change in its nature in the vicinity of ion characteristic scales: if at MHD scales there is no evidence for a dominance of a slab (kł>>k or 2-D (k>>kł turbulence, above the spectral break, (f>fci, kcpi>1 the 2-D turbulence dominates. This 2-D turbulence is observed in six selected one-hour intervals among which the average ion β varies from 0.8 to 10. It is observed for both the transverse and compressive magnetic fluctuations, independently on the presence of linearly unstable modes at low frequencies or Alfvén vortices at the spectral break. We then analyse the anisotropy of the magnetic fluctuations in a time dependent reference frame based on the field B and the flow velocity V directions. Within the range of the 2-D turbulence, at scales [1,30]kcpi, and for any β we find that the magnetic fluctuations at a given frequency in the plane perpendicular to B have more energy along the

  14. Magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    Keyu Ning

    2017-01-01

    Full Text Available As one invigorated filed of spin caloritronics combining with spin, charge and heat current, the magneto-Seebeck effect has been experimentally and theoretically studied in spin tunneling thin films and nanostructures. Here we analyze the tunnel magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy (p-MTJs under various measurement temperatures. The large tunnel magneto-Seebeck (TMS ratio up to −838.8% for p-MTJs at 200 K is achieved, with Seebeck coefficient S in parallel and antiparallel states of 6.7 mV/K and 62.9 mV/K, respectively. The temperature dependence of the tunnel magneto-Seebeck can be attributed to the contributing transmission function and electron states at the interface between CoFeB electrode and MgO barrier.

  15. Mechanism of Formation of Volcanic Bombs and Achneliths: Insights From Anisotropy of Magnetic Susceptibility Measurements.

    Science.gov (United States)

    Canon-Tapia, E.

    2016-12-01

    Volcanic bombs and achneliths are a special type of pyroclastic fragments formed by mildly explosive volcanic eruptions. The common explanation for the general shapes of these types of particles is that they are the result of the rush of air acting on a fluid clot during flight. A competing, less commonly quoted model, envisages the shapes of volcanic bombs as the result of forces acting at the moment of ejection of liquid from the magma pool in the conduit, experiencing an almost negligible modification through its travel on the air. Quantitative evidence supporting either of those two models is limited, or might not be directly applicable to all morphological types. In this work, anisotropy of magnetic susceptibility (AMS) is used as a source of information that provides clues concerning the mechanism of formation of volcanic bombs and achneliths in general. AMS results indicate a fundamental difference between two of the most common morphological bomb types, and are used to constraint mechanisms of formation. It is shown that neither of the two most common mechanisms of formation of volcanic bombs seems acceptable on its current form. An alternative, two-step process is therefore outlined. The first step involves ejection of a small volume of magma dragged on top of large bubbles of gas that reach the surface of a magma pool. The second stage involves the disruption of the ejected magma either as the result of the bursting of the gas bubble, or as a consequence of currents of air that further destabilize already formed jets of liquid. This destabilization is not equivalent to the aerodynamic deformation invoked in current models. Finally, the evidence presented by the anisotropy of magnetic susceptibility indicates that some types of volcanic bombs are likely to preserve the initial deformation, whereas some others might loose it completely.

  16. The role of electron confinement in Pd films for the oscillatory magnetic anisotropy in an adjacent Co layer

    Science.gov (United States)

    Manna, Sujit; Przybylski, M.; Sander, D.; Kirschner, J.

    2016-11-01

    We demonstrate the interplay between quantum well states in Pd and the magnetic anisotropy in Pd/Co/Cu (0 0 1) by combined scanning tunneling spectroscopy (STS) and magneto optical Kerr effect (MOKE) measurements. Low temperature scanning tunneling spectroscopy reveals occupied and unoccupied quantum well states (QWS) in atomically flat Pd films on Co/Cu (0 0 1). These states give rise to sharp peaks in the differential conductance spectra. A quantitative analysis of the spectra reveals the electronic dispersion of the Pd (0 0 1) d-band ({{ Δ }5} -type) along the Γ -X direction. In situ MOKE experiments on Pd/Co/Cu (1, 1, 13) uncover a periodic variation of the in-plane uniaxial magnetic anisotropy as a function of Pd thickness with a period of 6 atomic layers Pd. STS shows that QWS in Pd cross the Fermi level with the same periodicity of 6 atomic layers. Backed by previous theoretical work we ascribe the variation of the magnetic anisotropy in Co to QWS in the Pd overlayer. Our results suggest a novel venue towards tailoring uniaxial magnetic anisotropy of ferromagnetic films by exploiting QWS in an adjacent material with large spin-orbit coupling.

  17. Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy.

    Science.gov (United States)

    Liu, T; Zhang, Y; Cai, J W; Pan, H Y

    2014-07-31

    The recent discovery of perpendicular magnetic anisotropy (PMA) at the CoFeB/MgO interface has accelerated the development of next generation high-density non-volatile memories by utilizing perpendicular magnetic tunnel junctions (p-MTJs). However, the insufficient interfacial PMA in the typical Ta/CoFeB/MgO system will not only complicate the p-MTJ optimization, but also limit the device density scalability. Moreover, the rapid decreases of PMA in Ta/CoFeB/MgO films with annealing temperature higher than 300°C will make the compatibility with CMOS integrated circuits a big problem. By replacing the Ta buffer layer with a thin Mo film, we have increased the PMA in the Ta/CoFeB/MgO structure by 20%. More importantly, the thermal stability of the perpendicularly magnetized (001)CoFeB/MgO films is greatly increased from 300°C to 425°C, making the Mo/CoFeB/MgO films attractive for a practical p-MTJ application.

  18. Ferromagnetic MnGaN thin films with perpendicular magnetic anisotropy for spintronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Ohkubo, Tadakatsu; Kasai, Shinya [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Liu, Jun; Mitani, Seiji; Hono, Kazuhiro [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2015-07-20

    Perpendicularly magnetized flat thin films of antiperovskite Mn{sub 67}Ga{sub 24}N{sub 9} were grown on an MgO(001) substrate by reactive sputtering using an argon/1% nitrogen gas mixture and a Mn{sub 70}Ga{sub 30} target. The films showed a saturation magnetization of 80 –100 kA/m, an effective perpendicular magnetic anisotropy (PMA) energy of 0.1–0.2 MJ/m{sup 3}, and a Curie temperature of 660–740 K. Upon increasing the N composition, the films transformed from ferromagnetic to antiferromagnetic as expected in the stoichiometric Mn{sub 3}GaN phase. Point contact Andreev reflection spectroscopy revealed that the ferromagnetic MnGaN has a current spin polarization of 57%, which is comparable to D0{sub 22}-MnGa. These findings suggest that MnGaN is a promising PMA layer for future spintronics devices.

  19. Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel

    Science.gov (United States)

    Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.

    2015-08-01

    To exploit the potential of anisotropy of magnetic susceptibility (AMS) as a tool to estimate the strain field around major faults, we measured the AMS of calcite-bearing diamagnetic rocks that crop out next to the Dead Sea Fault (DSF) in northern Israel. Through integrated magnetic and geochemical methods we found that the rocks are almost pure calcite rocks and therefore the magnetic fabric is primarily controlled by preferred crystallographic orientation (PCO) with the minimum principal AMS axes (k3) parallel to calcite c-axes. We applied a separation procedure in several samples with high Fe content in order to calculate the AMS anisotropy parameters and compare them to pure diamagnetic rocks. AARM, thermo-susceptibility curves and IRM were used to characterize the magnetic phases. We found that for Fe content below 500 ppm the AMS is mostly controlled by the diamagnetic phase and showed that differences in the degree of anisotropy P' up to 3% (P' = 1.005 to 1.023) and in anisotropy difference Δk (up to ~ 0.25 × 10- 6 SI) in diamagnetic rocks are related to differences of strain magnitudes. The spatial distribution of the magnetic fabrics indicates ~ N-S maximum shortening parallel to the strike of the Hula Western Border fault (HWBF), one of the main strands of the DSF in northern Israel. The anisotropy parameters suggest that the strain magnitudes increase eastward with the proximity to the HWBF. These results suggest that the strain field near the HWBF is locally deflected as a consequence of the DSF activity. In light of the "fault weakness" model and geological setting of the study area, we suggest that the area accommodates dominant transtension during the Pleistocene. The present study demonstrates the useful application of AMS measurements in "iron-free" limestones as recorders of the strain field near plate boundaries.

  20. Magnetic anisotropy in rhyolitic ignimbrite, Snake River Plain: Implications for using remanent magnetism of volcanic rocks for correlation, paleomagnetic studies, and geological reconstructions

    Science.gov (United States)

    Finn, David R.; Coe, Robert S.; Kelly, Henry; Branney, Michael; Knott, Thomas; Reichow, Marc

    2015-06-01

    Individual ignimbrite cooling units in southern Idaho display significant variation of magnetic remanence directions and other magnetic properties. This complicates paleomagnetic correlation. The ignimbrites are intensely welded and exhibit mylonite-like flow banding produced by rheomorphic ductile shear during emplacement, prior to cooling below magnetic blocking temperatures. Glassy vitrophyric lithologies commonly have discrepantly shallow remanence directions rotated closer to the orientation of the subhorizontal shear fabric when compared to the microcrystalline center of the same cooling unit. To investigate this problem, we conducted a detailed paleomagnetic and rock magnetic study of a vertical profile through a single ignimbrite cooling unit and its underlying baked soil. The results demonstrate that large anisotropy of thermal remanent magnetization correlates with large (up to 38°) deflections of the stable remanence direction. Anisotropy of magnetic susceptibility revealed no strong anisotropy. A strong lineation and deflection of the remanence declination suggest that rheomorphic shear above magnetic blocking temperatures is the dominant mechanism controlling the formation of the magnetic fabric, with compaction contributing to a lesser extent. Nucleation and growth of anisotropic fine-grained magnetite in volcanic glass at high temperatures after, and perhaps also during, emplacement is indicated by systematic variation of magnetic properties from the quickly chilled ignimbrite base to the interior. These properties include remanence directions, anisotropy, coercivity, susceptibility, strength of natural remanent magnetization, and dominant unblocking temperature. The microcrystalline ignimbrite center has a magnetic direction that is the same as the underlying baked soil and, therefore, is a more reliable recorder of the paleofield direction than the glassy margins of highly welded ignimbrites.

  1. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  2. Spin-orbit torque induced magnetization switching in Pt/Co/Ta structures with perpendicular magnetic anisotropy

    Science.gov (United States)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Zuo, Yalu; Xi, Li

    2017-10-01

    Spin-orbit torque (SOT) induced magnetization switching is investigated in Pt/Co/Ta stacks with perpendicular magnetic anisotropy with the variation of the thickness of Ta layer (t Ta). SOT is characterized by an effective spin Hall angle θ SH, which is determined by an anomalous Hall resistance measurements method based on a macrospin model. A high charge current induced magnetization switching efficiency is achieved by the enhanced injection efficiency of spin currents from bottom Pt and top Ta with opposite signs of θ SH. When t Ta  =  4 nm, the enhanced effective θ SH for Pt/Co/Ta shows a maximum value around 0.356, which is larger than the sum of |θ SH| for Pt and Ta and is ascribed to an additional interfacial SOT at Co/Ta interface. θ SH gradually decreases with increasing Ta layer thickness beyond 4 nm, which can be explained by the improved crystallinity of Ta layer. Our results confirm a way to decrease the switching current density in SOT-based spintronic devices.

  3. The effect of uniaxial crystal-field anisotropy on magnetic properties of the superexchange antiferromagnetic Ising model

    Directory of Open Access Journals (Sweden)

    L.Canová

    2006-01-01

    Full Text Available The generalized Fisher super-exchange antiferromagnetic model with uniaxial crystal-field anisotropy is exactly investigated using an extended mapping technique. An exact relation between partition function of the studied system and that of the standard zero-field spin-1/2 Ising model on the corresponding lattice is obtained applying the decoration-iteration transformation. Consequently, exact results for all physical quantities are derived for arbitrary spin values S of decorating atoms. Particular attention is paid to the investigation of the effect of crystal-field anisotropy and external longitudinal magnetic field on magnetic properties of the system under investigation. The most interesting numerical results for ground-state and finite-temperature phase diagrams, thermal dependences of the sublattice magnetization and other thermodynamic quantities are discussed.

  4. Theory of magnetic surface anisotropy and exchange effects in the Brillouin scattering of light by magnetostatic spin waves (invited)

    Science.gov (United States)

    Rado, G. T.; Hicken, R. J.

    1988-04-01

    A new theory of the Brillouin shift in the inelastic scattering of light by magnetostatic spin waves is presented. Contrary to previous work, the present calculations do include exchange effects and treat the magnetic surface anisotropy constants Ks and Kss directly rather than via the stratagem of effective volume anisotropies. The experimental data for {110} Fe on W are explained about as well by the present theory as by previous work. A detailed analysis reveals the previously unnoticed fact that the signs of Ks and Kss for (1¯10) Fe on W are opposite to those for (1¯10) Fe on GaAs. Some new spin-wave modes arising from exchange are predicted and shown to occur outside the frequency range which has been investigated experimentally. A quantitative explanation is proposed for the occasional applicability of a theory based on effective volume anisotropies and zero exchange.

  5. Magnetic anisotropy of a Co-II single ion magnet with distorted trigonal prismatic coordination

    DEFF Research Database (Denmark)

    Peng, Yan; Bodenstein, Tilmann; Fink, Karin

    2016-01-01

    The single ion magnetic properties of Co(II) are affected by the details of the coordination geometry of the ion. Here we show that a geometry close to trigonal prismatic which arises when the ligand 6,6'-((1Z)-((piperazine-1,4-diylbis(propane-3,1-diyl)) bis(azanylylidene)) bis(methanylylidene)) ......The single ion magnetic properties of Co(II) are affected by the details of the coordination geometry of the ion. Here we show that a geometry close to trigonal prismatic which arises when the ligand 6,6'-((1Z)-((piperazine-1,4-diylbis(propane-3,1-diyl)) bis(azanylylidene)) bis......(methanylylidene)) bis(2-methoxyphenol) coordinates to Co(II) does indeed lead to enhanced single-ion behaviour as has previously been predicted. Synthesis of the compound, structural information, and static as well as dynamic magnetic data are presented along with an analysis using quantum chemical ab initio...... calculations. Though the complex shows a slight deviation from an ideal trigonal prismatic coordination, the zero-field splitting as well as the g-tensor are strongly axial with D = -41 cm(-1) and E

  6. Ga+ ion irradiation-induced changes in magnetic anisotropy of a Pt/Co/Pt thin film studied by X-ray magnetic circular dichroism

    Directory of Open Access Journals (Sweden)

    Liedke M. O.

    2013-01-01

    Full Text Available Ga+ ion irradiation-induced changes in magnetic anisotropy of a Pt/Co/Pt ultrathin film are investigated by means of the X-ray magnetic circular dichroism (XMCD technique. A large difference in the Co orbital moment is observed between out-of-plane and in-plane directions of the film at moderate Ga+ fluences of ~1-2×1014 ions/cm2, which corresponds to the perpendicular magnetic anisotropy (PMA, while further increased fluences reduce the orbital moment difference, resulting in in-plane magnetization. In contrast, at much higher Ga+ fluences of ~5×1015 ions/cm2, at which PMA is observed again, no significant difference is found in the orbital moment of Co between out-of-plane and in-plane directions. Different origins are thus suggested for the appearance of PMA induced by the irradiation between moderate and high Ga+ fluences.

  7. Structural and magnetic anisotropy in the epitaxial FeV2O4 (110) spinel thin films

    Science.gov (United States)

    Shi, Xiaolan; Wang, Yuhang; Zhao, Kehan; Liu, Na; Sun, Gaofeng; Zhang, Liuwan

    2015-11-01

    The epitaxial 200-nm-thick FeV2O4(110) films on (110)-oriented SrTiO3, LaAlO3 and MgAl2O4 substrates were fabricated for the first time by pulsed laser deposition, and the structural, magnetic, and magnetoresistance anisotropy were investigated systematically. All the films are monoclinic, whereas its bulk is cubic. Compared to FeV2O4 single crystals, films on SrTiO3 and MgAl2O4 are strongly compressively strained in [001] direction, while slightly tensily strained along normal [110] and in-plane [ 1 1 ¯ 0 ] directions. In contrast, films on LaAlO3 are only slightly distorted from cubic. The magnetic hard axis is in direction, while the easier axis is along normal [110] direction for films on SrTiO3 and MgAl2O4, and in-plane [ 1 1 ¯ 0 ] direction for films on LaAlO3. Magnetoresistance anisotropy follows the magnetization. The magnetic anisotropy is dominated by the magnetocrystalline energy, and tuned by the magneto-elastic coupling.

  8. Probing the temperature-dependent magnetic anisotropy and longitudinal spin Seebeck effect in Y3Fe5O12

    Directory of Open Access Journals (Sweden)

    Vijaysankar Kalappattil

    2017-05-01

    Full Text Available Y3Fe5O12 (YIG has attracted growing interest since a large Longitudinal Spin Seebeck Effect (LSSE was discovered in this material. However, the origin of the LSSE and its temperature dependence are not well understood. We report here, the temperature dependence of the effective magnetic anisotropy field (HK and LSSE voltage (VLSSE of single crystal YIG, measured using the radio-frequency transverse susceptibility (TS and LSSE techniques, respectively. VLSSE is found to vary from 40 nV to 97 nV from 100 to 300 K, which is consistent with the previously reported experimental results. Interestingly, we find the temperature dependence of HK resembles that of VLSSE in the high temperature regime (100 – 300 K, with the sudden changes in both VLSSE and HK at ∼175 K. Our results indicate the possible role of magnetic anisotropy in the LSSE in YIG and provide important insights into improving LSSE in magnetic materials through manipulating their magnetic anisotropy.

  9. Magnetic susceptibility anisotropy: cylindrical symmetry from macroscopically ordered anisotropic molecules and accuracy of MRI measurements using few orientations.

    Science.gov (United States)

    Wisnieff, Cynthia; Liu, Tian; Spincemaille, Pascal; Wang, Shuai; Zhou, Dong; Wang, Yi

    2013-04-15

    White matter is an essential component of the central nervous system and is of major concern in neurodegenerative diseases such as multiple sclerosis (MS). Recent MRI studies have explored the unique anisotropic magnetic properties of white matter using susceptibility tensor imaging. However, these measurements are inhibited in practice by the large number of different head orientations needed to accurately reconstruct the susceptibility tensor. Adding reasonable constraints reduces the number of model parameters and can help condition the tensor reconstruction from a small number of orientations. The macroscopic magnetic susceptibility is decomposed as a sum of molecular magnetic polarizabilities, demonstrating that macroscopic order in molecular arrangement is essential to the existence of and symmetry in susceptibility anisotropy and cylindrical symmetry is a natural outcome of an ordered molecular arrangement. Noise propagation in the susceptibility tensor reconstruction is analyzed through its condition number, showing that the tensor reconstruction is highly susceptible to the distribution of acquired subject orientations and to the tensor symmetry properties, with a substantial over- or under-estimation of susceptibility anisotropy in fiber directions not favorably oriented with respect to the acquired orientations. It was found that a careful acquisition of three non-coplanar orientations and the use of cylindrical symmetry guided by diffusion tensor imaging allowed reasonable estimation of magnetic susceptibility anisotropy in certain major white matter tracts in the human brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. On the magnetic anisotropy and nuclear relaxivity effects of Co and Ni doping in iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, T., E-mail: tomas.orlando@mpibpc.mpg.de [Department of Physics, Università di Pavia, and Consorzio INSTM, Pavia 27100 (Italy); Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen 37077 (Germany); Albino, M.; Innocenti, C. [Department of Chemistry “Ugo Schiff,” Università di Firenze, and Consorzio INSTM, Sesto Fiorentino 50019 (Italy); Orsini, F.; Arosio, P. [Department of Physics, Università degli Studi di Milano, and Consorzio INSTM, Milano 20133 (Italy); Basini, M.; Lascialfari, A. [Department of Physics, Università degli Studi di Milano, and Consorzio INSTM, Milano 20133 (Italy); CNR-S3, Istituto di Nanoscienze, Modena 41125 (Italy); Sangregorio, C. [Department of Chemistry “Ugo Schiff,” Università di Firenze, and Consorzio INSTM, Sesto Fiorentino 50019 (Italy); CNR-ICCOM and Consorzio INSTM, Sesto Fiorentino 50019 (Italy); Corti, M. [Department of Physics, Università di Pavia, and Consorzio INSTM, Pavia 27100 (Italy)

    2016-04-07

    We report a systematic experimental study of the evolution of the magnetic and relaxometric properties as a function of metal (Co, Ni) doping in iron oxide nanoparticles. A set of five samples, having the same size and ranging from stoichiometric cobalt ferrite (CoFe{sub 2}O{sub 4}) to stoichiometric nickel ferrite (NiFe{sub 2}O{sub 4}) with intermediate doping steps, was ad hoc synthesized. Using both DC and AC susceptibility measurements, the evolution of the magnetic anisotropy depending on the doping is qualitatively discussed. In particular, we observed that the height of the magnetic anisotropy barrier is directly proportional to the amount of Co, while the Ni has an opposite effect. By Nuclear Magnetic Resonance Dispersion (NMR-D) experiments, the experimental longitudinal r{sub 1} and transverse r{sub 2} relaxivity profiles were obtained, and the heuristic theory of Roch et al. was used to analyze the data of both r{sub 1} and, for the first time, r{sub 2}. While the experimental and fitting results obtained from r{sub 1} profiles were satisfying and confirmed the anisotropy trend, the model applied to r{sub 2} hardly explains the experimental findings.

  11. Anisotropy of callosal motor fibers in combination with transcranial magnetic stimulation in the course of motor development.

    Science.gov (United States)

    Koerte, Inga; Heinen, Florian; Fuchs, Teresa; Laubender, Ruediger P; Pomschar, Andreas; Stahl, Robert; Berweck, Steffen; Winkler, Peter; Hufschmidt, Andreas; Reiser, Maximilian F; Ertl-Wagner, Birgit

    2009-05-01

    The corpus callosum (CC) represents a key structure for hand motor development and is accessible to investigation by diffusion tensor magnetic resonance imaging (DTI) and transcranial magnetic stimulation (TMS). To identify quantifiable markers for motor development, we combined DTI with TMS. We examined groups of 11 healthy preschool-aged children, 10 healthy adolescents, and 10 healthy adults with both, DTI and TMS/ipsilateral silent period (iSP). DTI-values for fractional anisotropy (FA) were calculated for areas I to V of the CC. ISP-values for latency, duration, and extent of electromyography suppression were calculated. FA was significantly lower in areas II to IV of the CC in children as compared with adults (P motor fibers cross the CC, FA differed significantly between children and adolescents (P motor fiber connectivity seems to reflect the degree of interhemispheric inhibition between the motor cortices with anisotropy of callosal motor fibers being a potential marker for motor development.

  12. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth

    Science.gov (United States)

    de Visser, Pieter J.; Levallois, Julien; Tran, Michaël K.; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O.; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B.

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13 ±1 %, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light.

  13. Bending strain-tunable magnetic anisotropy in Co2FeAl Heusler thin film on KaptonxAE

    Science.gov (United States)

    Gueye, M.; Wague, B. M.; Zighem, F.; Belmeguenai, M.; Gabor, M. S.; Petrisor, T.; Tiusan, C.; Mercone, S.; Faurie, D.

    2014-08-01

    Bending effect on the magnetic anisotropy in 20 nm Co2FeAl Heusler thin film grown on Kapton® has been studied by ferromagnetic resonance and glued on curved sample carrier with various radii. The results reported in this Letter show that the magnetic anisotropy is drastically changed in this system by bending the thin films. This effect is attributed to the interfacial strain transmission from the substrate to the film and to the magnetoelastic behavior of the Co2FeAl film. Moreover, two approaches to determine the in-plane magnetostriction coefficient of the film, leading to a value that is close to λCFA= 14 × 10-6, have been proposed.

  14. Cryptic post-depositional reworking in aeolian sediments revealed by the anisotropy of magnetic susceptibility

    Science.gov (United States)

    Lagroix, France; Banerjee, Subir K.

    2004-08-01

    Our anisotropy of magnetic susceptibility (AMS) investigation of the Gold Hill Steps (GHS2) and Halfway House (HH3) loess and paleosol profiles in central Alaska confirms that post-depositional reworking of loess at Gold Hill Steps has taken place and, of greater importance, identifies the reworked depth intervals. In GHS2, the majority of the loess below 7.80 m depth has been reworked. The loess at the Halfway House site is, as stated in the literature, a predominantly undisturbed aeolian deposit. However, we have identified two intervals that have been reworked in HH3. We infer from the depth variation of the AMS orientation distribution at GHS2 that the presence of permafrost in the past was the dominant active mechanism producing the observed deformations. Permafrost loess behaved (1) as impermeable layers focusing and channeling flow, most likely that of groundwater, and (2) as rigid bodies undergoing rotations and lateral translations. A modern analogue of focused flow by an impermeable layer is identified at HH3.

  15. Matrix isolation ESR spectroscopy and magnetic anisotropy of D{sub 3h} symmetric septet trinitrenes

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432 (Russian Federation)

    2013-05-28

    The fine-structure (FS) parameters D of a series of D{sub 3h} symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D{sub 3h} symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D=-0.0957 cm{sup -1} and E= 0 cm{sup -1} is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z{sub 1}-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has Double-Vertical-Line D Double-Vertical-Line = 0.092 cm{sup -1} and E= 0 cm{sup -1}. DFT calculations reveal that, unlike C{sub 2v} symmetric septet trinitrenes, D{sub 3h} symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D-caret{sub SS} and the spin-orbit coupling tensor D-caret{sub SOC} and, as a result, have negative signs for both the D{sub SS} and D{sub SOC} values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the D{sub SOC} term.

  16. Anisotropy of the upper critical field in the magnetic heavy-fermion superconductor URu2Si2

    NARCIS (Netherlands)

    Moshchalkov, V.V.; Aliev, F.; Kovachik, V.; Zalyaljutdinov, M.; Palstra, T.T.M.; Menovsky, A.A.; Mydosh, J.A.

    1988-01-01

    Measurements have been performed of the upper critical field Hc2 anisotropy in the magnetic heavy-fermion superconductor URu2Si2. The dHc2/dT value is constant within 5% when H is rotated in the basal plane, whereas |dHc2/dT| decreases by about 35% for H rotated by 20°–30° out of the basal plane.

  17. Introduction to magnetic random-access memory

    CERN Document Server

    Dieny, Bernard; Lee, Kyung-Jin

    2017-01-01

    Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic mat rials and devices. It presents the bas...

  18. Nanocrystallization and magnetic anisotropy in Co{sub 66}Si{sub 16}B{sub 12}Fe{sub 4}Mo{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.A. [Dep. de Fisica, Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Rivas, M. [Dep. de Fisica, Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)]. E-mail: rivas@uniovi.es; Tejedor, M. [Dep. de Fisica, Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Svalov, A. [Dep. de Fisica, Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Pierna, A.R. [Dep. de Ingenieria Quimica y Medio Ambiente, Universidad del Pais Vasco, PO Box 1379, 20080 San Sebastian (Spain); Marzo, F.F. [Dep. de Ingenieria Quimica y Medio Ambiente, Universidad del Pais Vasco, PO Box 1379, 20080 San Sebastian (Spain)

    2005-04-15

    A study of the magnetic anisotropy originated by the nanocrystallization of the amorphous Co{sub 66}Si{sub 16}B{sub 12}Fe{sub 4}Mo{sub 2} is presented. Mechanically polished samples of this alloy were submitted to various thermal treatments to obtain different degrees of crystallization. The results show that an homogeneous distribution of nanocrystallites of about 10nm originates a magnetic anisotropy of 18Jm{sup -3} while the larger crystals that appear, due to the coalescence of the small crystallites, with annealings over 500 deg. C produce an increase of the magnetic anisotropy up to values of about 100Jm{sup -3}, that are similar to the ones of the as-quenched material. From the value of the effective magnetic anisotropy constant we deduce that in the samples annealed below the onset temperature, the majority of the crystallites are of Co{sub 2}B and Co{sub 3}B.

  19. Linking Anisotropy of Magnetic Susceptibility (AMS) to transport direction: The Gavarnie Thrust, Axial Zone, Pyrenees

    Science.gov (United States)

    Marcén, Marcos; Casas-Sainz, Antonio; Román-Berdiel, Teresa; Soto, Ruth; Oliva-Urcía, Belén

    2017-04-01

    This work deals with the application of the anisotropy of magnetic susceptibility (AMS), structural analysis and microstructural analysis to the study of shear zones. Mylonitized fault rocks have been sampled in the Gavarnie Trust, one of the main structures of the Pyrenean Axial Zone, which was structured as a south-verging antiformal stack during the Alpine Orogeny. In the studied area, the Gavarnie Unit (Silurian-Carboniferous, low grade metasedimentary rocks) overthrust the Millares and Bielsa Units (Permian and Cretaceous cover, Cambro-Ordovician medium grade metamorphic rocks and granitoids), with a minimum horizontal displacement of 12km. Three profiles of the shear zone were studied with the goal of observing changes in the transport direction, the strain distribution and the orientation of the magnetic ellipsoid., One profile is parallel to the basal thrust plane, where the core zone has been identified, and the other two are vertical transects (profiles 1 and 2), perpendicular to the thrust plane. The shear zone, developed into the hangingwall phyllitic Silurian and Devonian units, is at least 30 m wide. The structural analysis reveals that the Silurian rocks are the local detachment level, which becomes thinner and pinchs out completely towards the South, where the detachment level is within the Devonian units (Fourche de la Sede Fm.). In both vertical profiles, the shear zone shows a decrease in the strain from the contact with the Cretaceous limestones at the footwall, towards the upper limit of the shear zone. This is evidenced by the lower development of mylonitic foliations and SCC' structures and the upwards increase of brittle deformation. The transport direction inferred from SC structures (stretching lineations in S and C planes) is constant in all sites, with an average of N190E. AMS data are in perfect agreement with the structural analysis, being the magnetic foliation parallel to the S or C planes of the SC structures. The magnetic

  20. Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    B. Fang

    2015-06-01

    Full Text Available We report on tunnel magnetoresistance and electric-field effect in the Mo buffered and capped CoFeB/MgO magnetic tunnel junctions (MTJs with perpendicular magnetic anisotropy. A large tunnel magnetoresistance of 120% is achieved. Furthermore, this structure shows greatly improved thermal stability and stronger electric-field-induced modulation effect in comparison with the Ta/CoFeB/MgO-based MTJs. These results suggest that the Mo-based MTJs are more desirable for next generation spintronic devices.

  1. Non-axisymmetric Anisotropy of magnetic field fluctuations in the solar wind dissipation range

    Science.gov (United States)

    Gogoberidze, G.; Turner, A. J.; Chapman, S. C.; Hnat, B.; Muller, W.

    2011-12-01

    Anisotropy is a key topic for theoretical, numerical and observational studies of plasma turbulence in the solar wind. A fundamental assumption of many theoretical descriptions of turbulence, both in the inertial and dissipation range, is that of axisymmetry of the anisotropic fluctuations with respect to the background magnetic field. Intriguingly, there is observational evidence that these fluctuations are ordered both with respect to the background field and flow directions. This level of non-axisymmetry is observed to increases as we move from the inertial range to the dissipation range. This is characterized by minimum variance analysis as well as in observations of the ratio of the Power Spectral Density (PSD) in the perpendicular directions, eBxeR : eBx(eBxeR), where eB is a unit vector in the direction of the average magnetic field and eR is a unit vector in the radial direction away from the sun. Here, we show that this observed non-axisymmetry may arise as a data sampling effect rather than as a result of the physical properties of the turbulent plasma. We first quantify the observed non-axisymmetry through the inertial and dissipation ranges via the PSD ratio in the perpendicular plane for in-situ measurements using the Cluster spacecraft in fast wind where both magnetic field instruments, FGM and STAFF, are operating in burst mode. This allows the small scales of the dissipation range to be investigated. We then show that a spacecraft 'fly through' of a simple analytical model for a field composed of a linear superposition of transverse waves, where Taylor's hypothesis is used and the only variable parameter is the power law index, is sufficient to give the observed non-axisymmetry. In particular, we find that the ratio of power in the perpendicular plane, eBxeR : eBx(eBxeR), depends on the exponent of the PSD. Thus we find that the enhanced non-axisymmetry seen in the dissipation range is a result of the steepening of the PSD slope.

  2. Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in Cr/Fe/MgO

    OpenAIRE

    Kozioł-Rachwał, A.; Nozaki, T.; Freindl, K.; Korecki, J.; Yuasa, S.; Suzuki, Y.

    2016-01-01

    Recently, perpendicular magnetic anisotropy (PMA) and its voltage control (VC) was demonstrated for Cr/Fe/MgO (Physical Review Applied 5, 044006 (2016)). In this study, we shed a light on the origin of large voltage-induced anisotropy change in Cr/Fe/MgO. Analysis of the chemical structure of Cr/Fe/MgO revealed the existence of Cr atoms in the proximity of the Fe/MgO interface, which can affect both magnetic anisotropy (MA) and its VC. We showed that PMA and its VC can be enhanced by controll...

  3. Influence of magnetic anisotropy constant and particle domain magnetization on magneto-dielectric response of substituted manganese ferrite particles dispersed in kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Sutariya, G.M.; Siblini, A. E-mail: siblini@univ.st.etienne.fr; Blanc-Mignon, M.F.; Jorat, L.; Parekh, K.; Upadhyay, R.V.; Mehta, R.V.; Noyel, G

    2001-08-01

    This paper presents a dielectric and magneto-dielectric study of magnetic fluids made of three different, partially substituted, manganese ferrite particles dispersed in kerosene. Measurements were performed using a wholly automated spectrometer in the frequency range 1 mHz-10 MHz and a temperature range from -200 deg. C up to 100 deg. C. We can distinguish the two phases (solid and liquid) in pure kerosene and three phases for all the magnetic fluid samples. We observed the effect of anisotropy constant and domain magnetization of the particles on magneto-dielectric measurements. We also observed the temperature sensitivity of these fluids.

  4. Investigation of the influence of oxygen on the rate and anisotropy of deep etching of silicon in the plasma-chemical reactor with the controlled magnetic field

    Directory of Open Access Journals (Sweden)

    Hladkovskyi V. V.

    2017-10-01

    Full Text Available The article presents the research results on the influence of the amount of oxygen in a mixture with sulfur hexafluoride on the rate and anisotropy of the silicon etching in the plasma-chemical reactor with the controlled magnetic field. The etching was performed under the pressure of (0,3-2,0·10-3 Torr in the working chamber and the energy of chemically active ions of 50-80 eV. It was possible to etch the silicon to the depth of 100 Вµm with anisotropy 10, using a thick (0.4-1 µm nickel mask. The obtained results make it evident, that maximums do not coincide for speed of etch and anisotropy. The maximum of etch rate is observed at oxygen maintained at 5%. While the maximum of anisotropy is observed at 10% oxygen. The authors discovered the influence of the magnetic field on the rate and anisotropy of etching. Etch rate of the silicon at the increase of the magnetic-field tension increases virtually twofold at other discharge parameters remaining unchanged. The anisotropy first increases, and then decreases sharply. Thus, the increase of the tension of magnetic field results in worsening of anisotropy. Thus, the process of deep plasma-chemical etching of silicon has been developed and optimized.

  5. Application of Anisotropy of Magnetic Susceptibility to large-scale fault kinematics: an evaluation

    Science.gov (United States)

    Casas, Antonio M.; Roman-Berdiel, Teresa; Marcén, Marcos; Oliva-Urcia, Belen; Soto, Ruth; Garcia-Lasanta, Cristina; Calvin, Pablo; Pocovi, Andres; Gil-Imaz, Andres; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Vernet, Eva; Santolaria, Pablo; Osacar, Cinta; Santanach, Pere; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Villalain, Juan Jose

    2017-04-01

    Major discontinuities in the Earth's crust are expressed by faults that often cut across its whole thickness favoring, for example, the emplacement of magmas of mantelic origin. These long-lived faults are common in intra-plate environments and show multi-episodic activity that spans for hundred of million years and constitute first-order controls on plate evolution, favoring basin formation and inversion, rotations and the accommodation of deformation in large segments of plates. Since the post-Paleozoic evolution of these large-scale faults has taken place (and can only be observed) at shallow crustal levels, the accurate determination of fault kinematics is hampered by scarcely developed fault rocks, lack of classical structural indicators and the brittle deformation accompanying fault zones. These drawbacks are also found when thick clayey or evaporite levels, with or without diapiric movements, are the main detachment levels that facilitate large displacements in the upper crust. Anisotropy of Magnetic Susceptibility (AMS) provides a useful tool for the analysis of fault zones lacking fully developed kinematic indicators. However, its meaning in terms of deformational fabrics must be carefully checked by means of outcrop and thin section analysis in order to establish the relationship between the orientation of magnetic ellipsoid axes and the transport directions, as well as the representativity of scalar parameters regarding deformation mechanisms. Timing of faulting, P-T conditions and magnetic mineralogy are also major constraints for the interpretation of magnetic fabrics and therefore, separating ferro- and para-magnetic fabric components may be necessary in complex cases. AMS results indicate that the magnetic lineation can be parallel (when projected onto the shear plane) or perpendicular (i.e. parallel to the intersection lineation) to the transport direction depending mainly on the degree of shear deformation. Changes between the two end-members can

  6. Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures.

    Science.gov (United States)

    Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-03-23

    Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co 2 FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.

  7. Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures

    Science.gov (United States)

    Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-03-01

    Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.

  8. Quantitative Estimation of Ising-Type Magnetic Anisotropy in a Family of C3 -Symmetric CoII Complexes.

    Science.gov (United States)

    Mondal, Amit Kumar; Jover, Jesús; Ruiz, Eliseo; Konar, Sanjit

    2017-09-12

    In this paper, the influence of the structural and chemical effects on the Ising-type magnetic anisotropy of pentacoordinate CoII complexes has been investigated by using a combined experimental and theoretical approach. For this, a deliberate design and synthesis of four pentacoordinate CoII complexes [Co(tpa)Cl]⋅ClO4 (1), [Co(tpa)Br]⋅ClO4 (2), [Co(tbta)Cl]⋅(ClO4 )⋅(MeCN)2 ⋅(H2 O) (3) and [Co(tbta)Br]⋅ClO4 (4) by using the tripodal ligands tris(2-methylpyridyl)amine (tpa) and tris[(1-benzyl-1 H-1,2,3-triazole-4-yl)methyl]amine) (tbta) have been carried out. Detailed dc and ac measurements show the existence of field-induced slow magnetic relaxation behavior of CoII centers with Ising-type magnetic anisotropy. A quantitative estimation of the zero-field splitting (ZFS) parameters has been effectively achieved by using detailed ab initio theory calculations. Computational studies reveal that the wavefunction of all the studied complexes has a very strong multiconfigurational character that stabilizes the largest ms =±3/2 components of the quartet state and hence produce a large negative contribution to the ZFS parameters. The difference in the magnitudes of the Ising-type anisotropy can be explained through ligand field theory considerations, that is, D is larger and negative in the case of weak equatorial σ-donating and strong apical π-donating ligands. To elucidate the role of intermolecular interactions in the magnetic relaxation behavior between adjacent CoII centers, a diamagnetic isostructural ZnII analog (5) was synthesized and the magnetic dilution experiment was performed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Hochul Lee

    2017-05-01

    Full Text Available A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA. This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps by implementing a 64×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit due to the high energy efficiency of the voltage-controlled MTJ switching.

  10. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    Science.gov (United States)

    Lee, Hochul; Ebrahimi, Farbod; Amiri, Pedram Khalili; Wang, Kang L.

    2017-05-01

    A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 ×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching.

  11. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aryee, Dennis; Seifu, Dereje

    2017-05-01

    Arrays of tunneling magnetoresistance (TMR) nanowires were synthesized for the first time by filling Fe/MgO/Fe inside vertically grown and substrate supported carbon nanotubes. The magnetic properties of nanowires and planar nanoscale thin films of Fe/MgO/Fe showed several similarities, such as two-fold magnetic symmetry and ratio of orbital moment to spin moment. Nanowires of Fe/MgO/Fe showed higher saturation magnetization by a factor of 2.7 compared to planar thin films of Fe/MgO/Fe at 1.5 kOe. The enhanced magnetic properties likely resulted from shape anisotropy of the nanowires and as well as the hybridization that occur between the π- electronic states of carbon and 3d-bands of the Fe-surface.

  12. Laser-induced magnetization dynamics for L1{sub 0}-FePt thin films with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, B.; Zhao, J.; Zhang, Z.; Ma, B.; Jin, Q. Y. [Fudan University, Shanghai (China)

    2010-04-15

    Laser-induced de- and re-magnetization dynamics in perpendicularly magnetized L1{sub 0}-FePt films are studied by using a time-resolved magneto-optical pump-probe technique. The observed ultrafast magnetic dynamic behaviors depend on the film thickness and substrate temperature. The thinner FePt film has a relatively larger maximum demagnetization percentage and a slower relaxation rate because of fewer free electrons being in the laser spot area. However, for the same thickness samples, although they have the same maximum demagnetization, their magnetization recovery speed is different. The sample deposited at high T{sub s} exhibits a faster recovery due to the relatively large FePt grains with high magneto-crystalline anisotropy energy. In addition, we find that all the FePt samples reach the maximum demagnetization at an almost same characteristic delay time of 0.9 picoseconds, irrespective of the laser intensity, film thickness, and substrate temperature.

  13. Magnetic anisotropy and its thickness dependence for NiFe alloy films electrodeposited on polycrystalline Cu substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kockar, Hakan [Physics Department, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey)]. E-mail: hkockar@balikesir.edu.tr; Alper, Mursel [Physics Department, Science and Literature Faculty, Uludag University, Goeruekle, 16059 Bursa (Turkey); Kuru, Hilal [Physics Department, Science and Literature Faculty, Balikesir University, 10100 Balikesir (Turkey); Meydan, Turgut [Wolfson Center for Magnetic Technology, School of Engineering, Cardiff University, Cardiff (United Kingdom)

    2006-09-15

    The thickness dependence of magnetic properties of NiFe alloys electrodeposited on polycrystalline copper substrates has been investigated. In order to see how the film thickness affects their properties, the films with various thicknesses were deposited by keeping the cathode potential at -1.5V vs. the saturated calomel reference electrode (SCE). Magnetic measurements show that the magnetic properties are very sensitive to the film thicknesses and, the easy axis of all films is in the film plane. The results showed that the 1 and 2{mu}m thick NiFe films are anisotropic and the degree of their anisotropy depends on film thickness whereas those deposited at the thickness of 3{mu}m show an isotropic magnetic behaviour. It is also found that the increase of the nickel content when increasing their thickness results in an increase in the coercivity values.

  14. Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer

    Science.gov (United States)

    Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.

    2017-07-01

    The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of  -5.13  ×  104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.

  15. Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in Cr/Fe/MgO.

    Science.gov (United States)

    Kozioł-Rachwał, A; Nozaki, T; Freindl, K; Korecki, J; Yuasa, S; Suzuki, Y

    2017-07-20

    Recently, perpendicular magnetic anisotropy (PMA) and its voltage control (VC) was demonstrated for Cr/Fe/MgO. In this study, we shed light on the origin of large voltage-induced anisotropy change in Cr/Fe/MgO. Analysis of the chemical structure of Cr/Fe/MgO revealed the existence of Cr atoms in the proximity of the Fe/MgO interface, which can affect both magnetic anisotropy (MA) and its VC. We showed that PMA and its VC can be enhanced by controlled Cr doping at the Fe/MgO interface. For Cr/Fe (5.9 Å)/Cr (0.7 Å)/MgO with an effective PMA of 0.8 MJ/m 3 , a maximum value of the voltage-controlled magnetic anisotropy (VCMA) effect of 370 fJ/Vm was demonstrated due to Cr insertion.

  16. Magnetic anisotropy and bottom-current strength during the last glacial period in the North West Iberian Margin

    Science.gov (United States)

    Rey, Daniel; Plaza-Morlote, Maider; Mohamed, Kais J.; Parés, Josep M.; Bernabeu, Ana M.; El Mekadem, Nadia; Rubio, Belén

    2017-04-01

    We have studied the magnetic properties and the magnetic anisotropy of low field magnetic susceptibility (AMS) of core CI12PC3 from the Galicia Interior Basin (North West Iberian Margin). The core spans over the last 80 kyrs and comprise the last six Heinrich Stadials (HS). We have found systematically lower ARM/ χ values during the stadials than during interstadials, indicating coarsening of the magnetic fraction during the cold periods. The record also show the typical increase in magnetic susceptiblity (χ) that characterize the occurrence of Heinrich events (HE) during stadials in the North Atlantic, facilitating their detection. AMS analysis showed the majority of the ellipsoid minimum axes (K3) are close to vertical (Imean=80°), almost perpendicular to the bedding plane. AMS ellipsoid maximum axes (K1) are well-grouped marking two main magnetic lineations. These orientations are consistent with the main flow directions reported in the area and attributed to the action of regional bottom currents flowing along the continental margin. Down-core variations in the degree of anisotropy (Pj) showed significantly higher values during HS than during interstadials. We have noted that Pj down-core changes are independent of magnetic grain size, and interpreted them as the result of differences in the degree of grain alignment. These changes can be attributed to the variability in the strength of the bottom currents, indicating that they are stronger during stadials. We have concluded that the magnetic properties and AMS of core CI12PC3 are climatically modulated on a millennial time scale.

  17. Measurement of the distribution of anisotropy constants in magnetic nanoparticles for hyperthermia applications

    Science.gov (United States)

    McGhie, A. A.; Marquina, C.; O'Grady, K.; Vallejo-Fernandez, G.

    2017-11-01

    In this work, we have applied theoretical calculations to new experimental measurements of the effect of the anisotropy distribution in magnetite nanoparticles, which in turn controls hysteresis heating for hyperthermia applications. Good agreement between theory and experiment is reported where the theoretical calculation is based upon the detailed measurement of the particle elongation generally observed in the nanoparticles. The elongation has been measured from studies via transmission electron microscopy. We find that particle elongation is responsible for the anisotropy dispersion, which can be obtained by analysis and fitting to a measurement of the temperature decay of remanence. A median value of the anisotropy constant of 1.5  ×  105 erg/cc was obtained. A very wide distribution of anisotropy constants is present with a Gaussian standard deviation of 1.5  ×  105 erg/cc. From our measurements, deviations in the value of the saturation magnetisation from particle to particle are most likely the main factor giving rise to this large distribution, with 33% arising from the error in the measured elongation. The lower limit to the anisotropy constant of the nanoparticles is determined by the magnetocrystalline anisotropy of the material, 1.1  ×  105 erg/cc for magnetite, which was studied in this work.

  18. Multiferroic Magnetic Spirals Induced by Random Magnetic Exchanges

    Science.gov (United States)

    Scaramucci, Andrea; Shinaoka, Hiroshi; Mostovoy, Maxim V.; Müller, Markus; Mudry, Christopher; Troyer, Matthias; Spaldin, Nicola A.

    2018-01-01

    Multiferroism can originate from the breaking of inversion symmetry caused by magnetic-spiral order. The usual mechanism for stabilizing a magnetic spiral is competition between magnetic exchange interactions differing by their range and sign, such as nearest-neighbor and next-nearest-neighbor interactions. In insulating compounds, it is unusual for these interactions to be both comparable in magnitude and of a strength that can induce magnetic ordering at room temperature. Therefore, the onset temperatures for multiferroism through this mechanism are typically low. By considering a realistic model for multiferroic YBaCuFeO5 , we propose an alternative mechanism for magnetic-spiral order, and hence for multiferroism, that occurs at much higher temperatures. We show, using Monte Carlo simulations and electronic structure calculations based on density functional theory, that the Heisenberg model on a geometrically nonfrustrated lattice with only nearest-neighbor interactions can have a spiral phase up to high temperature when frustrating bonds are introduced randomly along a single crystallographic direction as caused, e.g., by a particular type of chemical disorder. This long-range correlated pattern of frustration avoids ferroelectrically inactive spin-glass order. Finally, we provide an intuitive explanation for this mechanism and discuss its generalization to other materials.

  19. Large magnetic anisotropy predicted for rare-earth-free F e16 -xC oxN2 alloys

    Science.gov (United States)

    Zhao, Xin; Wang, Cai-Zhuang; Yao, Yongxin; Ho, Kai-Ming

    2016-12-01

    Structures and magnetic properties of F e16 -xC oxN2 are studied using adaptive genetic algorithm and first-principles calculations. We show that substituting Fe with Co in F e16N2 with a Co/Fe ratio ≤1 can greatly improve the magnetic anisotropy of the material. The magnetocrystalline anisotropy energy from first-principles calculations reaches 3.18 MJ / m3 (245.6 μeV per metal atom) for F e12C o4N2 , much larger than that of F e16N2 , and is one of the largest among the reported rare-earth-free magnets. From our systematic crystal structure searches, we show that there is a structure transition from tetragonal F e16N2 to cubic C o16N2 in F e16 -xC oxN2 as the Co concentration increases, which can be well explained by electron counting analysis. Different magnetic properties between the Fe-rich (x ≤8 ) and Co-rich (x >8 ) F e16 -xC oxN2 is closely related to the structural transition.

  20. Control of Magnetization-Reversal Mechanism via Uniaxial Anisotropy Strength in La0.67Sr0.33Mn O3 Electrodes for Spintronic Devices

    Science.gov (United States)

    Phillips, L. C.; Yan, W.; Moya, X.; Ghidini, M.; Maccherozzi, F.; Dhesi, S. S.; Mathur, N. D.

    2015-12-01

    Spintronic device performance depends critically on magnetization reversal mechanisms, but these are rarely imaged in order to verify correct operation. Here we use magnetometry and magnetic imaging to study thin films and patterned elements of highly spin-polarized La0.67Sr0.33Mn O3 grown epitaxially on Nd Ga O3 substrates whose crystallographic orientation determines magnetic anisotropy strength. Small anisotropy yields gradual magnetization reversal via nucleation and propagation of small-needle domains, whereas large anisotropy yields a single nucleation event resulting in sharp and complete magnetization reversal. We explain these observed differences using micromagnetic simulations, and exploit them in order to quantify the effect of La0.67Sr0.33Mn O3 electrode behavior on spin signals from hypothetical devices. Our work, therefore, highlights the dramatic discrepancies that can arise between the design and performance of spintronic devices.

  1. Structural Dependence of the Ising-type Magnetic Anisotropy and of the Relaxation Time in Mononuclear Trigonal Bipyramidal Co(II) Single Molecule Magnets.

    Science.gov (United States)

    Shao, Feng; Cahier, Benjamin; Rivière, Eric; Guillot, Régis; Guihéry, Nathalie; Campbell, Victoria E; Mallah, Talal

    2017-02-06

    This paper describes the correlation between Ising-type magnetic anisotropy and structure in trigonal bipyramidal Co(II) complexes. Three sulfur-containing trigonal bipyramidal Co(II) complexes were synthesized and characterized. It was shown that we can engineer the magnitude of the Ising anisotropy using ligand field theory arguments in conjunction with structural parameters. To prepare this series of compounds, we used, on the one hand, a tetradentate ligand containing three sulfur atoms and one amine (NS3tBu) and on the other hand three different axial ligands, namely, Cl-, Br-, and NCS-. The organic ligand imposes a trigonal bipyramidal arrangement with the three sulfur atoms lying in the trigonal plane with long Co-S bond distances. The magnetic properties of the compounds were measured, and ab initio calculations were used to analyze the anisotropy parameters and perform magneto-structural correlations. We demonstrate that a smaller axial zero-field splitting parameter leads to slower relaxation time when the symmetry is strictly axial, while the presence of very weak rhombicity decreases the energy barrier and speeds the relaxation of the magnetization.

  2. Single-ion versus dipolar origin of the magnetic anisotropy in iron(III)-oxo clusters: a case study.

    Science.gov (United States)

    Abbati, G L; Brunel, L C; Casalta, H; Cornia, A; Fabretti, A C; Gatteschi, D; Hassan, A K; Jansen, A G; Maniero, A L; Pardi, L; Paulsen, C; Segre, U

    2001-04-17

    A multitechnique approach has allowed the first experimental determination of single-ion anisotropies in a large iron(III)-oxo cluster, namely [NaFe6(OCH3)12(pmdbm)6ClO4 (1) in which Hpmdbm = 1,3-bis(4-methoxyphenyl)-1,3-propanedione. High-frequency EPR (HF-EPR). bulk susceptibility measurements, and high-field cantilever torque magnetometry (HF-CTM) have been applied to iron-doped samples of an isomorphous hexagallium(III) cluster [NaGa6(OCH3)12-(pmdbm)6]ClO4, whose synthesis and X-ray structure are also presented. HF-EPR at 240 GHz and susceptibility data have shown that the iron(III) ions have a hard-axis type anisotropy with DFe = 0.43(1) cm(-1) and EFe = 0.066(3) cm(-1) in the zero-field splitting (ZFS) Hamiltonian H = DFe[S2(z) - S(S + 1)/3] + Fe[S2(x) - S2(y)]. HF-CTM at 0.4 K has then been used to establish the orientation of the ZFS tensors with respect to the unique molecular axis of the cluster, Z. The hard magnetic axes of the iron(III) ions are found to be almost perpendicular to Z, so that the anisotropic components projected onto Z are negative, DFe(ZZ)= -0.164(4) cm(-1). Due to the dominant antiferromagnetic coupling, a negative DFe(ZZ) value determines a hard-axis molecular anisotropy in 1, as experimentally observed. By adding point-dipolar interactions between iron(III) spins, the calculated ZFS parameter of the triplet state, D1 = 4.70(9) cm(-1), is in excellent agreement with that determined by inelastic neutron scattering experiments at 2 K, D1 = 4.57(2) cm(-1). Iron-doped samples of a structurally related compound, the dimer [Ga2(OCH3)2(dbm)4] (Hdbm = dibenzoylmethane), have also been investigated by HF-EPR at 525 GHz. The single-ion anisotropy is of the hard-axis type as well, but the DFe parameter is significantly larger [DFe = 0.770(3) cm(-1). EFe = 0.090(3) cm(-1)]. We conclude that, although the ZFS tensors depend very unpredictably on the coordination environment of the metal ions, single-ion terms can contribute significantly to the

  3. Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S = 5 ground state.

    Science.gov (United States)

    Accorsi, Stefania; Barra, Anne-Laure; Caneschi, Andrea; Chastanet, Guillaume; Cornia, Andrea; Fabretti, Antonio C; Gatteschi, Dante; Mortalo, Cecilia; Olivieri, Emiliano; Parenti, Francesca; Rosa, Patrick; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Zobbi, Laura

    2006-04-12

    Tetrairon(III) Single-Molecule Magnets (SMMs) with a propeller-like structure exhibit tuneable magnetic anisotropy barriers in both height and shape. The clusters [Fe4(L1)2(dpm)6] (1), [Fe4(L2)2(dpm)6] (2), [Fe4(L3)2(dpm)6].Et2O (3.Et2O), and [Fe4(OEt)3(L4)(dpm)6] (4) have been prepared by reaction of [Fe4(OMe)6(dpm)6] (5) with tripodal ligands R-C(CH2OH)3 (H3L1, R = Me; H3L2, R = CH2Br; H3L3, R = Ph; H3L4, R = tBu; Hdpm = dipivaloylmethane). The iron(III) ions exhibit a centered-triangular topology and are linked by six alkoxo bridges, which propagate antiferromagnetic interactions resulting in an S = 5 ground spin state. Single crystals of 4 reproducibly contain at least two geometric isomers. From high-frequency EPR studies, the axial zero-field splitting parameter (D) is invariably negative, as found in 5 (D = -0.21 cm(-1)) and amounts to -0.445 cm(-1) in 1, -0.432 cm(-1) in 2, -0.42 cm(-1) in 3.Et2O, and -0.27 cm(-1) in 4 (dominant isomer). The anisotropy barrier Ueff determined by AC magnetic susceptibility measurements is Ueff/kB = 17.0 K in 1, 16.6 K in 2, 15.6 K in 3.Et2O, 5.95 K in 4, and 3.5 K in 5. Both |D| and U(eff) are found to increase with increasing helical pitch of the Fe(O2Fe)3 core. The fourth-order longitudinal anisotropy parameter B4(0), which affects the shape of the anisotropy barrier, concomitantly changes from positive in 1 ("compressed parabola") to negative in 5 ("stretched parabola"). With the aid of spin Hamiltonian calculations the observed trends have been attributed to fine modulation of single-ion anisotropies induced by a change of helical pitch.

  4. Strong perpendicular magnetic anisotropy at FeCoB/MgO interface with an ultrathin HfOx insertion layer

    Science.gov (United States)

    Ou, Yongxi; Ralph, Daniel; Buhrman, Robert

    The realization of robust perpendicular magnetic anisotropy (PMA) in heavy metal(HM)/FeCoB/MgO thin-film heterostructures has enabled a pathway for the implementation of high density memory elements based on perpendicularly magnetized tunnel junctions, and also provides a platform for the study and control of domain walls and of novel magnetic chiral structures such as skyrmions in nanowire structures. Here we report on the achievement of more robust PMA in Ta/FeCoB/MgO heterostructures by the insertion of an ultrathin HfOx passivation layer at the FeCoB/MgO interface. This is accomplished by depositing one to two atomic layers of Hf onto the FeCoB before the subsequent rf sputter deposition of the MgO layer, which fully oxidizes the Hf layer as confirmed by X-ray photoelectron spectroscopy measurements. The result is a strong interfacial perpendicular anisotropy energy density as large as 1.7 erg/cm-2 without any post-fabrication annealing treatment. Similar results have been achieved with the use of W and Pt HM base layers. This work broadens the class and enhances the capabilities of PMA HM/FM heterostructures for spintronics research and applications.

  5. Electric-Field Modulation of Interface Magnetic Anisotropy and Spin Reorientation Transition in (Co/Pt)3/PMN-PT Heterostructure.

    Science.gov (United States)

    Sun, Ying; Ba, You; Chen, Aitian; He, Wei; Wang, Wenbo; Zheng, Xiaoli; Zou, Lvkuan; Zhang, Yijun; Yang, Qu; Yan, Lingjia; Feng, Ce; Zhang, Qinghua; Cai, Jianwang; Wu, Weida; Liu, Ming; Gu, Lin; Cheng, Zhaohua; Nan, Ce-Wen; Qiu, Ziqiang; Wu, Yizheng; Li, Jia; Zhao, Yonggang

    2017-03-29

    We report electric-field control of magnetism of (Co/Pt) 3 multilayers involving perpendicular magnetic anisotropy with different Co-layer thicknesses grown on Pb(Mg,Nb)O 3 -PbTiO 3 (PMN-PT) FE substrates. For the first time, electric-field control of the interface magnetic anisotropy, which results in the spin reorientation transition, was demonstrated. The electric-field-induced changes of the bulk and interface magnetic anisotropies can be understood by considering the strain-induced change of magnetoelastic energy and weakening of Pt 5d-Co 3d hybridization, respectively. We also demonstrate the role of competition between the applied magnetic field and the electric field in determining the magnetization of the sample with the coexistence phase. Our results demonstrate electric-field control of magnetism by harnessing the strain-mediated coupling in multiferroic heterostructures with perpendicular magnetic anisotropy and are helpful for electric-field modulations of Dzyaloshinskii-Moriya interaction and Rashba effect at interfaces to engineer new functionalities.

  6. Lack of dependence between intrinsic magnetic damping and perpendicular magnetic anisotropy in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minghong [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Wei [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Ren, Yang [School of Physics and Astronomy, Yunnan University, Kunming 650000 (China); Zhang, Zongzhi, E-mail: zzzhang@fudan.edu.cn [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Jin, Q.Y. [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2017-04-15

    The correlation between magnetic damping and perpendicular magnetic anisotropy has been investigated in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers by time-resolved magneto-optical Kerr effect. The uniaxial magnetic anisotropy constant K{sub u} is varied in the range of 3.0–3.6 Merg/cm{sup 3} by tuning either multilayer repetition number N or Cu thickness t{sub Cu}. It is found that the PMA strength K{sub u} increases with the increase of N, while the damping constant α{sub 0} keeps nearly a constant of 0.025, implying the intrinsic damping is independent of the K{sub u} tuned by N. In contrast, as t{sub Cu} increases from 2.5 to 20 nm, the α{sub 0} value rises continuously up to 0.040, in spite of the rather weak enhancement in K{sub u} and its non-monotonic variation behavior. We consider the constant α{sub 0} with N is due to the unchanged spin-orbit coupling strength at each Co/Ni interface, while the obvious enhancement in α{sub 0} with t{sub Cu} results mainly from the increased degree of spin disordering at the rougher Cu/Ni interface. - Highlights: • The perpendicular magnetic anisotropy K{sub u} is tuned in Cu(t{sub Cu})/[Ni/Co]{sub N} system. • The intrinsic magnetic damping is found to be independent K{sub u}. • Extrinsic damping increases with t{sub Cu} due to large interfacial spin disordering.

  7. Magnetic anisotropy and magnetization reversal of La0.67Sr0.33MnO3 thin films on SrTiO3(110)

    Science.gov (United States)

    Boschker, Hans; Kautz, Jaap; Houwman, Evert P.; Koster, Gertjan; Blank, Dave H. A.; Rijnders, Guus

    2010-11-01

    The magnetic behavior of La0.67Sr0.33MnO3 (LSMO) films grown on SrTiO3 (110) substrates was studied. In-plane uniaxial magnetic anisotropy with the easy axis aligned with the [001] lattice direction was observed, together with an out-of-plane component. This is explained by the crystal structure of the films, which shows a tilt of the (001) planes. This tilt creates a long body diagonal which forces the easy axis out-of-plane and results in magnetic domain formation. The domain size is estimated at 500 nm. The switching behavior of the magnetization is well described by a two-phase model which takes both coherent rotation and domain wall motion into account. These results are of importance for the application of LSMO in tunnel magnetoresistance devices, where the (110) orientation is preferred because of the reduction in the dead layer in this direction.

  8. Theory of ferromagnetic resonance driven by the combined action of spin-transfer torque and voltage-controlled magnetic anisotropy

    Science.gov (United States)

    Gonzalez-Fuentes, C.; Garcia, C.; Landeros, P.; Gallardo, R. A.

    2017-11-01

    An analytical study of the spectral line shape of ferromagnetic resonance (FMR) detected by spin rectification effect and driven by the combined action of spin-transfer torque (STT) and voltage-controlled magnetic anisotropy (VCMA) is developed. The system under consideration consists of a magnetic tunnel junction (MTJ). Explicit expressions for the symmetric and asymmetric components of the rectified voltage are derived, where the role of the VCMA, in-plane STT, and field-like torque is clearly identified and discussed. Typical geometrical configurations are particularly analyzed and compared with recent experimental results. The analytical findings show that the change of sign in the FMR response upon reversal of the magnetization is completely due to VCMA. By distinguishing in-plane, out-of-plane, and full magnetization reversal processes, it is shown that the VCMA induces a change of sign in the symmetric part for the in-plane and out-of-plane magnetization reversal, while the asymmetric part change its sign under a full and in-plane reversion of the magnetization. Explicit expressions of the symmetric and asymmetric contributions of the spectral line shape allow us to detect under what conditions the STT and VCMA can increase or decrease the FMR spectral line shape. The proposed theory allows access to a better understanding of the physics behind ferromagnetic resonance phenomena, promoting potential applications in STT+VCMA-based MTJs.

  9. Probing the Effects of Ligand Field and Coordination Geometry on Magnetic Anisotropy of Pentacoordinate Cobalt(II) Single-Ion Magnets.

    Science.gov (United States)

    Mondal, Amit Kumar; Goswami, Tamal; Misra, Anirban; Konar, Sanjit

    2017-06-19

    In this work, the effects of ligand field strength as well as the metal coordination geometry on magnetic anisotropy of pentacoordinated CoII complexes have been investigated using a combined experimental and theoretical approach. For that, a strategic design and synthesis of three pentacoordinate CoII complexes [Co(bbp)Cl2]·(MeOH) (1), [Co(bbp)Br2]·(MeOH) (2), and [Co(bbp)(NCS)2] (3) has been achieved by using the tridentate coordination environment of the ligand in conjunction with the accommodating terminal ligands (i.e., chloride, bromide, and thiocyanate). Detailed magnetic studies disclose the occurrence of slow magnetic relaxation behavior of CoII centers with an easy-plane magnetic anisotropy. A quantitative estimation of ZFS parameters has been successfully performed by density functional theory (DFT) calculations. Both the sign and magnitude of ZFS parameters are prophesied well by this DFT method. The theoretical results also reveal that the α → β (SOMO-SOMO) excitation contributes almost entirely to the total ZFS values for all complexes. It is worth noting that the excitation pertaining to the most positive contribution to the ZFS parameter is the dxy → dx2-y2 excitation for complexes 1 and 2, whereas for complex 3 it is the dz2 → dx2-y2 excitation.

  10. First-principles calculations of perpendicular magnetic anisotropy in Fe1-x Co x /MgO(001) thin films.

    Science.gov (United States)

    Cai, Guanzhi; Wu, Zhiming; Guo, Fei; Wu, Yaping; Li, Heng; Liu, Qianwen; Fu, Mingming; Chen, Ting; Kang, Junyong

    2015-01-01

    The perpendicular magnetic anisotropy (PMA) of Fe1-x Co x thin films on MgO(001) was investigated via first-principles density-functional calculations. Four different configurations were considered based on their ground states: Fe/MgO, Fe12Co4/MgO, Fe10Co6/MgO, and Fe8Co8/MgO. As the Co composition increases, the amplitude of PMA increases first from Fe/MgO to Fe12Co4/MgO, and then decreases in Fe10Co6/MgO; finally, the magnetic anisotropy becomes horizontal in Fe8Co8/MgO. Analysis based on the second-order perturbation of the spin-orbit interaction was carried out to illustrate the contributions from Fe and Co atoms to PMA, and the differential charge density was calculated to give an intuitive comparison of 3d orbital occupancy. The enhanced PMA in Fe12Co4/MgO is ascribed to the optimized combination of occupied and unoccupied 3d states around the Fermi energy from both interface Fe and Co atoms, while the weaker PMA in Fe10Co6/MgO is mainly attributed to the modulation of the interface Co-d xy orbital around the Fermi energy. By adjusting the Co composition in Fe1-x Co x , the density of states of transitional metal atoms will be modulated to optimize PMA for future high-density memory application.

  11. Effect of aging and annealing on perpendicular magnetic anisotropy of ultra-thin CoPt films

    Directory of Open Access Journals (Sweden)

    R. Hara

    2016-05-01

    Full Text Available The effect of aging and annealing on the magnetic properties of ultra-thin CoPt films with a Ru underlayer was investigated. For the 3 nm thick CoPt film aged in the air, the decrease of the saturation magnetic moment ms, the drastic increase of the perpendicular coercivity Hc⊥ and the perpendicular anisotropy were observed. This is because the surface layer of the CoPt film was oxidized and the bottom layer with high perpendicular anisotropy due to lattice distortion remained. For the annealed 3 nm thick CoPt film with a Pt protective layer, rising the annealing temperature Ta led to the decrease of ms, the decrease after increase of Hc⊥, and the decrease of the perpendicular squareness ratio S⊥ at Ta of 400 ∘C. The origins of effect of annealing were considered to be the grain boundary diffusion and the bulk diffusion of Ru and Pt into the CoPt film, and relaxation of the lattice distortion.

  12. Magnetic anisotropy and chemical long-range order in epitaxial ferrimagnetic CrPt sub 3 films

    CERN Document Server

    Maret, M; Köhler, J; Poinsot, R; Ulhaq-Bouillet, C; Tonnerre, J M; Berar, J F; Bucher, E

    2000-01-01

    Thin films of CrPt sub 3 were prepared by molecular beam epitaxy on both Al sub 2 O sub 3 (0 0 0 1) and MgO(0 0 1) substrates, either directly by co-deposition of Cr and Pt at high temperatures or after in situ annealing of superlattices [Cr(2 A)/Pt(7 A)]. In situ RHEED observations and X-ray diffraction measurements have allowed us to check the single-crystal quality of CrPt sub 3 films and to determine the degree of L1 sub 2 -type long-range order (LRO). In films co-deposited between 850 deg. C and 950 deg. C a nearly perfect LRO has been observed. As in bulk alloys, such ordering yields a ferrimagnetic order, while the disordered films are non-magnetic. In contrast with the ferromagnetic L1 sub 2 -type ordered CoPt sub 3 (1 1 1) films, the ferrimagnetic CrPt sub 3 (1 1 1) films exhibit perpendicular magnetic anisotropy with quality factors, K sub u /K sub d , as large as 5 and large coercivities around 450 kA/m. Such anisotropy could be related to the arrangement of Cr atoms, which owing to their large mag...

  13. Effect of spacer material on the magnetic surface anisotropy in ultrathin Fe70B30 multilayer films

    Science.gov (United States)

    Hicken, R. J.; Rado, G. T.; Chien, C. L.

    1991-04-01

    It has been found recently that the magnetic surface anisotropy Ks in Fe70B30/Ag multilayer films decreases monotonically with magnetic layer thickness (2L) for 2L<16.5 Å. In order to determine possible effects of the spacer material on the surface anisotropy in the aforementioned system, Ag has been replaced with Al2O3 and ferromagnetic resonance (FMR) measurements have been made on these films. These Fe70B30/Al2O3 films were fabricated by magnetron sputtering and were characterized by x-ray-diffraction and vibrating sample magnetometer (VSM) measurements in addition to FMR. In the region where Ks depends upon 2L, the data is insufficient to confirm the thickness dependence of Ks that was observed in Fe70B30/Ag, while in the region where Ks is independent of 2L, the values of Ks deduced for Fe70B30/Ag and Fe70B30/Al2O3 are in good agreement. The latter is particularly interesting in light of the enormous difference in conductivity between Ag and Al2O3.

  14. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Directory of Open Access Journals (Sweden)

    Zhenjun Xia

    2016-05-01

    Full Text Available Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  15. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin [Nippon Medical School, Tokyo (Japan)

    1998-08-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  16. Fen (n =1-6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    Science.gov (United States)

    Haldar, Soumyajyoti; Pujari, Bhalchandra S.; Bhandary, Sumanta; Cossu, Fabrizio; Eriksson, Olle; Kanhere, Dilip G.; Sanyal, Biplab

    2014-05-01

    In this work, we have studied the chemical and magnetic interactions of Fen (n =1-6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  17. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  18. Fen (n=1–6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    KAUST Repository

    Haldar, Soumyajyoti

    2014-05-09

    In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  19. Contribution from Ising domains overlapping out-of-plane to perpendicular magnetic anisotropy in Mn4N thin films on MgO(001)

    Science.gov (United States)

    Foley, Andrew; Corbett, Joseph; Khan, Alam; Richard, Andrea L.; Ingram, David C.; Smith, Arthur R.; Zhao, Lianshui; Gallagher, James C.; Yang, Fengyuan

    2017-10-01

    Single phase ε -Mn4N thin and ultrathin films are grown on MgO(001) using molecular beam epitaxy. Reflection high-energy electron diffraction and out-of-plane X-ray diffraction measurements are taken for each sample in order to determine the in- and out-of-plane strain for each sample. Vibrating sample magnetometry and superconducting quantum interference device measurements, which are performed on the thin and ultrathin films respectively, are used to plot the magnetization of each sample versus both in- and out-of-plane H → -fields and to determine the magnitude of perpendicular magnetic anisotropy in these films. Three significant components of perpendicular magnetic anisotropy are observed in these films and are attributed to sample strain (1 component) and shape (2 components). Among these components, the most significant component (0.8 - 4.9 Merg/cm3) is identified as a second term of shape anisotropy, which possesses a negative linear relationship with sample thickness over the range from 9 nm to 310 nm. Atomic (magnetic) force microscopy measurements show the presence of a surface localized magnetic polarization (22-82 %), which increases with decreasing thickness, when the net magnetizations of the films are zero. The second term of shape anisotropy as well as the surface localized polarization, which each depend on sample thickness, are each regarded as a consequence of Ising domains overlapping out-of-plane in these films.

  20. Role of Ta-spacer layer on tuning the tilt angle magnetic anisotropy of L11-CoPt/Ta/NiFe exchange springs

    Science.gov (United States)

    Saravanan, P.; Talapatra, A.; Mohanty, J.; Hsu, Jen-Hwa; Kamat, S. V.

    2017-06-01

    L11-CoPt/Ta/NiFe trilayers are chosen as model films for probing the role of spacer layer on tuning the tilt angle magnetization (θM) in such exchange springs. For this purpose, a non-magnetic layer (Ta) with varying thickness (tTa) from 0 to 2.5 nm was inserted between 10-nm thick CoPt film exhibiting strong perpendicular magnetic anisotropy (PMA) and 4-nm thick NiFe film having in-plane magnetic anisotropy (IMA). With the insertion of Ta-spacer, the magnetic hysteresis loops become more and more tilted as tTa increases. Upon increasing the tTa from 0 to 2.5 nm, the estimated SQR⊥ (=Mr⊥/Ms⊥) from the M-H loops is found to decrease moderately; while the θM increases significantly from 43° to 77°. MFM images revealed maze-like domain patterns and the domain size tends to increase at the expense of magnetic phase contrast with increasing tTa. Micro-magnetic simulation of tilt in the anisotropy axis with respect to the bare CoPt-layer showed a trend similar to that of those observed with the M-H loops obtained by VSM measurements. The results of present study suggest that the insertion of Ta-spacer is not only beneficial in terms of preserving the competing anisotropies such as PMA and IMA of CoPt and NiFe-layers respectively through weakened exchange coupling; but also, act as an appropriate means for realizing tunable tilted magnetic anisotropy in the L11-CoPt/NiFe exchange springs.

  1. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    Science.gov (United States)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  2. Growth and characterization of MnGa thin films with perpendicular magnetic anisotropy on BiSb topological insulator

    Science.gov (United States)

    Duy Khang, Nguyen Huynh; Ueda, Yugo; Yao, Kenichiro; Hai, Pham Nam

    2017-10-01

    We report on the crystal growth as well as the structural and magnetic properties of Bi0.8Sb0.2 topological insulator (TI)/MnxGa1-x bi-layers grown on GaAs(111)A substrates by molecular beam epitaxy. By optimizing the growth conditions and Mn composition, we were able to grow MnxGa1-x thin films on Bi0.8Sb0.2 with the crystallographic orientation of Bi0.8Sb0.2(001)[1 1 ¯ 0]//MnGa (001)[100]. Using magnetic circular dichroism (MCD) spectroscopy, we detected both the L10 phase ( x 0.6 ) of MnxGa1-x. For 0.50 ≤ x ≤ 0.55 , we obtained ferromagnetic L10-MnGa thin films with clear perpendicular magnetic anisotropy, which were confirmed by MCD hysteresis, anomalous Hall effect as well as superconducting quantum interference device measurements. Our results show that the BiSb/MnxGa1-x bi-layer system is promising for perpendicular magnetization switching using the giant spin Hall effect in TIs.

  3. Electric-field control of magnetic anisotropy in Fe81Ga19/BaTiO3 heterostructure films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2014-11-01

    Full Text Available We investigate the control of magnetism with an electric field in Fe81Ga19(FeGa/BaTiO3(BTO heterostructure films. The as-prepared FeGa/BTO samples present a uniaxial magnetic anisotropy, which is ascribed to be induced by the spontaneous ferroelectric polarization of the BTO substrates. With the electric field applied on the BTO substrates increasing from 0 to 6 kV/cm, the coercivity of FeGa films measured along the BTO[110] direction increases from 28 to 41 Oe, while the squareness of the hysteresis loop decreases from 0.99 to 0.31, which indicates that the easy and hard axes of FeGa films are swapped. The ferroelectric domains of BTO substrates and the magnetic domains of FeGa films exhibit the same dependence on the applied electric fields, manifesting the strong magnetoelectric coupling between the ferroelectricity of BTO substrates and the magnetism of FeGa films.

  4. Role of Single-Ion Anisotropy and Magnetic Exchange Interactions in Suppressing Zero-Field Tunnelling in {3d-4f} Single Molecule Magnets.

    Science.gov (United States)

    Gupta, Tulika; Beg, Mohammad Faizan; Rajaraman, Gopalan

    2016-11-07

    Extensive ab initio CASSCF/RASSI-SO/SINGLE_ANISO/POLY_ANISO calculations have been undertaken on eight structurally similar previously synthesized [Cu(II)(L)(C3H6O)Ln(III)(NO3)3] (Ln = Dy (1), Tb (3), Ho (5), and Er (7)) and [V(IV)O(L)(C3H6O)Ln(III)(NO3)3] (Ln = Dy (2), Tb (4), Ho (6), and Er (8)) (here H2L = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) complexes (crystal structures reported earlier). Our estimated exchange interactions (J) using the Lines model for complexes 1-8 (1.55 cm(-1), 0.15 cm(-1), 5.30 cm(-1), 0.06 cm(-1), 1.05 cm(-1), -0.18 cm(-1), 0.24 cm(-1), and -0.02 cm(-1) for complexes 1-8 respectively) match well with the experimental values (HE-EPR and pulse magnetization technique) reported earlier and offer confidence in the methodology employed. We have established the mechanism of magnetic coupling for this series to rationalize the observation that LnCu complexes are strongly coupled compared to LnV complexes. Besides, the results procured based on the BS-DFT method imply a crucial role of overlap between the 3d and 4f orbitals, the formally empty 5d/6s/6p orbitals of Ln(III) ion in the exchange coupling mechanism. To probe the origin/absence of magnetization relaxation observed in these complexes 1-8, both the single-ion and the exchange anisotropy are analyzed. Our calculations reveal that stronger exchange interaction quenches the quantum tunnelling of magnetization behavior in these complexes; however, for LnV complexes the exchange interaction was too small to offer a large blockade barrier. In the quest to obtain a stronger exchange interaction, we have assessed several models and have developed a magneto-structural correlation. An antagonizing behavior between the JCuDy and Ucal values are noted for the Dy-O-O-Cu dihedral angle correlation developed on complex 1. This highlights the subtle nature of the magnetic anisotropy in this class of complexes and postulates that both the single-ion anisotropy and the exchange

  5. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J., E-mail: jzheng@swjtu.edu.cn; Liao, X.L.; Jing, H.L.; Deng, Z.G.; Yen, F.; Wang, S.Y.; Wang, J.S.

    2013-10-15

    Highlights: • The single-layer bulk HTSC with AGSBP obtains better levitation performance than that of MGSBP. • The double-layer bulk with AGSBP obtains better levitation performance than that of MGSBP too. • The double-layer bulk finding is contrast to MGSBP if pursuing high trapped field. • The optimization is highlighted by simple and easy operation, thus economical in the practice. -- Abstract: Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  6. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5 d transition metals

    Science.gov (United States)

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-12-01

    Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.

  7. Ta thickness-dependent perpendicular magnetic anisotropy features in Ta/CoFeB/MgO/W free layer stacks

    Energy Technology Data Exchange (ETDEWEB)

    Yang, SeungMo; Lee, JaBin; An, GwangGuk [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, JaeHong [Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, WooSeong [Nano Quantum Electronics Lab, Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, JinPyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-07-31

    We describe Ta underlayer thickness influence on thermal stability of perpendicular magnetic anisotropy in Ta/CoFeB/MgO/W stacks. It is believed that thermal stability based on Ta underlay is associated with thermally-activated Ta atom diffusion during annealing. The difference in Ta thickness-dependent diffusion behaviors was confirmed with X-ray photoelectron spectroscopy analysis. Along with a feasible Ta thickness model, our observations suggest that an appropriate seed layer choice is needed for high temperature annealing stability, a critical issue in the memory industry. - Highlights: • We observed changes in the diffusion behavior with regard to Ta seed layer thickness. • It was observed that a thinner Ta seed layer induced more annealing-stable features. • However, ultra-thin (0.75 nm) Ta shows unstable characteristics about the annealing process. • It was possibly due to a rugged interface of the Ta layer by the island growth process.

  8. Determination of magnetic anisotropies and miscut angles in epitaxial thin films on vicinal (111) substrate by the ferromagnetic resonance

    Science.gov (United States)

    Belyaev, B. A.; Izotov, A. V.; Solovev, P. N.; Yakovlev, I. A.

    2017-10-01

    A method for determining magnetic anisotropy parameters of a thin single-crystal film on vicinal (111) substrate as well as substrate miscut angles from angular dependence of ferromagnetic resonance field has been proposed. The method is based on the following: (i) a new approach for the solution of the system of nonlinear equations for equilibrium and resonance conditions; (ii) a new expression of the objective function for the fitting problem. The study of the iron silicide films grown on vicinal Si(111) substrates with different miscut angles confirmed the efficiency of the method. The proposed method can be easily generalized to determine parameters of single-crystal films grown on substrates with an arbitrary cut.

  9. In-Plane Magnetic Anisotropy of Fe Atoms on Bi2Se3 (111)

    DEFF Research Database (Denmark)

    Honolka, J.; Khajetoorians, A.A.; Sessi, V.

    2012-01-01

    The robustness of the gapless topological surface state hosted by a 3D topological insulator against perturbations of magnetic origin has been the focus of recent investigations. We present a comprehensive study of the magnetic properties of Fe impurities on the prototypical 3D topological...... insulator Bi2Se3 using local low-temperature scanning tunneling spectroscopy and integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the Bi2Se3 surface, in the coverage range 1% of a monolayer, are heavily relaxed into the surface and exhibit a magnetic easy axis within the surface...

  10. Study on the mechanism of perpendicular magnetic anisotropy in Ta/CoFeB/MgO system

    Science.gov (United States)

    Lou, Yongle; Zhang, Yuming; Guo, Hui; Xu, Daqing; Yimen, Zhang

    2017-06-01

    The mechanism of perpendicular magnetic anisotropy (PMA) in a MgO-based magnetic tunnel junction (MTJ) has been studied in this article. By comparing the magnetic properties and elementary composition analysis for different CoFeB-based structures, such as Ta/CoFeB/MgO, Ta/CoFeB/Ta and Ru/CoFeB/MgO structures, it is found that a certain amount of Fe-oxide existing at the interface of CoFeB/MgO is helpful to enhance the PMA and the PMA is originated from the interface of CoFeB/MgO. In addition, Ta film plays an important role to enhance the PMA in Ta/CoFeB/MgO structure. Project supported by the National Defense Advance Research Foundation (No. 9140A08XXXXXX0DZ106), the Basic Research Program of Ministry of Education, China (No. JY10000925005), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK0912), the Scientific Research Foundation of Xi’an University of Science and Technology (No. 2010011), the Doctoral Research Startup Fund of Xi’an University of Science and Technology (No. 2010QDJ029).

  11. Role of magnetic exchange interaction due to magnetic anisotropy on inverse spin Hall voltage at FeSi3%/Pt thin film bilayer interface

    Science.gov (United States)

    Shah, Jyoti; Ahmad, Saood; Chaujar, Rishu; Puri, Nitin K.; Negi, P. S.; Kotnala, R. K.

    2017-12-01

    In our recent studies inverse spin Hall voltage (ISHE) was investigated by ferromagnetic resonance (FMR) using bilayer FeSi3%/Pt thin film prepared by pulsed laser deposition (PLD) technique. In ISHE measurement microwave signal was applied on FeSi3% film along with DC magnetic field. Higher magnetization value along the film-plane was measured by magnetic hysteresis (M-H) loop. Presence of magnetic anisotropy has been obtained by M-H loop which showed easy direction of magnetization when applied magnetic field is parallel to the film plane. The main result of this study is that FMR induced inverse spin Hall voltage 12.6 μV at 1.0 GHz was obtained across Pt layer. Magnetic exchange field at bilayer interface responsible for field torque was measured 6 × 1014 Ω-1 m-2 by spin Hall magnetoresistance. The damping torque and spin Hall angle have been evaluated as 0.084 and 0.071 respectively. Presence of Si atom in FeSi3% inhomogenize the magnetic exchange field among accumulated spins at bilayer interface and feebly influenced by spin torque of FeSi3% layer. Weak field torque suppresses the spin pumping to Pt layer thus low value of inverse spin Hall voltage is obtained. This study provides an excellent opportunity to investigate spin transfer torque effect, thus motivating a more intensive experimental effort for its utilization at maximum potential. The improvement in spin transfer torque may be useful in spin valve, spin battery and spin transistor application.

  12. Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: Nine years of Cluster observations in the Earth magnetotail

    Science.gov (United States)

    Yushkov, E.; Petrukovich, A.; Artemyev, A.; Nakamura, R.

    2017-09-01

    We investigate the distribution and possible origins of thermal anisotropic electrons in the Earth's magnetotail, using 9 years of Cluster observations. We mainly focus on relation between electron anisotropy and Bz and By magnetic field components (in GSM coordinates). The anisotropy of electron population is characterized by temperature ratio T∥/T⊥ and by the maximum of phase space density ratio F∥/F⊥ (∥ and ⊥ are relative to the background magnetic field). The population identified by large F∥/F⊥ is organized as short-time (dozens of seconds) bursts with enhanced F∥ and can be observed even in the plasma sheet with small T∥/T⊥. The thermal anisotropy T∥/T⊥ is larger for time intervals characterized by stronger Bz and By: the strong By corresponds to the T∥/T⊥ peak around the magnetotail neutral plane Bx=0, whereas the strong Bz corresponds to larger T∥/T⊥ with a flat profile across the magnetotail. There is a dawn-dusk asymmetry: large T∥/T⊥ corresponds mostly to strong Bz at the dusk flank and to strong By at the dawn flank. Using these differences of the electron anisotropy dependence on By and Bz, we discuss two possible mechanisms responsible for the anisotropy formation.

  13. Uniaxial contribution to the magnetic anisotropy of La 0.67Sr 0.33MnO 3 thin films induced by orthorhombic crystal structure

    Science.gov (United States)

    Boschker, Hans; Mathews, Mercy; Brinks, Peter; Houwman, Evert; Vailionis, Arturas; Koster, Gertjan; Blank, Dave H. A.; Rijnders, Guus

    2011-11-01

    La 0.67Sr 33MnO 3 (LSMO) thin films under compressive strain have an orthorhombic symmetry with (1 1¯ 0)o and (0 0 1)o in-plane orientations. (The subscript o denotes the orthorhombic symmetry.) Here, we grew LSMO on cubic (LaAlO 3) 0.3—(Sr 2AlTaO 6) 0.7 (LSAT) substrates and observed a uniaxial contribution to the magnetic anisotropy which is related to the orthorhombic crystal structure. Since the lattice mismatch is equal in the two directions, the general understanding of anisotropy in LSMO, which relates the uniaxial anisotropy to differences in strain, cannot explain the results. These findings suggest that the oxygen octahedra rotations associated with the orthorhombic structure result in a change in magnetic coupling between the [1 1¯ 0]o and [0 0 1] o directions, which determines the anisotropy. We expect these findings to lead to a better understanding of the microscopic origin of the magnetocrystalline anisotropy in LSMO.

  14. Magnetic energy-based understanding the mechanism of magnetothermal anisotropy for macroscopically continuous film of assembled Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Fengguo Fan

    2017-08-01

    Full Text Available The magnetothermal effect in two-dimensional assemblies of magnetic nanoparticles has played an increasingly important role in many biomedical applications. However, determining the mechanism of magnetothermal conversion of the assembled magnetic nanoparticles remains challenging. Here, a macroscopically continuous film assembled of Fe3O4 nanoparticles was used as a model for investigation utilizing both simulation and experimentation. The magnetic energy simulated by micro-magnetics can explain the phenomenon in which the assembled film of Fe3O4 nanoparticles showed the magnetothermal anisotropy in the presence of an alternating magnetic field. Here, the magnetic interaction between nanoparticles is proposed to play an important role in this process. Furthermore, it was discovered that there is a common behaviour of magnetic moments for the macroscopically continuous nanogranular film and a bulk magnet, which can be exploited to manipulate the magnetothermal effect of nanomaterials.

  15. Magnetic energy-based understanding the mechanism of magnetothermal anisotropy for macroscopically continuous film of assembled Fe3O4 nanoparticles

    Science.gov (United States)

    Fan, Fengguo; Liu, Jia; Sun, Jianfei; Ma, Siyu; Wang, Peng; Gu, Ning

    2017-08-01

    The magnetothermal effect in two-dimensional assemblies of magnetic nanoparticles has played an increasingly important role in many biomedical applications. However, determining the mechanism of magnetothermal conversion of the assembled magnetic nanoparticles remains challenging. Here, a macroscopically continuous film assembled of Fe3O4 nanoparticles was used as a model for investigation utilizing both simulation and experimentation. The magnetic energy simulated by micro-magnetics can explain the phenomenon in which the assembled film of Fe3O4 nanoparticles showed the magnetothermal anisotropy in the presence of an alternating magnetic field. Here, the magnetic interaction between nanoparticles is proposed to play an important role in this process. Furthermore, it was discovered that there is a common behaviour of magnetic moments for the macroscopically continuous nanogranular film and a bulk magnet, which can be exploited to manipulate the magnetothermal effect of nanomaterials.

  16. Effect of roughness on perpendicular magnetic anisotropy in (Co90Fe10/Ptn superlattices

    Directory of Open Access Journals (Sweden)

    Jinjun Qiu

    2016-05-01

    Full Text Available Superlattice [Co90Fe10(0.21/Pt(0.23]n (unit in nm with the repeat cycles n ranging from 3 to 30 were studied. Both effective anisotropy (Keff and PMA constant (KU reached a maximum at n=8. When the 3 nm Pt underlayer was deposited at low energy condition, the Keff and KU of (CoFe/Pt8 are 4.0 and 6.1 Merg/cc, respectively. On the other hand, the Keff and KU increased to 6.8 and 9.7 Merg/cc, respectively, when the Pt underlayer deposited at high energy condition. As the n increases, the surface roughness monotonously increases and d111 inside the superlattice layers increase and relax from bottom to top part. The interface roughness and relaxation in superlattice reduce the PMA considerably.

  17. Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator

    Czech Academy of Sciences Publication Activity Database

    Studýnka, J.; Chadima, Martin; Suza, P.

    2014-01-01

    Roč. 629, 26 August (2014), s. 6-13 ISSN 0040-1951 Institutional support: RVO:67985831 Keywords : AMS * Kappabridge * susceptibility tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.872, year: 2014

  18. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jedamzik, Karsten [Laboratoire de Univers et Particules, UMR5299-CNRS, Université de Montpellier II, F-34095 Montpellier (France); Abel, Tom, E-mail: karsten.jedamzik@um2.fr, E-mail: tabel@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC/Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  19. Spin-triplet supercurrent in Josephson junctions containing a synthetic antiferromagnet with perpendicular magnetic anisotropy

    Science.gov (United States)

    Glick, Joseph A.; Edwards, Samuel; Korucu, Demet; Aguilar, Victor; Niedzielski, Bethany M.; Loloee, Reza; Pratt, W. P.; Birge, Norman O.; Kotula, P. G.; Missert, N.

    2017-12-01

    We present measurements of Josephson junctions containing three magnetic layers with noncollinear magnetizations. The junctions are of the form S /F'/N /F /N /F″/S , where S is superconducting Nb, F' is either a thin Ni or Permalloy layer with in-plane magnetization, N is the normal metal Cu, F is a synthetic antiferromagnet with magnetization perpendicular to the plane, composed of Pd/Co multilayers on either side of a thin Ru spacer, and F″ is a thin Ni layer with in-plane magnetization. The supercurrent in these junctions decays more slowly as a function of the F -layer thickness than for similar spin-singlet junctions not containing the F' and F″ layers. The slower decay is the prime signature that the supercurrent in the central part of these junctions is carried by spin-triplet pairs. The junctions containing F'= Permalloy are suitable for future experiments where either the amplitude of the critical current or the ground-state phase difference across the junction is controlled by changing the relative orientations of the magnetizations of the F' and F″ layers.

  20. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  1. Interactions controlled evolution of complex magnetoresistance in as-deposited Ag{sub 100−x}Co{sub x} nanogranular films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in; Pandya, Dinesh K.

    2015-11-15

    Evolution of a complex magnetoresistance and dc-magnetization behavior of as-deposited co-sputtered Ag{sub 100−x}Co{sub x} films with the variation of cobalt concentration ‘x’ from 25.2 to 45.1 at% is presented. At 20 K, a transition from normal to complex magnetoresistance behavior, in conjunction with magnetic force microscopy evidence of the existence of a magnetic microstructure resulting in perpendicular magnetic anisotropy (PMA) is observed for x=32.6 cobalt concentration film. The dc-magnetization studies provide additional support to the presence of PMA in film that gets reduced with the increase of cobalt concentration. The complex magnetoresistance (MR) behavior also decreases with the increase of ‘x’. The room temperature MR, coercivity behavior and remanence to saturation magnetization ratio indicate the presence of direct ferromagnetic interactions due to the presence of ferromagnetic particles for x≥32.6 films. The observed complex MR behavior and presence of PMA are interpreted in terms of manifestation of the transition of interparticle magnetic interaction nature from dipolar to direct ferromagnetic. - Highlights: • Complex MR with perpendicular magnetic anisotropy (PMA) is observed. • MFM evidenced the presence of PMA. • Complex MR and PMA decreases with the increase of cobalt concentration. • Observed results are correlated with the nature of magnetic interactions.

  2. Underlayer Effect on Perpendicular Magnetic Anisotropy in Co20Fe60B20\\MgO Films.

    Science.gov (United States)

    Chen, P J; Iunin, Y L; Cheng, S F; Shull, R D

    2016-07-01

    Perpendicular Magnetic Tunneling Junctions (pMTJs) with Ta\\CoFeB\\MgO have been extensively studied in recent years. However, the effects of the underlayer on the formation of the CoFeB perpendicular magnetic anisotropy (PMA) are still not well understood. Here we report the results of our systematic use of a wide range of elements (Ti, V, Cr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt and Au) encompassed by columns IVA, VA, VIA, VIIA and VIIIA of the periodic table as the underlayer in a underlayer\\Co20Fe60B20\\MgO stack. Our goals were to survey more elements which could conceivably create a PMA in CoFeB and thereby to explore the mechanisms enabling these underlayers to enhance or create the PMA. We found underlayer elements having both an outer shell of 4d electrons (Zr, Nb Mo, and Pd) and 5d electrons (Hf, Ta, W, Re, Ir, and Pt) resulted in the development of a PMA in the MgO-capped Co20Fe60B20. Hybridization between the 3d electrons of the Fe or Co (in the Co20Fe60B20) at the interface with the 4d or 5d electrons of the underlayer is thought to be the cause of the PMA development.

  3. Large enhancement of perpendicular magnetic anisotropy and high annealing stability by Pt insertion layer in (Co/Ni-based multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-09-01

    Full Text Available We have investigated the influence of ultrathin Pt insertion layers on the perpendicular magnetic anisotropy (PMA and annealing stability of Ta/Pt/(Co/Ni×3/Co/Pt/Ta multilayered films. When the Pt layers were inserted at the Co/Ni interfaces, the PMA of the multilayered films decreased monotonically as the thickness of the Pt insertion layer (tPt was increased. However, when the Pt layers were inserted at the Ni/Co interfaces, the PMA increased from 1.39 × 106 to 3.5 × 106 erg/cm3 as tPt increased from 0 to 10 Å. Moreover, the multilayered film containing 6-Å-thick Pt insertion layers that inserted at the Ni/Co interfaces exhibited the highest annealing stability for PMA, which was up to temperature of 480 °C. We hypothesize that the introduced Pt/Co interfaces, due to the Pt insertion layers, are responsible for the enhanced PMA and high annealing stability. This study is particularly important for perpendicularly magnetized spintronic devices that require high PMA and high annealing stability.

  4. The effects of tungsten concentration on crystalline structure and perpendicular magnetic anisotropy of Co-W films

    Directory of Open Access Journals (Sweden)

    S. Q. Yin

    2014-12-01

    Full Text Available In this study, Co-W thin films deposited by DC magnetron sputtering were demonstrated to be perpendicular magnetic anisotropic with large magnetocrystalline anisotropy energy (MAE. Thermodynamic calculations based on Miedema’s semi-empirical model have been used to estimate the phase in this binary alloy system. Based on the thermodynamic calculations results, a series of Co-W thin films were deposited on amorphous Ta underlayer with different tungsten concentrations. According to the X-ray diffraction results, the crystal structure of Co-W thin films is consistent well with that of thermodynamic calculations. Large MAE of Co-W thin films can be obtained with Ku over 2.1 × 105 J/m3 after vacuum annealing. The perpendicular coercivity (Hc of Co-W thin film reaches 9.1 × 104 A/m. Therefore, the Co-W thin film is considered as a potential choice of high-density magnetic recording media materials.

  5. On the manifestation of effect of delayed acceleration of the transient process during 180° pulsed magnetization reversal of real ferrite-garnet films with planar anisotropy

    Science.gov (United States)

    Kolotov, O. S.; Matyunin, A. V.; Nikoladze, G. M.; Polyakov, P. A.

    2017-10-01

    The regime of 180° pulsed magnetization reversal of ferrite-garnet films with planar anisotropy in the region of external fields, in which the mechanism of uniform rotation of the magnetization operates, is investigated for the first time. An analysis of the numerical solutions of the Landau-Lifshitz equation and the calculated and experimentally obtained signals showed that the presence of biaxial anisotropy in real ferrite-garnet films leads to the fact that at finite duration of the remagnetizing pulse front the initial slow rotation at definite moment of time is sharply accelerated so that over an interval of 0.7 ns the azimuthal angle changes from 45° to the equilibrium value (160°-170°). As a result, appearence of the nonlinear damped oscillations of magnetization with a fundamental harmonic period of 1.5 ns become possible.

  6. A soft magnetic underlayer with negative uniaxial magnetocrystalline anisotropy for suppression of spike noise and wide adjacent track erasure in perpendicular recording media

    Science.gov (United States)

    Hashimoto, Atsushi; Saito, Shin; Takahashi, Migaku

    2006-04-01

    The suppression of spike noise and wide adjacent track erasure (WATE) are important technical issues in the development of a perpendicular recording medium (PRM). As a solution to both of these problems, this paper presents a type of soft magnetic underlayer (SUL) with negative uniaxial perpendicular magnetic anisotropy. The magnetic anisotropy is achieved by employing a material with negative uniaxial magnetocrystalline anisotropy (Kugrain). WATE is suppressed in the SUL by realizing wide distribution of magnetic flux below the edge of the return yoke, while spike noise is eliminated by ensuring the formation of a Néel wall instead of a Bloch wall in SUL domains. CoIr with the disordered hcp structure is selected as a negative Kugrain material, and c-plane-oriented CoIr films with various Ir contents are prepared for experimental evaluation. Among the films tested, the CoIr film with 22 at. % Ir is found to provide the minimum Kugrain value of -6×106 ergs/cm3. Under a field applied parallel to the film plane, this film exhibits soft magnetic properties, attributable to the high crystallographic symmetry of the c-plane sheet texture. A PRM fabricated using the CoIr SUL is confirmed to display substantially lower spike noise and WATE compared to conventional structures.

  7. Effect of hydrogenation disproportionation conditions on magnetic anisotropy in Nd-Fe-B powder prepared by dynamic hydrogenation disproportionation desorption recombination

    Directory of Open Access Journals (Sweden)

    Masao Yamazaki

    2017-05-01

    Full Text Available Various anisotropic Nd-Fe-B magnetic powders were prepared by the dynamic hydrogenation disproportionation desorption recombination (d-HDDR treatment with different hydrogenation disproportionation (HD times (tHD. The resulting magnetic properties and microstructural changes were investigated. The magnetic anisotropy was decreased with increasing tHD. In the d-HDDR powders with higher magnetic anisotropy, fine (200–600 nm and coarse (600–1200 nm Nd2Fe14B grains were observed. The coarse Nd2Fe14B grains showed highly crystallographic alignment of the c-axis than fine Nd2Fe14B grains. In the highly anisotropic Nd2Fe14B d-HDDR powder, a large area fraction of lamellar-like structures consisting of NdH2 and α-Fe were observed after HD treatment. Furthermore, the mean diameter of the lamellar-like regions, where lamellar-like structures orientate to the same direction in the HD-treated alloys was close to that of coarse Nd2Fe14B grains after d-HDDR treatment. Thus, the lamellar-like regions were converted into the crystallographically aligned coarse Nd2Fe14B grains during desorption recombination treatment, and magnetic anisotropy is closely related to the volume fraction of lamellar-like regions observed after HD treatment.

  8. Evolution of fabric in Chitradurga granite (south India) - A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and vorticity analysis

    Science.gov (United States)

    Mondal, Tridib Kumar

    2018-01-01

    In this paper, the fabric in massive granite ( 2.6 Ga) from the Chitradurga region (Western Dharwar Craton, south India) is analyzed using microstructure, anisotropy of magnetic susceptibility (AMS) study and kinematic vorticity analysis. The microstructural investigation on the granite shows a progressive textural overprint from magmatic, through high-T to low-T solid-state deformation textures. The mean magnetic foliation in the rocks of the region is dominantly NW-SE striking which have developed during regional D1/D2 deformation on account of NE-SW shortening. The plunge of the magnetic lineation varies from NW to vertical to SE, and interpreted to be a consequence of regional D3 deformation on account of NW-SE to E-W shortening. The vorticity analysis from magnetic fabric in the region reveals that the NW-SE oriented fabric formed under pure shear condition during D1/D2 regional deformation. However, some parts of the region particularly close to the adjacent Chitradurga Shear Zone show that the magnetic fabrics are oblique to the foliation as well as shear zone orientation and inferred to be controlled by simple shearing during D3 regional deformation. The shape preferred orientation (SPO) analysis from oriented thin sections suggest that the shape of the recrystallized quartz grains define the magnetic fabric in Chitradurga granite and the degree of the SPO reduces away from the Chitradurga Shear Zone. It is interpreted that the change in magnetic fabrics in some parts of the granite in the region are dominantly controlled by the late stage sinistral shearing which occurred during the development of Chitradurga Shear Zone. Anisotropy of magnetic susceptibility (AMS) data of granite from the Chitradurga region (West Dharwar Craton, southern India). Km = Mean susceptibility; Pj = corrected degree of magnetic anisotropy; T = shape parameter. K1 and K3 are the maximum and minimum principal axes of the AMS ellipsoid, respectively. dec = Declination; inc

  9. BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

    Science.gov (United States)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Germaine, T. St.; Ghosh, T.; Grayson, J.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Larson, N.; Leitch, E. M.; Megerian, K. G.; Moncelsi, L.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W.; Pryke, C.; Richter, S.; Schillaci, A.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2017-11-01

    We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed T B and E B power spectra. After this procedure, the Q U maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation, which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps (˜3 μ K -arc min ) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term ga γ≤7.2 ×10-2/HI (95% confidence) than the constraint derived from the B -mode spectrum, where HI is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10-6≲fa/Mpl at mass range of 10-33≤ma≤10-28 eV for r =0.01 , assuming ga γ˜α /(2 π fa) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies.

  10. Giant interfacial perpendicular magnetic anisotropy in Fe/CuIn 1 -xGaxSe2 beyond Fe/MgO

    Science.gov (United States)

    Masuda, Keisuke; Kasai, Shinya; Miura, Yoshio; Hono, Kazuhiro

    2017-11-01

    We study interfacial magnetocrystalline anisotropies in various Fe/semiconductor heterostructures by means of first-principles calculations. We find that many of those systems show perpendicular magnetic anisotropy (PMA) with a positive value of the interfacial anisotropy constant Ki. In particular, the Fe/CuInSe 2 interface has a large Ki of ˜2.3 mJ /m2 , which is about 1.6 times larger than that of Fe/MgO known as a typical system with relatively large PMA. We also find that the values of Ki in almost all the systems studied in this work follow the well-known Bruno's relation, which indicates that minority-spin states around the Fermi level provide dominant contributions to the interfacial magnetocrystalline anisotropies. Detailed analyses of the local density of states and wave-vector-resolved anisotropy energy clarify that the large Ki in Fe/CuInSe 2 is attributed to the preferable 3 d -orbital configurations around the Fermi level in the minority-spin states of the interfacial Fe atoms. Moreover, we have shown that the locations of interfacial Se atoms are the key for such orbital configurations of the interfacial Fe atoms.

  11. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    Science.gov (United States)

    1989-01-01

    H. J. Duschow, D. B. do Idooli, 8. Slnuerma, IL J. Radwanski and J. J. M. Franse, J. Mooa. Moen.. Meter.. 5Z (1985) 211. 16 M. Sagawa. Y. Matsuura...Physics of Magnetic Materias, Sczyrk-Bi, Poland, 1986. 9 S. Sinnemna, R. J. Radwanski , J. J. M. Franse, D. B. De Mooiq and K. H. J. Buschow, ion and

  12. Phenomenology of current-skyrmion interactions in thin films with perpendicular magnetic anisotropy

    NARCIS (Netherlands)

    Knoester, M. E.; Sinova, Jairo; Duine, R. A.

    2014-01-01

    We study skyrmions in magnetic thin films with structural inversion asymmetry perpendicular to the film plane. We construct a phenomenological model that describes the interaction between the motion of skyrmions and electric currents to lowest order in spin-orbit coupling. Based on this model, we

  13. Planar Hall effect and magnetic anisotropy in epitaxially strained chromium dioxide thin films

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Keizer, R.S.; Schink, S.W.; Van Dijk, I.; Klapwijk, T.M.; Miao, G.X.; Xiao, G.; Gupta, A.

    2007-01-01

    We have measured the in-plane anisotropic magnetoresistance of 100?nm thick CrO2 thin films at liquid He temperatures. In low magnetic fields H, both the longitudinal and the transverse (planar Hall) resistance show abrupt switches, which characteristically depend on the orientation of H. All the

  14. Numerical study of magnetoacoustic signal generation with magnetic induction based on inhomogeneous conductivity anisotropy.

    Science.gov (United States)

    Li, Xun; Hu, Sanqing; Li, Lihua; Zhu, Shanan

    2013-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging modality for generating electrical conductivity images of biological tissues with high spatial resolution. In this paper, we create a numerical model, including a permanent magnet, a coil, and a two-layer coaxial cylinder with anisotropic electrical conductivities, for the MAT-MI forward problem. We analyze the MAT-MI sources in two cases, on a thin conductive boundary layer and in a homogeneous medium, and then develop a feasible numerical approach to solve the MAT-MI sound source densities in the anisotropic conductive model based on finite element analysis of electromagnetic field. Using the numerical finite element method, we then investigate the magnetoacoustic effect of anisotropic conductivity under the inhomogeneous static magnetic field and inhomogeneous magnetic field, quantitatively compute the boundary source densities in the conductive model, and calculate the sound pressure. The anisotropic conductivity contributes to the distribution of the eddy current density, Lorentz force density, and acoustic signal. The proposed models and approaches provide a more realistic simulation environment for MAT-MI.

  15. Strain induced magnetic anisotropy and 3d7 ions effect in CoFe2O4 nanoplatelets

    Science.gov (United States)

    Chandekar, Kamlesh V.; Kant, K. Mohan

    2017-11-01

    Cobalt ferrite (CoFe2O4) magnetic nanoplatelets were synthesized by hydrothermal method at 120 °C (H120) and 180 °C (H180) respectively. The formation of inverse spinel cobalt ferrite was confirmed by X- ray diffraction pattern (XRD) and Transmission electron microscopy (TEM). The X-ray diffraction studies shows the linear variation of microstrain with inverse crystallite size. The compressive microstrain of 0.024 and 0.016 was estimated for CoFe2O4 samples H120 and H180 respectively using Williamson-Hall (W-H) plot analysis assuming uniform deformation model. The valence state of metal ions and single phase formation single domain CoFe2O4 was confirmed by X-ray photoemission spectroscopy (XPS) and Raman spectroscopy. X-ray photoemission spectra (XPS) exhibit Fe 2p3/2 peak and Co 2p3/2 peaks in both samples composed of two peaks corresponding to octahedral sites and tetrahedral sites. The strain induced magnetic anisotropy is estimated on basis of strain measured by W-H plot at 300 K. The contribution of the Co2+ ions on octahedral sites of both samples of CoFe2O4 is assigned to the magnetostriction ions in cubic structure of cobalt ferrite by assuming ground state. The magnetic ions with 3d7 transition in CoFe2O4 lattice introduced the local magnetostriction through spin-orbit-lattice interaction with distorted cubic crystal field.

  16. Spin Injection in Thermally Assisted Magnetic Random Access Memory

    National Research Council Canada - National Science Library

    Deak, James G

    2005-01-01

    An integrated thermal, micromagnetic, spin-momentum-transfer (SMT) model was developed to study the effect of SMT on the programming current required for thermally assisted magnetic random access memory (MRAM...

  17. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  18. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films

    Science.gov (United States)

    Edelman, I.; Esters, M.; Johnson, D. C.; Yurkin, G.; Tarasov, A.; Rautsky, M.; Volochaev, M.; Lyashchenko, S.; Ivantsov, R.; Petrov, D.; Solovyov, L. A.

    2017-12-01

    Crystallographically aligned nanocrystalline films of the ferromagnetic spinel CuCr2Se4 were successfully synthesized and their structure and alignment were confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The average size of the crystallites is about 200-250 nm, and their (1 1 1) crystal planes are parallel to the film plane. A good match of the film's electronic structure to that of bulk CuCr2Se4 is confirmed by transverse Kerr effect measurements. Four easy 〈1 1 1〉 axes are present in the films. One of these axes is oriented perpendicular and three others are oriented at an angle of 19.5° relative to the film plane. The magnetic properties of the films are determined by a competition between the out-of-plane magnetocrystalline anisotropy and the in-plane shape anisotropy. Magnetic measurements show that the dominating type of anisotropy switches from shape to magnetocrystalline anisotropy near 160 K, which leads to a switch of the effective easy axis from inside the film plane at room temperature to perpendicular to the film plane as the temperature decreases. At last, a moderately large, negative value of the low-temperature magnetoresistance was observed for the first time in CuCr2Se4 films.

  19. Magnetic anisotropy energy of ferromagnetic shape memory alloys Ni2X(X=Fe, CoGa by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Wangqiang He

    2017-07-01

    Full Text Available First-principles calculations were employed to explore magnetocrystalline anisotropy energy (MAE of Ni2X(X=Fe, CoGa alloys. The MAE of Ni2FeGa is found to show a concave behavior as a function of tetragonal distortion and easy-axis of magnetization in martensitic phase is along long axis, which have been interpreted by the shift of Fe dxy+dyz peak in minority spin channel near Fermi level. The substitution of Ni by Co in Ni2FeGa alloys rotates magnetic easy axis from long axis to short axis in non-modulated phase while substitution of Fe by Co did not, which is in agreement with experiment. Magnetic anisotropy constant and magnetic stress have been estimated with calculated MAE of martensite phases. By comparing first-principles estimated values of magnetic and twinning stresses, we confirmed the condition, whether large magnetic field-induced strains in FSMAs could be obtained or not. This information can provide theoretical guidance in searching new types of FSMAs with large magnetic field induced strain.

  20. Magnetic Anisotropy in A High-Tc Superconductor YBa2Cu3O7-δ Single Crystal below Tc

    Science.gov (United States)

    Isikawa, Yosikazu; Mori, Katsunori; Kobayashi, Koichi; Sato, Kiyoo

    1988-03-01

    We have measured the magnetic field dependence of magnetization of single-crystal YBa2Cu3O7-δ in detail in fields up to 5 kOe in the temperature range below Tc, i.e., 93 K. Lower critical fields, Hc1’s, at which the magnetization deviates from linearity, are very anisotropic; Hc1\\bot(0) (perpendicular to the ab-plane) is 305 Oe and Hc1\\varparallel(0) (parallel to the ab-plane) is 104 Oe. Both Hc1\\bot and Hc1// decrease linearly with increasing temperature up to about Tc. It is suggested that random oxygen defects in the Cu-O planes and chains are important for the high-Jc type II superconductor YBa2Cu3O7-δ.

  1. Magnetic Control of the Light Reflection Anisotropy in a Biogenic Guanine Microcrystal Platelet.

    Science.gov (United States)

    Iwasaka, Masakazu; Mizukawa, Yuri; Roberts, Nicholas W

    2016-01-12

    Bioinspired but static optical devices such as lenses, retarders, and reflectors have had a significant impact on the designs of many man-made optical technologies. However, while numerous adaptive and flexible optical mechanisms are found throughout the animal kingdom, highly desirable biomimetic copies of these remarkable smart systems remain, in many cases, a distant dream. Many aquatic animals have evolved highly efficient reflectors based on multilayer stacks of the crystallized nucleic acid base guanine. With exceptional levels of spectral and intensity control, these reflectors represent an interesting design pathway towards controllable micromirror structures. Here we show that individual guanine crystals, with dimensions of 5 μm × 20 μm × 70 nm, can be magnetically controlled to act as individual micromirrors. By applying magnetic fields of 500 mT, the reflectivity of these crystals can be switched off and on for the change in reflectivity. Overall, the use of guanine represents a novel design scheme for a highly efficient and controllable synthetic organic micromirror array.

  2. Orange peel coupling in multilayers with perpendicular magnetic anisotropy: Application to (Co/Pt)-based exchange-biased spin-valves

    Science.gov (United States)

    Moritz, J.; Garcia, F.; Toussaint, J. C.; Dieny, B.; Nozières, J. P.

    2004-01-01

    Néel's theory of magnetostatic coupling between two magnetic layers with in-plane magnetization separated by a non-magnetic spacer has been extended to the case of multilayers with perpendicular anisotropy. It is shown that the presence of a correlated roughness between the successive interfaces induces an interlayer coupling through the spacer analogous to the well-known orange peel coupling. However, depending on the parameters describing the interfacial roughness, the magnetic anisotropy and the exchange stiffness constant, this coupling can favor either parallel or an antiparallel alignment of the magnetization in the two ferromagnetic layers. This model was used to quantitatively interpret the variation of interlayer coupling vs. thickness of Pt spacer layer in out-of-plane magnetized exchange-biased spin-valves comprising (Pt/Co) multilayers as free and pinned layers. It is shown that the net coupling can be interpreted by the coexistence of perpendicular orange peel and oscillatory RKKY couplings. Interestingly, since these two couplings have different thickness dependence, in certain range of Pt thickness, the coupling changes sign during growth, being antiferromagnetic at the early stage of the growth of the top (Co/Pt) multilayer but ferromagnetic once the growth is completed.

  3. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu; Nemati, Z.; Phan, M. H.; Mukherjee, P.; Srikanth, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Alonso, J. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160 (Spain); Fdez-Gubieda, M. L.; Barandiarán, J. M. [BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160 (Spain); Depto. Electricidad y Electrónica, Universidad del País Vasco, Leioa 48940 (Spain)

    2015-05-07

    Spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles, with different FeO:Fe{sub 3}O{sub 4} ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe{sub 3}O{sub 4} phases, with an average size of ∼20 nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specific absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135 W/g at 600 Oe and 310 kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy.

  4. Optimizing magnetic anisotropy of La{sub 1−x}Sr{sub x}MnO{sub 3} nanoparticles for hyperthermia applications

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Amin ur [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Department of Applied Physical and Material Sciences, University of Swat, Khyber Pakhtunkhwa (Pakistan); Manzoor, Sadia, E-mail: sadia_manzoor@comsats.edu.pk [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2016-12-15

    Maximizing the magnetothermal response of magnetic nanoparticles (MNP's) for hyperthermia applications is a complex problem, because it depends sensitively upon interrelated magnetic and structural parameters. The task is somewhat simpler for systems with fixed composition, e.g. Fe{sub 3}O{sub 4} or CoFe{sub 2}O{sub 4}, in which the particle size is the only means of modifying the magnetic anisotropy, and hence the magnetothermal response. In the La{sub 1−x}Sr{sub x}MnO{sub 3} system however, the magnetic interactions as well as the particle size both change with the Sr concentration x, which makes it a much more complex system for which to optimize the hyperthermia response. We have investigated the effect of magnetic anisotropy on the magnetothermal response of La{sub 1−x}Sr{sub x}MnO{sub 3} nanoparticles as a function of the particle size as well as the Sr concentration x where 0.20≤x≤0.45. The optimum particle size range is 25–30 nm for all concentrations, where the specific absorption rate (SAR) has a maximum. The linear response theory (LRT) has been applied to this system and good agreement has been found between the experimental and theoretically determined values of the SAR for samples lying in the single domain regime and having large enough anisotropy energies. The agreement is much better for the intermediate concentrations of 0.27 and 0.33, because of their large anisotropy as compared to other concentrations. It is concluded that the LRT can be successfully used to predict the SAR of these nanoparticles, provided they possess large enough effective anisotropies. Values of the ILP have been obtained for these samples and found to be comparable to those of magnetite and some commercial ferrofluids. - Highlights: • For La{sub 1-x}Sr{sub x}MnO{sub 3} system, the magnetic anisotropy is determined not only by the particle size, but also by the strontium content x, we made a systematic study of both these parameters on its magnetothermal

  5. Magnetic Random Access Memory for Embedded Computing

    Science.gov (United States)

    2007-10-29

    is pointed in the direction of current flow then the resulting magnetic field is oriented like the fingers curled toward the palm . As suggested in the...and Johann Heyen Hinken. Dielectric properties of single crystals of Al2O3, LaAlO3, NdGaO3, SrTiO3 and MgO at cryogenic temperatures. IEEE

  6. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  7. Extreme magnetic anisotropy and multiple superconducting transition signatures in a [Nb(23 nm)/Ni(5 nm)]{sub 5} multilayer

    Energy Technology Data Exchange (ETDEWEB)

    De Long, L.E. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)], E-mail: delong@pa.uky.edu; Kryukov, S.A. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Joshi, Amish G. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Xu Wentao; Bosomtwi, A. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Kirby, B.J. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, MS805, Los Alamos, NM 87545 (United States); Center for Neutron Research, National Institutes of Standards and Technology, Gaithersburg, MD 20899-8562 (United States); Fitzsimmons, M.R. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, MS805, Los Alamos, NM 87545 (United States)

    2008-04-01

    We have applied polarized neutron reflectometry, and novel SQUID and vibrating reed magnetometry to probe a [Nb(23 nm)/Ni(5 nm)]{sub 5} multilayer (ML) whose superconducting state magnetic anisotropy is dominated by confined (in-plane) supercurrents in DC magnetic fields, H, applied nearly parallel to the ML plane. The upper critical field exhibits abrupt shifts (0.1-0.6 K) in near-parallel fields, but is field-independent for {mu}{sub 0}H < 0.8 T when the ML is exactly aligned with the DC field, indicating suppression of orbital pairbreaking and the possible presence of unconventional superconducting pairing states.

  8. Scale-invariance and Anisotropy of small-scale magnetic fluctuations in solar wind turbulence as seen by CLUSTER

    Science.gov (United States)

    Hnat, B.; Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Dunlop, M. W.; Sahraoui, F.

    2009-12-01

    In-situ observations of fluctuations in the solar wind typically show an ‘inertial range’ of MHD turbulence, and at higher frequencies, a cross-over to spatial temporal scales where kinetic effects become important. In-situ monitors such as WIND and ACE have provided observations over a decade of this dissipation/dispersion range that have motivated theoretical studies that in turn predict the nature of the scaling in this region. We will present some results from very high-frequency magnetic field data from the four Cluster II spacecraft in intervals where the spacecraft were in quasi-stationary ambient solar wind and where the instruments were operating in burst mode. The magnetic field data are from the fluxgate and search-coil magnetometers from the Cluster FGM experiment (~67Hz), and the STAFF experiment (~450 Hz). These data sets provide observations of this dissipation/dispersion range over approximately two decades in frequency. This high cadence allows a more precise determination of the statistics at these small scales; especially the estimation of scaling exponents. Theories centred around the dispersion of MHD waves and their associated damping and particle heating have been proposed to account for this scaling range. Since the spacecraft data shows a clean break from the scaling in the inertial range, followed by a different power-law spanning over approximately two decades, these theories centre around predictions of the spectral slope and the associated scaling exponents. Motivated by the need to distinguish these theoretical predictions, we perform a robust multiscale statistical analysis focusing on power spectra, PDFs of field fluctuations, higher-order statistics to quantify the scaling of fluctuations; as well as describing the degree of anisotropy in the fluctuations parallel and perpendicular to the average magnetic field. We use these results to infer the nature of the physical processes as we pass through the crossover from inertial

  9. Uniaxial contribution to the magnetic anisotropy of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} thin films induced by orthorhombic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Boschker, Hans; Mathews, Mercy; Brinks, Peter [Faculty of Science and Technology and MESA, Institute for Nanotechnology, University of Twente, 7500 AE, Enschede (Netherlands); Houwman, Evert, E-mail: e.p.houwman@utwente.nl [Faculty of Science and Technology and MESA, Institute for Nanotechnology, University of Twente, 7500 AE, Enschede (Netherlands); Vailionis, Arturas [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Koster, Gertjan; Blank, Dave H.A.; Rijnders, Guus [Faculty of Science and Technology and MESA, Institute for Nanotechnology, University of Twente, 7500 AE, Enschede (Netherlands)

    2011-11-15

    La{sub 0.67}Sr{sub 33}MnO{sub 3} (LSMO) thin films under compressive strain have an orthorhombic symmetry with (11-bar0){sub o} and (001){sub o} in-plane orientations. (The subscript o denotes the orthorhombic symmetry.) Here, we grew LSMO on cubic (LaAlO{sub 3}){sub 0.3}-(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates and observed a uniaxial contribution to the magnetic anisotropy which is related to the orthorhombic crystal structure. Since the lattice mismatch is equal in the two directions, the general understanding of anisotropy in LSMO, which relates the uniaxial anisotropy to differences in strain, cannot explain the results. These findings suggest that the oxygen octahedra rotations associated with the orthorhombic structure result in a change in magnetic coupling between the [11-bar0]{sub o} and [0 0 1]{sub o} directions, which determines the anisotropy. We expect these findings to lead to a better understanding of the microscopic origin of the magnetocrystalline anisotropy in LSMO. - Highlights: > Orthorhombic LSMO films are grown coherently and untwinned on cubic LSAT substrates. > The films are described by both biaxial anisotropy and uniaxial anisotropy. > The uniaxial part of the anisotropy is induced by the orthorhombic symmetry of LSMO.

  10. Competing exchange interactions and magnetic anisotropy of La{sub 1−x}Tb{sub x}Mn{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimov, E.G., E-mail: gerasimov@imp.uran.ru [Institute of Metal Physics UB RAS, S. Kovalevskaya str., 18, 620990 Ekaterinburg (Russian Federation); Mushnikov, N.V.; Terentev, P.B.; Yazovskikh, K.A.; Titov, I.S.; Gaviko, V.S. [Institute of Metal Physics UB RAS, S. Kovalevskaya str., 18, 620990 Ekaterinburg (Russian Federation); Umetsu, Rie Y. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2017-01-15

    Crystal structure, magnetization and magnetic susceptibility have been studied for the La{sub 1−x}Tb{sub x}Mn{sub 2}Si{sub 2} (0≤x≤1) polycrystalline and quasi-single crystalline samples. It has been shown that, at low temperature T =4.2 K, substitution of the terbium for lanthanum leads to recurred change of the type of interlayer Mn-Mn magnetic ordering. For the compounds with x<0.2 ≈ x{sub c1} the manganese magnetic moments of adjacent layers are ordered ferromagnetically, in the concentration range 0.2x{sub c2} the Mn sublattice is again ferromagnetically ordered and, due to the negative Tb–Mn interaction, ferrimagnetic structure is formed. Using the magnetization data, the concentration magnetic phase diagram has been suggested. The observed variation of the type of magnetic ordering has been explained in terms of the change of interatomic Mn-Mn distances and a competition of the Tb–Mn, Mn–Mn and Tb–Tb interlayer exchange interactions. - Highlights: • Crystal structure and magnetic properties have been studied for the polycrystalline and quasi-single crystalline samples. • Substitution of the terbium for lanthanum leads to recurred change of the type of interlayer Mn–Mn magnetic ordering. • The compounds have high magnetic anisotropy, the tetragonal c-axis being the easy magnetization direction. • The magnetic x-T phase diagram includes five different magnetically ordered states.

  11. Applying the anisotropy of magnetic susceptibility technique to the study of the tectonic evolution of the West Spitsbergen Fold-and-Thrust Belt

    Directory of Open Access Journals (Sweden)

    Katarzyna Dudzisz

    2016-12-01

    Full Text Available We demonstrate the use of the anisotropy of magnetic susceptibility (AMS method to determine the orientation of the principal tectonic strain directions developed during the formation of the West Spitsbergen Fold-and-Thrust Belt (WSFTB. The AMS measurements and extensive rock-magnetic studies of the Lower Triassic rocks reported here were focused on the recognition of the magnetic fabric, the identification of ferromagnetic minerals and an estimation of the influence of ferro- and paramagnetic minerals on magnetic susceptibility. At most sites, the paramagnetic minerals controlled the magnetic susceptibility, and at only one site the impact of ferromagnetic minerals was higher. The AMS technique documented the presence of different types of magnetic fabrics within the sampled sites. At two sites, a normal (Kmin perpendicular to the bedding magnetic fabric of sedimentary origin was detected. This was associated with a good clustering of the maximum AMS axes imposed by tectonic strain. The Kmax magnetic lineation directions obtained here parallel the general NNW–SSE trend of the WSFTB fold axial traces and thrust fronts. The two other investigated sites possessed mixed and inverted fabrics, the latter of which appear to reflect the presence of iron-bearing carbonates.

  12. First principles modeling of magnetic random access memory devices (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Butler, W.H.; Zhang, X.; Schulthess, T.C.; Nicholson, D.M.; Oparin, A.B. [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); MacLaren, J.M. [Department of Physics, Tulane University, New Orleans, Louisiana 70018 (United States)

    1999-04-01

    Giant magnetoresistance (GMR) and spin-dependent tunneling may be used to make magnetic random access memory devices. We have applied first-principles based electronic structure techniques to understand these effects and in the case of GMR to model the transport properties of the devices. {copyright} {ital 1999 American Institute of Physics.}

  13. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    KAUST Repository

    Tao, B. S.

    2014-09-08

    Magnetic properties of Co40Fe40B20(CoFeB) thin films sandwiched between Ta and MgAl2O4layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki=1.22erg/cm2, which further increases to 1.30erg/cm2after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0nm, while that for top CoFeB layer is between 0.8 and 1.4nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  14. First-principles investigation of the very large perpendicular magnetic anisotropy at Fe | MgO and Co | MgO interfaces

    KAUST Repository

    Yang, H. X.

    2011-08-01

    The perpendicular magnetic anisotropy (PMA) arising at the interface between ferromagnetic transition metals and metallic oxides was investigated via first-principles calculations. In this work very large values of PMA, up to 3 erg/cm2, at Fe|MgO interfaces are reported, in agreement with recent experiments. The origin of PMA is attributed to overlap between O-pz and transition metal dz2 orbitals hybridized with dxz(yz) orbitals with stronger spin-orbit coupling-induced splitting around the Fermi level for perpendicular magnetization orientation. Furthermore, it is shown that the PMA value weakens in the case of over- or underoxidation due to the fact that oxygen pz and transition metal dz2 orbital overlap is strongly affected by disorder, in agreement with experimental observations in magnetic tunnel junctions.

  15. Anisotropy of Magnetic Susceptibility (AMS) and Sedimentary Fabric Studies of Phreatomagmatic Surge Deposits, Hopi Buttes, Navajo Nation, NE Arizona

    Science.gov (United States)

    Newkirk, T. T.

    2005-12-01

    The Hopi Buttes volcanic field is a group of late Mio-Pliocene volcanic vents characterized by hydrovolcanic features. The volcanism at the Hopi Buttes produced ~300 maar and diatreme volcanic landforms scattered within an area of 50km in diameter. The maars in the area formed from phreatomagmatic explosions involving the interaction of the rapidly ascending monchiquitic/nephelinitic magmas and liquefied lower Bidahochi sediments, and groundwater. Phreatomagmatic eruptions produce a spectrum of pyroclastic density currents (i.e. "pyroclastic flows" or "pyroclastic surges/hydrovolcanic surges"). The direct products of these violent eruptive events are dilute gravity driven gas charged pyroclastic density currents. Which, over distances gain and/or lose competency due to a decreasing energy budget and/or paleotopographic control. Paleotopographic reconstructions of the Hopi Buttes volcanic field reveal a sub-horizontal playa type environment. This affords the opportunity to study individual surge deposits on the micro- to macroscopic scales to determine the emplacement dynamics of individual eruptive events without the complications of paleotopographic interference. Anisotropy of magnetic susceptibility and sedimentary fabric analysis has been used to examine the micro- to macroscopic fabrics of individual surge deposits at proximal, medial, and distal locations from the eruptive vent. These techniques give insight on the flow and depositional processes of the transient hydrovolcanic surges. Data shows a distinct correlation of microscopic AMS fabric changes to macroscopic sedimentary facies changes. At the proximal-medial interface ~150-200m AMS fabrics turn from chaotic/lack of orientation to a lineated fabric long axis perpendicular to flow direction. This fabric is interpreted to be transitional debulking interface from a highly concentrated rapid depositional flow to a more dilute transient flow, thus allowing the internal sorting and individual particles to

  16. Discerning Subvolcanic Deformation and Magma Emplacement Geometries: The utility of Combined Paleomagnetic and Anisotropy of Magnetic Susceptibility Studies

    Science.gov (United States)

    Petronis, M. S.; Van Wyk de Vries, B.; Lindline, J.; Rapprich, V.

    2012-12-01

    Here we report paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from three monogenic volcanic centers. Our data reveal that monogenic magma feeder systems are far more complex in terms of the evolution of the magma plumbing system, subvolcanic deformation, and the intrinsic and extrinsic controls on the final magma source geometry, outer cinder cone morphology, and eruptive dynamics. We hypothesize that these various factors collectively orchestrate the development of monogenic volcanic constructs and their associated subvolcanic magma feeder systems. Paleomagnetic and AMS data from the 1) Lemptégy Volcano, France, 2) Trosky Volcano, Czech Republic, and 3) Cienega Volcano, USA indicate that monogenic volcanoes, although commonly perceived as simple evolve in a complex manner. The question we pose here is what governs the evolution of the volcanic construct and the magma feeder system? As we show, the regional tectonics, and hence the regional stress/strain field, do not have a strong control on the upper emplacement geometries and magma flow path even if feeder dykes do follow the trend. We argue that the dynamics of the magma flow once it nears the eruptive edifice remains poorly understood, thus producing a large gap in our current knowledge on active volcanic evolution. Combining detailed paleomagnetic, AMS, and structural studies as well as basic field mapping provide the needed data to constrain the evolution of these systems. We suggest that shallow magmatic systems beneath monogenetic volcanoes, and likely other shallow magma systems (e.g., laccoliths), and even large edifices, are not strongly controlled by the local and regional stress fields and bear little on the growth of the shallow magma feeder systems (<1km). The simple external structure of monogenetic volcanoes hides a rather complex magmatic plumbing system that dynamically evolves during the life of the volcano. As we show, the well-exposed roots of these volcanoes reveal that

  17. Perpendicular magnetic anisotropy in nearly fully compensated ferrimagnetic Heusler alloy Mn0.75Co1.25VIn: An ab initio study

    Science.gov (United States)

    Muthui, Zipporah; Musembi, Robinson; Mwabora, Julius; Kashyap, Arti

    2017-11-01

    First principles calculations are reported on perpendicular magnetic anisotropy (PMA) in nearly fully compensated ferrimagnetic Heusler compound Mn0.75Co1.25VIn. The structural, electronic and magnetic properties of Mn2-xCoxVIn Heusler compounds (x = 0.0, 0.25, 0.50, 0.75, 1.0, 1.25, and 1.75) have been investigated using Density Functional theory (DFT) as implemented in the Vienna ab initio simulation package (VASP). The Perdew Burke Ernzerhof parametrization of the generalized gradient approximation (GGA) was used to treat the exchange and correlation in the system. The crystal structure of the compounds with x = 0.75, 1.00 and 1.25 are found to be tetragonally distorted. While the former exhibits inplane magnetocrystalline anisotropy (IMA) energy of 0.035 meV, the latter two exhibit perpendicular magnetocrystalline anisotropy (PMA) energy of 11.700 meV and 96.800 meV respectively. Additionally, the magnetic moments for x = 0.75 and 1.25 are found to be ∼0.5 μB/f.u. while for x = 1.00, it is found to be ∼0 μB/f.u., in agreement with the Slater Pauling rule for half metallic systems. Through Co replacement of Mn in Mn2VIn which is not half metallic at the optimized volume, a composition whose crystal structure is tetragonally distorted is found, which is not only a highly spin polarized nearly fully compensated ferrimagnet but also exhibits PMA.

  18. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy

    Science.gov (United States)

    Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha

    2017-10-01

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  19. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy.

    Science.gov (United States)

    Bhattacharya, Dhritiman; Al-Rashid, Md Mamun; Atulasimha, Jayasimha

    2017-10-20

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  20. Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Batoo, Khalid Mujasam, E-mail: khalid.mujasam@gmail.com [King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Salah, Dina [Department of Physics, Ain Shams University, Khalifa El-Maamon, Street, 11566 Cairo (Egypt); Kumar, Gagan; Kumar, Arun; Singh, Mahavir [Department of Physics, Himachal Pradesh University, Summer Hill, Shimla 171005 (India); Abd El-sadek, M. [Nanomaterials Lab, Physics Department, Faculty of Science, South Valley University, Qena 83523 (Egypt); Mir, Feroz Ahmad [University Science Instrumentation Centre, University of Kashmir, Srinagar 190006 (India); Imran, Ahamad [King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Jameel, Daler Adil [School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center, University of Nottingham, NG7 2RD (United Kingdom)

    2016-08-01

    Ferrimagnetic oxides may contain single or multi domain particles which get converted into superparamagnetic state near a critical size. To explore the existence of these particles, we have made Mössbauer and magnetic studies of Cu{sup 2+} substitution effect in CoFe{sub 2−x}O{sub 4} Ferrites (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5). All the samples have a cubic spinel structure with lattice parameters increasing linearly with increase in Cu content. The hysteresis loops yield a saturation magnetization, coercive field, and remanent magnetization that vary significantly with Cu content. The magnetic hysteresis curves shows a reduction in saturation magnetization and an increase in coercitivity with Cu{sup 2+} ion substitution. The anisotropy constant, K{sub 1,} is found strongly dependent on the composition of Cu{sup 2+} ions. The variation of saturation magnetization with increasing Cu{sup 2+} ion content has been explained in the light of Neel's molecular field theory. Mössbauer spectra at room temperature shows two ferrimagnetically relaxed Zeeman sextets. The dependence of Mössbauer parameters such as isomer shift, quadrupole splitting, line width and hyperfine magnetic field on Cu{sup 2+} ion concentration have been discussed. - Highlights: • Synthesis of the nanoparticles of Cu doped CoFe{sub 2}O{sub 4} ferrite nanoparticles. • The samples were characterized for the structural, morphological and magnetic studies using XRD, TEM, VSM and Mossbauer spectroscopy. • It has been found that the all the magnetic and Mossbauer parameters are diluted with the addition of Cu content in the CoFe{sub 2}O{sub 4} matrix. • The Mossbauer and magnetic properties were studied in the light of size of nanoparticles and also with respect to the doping composition.

  1. Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory

    Directory of Open Access Journals (Sweden)

    Austin Deschenes

    2016-11-01

    Full Text Available Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM. Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. In this work we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We compare self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. The highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ, most of the heat is dissipated on the lower potential side of the magnetic junction. This asymmetry in heating, which has also been observed experimentally, is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.

  2. Random matrix theory in biological nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Lacelle, S

    1984-01-01

    The statistical theory of energy levels or random matrix theory is presented in the context of the analysis of chemical shifts of nuclear magnetic resonance (NMR) spectra of large biological systems. Distribution functions for the spacing between nearest-neighbor energy levels are discussed for uncorrelated, correlated, and random superposition of correlated energy levels. Application of this approach to the NMR spectra of a vitamin, an antibiotic, and a protein demonstrates the state of correlation of an ensemble of energy levels that characterizes each system. The detection of coherent and dissipative structures in proteins becomes feasible with this statistical spectroscopic technique. PMID:6478032

  3. Theoretic 3-D study of the high-frequency magnetic moment dynamics in thin ferromagnetic films with in-plane uniaxial anisotropy by considering eddy-current generation

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K., E-mail: klaus.seemann@kit.edu [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leiste, H.; Krueger, K. [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-06-15

    In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau-Lifschitz-Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation J{sub s}={mu}{sub 0}{center_dot}M{sub s}=1.4 T and in-plane uniaxial anisotropy {mu}{sub 0}{center_dot}H{sub u}=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter {alpha}{sub eff} between 0.01 and 0.05 and ferromagnetic film thickness t{sub m} between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns. - Highlights: Black-Right-Pointing-Pointer Frequency- and time domain solution of the LLG and Maxwell differential equation. Black-Right-Pointing-Pointer 3D magnetic moment or macro spin trajectories by eddy-current impact. Black-Right-Pointing-Pointer Progression of a magnetic excitation field in thin ferromagnetic films. Black-Right-Pointing-Pointer Transient response evaluation of uniform magnetic moments excited by an r.f. field.

  4. Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica

    Science.gov (United States)

    Oriented magnetic nanoparticles have been suggested as a good candidate for a magnetic sensor in ants. Behavioral evidence for a magnetic compass in Neotropical leafcutter ants, Atta colombica (Formicidae: Attini), motivated a study of the arrangement of magnetic particles in the ants’ four major bo...

  5. The role of Pt underlayer on the magnetization dynamics of perpendicular magnetic anisotropy Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO

    Energy Technology Data Exchange (ETDEWEB)

    Besbas, Jean; Loong, Li Ming; Wu, Yang; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, NUSNNI, National University of Singapore, Singapore 11757 (Singapore)

    2016-06-06

    We investigate the role of Pt on the magnetization dynamics of Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO with perpendicular magnetic anisotropy using the time resolved magneto-optic Kerr effect. Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO shows ultrafast magnetization dynamics comparable to 3d ferromagnets and can be fully demagnetized. The demagnetization time τ{sub d} ∼ 0.27 ps and magnetic heat capacity are independent of the Pt underlayer, whereas the value of the electron-phonon coupling time τ{sub e} ∼ 0.77 ps depends on the presence of the Pt layer. We further measure the effective damping α{sub eff} ∼ 1 that does not scale as the inverse demagnetization time (1/τ{sub d}), but is strongly affected by the Pt layer.

  6. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes.

    Science.gov (United States)

    Atanasov, Mihail; Ganyushin, Dmitry; Pantazis, Dimitrios A; Sivalingam, Kantharuban; Neese, Frank

    2011-08-15

    A theoretical, computational, and conceptual framework for the interpretation and prediction of the magnetic anisotropy of transition metal complexes with orbitally degenerate or orbitally nearly degenerate ground states is explored. The treatment is based on complete active space self-consistent field (CASSCF) wave functions in conjunction with N-electron valence perturbation theory (NEVPT2) and quasidegenerate perturbation theory (QDPT) for treatment of magnetic field- and spin-dependent relativistic effects. The methodology is applied to a series of Fe(II) complexes in ligand fields of almost trigonal pyramidal symmetry as provided by several variants of the tris-pyrrolylmethyl amine ligand (tpa). These systems have recently attracted much attention as mononuclear single-molecule magnet (SMM) complexes. This study aims to establish how the ligand field can be fine tuned in order to maximize the magnetic anisotropy barrier. In trigonal ligand fields high-spin Fe(II) complexes adopt an orbitally degenerate (5)E ground state with strong in-state spin-orbit coupling (SOC). We study the competing effects of SOC and the (5)E⊗ε multimode Jahn-Teller effect as a function of the peripheral substituents on the tpa ligand. These subtle distortions were found to have a significant effect on the magnetic anisotropy. Using a rigorous treatment of all spin multiplets arising from the triplet and quintet states in the d(6) configuration the parameters of the effective spin-Hamiltonian (SH) approach were predicted from first principles. Being based on a nonperturbative approach we investigate under which conditions the SH approach is valid and what terms need to be retained. It is demonstrated that already tiny geometric distortions observed in the crystal structures of four structurally and magnetically well-documented systems, reported recently, i.e., [Fe(tpa(R))](-) (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl, Ph (3), and 2,6-difluorophenyl, Dfp (4), are enough to

  7. Magnetic anisotropy of the Redenção granite, eastern Amazonian craton (Brazil): Implications for the emplacement of A-type plutons

    Science.gov (United States)

    de Oliveira, Davis Carvalho; Neves, Sérgio Pacheco; Trindade, Ricardo I. F.; Dall'Agnol, Roberto; Mariano, Gorki; Correia, Paulo Barros

    2010-10-01

    A magnetic fabric study was performed on the Redenção pluton in an attempt to understand its emplacement history. The Redenção pluton is part of the 1.88 Ga, anorogenic, A-type Jamon suite that intruded 2.97-2.86 Ga-old Archean granitoids of the Rio Maria Granite-Greenstone Terrane in the eastern Amazonian craton (northern Brazil). Previous gravity survey indicates that the pluton is a 6 km-thick, tabular intrusion. It is characterized by a concentric distribution of facies, with rings of seriated and porphyritic granite that cut across the main facies of even-grained monzogranites. The whole set is intruded by leucogranites that occupy the center of the pluton. Petrographic examination, magnetic susceptibilities, coercivity-spectra and thermomagnetic curves indicate that the magnetic fabric is primarily carried by coarse-grained multidomain magnetite. This is reinforced by the coincidence of magnetic susceptibility and remanence anisotropy principal axes. The absence of solid-state deformation features and the low anisotropy degrees indicate that the magnetic fabric is magmatic in origin. The magnetic fabric displays a systematic pattern, with all facies, including the rings of porphyritic granite, being characterized by concentric, gently dipping foliations associated with gently plunging lineations. Only the central leucogranitic facies shows a slightly discordant pattern with steeply dipping fabrics at its northeastern sector. An emplacement model by vertical stacking of successive magma batches is proposed for the construction of the Redenção pluton, which reconciles the tabular shape of the intrusion, the petrographic and geochemical zoning, and the magnetic fabric pattern. Initially, two magma batches were emplaced as sills. First the even-grained monzogranite, then the seriated and porphyritic granites, which formed by mingling of a leucogranitic melt with the host biotite-monzogranitic magma as attested by geochemical data and field evidence. The

  8. The ligand field of the azido ligand: insights into bonding parameters and magnetic anisotropy in a Co(II)-azido complex.

    Science.gov (United States)

    Schweinfurth, David; Sommer, Michael G; Atanasov, Mihail; Demeshko, Serhiy; Hohloch, Stephan; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2015-02-11

    The azido ligand is one of the most investigated ligands in magnetochemistry. Despite its importance, not much is known about the ligand field of the azido ligand and its influence on magnetic anisotropy. Here we present the electronic structure of a novel five-coordinate Co(II)-azido complex (1), which has been characterized experimentally (magnetically and by electronic d-d absorption spectroscopy) and theoretically (by means of multireference electronic structure methods). Static and dynamic magnetic data on 1 have been collected, and the latter demonstrate slow relaxation of the magnetization in an applied external magnetic field of H = 3000 Oe. The zero-field splitting parameters deduced from static susceptibility and magnetizations (D = -10.7 cm(-1), E/D = 0.22) are in excellent agreement with the value of D inferred from an Arrhenius plot of the magnetic relaxation time versus the temperature. Application of the so-called N-electron valence second-order perturbation theory (NEVPT2) resulted in excellent agreement between experimental and computed energies of low-lying d-d transitions. Calculations were performed on 1 and a related four-coordinate Co(II)-azido complex lacking a fifth axial ligand (2). On the basis of these results and contrary to previous suggestions, the N3(-) ligand is shown to behave as a strong σ and π donor. Magnetostructural correlations show a strong increase in the negative D with increasing Lewis basicity (shortening of the Co-N bond distances) of the axial ligand on the N3(-) site. The effect on the change in sign of D in going from four-coordinate Co(II) (positive D) to five-coordinate Co(II) (negative D) is discussed in the light of the bonding scheme derived from ligand field analysis of the ab initio results.

  9. Effect of hydrophobic coating on the magnetic anisotropy and radiofrequency heating of γ-Fe{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Svoboda, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2 (Czech Republic); Šantavá, Eva [Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Štěpánek, František, E-mail: Frantisek.Stepanek@vscht.cz [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-08-15

    The effect of a hydrophobic (oleic acid) coating on the magnetic properties of maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles was investigated. The nanoparticles were prepared by a novel bi-phasic co-precipitation route and their properties compared with uncoated nanoparticles and nanoparticles prepared by a standard single-phase process. The oleic acid coated nanoparticles had a mean diameter of 6 nm when the two-phase precipitation procedure was used compared to 12 nm for nanoparticles prepared in a single phase under otherwise identical conditions. Super Quantum Interference Device measurements show superparamagnetism of the nanoparticles, with a saturation magnetization at 4 K to be 66.4 emu/g and 89.0 emu/g for the coated nanoparticles obtained by two- and single-phase procedure, respectively. Zero-field-cooled and field-cooled curves reveal a dramatic shift in the blocking temperature of the coated nanoparticles, and a significant change in their anisotropy. The hydrophobic nanoparticles were able to form stable ferrofluids in a range of organic solvents and show good heating rates in a 400 kHz alternating magnetic field. - Highlights: ► Hydrophobic iron oxide nanoparticles synthesized by a new microemulsion approach. ► Strong influence of oleic acid coating on blocking temperature observed. ► Stable non-aqueous ferrofluids prepared. ► Favorable heating rates under alternating magnetic field.

  10. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    Science.gov (United States)

    Barangi, Mahmood; Erementchouk, Mikhail; Mazumder, Pinaki

    2016-08-01

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the

  11. Towards developing a compact model for magnetization switching in straintronics magnetic random access memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Barangi, Mahmood, E-mail: barangi@umich.edu; Erementchouk, Mikhail; Mazumder, Pinaki [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2121 (United States)

    2016-08-21

    Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the

  12. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  13. Theoretic 3-D study of the high-frequency magnetic moment dynamics in thin ferromagnetic films with in-plane uniaxial anisotropy by considering eddy-current generation

    Science.gov (United States)

    Seemann, K.; Leiste, H.; Krüger, K.

    2012-06-01

    In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau-Lifschitz-Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation Js=μ0·Ms=1.4 T and in-plane uniaxial anisotropy μ0·Hu=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter αeff between 0.01 and 0.05 and ferromagnetic film thickness tm between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns.

  14. Tectono-sedimentary analysis using the anisotropy of magnetic susceptibility: a study of the terrestrial and freshwater Neogene of the Orava Basin

    Science.gov (United States)

    Łoziński, Maciej; Ziółkowski, Piotr; Wysocka, Anna

    2017-10-01

    The Orava Basin is an intramontane depression filled with presumably fine-grained sediments deposited in river, floodplain, swamp and lake settings. The basin infilling constitutes a crucial record of the neoalpine evolution of the Inner/Outer Carpathian boundary area since the Neogene, when the Jurassic-Paleogene basement became consolidated, uplifted and eroded. The combination of sedimentological and structural studies with anisotropy of magnetic susceptibility (AMS) measurements provided an effective tool for recognition of terrestrial environments and deformations of the basin infilling. The lithofacies-oriented sampling and statistical approach to the large dataset of AMS specimens were utilized to define 12 AMS facies based on anisotropy degree (P) and shape (T). The AMS facies allowed a distinction of sedimentary facies ambiguous for classical methods, especially floodplain and lacustrine sediments, as well as revealing their various vulnerabilities to tectonic modification of AMS. A spatial analysis of facies showed that tuffites along with lacustrine and swamp deposits were generally restricted to marginal and southern parts of the basin. Significant deformations were noticed at basin margins and within two intrabasinal tectonic zones, which indicated the tectonic activity of the Pieniny Klippen Belt after the Middle Miocene. The large southern area of the basin recorded consistent N-NE trending compression during basin inversion. This regional tectonic rearrangement resulted in a partial removal of the southernmost basin deposits and shaped the basin's present-day extent.

  15. Selectable spontaneous polarization direction and magnetic anisotropy in BiFeO3-CoFe2O4 epitaxial nanostructures.

    Science.gov (United States)

    Dix, Nico; Muralidharan, Rajaram; Rebled, Jose-Manuel; Estradé, Sonia; Peiró, Francesca; Varela, Manuel; Fontcuberta, Josep; Sánchez, Florencio

    2010-08-24

    We demonstrate that epitaxial strain engineering is an efficient method to manipulate the ferromagnetic and ferroelectric properties in BiFeO(3)-CoFe(2)O(4) columnar nanocomposites. On one hand, the magnetic anisotropy of CoFe(2)O(4) is totally tunable from parallel to perpendicular controlling the CoFe(2)O(4) strain with proper combinations of substrate and ferroelectric phase. On the other hand, the selection of the used substrate allows the growth of the rhombohedral bulk phase of BiFeO(3) or the metastable nearly tetragonal one, which implies a rotation of the ferroelectric polar axis from [111] to close to the [001] direction. Remarkably, epitaxy is preserved and interfaces are semicoherent even when lattice mismatch is above 10%. The broad range of sustainable mismatch suggests new opportunities to assemble epitaxial nanostructures combining highly dissimilar materials with distinct functionalities.

  16. Correlation between Pd metal thickness and thermally stable perpendicular magnetic anisotropy features in [Co/Pd]n multilayers at annealing temperatures up to 500 °C

    Directory of Open Access Journals (Sweden)

    Gwang Guk An

    2015-02-01

    Full Text Available We examine highly stable perpendicular magnetic anisotropy (PMA features of [Co/Pd]10 multilayers (MLs versus Pd thickness at various ex-situ annealing temperatures. Thermally stable PMA characteristics were observed up to 500 °C, confirming the suitability of these systems for industrial applications at this temperature. Experimental observations suggest that the choice of equivalent Co and Pd layer thicknesses in a ML configuration ensures thermally stable PMA features, even at higher annealing temperatures. X-ray diffraction patterns and cross-sectional transmission electron microscopy images were obtained to determine thickness, post-annealing PMA behavior, and to explore the structural features that govern these findings.

  17. Continual approach at T=0 in the mean field theory of incommensurate magnetic states in the frustrated Heisenberg ferromagnet with an easy axis anisotropy

    Science.gov (United States)

    Martynov, S. N.; Tugarinov, V. I.; Martynov, A. S.

    2017-10-01

    The algorithm of approximate solution was developed for the differential equation describing the anharmonical change of the spin orientation angle in the model of ferromagnet with the exchange competition between nearest and next nearest magnetic neighbors and the easy axis exchange anisotropy. The equation was obtained from the collinearity constraint on the discrete lattice. In the low anharmonicity approximation the equation is resulted to an autonomous form and is integrated in quadratures. The obvious dependence of the angle velocity and second derivative of angle from angle and initial condition was derived by expanding the first integral of the equation in the Taylor series in vicinity of initial condition. The ground state of the soliton solutions was calculated by a numerical minimization of the energy integral. The evaluation of the used approximation was made for a triple point of the phase diagram.

  18. Effects of the shape anisotropy and biasing field on the magnetization reversal process of the diamond-shaped NiFe nano films

    Science.gov (United States)

    Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli

    2017-11-01

    The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.

  19. Three-dimensional visualization of magnetic domain structure with strong uniaxial anisotropy via scanning hard X-ray microtomography

    Science.gov (United States)

    Suzuki, Motohiro; Kim, Kab-Jin; Kim, Sanghoon; Yoshikawa, Hiroki; Tono, Takayuki; Yamada, Kihiro T.; Taniguchi, Takuya; Mizuno, Hayato; Oda, Kent; Ishibashi, Mio; Hirata, Yuushou; Li, Tian; Tsukamoto, Arata; Chiba, Daichi; Ono, Teruo

    2018-03-01

    An X-ray tomographic technique was developed to investigate the internal magnetic domain structure in a micrometer-sized ferromagnetic sample. The technique is based on a scanning hard X-ray nanoprobe using X-ray magnetic circular dichroism (XMCD). From transmission XMCD images at the Gd L3 edge as a function of the sample rotation angle, the three-dimensional (3D) distribution of a single component of the magnetic vector in a GdFeCo microdisc was reconstructed with a spatial resolution of 360 nm, using a modified algebraic reconstruction algorithm. The method is applicable to practical magnetic materials and can be extended to 3D visualization of the magnetic domain formation process under external magnetic fields.

  20. Anisotropy adjustment and thickness of thin layer doped by nanoparticules magnetic for the realization of phase matching between fundamental modes in monomode waveguides

    Science.gov (United States)

    Lebbal, M. R.; Boumaza, T.; Bouchemat, M.; Hocini, A.; Hobar, F.; Benghalia, A.; Rosseau, J. J.; Royer, F.

    2008-05-01

    Recently, research has been concentrated on the study of the magnetic nanoparticules for their use in the design of magneto-optical devices. The magneto-optical waveguides for example exploit the Faraday effect to obtain a rotation of polarization TE and TM independent of the propagation direction. In this work, we study isolating component whose operating principle is based on the minimization of the phase mismatch between TE and TM fundamental propagation modes. It appeared promising to use as a guiding film the thin layers doped by magnetic nanoparticules γ-Fe2O3 in order to carry out an adequate phase mismatch. This last can be adjusted by permanent linear birefringence resulting from the application of an external magnetic field during the gelation of the solution which constitutes the guiding film. Many studies were undertaken primarily to minimize the birefringence between TE and TM modes, for that this work represents a new potential means to reach the phase matching by acting on the anisotropy and the thin layer thickness. This condition can be realized in the waveguides with SiO2/TiO2 guiding thin layer doped by nanoparticules of maghemite γ-Fe2O3. The simulations carried out by the FMM method and MATLAB allowed to deduce the conditions to decrease the phase mismatch and increase the conversion ratio of TE/TM modes in order to ameliorate the isolation.

  1. Embedded Memory Hierarchy Exploration Based on Magnetic Random Access Memory

    Directory of Open Access Journals (Sweden)

    Luís Vitório Cargnini

    2014-08-01

    Full Text Available Static random access memory (SRAM is the most commonly employed semiconductor in the design of on-chip processor memory. However, it is unlikely that the SRAM technology will have a cell size that will continue to scale below 45 nm, due to the leakage current that is caused by the quantum tunneling effect. Magnetic random access memory (MRAM is a candidate technology to replace SRAM, assuming appropriate dimensioning given an operating threshold voltage. The write current of spin transfer torque (STT-MRAM is a known limitation; however, this has been recently mitigated by leveraging perpendicular magnetic tunneling junctions. In this article, we present a comprehensive comparison of spin transfer torque-MRAM (STT-MRAM and SRAM cache set banks. The non-volatility of STT-MRAM allows the definition of new instant on/off policies and leakage current optimizations. Through our experiments, we demonstrate that STT-MRAM is a candidate for the memory hierarchy of embedded systems, due to the higher densities and reduced leakage of MRAM.We demonstrate that adopting STT-MRAM in L1 and L2 caches mitigates the impact of higher write latencies and increased current draw due to the use of MRAM. With the correct system-on-chip (SoC design, we believe that STT-MRAM is a viable alternative to SRAM, which minimizes leakage current and the total power consumed by the SoC.

  2. Anisotropy of magnetic susceptibility data bearing on the transport direction of mid-tertiary regional ignimbrites, Candelaria Hills area, West-Central Nevada

    Science.gov (United States)

    Petronis, Michael S.; Geissman, John W.

    2009-03-01

    In west-central Nevada, the Oligocene Candelaria pyroclastic sequence reaches a local thickness of up to 1.3 km, in what has been referred to as the Candelaria trough, but more generally the accumulation of ash-flow tuffs and related volcanic rocks is less than 300 m thick. Complete to near complete outcrops are scattered over about 3200 km2 in the Candelaria Hills and surrounding ranges of the Southern Walker Lane structural zone. Three regionally extensive compound cooling units within the overall sequence (25.8 Ma Metallic City, 24.1 Ma Belleville, and 23.7 Ma Candelaria Junction Tuffs) have distinguishing characteristics and are the focus of study. At 106 sites, anisotropy of magnetic susceptibility (AMS) data provide an estimate of transport direction of each tuff. Inferred transport directions based on the AMS data are corrected for a modest clockwise, yet variable magnitude, vertical axis rotation that affected these rocks in late Miocene to Pliocene time, as revealed by paleomagnetic studies. The AMS data show a somewhat orderly pattern of magnetic fabrics that we interpret to define unique transport directions for the Metallic City and Candelaria Junction Tuffs. The low susceptibility and degree of anisotropy of the Belleville Tuff limits our interpretation from this pyroclastic deposit. The Metallic City and Candelaria Junction Tuffs typically show gentle, south-southeast and southeast dipping magnetic fabric imbrication, respectively, and very gently plunging magnetic lineations. These AMS fabric elements indicate the tuffs were transported to the north-northwest and northwest, respectively. The AMS fabric data from the Metallic City and Candelaria Junction Tuffs suggest relatively unrestricted flow during emplacement. Evidence across the 3,200 km2 area to support more regionally controlled channelized flow into and/or flow along the east northeast-west southwest axis of the Candelaria trough is lacking. The ignimbrites clearly filled a topographic

  3. Ultrafast heating effect on transient magnetic properties of L1{sub 0}-FePt thin films with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jiaqi; Cui Boyin [Key Lab for Advanced Photonic Materials and Devices, and Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Zhang Zongzhi, E-mail: zzzhang@fudan.edu.c [Key Lab for Advanced Photonic Materials and Devices, and Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Ma, B. [Key Lab for Advanced Photonic Materials and Devices, and Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Jin, Q.Y. [Key Lab for Advanced Photonic Materials and Devices, and Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China)

    2010-03-01

    Laser-induced ultrafast magnetization dynamics and transient coercivity behavior in perpendicular magnetized L1{sub 0}-FePt films are investigated using the time-resolved polar magneto-optical Kerr technique. The magnetization after photo-excitation shows a dramatic reduction on the picosecond time scale. In contrast, the coercivity shows a weak decrease, accompanied by a skewed Kerr loop shape for low and intermediate fluences. The results can be interpreted by the laser-induced non-uniform demagnetization due to the weakened coupling between FePt grains of different size and/or components. The remaining coercivity vanishes when the film is fully demagnetized at higher fluence. We claim that the remaining coercivity can be manipulated by employing appropriate laser energy and film thickness, which may be helpful for application in heat-assisted magnetic recording.

  4. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    2011-08-02

    Aug 2, 2011 ... anisotropy is manifested in several physical properties of the fluid, like viscosity, which gives rise to novel properties as elasticity and yield stress [1–4]. Hence, experimental investigations of field-induced anisotropy are useful to characterize the physical state of a fluid. But, because the magnetic fluids are ...

  5. On the structural origin of the single-ion magnetic anisotropy in LuFeO 3

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shi; Zhang, Xiaozhe; Paudel, Tula R.; Sinha, Kishan; Wang, Xiao; Jiang, Xuanyuan; Wang, Wenbin; Brutsche, Stuart; Wang, Jian; Ryan, Philip J.; Kim, Jong-Woo; Cheng, Xuemei; Tsymbal, Evgeny Y.; Dowben, Peter A.; Xu, Xiaoshan

    2016-03-16

    The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. Dramatic differences in both the spectral features and the linear dichroism are observed. These differences in the spectra can be explained using the differences in crystal field splitting of the metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d hybridizations. While the oxidation states have not changed, the spectra are sensitive to the changes in the local environments of the Fe3+ and Lu3+ sites in the hexagonal and orthorhombic structures. Using the crystal-field splitting and the hybridizations that are extracted from the measured electronic structures and the structural distortion information, we derived the occupancies of the spin minority states in Fe3+, which are non-zero and uneven. The single ion anisotropy on Fe3+ sites is found to originate from these uneven occupancies of the spin minority states via spin–orbit coupling in LuFeO3.

  6. Nature of the spin-glass phase in dense packings of Ising dipoles with random anisotropy axes

    Science.gov (United States)

    Alonso, Juan J.; Allés, B.

    2017-09-01

    Using tempered Monte Carlo simulations, we study the the spin-glass phase of dense packings of Ising dipoles pointing along random axes. We consider systems of dipoles (i) placed on the sites of a simple cubic lattice with lattice constant d, and (ii) placed at the center of random close packed spheres of diameter d that occupy 64% of the volume. For both cases, we find a spin-glass phase below a certain temperature T sg. By analysing the data obtained for the overlap parameter, the associated correlation length, as well as the statistics of the overlap distributions of individual samples, we find a behavior consistent with quasi-long-range order in the spin-glass phase, similar to the one previously found in strongly diluted dipolar systems.

  7. Nature of the spin-glass phase in dense packings of Ising dipoles with random anisotropy axes.

    Science.gov (United States)

    Alonso, Juan J; Allés, B

    2017-09-06

    Using tempered Monte Carlo simulations, we study the the spin-glass phase of dense packings of Ising dipoles pointing along random axes. We consider systems of dipoles (i) placed on the sites of a simple cubic lattice with lattice constant d, and (ii) placed at the center of random close packed spheres of diameter d that occupy 64% of the volume. For both cases, we find a spin-glass phase below a certain temperature T sg. By analysing the data obtained for the overlap parameter, the associated correlation length, as well as the statistics of the overlap distributions of individual samples, we find a behavior consistent with quasi-long-range order in the spin-glass phase, similar to the one previously found in strongly diluted dipolar systems.

  8. Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains

    Science.gov (United States)

    Navas, D.; Soriano, N.; Béron, F.; Sousa, C. T.; Pirota, K. R.; Torrejon, J.; Redondo, C.; Morales, R.; Ross, C. A.

    2017-11-01

    The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the magnetic domains in 10-nm-thick CoCrPt film resemble a fractal structure, a labyrinth stripe domain configuration is observed for 20-nm-thick films. Although FORC distributions for both cases show two main features related to irreversible processes (propagation and annihilation fields) separated by a mostly flat region, this method can nonetheless distinguish which magnetization reversal process is active according to the horizontal profile of the first FORC peak, or propagation field. A single-peak FORC profile corresponds to the fractal magnetization reversal, whereas a flat-peak FORC profile corresponds to the labyrinth magnetization reversal.

  9. Mechanism of formation of volcanic bombs: insights from a pilot study of anisotropy of magnetic susceptibility and preliminary assessment of analytical models

    Science.gov (United States)

    Cañón-Tapia, Edgardo

    2017-07-01

    Volcanic bombs and achneliths are a special type of pyroclastic fragments formed by mildly explosive volcanic eruptions. Models explaining the general shapes of those particles can be divided in two broad categories. The most popular envisages the acquisition of shapes of volcanic bombs as the result of the rush of air acting on a fluid clot during flight, and it includes many variants. The less commonly quoted model envisages their shapes as the result of forces acting at the moment of ejection of liquid from the magma pool in the conduit, experiencing an almost negligible modification through its travel through air. Quantitative evidence supporting either of those two models is limited. In this work, I explore the extent to which the anisotropy of magnetic susceptibility (AMS) might be useful in the study of mechanisms of formation of volcanic bombs by comparing measurements made on two spindle and two bread-crusted bombs. The results of this pilot study reveal that the degree of anisotropy of spindle bombs is larger, and their principal susceptibility axes are better clustered than on bread-crusted bombs. Also, the orientation of the principal susceptibility axes is consistent with two specific models (one of the in-flight variants and the general ejection model). Consequently, the reported AMS measurements, albeit limited in number, indicate that it is reasonable to focus attention on only two specific models to explain the acquisition of the shapes of volcanic bombs. Based on a parallel theoretical assessment of analytical models, a third alternative is outlined, envisaging volcanic bomb formation as a two-stage process that involves the bursting of large ( m) gas bubbles on the surface of a magma pond. The new model advanced here is also consistent with the reported AMS results, and constitutes a working hypothesis that should be tested by future studies richer in data. Fortunately, since this work also establishes that AMS can be used to determine magnetic

  10. Deterministic Switching of Perpendicular Magnetic Anisotropy by Voltage Control of Spin Reorientation Transition in (Co/Pt)3/Pb(Mg1/3Nb2/3)O3-PbTiO3Multiferroic Heterostructures.

    Science.gov (United States)

    Peng, Bin; Zhou, Ziyao; Nan, Tianxiang; Dong, Guohua; Feng, Mengmeng; Yang, Qu; Wang, Xinjun; Zhao, Shishun; Xian, Dan; Jiang, Zhuang-De; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X; Liu, Ming

    2017-04-25

    One of the central challenges in realizing multiferroics-based magnetoelectric memories is to switch perpendicular magnetic anisotropy (PMA) with a control voltage. In this study, we demonstrate electrical flipping of magnetization between the out-of-plane and the in-plane directions in (Co/Pt) 3 /(011) Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 multiferroic heterostructures through a voltage-controllable spin reorientation transition (SRT). The SRT onset temperature can be dramatically suppressed at least 200 K by applying an electric field, accompanied by a giant electric-field-induced effective magnetic anisotropy field (ΔH eff ) up to 1100 Oe at 100 K. In comparison with conventional strain-mediated magnetoelastic coupling that provides a ΔH eff of only 110 Oe, that enormous effective field is mainly related to the interface effect of electric field modification of spin-orbit coupling from Co/Pt interfacial hybridization via strain. Moreover, electric field control of SRT is also achieved at room temperature, resulting in a ΔH eff of nearly 550 Oe. In addition, ferroelastically nonvolatile switching of PMA has been demonstrated in this system. E-field control of PMA and SRT in multiferroic heterostructures not only provides a platform to study strain effect and interfacial effect on magnetic anisotropy of the ultrathin ferromagnetic films but also enables the realization of power efficient PMA magnetoelectric and spintronic devices.

  11. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    Science.gov (United States)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  12. Magnetic susceptibilities and anisotropy studies of holmium pyrogermanate (Ho{sub 2}Ge{sub 2}O{sub 7}) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jana, S.; Ghosh, D. [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Solid State Physics; Wanklyn, B.M. [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom)

    1998-03-01

    Experimental results of the magnetic susceptibilities (K {sub parallel}, K {sub perpendicular} {sub to}) and the anisotropy (K {sub perpendicular} {sub to} -K {sub parallel} ={Delta}K) of a single crystal of holmium pyrogermanate between 300 and 27 K are reported for the first time. At 300 K, {Delta}K is 4835 x 10{sup -6} emu/mol (being 10% of the mean susceptibility anti K) but at 27 K it increases by 144 times, becoming 88% of anti K. Crystal field (CF) analysis of the results was made considering D{sub 5h} site symmetry. The observed data were best fitted with CF parameters B{sub 20}=-150; B{sub 20}=300; B{sub 60}=-400; B{sub 65}=1500 (all in cm{sup -1}). Using the ground CF energy pattern, Schottky specific heat and the hyperfine splittings of the ground and first nuclear levels of {sup 165}Ho in the pyrogermanate host were calculated. The values of quadrupolar splittings of ground and first nuclear states were found to be 28.15 x 10{sup -4} and 33.42 x 10{sup -4} cm{sup -1}, respectively at 1 K. Moessbauer spectra are expected to show 12 transition lines. (orig.) 40 refs.

  13. Primary granulomatous angiitis of the central nervous system: findings of magnetic resonance spectroscopy and fractional anisotropy in diffusion tensor imaging prior to surgery. Case report.

    Science.gov (United States)

    Beppu, Takaaki; Inoue, Takashi; Nishimoto, Hideaki; Nakamura, Shinichi; Nakazato, Yoichi; Ogasawara, Kuniaki; Ogawa, Akira

    2007-10-01

    Primary granulomatous angiitis of the central nervous system (CNS) is extremely rare. Its preoperative diagnosis is difficult as the condition displays nonspecific features on routine neuroimaging investigations. In this paper, the authors report findings of magnetic resonance (MR) spectroscopy and fractional anisotropy (FA) with diffusion tensor MR imaging in a case of granulomatous angiitis of the CNS. A 30-year-old man presented with morning headaches and grand mal seizures. An MR image revealed a mass resembling glioblastoma in the right temporal lobe. Magnetic resonance spectroscopy showed a high choline/creatine (Cho/Cr) ratio indicative of a malignant neoplasm, accompanied by a slight elevation of glutamate and glutamine. The FA value was very low, which is inconsistent with malignant glioma. The mass was totally removed surgically. Histologically, the peripheral lesion of the mass consisted of a rough accumulation of fat granule cells, infiltration of inflammatory cells, and distribution of capillary vessels. Some vessels within the lesion were replaced by granulomas. The histological diagnosis was granulomatous angiitis of the CNS. The MIB-1-positive rate of the granuloma was approximately 5%. Both MR spectroscopy and FA were unable to accurately diagnose granulomatous angiitis of the CNS prior to surgery; however, elevated Cho/Cr and glutamate and glutamine shown by MR spectroscopy may indicate the moderate proliferation potential of the granuloma and the inflammatory process, respectively, in this condition. Although the low FA value in the present case enabled the authors to rule out a diagnosis of glioblastoma, FA values in inflammatory lesions require careful interpretation.

  14. Anisotropy and Feedthrough in Magneto-Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Weis, Matthew; Rittersdorf, Ian; Lau, Yue Ying; Zhang, Peng; Gilgenbach, Ronald; Zier, Jacob

    2011-10-01

    The magneto-Rayleigh-Taylor instability (MRT) in a finite slab is studied analytically using the ideal MHD model. The slab may be accelerated by an arbitrary combination of magnetic pressure and fluid pressure, thus allowing an arbitrary degree of anisotropy intrinsic to the acceleration mechanism. The magnetic field in different regions may assume arbitrary magnitude and direction tangential to the interface. In general, MRT retains robust growth if it exists. However, feedthrough may be substantially reduced if there are magnetic fields on both sides of the slab, and if the MRT mode invokes bending of the magnetic field lines. The analytically tractable eigenmode solutions allow an evaluation of the temporal evolution of MRT from random initial surface roughness. Work supported by DoE award DE-SC0002590, NSF award PHY 0903340, and by DoE through Sandia National Lab awards 240985 and 76822 to U. of Michigan. JCZ was supported by an NPSC fellowship through Sandia.

  15. Random forest regression for magnetic resonance image synthesis.

    Science.gov (United States)

    Jog, Amod; Carass, Aaron; Roy, Snehashis; Pham, Dzung L; Prince, Jerry L

    2017-01-01

    By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T2-weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T2-weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Magnetic anisotropy and exchange coupling in a family of isostructural Fe(III)2Ln(III)2 complexes.

    Science.gov (United States)

    Baniodeh, Amer; Lan, Yanhua; Novitchi, Ghenadie; Mereacre, Valeriu; Sukhanov, Andrey; Ferbinteanu, Marilena; Voronkova, Violeta; Anson, Christopher E; Powell, Annie K

    2013-06-28

    The reaction of [Fe3O(O2CPh)6(H2O)3](O2CPh) with lanthanide/rare earth nitrate salts in the presence of triethanolamine (H3tea) in acetonitrile/methanol solution yields a series of compounds with isostructural tetranuclear core motifs [Fe(III)2Ln(III)2(μ3-OH)2(teaH)2(O2CCPh)6]·3MeCN (Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), Yb (12), Y (13)). In all cases the core topology is a defect-dicubane planar or "butterfly" Fe2Ln2 motif. Compounds 1-13 were investigated using a combination of experimental techniques and theoretical studies. Magnetic susceptibility measurements were carried out on all compounds. The magnetic coupling between the two Fe(III) centres is antiferromagnetic, with J(FeFe) ca.-6.71(4) cm(-1), while the Fe-Ln couplings are much weaker, e.g. J(FeGd) = 0.18(1) cm(-1). Compounds 6, 7, 8 and 13 were selected for Mössbauer studies in order to investigate the influence of isotropic (Gd(III)), highly anisotropic non-Kramers and Kramers (Tb(III) and Dy(III)) and diamagnetic (Y(III)) rare earth ions on the local environment of the Fe(III) centres. Compounds 3, 6, 8 and 13 were also studied using X-Band EPR spectroscopy. For 13, with the diamagnetic Y(III) ion, this made it possible to obtain the D, E, J(FeFe) and g parameters for the iron centres. It is shown that the low-temperature spectra of compounds 3, 6 and 8 are determined by magnetic properties of rare-earth ions and the dipole-dipole interactions between the Ln(III) ions. The Fe-Ln interactions were confirmed as very weak and dipolar in nature by the temperature dependence of EPR spectra at T > 20 K.

  17. Perpendicularly magnetized ferrimagnetic [Mn50Ga50/Co2FeAl] superlattice and the utilization in magnetic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Q. L. Ma

    2015-08-01

    Full Text Available The ferrimagnetic superlattice (SL [MnGa/Co2FeAl]n exhibiting perpendicular magnetic anisotropy opened a new method for spintronics materials used in magnetic random access memory, because of the high anisotropy, small damping constant and tunable magnetization. In this work, we fabricated SLs with different MnGa composition and studied the MnGa composition dependence of the structure and magnetic properties of the SLs. Furthermore, we fabricated fully perpendicular magnetic tunnel junctions with SLs as both top and bottom electrodes. A clear tunnel magnetoresistance (TMR effect with TMR ratio of 1.3% at room temperature was observed.

  18. Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Dinh-Hoi [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Physics Department, Hue University’s College of Education, 34 Le Loi, Hue (Viet Nam); Phan, Van-Nham, E-mail: phanvannham@dtu.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2016-12-15

    In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.

  19. Influence of the angle between cleavage and bedding on the anisotropy of magnetic susceptibility and the degree of phyllosilicate preferred orientation

    Science.gov (United States)

    Debacker, T. N.; Sintubin, M.

    2003-04-01

    Due to the common scarcity of strain markers and the often fine-grained lithologies, performing strain analyses in slate belts may be difficult. As an alternative, one may use methods such as phyllosilicate preferred orientation (X-ray pole figure goniometry) and anisotropy of magnetic susceptibility (AMS). However, a large number of factors influence the results of these analytical methods. One of the factors is the angle between cleavage and bedding. The study area is the Brabant Massif, a single-phase deformed, low-grade slate belt in N-Belgium consisting of a steep Cambrian core surrounded by Ordovician-Silurian sequences. In the southern part of the Cambrian core, the transition between steeply plunging folds, considered typical for the steep core, and gently plunging folds, considered characteristic for the peripheral Ordovician-Silurian sequences, occurs in homogeneous mudstones of the Lower Cambrian Oisquercq Formation. In these deposits mica and chlorite show a similar degree of preferred orientation. Mica is always aligned along the cleavage, whereas chlorite is aligned along the bedding. Clear intersection pole figure patterns characterise samples with large cleavage/bedding angles, whereas flattening fabrics only become apparent for samples with small cleavage/bedding angles. For both mica and chlorite, the degree of preferred orientation is higher for samples with small cleavage/bedding angles. The magnetic fabric shows prolate susceptibility ellipsoids for samples with large cleavage/bedding angles and oblate susceptibility ellipsoids for samples with small cleavage/bedding angles (cf. Housen et al., 1993). The short axis of the susceptibility ellipsoid is generally oriented perpendicular to bedding, occasionally perpendicular to cleavage or with an intermediate orientation. The long axis of the susceptibility ellipsoid is always parallel to the cleavage/bedding intersection. The shape parameter T shows an almost linear relationship with respect to

  20. A comparison of Anisotropy of Magnetic Susceptibility Studies to Clast Based Strain Analysis in Sandstones, From The Outer Margin Of The Sevier Orogenic Foreland, Western Wyoming.

    Science.gov (United States)

    Mc Carthy, Dave; Meere, Pat; Petronis, Mike; Mulchrone, Kieran

    2013-04-01

    The Cordilleran Mountain Belt of North America is one of the world's classic foreland fold and thrust belts. The Sevier Belt represents the thin skinned front of this orogeny, consisting of thrust faults and folds that shortened and transported sequences of Devonian to Cretaceous strata eastward. There is a general increase in deformation westwards which provides an ideal geological setting to explore the potential link between Anisotropy of Magnetic Susceptibility (AMS) and results from clast based strain analyses of sandstones. Studies attempting to define the relationship between AMS and finite strain have been in vogue since the link between layer parallel shortening and AMS was first established. The understanding of this relationship, despite proven strong correlations between the AMS tensors and tectonic directions, is complicated by competing sub-fabrics, as well as the various magnetic properties of the minerals contributing to the AMS fabric. It has become very clear that the sensitivity of AMS is capable of detecting incipient tectonic fabrics, <5% shortening, which is typically outside the range of most dedicated strain analyses. Despite this, there has been little published research into the relationship between the classic fabric analysis techniques or strain estimate methods and AMS. This may be due to the particularly laborious task of calculating strain estimates using large marker populations and/or the pitfalls of trying to relate the magnitudes of the magnetic ellipse to the magnitudes of the strain ellipse. Rather than trying to estimate finite strain directly from the AMS ellipsoid, we are using the ability of AMS to accurately and quickly qualify the petrofabric and determine the origin of that fabric (i.e., whether it is purely sedimentary, composite bedding/tectonic or dominantly tectonic etc.). Where as most methods of estimating strain have poor accuracy constraints in low strain regimes. In an attempt to account for this AMS is being

  1. Chiral Disorder and Random Matrix Theory with Magnetism

    OpenAIRE

    Nowak, Maciej A.; Sadzikowski, Mariusz; Zahed, Ismail.

    2013-01-01

    We revisit the concept of chiral disorder in QCD in the presence of a QED magnetic field $|eH|$. Weak magnetism corresponds to $|eH|\\le 1/\\rho^2$ with $\\rho\\approx 1/3$\\,fm the vacuum instanton size, while strong magnetism the reverse. Asymptotics (ultra-strong magnetism) is in the realm of perturbative QCD. We analyze weak magnetism using the concept of the quark return probability in the diffusive regime of chiral disorder. The result is in agreement with expectations from chiral perturbati...

  2. Late Cenozoic magnetostratigraphy and anisotropy of magnetic susceptibility of the Baiyanghe section from the Hoxtolgay Basin: Implications for the uplift of the West Junggar Mt Range, NW China

    Science.gov (United States)

    Ai, Keke; Ji, Junliang; Wang, Guocan; Zhang, Kexin; Tang, Zihua

    2017-05-01

    To better constrain the tectonic evolution of Central Asia under the influence of the India-Asia collision, we performed combined magnetostratigraphy and anisotropy of magnetic susceptibility (AMS) analysis of the Baiyanghe section on the northern margin of the Hoxtolgay Basin (West Junggar Mt Range, northwestern China). The observed magnetostratigraphy shows a total of 14 pairs of normal and reversed geomagnetic polarity zones in the well-exposed ∼360 m thick section. In tandem with two ESR dating results, these zones can be reliably correlated with the geomagnetic polarity time scale (GPTS) from C3An.2r to C1n, and yield an age ranging from ∼7.0 Ma to ∼0.2 Ma. The long hiatus between the Mesozoic and the late Cenozoic, corresponding to the age of the basal conglomerates, suggests that uplift of the West Junggar Mt Range was initiated at least at ∼7.0 Ma ago. Furthermore, the onset of massive conglomerate deposits, as well as marked increases in sedimentation rate, k, T and Pj of AMS, occurred at ∼3.6 Ma. These notable changes are coeval with the peak deformation in Central Asia. Considering the depositional diachroneity of the Xiyu conglomerates and the predominantly dry climate in Central Asia since at least the late Cenozoic, we suggest that accelerated uplift of the West Junggar Mt Range at ∼3.6 Ma should be the main factor controlling these multiple changes within the Baiyanghe section. Another marked increase in conglomerate content, sedimentation rate and κ occurred at ∼1.1 Ma. The cause of this event deserves further investigation in the future.

  3. Contribution of Anisotropy of Magnetic Susceptibility (AMS to reconstruct flooding characteristics of a 4220 BP tsunami from a thick unconsolidated structureless deposit (Banda Aceh, Sumatra

    Directory of Open Access Journals (Sweden)

    Patrick Christian Wassmer

    2015-07-01

    Full Text Available One of the main concerns of deciphering tsunami sedimentary records along seashore is to link the emplaced layers with marine high energy events. Based on a combination of morphologic features, sedimentary figures, grain size characteristics, fossils content, microfossils assemblages, geochemical elements, heavy minerals presence; it is, in principle, possible to relate the sedimentary record to a tsunami event. However, experience shows that sometimes, in reason of a lack of any visible sedimentary features, it is hard to decide between a storm and a tsunami origin. To solve this issue, the authors have used the Anisotropy of Magnetic Susceptibility (AMS to evidence the sediment fabric. The validity of the method for reconstructing flow direction has been proved when applied on sediments in the aftermath of a tsunami event, for which the behaviour was well documented (2004 IOT. We present herein an application of this method for a 56 cm thick paleo-deposit dated 4220 BP laying under the soil covered by the 2004 IOT, SE of Banda Aceh, North Sumatra. We analysed this homogenous deposit, lacking of any visible structure, using methods of classic sedimentology to confirm the occurrence of a high energy event. We then applied AMS technique that allowed the reconstruction of flow characteristics during sediment emplacement. We show that all the sequence was emplaced by uprush phases and that the local topography played a role on the re-orientation of a part of the uprush flow, creating strong reverse current. This particular behaviour was reported by eyewitnesses during the 2004 IOT event.

  4. Magnetic stimulation for stress urinary incontinence: study protocol for a randomized controlled trial

    National Research Council Canada - National Science Library

    Lim, Renly; Liong, Men Long; Leong, Wing Seng; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay

    2015-01-01

    There is currently a lack of randomized, sham-controlled trials that are adequately powered, using validated outcomes, to allow for firm recommendations on the use of magnetic stimulation for stress urinary incontinence...

  5. Modulation of magnetic anisotropy through self-assembled surface nanoclusters: Evolution of morphology and magnetism in Co-Pd alloy films

    Science.gov (United States)

    Hsu, Chuan-Che; Chiu, Hsiang-Chih; Mudinepalli, Venkata Ramana; Chen, Yu-Chuan; Chang, Po-Chun; Wu, Chun-Te; Yen, Hung-Wei; Lin, Wen-Chin

    2017-09-01

    In this study, the self-assembly of surface nanoclusters on 10-20-nm-thick Co50Pd50 (Co-Pd) alloy thin films deposited on the Al2O3(0001) substrate was systematically investigated. The time-dependent evolution of the nanocluster size and magnetic properties was monitored using an atomic force microscope (AFM) and the magneto-optical Kerr effect. When the Co-Pd alloy films were stored in an ambient environment, small nanodots gradually gathered to form large nanoclusters. Approximately 30 days after growth, a nanocluster array formed with an average lateral size of 100 ± 20 nm and average height of 10 ± 3 nm. After 100 days, the average lateral size and average height had increased to 140 ± 20 and 25 ± 5 nm, respectively. The AFM phase image exhibited a structured contrast on the nanocluster surface, indicating the nonuniform stiffness distribution of the nanoclusters. A microscopic Auger spectroscopy measurement suggested that in contrast to the Pd-rich signal in the flat area, the nanoclusters were cobalt- and oxygen-rich areas. Cross-sectional investigation through transmission electron microscopy coupled with energy dispersive spectroscopy showed that the nanoclusters were mostly composed of Co oxide. A uniform Pd-rich underlayer had been maintained underneath the self-assembled Co-oxide nanoclusters. With the formation of a Co-oxide nanocluster array and Pd-rich underlayer, the magnetic easy axis of the Co-Pd film gradually altered its direction from the pristine perpendicular to in-plane direction. Because of the change in the magnetic easy axis, the hydrogenation-induced spin-reorientation transition was suppressed with the evolution of the surface Co-oxide nanoclusters.

  6. Lorentz transmission electron microscopy on nanometric magnetic bubbles and skyrmions in bilayered manganites La{sub 1.2}Sr{sub 1.8}(Mn{sub 1−y}Ru{sub y}){sub 2}O{sub 7} with controlled magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, D.; Yu, X. Z.; Kaneko, Y. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tokunaga, Y.; Arima, T. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan); Nagai, T.; Kimoto, K. [Transmission Electron Microscopy Station and Surface Physics and Structure Unit, National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Tokura, Y. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Department of Applied Physics, University of Tokyo, Tokyo 113-8656 (Japan)

    2015-11-23

    We have investigated nanometric magnetic textures in thin (<150 nm) plates of Ru-doped bilayered manganites La{sub 1.2}Sr{sub 1.8}(Mn{sub 1−y}Ru{sub y}){sub 2}O{sub 7}. Ru substitution for Mn site changes the magnetic anisotropy from in-plane to out-of-plane easy axis type without any significant change of global magnetic and crystal structures. The combination of conventional and Lorentz transmission electron microscopy observations confirms the emergence of magnetic bubbles and skyrmions in the absence of magnetic field. With the changing Ru concentration, systematic changes in the type of magnetic bubbles are observed. A tiny residual magnetic field also affects the generation and the type-change of magnetic bubbles.

  7. Strong uniaxial in-plane magnetic anisotropy of (001)- and (011)-oriented La0.67Sr0.33MnO3 thin films on NdGaO3 substrates

    Science.gov (United States)

    Boschker, H.; Mathews, M.; Houwman, E. P.; Nishikawa, H.; Vailionis, A.; Koster, G.; Rijnders, G.; Blank, D. H. A.

    2009-06-01

    Epitaxial La0.67Sr0.33MnO3 (LSMO) ferromagnetic thin films were coherently grown on NdGaO3 (NGO) substrates with different crystal orientations of the surface plane. On the (110)o - and (001)o -oriented substrates, the film grows in the (001)pc orientation, and on the (100)o -, (010)o -, and (112)o -oriented substrates the film is (011)pc oriented (we will use subindices o and pc for the orthorhombic and pseudocubic crystal structures, respectively). The lattice parameters and pseudocube angles of the deformed LSMO pseudocube have been determined from x-ray diffraction measurements. The in-plane magnetic easy and hard directions of these films have been determined from the dependence of the remnant magnetization on the angle of the in-plane applied field. For all substrate orientations there is a strong in-plane uniaxial magnetic anisotropy, determined by the crystal directions of the substrate surface. The easy and hard magnetic-anisotropy directions are explained consistently by the (bulk) inverse magnetostriction model, except for the film on NGO (112)o .

  8. Uniaxial anisotropy and high-frequency permeability of novel soft magnetic FeCoTaN and FeCoAlN films field-annealed at CMOS temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)]. E-mail: klaus.seemann@imf.fzk.de; Leiste, H. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bekker, V. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2004-12-01

    In order to investigate the anisotropy and high-frequency behaviour, soft magnetic FeCoTaN and FeCoAlN films were fabricated by reactive RF-magnetron sputtering. Six-inch targets consisting of Fe47Co36Ta17 and Fe49Co36Al15 were used to grow the films on oxidized (100)-silicon substrates with a TiN seed layer for better film adhesion. The concentration of nitrogen was adjusted by a flow control system. For applications in, e.g., aluminium CMOS processed components the films were annealed at temperatures of about 400-bar C in a static magnetic field of 50mT to induce a uniaxial anisotropy in the film plane by activating an atomic ordering process. Controlling the anisotropy by annealing demands a specified elaboration and results in an in-plane uniaxial anisotropy between 3 and 4mT. Nitrogen in both materials caused the formation of TaN or AlN which mainly supported the suppression of polycrystalline film growth. After deposition the films showed an amorphous structure and turned to be nanocrystalline after the annealing procedure. A saturation polarization in both materials amounted to between 1.1 and 1.2T. Ferromagnetic resonance frequencies of about 1.9GHz for FeCoTaN and 1.8GHz for FeCoAlN, determined by measuring the frequency-dependent permeability by means of a strip line permeameter up to 5GHz, were observed. The experimental results where compared with a spin dynamic model based on the Landau-Lifschitz and Maxwell's eddy current equation in the total frequency range.

  9. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  10. Measurements of the magnetic susceptibility and anisotropy of Tb{sub 2}Ge{sub 2}O{sub 7} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Y.M.; Ghosh, M.; Ghosh, D. E-mail: sspdg@mahendra.iacs.res.in; Wanklyn, B.M

    2000-02-01

    Magnetic susceptibilities {chi}{sub a} and the anisotropy {chi}{sub a}-{chi}{sub c}={delta}{chi} in the ac-plane of the tetragonal crystal of Tb{sub 2}Ge{sub 2}O{sub 7} or TbPG were measured between 300 and 23 K. The crystal field (CF) at the site of the Tb{sup 3+} ion has a unique D{sub 5h} symmetry and the D{sub 5h} axis coincides with the c-axis of the tetragonal (D{sup 4}{sub 4}) crystal, which permitted easy determination of the thermal characteristics of molecular susceptibilities K{sub parallel}, K{sub perpendicular}, K-bar and the anisotropy {delta}K=K{sub perpendicular}-K{sub parallel}. It was found that at 300 K, {delta}K was 31.3% of K-bar and increased by 34.5 times at 23 K, becoming 107% of K-bar, suggesting strong CF effect in TbPG. For analysing these results and the optical spectra reported earlier, the total Hamiltonian, consisting of the atomic and CF interactions, was diagonalized considering 66 intermediately coupled (IC) basis states of the 4f{sup 8} ground configuration of Tb{sup 3+} in the PG host, allowing J-mixing between the IC states. The best-fitted values of the atomic and CF parameters were E{sup 1}=6030, E{sup 2}=35, E{sup 3}=605, {xi}{sub so}=1749, {alpha}=18, {beta}=-673, {gamma}=1918, B{sub 20}=470, B{sub 40}=571, B{sub 60}=2500, B{sub 65}=915 (all in cm{sup -1}). The lowest CF level was found to be a singlet followed by a doublet at 19.5 cm{sup -1} above and the total CF splitting of the {sup 7}F{sub 6} ground term was 280 cm{sup -1}. The calculated value of the nuclear quadrupole splitting <{delta}E{sub Q}> of the ground nuclear level of {sup 159}Tb in TbPG changed from 3.186x10{sup -4} cm{sup -1} (=0.204 mm/s) to 89.65x10{sup -4} cm{sup -1} between 300 and 2 K. The Schottky specific heat C{sub sh} showed a maximum at 26 K and a hump is expected around 14 K in the C{sub p} versus T curve, calculated by substituting the value of the lattice component C{sub L}/R=3.2{+-}0.2 T{sup 3}x10{sup -5} of GdPG.

  11. Heisenberg antiferromagnets with exchange and cubic anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Bannasch, G [MPI fuer Physik komplexer Systeme, 01187 Dresden (Germany); Selke, W, E-mail: selke@physik.rwth-aachen.d [Institut fuer Theoretische Physik, RWTH Aachen University and JARA-SIM, 52056 Aachen (Germany)

    2010-01-01

    We study classical Heisenberg antiferromagnets with uniaxial exchange anisotropy and a cubic anisotropy term on simple cubic lattices in an external magnetic field using ground state considerations and extensive Monte Carlo simulations. In addition to the antiferromagnetic phase field-induced spin-flop and non-collinear, biconical phases may occur. Phase diagrams and critical as well as multicritical phenomena are discussed. Results are compared to previous findings.

  12. Biohazard Detoxification Method Utilizing Magnetic Particles

    Science.gov (United States)

    2007-05-01

    making these biodegradable spheres suitable as a potential platform for the design of magnetically- guided drug delivery and other in vivo biomagnetic ...superparamagnetism can be explained as follows. Due to small particle size, anisotropy energy is less than the thermal agitation energy of the ions ...so magnetized direction is no longer fixed in an easy magnetized direction, and the movement of the ions is random. Consequently, the sample would

  13. Origin of variation of shift field via annealing at 400°C in a perpendicular-anisotropy magnetic tunnel junction with [Co/Pt]-multilayers based synthetic ferrimagnetic reference layer

    Directory of Open Access Journals (Sweden)

    H. Honjo

    2017-05-01

    Full Text Available We investigated properties of perpendicular-anisotropy magnetic tunnel junctions (p-MTJs with [Co/Pt]-multilayer based synthetic ferrimagnetic reference (SyF layer at elevated annealing temperature Ta from 350°C to 400°C. Shift field HS defined as center field of minor resistance versus magnetic field curve of the MTJs increased with increase of Ta from 350°C to 400°C. The variation of HS is attributed to the variation of saturation magnetic moment in the SyF reference layer. Cross sectional energy dispersive X-ray spectroscopy analysis revealed that Fe element of CoFeB in the reference layer diffuses to Co/Pt multilayers in the SyF reference layer.

  14. Morphology effects on exchange anisotropy in Co–CoO nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Lagerqvist, Ulrika, E-mail: ulrika.kvist@kemi.uu.se [Department of Chemistry—Ångström, Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Svedlindh, Peter; Gunnarsson, Klas [Solid State Physics, Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Lu, Jun; Hultman, Lars [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Ottosson, Mikael; Pohl, Annika [Department of Chemistry—Ångström, Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden)

    2015-02-02

    Co–CoO composite films were prepared by solution chemical technique using amine-modified nitrates and acetates in methanol. We study how particle size and porosity can be tuned through the synthesis parameters and how this influences the magnetic properties. Phase content and microstructure were characterised with grazing incidence X-ray diffraction and electron microscopy, and the magnetic properties were studied by magnetometry and magnetic force microscopy. Composite films were obtained by heating spin-coated films in Ar followed by oxidation in air at room temperature, and the porosity and particle size of the films were controlled by gas flow and heating rate. The synthesis yielded dense films with a random distribution of metal and oxide nanoparticles, and layered films with porosity and sintered primary particles. Exchange anisotropy, revealed as a shift towards negative fields of the magnetic hysteresis curve, was found in all films. The films with a random distribution of metal and oxide nanoparticles displayed a significantly larger coercivity and exchange anisotropy field compared to the films with a layered structure, whereas the layered films displayed a larger nominal saturation magnetisation. The magnitude of the coercivity decreased with increasing Co grain size, whereas increased porosity caused an increased tilt of the magnetic hysteresis curve. - Highlights: • Co–CoO nanocomposite thin films were synthesised using solution chemical methods. • Porosity and metal particle size were tuned through gas-flow during synthesis. • Magnetic characterisation shows that increased Co–CoO interface increases coercivity. • Random structures show much larger exchange anisotropy compared to layered films. • Stray fields due to porosity cause decreasing squareness in magnetic hysteresis.

  15. Challenges to the chiral magnetic wave using charge-dependent azimuthal anisotropies in pPb and PbPb collisions at $ \\sqrt{\\smash[b]{s_{_{\\mathrm{NN}}}}} = $ 5.02 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-08-29

    Charge-dependent anisotropy Fourier coefficients ($v_n$) of particle azimuthal distributions are measured in pPb and PbPb collisions at $ \\sqrt{\\smash[b]{s_{_{\\mathrm{NN}}}}} = $ 5.02 TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients ($v_2$) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient, $v_3$, shows a similar linear dependence with the same slope as seen for $v_2$. The observed similarities between the $v_2$ slopes for pPb and PbPb, as well as the similar slopes for $v_2$ and $v_3$ in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that the observed charge asymmetry dependence of $v_2$ in heavy ion collisions arises from a chiral magnetic wave.

  16. Characterization of Magnetic Tunnel Junctions For Spin Transfer Torque Magnetic Random Access Memory

    Science.gov (United States)

    Dill, Joshua Luchay

    This thesis details two experimental methods for quantifying magnetic tunnel junction behavior, namely write error rates and field modulated spin-torque ferromagnetic resonance. The former examines how reliably an applied spin-transfer torque can excite magnetization dynamics that lead to a reversal of magnetization direction while the latter studies steady state dynamics provided by an oscillating spin-transfer torque. These characterization techniques reveal write error rate behavior for a particular composition magnetic tunnel junction that qualitatively deviates from theoretical predictions. Possible origins of this phenomenon are also investigated with the field modulated spin-torque ferromagnetic resonance technique. By understanding the dynamics of magnetic moments predicted by theory, one can experimentally confirm or disprove these theories in order to accurately model and predict tunnel junction behavior. By having a better model for what factors are important in magnetization dynamics, one can optimize these factors in terms of improving magnetic tunnel junctions for their use as computer memory.

  17. The Gd anisotropy in GdCo sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Radwanski, R.J.; Franse, J.J.M.; Quang, P.H.; Kayzel, F.E. (Van der Waals-Zeeman Lab., Univ. van Amsterdam (Netherlands))

    1992-02-01

    High-field magnetization curves of single-crystalline GdCo{sub 5} have been measured at 4.2 K up to 35 T in order to clarify the presence of an extra Gd contribution to the magnetocrystalline anisotropy. The 3d-4f exchange interactions and the Co sublattice anisotropy have been evaluated in GdCo{sub 5} and Gd{sub 2}Fe{sub 17}. No significant Gd contribution to the anisotropy has been revealed. (orig.).

  18. Anisotropy of superconducting transformation in magnetic fields in Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 monocrystal

    CERN Document Server

    Panova, G K; Chernoplekov, N A; Emelchenko, G A; Malyuk, A N; Lin, S T

    2002-01-01

    The anisotropy of the superconducting properties of the Nd sub 1 sub . sub 8 sub 5 Ce sub 0 sub . sub 1 sub 5 CuO sub 4 monocrystal is studied by resistance within the temperature range of 2-30 K in the 0, 1, 2, 4, 6 Tl magnetic fields in the a-b plane. The T sub c (H) and H sub c sub 2 (T) strong anisotropy was observed by the magnetic field different orientation in the a-b plane. The zero direction in the gap of the order parameter is determined. The analysis of the experimental data shows, that such a result may be related to the change in the symmetry in the copper atoms surrounding, leading to its reduction from the tetragonal to orthorhombic one in the low-temperature area. The comparison with the La sub 1 sub . sub 8 sub 5 Sr sub 0 sub . sub 1 sub 5 CuO sub 4 gives all grounds to suppose, that the superconductivity mechanism in the electron- and hole-doped superconductor is similar and the observed difference is connected with the structure peculiarities

  19. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  20. Random magnetic field and quasiparticle transport in the mixed state of high- Tc cuprates.

    Science.gov (United States)

    Ye, J

    2001-01-08

    By a singular gauge transformation, the quasiparticle transport in the mixed state of high- Tc cuprates is mapped into a charge-neutral Dirac moving in short-range correlated random scalar and long-range correlated vector potential. A fully quantum mechanical approach to longitudinal and transverse thermal conductivities is presented. The semiclassical Volovik effect is presented in a quantum mechanical way. The quasiparticle scattering from the random magnetic field which was completely missed in all the previous semiclassical approaches is the dominant scattering mechanism at sufficient high magnetic field. The implications for experiments are discussed.

  1. Random field Ising model swept by propagating magnetic field wave: Athermal nonequilibrium phasediagram

    Science.gov (United States)

    Acharyya, Muktish

    2013-05-01

    The dynamical steady state behaviour of the random field Ising ferromagnet swept by a propagating magnetic field wave is studied at zero temperature by Monte Carlo simulation in two dimensions. The distribution of the random field is bimodal type. For a fixed set of values of the frequency, wavelength and amplitude of propagating magnetic field wave and the strength of the random field, four distinct dynamical steady states or nonequilibrium phases were identified. These four nonequilibrium phases are characterised by different values of structure factors. State or phase of first kind, where all spins are parallel (up). This phase is a frozen or pinned where the propagating field has no effect. The second one is the propagating type, where the sharp strips formed by parallel spins are found to move coherently. The third one is also propagating type, where the boundary of the strips of spins is not very sharp. The fourth kind shows no propagation of strips of magnetic spins, forming a homogeneous distribution of up and down spins. This is disordered phase. The existence of these four dynamical phases or modes depends on the value of the amplitude of propagating magnetic field wave and the strength of random (static) field. A phase diagram has also been drawn, in the plane formed by the amplitude of propagating field and the strength of random field. It is also checked that the existence of these dynamical phases is neither a finite size effect nor a transient phenomenon.

  2. Transport properties of a two-dimensional electron gas due to a spatially random magnetic field

    Science.gov (United States)

    Rushforth, A. W.; Gallagher, B. L.; Main, P. C.; Neumann, A. C.; Marrows, C. H.; Zoller, I.; Howson, M. A.; Hickey, B. J.; Henini, M.

    2000-02-01

    We have studied the magnetoresistance of a near-surface two-dimensional electron gas (2DEG) in the presence of a random magnetic field produced by CoPd multilayers deposited onto the surface of the heterostructure. This novel method allows us to switch the random field on and off by applying an external magnetic field and also to control the amplitude and correlation length of the random field by varying the growth parameters of the multilayers. The presence of the random field is confirmed by quenching of the Shubnikov-de Haas oscillations and we see an enhanced magnetoresistance which can be interpreted semi-classically. We also observe other unusual features which may be quantum in origin.

  3. The rate of separation of magnetic lines of force in a random magnetic field.

    Science.gov (United States)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  4. Large directional optical anisotropy in multiferroic ferroborate

    Science.gov (United States)

    Kuzmenko, A. M.; Dziom, V.; Shuvaev, A.; Pimenov, Anna; Schiebl, M.; Mukhin, A. A.; Ivanov, V. Yu.; Gudim, I. A.; Bezmaternykh, L. N.; Pimenov, A.

    2015-11-01

    One of the most fascinating and counterintuitive recent effects in multiferroics is directional anisotropy, the asymmetry of light propagation with respect to the direction of propagation. In such case the absorption in a material can be different for opposite directions. Besides absorption, different velocities of light for different directions of propagation may be also expected, which is termed directional birefringence. In this work, we demonstrate large directional anisotropy in multiferroic samarium ferroborate. The effect is observed for linear polarization of light in the range of millimeter wavelengths, and it survives down to low frequencies. The dispersion and absorption close to the electromagnon resonance can be controlled by external magnetic field and are fully suppressed in one direction. By changing the geometry of the external field, samarium ferroborate shows giant optical activity, which makes this material a universal tool for optical control: with a magnetic field as an external parameter it allows switching between two functionalities: polarization rotation and directional anisotropy.

  5. Effect of hydrophobic coating on the magnetic anisotropy and radiofrequency heating of γ-Fe.sub.2./sub.O.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Singh, M.; Ulbrich, P.; Prokopec, V.; Svoboda, P.; Šantavá, Eva; Štěpánek, F.

    2013-01-01

    Roč. 339, AUG (2013), s. 106-113 ISSN 0304-8853 Institutional support: RVO:68378271 Keywords : nanoparticle * maghemite * blocking temperature * superparamagnetism * saturation magnetization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.002, year: 2013

  6. Magnetoresistance of a two-dimensional electron gas in a random magnetic field

    DEFF Research Database (Denmark)

    Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil

    1994-01-01

    We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed...

  7. Heteroepitaxial growth of tetragonal Mn2.7−xFexGa1.3 (0 ≤ x ≤ 1.2 Heusler films with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Adel Kalache

    2017-09-01

    Full Text Available This work reports on the structural and magnetic properties of Mn2.7−xFexGa1.3 Heusler films with different Fe content x (0 ≤ x ≤ 1.2. The films were deposited heteroepitaxially on MgO single crystal substrates, by magnetron sputtering. Mn2.7−xFexGa1.3 films with the thickness of 35 nm were crystallized in a tetragonal D022 structure with (001 preferred orientation. Tunable magnetic properties were achieved by changing the Fe content x. Mn2.7−xFexGa1.3 thin films exhibit high uniaxial anisotropy Ku ≥ 1.4 MJ/m3, coercivity from 0.95 to 0.31 T, and saturation magnetization from 290 to 570 kA/m. The film with Mn1.6Fe1.1Ga1.3 composition shows high Ku of 1.47 MJ/m3 and energy product (BHmax of 37 kJ/m3 at room temperature. These findings demonstrate that Mn2.7−xFexGa1.3 films have promising properties for mid-range permanent magnet and spintronic applications.

  8. Measurement of the thermopower anisotropy in iron arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T., E-mail: fujii@crc.u-tokyo.ac.jp [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Shirachi, T. [Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Asamitsu, A. [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan)

    2016-11-15

    Highlights: • In this study, in order to investigate the origin of the in-plane anisotropy, the in-plane anisotropy of the thermopower was measured for the detwined single crystals of BFe{sub 2}As{sub 2}. And, we found no anisotropy in the thermopower above T{sub AFO}, although there is a large anisotropy in the resistivity. This result gives evidence that the anisotropy in the resistivity arise from the anisotropy of the scattering time, and the energy dependence of the scattering time can be considered negligible. In the case of iron pnictides, the proposed orbital ordering more likely results in an anisotropy of electronic structure below T{sub AFO}, whereas the spin-nematic ordering leads to an anisotropy of electron scattering above T{sub AFO}. Therefore, our results suggest that nematicity above T{sub AFO} results from anisotropic magnetic scattering. - Abstract: We investigated the in-plane anisotropy of the thermopower and electrical resistivity on detwinned single crystals of BaFe{sub 2}As{sub 2}. The in-plane anisotropy of the resistivity was clearly observed far above the magnetostructural transition temperature T{sub AFO}. While, the thermopower showed the in-plane anisotropy only below T{sub AFO}. These results are associated with the different origin of the anisotropy above and below T{sub AFO}. Since the thermopower does not depend on the scattering time, the anisotropy of the resistivity above T{sub AFO} is considered to be due to the anisotropic scattering. On the other hand, the anisotropy in the thermopower below T{sub AFO} is ascribed to the reconstructed Fermi surface.

  9. Metal-insulator transition of 2d electron gas in a random magnetic field

    CERN Document Server

    Wang, X R; Liu, D Z

    1999-01-01

    We study the metal-insulator transition of a two-dimensional electron gas in the presence of a random magnetic field from the localization property. The localization length is directly calculated using a transfer matrix technique and finite size scaling analysis. We argue that there is a metal-insulator transition in such a system and show strong numerical evidence that the system undergoes a disorder driven Kosterlitz-Thouless type metal-insulator transition. We will also discuss a mean field theory which maps the random field system into a two-dimensional XY-model. The vortex and antivortex excitations in the XY-model correspond to two different kinds of magnetic domains in the random field system.

  10. Dysprosium doping induced shape and magnetic anisotropy of Fe{sub 3−x}Dy{sub x}O{sub 4} (x=0.01–0.1) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Richa [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068 (India); Department of Physics, ARSD college, University of Delhi, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, Siri Fort Road, New Delhi 110049 (India); Gokhale, Shubha, E-mail: sgokhale@ignou.ac.in [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068 (India)

    2016-09-15

    The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe{sub 3−x}Dy{sub x}O{sub 4} (x=0.0–0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8–14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy{sup 3+} ions in the inverse spinel structure at the octahedral site in place of Fe{sup 3+} ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase. - Highlights: • Report on formation of nanorods in magnetite prompted by Dy doping. • Observation of anisotropic magnetic behaviour emanating from the shape anisotropy. • Evidence of Dy{sup 3+} ions occupying octahedral site in place of Fe{sup 3+} ions. • Nanorods envisaged to be useful as catalysts and in biomedical applications.

  11. Magnetic localization and orientation of the capsule endoscope based on a random complex algorithm

    Directory of Open Access Journals (Sweden)

    He XQ

    2015-04-01

    Full Text Available Xiaoqi He,1 Zizhao Zheng,1,2 Chao Hu1 1Ningbo Institute of Technology, Zhejiang University, Ningbo, People's Republic of China; 2Taiyuan University of Science and Technology, Taiyuan, People's Republic of China Abstract: The development of the capsule endoscope has made possible the examination of the whole gastrointestinal tract without much pain. However, there are still some important problems to be solved, among which, one important problem is the localization of the capsule. Currently, magnetic positioning technology is a suitable method for capsule localization, and this depends on a reliable system and algorithm. In this paper, based on the magnetic dipole model as well as magnetic sensor array, we propose nonlinear optimization algorithms using a random complex algorithm, applied to the optimization calculation for the nonlinear function of the dipole, to determine the three-dimensional position parameters and two-dimensional direction parameters. The stability and the antinoise ability of the algorithm is compared with the Levenberg–Marquart algorithm. The simulation and experiment results show that in terms of the error level of the initial guess of magnet location, the random complex algorithm is more accurate, more stable, and has a higher “denoise” capacity, with a larger range for initial guess values. Keywords: wireless capsule endoscope, magnet, optimization 

  12. Magnetic anisotropy of the spin-antiferromagnet GdNi{sub 2}B{sub 2}C probed by high-frequency ESR

    Energy Technology Data Exchange (ETDEWEB)

    Kataev, V; Schaufuss, U; Muranyi, F; Alfonsov, A; Buechner, B [IFW Dresden, PO Box 270116, D-01171 Dresden (Germany); Doerr, M [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Rotter, M, E-mail: v.kataev@ifw-dresden.d [Oxford University, Physics Department, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-03-01

    A Gd{sup 3+} electron spin resonance study in a frequency range 10 - 350 GHz on a single crystal of the spin-only antiferromagnet GdNi{sub 2}B{sub 2}C is reported. The Korringa relaxation broadening of the Gd-ESR signal is surprisingly anisotropic implying anisotropic interactions between the localized Gd{sup 3+} spins and the conduction electrons. In the antiferromagnetic state at T anisotropy gap of approx76 GHz. We also observe an in-plane gap with the same order of magnitude. Numerical analysis of the spin excitation modes in the ordered state assuming classical dipole-dipole interactions agrees with the experiment qualitatively well. However, quantitatively it yields appreciably higher gap values.

  13. Light propagation in Swiss-cheese models of random close-packed Szekeres structures: Effects of anisotropy and comparisons with perturbative results

    Science.gov (United States)

    Koksbang, S. M.

    2017-03-01

    Light propagation in two Swiss-cheese models based on anisotropic Szekeres structures is studied and compared with light propagation in Swiss-cheese models based on the Szekeres models' underlying Lemaitre-Tolman-Bondi models. The study shows that the anisotropy of the Szekeres models has only a small effect on quantities such as redshift-distance relations, projected shear and expansion rate along individual light rays. The average angular diameter distance to the last scattering surface is computed for each model. Contrary to earlier studies, the results obtained here are (mostly) in agreement with perturbative results. In particular, a small negative shift, δ DA≔D/A-DA ,b g DA ,b g , in the angular diameter distance is obtained upon line-of-sight averaging in three of the four models. The results are, however, not statistically significant. In the fourth model, there is a small positive shift which has an especially small statistical significance. The line-of-sight averaged inverse magnification at z =1100 is consistent with 1 to a high level of confidence for all models, indicating that the area of the surface corresponding to z =1100 is close to that of the background.

  14. Distortion of the Stoner-Wohlfarth Astroid by Perpendicular Polarizer in Magnetic Random Access Memory

    Science.gov (United States)

    Chang, Jui-Hang; Chang, Ching-Ray

    2012-02-01

    For a spin-transfer-torque (STT) magnetic random access memory (MRAM) with a perpendicular polarizer under an external in-plane magnetic field, a distorted astroid of critical strength of STT and field is derived from an one-dimensional effective free energy. The modified astroid not only separates the multiple stable states from the monostable state, but also delimit the region of dynamical stable state as the STT achieving a critical magnitude. Taking into account of the STT, multiple-step magnetization switching of the STT-MRAM has been investigated. We gave a phase diagram for the single-step, double-step, and triple-step switchings, which are observed at a certain range of the external field angle and of the current density.

  15. Anisotropy in solar wind plasma turbulence

    Science.gov (United States)

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  16. Tunable magnetic anisotropy of self-assembled Fe nanostructures within a La0.5Sr0.5FeO3 matrix

    Science.gov (United States)

    Zhang, Bruce; Fan, Meng; Li, Leigang; Jian, Jie; Huang, Jijie; Wang, Han; Kalaswad, Matias; Wang, Haiyan

    2018-01-01

    Metallic nanostructures within ceramic matrices provide a unique platform for integrating magnetic, optical, and electrical properties for device applications. Currently, hurdles still exist for the integration of metallic nanostructures within conventional devices, including the incompatible growth conditions between metals and ceramics and control of the overall physical properties. In this study, we demonstrate the tunability of a one-step growth method to fabricate magnetic and metallic nanostructures embedded within an oxide matrix, La0.5Sr0.5FeO3:Fe, from a composite target using pulsed laser deposition. The metal-ceramic nanocomposite films demonstrate tunable nanostructures and anisotropic magnetic response by varying deposition energy, presenting a mechanism for tuning the physical properties of vertically aligned ferromagnetic metallic nanopillars in an oxide matrix. This study also opens avenues towards the integration of nanoscale, vertical, metallic ferromagnetic contacts for anisotropic magnetic tunneling junctions which may not be easily realized by single-phase thin films.

  17. Significant reduction of critical currents in MRAM designs using dual free layer with perpendicular and in-plane anisotropy

    Science.gov (United States)

    Suess, D.; Vogler, C.; Bruckner, F.; Sepehri-Amin, H.; Abert, C.

    2017-06-01

    One essential feature in magnetic random access memory cells is the spin torque efficiency, which describes the ratio of the critical switching current to the energy barrier. In this paper, it is reported that the spin torque efficiency can be improved by a factor of 3.2 by the use of a dual free layer device, which consists of one layer with perpendicular crystalline anisotropy and another layer with in-plane crystalline anisotropy. Detailed simulations solving the spin transport equations simultaneously with the micromagnetics equation were performed in order to understand the origin of the switching current reduction by a factor of 4 for the dual layer structure compared to a single layer structure. The main reason could be attributed to an increased spin accumulation within the free layer due to the dynamical tilting of the magnetization within the in-plane region of the dual free layer.

  18. Analytic Theory and Numerical Study of the Magnetic Field Line Random Walk in Reduced Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Ruffolo, D. J.; Snodin, A. P.; Oughton, S.; Servidio, S.; Matthaeus, W. H.

    2013-12-01

    The random walk of magnetic field lines is examined analytically and numerically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A nonperturbative theory of magnetic field line diffusion [1] is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a function of distance z along the mean magnetic field for a wide range of the Kubo number R. The theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R=10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from RMHD simulation are compared with and without phase randomization, demonstrating an effect of coherent structures on the field line random walk for low Kubo number. Partially supported by a postdoctoral fellowship from Mahidol University, the Thailand Research Fund, POR Calabria FSE-2007/2013, the US NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX08AI47G & NNX11AJ44G), by the Solar Probe Plus Project through the ISIS Theory team, by the MMS Theory and Modeling team, and by EU Marie Curie Project FP7 PIRSES-2010-269297 'Turboplasmas' at Università della Calabria. [1] D. Ruffolo and W. H. Matthaeus, Phys. Plasmas, 20, 012308 (2013).

  19. Difference method to search for the anisotropy of primary cosmic radiation

    Science.gov (United States)

    Pavlyuchenko, V. P.; Martirosov, R. M.; Nikolskaya, N. M.; Erlykin, A. D.

    2018-01-01

    The original difference method used in the search for an anisotropy of primary cosmic radiation at the knee region of its energy spectrum is considered. Its methodical features and properties are analyzed. It is shown that this method, in which properties of particle fluxes (rather than an intensity) are investigated, is stable against random experimental errors and allows one to separate anomalies connected with the laboratory coordinate system from anomalies in the celestial coordinate system. The method uses the multiple scattering of charged particles in the magnetic fields of the Galaxy to study the whole celestial sphere, including the regions outside the line of sight of the installation.

  20. The expected anisotropy in solid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Bartolo, Nicola; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Peloso, Marco; Unal, Caner, E-mail: nicola.bartolo@pd.infn.it, E-mail: peloso@physics.umn.edu, E-mail: angelo.ricciardone@pd.infn.it, E-mail: unal@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis 55455 (United States)

    2014-11-01

    Solid inflation is an effective field theory of inflation in which isotropy and homogeneity are accomplished via a specific combination of anisotropic sources (three scalar fields that individually break isotropy). This results in specific observational signatures that are not found in standard models of inflation: a non-trivial angular dependence for the squeezed bispectrum, and a possibly long period of anisotropic inflation (to drive inflation, the ''solid'' must be very insensitive to any deformation, and thus background anisotropies are very slowly erased). In this paper we compute the expected level of statistical anisotropy in the power spectrum of the curvature perturbations of this model. To do so, we account for the classical background values of the three scalar fields that are generated on large (superhorizon) scales during inflation via a random walk sum, as the perturbation modes leave the horizon. Such an anisotropy is unavoidably generated, even starting from perfectly isotropic classical initial conditions. The expected level of anisotropy is related to the duration of inflation and to the amplitude of the squeezed bispectrum. If this amplitude is close to its current observational limit (so that one of the most interesting predictions of the model can be observed in the near future), we find that a level of statistical anisotropy F{sup 2} gives frozen and scale invariant vector perturbations on superhorizon scales.

  1. Limits on the ions temperature anisotropy in turbulent intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy

    2016-05-15

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.

  2. Statistical anisotropy from inflationary magnetogenesis

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.

  3. Statistical anisotropy from inflationary magnetogenesis

    Science.gov (United States)

    Giovannini, Massimo

    2016-02-01

    Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.

  4. Tuneable anisotropy and magnetism in Sn2Co3S2-xSex - probed by (119)Sn Mößbauer spectroscopy and DFT studies.

    Science.gov (United States)

    Weihrich, Richard; Yan, Wenjie; Rothballer, Jan; Peter, Philipp; Rommel, Stefan Michael; Haumann, Sebastian; Winter, Florian; Schwickert, Christian; Pöttgen, Rainer

    2015-09-28

    The half metal (HFM) Sn2Co3S2 shows a fascinating S = 1/2 magnetism. Anisotropic coupling of spins in and between Co Kagomé layers by Sn sites is now studied from the substitution effects of S by Se by systematic and local experimental and first principles data. Trends in crystal structure changes (c/a ratio) as retrieved from XRD data on the solid solution Sn2Co3S2-xSex are complemented by DFT modelling on Sn2Co3SeS and hitherto unknown Sn2Co3Se2. The relationship of crystal structure effects with changes in Curie temperatures and magnetic hysteresis is shown from susceptibility measurements. An insight into the role of the Sn sites in magnetism and bonding is gained from (119)Sn Mössbauer spectroscopic measurements. Isomer shifts, quadrupole splitting, and magnetic hyperfine fields are interpreted by DFT calculations on chemical bonding, electric field gradients (EFG), Fermi contact, and spin polarization.

  5. Experimental study of the spindynamics in the 1-D-ferromagnet with planar anisotropy, CsNiF3, in an external magnetic field

    DEFF Research Database (Denmark)

    Steiner, M.; Kakurai, K.; Kjems, Jørgen

    1983-01-01

    The results of a detailed inelastic neutron scattering study of the spindynamics in CsNiF3 in an external magnetic field are presented. Results have been obtained for different combinations of the correlation function (α=x, y, z) in order to analyse theH, T, q c-dependence of both, the central co...

  6. The effects of random field at surface on the magnetic properties in the Ising nanotube and nanowire

    Science.gov (United States)

    Kaneyoshi, T.

    2016-12-01

    The phase diagrams and temperature dependences of total magnetization mT in two nanosystems (nanotube and nanowire) with a random magnetic field at the surface shell are studied by the uses of the effective-field theory with correlations. Some characteristic phenomena (reentrant phenomena and unconventional thermal variation of total magnetization) are found in the two systems. They are rather different between the two systems, which mainly come from the structural differences of the cores

  7. Anisotropy of the magnetization discontinuity at the vortex-lattice melting in untwinned YBa{sub 2}Cu{sub 3}O{sub 7-delta}.

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, A.; Willemin, M.; Rossel, C.; Keller, H.; Fisher, R. A.; Phillips, N. E.; Welp, U.; Kwok, W. K.; Olsson, R. J.; Crabtree, G. W.; Materials Science Division

    2000-02-01

    We measured the magnetic torque {tau} experienced by an untwinned YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystal in external magnetic fields up to {mu}{sub 0}H=7 T below the critical temperature T{sub c}=93.3 K, as a function of {Theta}, the angle between H and the c axis of the crystal. At the vortex-lattice melting transition we observe discontinuities in both {tau} and ({partial_derivative}{tau}/{partial_derivative}H){sub {tau}} that are related to changes in the transverse components of the magnetization vector M and ({partial_derivative}M/{partial_derivative}H){sub {tau}} respectively. We use thermodynamic relationships to determine the direction of the vector {Delta}M in space, and show that {Delta}M is always directed parallel to M. The discontinuities in magnetization {Delta}M and in entropy {Delta}S vanish slightly below the temperature where the melting field H{sub m}(T) extrapolates to zero, which could indicate the existence of a lower critical point of the vortex-lattice melting line. From our ({partial_derivative}{tau}/{partial_derivative}H){sub {tau}} data are able to extract the differences in the reduced specific heat {Delta}C/T between the vortex-fluid and the vortex-solid phases, and we compare these results with corresponding thermal data. We finally examine the validity of standard angular scaling rules for anisotropic superconductors for the melting fields H{sub m}(T,{Theta}) at temperatures as high as T/T{sub c}=0.99.

  8. Random field Ising model in a uniform magnetic field: Ground states, pinned clusters and scaling laws.

    Science.gov (United States)

    Kumar, Manoj; Banerjee, Varsha; Puri, Sanjay

    2017-11-08

    In this paper, we study the random field Ising model (RFIM) in an external magnetic field h . A computationally efficient graph-cut method is used to study ground state (GS) morphologies in this system for three different disorder types: Gaussian, uniform and bimodal. We obtain the critical properties of this system and find that they are independent of the disorder type. We also study GS morphologies via pinned-cluster distributions, which are scale-free at criticality. The spin-spin correlation functions (and structure factors) are characterized by a roughness exponent [Formula: see text]. The corresponding scaling function is universal for all disorder types and independent of h.

  9. Parsimonious Continuous Time Random Walk Models and Kurtosis for Diffusion in Magnetic Resonance of Biological Tissue

    Directory of Open Access Journals (Sweden)

    Carson eIngo

    2015-03-01

    Full Text Available In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusionthrough novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  10. Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue.

    Science.gov (United States)

    Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd B; Webb, Andrew G; Ronen, Itamar

    2015-03-01

    In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  11. Parsimonious Continuous Time Random Walk Models and Kurtosis for Diffusion in Magnetic Resonance of Biological Tissue

    Science.gov (United States)

    Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd; Webb, Andrew; Ronen, Itamar

    2015-03-01

    In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

  12. Orbital moment anisotropy of Pt/Co/AlOx heterostructures with strong Rashba interaction

    Science.gov (United States)

    Nistor, C.; Balashov, T.; Kavich, J. J.; Lodi Rizzini, A.; Ballesteros, B.; Gaudin, G.; Auffret, S.; Rodmacq, B.; Dhesi, S. S.; Gambardella, P.

    2011-08-01

    We study the anisotropy of the spin and orbital magnetization of ultrathin Co layers characterized by structure inversion asymmetry, namely Pt/Co/AlOx trilayers with Co thicknesses between 0.6