WorldWideScience

Sample records for random linear extensions

  1. Linear programming foundations and extensions

    CERN Document Server

    Vanderbei, Robert J

    2001-01-01

    Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...

  2. Random linear codes in steganography

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2016-12-01

    Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB

  3. Linear-scaling implementation of the direct random-phase approximation

    International Nuclear Information System (INIS)

    Kállay, Mihály

    2015-01-01

    We report the linear-scaling implementation of the direct random-phase approximation (dRPA) for closed-shell molecular systems. As a bonus, linear-scaling algorithms are also presented for the second-order screened exchange extension of dRPA as well as for the second-order Møller–Plesset (MP2) method and its spin-scaled variants. Our approach is based on an incremental scheme which is an extension of our previous local correlation method [Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The approach extensively uses local natural orbitals to reduce the size of the molecular orbital basis of local correlation domains. In addition, we also demonstrate that using natural auxiliary functions [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], the size of the auxiliary basis of the domains and thus that of the three-center Coulomb integral lists can be reduced by an order of magnitude, which results in significant savings in computation time. The new approach is validated by extensive test calculations for energies and energy differences. Our benchmark calculations also demonstrate that the new method enables dRPA calculations for molecules with more than 1000 atoms and 10 000 basis functions on a single processor

  4. The RANDOM computer program: A linear congruential random number generator

    Science.gov (United States)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  5. Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects

    DEFF Research Database (Denmark)

    Holst, René; Jørgensen, Bent

    2015-01-01

    The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....

  6. Squares of Random Linear Codes

    DEFF Research Database (Denmark)

    Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego

    2015-01-01

    a positive answer, for codes of dimension $k$ and length roughly $\\frac{1}{2}k^2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise......Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code ``typically'' fill the whole space? We give...

  7. Decoding Algorithms for Random Linear Network Codes

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially...... achieve a high coding throughput, and reduce energy consumption.We use an on-the-fly version of the Gauss-Jordan algorithm as a baseline, and provide several simple improvements to reduce the number of operations needed to perform decoding. Our tests show that the improvements can reduce the number...

  8. Best linear decoding of random mask images

    International Nuclear Information System (INIS)

    Woods, J.W.; Ekstrom, M.P.; Palmieri, T.M.; Twogood, R.E.

    1975-01-01

    In 1968 Dicke proposed coded imaging of x and γ rays via random pinholes. Since then, many authors have agreed with him that this technique can offer significant image improvement. A best linear decoding of the coded image is presented, and its superiority over the conventional matched filter decoding is shown. Experimental results in the visible light region are presented. (U.S.)

  9. Application of laser speckle to randomized numerical linear algebra

    Science.gov (United States)

    Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif

    2018-02-01

    We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.

  10. GRD: An SPSS extension command for generating random data

    Directory of Open Access Journals (Sweden)

    Bradley Harding

    2014-09-01

    Full Text Available To master statistics and data analysis tools, it is necessary to understand a number of concepts, manyof which are quite abstract. For example, sampling from a theoretical distribution can help individuals explore andunderstand randomness. Sampling can also be used to build exercises aimed to help students master statistics. Here, we present GRD (Generator of Random Data, an extension command for SPSS (version 17 and above. With GRD, it is possible to get random data from a given distribution. In its simplest use, GRD will return a set of simulated data from a normal distribution.With subcommands to GRD, it is possible to get data from multiple groups, over multiple repeated measures, and with desired effectsizes. Group sizes can be equal or unequal. With further subcommands, it is possible to sample from any theoretical population, (not simply the normal distribution, introduce non-homogeneous variances,fix or randomize subject effects, etc. Finally, GRD’s generated data are in a format ready to be analyzed.

  11. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  12. Global dynamics for switching systems and their extensions by linear differential equations.

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  13. Global dynamics for switching systems and their extensions by linear differential equations

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  14. A Solution Method for Linear and Geometrically Nonlinear MDOF Systems with Random Properties subject to Random Excitation

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.

    structural properties. The resulting state-space formulation is a system of ordinary stochastic differential equations with random coefficient and deterministic initial conditions which are subsequently transformed into ordinary stochastic differential equations with deterministic coefficients and random......A method for computing the lower-order moments of randomly-excited multi-degree-of-freedom (MDOF) systems with random structural properties is proposed. The method is grounded in the techniques of stochastic calculus, utilizing a Markov diffusion process to model the structural system with random...... initial conditions. This transformation facilitates the derivation of differential equations which govern the evolution of the unconditional statistical moments of response. Primary consideration is given to linear systems and systems with odd polynomial nonlinearities, for in these cases...

  15. Risk evaluations of aging phenomena: The linear aging reliability model and its extensions

    International Nuclear Information System (INIS)

    Vesely, W.E.; Wolford, A.J.

    1988-01-01

    A model for component failure rates due to aging mechanisms is developed from basic phenomenological considerations. In the treatment, the occurrences of deterioration are modeled as following a Poisson process. The severity of damage is allowed to have any distribution, however the damage is assumed to accumulate independently. Finally, the failure rate is modeled as being proportional to the accumulated damage. Using this treatment, the linear aging failure rate model is obtained. The applicability of the linear aging model to various mechanisms is discussed. Extensions of the model to cover nonlinear and dependent aging phenomena are also described. The implementability of the linear aging model is demonstrated by applying it to the aging data collected in the U.S. NRC Nuclear Plant Aging Research (NPAR) Program. (orig./HP)

  16. Role of Statistical Random-Effects Linear Models in Personalized Medicine.

    Science.gov (United States)

    Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose

    2012-03-01

    Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization.

  17. Linearization effect in multifractal analysis: Insights from the Random Energy Model

    Science.gov (United States)

    Angeletti, Florian; Mézard, Marc; Bertin, Eric; Abry, Patrice

    2011-08-01

    The analysis of the linearization effect in multifractal analysis, and hence of the estimation of moments for multifractal processes, is revisited borrowing concepts from the statistical physics of disordered systems, notably from the analysis of the so-called Random Energy Model. Considering a standard multifractal process (compound Poisson motion), chosen as a simple representative example, we show the following: (i) the existence of a critical order q∗ beyond which moments, though finite, cannot be estimated through empirical averages, irrespective of the sample size of the observation; (ii) multifractal exponents necessarily behave linearly in q, for q>q∗. Tailoring the analysis conducted for the Random Energy Model to that of Compound Poisson motion, we provide explicative and quantitative predictions for the values of q∗ and for the slope controlling the linear behavior of the multifractal exponents. These quantities are shown to be related only to the definition of the multifractal process and not to depend on the sample size of the observation. Monte Carlo simulations, conducted over a large number of large sample size realizations of compound Poisson motion, comfort and extend these analyses.

  18. ILCDIRAC, a DIRAC extension for the linear collider community

    International Nuclear Information System (INIS)

    Grefe, C; Poss, S; Sailer, A; Tsaregorodtsev, A

    2014-01-01

    ILCDIRAC is a complete distributed computing solution for the Linear Collider community. It's an extension of the DIRAC system and now used by all detector concepts of the LC community. ILCDIRAC provides a unified interface to the distributed resources for the ILC Virtual Organization and provides common interfaces to all ILC applications via a simplified API. It supports the overlay of beam-induced backgrounds with minimal impact on the Storage Elements by properly scheduling the jobs attempting to access the files. ILCDIRAC has been successfully used for the CLIC Conceptual Design Report and the ILC SiD Detailed Baseline Design, and is now adopted by the LC community as the official Grid production tool. Members of the CALICE collaboration also use ILCDIRAC within their own Virtual Organization.

  19. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2016-01-01

    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However, ...

  20. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  1. Generalized linear models with random effects unified analysis via H-likelihood

    CERN Document Server

    Lee, Youngjo; Pawitan, Yudi

    2006-01-01

    Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...

  2. Linear minimax estimation for random vectors with parametric uncertainty

    KAUST Repository

    Bitar, E

    2010-06-01

    In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distributed random vectors with parametric uncertainty in their distribution. We consider two uncertainty models, PA and PB. Model PA represents X and Y as jointly Gaussian whose covariance matrix Λ belongs to the convex hull of a set of m known covariance matrices. Model PB characterizes X and Y as jointly distributed according to a Gaussian mixture model with m known zero-mean components, but unknown component weights. We show: (a) the linear minimax estimator computed under model PA is identical to that computed under model PB when the vertices of the uncertain covariance set in PA are the same as the component covariances in model PB, and (b) the problem of computing the linear minimax estimator under either model reduces to a semidefinite program (SDP). We also consider the dynamic situation where x(t) and y(t) evolve according to a discrete-time LTI state space model driven by white noise, the statistics of which is modeled by PA and PB as before. We derive a recursive linear minimax filter for x(t) given y(t).

  3. Diffusion in the kicked quantum rotator by random corrections to a linear and sine field

    International Nuclear Information System (INIS)

    Hilke, M.; Flores, J.C.

    1992-01-01

    We discuss the diffusion in momentum space, of the kicked quantum rotator, by introducing random corrections to a linear and sine external field. For the linear field we obtain a linear diffusion behavior identical to the case with zero average in the external field. But for the sine field, accelerator modes with quadratic diffusion are found for particular values of the kicking period. (orig.)

  4. A simulation-based goodness-of-fit test for random effects in generalized linear mixed models

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus

    2006-01-01

    The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice, the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution...

  5. A simulation-based goodness-of-fit test for random effects in generalized linear mixed models

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution function...

  6. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    OpenAIRE

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2014-01-01

    This work proposes a new protocol applying on–the–fly random linear network coding in wireless mesh net-works. The protocol provides increased reliability, low delay,and high throughput to the upper layers, while being obliviousto their specific requirements. This seemingly conflicting goalsare achieved by design, using an on–the–fly network codingstrategy. Our protocol also exploits relay nodes to increasethe overall performance of individual links. Since our protocolnaturally masks random p...

  7. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets.

    Science.gov (United States)

    Marchese Robinson, Richard L; Palczewska, Anna; Palczewski, Jan; Kidley, Nathan

    2017-08-28

    The ability to interpret the predictions made by quantitative structure-activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package ( https://r-forge.r-project.org/R/?group_id=1725 ) for the R statistical

  8. Reliability of Broadcast Communications Under Sparse Random Linear Network Coding

    OpenAIRE

    Brown, Suzie; Johnson, Oliver; Tassi, Andrea

    2018-01-01

    Ultra-reliable Point-to-Multipoint (PtM) communications are expected to become pivotal in networks offering future dependable services for smart cities. In this regard, sparse Random Linear Network Coding (RLNC) techniques have been widely employed to provide an efficient way to improve the reliability of broadcast and multicast data streams. This paper addresses the pressing concern of providing a tight approximation to the probability of a user recovering a data stream protected by this kin...

  9. Chaos from linear systems: implications for communicating with chaos, and the nature of determinism and randomness

    International Nuclear Information System (INIS)

    Hayes, Scott T

    2005-01-01

    A method is developed for producing deterministic chaotic motion from the linear superposition of a bi-infinite sequence of randomly polarized basis functions. The resultant waveform is also formally a random process in the usual sense. In the example given, a threedimensional embedding produces an idealized version of Lorenz motion. The one-dimensional approximate return map is piecewise linear; a tent or shift, depending on the Poincare section. The results are presented in an informal style so that they are accessible to a wide audience interested in both theory and applications of symbolic dynamics communication

  10. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES

    Institute of Scientific and Technical Information of China (English)

    程乾生

    1990-01-01

    The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.

  12. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work proposes a new protocol applying on– the–fly random linear network coding in wireless mesh net- works. The protocol provides increased reliability, low delay, and high throughput to the upper layers, while being oblivious to their specific requirements. This seemingly conflicting goals ...

  13. Robust linear registration of CT images using random regression forests

    Science.gov (United States)

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  14. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity.

    Science.gov (United States)

    Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-03-27

    Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.

  15. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    Science.gov (United States)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  16. Inhomogeneous Linear Random Differential Equations with Mutual Correlations between Multiplicative, Additive and Initial-Value Terms

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1981-01-01

    The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation

  17. Stability and complexity of small random linear systems

    Science.gov (United States)

    Hastings, Harold

    2010-03-01

    We explore the stability of the small random linear systems, typically involving 10-20 variables, motivated by dynamics of the world trade network and the US and Canadian power grid. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

  18. Systematic errors due to linear congruential random-number generators with the Swendsen-Wang algorithm: a warning.

    Science.gov (United States)

    Ossola, Giovanni; Sokal, Alan D

    2004-08-01

    We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner. It also helps to use a generator of large modulus (e.g., 60 or more bits).

  19. Studies in astronomical time series analysis. IV - Modeling chaotic and random processes with linear filters

    Science.gov (United States)

    Scargle, Jeffrey D.

    1990-01-01

    While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.

  20. 75 FR 20564 - Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit...

    Science.gov (United States)

    2010-04-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...

  1. Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection

    Science.gov (United States)

    Elfers, Carsten; Horstmann, Mirko; Sohr, Karsten; Herzog, Otthein

    Intrusion detection in computer networks faces the problem of a large number of both false alarms and unrecognized attacks. To improve the precision of detection, various machine learning techniques have been proposed. However, one critical issue is that the amount of reference data that contains serious intrusions is very sparse. In this paper we present an inference process with linear chain conditional random fields that aims to solve this problem by using domain knowledge about the alerts of different intrusion sensors represented in an ontology.

  2. Random-phase approximation and its extension for the O(2) anharmonic oscillator

    International Nuclear Information System (INIS)

    Aouissat, Z.; Martin, C.

    2004-01-01

    We apply the random-phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPAs using the equation-of-motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPAs. Then we use a time-dependent approach where the standard-RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogolyubov equation. We draw the parallel between the two approaches. (orig.)

  3. Random-phase approximation and its extension for the O(2) anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Aouissat, Z. [Institut fuer Kernphysik, Technische Hochschule Darmstadt, Schlossgarten 9, D-64289, Darmstadt (Germany); Martin, C. [Groupe de Physique Theorique, Institut de Physique Nucleaire, F-91406, Orsay Cedex (France)

    2004-02-01

    We apply the random-phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPAs using the equation-of-motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPAs. Then we use a time-dependent approach where the standard-RPA frequencies are obtained as small oscillations around the static solution in the time-dependent Hartree-Bogolyubov equation. We draw the parallel between the two approaches. (orig.)

  4. Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches.

    Directory of Open Access Journals (Sweden)

    Frederic Bartumeus

    Full Text Available Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.

  5. New Trends in Pseudo-Random Number Generation

    Science.gov (United States)

    Gutbrod, F.

    Properties of pseudo-random number generators are reviewed. The emphasis is on correlations between successive random numbers and their suppression by improvement steps. The generators under discussion are the linear congruential generators, lagged Fibonacci generators with various operations, and the improvement techniques combination, shuffling and decimation. The properties of the RANSHI generator are reviewed somewhat more extensively. The transition to 64-bit technology is discussed in several cases. The generators are subject to several tests, which look both for short range and for long range correlations. Some performance figures are given for a Pentium Pro PC. Recommendations are presented in the final chapter.

  6. Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices

    Directory of Open Access Journals (Sweden)

    Phil Diamond

    2003-01-01

    Full Text Available Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

  7. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  8. Special set linear algebra and special set fuzzy linear algebra

    OpenAIRE

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

    2009-01-01

    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  9. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2017-10-01

    Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

  10. Linear lesions may assist early diagnosis of neuromyelitis optica and longitudinally extensive transverse myelitis, two subtypes of NMOSD.

    Science.gov (United States)

    Cai, Wei; Tan, Sha; Zhang, Lei; Shan, Yilong; Wang, Yanqiang; Lin, Yinyao; Zhou, Fangjing; Zhang, Bingjun; Chen, Xiaoyu; Zhou, Li; Wang, Yuge; Huang, Xuehong; Men, Xuejiao; Li, Haiyan; Qiu, Wei; Hu, Xueqiang; Lu, Zhengqi

    2016-01-15

    To investigate the relationship between linear lesions (LL) and the development of longitudinally extensive spinal cord lesions (LESCL) in Chinese patients with neuromyelitis optica or longitudinally extensive transverse myelitis. The clinical records of 143 patients with these conditions were reviewed. Forty-one patients with LL were divided into three groups according to the order of appearance of LL and LESCL (simultaneously [n=10], LL first [n=26], or LESCL first [n=5]). The remaining 102 patients without LL were used as a control group. Patients who developed LL first demonstrated a lower annualized relapse rate than those in the simultaneous group (1.00 [0.23-10.00] vs. 4.38 [0.60-6.67], p=0.017) and the control group (1.00 [0.23-10.00] vs. 2.00 [0.24-10.00], p=0.007). Among all patients with LL, there were significantly more who developed them before LESCL than those who developed them after LESCL (poptica and longitudinally extensive transverse myelitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The simultaneous use of several pseudo-random binary sequences in the identification of linear multivariable dynamic systems

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1965-02-01

    With several white noise sources the various transmission paths of a linear multivariable system may be determined simultaneously. This memorandum considers the restrictions on pseudo-random two state sequences to effect simultaneous identification of several transmission paths and the consequential rejection of cross-coupled signals in linear multivariable systems. The conditions for simultaneous identification are established by an example, which shows that the integration time required is large i.e. tends to infinity, as it does when white noise sources are used. (author)

  12. Effect of knee joint icing on knee extension strength and knee pain early after total knee arthroplasty: a randomized cross-over study

    DEFF Research Database (Denmark)

    Holm, Bente; Husted, Henrik; Kehlet, Henrik

    2012-01-01

    Objective: To investigate the acute effect of knee joint icing on knee extension strength and knee pain in patients shortly after total knee arthroplasty.Design: A prospective, single-blinded, randomized, cross-over study.Setting: A fast-track orthopaedic arthroplasty unit at a university hospital.......Participants: Twenty patients (mean age 66 years; 10 women) scheduled for primary unilateral total knee arthroplasty.Interventions: The patients were treated on two days (day 7 and day 10) postoperatively. On one day they received 30 minutes of knee icing (active treatment) and on the other day they received 30...... minutes of elbow icing (control treatment). The order of treatments was randomized.Main outcome measures: Maximal knee extension strength (primary outcome), knee pain at rest and knee pain during the maximal knee extensions were measured 2-5 minutes before and 2-5 minutes after both treatments...

  13. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  14. Random Linear Network Coding for 5G Mobile Video Delivery

    Directory of Open Access Journals (Sweden)

    Dejan Vukobratovic

    2018-03-01

    Full Text Available An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G 3GPP New Radio (NR standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC. In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.

  15. Coherent Synchrotron Radiation A Simulation Code Based on the Non-Linear Extension of the Operator Splitting Method

    CERN Document Server

    Dattoli, Giuseppe

    2005-01-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high intensity electron accelerators. A code devoted to the analysis of this type of problems should be fast and reliable: conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problem in accelerators. The extension of these method to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique, using exponential operators implemented numerically in C++. We show that the integration procedure is capable of reproducing the onset of an instability and effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, parametric studies a...

  16. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    Science.gov (United States)

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  17. Simple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables.

    Science.gov (United States)

    Rosenblum, Michael; van der Laan, Mark J

    2010-04-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation.

  18. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    Science.gov (United States)

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  19. Safety and Efficacy of Memantine in Children with Autism: Randomized, Placebo-Controlled Study and Open-Label Extension.

    Science.gov (United States)

    Aman, Michael G; Findling, Robert L; Hardan, Antonio Y; Hendren, Robert L; Melmed, Raun D; Kehinde-Nelson, Ola; Hsu, Hai-An; Trugman, Joel M; Palmer, Robert H; Graham, Stephen M; Gage, Allyson T; Perhach, James L; Katz, Ephraim

    2017-06-01

    Abnormal glutamatergic neurotransmission is implicated in the pathophysiology of autism spectrum disorder (ASD). In this study, the safety, tolerability, and efficacy of the glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist memantine (once-daily extended-release [ER]) were investigated in children with autism in a randomized, placebo-controlled, 12 week trial and a 48 week open-label extension. A total of 121 children 6-12 years of age with Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR)-defined autistic disorder were randomized (1:1) to placebo or memantine ER for 12 weeks; 104 children entered the subsequent extension trial. Maximum memantine doses were determined by body weight and ranged from 3 to 15 mg/day. There was one serious adverse event (SAE) (affective disorder, with memantine) in the 12 week study and one SAE (lobar pneumonia) in the 48 week extension; both were deemed unrelated to treatment. Other AEs were considered mild or moderate and most were deemed not related to treatment. No clinically significant changes occurred in clinical laboratory values, vital signs, or electrocardiogram (ECG). There was no significant between-group difference on the primary efficacy outcome of caregiver/parent ratings on the Social Responsiveness Scale (SRS), although an improvement over baseline at Week 12 was observed in both groups. A trend for improvement at the end of the 48 week extension was observed. No improvements in the active group were observed on any of the secondary end-points, with one communication measure showing significant worsening with memantine compared with placebo (p = 0.02) after 12 weeks. This trial did not demonstrate clinical efficacy of memantine ER in autism; however, the tolerability and safety data were reassuring. Our results could inform future trial design in this population and may facilitate the investigation of memantine ER for other clinical applications.

  20. Convergence of a random walk method for the Burgers equation

    International Nuclear Information System (INIS)

    Roberts, S.

    1985-10-01

    In this paper we consider a random walk algorithm for the solution of Burgers' equation. The algorithm uses the method of fractional steps. The non-linear advection term of the equation is solved by advecting ''fluid'' particles in a velocity field induced by the particles. The diffusion term of the equation is approximated by adding an appropriate random perturbation to the positions of the particles. Though the algorithm is inefficient as a method for solving Burgers' equation, it does model a similar method, the random vortex method, which has been used extensively to solve the incompressible Navier-Stokes equations. The purpose of this paper is to demonstrate the strong convergence of our random walk method and so provide a model for the proof of convergence for more complex random walk algorithms; for instance, the random vortex method without boundaries

  1. Dynamic Average Consensus and Consensusability of General Linear Multiagent Systems with Random Packet Dropout

    Directory of Open Access Journals (Sweden)

    Wen-Min Zhou

    2013-01-01

    Full Text Available This paper is concerned with the consensus problem of general linear discrete-time multiagent systems (MASs with random packet dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem. Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness of the theoretical results is demonstrated through an illustrative example.

  2. Effect of knee joint icing on knee extension strength and knee pain early after total knee arthroplasty: a randomized cross-over study.

    Science.gov (United States)

    Holm, Bente; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2012-08-01

    To investigate the acute effect of knee joint icing on knee extension strength and knee pain in patients shortly after total knee arthroplasty. A prospective, single-blinded, randomized, cross-over study. A fast-track orthopaedic arthroplasty unit at a university hospital. Twenty patients (mean age 66 years; 10 women) scheduled for primary unilateral total knee arthroplasty. The patients were treated on two days (day 7 and day 10) postoperatively. On one day they received 30 minutes of knee icing (active treatment) and on the other day they received 30 minutes of elbow icing (control treatment). The order of treatments was randomized. Maximal knee extension strength (primary outcome), knee pain at rest and knee pain during the maximal knee extensions were measured 2-5 minutes before and 2-5 minutes after both treatments by an assessor blinded for active or control treatment. The change in knee extension strength associated with knee icing was not significantly different from that of elbow icing (knee icing change (mean (1 SD)) -0.01 (0.07) Nm/kg, elbow icing change -0.02 (0.07) Nm/kg, P = 0.493). Likewise, the changes in knee pain at rest (P = 0.475), or knee pain during the knee extension strength measurements (P = 0.422) were not different between treatments. In contrast to observations in experimental knee effusion models and inflamed knee joints, knee joint icing for 30 minutes shortly after total knee arthroplasty had no acute effect on knee extension strength or knee pain.

  3. Aspects of general linear modelling of migration.

    Science.gov (United States)

    Congdon, P

    1992-01-01

    "This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt

  4. GPU Linear algebra extensions for GNU/Octave

    International Nuclear Information System (INIS)

    Bosi, L B; Mariotti, M; Santocchia, A

    2012-01-01

    Octave is one of the most widely used open source tools for numerical analysis and liner algebra. Our project aims to improve Octave by introducing support for GPU computing in order to speed up some linear algebra operations. The core of our work is a C library that executes some BLAS operations concerning vector- vector, vector matrix and matrix-matrix functions on the GPU. OpenCL functions are used to program GPU kernels, which are bound within the GNU/octave framework. We report the project implementation design and some preliminary results about performance.

  5. Escitalopram in the Treatment of Adolescent Depression: A Randomized, Double-Blind, Placebo-Controlled Extension Trial

    Science.gov (United States)

    Robb, Adelaide; Bose, Anjana

    2013-01-01

    Abstract Objective The purpose of this study was to evaluate the extended efficacy, safety, and tolerability of escitalopram relative to placebo in adolescents with major depressive disorder (MDD). Methods Adolescents (12–17 years) who completed an 8-week randomized, double-blind, flexible-dose, placebo-controlled, lead-in study of escitalopram 10–20 mg versus placebo could enroll in a 16–24-week, multisite extension trial; patients maintained the same lead-in randomization (escitalopram or placebo) and dosage (escitalopram 10 or 20 mg/day, or placebo) during the extension. The primary efficacy was Children's Depression Rating Scale-Revised (CDRS-R) change from the lead-in study baseline to treatment week 24 (8-week lead-in study plus 16-week extension); the secondary efficacy was Clinical Global Impressions-Improvement (CGI-I) score at week 24. All efficacy analyses used the last observation carried forward (LOCF) approach; sensitivity analyses used observed cases (OC) and mixed-effects model for repeated measures (MMRM). Safety was evaluated via adverse event (AE) reports and the clinician-rated Columbia-Suicide Severity Rating Scale (C-SSRS). Results Following lead-in, 165 patients enrolled in the double-blind extension (82 placebo; 83 escitalopram); 40 (48.8%) placebo and 37 (44.6%) escitalopram patients completed treatment. CDRS-R total score improvement was significantly greater for escitalopram than for placebo (p=0.005, LOCF; p=0.014; MMRM). Response rates (CDRS-R ≥40% reduction from baseline [adjusted and unadjusted] and CGI-I ≤2) were significantly higher for escitalopram than for placebo (LOCF); remission rates (CDRS-R ≤28) were 50.6% for escitalopram and 35.7% for placebo (p=0.002). OC analyses were not significantly different between groups. The most frequent escitalopram AEs (≥5% and more frequent than placebo) were headache, nausea, insomnia, vomiting, influenza-like symptoms, diarrhea, and urinary tract infection. Most AEs were

  6. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  7. Probing Minimal 5D Extensions of the Standard Model From LEP to an $e^{+} e^{-}$ Linear Collider

    CERN Document Server

    Mück, A; Rückl, R; Mück, Alexander; Pilaftsis, Apostolos; R\\"uckl, Reinhold

    2004-01-01

    We derive new improved constraints on the compactification scale of minimal 5-dimensional (5D) extensions of the Standard Model (SM) from electroweak and LEP2 data and estimate the reach of an e^+e^- linear collider such as TESLA. Our analysis is performed within the framework of non-universal 5D models, where some of the gauge and Higgs fields propagate in the extra dimension, while all fermions are localized on a S^1/Z_2 orbifold fixed point. Carrying out simultaneous multi-parameter fits of the compactification scale and the SM parameters to the data, we obtain lower bounds on this scale in the range between 4 and 6 TeV. These fits also yield the correlation of the compactification scale with the SM Higgs mass. Investigating the prospects at TESLA, we show that the so-called GigaZ option has the potential to improve these bounds by about a factor 2 in almost all 5D models. Furthermore, at the center of mass energy of 800 GeV and with an integrated luminosity of 10^3 fb^-1, linear collider experiments can p...

  8. Extension of the linear nodal method to large concrete building calculations

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented

  9. Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.

    Directory of Open Access Journals (Sweden)

    Didier Delignières

    Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.

  10. Canonical Naimark extension for generalized measurements involving sets of Pauli quantum observables chosen at random

    Science.gov (United States)

    Sparaciari, Carlo; Paris, Matteo G. A.

    2013-01-01

    We address measurement schemes where certain observables Xk are chosen at random within a set of nondegenerate isospectral observables and then measured on repeated preparations of a physical system. Each observable has a probability zk to be measured, with ∑kzk=1, and the statistics of this generalized measurement is described by a positive operator-valued measure. This kind of scheme is referred to as quantum roulettes, since each observable Xk is chosen at random, e.g., according to the fluctuating value of an external parameter. Here we focus on quantum roulettes for qubits involving the measurements of Pauli matrices, and we explicitly evaluate their canonical Naimark extensions, i.e., their implementation as indirect measurements involving an interaction scheme with a probe system. We thus provide a concrete model to realize the roulette without destroying the signal state, which can be measured again after the measurement or can be transmitted. Finally, we apply our results to the description of Stern-Gerlach-like experiments on a two-level system.

  11. Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours

    International Nuclear Information System (INIS)

    Ricaud, J.M.; Masson, R.; Masson, R.

    2009-01-01

    The Laplace-Carson transform classically used for homogenization of linear viscoelastic heterogeneous media yields integral formulations of effective behaviours. These are far less convenient than internal variables formulations with respect to computational aspects as well as to theoretical extensions to closely related problems such as ageing viscoelasticity. Noticing that the collocation method is usually adopted to invert the Laplace-Carson transforms, we first remark that this approximation is equivalent to an internal variables formulation which is exact in some specific situations. This result is illustrated for a two-phase composite with phases obeying a compressible Maxwellian behaviour. Next, an incremental formulation allows to extend at each time step the previous general framework to ageing viscoelasticity. Finally, with the help of a creep test of a porous viscoelastic matrix reinforced with elastic inclusions, it is shown that the method yields accurate predictions (comparing to reference results provided by periodic cell finite element computations). (authors)

  12. Softening in Random Networks of Non-Identical Beams.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  13. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  14. Random Fuzzy Extension of the Universal Generating Function Approach for the Reliability Assessment of Multi-State Systems Under Aleatory and Epistemic Uncertainties

    DEFF Research Database (Denmark)

    Li, Yan-Fu; Ding, Yi; Zio, Enrico

    2014-01-01

    . In this work, we extend the traditional universal generating function (UGF) approach for multi-state system (MSS) availability and reliability assessment to account for both aleatory and epistemic uncertainties. First, a theoretical extension, named hybrid UGF (HUGF), is made to introduce the use of random...... fuzzy variables (RFVs) in the approach. Second, the composition operator of HUGF is defined by considering simultaneously the probabilistic convolution and the fuzzy extension principle. Finally, an efficient algorithm is designed to extract probability boxes ($p$ -boxes) from the system HUGF, which...

  15. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, J; Zhang, Qi; Fitzek, F H P

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...

  16. Impact of Service Extension and Services Interaction on B2b Sales: A Temporal Investigation Into Fuels’ Category

    Directory of Open Access Journals (Sweden)

    Marcos Inacio Severo de Almeida

    2014-11-01

    Full Text Available The scope of services marketing has a theoretical and empirical gap that refers to the impact of the provision of services on sales. This research opportunity is routinely highlighted in theoretical proposals such as the Augmented Service Offering (ASO, Innovation in Services (IS and Service Dominant Logic (SDL, which require alternative measures of combinations of product and service and the possible effects that these arrangements may cause. This article aims to investigate the impact of the extension and the interaction of services on Business to Business (B2B sales. Three hypotheses were tested with data from the fuel sector. Research was operationalized based on secondary data, ceded by an energy company, which comprise sales of regular and premium gasoline of this company to 19 gas stations along 27 months, totaling 513 observations. The study involved the construction of a generalized linear model with balanced, long and random effects panel structure. The three hypotheses were supported, identifying how the extensive principle of service contributes to the increased performance and conclude the existence of a direct, linear and positive impact of extension and interaction of services on B2B sales.

  17. The influence of electromyographic biofeedback therapy on knee extension following anterior cruciate ligament reconstruction: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Christanell Franz

    2012-11-01

    Full Text Available Abstract Background Loss of knee extension and a deficit in quadriceps strength are frequently found following anterior cruciate ligament (ACL reconstruction. The aim of this study was to investigate whether the addition of Eletromyographic Biofeedback (EMG BFB therapy for the vastus medialis muscle to the in the early phase of the standard rehabilitation programme could improve the range of knee extension and strength after ACL reconstruction more than a standard rehabilitation programme. The correlation between EMG measurement and passive knee extension was also investigated. Method Sixteen patients, all of whom underwent endoscopic ACL reconstruction using patellar tendon autograft, were randomly assigned to two groups: • Control group (8 patients: standard rehabilitation protocol; with full weight-bearing postoperative, knee brace (0° extension, 90° flexion, electrical stimulation, aquatics and proprioceptive training. • The EMG BFB group (8 patients: EMG BFB was added to the standard rehabilitation protocol within the first postoperative week and during each session for the next 6 weeks. Each patent attended a total of 16 outpatient physiotherapy sessions following surgery. High-Heel-Distance (HHD Test, range of motion (ROM and integrated EMG (iEMG for vastus medialis were measured preoperatively, and at the 1, 2, 4 and 6-week follow ups. Additionally, knee function, swelling and pain were evaluated using standardized scoring scales. Results At 6 weeks, passive knee extension (p  0.01 differences were found between the two groups for the assessment of knee function, swelling and pain. Conclusion The results indicate that EMG BFB therapy, in the early phase of rehabilitation after ACL reconstruction, is useful in enhancing knee extension. Improved innervation of the vastus medialis can play a key role in the development of postoperative knee extension. EMG BFB therapy is a simple, inexpensive and valuable adjunct to conventional

  18. Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services

    DEFF Research Database (Denmark)

    Tassi, Andrea; Chatzigeorgiou, Ioannis; Roetter, Daniel Enrique Lucani

    2016-01-01

    Point-to-multipoint communications are expected to play a pivotal role in next-generation networks. This paper refers to a cellular system transmitting layered multicast services to a multicast group of users. Reliability of communications is ensured via different random linear network coding (RLNC......) techniques. We deal with a fundamental problem: the computational complexity of the RLNC decoder. The higher the number of decoding operations is, the more the user's computational overhead grows and, consequently, the faster the battery of mobile devices drains. By referring to several sparse RLNC...... techniques, and without any assumption on the implementation of the RLNC decoder in use, we provide an efficient way to characterize the performance of users targeted by ultra-reliable layered multicast services. The proposed modeling allows to efficiently derive the average number of coded packet...

  19. Randomized Phase III and Extension Studies of Naldemedine in Patients With Opioid-Induced Constipation and Cancer.

    Science.gov (United States)

    Katakami, Nobuyuki; Harada, Toshiyuki; Murata, Toru; Shinozaki, Katsunori; Tsutsumi, Masakazu; Yokota, Takaaki; Arai, Masatsugu; Tada, Yukio; Narabayashi, Masaru; Boku, Narikazu

    2017-12-01

    Purpose Opioid-induced constipation (OIC) is a frequent and debilitating adverse effect (AE) of opioids-common analgesics for cancer pain. We investigated the efficacy and safety of a peripherally acting μ-opioid receptor antagonist, naldemedine (S-297995), for OIC, specifically in patients with cancer. Patients and Methods This phase III trial consisted of a 2-week, randomized, double-blind, placebo-controlled study (COMPOSE-4) and an open-label, 12-week extension study (COMPOSE-5). In COMPOSE-4, eligible adults with OIC and cancer were randomly assigned on a 1:1 basis to receive once-daily oral naldemedine 0.2 mg or placebo. The primary end point was the proportion of spontaneous bowel movement (SBM) responders (≥ 3 SBMs/week and an increase of ≥ 1 SBM/week from baseline). The primary end point of COMPOSE-5 was safety. Results In COMPOSE-4, 193 eligible patients were randomly assigned to naldemedine (n = 97) or placebo (n = 96). The proportion of SBM responders in COMPOSE-4 was significantly greater with naldemedine than with placebo (71.1% [69 of 97 patients] v 34.4% [33 of 96 patients]; P opioid withdrawal and had no notable impact on opioid-mediated analgesia. Conclusion Once-daily oral naldemedine 0.2 mg effectively treated OIC and was generally well tolerated in patients with OIC and cancer.

  20. A random number generator for continuous random variables

    Science.gov (United States)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  1. Probabilistic Signal Recovery and Random Matrices

    Science.gov (United States)

    2016-12-08

    that classical methods for linear regression (such as Lasso) are applicable for non- linear data. This surprising finding has already found several...we studied the complexity of convex sets. In numerical linear algebra , we analyzed the fastest known randomized approximation algorithm for...and perfect matchings In numerical linear algebra , we studied the fastest known randomized approximation algorithm for computing the permanents of

  2. Short communication: Alteration of priors for random effects in Gaussian linear mixed model

    DEFF Research Database (Denmark)

    Vandenplas, Jérémie; Christensen, Ole Fredslund; Gengler, Nicholas

    2014-01-01

    such alterations. Therefore, the aim of this study was to propose a method to alter both the mean and (co)variance of the prior multivariate normal distributions of random effects of linear mixed models while using currently available software packages. The proposed method was tested on simulated examples with 3......, multiple-trait predictions of lactation yields, and Bayesian approaches integrating external information into genetic evaluations) need to alter both the mean and (co)variance of the prior distributions and, to our knowledge, most software packages available in the animal breeding community do not permit...... different software packages available in animal breeding. The examples showed the possibility of the proposed method to alter both the mean and (co)variance of the prior distributions with currently available software packages through the use of an extended data file and a user-supplied (co)variance matrix....

  3. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  4. Conserved linear dynamics of single-molecule Brownian motion

    Science.gov (United States)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  5. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  6. Parametric Linear Dynamic Logic

    Directory of Open Access Journals (Sweden)

    Peter Faymonville

    2014-08-01

    Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.

  7. Job satisfaction of extension agents towards innovation ...

    African Journals Online (AJOL)

    The study assessed job satisfaction of extension agents towards innovation dissemination to fish farmers in Lagos State, Nigeria. A simple random sampling technique was used to select 44 extension officers from which data were collected. A structured questionnaire consisting of 6 personal characteristics, 23 management ...

  8. Effect of Linear Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction—12-Month Follow-Up of a Randomized, Double-Blinded, Sham-Controlled Study

    Directory of Open Access Journals (Sweden)

    Grzegorz Lukasz Fojecki, MD

    2018-03-01

    Fojecki GL, Tiessen S, Osther PJS. Effect of Linear Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction—12-Month Follow-Up of a Randomized, Double-Blinded, Sham-Controlled Study. Sex Med 2018;6:1–7.

  9. Linear Programming and Network Flows

    CERN Document Server

    Bazaraa, Mokhtar S; Sherali, Hanif D

    2011-01-01

    The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research

  10. Analysis of the role and level of job performance among extension ...

    African Journals Online (AJOL)

    The study analysed the role performance and job satisfaction of extension agents in technology delivery in Imo State. The multistage random sampling technique was adopted in the selection of farmers and simple random sampling for the selection of extension agents. The instruments for data collection were four sets of ...

  11. Linear extension rates and fluctuations of trace metals in Porites sp. from around Peninsular Malaysia

    Science.gov (United States)

    Amir, Liyana; Mohamed, Che Abd Rahim

    2018-04-01

    Coral cores were collected from P. Payar, Port Dickson, P. Redang and P. Tioman. The length of cores represented data spanning from year 2009 - 2015. Satellite sea surface temperatures from year 2009 - 2015 were obtained from the Reynolds and Smith dataset. Sr/Ca concentrations were measured from the coral powder taken at 1mm intervals along the vertical growth axis. Sea Surface Temperature (SST) was significantly higher during year 2010 in all four locations and linear extension was observed to have declined in year 2010 compared to year 2009 in cores from both sites. This decline coincides with the higher SST observed in year 2010 as a result of the El Niño event. Correlation analysis showed that Sr/Ca ratios in cores from all sites have a significant inverse relationship with SST. Analysis of the trace metals such as Pb, Ba, Cr and Cu produced results that were within the reported range in coral skeleton. Concentrations were significantly higher in Port Dickson and the lowest in P. Redang. These findings could be due to differences in terrestrial input at respective reef sites.

  12. Linear Text vs. Non-Linear Hypertext in Handheld Computers: Effects on Declarative and Structural Knowledge, and Learner Motivation

    Science.gov (United States)

    Son, Chanhee; Park, Sanghoon; Kim, Minjeong

    2011-01-01

    This study compared linear text-based and non-linear hypertext-based instruction in a handheld computer regarding effects on two different levels of knowledge (declarative and structural knowledge) and learner motivation. Forty four participants were randomly assigned to one of three experimental conditions: linear text, hierarchical hypertext,…

  13. Fast image interpolation via random forests.

    Science.gov (United States)

    Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui

    2015-10-01

    This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.

  14. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted...... into ruffles at the periphery, but not in the center of a mature cytolytic NK cell IS. Time-lapse imaging showed that the membrane ruffles formed at the initial point of contact between NK cells and target cells and then spread radialy across the intercellular contact as the size of the IS increased, becoming...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....

  15. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  16. Individual and Group Extension Methods: Perspectives from Vi ...

    African Journals Online (AJOL)

    Participatory Rural Appraisals (PRAs) tools including semi-structured questionnaires were administrated to 90 randomly selected farmers who had received extension services from the project. In addition, twelve project extension workers were interviewed. Data were analysed using SPSS computer package and descriptive ...

  17. Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2015-01-01

    Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...

  18. Local beam angle optimization with linear programming and gradient search

    International Nuclear Information System (INIS)

    Craft, David

    2007-01-01

    The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)

  19. Systematic review and meta-analysis of published randomized controlled trials comparing purse-string vs conventional linear closure of the wound following ileostomy (stoma) closure.

    Science.gov (United States)

    Sajid, Muhammad Shafique; Bhatti, Muhammad I; Miles, William Fa

    2015-05-01

    The objective of this article is to systematically analyse the randomized, controlled trials comparing the effectiveness of purse-string closure (PSC) of an ileostomy wound with conventional linear closure (CLC). Randomized, controlled trials comparing the effectiveness of purse-string closure vs conventional linear closure (CLC) of ileostomy wound in patients undergoing ileostomy closure were analysed using RevMan®, and the combined outcomes were expressed as risk ratio (RR) and standardized mean difference (SMD). Three randomized, controlled trials, recruiting 206 patients, were retrieved from medical electronic databases. There were 105 patients in the PSC group and 101 patients in the CLC group. There was no heterogeneity among included trials. Duration of operation (SMD: -0.18; 95% CI: -0.45, 0.09; z = 1.28; P SMD: 0.01; 95% CI: -0.26, 0.28; z = 0.07; P infection (OR, 0.10; 95% CI: 0.03, 0.33; z = 3.78; P infection apparently without influencing the duration of operation and length of hospital stay. © The Author(s) 2014. Published by Oxford University Press and the Digestive Science Publishing Co. Limited.

  20. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    Science.gov (United States)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  1. Random effect selection in generalised linear models

    DEFF Research Database (Denmark)

    Denwood, Matt; Houe, Hans; Forkman, Björn

    We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...

  2. Is there still a role for additional linear ablation in addition to pulmonary vein isolation in patients with paroxysmal atrial fibrillation? An Updated Meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Hu, Xiaoliang; Jiang, Jingzhou; Ma, Yuedong; Tang, Anli

    2016-04-15

    The benefits and risks of additional left atrium (LA) linear ablation in patients with paroxysmal atrial fibrillation (AF) remain unclear. Randomized controlled trials were identified in the PubMed, Web of Science, Embase and Cochrane databases, and the relevant papers were examined. Pooled relative risks (RR) and 95% confidence interval (95% CI) were estimated using random effects models. The primary endpoint was the maintenance of sinus rhythm after a single ablation. Nine randomized controlled trials involving 1138 patients were included in this analysis. Additional LA linear ablation did not improve the maintenance of the sinus rhythm following a single procedure (RR, 1.03; 95% CI, 0.93-1.13; P=0.60). A subgroup analysis demonstrated that all methods of additional linear ablation failed to improve the outcome. Additional linear ablation significantly increased the mean procedural time (166.53±67.7 vs. 139.57±62.44min, Plinear ablation did not exhibit any benefits in terms of sinus rhythm maintenance for paroxysmal AF patients following a single procedure. Additional linear ablation significantly increased the mean procedural, fluoroscopy and RF application times. This additional ablation was not associated with a statistically significant increase in complication rates. This finding must be confirmed by further large, high-quality clinical trials. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Linear Logistic Test Modeling with R

    Science.gov (United States)

    Baghaei, Purya; Kubinger, Klaus D.

    2015-01-01

    The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

  4. Parametrices and exact paralinearization of semi-linear boundary problems

    DEFF Research Database (Denmark)

    Johnsen, Jon

    2008-01-01

    The subject is parametrices for semi-linear problems, based on parametrices for linear boundary problems and on non-linearities that decompose into solution-dependent linear operators acting on the solutions. Non-linearities of product type are shown to admit this via exact paralinearization...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....

  5. Non-Linear Metamodeling Extensions to the Robust Parameter Design of Computer Simulations

    Science.gov (United States)

    2016-09-15

    The combined-array RSM approach has been applied to a piston simulation [11] and an economic order quantity inventory model [12, 13]. A textbook ...are limited when applied to simulations. In the former case, the mean and variance models can be inadequate due to a high level of non-linearity...highly non-linear nature of typical simulations. In the multi-response RPD problem, the objective is to find the optimal control parameter levels

  6. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  7. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.

    Science.gov (United States)

    Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian

    2018-05-08

    An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

  8. Implementation and Performance Evaluation of Distributed Cloud Storage Solutions using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Fitzek, Frank; Toth, Tamas; Szabados, Áron

    2014-01-01

    This paper advocates the use of random linear network coding for storage in distributed clouds in order to reduce storage and traffic costs in dynamic settings, i.e. when adding and removing numerous storage devices/clouds on-the-fly and when the number of reachable clouds is limited. We introduce...... various network coding approaches that trade-off reliability, storage and traffic costs, and system complexity relying on probabilistic recoding for cloud regeneration. We compare these approaches with other approaches based on data replication and Reed-Solomon codes. A simulator has been developed...... to carry out a thorough performance evaluation of the various approaches when relying on different system settings, e.g., finite fields, and network/storage conditions, e.g., storage space used per cloud, limited network use, and limited recoding capabilities. In contrast to standard coding approaches, our...

  9. Factors affecting job satisfaction of front-line extension workers in ...

    African Journals Online (AJOL)

    The study examined the factors affecting job satisfaction of field extension workers in Enugu State Agricultural Development Programme. Forty-two extension staff randomly selected across the three agricultural zones were used for the study. The field extension workers indicated low level of satisfaction with their job content, ...

  10. Simplified Linear Equation Solvers users manual

    Energy Technology Data Exchange (ETDEWEB)

    Gropp, W. [Argonne National Lab., IL (United States); Smith, B. [California Univ., Los Angeles, CA (United States)

    1993-02-01

    The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.

  11. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    Science.gov (United States)

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  12. Near-optimal alternative generation using modified hit-and-run sampling for non-linear, non-convex problems

    Science.gov (United States)

    Rosenberg, D. E.; Alafifi, A.

    2016-12-01

    Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one

  13. On the dynamic analysis of piecewise-linear networks

    OpenAIRE

    Heemels, W.P.M.H.; Camlibel, M.K.; Schumacher, J.M.

    2002-01-01

    Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks. In this paper, the object of study will be dynamic electrical circuits that can be recast as linear complementarity systems, i.e., as interconnections of linear time-invariant differential equatio...

  14. Hamiltonian structure of linearly extended Virasoro algebra

    International Nuclear Information System (INIS)

    Arakelyan, T.A.; Savvidi, G.K.

    1991-01-01

    The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order

  15. Spectral theories for linear differential equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)

  16. Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

    CERN Document Server

    2017-01-01

    Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

  17. Job burnout and coping strategies among extension agents in south ...

    African Journals Online (AJOL)

    The need to maintain a non-mineral dependent economy and daunting food import bills have been the drive for the provision of extension services, which is dependent on motivated extension work force.. Extension personnel will not stay motivated under circumstances where the risk of job burnout is high. A simple random ...

  18. Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation

    International Nuclear Information System (INIS)

    Schurkus, Henry F.; Ochsenfeld, Christian

    2016-01-01

    An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions. 

  19. On the dynamic analysis of piecewise-linear networks

    NARCIS (Netherlands)

    Heemels, WPMH; Camlibel, MK; Schumacher, JM

    Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks.

  20. Assessment of veterinary extension services to livestock farmers in ...

    African Journals Online (AJOL)

    The study examined operational modes of providing veterinary extension services to livestock farmers in Egba-Division, Ogun-State Nigeria. Information was obtained from 120 livestock farmers and 8 extension agents selected through multi-stage random sampling technique with the use of both structured questionnaire ...

  1. Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric.

    Science.gov (United States)

    Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian

    2017-04-11

    A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.

  2. An extended SPSS extension command for generating random data

    Directory of Open Access Journals (Sweden)

    Harding, Bradley

    2015-10-01

    Full Text Available The GRD extension command for SPSS (Harding & Cousineau, 2014 has been used in a variety of applications since its inception. Ranging from a teaching tool to demonstrate statistical analyses, to an inferential tool used to find critical values instead of looking into a z-table, GRD has been very well received. However, some users have requested other data generation components that would make GRD a more complete extension command: the possibility to add contaminants to the generated dataset as well as the ability to generate correlated variables. Another component we added is a graphical user interface (or GUI that makes GRD accessible through the drop-down menus in the SPSS Data Editor window. This GUI allows users to generate a simple dataset by entering parameters in dedicated fields rather than writing out the full script. Finally, we devised a small series of exercises to help users get acquainted with the new subcommands and GUI.

  3. A penalized framework for distributed lag non-linear models.

    Science.gov (United States)

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  4. Periodic linear differential stochastic processes

    NARCIS (Netherlands)

    Kwakernaak, H.

    1975-01-01

    Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation

  5. Civamide cream 0.075% in patients with osteoarthritis of the knee: a 12-week randomized controlled clinical trial with a longterm extension.

    Science.gov (United States)

    Schnitzer, Thomas J; Pelletier, Jean-Pierre; Haselwood, Doug M; Ellison, William T; Ervin, John E; Gordon, Richard D; Lisse, Jeffrey R; Archambault, W Tad; Sampson, Allan R; Fezatte, Heidi B; Phillips, Scott B; Bernstein, Joel E

    2012-03-01

    To evaluate the safety and efficacy of civamide cream 0.075% for the treatment of osteoarthritis (OA) of the knee. We conducted a 12-week, multicenter, randomized, double-blind study with a 52-week open-label extension. Patients with OA of the knee received either civamide cream 0.075% or a lower dose of civamide cream, 0.01%, as the control. The 3 co-primary endpoints in the double-blind study were the time-weighted average (TWA) of change from baseline to Day 84 in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale, the WOMAC physical function subscale, and the Subject Global Evaluation (SGE). In the 52-week open-label extension study, the Osteoarthritis Pain Score and SGE were assessed. A total of 695 patients were randomized to receive civamide cream 0.075% (n = 351) or civamide cream 0.01% (control; n = 344) in the double-blind study. Significance in favor of civamide cream 0.075% was achieved for the TWA for all 3 co-primary efficacy variables: WOMAC pain (p = 0.009), WOMAC physical function (p < 0.001), and SGE (p = 0.008); and at Day 84 for these 3 variables (p = 0.013, p < 0.001, and p = 0.049, respectively). These analyses accounted for significant baseline-by-treatment interactions. In the 52-week open-label extension, efficacy was maintained. Civamide cream 0.075% was well tolerated throughout the studies. These studies demonstrate the efficacy of civamide cream for up to 1 year of continuous use. Civamide cream, with its lack of systemic absorption, does not have the potential for serious systemic toxicity, in contrast to several other OA treatments.

  6. Barriers and Effective Educational Strategies to Develop Extension Agents' Professional Competencies

    Science.gov (United States)

    Lakai, Dona; Jayaratne, K. S. U.; Moore, Gary E.; Kistler, Mark J.

    2012-01-01

    The study reported here determined the barriers and effective educational strategies to develop Extension agents' professional competencies. This was a descriptive survey research conducted with a random sample of Extension agents. Increased workload and lack of time and funding were identified as the most constraining barriers of Extension agents…

  7. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  8. Burgers' turbulence problem with linear or quadratic external potential

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....

  9. Extension of the Multipole Approach to Random Metamaterials

    Directory of Open Access Journals (Sweden)

    A. Chipouline

    2012-01-01

    Full Text Available Influence of the short-range lateral disorder in the meta-atoms positioning on the effective parameters of the metamaterials is investigated theoretically using the multipole approach. Random variation of the near field quasi-static interaction between metaatoms in form of double wires is shown to be the reason for the effective permittivity and permeability changes. The obtained analytical results are compared with the known experimental ones.

  10. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Science.gov (United States)

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  12. Risk evaluations of aging phenomena: the linear aging reliability model and its extensions

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1987-01-01

    A model for component failure rates due to aging mechanisms has been developed from basic phenomenological considerations. In the treatment, the occurrences of deterioration are modeled as following a Poisson process. The severity of damage is allowed to have any distribution, however the damage is assumed to accumulate independently. Finally, the failure rate is modeled as being proportional to the accumulated damage. Using this treatment, the linear aging failure rate model is obtained. The applicability of the linear aging model to various mechanisms is discussed. The model can be extended to cover nonlinear and dependent aging phenomena. The implementability of the linear aging model is demonstrated by applying it to the aging data collected in NRC's Nuclear Plant Aging Research (NPAR) Program. The applications show that aging as observed in collected data have significant effects on the component failure probability and component reliability when aging is not effectively detected and controlled by testing and maintenance

  13. Risk evaluations of aging phenomena: The linear aging reliability model and its extensions

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1986-01-01

    A model for component failure rates due to aging mechanisms has been developed from basic phenomenological considerations. In the treatment, the occurrences of deterioration are modeled as following a Poisson process. The severity of damage is allowed to have any distribution, however the damage is assumed to accumulate independently. Finally, the failure rate is modeled as being proportional to the accumulated damage. Using this treatment, the linear aging failure rate model is obtained. The applicability of the linear aging model to various mechanisms is discussed. The model can be extended to cover nonlinear and dependent aging phenomena. The implementability of the linear aging model is demonstrated by applying it of the aging data collected in NRC's Nuclear Plant Aging Research (NPAR) Program. The applications show that aging as observed in collected data have significant effects on the component failure probability and component reliability when aging is not effectively detected and controlled by testing and maintenance

  14. An Elementary Proof of a Criterion for Linear Disjointness

    Science.gov (United States)

    Dobbs, David E.

    2013-01-01

    An elementary proof using matrix theory is given for the following criterion: if "F"/"K" and "L"/"K" are field extensions, with "F" and "L" both contained in a common extension field, then "F" and "L" are linearly disjoint over "K" if (and only if) some…

  15. Applied linear algebra

    CERN Document Server

    Olver, Peter J

    2018-01-01

    This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

  16. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study.

    Science.gov (United States)

    Giovannoni, Gavin; Soelberg Sorensen, Per; Cook, Stuart; Rammohan, Kottil; Rieckmann, Peter; Comi, Giancarlo; Dangond, Fernando; Adeniji, Abidemi K; Vermersch, Patrick

    2017-08-01

    In the 2-year CLARITY study, cladribine tablets significantly improved clinical and magnetic resonance imaging (MRI) outcomes (vs placebo) in patients with relapsing-remitting multiple sclerosis (MS). To assess the safety and efficacy of cladribine treatment in a 2-year Extension study. In this 2-year Extension study, placebo recipients from CLARITY received cladribine 3.5 mg/kg; cladribine recipients were re-randomized 2:1 to cladribine 3.5 mg/kg or placebo, with blind maintained. A total of 806 patients were assigned to treatment. Adverse event rates were generally similar between groups, but lymphopenia Grade ⩾ 3 rates were higher with cladribine than placebo (Grade 4 lymphopenia occurred infrequently). In patients receiving cladribine 3.5 mg/kg in CLARITY and experiencing lymphopenia Grade ⩾ 3 in the Extension, >90% of those treated with cladribine 3.5 mg/kg and all treated with placebo in the Extension, recovered to Grade 0-1 by study end. Cladribine treatment in CLARITY produced efficacy improvements that were maintained in patients treated with placebo in the Extension; in patients treated with cladribine 3.5 mg/kg in CLARITY, approximately 75% remained relapse-free when given placebo during the Extension. Cladribine tablets treatment for 2 years followed by 2 years' placebo treatment produced durable clinical benefits similar to 4 years of cladribine treatment with a low risk of severe lymphopenia or clinical worsening. No clinical improvement in efficacy was apparent following further treatment with cladribine tablets after the initial 2-year treatment period in this trial setting.

  17. On a linear method in bootstrap confidence intervals

    Directory of Open Access Journals (Sweden)

    Andrea Pallini

    2007-10-01

    Full Text Available A linear method for the construction of asymptotic bootstrap confidence intervals is proposed. We approximate asymptotically pivotal and non-pivotal quantities, which are smooth functions of means of n independent and identically distributed random variables, by using a sum of n independent smooth functions of the same analytical form. Errors are of order Op(n-3/2 and Op(n-2, respectively. The linear method allows a straightforward approximation of bootstrap cumulants, by considering the set of n independent smooth functions as an original random sample to be resampled with replacement.

  18. Evaluation of the effectiveness of the Imo State fisheriers extension ...

    African Journals Online (AJOL)

    This study evaluated the Imo State Ministry of Agriculture Fisheries Extension Programmes. Questionnaires were used to collect data from 15 randomly selected extension staff and 200 proportionately selected fish farmers from the three fisheries zones of the state between November 1997 and February 1998. Data were ...

  19. Problems associated with extension visists among maize farmers in ...

    African Journals Online (AJOL)

    This study investigated the problems related to field visits carried out by extension staff to farmers in the rural areas. A total of 125 farmers were purposively and randomly sampled for this study from two villages, in Kaduna State, Nigeria. The three objectives were; (1) to identify the period of extension visits carried out by the ...

  20. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  1. Application of single-step genomic best linear unbiased prediction with a multiple-lactation random regression test-day model for Japanese Holsteins.

    Science.gov (United States)

    Baba, Toshimi; Gotoh, Yusaku; Yamaguchi, Satoshi; Nakagawa, Satoshi; Abe, Hayato; Masuda, Yutaka; Kawahara, Takayoshi

    2017-08-01

    This study aimed to evaluate a validation reliability of single-step genomic best linear unbiased prediction (ssGBLUP) with a multiple-lactation random regression test-day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test-day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305-day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R 2 ) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R 2 was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R 2 were observed when genotyped cows were added. An application of ssGBLUP to a multiple-lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls. © 2016 Japanese Society of Animal Science.

  2. On Optimal Feedback Control for Stationary Linear Systems

    International Nuclear Information System (INIS)

    Russell, David L.

    2010-01-01

    We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

  3. An extension of PPLS-DA for classification and comparison to ordinary PLS-DA.

    Directory of Open Access Journals (Sweden)

    Anna Telaar

    Full Text Available Classification studies are widely applied, e.g. in biomedical research to classify objects/patients into predefined groups. The goal is to find a classification function/rule which assigns each object/patient to a unique group with the greatest possible accuracy (classification error. Especially in gene expression experiments often a lot of variables (genes are measured for only few objects/patients. A suitable approach is the well-known method PLS-DA, which searches for a transformation to a lower dimensional space. Resulting new components are linear combinations of the original variables. An advancement of PLS-DA leads to PPLS-DA, introducing a so called 'power parameter', which is maximized towards the correlation between the components and the group-membership. We introduce an extension of PPLS-DA for optimizing this power parameter towards the final aim, namely towards a minimal classification error. We compare this new extension with the original PPLS-DA and also with the ordinary PLS-DA using simulated and experimental datasets. For the investigated data sets with weak linear dependency between features/variables, no improvement is shown for PPLS-DA and for the extensions compared to PLS-DA. A very weak linear dependency, a low proportion of differentially expressed genes for simulated data, does not lead to an improvement of PPLS-DA over PLS-DA, but our extension shows a lower prediction error. On the contrary, for the data set with strong between-feature collinearity and a low proportion of differentially expressed genes and a large total number of genes, the prediction error of PPLS-DA and the extensions is clearly lower than for PLS-DA. Moreover we compare these prediction results with results of support vector machines with linear kernel and linear discriminant analysis.

  4. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  5. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  6. Pseudo-random number generator based on asymptotic deterministic randomness

    Science.gov (United States)

    Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming

    2008-06-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  7. Pseudo-random number generator based on asymptotic deterministic randomness

    International Nuclear Information System (INIS)

    Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming

    2008-01-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks

  8. Extensions of von Neumann's method for generating random variables

    International Nuclear Information System (INIS)

    Monahan, J.F.

    1979-01-01

    Von Neumann's method of generating random variables with the exponential distribution and Forsythe's method for obtaining distributions with densities of the form e/sup -G//sup( x/) are generalized to apply to certain power series representations. The flexibility of the power series methods is illustrated by algorithms for the Cauchy and geometric distributions

  9. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  10. Absolutely minimal extensions of functions on metric spaces

    International Nuclear Information System (INIS)

    Milman, V A

    1999-01-01

    Extensions of a real-valued function from the boundary ∂X 0 of an open subset X 0 of a metric space (X,d) to X 0 are discussed. For the broad class of initial data coming under discussion (linearly bounded functions) locally Lipschitz extensions to X 0 that preserve localized moduli of continuity are constructed. In the set of these extensions an absolutely minimal extension is selected, which was considered before by Aronsson for Lipschitz initial functions in the case X 0 subset of R n . An absolutely minimal extension can be regarded as an ∞-harmonic function, that is, a limit of p-harmonic functions as p→+∞. The proof of the existence of absolutely minimal extensions in a metric space with intrinsic metric is carried out by the Perron method. To this end, ∞-subharmonic, ∞-superharmonic, and ∞-harmonic functions on a metric space are defined and their properties are established

  11. Analysis of effects of extension teaching methods on farmers' level of ...

    African Journals Online (AJOL)

    This study analyzed the effects of extension teaching methods used by Ogun State (Nigeria) Agricultural Development Programme's extension agents on farmers' level of production in maize and cassava. The sample included 210 randomly selected farmers, comprising adopters and non-adopters of introduced agricultural ...

  12. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  13. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  14. Transforming the Roles of a Public Extension Agency to Strengthen Innovation: Lessons from the National Agricultural Extension Project in Bangladesh

    Science.gov (United States)

    Chowdhury, Ataharul Huq; Odame, Helen Hambly; Leeuwis, Cees

    2014-01-01

    Purpose: The rapidly evolving nature of agricultural innovation processes in low-income countries requires agricultural extension agencies to transform the classical roles that previously supported linear information dissemination and adoption of innovation. In Bangladesh, strengthening agricultural innovation calls for facilitation of interactive…

  15. Effect of Linear Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction-12-Month Follow-Up of a Randomized, Double-Blinded, Sham-Controlled Study

    DEFF Research Database (Denmark)

    Fojecki, Grzegorz Lukasz; Tiessen, Stefan; Sloth Osther, Palle Jørn

    2018-01-01

    -EF (ΔIIEF-EF score). The secondary outcome measure was an increase in the EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regressions. RESULTS: Linear regression of the ΔIIEF-EF score from baseline to 12 months included 95 patients (dropout......INTRODUCTION: Short-term data on the effect of low-intensity extracorporeal shockwave therapy (Li-ESWT) on erectile dysfunction (ED) have been inconsistent. The suggested mechanisms of action of Li-ESWT on ED include stimulation of cell proliferation, tissue regeneration, and angiogenesis, which...... can be processes with a long generation time. Therefore, long-term data on the effect of Li-ESWT on ED are strongly warranted. AIM: To assess the outcome at 6 and 12 months of linear Li-ESWT on ED from a previously published randomized, double-blinded, sham-controlled trial. METHODS: Subjects with ED...

  16. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.

    Science.gov (United States)

    Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael

    2013-12-01

    Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.

  17. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  18. Stochastic model of cell rearrangements in convergent extension of ascidian notochord

    Science.gov (United States)

    Lubkin, Sharon; Backes, Tracy; Latterman, Russell; Small, Stephen

    2007-03-01

    We present a discrete stochastic cell based model of convergent extension of the ascidian notochord. Our work derives from research that clarifies the coupling of invagination and convergent extension in ascidian notochord morphogenesis (Odell and Munro, 2002). We have tested the roles of cell-cell adhesion, cell-extracellular matrix adhesion, random motion, and extension of individual cells, as well as the presence or absence of various tissue types, and determined which factors are necessary and/or sufficient for convergent extension.

  19. A class of singular Ro-matrices and extensions to semidefinite linear complementarity problems

    Directory of Open Access Journals (Sweden)

    Sivakumar K.C.

    2013-01-01

    Full Text Available For ARnxn and qRn, the linear complementarity problem LCP(A, q is to determine if there is xRn such that x ≥ 0; y = Ax + q ≥ 0 and xT y = 0. Such an x is called a solution of LCP(A,q. A is called an Ro-matrix if LCP(A,0 has zero as the only solution. In this article, the class of R0-matrices is extended to include typically singular matrices, by requiring in addition that the solution x above belongs to a subspace of Rn. This idea is then extended to semidefinite linear complementarity problems, where a characterization is presented for the multplicative transformation.

  20. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    Science.gov (United States)

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  1. Shelf life extension for the lot AAE nozzle severance LSCs

    Science.gov (United States)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  2. Supersymmetric extension of Hopf maps: N = 4 {sigma}-models and the S{sup 3} {yields} S{sup 2} fibration

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, L. Faria; Toppan, F., E-mail: leofc@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    We discuss four off-shell N = 4 D = 1 supersymmetry transformations, their associated one-dimensional -models and their mutual relations. They are given by I - the (4, 4){sub lin} linear 'root' supermultiplet (supersymmetric extension of R{sup 4}), II - the (3, 4, 1){sub lin} linear supermultiplet (supersymmetric extension of R3), III - the (3, 4, 1){sub nl} non-linear supermultiplet living on S{sup 3} and IV - the (2, 4, 2){sub nl} non-linear supermultiplet living on S{sup 2}. The I {yields} II map is the supersymmetric extension of the R4 {yields} R3 bilinear map, while the II {yields} IV map is the supersymmetric extension of the S{sup 3} {yields} S{sup 2} first Hopf fibration. The restrictions on the S{sup 3}, S{sup 2} spheres are expressed in terms of the stereo graphic projections. The non-linear supermultiplets, whose super transformations are local differential polynomials, are not equivalent to the linear supermultiplets with the same field content. The -models are determined in terms of an unconstrained pre potential of the target coordinates. The Uniformization Problem requires solving an inverse problem for the pre potential. The basic features of the supersymmetric extension of the second and third Hopf maps are briefly sketched. Finally, the Schur's lemma (i.e. the real, complex or quaternionic property) is extended to all minimal linear supermultiplets up to N {<=} 8. (author)

  3. Optimal designs for linear mixture models

    NARCIS (Netherlands)

    Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

    1975-01-01

    In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of

  4. Hawthorne effect with transient behavioral and biochemical changes in a randomized controlled sleep extension trial of chronically short-sleeping obese adults: implications for the design and interpretation of clinical studies.

    Science.gov (United States)

    Cizza, Giovanni; Piaggi, Paolo; Rother, Kristina I; Csako, Gyorgy

    2014-01-01

    To evaluate the effects of study participation per se at the beginning of a sleep extension trial between screening, randomization, and the run-in visit. Subjects were screened, returned for randomization (Comparison vs. Intervention) after 81 days (median), and attended run-in visit 121 days later. Outpatient. Obese (N = 125; M/F, 30/95; Blacks/Whites/Other, N = 73/44/8), mean weight 107.6±19.7 kg, sleep/night. Non-pharmacological sleep extension. Sleep duration (diaries and actigraphy watch), sleep quality (Pittsburgh Sleep Quality Index), daily sleepiness (Epworth Sleepiness Scale), fasting glucose, insulin and lipids. Prior to any intervention, marked improvements occurred between screening and randomization. Sleep duration increased (diaries: 357.4 ±51.2 vs. 388.1±48.6 min/night; mean±SD; Psleep quality improved (9.1±3.2 vs. 8.2±3.0 PSQI score; Pattention received from study investigators. This is the first time that biochemical changes were documented with respect to the Hawthorne effect. The findings have implications for the design and conduct of clinical research. ClinicalTrials.gov NCT00261898.

  5. Half-trek criterion for generic identifiability of linear structural equation models

    NARCIS (Netherlands)

    Foygel, R.; Draisma, J.; Drton, M.

    2012-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  6. Half-trek criterion for generic identifiability of linear structural equation models

    NARCIS (Netherlands)

    Foygel, R.; Draisma, J.; Drton, M.

    2011-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  7. Specific heat of the Ising linear chain in a Random field

    International Nuclear Information System (INIS)

    Silva, P.R.; Sa Barreto, F.C. de

    1984-01-01

    Starting from correlation identities for the Ising model the effect of a random field on the one dimension version of the model is studied. Explicit results for the magnetization, the two-particle correlation function and the specific heat are obtained for an uncorrelated distribution of the random fields. (Author) [pt

  8. Linearized supergravity with a dynamical preferred frame

    CERN Document Server

    Marakulin, Arthur

    2016-01-01

    We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.

  9. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  10. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  11. On Viviani's Theorem and Its Extensions

    Science.gov (United States)

    Abboud, Elias

    2010-01-01

    Viviani's theorem states that the sum of distances from any point inside an equilateral triangle to its sides is constant. Here, in an extension of this result, we show, using linear programming, that any convex polygon can be divided into parallel line segments on which the sum of the distances to the sides of the polygon is constant. Let us say…

  12. The Overgeneralization of Linear Models among University Students' Mathematical Productions: A Long-Term Study

    Science.gov (United States)

    Esteley, Cristina B.; Villarreal, Monica E.; Alagia, Humberto R.

    2010-01-01

    Over the past several years, we have been exploring and researching a phenomenon that occurs among undergraduate students that we called extension of linear models to non-linear contexts or overgeneralization of linear models. This phenomenon appears when some students use linear representations in situations that are non-linear. In a first phase,…

  13. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  14. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  15. Optimal designs for linear mixture models

    NARCIS (Netherlands)

    Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

    1975-01-01

    In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this

  16. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    Science.gov (United States)

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  17. Performance of farmers-led extension system in agricultural ...

    African Journals Online (AJOL)

    Mo

    initiate their training needs and the district technical staff train the Extension Link Farmers who in turn transfer the acquired ... whom at least two were women, were randomly selected ... It was noted that farmers did not only receive agricultural.

  18. Strength and Functional Improvement Using Pneumatic Brace with Extension Assist for End-Stage Knee Osteoarthritis: A Prospective, Randomized trial.

    Science.gov (United States)

    Cherian, Jeffrey J; Bhave, Anil; Kapadia, Bhaveen H; Starr, Roland; McElroy, Mark J; Mont, Michael A

    2015-05-01

    Pneumatic unloader bracing with extension assists have been proposed as a non-operative modality that may delay the need for knee surgery by reducing pain and improving function. This prospective, randomized trial evaluated 52 patients who had knee osteoarthritis for changes in: (1) muscle strength; (2) objective functional improvements; (3); subjective functional improvements; (4) pain; (5) quality of life; and (6) conversion to total knee arthroplasty (TKA) compared to standard of care. Patient outcomes were evaluated at a minimum 3 months. Braced patient's demonstrated significant improvements in muscle strength, several functional tests, and patient reported outcomes when compared to the matched cohort. These results are encouraging and suggest that this device may represent a promising alternative to standard treatment methods for knee osteoarthritis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Linear latent variable models: the lava-package

    DEFF Research Database (Denmark)

    Holst, Klaus Kähler; Budtz-Jørgensen, Esben

    2013-01-01

    are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...

  20. BWIP-RANDOM-SAMPLING, Random Sample Generation for Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Sagar, B.

    1989-01-01

    1 - Description of program or function: Random samples for different distribution types are generated. Distribution types as required for performance assessment modeling of geologic nuclear waste disposal are provided. These are: - Uniform, - Log-uniform (base 10 or natural), - Normal, - Lognormal (base 10 or natural), - Exponential, - Bernoulli, - User defined continuous distribution. 2 - Method of solution: A linear congruential generator is used for uniform random numbers. A set of functions is used to transform the uniform distribution to the other distributions. Stratified, rather than random, sampling can be chosen. Truncated limits can be specified on many distributions, whose usual definition has an infinite support. 3 - Restrictions on the complexity of the problem: Generation of correlated random variables is not included

  1. Study of coherent Synchrotron Radiation effects by means of a new simulation code based on the non-linear extension of the operator splitting method

    International Nuclear Information System (INIS)

    Dattoli, G.; Schiavi, A.; Migliorati, M.

    2006-03-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high intensity electron accelerators. The complexity of the physical mechanisms underlying the onset of instabilities due to CSR demands for accurate descriptions, capable of including the large number of features of an actual accelerating device. A code devoted to the analysis of this type of problems should be fast and reliable, conditions that are usually hardly achieved at the same rime. In the past, codes based on Lie algebraic techniques , have been very efficient to treat transport problems in accelerators. The extension of these methods to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique, using exponential operators. We show that the integration procedure is capable of reproducing the onset of an instability and the effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, considerations on the threshold of the instability are also developed [it

  2. Study of coherent synchrotron radiation effects by means of a new simulation code based on the non-linear extension of the operator splitting method

    International Nuclear Information System (INIS)

    Dattoli, G.; Migliorati, M.; Schiavi, A.

    2007-01-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high-intensity electron accelerators. The complexity of the physical mechanisms underlying the onset of instabilities due to CSR demands for accurate descriptions, capable of including the large number of features of an actual accelerating device. A code devoted to the analysis of these types of problems should be fast and reliable, conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that the integration procedure is capable of reproducing the onset of instability and the effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, considerations on the threshold of the instability are also developed

  3. A Note on the Identifiability of Generalized Linear Mixed Models

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo

    2014-01-01

    I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...

  4. Need for Methamphetamine Programming in Extension Education

    Science.gov (United States)

    Beaudreault, Amy R.; Miller, Larry E.

    2011-01-01

    The study reported sought to identify the prevention education needs involving methamphetamine through survey methodology. The study focused on a random sample of U.S. states and the Extension Directors within each state, resulting in a 70% response rate (n = 134). Findings revealed that 11% reported they had received methamphetamine user…

  5. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  6. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    2015-01-01

    From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  7. Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models.

    Science.gov (United States)

    Hossain, Ahmed; Beyene, Joseph

    2014-01-01

    This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.

  8. A remark on the half-linear extension of the Hartman-Wintner theorem

    Directory of Open Access Journals (Sweden)

    Ondrej Dosly

    2000-07-01

    Full Text Available We establish a Hartman-Wintner type theorem for the half-linear second order differential equation $$ (r(tPhi_p(x''+c(tPhi_p(x=0,quad Phi_p(x:=|x|^{p-2}x.$$ This equation is viewed as a perturbation of the non-oscillatory equation $$ (r(tPhi_p(x''+ilde c(tPhi_p(x=0 $$ with $ilde c(te 0$ eventually.

  9. Streamflow record extension using power transformations and application to sediment transport

    Science.gov (United States)

    Moog, Douglas B.; Whiting, Peter J.; Thomas, Robert B.

    1999-01-01

    To obtain a representative set of flow rates for a stream, it is often desirable to fill in missing data or extend measurements to a longer time period by correlation to a nearby gage with a longer record. Linear least squares regression of the logarithms of the flows is a traditional and still common technique. However, its purpose is to generate optimal estimates of each day's discharge, rather than the population of discharges, for which it tends to underestimate variance. Maintenance-of-variance-extension (MOVE) equations [Hirsch, 1982] were developed to correct this bias. This study replaces the logarithmic transformation by the more general Box-Cox scaled power transformation, generating a more linear, constant-variance relationship for the MOVE extension. Combining the Box-Cox transformation with the MOVE extension is shown to improve accuracy in estimating order statistics of flow rate, particularly for the nonextreme discharges which generally govern cumulative transport over time. This advantage is illustrated by prediction of cumulative fractions of total bed load transport.

  10. Linear IgA bullous dermatosis in a patient with renal cell carcinoma

    NARCIS (Netherlands)

    Van der Waal, RIF; Van de Scheur, MR; Pas, HH; Jonkman, MF; Van Groeningen, CJ; Nieboer, C; Starink, TM

    Linear IgA bullous dermatosis (LABD) is an autoimmune subepidermal bullous disease with heterogeneous clinical manifestations, characterized by linear deposition of IgA along the epidermal basement membrane zone. We report a patient with a metastasized renal cell carcinoma who developed an extensive

  11. Influence Of Extension Education Workshop On Cabbage Growers ...

    African Journals Online (AJOL)

    Influence Of Extension Education Workshop On Cabbage Growers Awareness And Knowledge Of Ipm In Aghtapeh Town, Iran. ... A survey was conducted among 60 farmers in Karaj County that included 30 workshop participants, and 30 randomly selected farmers. The study found that workshop participants had ...

  12. Effect of Linear Low-Intensity Extracorporeal Shockwave Therapy for Erectile Dysfunction-12-Month Follow-Up of a Randomized, Double-Blinded, Sham-Controlled Study.

    Science.gov (United States)

    Fojecki, Grzegorz Lukasz; Tiessen, Stefan; Osther, Palle Jørn Sloth

    2018-03-01

    Short-term data on the effect of low-intensity extracorporeal shockwave therapy (Li-ESWT) on erectile dysfunction (ED) have been inconsistent. The suggested mechanisms of action of Li-ESWT on ED include stimulation of cell proliferation, tissue regeneration, and angiogenesis, which can be processes with a long generation time. Therefore, long-term data on the effect of Li-ESWT on ED are strongly warranted. To assess the outcome at 6 and 12 months of linear Li-ESWT on ED from a previously published randomized, double-blinded, sham-controlled trial. Subjects with ED (N = 126) who scored lower than 25 points in the erectile function domain of the International Index of Erectile Function (IIEF-EF) were eligible for the study. They were allocated to 1 of 2 groups: 5 weekly sessions of sham treatment (group A) or linear Li-ESWT (group B). After a 4-week break, the 2 groups received active treatment once a week for 5 weeks. At baseline and 6 and 12 months, subjects were evaluated by the IIEF-EF, the Erectile Hardness Scale (EHS), and the Sexual Quality of Life in Men. The primary outcome measure was an increase of at least 5 points in the IIEF-EF (ΔIIEF-EF score). The secondary outcome measure was an increase in the EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regressions. Linear regression of the ΔIIEF-EF score from baseline to 12 months included 95 patients (dropout rate = 25%). Adjusted for the IIEF-EF score at baseline, the difference between groups B and A was -1.30 (95% CI = -4.37 to 1.77, P = .4). The success rate based on the main outcome parameter (ΔIIEF-EF score ≥ 5) was 54% in group A vs 47% in group B (odds ratio = 0.67, P = .28). Improvement based on changes in the EHS score in groups A and B was 34% and 24%, respectively (odds ratio = 0.47, P = .82). Exposure to 2 cycles of linear Li-ESWT for ED is not superior to 1 cycle at 6- and 12-month follow-ups. Fojecki GL, Tiessen S

  13. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  14. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  15. From stripe to slab confinement for DNA linearization in nanochannels

    Science.gov (United States)

    Cifra, Peter; Benkova, Zuzana; Namer, Pavol

    We investigate suggested advantageous analysis in the linearization experiments with macromolecules confined in a stripe-like channel using Monte Carlo simulations. The enhanced chain extension in a stripe that is due to significant excluded volume interactions between monomers in two dimensions weakens on transition to experimentally feasible slit-like channel. Based on the chain extension-confinement strength dependence and the structure factor behavior for the chain in stripe we infer the excluded volume regime typical for two-dimensional systems. On transition to the slab geometry, the advantageous chain extension decreases and the Gaussian regime is observed for not very long semiflexible chains. The evidence for pseudo-ideality in confined chains is based on indicators such as the extension curves, variation of the extension with the persistence length or the structure factor. The slab behavior is observed when the stripe (originally of monomer thickness) reaches the thickness larger than cca 10nm in the third dimension. This maximum height of the slab to retain the advantage of the stripe is very low and this have implication for DNA linearization experiments. The presented analysis, however, has a broader relevance for confined polymers. Support from Slovak R&D Agency (SRDA-0451-11) is acknowledged.

  16. Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    This paper demonstrates how to use the Random Decrement (RD) technique for identification of linear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing a new...

  17. Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, R.; Brincker, Rune

    1998-01-01

    This paper demonstrates how to use the Random Decrement (RD) technique for identification of linear structures subjected to ambient excitation. The theory behind the technique will be presented and guidelines how to choose the different variables will be given. This is done by introducing a new...

  18. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  19. Linear programming mathematics, theory and algorithms

    CERN Document Server

    1996-01-01

    Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.

  20. Non-linear iterative strategy for nem refinement and extension

    International Nuclear Information System (INIS)

    Engrand, P.R.; Maldonado, G.I.; Al-Chalabi, R.; Turinsky, P.J.

    1994-10-01

    The following work is related to the non-linear iterative strategy developed by K. Smith to solve the Nodal Expansion Method (NEM) representation of the neutron diffusion equations. We show how to improve this strategy and how to adapt it to time dependant problems. This work has been done in the NESTLE code, developed at North Carolina State University. When using Smith's strategy, one ends up with a two-node problem which corresponds to a matrix with a fixed structure and a size of 16 x 16 (for a 2 group representation). We show how to reduce this matrix into 2 equivalent systems which sizes are 4 x 4 and 8 x 8. The whole problem needs many of these 2 node problems solution. Therefore the gain in CPU time reaches 45% in the nodal part of the code. To adapt Smith's strategy to time dependent problems, the idea is to get the same structure of the 2 node problem system as in steady-state calculation. To achieve this, one has to approximate the values of the past time-step and of the previous by a second order polynomial and to treat it as a source term. We show here how to make this approximation consistent and accurate. (authors). 1 tab., 2 refs

  1. Extension of non-linear beam models with deformable cross sections

    Science.gov (United States)

    Sokolov, I.; Krylov, S.; Harari, I.

    2015-12-01

    Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.

  2. International linear collider simulations using BDSIM

    Indian Academy of Sciences (India)

    BDSIM is a Geant4 [1] extension toolkit for the simulation of particle transport in accelerator beamlines. It is a code that combines accelerator-style particle tracking with traditional Geant-style tracking based on Runga–Kutta techniques. A more detailed description of the code can be found in [2]. In an e+e− linear collider ...

  3. RAPID KNEE-EXTENSIONS TO INCREASE QUADRICEPS MUSCLE ACTIVITY IN PATIENTS WITH TOTAL KNEE ARTHROPLASTY

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  4. Rapid knee-extensions to increase quadriceps muscle activity in patients with total knee arthroplasty

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  5. Non-linear realizations of supersymmetry with off-shell central charges

    International Nuclear Information System (INIS)

    Santos Filho, P.B.; Oliveira Rivelles, V. de.

    1985-01-01

    A new class of non-linear realizations of the extended supersymmetry algebra with central charges is presented. They were obtained by applying the technique of dimensional reduction by Legendre transformation to a non-linear realization without central charges in one higher dimension. As a result an off-shell central charge is obtained. The non-linear lagrangian is the same as is the case of vanishing central charge. On-shell the central charge vanishes so this non-linear realization differs from that without central charges only off-shell. It is worked in two dimensions and its extension to higher dimensions is discussed. (Author) [pt

  6. Extensible numerical library in JAVA

    International Nuclear Information System (INIS)

    Aso, T.; Okazawa, H.; Takashimizu, N.

    2001-01-01

    The authors present the current status of the project for developing the numerical library in JAVA. The authors have presented how object-oriented techniques improve usage and also development of numerical libraries compared with the conventional way at previous conference. The authors need many functions for data analysis which is not provided within JAVA language, for example, good random number generators, special functions and so on. Authors' development strategy is focused on easiness of implementation and adding new features by users themselves not only by developers. In HPC field, there are other focus efforts to develop numerical libraries in JAVA. However, their focus is on the performance of execution, not easiness of extension. Following the strategy, the authors have designed and implemented more classes for random number generators and so on

  7. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

  8. Latent log-linear models for handwritten digit classification.

    Science.gov (United States)

    Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

    2012-06-01

    We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

  9. Effect of fiber extensibility on the fracture toughness of short fiber or brittle matrix composites

    International Nuclear Information System (INIS)

    Jain, L.K.; Wetherhold, R.C.

    1992-01-01

    A micromechanical model based on probabilistic principles is proposed to determine the effective fracture toughness increment and the bridging stress-crack opening displacement relationship for brittle matrix composites reinforced with short, poorly bonded fibers. Emphasis is placed on studying the effect of fiber extensibility on the bridging stress and the bridging fracture energy, and to determine its importance in cementitious matrix composites. Since the fibers may not be in an ideal aligned or random state, the analysis is placed in sufficiently general terms to consider any prescribable fiber orientation distribution. The model incorporates the snubbing effect observed during pull-out of fibers inclined at an angle to the crack face normal. In addition, the model allows the fibers to break; any fiber whose load meets or exceeds a single-valued failure stress will fracture rather than pull out. The crack bridging results may be expressed as the sum of results for inextensible fibers and an additional term due to fiber extensibility. An exact analysis is given which gives the steady-state bridging toughness G directly, but presents a non-linear problem for the bridging stress-crack opening (σ b -γ) relationship. An approximate analysis is then presented which gives both G and σ b -γ directly. To illustrate the effect extensibility on bridging stress and fracture energy increment due to bridging fibers, a comparison with the inextensible fiber case is provided. It is found that effect of extensibility on fracture energy is negligible for common materials systems. However extensibility may have a significant effect on the bridging stress-crack opening relationship. The effect of other physical and material parameters such as fiber length, fiber orientation and snubbing friction coefficient is also studied. 28 refs., 9 figs., 1 tab

  10. The average inter-crossing number of equilateral random walks and polygons

    International Nuclear Information System (INIS)

    Diao, Y; Dobay, A; Stasiak, A

    2005-01-01

    In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = 3ln2/8 ∼ 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance ρ apart and ρ is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of ρ. Our simulation result shows that the model in fact works very well for the entire range of ρ. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well

  11. Information content versus word length in random typing

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Moscoso del Prado Martín, Fermín

    2011-01-01

    Recently, it has been claimed that a linear relationship between a measure of information content and word length is expected from word length optimization and it has been shown that this linearity is supported by a strong correlation between information content and word length in many languages (Piantadosi et al 2011 Proc. Nat. Acad. Sci. 108 3825). Here, we study in detail some connections between this measure and standard information theory. The relationship between the measure and word length is studied for the popular random typing process where a text is constructed by pressing keys at random from a keyboard containing letters and a space behaving as a word delimiter. Although this random process does not optimize word lengths according to information content, it exhibits a linear relationship between information content and word length. The exact slope and intercept are presented for three major variants of the random typing process. A strong correlation between information content and word length can simply arise from the units making a word (e.g., letters) and not necessarily from the interplay between a word and its context as proposed by Piantadosi and co-workers. In itself, the linear relation does not entail the results of any optimization process. (letter)

  12. extensive and semi-intensive management systems in northern ghana

    African Journals Online (AJOL)

    management systems was positive and linearly correlated with eggs/oocysts of all the three intestinal parasites and became ... respectively was also positive but not significant under the semi-intensive system of management. Younger animals in the extensive ..... ruminants in Malaysia: Resistance to anthelmintics and the ...

  13. Extension of mixture-of-experts networks for binary classification of hierarchical data.

    Science.gov (United States)

    Ng, Shu-Kay; McLachlan, Geoffrey J

    2007-09-01

    For many applied problems in the context of medically relevant artificial intelligence, the data collected exhibit a hierarchical or clustered structure. Ignoring the interdependence between hierarchical data can result in misleading classification. In this paper, we extend the mechanism for mixture-of-experts (ME) networks for binary classification of hierarchical data. Another extension is to quantify cluster-specific information on data hierarchy by random effects via the generalized linear mixed-effects model (GLMM). The extension of ME networks is implemented by allowing for correlation in the hierarchical data in both the gating and expert networks via the GLMM. The proposed model is illustrated using a real thyroid disease data set. In our study, we consider 7652 thyroid diagnosis records from 1984 to early 1987 with complete information on 20 attribute values. We obtain 10 independent random splits of the data into a training set and a test set in the proportions 85% and 15%. The test sets are used to assess the generalization performance of the proposed model, based on the percentage of misclassifications. For comparison, the results obtained from the ME network with independence assumption are also included. With the thyroid disease data, the misclassification rate on test sets for the extended ME network is 8.9%, compared to 13.9% for the ME network. In addition, based on model selection methods described in Section 2, a network with two experts is selected. These two expert networks can be considered as modeling two groups of patients with high and low incidence rates. Significant variation among the predicted cluster-specific random effects is detected in the patient group with low incidence rate. It is shown that the extended ME network outperforms the ME network for binary classification of hierarchical data. With the thyroid disease data, useful information on the relative log odds of patients with diagnosed conditions at different periods can be

  14. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  15. SYSTEMATIC SAMPLING FOR NON - LINEAR TREND IN MILK YIELD DATA

    OpenAIRE

    Tanuj Kumar Pandey; Vinod Kumar

    2014-01-01

    The present paper utilizes systematic sampling procedures for milk yield data exhibiting some non-linear trends. The best fitted mathematical forms of non-linear trend present in the milk yield data are obtained and the expressions of average variances of the estimators of population mean under simple random, usual systematic and modified systematic sampling procedures have been derived for populations showing non-linear trend. A comparative study is made among the three sampli...

  16. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664

    Directory of Open Access Journals (Sweden)

    Yamaguchi David K

    2006-03-01

    Full Text Available Abstract Background Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Methods Participants (n = 132 were randomized to either active groups (10.32 g xylitol/day or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day. All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. Results There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. Conclusion There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically

  17. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  18. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.

    Science.gov (United States)

    de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2018-03-01

    Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.

  19. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Wong, Man-Hon; Ballester, Pedro J

    2014-08-27

    State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients. In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study. Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.

  20. Model Selection with the Linear Mixed Model for Longitudinal Data

    Science.gov (United States)

    Ryoo, Ji Hoon

    2011-01-01

    Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

  1. Lattice Designs in Standard and Simple Implicit Multi-linear Regression

    OpenAIRE

    Wooten, Rebecca D.

    2016-01-01

    Statisticians generally use ordinary least squares to minimize the random error in a subject response with respect to independent explanatory variable. However, Wooten shows illustrates how ordinary least squares can be used to minimize the random error in the system without defining a subject response. Using lattice design Wooten shows that non-response analysis is a superior alternative rotation of the pyramidal relationship between random variables and parameter estimates in multi-linear r...

  2. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  3. Generalized randomly amplified linear system driven by Gaussian noises: Extreme heavy tail and algebraic correlation decay in plasma turbulence

    International Nuclear Information System (INIS)

    Steinbrecher, Gyoergy; Weyssow, B.

    2004-01-01

    The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent β is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained

  4. Conditional Monte Carlo randomization tests for regression models.

    Science.gov (United States)

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  5. The Embedding Method for Linear Partial Differential Equations

    Indian Academy of Sciences (India)

    The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...

  6. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  7. Latency Performance of Encoding with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, René Rydhof; Lucani Rötter, Daniel Enrique

    2018-01-01

    the encoding process can be parallelized based on system requirements to reduce data access time within the system. Using a counting argument, we focus on predicting the effect of changes of generation (number of original packets) and symbol size (number of bytes per data packet) configurations on the encoding...... latency on full vector and on-the-fly algorithms. We show that the encoding latency doubles when either the generation size or the symbol size double and confirm this via extensive simulations. Although we show that the theoretical speed gain of on-the-fly over full vector is two, our measurements show...

  8. Linear mixed models for longitudinal data

    CERN Document Server

    Molenberghs, Geert

    2000-01-01

    This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...

  9. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  10. A cluster randomized control field trial of the ABRACADABRA web-based literacy intervention: Replication and extension of basic findings.

    Directory of Open Access Journals (Sweden)

    Noella Angele Piquette

    2014-12-01

    Full Text Available The present paper reports a cluster randomized control trial evaluation of teaching using ABRACADABRA (ABRA, an evidence-based and web-based literacy intervention (http://abralite.concordia.ca with 107 kindergarten and 96 grade 1 children in 24 classes (12 intervention 12 control classes from all 12 elementary schools in one school district in Canada. Children in the intervention condition received 10-12 hours of whole class instruction using ABRA between pre- and post-test. Hierarchical linear modeling of post-test results showed significant gains in letter-sound knowledge for intervention classrooms over control classrooms. In addition, medium effect sizes were evident for three of five outcome measures favoring the intervention: letter-sound knowledge (d = +.66, phonological blending (d = +.52, and word reading (d = +.52, over effect sizes for regular teaching. It is concluded that regular teaching with ABRA technology adds significantly to literacy in the early elementary years.

  11. Generalised Partially Linear Regression with Misclassified Data and an Application to Labour Market Transitions

    DEFF Research Database (Denmark)

    Dlugosz, Stephan; Mammen, Enno; Wilke, Ralf

    We consider the semiparametric generalised linear regression model which has mainstream empirical models such as the (partially) linear mean regression, logistic and multinomial regression as special cases. As an extension to related literature we allow a misclassified covariate to be interacted...

  12. Emmy Noether and Linear Evolution Equations

    Directory of Open Access Journals (Sweden)

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  13. Extended linear chain compounds

    CERN Document Server

    Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com­ plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper­ imental solid state physics/chemistry communities, was based on the obser­ vation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso­ tropic electrical, optical, magnetic, and mechanical properties, the conver­ gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallog...

  14. Determinants Of Job Satisfaction Of Field Extension Workers In ...

    African Journals Online (AJOL)

    Factor analysis was used to isolate the determinants of job satisfaction of field extension workers in Enugu State Agricultural Development Programme. Data was collected from 42 randomly selected respondents with the aid of structured questionnaire. Findings of the study showed that majority (about 58%) of the ...

  15. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  16. Extension of the SUSY Les Houches Accord 2 for see-saw mechanisms

    International Nuclear Information System (INIS)

    Basso, L.; Belyaev, A.; Chowdhury, D.; Ghosh, D.K.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F.

    2012-01-01

    The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. (authors)

  17. Bayesian optimization for computationally extensive probability distributions.

    Science.gov (United States)

    Tamura, Ryo; Hukushima, Koji

    2018-01-01

    An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.

  18. Orthogonal sparse linear discriminant analysis

    Science.gov (United States)

    Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun

    2018-03-01

    Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.

  19. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm

    DEFF Research Database (Denmark)

    Friedmann, Oliver; Hansen, Thomas Dueholm; Zwick, Uri

    2011-01-01

    The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. With essentially all deterministic pivoting rules it is known, however, to require an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior...... to this work, for randomized pivoting rules. We provide the first subexponential (i.e., of the form 2Ω(nα), for some α>0) lower bounds for the two most natural, and most studied, randomized pivoting rules suggested to date. The first randomized pivoting rule considered is Random-Edge, which among all improving...... pivoting steps (or edges) from the current basic feasible solution (or vertex) chooses one uniformly at random. The second randomized pivoting rule considered is Random-Facet, a more complicated randomized pivoting rule suggested by Kalai and by Matousek, Sharir and Welzl. Our lower bound for the Random...

  20. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    Science.gov (United States)

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed

  1. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  2. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  3. Parameterized Linear Longitudinal Airship Model

    Science.gov (United States)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  4. Locally Perturbed Random Walks with Unbounded Jumps

    OpenAIRE

    Paulin, Daniel; Szász, Domokos

    2010-01-01

    In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...

  5. A feasible DY conjugate gradient method for linear equality constraints

    Science.gov (United States)

    LI, Can

    2017-09-01

    In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.

  6. Simplified neural networks for solving linear least squares and total least squares problems in real time.

    Science.gov (United States)

    Cichocki, A; Unbehauen, R

    1994-01-01

    In this paper a new class of simplified low-cost analog artificial neural networks with on chip adaptive learning algorithms are proposed for solving linear systems of algebraic equations in real time. The proposed learning algorithms for linear least squares (LS), total least squares (TLS) and data least squares (DLS) problems can be considered as modifications and extensions of well known algorithms: the row-action projection-Kaczmarz algorithm and/or the LMS (Adaline) Widrow-Hoff algorithms. The algorithms can be applied to any problem which can be formulated as a linear regression problem. The correctness and high performance of the proposed neural networks are illustrated by extensive computer simulation results.

  7. Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain using analogues and analogues followed by random forests and multiple linear regression

    Directory of Open Access Journals (Sweden)

    G. Ibarra-Berastegi

    2011-06-01

    Full Text Available In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain during the 1961–2001 period. Three types of downscaling models have been built: (i analogues, (ii analogues followed by random forests and (iii analogues followed by multiple linear regression. The inputs consist of data (predictor fields taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961–1996 and a test period (1997–2001, where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.

  8. Effects of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers.

    Science.gov (United States)

    Yu, Kyung-Hun; Suk, Min-Hwa; Kang, Shin-Woo; Shin, Yun-A

    2014-10-01

    The purpose of this study was to investigate the effect of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers. The linear resistance training model (6 days/week) and nonlinear underwater training (4 days/week) were applied to 12 finswimmers (age, 16.08± 1.44 yr; career, 3.78± 1.90 yr) for 12 weeks. Body composition measures included weight, body mass index (BMI), percent fat, and fat-free mass. Physical fitness measures included trunk flexion forward, trunk extension backward, sargent jump, 1-repetition-maximum (1 RM) squat, 1 RM dead lift, knee extension, knee flexion, trunk extension, trunk flexion, and competition times. Body composition and physical fitness were improved after the 12-week periodic training program. Weight, BMI, and percent fat were significantly decreased, and trunk flexion forward, trunk extension backward, sargent jump, 1 RM squat, 1 RM dead lift, and knee extension (right) were significantly increased. The 50- and 100-m times significantly decreased in all 12 athletes. After 12 weeks of training, all finswimmers who participated in this study improved their times in a public competition. These data indicate that combined linear and nonlinear periodic training enhanced the physical fitness and competition times in finswimmers.

  9. Physics with linear colliders. e+e- linear colliders: Physics prospects

    International Nuclear Information System (INIS)

    Zerwas, P.M.

    1993-01-01

    This report describes the physics potential of e + e - linear colliders, expected in a first phase to operate in the energy range between 300 and 500 GeV. these machines will allow us to perform precision studies of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles in the intermediate mass range. New vector bosons and novel matter particles can be searched for and studied in detail. The machines provide unique opportunities for the investigation of supersymmetric extensions of the Standard Model, the SUSY Higgs spectrum and the supersymmetric partners of electroweak gauge/Higgs bosons and non-colored matter particles. (orig.)

  10. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    PILAT, F.; CAMERON, P.; PTITSYN, V.; KOUTCHOUK, J.P.

    2002-01-01

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analyzing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developed that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10 -5 resolution) determines the multipole content of an IR triplet

  11. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    Science.gov (United States)

    Kamlovskii, O. V.

    2013-12-01

    We consider some properties of the coordinate sequences of linear recurrences over Galois rings which characterize the possibility of regarding them as pseudo-random sequences. We study the periodicity properties, linear complexity and frequency characteristics of these sequences. Up to now, these parameters have been studied mainly in the case when the linear recurring sequence has maximal possible period. We investigate the coordinate sequences of linear recurrences of not necessarily maximal period. We obtain sharpened and generalized estimates for the number of elements and r-patterns on the cycles and intervals of these sequences.

  12. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    International Nuclear Information System (INIS)

    Certification Research Center, Moscow (Russian Federation))" data-affiliation=" (LLC Certification Research Center, Moscow (Russian Federation))" >Kamlovskii, O V

    2013-01-01

    We consider some properties of the coordinate sequences of linear recurrences over Galois rings which characterize the possibility of regarding them as pseudo-random sequences. We study the periodicity properties, linear complexity and frequency characteristics of these sequences. Up to now, these parameters have been studied mainly in the case when the linear recurring sequence has maximal possible period. We investigate the coordinate sequences of linear recurrences of not necessarily maximal period. We obtain sharpened and generalized estimates for the number of elements and r-patterns on the cycles and intervals of these sequences

  13. Expressing stochastic unravellings using random evolution operators

    International Nuclear Information System (INIS)

    Salgado, D; Sanchez-Gomez, J L

    2002-01-01

    We prove how the form of the most general invariant stochastic unravelling for Markovian (recently given in the literature by Wiseman and Diosi) and non-Markovian but Lindblad-type open quantum systems can be attained by imposing a single mathematical condition upon the random evolution operator of the system, namely a.s. trace preservation (a.s. stands for almost surely). The use of random operators ensures the complete positivity of the density operator evolution and characterizes the linear/non-linear character of the evolution in a straightforward way. It is also shown how three quantum stochastic evolution models - continuous spontaneous localization, quantum state diffusion and quantum mechanics with universal position localization - appear as concrete choices for the noise term of the evolution random operators are assumed. We finally conjecture how these operators may in the future be used in two different directions: both to connect quantum stochastic evolution models with random properties of space-time and to handle noisy quantum logical gates

  14. The effects of sleep extension on sleep and cognitive performance in adolescents with chronic sleep reduction: an experimental study

    NARCIS (Netherlands)

    Dewald-Kaufmann, J.F.; Oort, F.J.; Meijer, A.M.

    2013-01-01

    Objective: To investigate the effects of gradual sleep extension in adolescents with chronic sleep reduction. Outcome variables were objectively measured sleep and cognitive performance. Methods: Participants were randomly assigned to either a sleep extension group (gradual sleep extension by

  15. Non-Hermitian Extensions of Wishart Random Matrix Ensembles

    International Nuclear Information System (INIS)

    Akemann, G.

    2011-01-01

    We briefly review the solution of three ensembles of non-Hermitian random matrices generalizing the Wishart-Laguerre (also called chiral) ensembles. These generalizations are realized as Gaussian two-matrix models, where the complex eigenvalues of the product of the two independent rectangular matrices are sought, with the matrix elements of both matrices being either real, complex or quaternion real. We also present the more general case depending on a non-Hermiticity parameter, that allows us to interpolate between the corresponding three Hermitian Wishart ensembles with real eigenvalues and the maximally non-Hermitian case. All three symmetry classes are explicitly solved for finite matrix size N x M for all complex eigenvalue correlations functions (and real or mixed correlations for real matrix elements). These are given in terms of the corresponding kernels built from orthogonal or skew-orthogonal Laguerre polynomials in the complex plane. We then present the corresponding three Bessel kernels in the complex plane in the microscopic large-N scaling limit at the origin, both at weak and strong non-Hermiticity with M - N ≥ 0 fixed. (author)

  16. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    Osborn, James C.

    2011-01-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  17. An Extension of the Partial Credit Model with an Application to the Measurement of Change.

    Science.gov (United States)

    Fischer, Gerhard H.; Ponocny, Ivo

    1994-01-01

    An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)

  18. The effects of sleep extension on sleep and cognitive performance in adolescents with chronic sleep reduction: an experimental study

    NARCIS (Netherlands)

    Dewald-Kaufmann, J. F.; Oort, F. J.; Meijer, A. M.

    2013-01-01

    To investigate the effects of gradual sleep extension in adolescents with chronic sleep reduction. Outcome variables were objectively measured sleep and cognitive performance. Participants were randomly assigned to either a sleep extension group (gradual sleep extension by advancing bedtimes in the

  19. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  20. How Robust Is Linear Regression with Dummy Variables?

    Science.gov (United States)

    Blankmeyer, Eric

    2006-01-01

    Researchers in education and the social sciences make extensive use of linear regression models in which the dependent variable is continuous-valued while the explanatory variables are a combination of continuous-valued regressors and dummy variables. The dummies partition the sample into groups, some of which may contain only a few observations.…

  1. Spaces of Piecewise Linear Manifolds

    DEFF Research Database (Denmark)

    Gomez Lopez, Mauricio Esteban

    Abstract In this thesis we introduce Δ-set  ψPLd(RN) which we regard as the piecewise linear analogue of the space ψd(RN) of smooth d-dimensional submanifoldsin RN introduced by Galatius in [4]. Using ψPLd(RN) we define a bi-Δ-set Cd(RN)•,• ( whose geometric realization BCPLd(RN) = llCd(RN)•,•ll ......Abstract In this thesis we introduce Δ-set  ψPLd(RN) which we regard as the piecewise linear analogue of the space ψd(RN) of smooth d-dimensional submanifoldsin RN introduced by Galatius in [4]. Using ψPLd(RN) we define a bi-Δ-set Cd(RN)•,• ( whose geometric realization BCPLd(RN) = ll...... BCPLd (RN) ≅ ΩN–1lψPLd (RN)•l when N — d  ≥ 3. The proof of the main theorem relies on properties of ψPLd (RN) • which arise from the fact that this Δ-set can be obtained from a more general contravariant functor PL op → Sets defined on the category of finite dimensional polyhedraand piecewise linear...... maps, and on a fiberwise transversality result for piecewise linear submersions whose fibers are contained in R × (-1,1)N-1 ⊆ RN . For the proof of this transversality result we use a theorem of Hudson on extensions of piecewise linear isotopies which is why we need to include the condition N — d ≥ 3...

  2. Fuzziness and randomness in an optimization framework

    International Nuclear Information System (INIS)

    Luhandjula, M.K.

    1994-03-01

    This paper presents a semi-infinite approach for linear programming in the presence of fuzzy random variable coefficients. As a byproduct a way for dealing with optimization problems including both fuzzy and random data is obtained. Numerical examples are provided for the sake of illustration. (author). 13 refs

  3. New ghost-free extensions of general relativity

    International Nuclear Information System (INIS)

    Mann, R.B.

    1989-01-01

    The method of algebraic extension is shown to yield a large class of gravitational theories which are extensions of general relativity. Requiring positivity of energy in the flat-space limit of such theories provides some constraints, but a large set of theories of potential phenomenological interest survives this condition. Explicit examples of such theories include the non-symmetric gravitational theory, algebraically extended Hilbert gravity and a one-parameter family of theories with dynamical torsion. In general such theories do not alter general relativistic post-Newtonian predictions for time delay experiments; rather they alter the non-linearities of the post-Newtonian gravitational potential. Such effects may be probed by measuring periastron shifts, as in the eclipsing binary systems Di Her and As Cam, as well as in the binary pulsar PSR 1913 + 16 (author)

  4. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  5. Beam dynamics verification in linacs of linear colliders

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs

  6. Negative extensibility metamaterials: Occurrence and design-space topology

    Science.gov (United States)

    Karpov, Eduard G.; Danso, Larry A.; Klein, John T.

    2017-08-01

    A negative extensibility material structure pulls back and contracts when the external tensile load reaches a certain critical level. In this paper, we reveal basic mathematical features of the nonlinear strain energy function responsible for this unusual mechanical property. A systematic discussion leads to a comprehensive phase diagram in terms of design parameters for a simple unit cell structure that provides a panoramic view of all possible nonlinear mechanical behaviors. A negative extensibility region clearly is identified in the diagram. The sought property is seen to be rare, occurring only for a very narrow range of the design parameters. Nonetheless, due to the simplicity of the studied structure we suggest that the negative extensibility should be a more common phenomenon than previously thought. It can appear in simple bistable cells made of only several linearly elastic links, although at some peculiar combinations of their properties. These bistable unit cells can be used to design periodic mechanical metamaterials whose examples are shown as well as innovative architectural metastructures.

  7. Slepian Simulations of Plastic Displacements of Randomly Excited Hysteretic Structures

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov

    2003-01-01

    The object of the study is a fast simulation method for generation and analysis of the plastic response of a randomly excited MDOF oscillatro with several potential elements with elasto-plastic constitutive behavior. The oscillator is statically determinate with linear damping. The external...... approximately as a stationary Gaussian process. This requires that the standard deviation of the stationary response is not too large as compared to the plastic yield limits. The Slepian model process for the behavior of the linear response is then simply the conditional mean (linear regression) of the process...... noise excited linear oscillator obtained from the elasto-plastic oscillator by totally removing the plastic domain. Thus the key to the applicability of the method is that the oscillator has a linear domain within which the response stays for a sufficiently long time to make the random response behave...

  8. Use of internet for innovation management by extension agents in ...

    African Journals Online (AJOL)

    This study examined extension agents' perception of the use of the Internet for sourcing and disseminating agricultural innovation in Oyo state. Simple random sampling technique was used to select 80 respondents. Data collected with a questionnaire were subjected to descriptive and Pearson product moment correlation ...

  9. Efficient decoding of random errors for quantum expander codes

    OpenAIRE

    Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony

    2017-01-01

    We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...

  10. Multiobjective Two-Stage Stochastic Programming Problems with Interval Discrete Random Variables

    Directory of Open Access Journals (Sweden)

    S. K. Barik

    2012-01-01

    Full Text Available Most of the real-life decision-making problems have more than one conflicting and incommensurable objective functions. In this paper, we present a multiobjective two-stage stochastic linear programming problem considering some parameters of the linear constraints as interval type discrete random variables with known probability distribution. Randomness of the discrete intervals are considered for the model parameters. Further, the concepts of best optimum and worst optimum solution are analyzed in two-stage stochastic programming. To solve the stated problem, first we remove the randomness of the problem and formulate an equivalent deterministic linear programming model with multiobjective interval coefficients. Then the deterministic multiobjective model is solved using weighting method, where we apply the solution procedure of interval linear programming technique. We obtain the upper and lower bound of the objective function as the best and the worst value, respectively. It highlights the possible risk involved in the decision-making tool. A numerical example is presented to demonstrate the proposed solution procedure.

  11. Recipes for stable linear embeddings from Hilbert spaces to R^m

    OpenAIRE

    Puy, Gilles; Davies, Michael; Gribonval, Remi

    2017-01-01

    We consider the problem of constructing a linear map from a Hilbert space H (possibly infinite dimensional) to Rm that satisfies a restricted isometry property (RIP) on an arbitrary signal model, i.e., a subset of H. We present a generic framework that handles a large class of low-dimensional subsets but also unstructured and structured linear maps. We provide a simple recipe to prove that a random linear map satisfies a general RIP with high probability. We also describe a generic technique ...

  12. Recipes for stable linear embeddings from Hilbert spaces to R^m

    OpenAIRE

    Puy, Gilles; Davies, Mike; Gribonval, Rémi

    2015-01-01

    We consider the problem of constructing a linear map from a Hilbert space $\\mathcal{H}$ (possibly infinite dimensional) to $\\mathbb{R}^m$ that satisfies a restricted isometry property (RIP) on an arbitrary signal model $\\mathcal{S} \\subset \\mathcal{H}$. We present a generic framework that handles a large class of low-dimensional subsets but also unstructured and structured linear maps. We provide a simple recipe to prove that a random linear map satisfies a general RIP on $\\mathcal{S}$ with h...

  13. Complete axiomatization of the stutter-invariant fragment of the linear time µ-calculus

    NARCIS (Netherlands)

    Gheerbrant, A.

    2010-01-01

    The logic µ(U) is the fixpoint extension of the "Until"-only fragment of linear-time temporal logic. It also happens to be the stutter-invariant fragment of linear-time µ-calculus µ(◊). We provide complete axiomatizations of µ(U) on the class of finite words and on the class of ω-words. We introduce

  14. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  15. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Science.gov (United States)

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  16. Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata?

    NARCIS (Netherlands)

    Bak, R.P.M.; Nieuwland, G.; Meesters, H.W.G.

    2009-01-01

    Linear extension of branches in the same Acropora palmata (Lamarck, 1816) population in Curaçao was measured, employing exactly the same methods, in 1971-1973 and in 2002-2004, and the resulting coral growth rates are compared. Linear growth shows the same pattern over seasons in both periods with

  17. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  18. Random packing of digitized particles

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  19. Random packing of digitized particles

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2012-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  20. Stochastic Parameter Estimation of Non-Linear Systems Using Only Higher Order Spectra of the Measured Response

    Science.gov (United States)

    Vasta, M.; Roberts, J. B.

    1998-06-01

    Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.

  1. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    Science.gov (United States)

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  2. General solution of linear vector supersymmetry

    International Nuclear Information System (INIS)

    Blasi, Alberto; Maggiore, Nicola

    2007-01-01

    We give the general solution of the Ward identity for the linear vector supersymmetry which characterizes all topological models. Such a solution, whose expression is quite compact and simple, greatly simplifies the study of theories displaying a supersymmetric algebraic structure, reducing to a few lines the proof of their possible finiteness. In particular, the cohomology technology, usually involved for the quantum extension of these theories, is completely bypassed. The case of Chern-Simons theory is taken as an example

  3. Optimizing Linear Functions with Randomized Search Heuristics - The Robustness of Mutation

    DEFF Research Database (Denmark)

    Witt, Carsten

    2012-01-01

    The analysis of randomized search heuristics on classes of functions is fundamental for the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of the simple (1...

  4. WE-D-9A-03: CSDF: A Color Extension of the Grayscale Standard Display Function

    International Nuclear Information System (INIS)

    Kimpe, T; Marchessoux, C; Rostang, J; Piepers, B; Avanaki, A; Espig, K; Xthona, A

    2014-01-01

    Purpose: Use of color images in medical imaging has increased significantly the last few years. As of today there is no agreed standard on how color information needs to be visualized on medical color displays, resulting into large variability of color appearance and it making consistency and quality assurance a challenge. This paper presents a proposal for an extension of DICOM GSDF towards color. Methods: Visualization needs for several color modalities (multimodality imaging, nuclear medicine, digital pathology, quantitative imaging applications…) have been studied. On this basis a proposal was made for desired color behavior of color medical display systems and its behavior and effect on color medical images was analyzed. Results: Several medical color modalities could benefit from perceptually linear color visualization for similar reasons as why GSDF was put in place for greyscale medical images. An extension of the GSDF (Greyscale Standard Display Function) to color is proposed: CSDF (color standard display function). CSDF is based on deltaE2000 and offers a perceptually linear color behavior. CSDF uses GSDF as its neutral grey behavior. A comparison between sRGB/GSDF and CSDF confirms that CSDF significantly improves perceptual color linearity. Furthermore, results also indicate that because of the improved perceptual linearity, CSDF has the potential to increase perceived contrast of clinically relevant color features. Conclusion: There is a need for an extension of GSDF towards color visualization in order to guarantee consistency and quality. A first proposal (CSDF) for such extension has been made. Behavior of a CSDF calibrated display has been characterized and compared with sRGB/GSDF behavior. First results indicate that CSDF could have a positive influence on perceived contrast of clinically relevant color features and could offer benefits for quantitative imaging applications. Authors are employees of Barco Healthcare

  5. Assessment of Poisson, logit, and linear models for genetic analysis of clinical mastitis in Norwegian Red cows.

    Science.gov (United States)

    Vazquez, A I; Gianola, D; Bates, D; Weigel, K A; Heringstad, B

    2009-02-01

    Clinical mastitis is typically coded as presence/absence during some period of exposure, and records are analyzed with linear or binary data models. Because presence includes cows with multiple episodes, there is loss of information when a count is treated as a binary response. The Poisson model is designed for counting random variables, and although it is used extensively in epidemiology of mastitis, it has rarely been used for studying the genetics of mastitis. Many models have been proposed for genetic analysis of mastitis, but they have not been formally compared. The main goal of this study was to compare linear (Gaussian), Bernoulli (with logit link), and Poisson models for the purpose of genetic evaluation of sires for mastitis in dairy cattle. The response variables were clinical mastitis (CM; 0, 1) and number of CM cases (NCM; 0, 1, 2, ..). Data consisted of records on 36,178 first-lactation daughters of 245 Norwegian Red sires distributed over 5,286 herds. Predictive ability of models was assessed via a 3-fold cross-validation using mean squared error of prediction (MSEP) as the end-point. Between-sire variance estimates for NCM were 0.065 in Poisson and 0.007 in the linear model. For CM the between-sire variance was 0.093 in logit and 0.003 in the linear model. The ratio between herd and sire variances for the models with NCM response was 4.6 and 3.5 for Poisson and linear, respectively, and for model for CM was 3.7 in both logit and linear models. The MSEP for all cows was similar. However, within healthy animals, MSEP was 0.085 (Poisson), 0.090 (linear for NCM), 0.053 (logit), and 0.056 (linear for CM). For mastitic animals the MSEP values were 1.206 (Poisson), 1.185 (linear for NCM response), 1.333 (logit), and 1.319 (linear for CM response). The models for count variables had a better performance when predicting diseased animals and also had a similar performance between them. Logit and linear models for CM had better predictive ability for healthy

  6. SNR Estimation in Linear Systems with Gaussian Matrices

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2017-01-01

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  7. SNR Estimation in Linear Systems with Gaussian Matrices

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2017-09-27

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  8. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  9. Symmetry-Free, p-Robust Equilibrated Error Indication for the hp-Version of the FEMin Nearly Incompressible Linear Elasticity

    OpenAIRE

    Dörsek, Philipp; Melenk, Jens M.

    2017-01-01

    We consider the extension of the p-robust equilibrated error estimator due to Braess, Pillwein and Schöberl to linear elasticity. We derive a formulation where the local mixed auxiliary problems do not require symmetry of the stresses. The resulting error estimator is p-robust, and the reliability estimate is also robust in the incompressible limit if quadratics are included in the approximation space. Extensions to other systems of linear second-order partial differential equations are discu...

  10. The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

    Directory of Open Access Journals (Sweden)

    Hongchun Sun

    2012-01-01

    Full Text Available For the extended mixed linear complementarity problem (EML CP, we first present the characterization of the solution set for the EMLCP. Based on this, its global error bound is also established under milder conditions. The results obtained in this paper can be taken as an extension for the classical linear complementarity problems.

  11. Hawthorne effect with transient behavioral and biochemical changes in a randomized controlled sleep extension trial of chronically short-sleeping obese adults: implications for the design and interpretation of clinical studies.

    Directory of Open Access Journals (Sweden)

    Giovanni Cizza

    Full Text Available To evaluate the effects of study participation per se at the beginning of a sleep extension trial between screening, randomization, and the run-in visit.Subjects were screened, returned for randomization (Comparison vs. Intervention after 81 days (median, and attended run-in visit 121 days later.Outpatient.Obese (N = 125; M/F, 30/95; Blacks/Whites/Other, N = 73/44/8, mean weight 107.6±19.7 kg, <6.5 h sleep/night.Non-pharmacological sleep extension.Sleep duration (diaries and actigraphy watch, sleep quality (Pittsburgh Sleep Quality Index, daily sleepiness (Epworth Sleepiness Scale, fasting glucose, insulin and lipids.Prior to any intervention, marked improvements occurred between screening and randomization. Sleep duration increased (diaries: 357.4 ±51.2 vs. 388.1±48.6 min/night; mean±SD; P<0.001 screening vs. randomization; actigraphy: 344.3 ±41.9 vs. 358.6±48.2 min/night; P<0.001 sleep quality improved (9.1±3.2 vs. 8.2±3.0 PSQI score; P<0.001, sleepiness tended to improve (8.9±4.6 vs. 8.3±4.5 ESS score; P = 0.06, insulin resistance decreased (0.327±0.038 vs. 0.351±0.045; Quicki index; P<0.001, and lipids improved, except for HDL-C. Abnormal fasting glucose (25% vs. 11%; P = 0.007, and metabolic syndrome (42% vs. 29%; P = 0.007 both decreased. In absence of intervention, the earlier metabolic improvements disappeared at the run-in visit.Relatively small sample size.Improvements in biochemical and behavioral parameters between screening and randomization changed the "true" study baseline, thereby potentially affecting outcome. While regression to the mean and placebo effect were considered, these findings are most consistent with the "Hawthorne effect", according to which behavior measured in the setting of an experimental study changes in response to the attention received from study investigators. This is the first time that biochemical changes were documented with respect to the Hawthorne effect. The findings

  12. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  13. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    International Nuclear Information System (INIS)

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R.

    2015-01-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere

  14. Aspects of random geometric graphs : Pursuit-evasion and treewidth

    NARCIS (Netherlands)

    Li, A.

    2015-01-01

    In this thesis, we studied two aspects of random geometric graphs: pursuit-evasion and treewidth. We first studied one pursuit-evasion game: Cops and Robbers. This game, which dates back to 1970s, are studied extensively in recent years. We investigate this game on random geometric graphs, and get

  15. Extensions of pseudo-Perron-Frobenius splitting related to generalized inverse AT,S(2

    Directory of Open Access Journals (Sweden)

    Huang Shaowu

    2018-02-01

    Full Text Available We in this paper define the outer-Perron-Frobenius splitting, which is an extension of the pseudo- Perron-Frobenius splitting defined in [A.N. Sushama, K. Premakumari, K.C. Sivakumar, Extensions of Perron-Frobenius splittings and relationships with nonnegative Moore-Penrose inverse, Linear and Multilinear Algebra 63 (2015 1-11]. We present some criteria for the convergence of the outer-Perron-Frobenius splitting. The findings of this paper generalize some known results in the literatures.

  16. Privacy preserving randomized gossip algorithms

    KAUST Repository

    Hanzely, Filip; Konečný , Jakub; Loizou, Nicolas; Richtarik, Peter; Grishchenko, Dmitry

    2017-01-01

    In this work we present three different randomized gossip algorithms for solving the average consensus problem while at the same time protecting the information about the initial private values stored at the nodes. We give iteration complexity bounds for all methods, and perform extensive numerical experiments.

  17. Privacy preserving randomized gossip algorithms

    KAUST Repository

    Hanzely, Filip

    2017-06-23

    In this work we present three different randomized gossip algorithms for solving the average consensus problem while at the same time protecting the information about the initial private values stored at the nodes. We give iteration complexity bounds for all methods, and perform extensive numerical experiments.

  18. Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields

    Directory of Open Access Journals (Sweden)

    Martin Schlather

    2015-02-01

    Full Text Available Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with cross- covariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matrn models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.

  19. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  20. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-07-15

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  1. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  2. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  3. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  4. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  5. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  6. Structure formation with massive neutrinos. Going beyond linear theory

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas; Lesgourgues, Julien; Institut de Theorie Phenomenes Physiques EPFL, Lausanne; Savoie Univ., CNRS, Annecy-le-Vieux

    2014-08-01

    We compute non-linear corrections to the matter power spectrum taking the time- and scale-dependent free-streaming length of neutrinos into account. We adopt a hybrid scheme that matches the full Boltzmann hierarchy to an effective two-fluid description at an intermediate redshift. The non-linearities in the neutrino component are taken into account by using an extension of the time-flow framework. We point out that this remedies a spurious behaviour that occurs when neglecting non-linear terms for neutrinos. This behaviour is related to how efficiently short modes decouple from long modes and can be traced back to the violation of momentum conservation if neutrinos are treated linearly. Furthermore, we compare our results at next to leading order to various other methods and quantify the accuracy of the fluid description. Due to the correct decoupling behaviour of short modes, the two-fluid scheme is a suitable starting point to compute higher orders in perturbations or for resummation methods.

  7. Structure formation with massive neutrinos: going beyond linear theory

    CERN Document Server

    Blas, Diego; Konstandin, Thomas; Lesgourgues, Julien

    2014-01-01

    We compute non-linear corrections to the matter power spectrum taking the time- and scale-dependent free-streaming length of neutrinos into account. We adopt a hybrid scheme that matches the full Boltzmann hierarchy to an effective two-fluid description at an intermediate redshift. The non-linearities in the neutrino component are taken into account by using an extension of the time-flow framework. We point out that this remedies a spurious behaviour that occurs when neglecting non-linear terms for neutrinos. This behaviour is related to how efficiently short modes decouple from long modes and can be traced back to the violation of momentum conservation if neutrinos are treated linearly. Furthermore, we compare our results at next to leading order to various other methods and quantify the accuracy of the fluid description. Due to the correct decoupling behaviour of short modes, the two-fluid scheme is a suitable starting point to compute higher orders in perturbations or for resummation methods.

  8. An influence of extremal edges on boundary extension.

    Science.gov (United States)

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  9. Random walks and diffusion on networks

    Science.gov (United States)

    Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud

    2017-11-01

    Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

  10. Generation, combination and extension of random set approximations to coherent lower and upper probabilities

    International Nuclear Information System (INIS)

    Hall, Jim W.; Lawry, Jonathan

    2004-01-01

    Random set theory provides a convenient mechanism for representing uncertain knowledge including probabilistic and set-based information, and extending it through a function. This paper focuses upon the situation when the available information is in terms of coherent lower and upper probabilities, which are encountered, for example, when a probability distribution is specified by interval parameters. We propose an Iterative Rescaling Method (IRM) for constructing a random set with corresponding belief and plausibility measures that are a close outer approximation to the lower and upper probabilities. The approach is compared with the discrete approximation method of Williamson and Downs (sometimes referred to as the p-box), which generates a closer approximation to lower and upper cumulative probability distributions but in most cases a less accurate approximation to the lower and upper probabilities on the remainder of the power set. Four combination methods are compared by application to example random sets generated using the IRM

  11. A differential-geometric approach to generalized linear models with grouped predictors

    NARCIS (Netherlands)

    Augugliaro, Luigi; Mineo, Angelo M.; Wit, Ernst C.

    We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important

  12. Classical and nonclassical randomness in quantum measurements

    International Nuclear Information System (INIS)

    Farenick, Douglas; Plosker, Sarah; Smith, Jerrod

    2011-01-01

    The space POVM H (X) of positive operator-valued probability measures on the Borel sets of a compact (or even locally compact) Hausdorff space X with values in B(H), the algebra of linear operators acting on a d-dimensional Hilbert space H, is studied from the perspectives of classical and nonclassical convexity through a transform Γ that associates any positive operator-valued measure ν with a certain completely positive linear map Γ(ν) of the homogeneous C*-algebra C(X) x B(H) into B(H). This association is achieved by using an operator-valued integral in which nonclassical random variables (that is, operator-valued functions) are integrated with respect to positive operator-valued measures and which has the feature that the integral of a random quantum effect is itself a quantum effect. A left inverse Ω for Γ yields an integral representation, along the lines of the classical Riesz representation theorem for linear functionals on C(X), of certain (but not all) unital completely positive linear maps φ:C(X) x B(H)→B(H). The extremal and C*-extremal points of POVM H (X) are determined.

  13. A simplified method for random vibration analysis of structures with random parameters

    International Nuclear Information System (INIS)

    Ghienne, Martin; Blanzé, Claude

    2016-01-01

    Piezoelectric patches with adapted electrical circuits or viscoelastic dissipative materials are two solutions particularly adapted to reduce vibration of light structures. To accurately design these solutions, it is necessary to describe precisely the dynamical behaviour of the structure. It may quickly become computationally intensive to describe robustly this behaviour for a structure with nonlinear phenomena, such as contact or friction for bolted structures, and uncertain variations of its parameters. The aim of this work is to propose a non-intrusive reduced stochastic method to characterize robustly the vibrational response of a structure with random parameters. Our goal is to characterize the eigenspace of linear systems with dynamic properties considered as random variables. This method is based on a separation of random aspects from deterministic aspects and allows us to estimate the first central moments of each random eigenfrequency with a single deterministic finite elements computation. The method is applied to a frame with several Young's moduli modeled as random variables. This example could be expanded to a bolted structure including piezoelectric devices. The method needs to be enhanced when random eigenvalues are closely spaced. An indicator with no additional computational cost is proposed to characterize the ’’proximity” of two random eigenvalues. (paper)

  14. Conjugate pair of non-extensive statistics in quantum scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.D.

    1999-01-01

    In this paper, by defining the Fourier transform of the scattering amplitudes as a bounded linear mapping from the space L 2p to the space L 2q when 1/(2p)+1/(2q)=1, we introduced a new concept in quantum physics in terms of Tsallis-like entropies S J (p) and S θ (q), namely, that of conjugate pair of non-extensive statistics. This new concept is experimentally illustrated by using 88 + 49 sets of pion-nucleon and pion-nucleus phase shifts. From the experimental determination of the (p,q) - non-extensivity indices by choosing the pairs for which the [χ L 2 (p) + χ θ 2 (q min )] - optimal - test function is minimum we get the conjugate pair of [(p min ,J),(q min , θ)]- non-extensive statistics with 0.50 ≤ p min ≤ 0.60. This new non-extensive statistical effect is experimentally evidenced with high degree of accuracy (CL≥ 99%). Moreover, it is worth to mention that the modification of the statistics has been more efficient than the modification of the PMD-SQS-optimum principle in obtaining the best overall fitting to the experimental data. (authors)

  15. Pseudo-random properties of a linear congruential generator investigated by b-adic diaphony

    Science.gov (United States)

    Stoev, Peter; Stoilova, Stanislava

    2017-12-01

    In the proposed paper we continue the study of the diaphony, defined in b-adic number system, and we extend it in different directions. We investigate this diaphony as a tool for estimation of the pseudorandom properties of some of the most used random number generators. This is done by evaluating the distribution of specially constructed two-dimensional nets on the base of the obtained random numbers. The aim is to see how the generated numbers are suitable for calculations in some numerical methods (Monte Carlo etc.).

  16. Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions

    DEFF Research Database (Denmark)

    Bresolin, Davide; Goranko, Valentin; Montanari, Angelo

    2009-01-01

    In this paper, we investigate the expressiveness of the variety of propositional interval neighborhood logics (PNL), we establish their decidability on linearly ordered domains and some important subclasses, and we prove the undecidability of a number of extensions of PNL with additional modalities...... over interval relations. All together, we show that PNL form a quite expressive and nearly maximal decidable fragment of Halpern–Shoham’s interval logic HS....

  17. On randomly interrupted diffusion

    International Nuclear Information System (INIS)

    Luczka, J.

    1993-01-01

    Processes driven by randomly interrupted Gaussian white noise are considered. An evolution equation for single-event probability distributions in presented. Stationary states are considered as a solution of a second-order ordinary differential equation with two imposed conditions. A linear model is analyzed and its stationary distributions are explicitly given. (author). 10 refs

  18. Random eigenvalue problems revisited

    Indian Academy of Sciences (India)

    statistical distributions; linear stochastic systems. 1. ... dimensional multivariate Gaussian random vector with mean µ ∈ Rm and covariance ... 5, the proposed analytical methods are applied to a three degree-of-freedom system and the ...... The joint pdf ofω1 andω3 is however close to a bivariate Gaussian density function.

  19. Strong Laws of Large Numbers for Arrays of Rowwise NA and LNQD Random Variables

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2011-01-01

    Full Text Available Some strong laws of large numbers and strong convergence properties for arrays of rowwise negatively associated and linearly negative quadrant dependent random variables are obtained. The results obtained not only generalize the result of Hu and Taylor to negatively associated and linearly negative quadrant dependent random variables, but also improve it.

  20. Genetic parameters for quail body weights using a random ...

    African Journals Online (AJOL)

    A model including fixed and random linear regressions is described for analyzing body weights at different ages. In this study, (co)variance components, heritabilities for quail weekly weights and genetic correlations among these weights were estimated using a random regression model by DFREML under DXMRR option.

  1. Linear kinetic theory and particle transport in stochastic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  2. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    Science.gov (United States)

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  3. Directed self-avoiding walks in random media

    International Nuclear Information System (INIS)

    Santra, S. B.; Seitz, W. A.; Klein, D. J.

    2001-01-01

    Two types of directed self-avoiding walks (SAW's), namely, three-choice directed SAW and outwardly directed SAW, have been studied on infinite percolation clusters on the square lattice in two dimensions. The walks on the percolation clusters are generated via a Monte Carlo technique. The longitudinal extension R N and the transverse fluctuation W N have been measured as a function of the number of steps N. Slight swelling is observed in the longitudinal direction on the random lattices. A crossover from shrinking to swelling of the transverse fluctuations is found at a certain length N c of the walks. The exponents related to the transverse fluctuations are seen to be unchanged in the random media even as the percolation threshold is reached. The scaling function form of the extensions are verified

  4. Algorithms for sorting unsigned linear genomes by the DCJ operations.

    Science.gov (United States)

    Jiang, Haitao; Zhu, Binhai; Zhu, Daming

    2011-02-01

    The double cut and join operation (abbreviated as DCJ) has been extensively used for genomic rearrangement. Although the DCJ distance between signed genomes with both linear and circular (uni- and multi-) chromosomes is well studied, the only known result for the NP-complete unsigned DCJ distance problem is an approximation algorithm for unsigned linear unichromosomal genomes. In this article, we study the problem of computing the DCJ distance on two unsigned linear multichromosomal genomes (abbreviated as UDCJ). We devise a 1.5-approximation algorithm for UDCJ by exploiting the distance formula for signed genomes. In addition, we show that UDCJ admits a weak kernel of size 2k and hence an FPT algorithm running in O(2(2k)n) time.

  5. Data-Driven Lead-Acid Battery Prognostics Using Random Survival Forests

    Science.gov (United States)

    2014-10-02

    Kogalur, Blackstone , & Lauer, 2008; Ishwaran & Kogalur, 2010). Random survival forest is a sur- vival analysis extension of Random Forests (Breiman, 2001...Statistics & probability letters, 80(13), 1056–1064. Ishwaran, H., Kogalur, U. B., Blackstone , E. H., & Lauer, M. S. (2008). Random survival forests. The...and environment for sta- tistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project .org/ Wager, S., Hastie, T

  6. Bayesian prediction of spatial count data using generalized linear mixed models

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund; Waagepetersen, Rasmus Plenge

    2002-01-01

    Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, ...

  7. Modular Transformations, Order-Chaos Transitions and Pseudo-Random Number Generation

    Science.gov (United States)

    Bonelli, Antonio; Ruffo, Stefano

    Successive pairs of pseudo-random numbers generated by standard linear congruential transformations display ordered patterns of parallel lines. We study the "ordered" and "chaotic" distribution of such pairs by solving the eigenvalue problem for two-dimensional modular transformations over integers. We conjecture that the optimal uniformity for pair distribution is obtained when the slope of linear modular eigenspaces takes the value n opt =maxint (p/√ {p-1}), where p is a prime number. We then propose a new generator of pairs of independent pseudo-random numbers, which realizes an optimal uniform distribution (in the "statistical" sense) of points on the unit square (0, 1] × (0, 1]. The method can be easily generalized to the generation of k-tuples of random numbers (with k>2).

  8. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  9. On the pertinence to Physics of random walks induced by random dynamical systems: a survey

    International Nuclear Information System (INIS)

    Petritis, Dimitri

    2016-01-01

    Let be an abstract space and a denumerable (finite or infinite) alphabet. Suppose that is a family of functions such that for all we have and a family of transformations . The pair (( S_a)_a , ( p_a)_a ) is termed an iterated function system with place dependent probabilities. Such systems can be thought as generalisations of random dynamical systems. As a matter of fact, suppose we start from a given ; we pick then randomly, with probability p_a (x) , the transformation S_a and evolve to S_a (x) . We are interested in the behaviour of the system when the iteration continues indefinitely. Random walks of the above type are omnipresent in both classical and quantum Physics. To give a small sample of occurrences we mention: random walks on the affine group, random walks on Penrose lattices, random walks on partially directed lattices, evolution of density matrices induced by repeated quantum measurements, quantum channels, quantum random walks, etc. In this article, we review some basic properties of such systems and provide with a pathfinder in the extensive bibliography (both on mathematical and physical sides) where the main results have been originally published. (paper)

  10. Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.

    Science.gov (United States)

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2017-01-01

    The association between maternal age of onset of dementia and amyloid deposition (measured by in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of interest. In a regression model for amyloid, special methods are required due to the random right censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed methods to address the problem of censoring due to assay limit of detection, but not random censoring. We propose imputation methods and a survival regression method that do not require parametric assumptions about the distribution of the censored covariate. Existing imputation methods address missing covariates, but not right censored covariates. In simulation studies, we compare these methods to the simple, but inefficient complete case analysis, and to thresholding approaches. We apply the methods to the Alzheimer's study.

  11. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  12. 9th International Accelerator School for Linear Colliders

    CERN Document Server

    2015-01-01

    This school is a continuation of the series of schools that began nine years ago: Japan 2006, Italy 2007, United States 2008, China 2009, Switzerland 2010, United States 2011, India 2012 and Turkey 2013. Based on needs from the accelerator community, the Linear Collider Collaboration (LCC) and ICFA Beam Dynamics Panel are organising the Ninth International Accelerator School for Linear Colliders. The school will present instruction in TeV-scale linear colliders including the ILC, CLIC and other advanced accelerators. An important change of this year’s school from previous LC schools is that it will also include the free electron laser (FEL), a natural extension for applications of the ILC/CLIC technology. The school is offered to graduate students, postdoctoral fellows and junior researchers from around the world. We welcome applications from physicists who are considering changing to a career in accelerator physics and technology. This school adopts an in depth approach. A selective course on the FEL has b...

  13. Knowledge and perception of extension workers towards ict utilization in agricultural extension service delivery in Gazipur district of Bangladesh

    Directory of Open Access Journals (Sweden)

    F.A. Prodhan

    2014-12-01

    Full Text Available The primary purpose of the study was to assess the extent of knowledge and perception of extension workers towards ICT utilization and to determine the relationship between the selected characteristics of the respondents and knowledge and perception of extension workers towards ICT utilization in extension service delivery. The study was conducted in Gazipur district and comprised proportionate random sample of 90 extension workers from five upazila of Gazipur district. A pre-tested interview schedule was used to collect data from the respondents. To measure the knowledge on ICT utilization 35 statements were selected regarding 7 ICT with five possible answer of each tools and a score of one was given to the right answer and zero to the wrong answer alternatively to measure the perception of the respondents rated each of 10 statements ICT utilization in agriculture on a 5-point Likert type scale and the total of these ratings formed perception index. The result of the study showed that out of seven ICT tools the knowledge of extension workers was highest in case of MS Word this was followed by internet/ web service and the lowest knowledge was found in case of Geographical Information System. It is observed that an overwhelming majority (88.9% of agricultural extension workers in the study area had low to medium knowledge towards ICT utilization. Findings reveal that the respondents had top most perception on the ICT utilization in respect of ‘Extension work can be greatly enhanced by ICT’ followed by on ‘The benefits of ICT use outweigh the financial burden involved’. The result also indicated that more than fourth-fifth (84.4% of the respondents had medium to high perception towards ICT utilization. There were significant relationship between service experience and use of the information sources of the respondents with their knowledge towards ICT utilization conversely innovativeness, cosmopoliteness and job satisfaction of the

  14. FAST COMPENSATION OF GLOBAL LINEAR COUPLING IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Global linear coupling has been extensively studied in accelerators and several methods have been developed to compensate the coupling coefficient C using skew quadrupole families scans. However, scanning techniques can become very time consuming especially during the commissioning of an energy ramp. In this paper they illustrate a new technique to measure and compensate, in a single machine cycle, global linear coupling from turn-by-turn BPM data without the need of a skew quadrupole scan. The algorithm is applied to RHIC BPM data using AC dipoles and compared with traditional methods

  15. Permafrost Hazards and Linear Infrastructure

    Science.gov (United States)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  16. On the Optimal Location of Sensors for Parametric Identification of Linear Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Brincker, Rune

    1994-01-01

    . It is assumed most often that the results of the measurements are statistically independent random variables. In an example the importance of considering the measurements as statistically dependent random variables is shown. The covariance of the model parameters expected to be obtained is investigated......An outline of the field of optimal location of sensors for parametric identification of linear structural systems is presented. There are few papers devoted to the case of optimal location of sensors in which the measurements are modeled by a random field with non-trivial covariance function...

  17. Damping Estimation of Friction Systems in Random Vibrations

    DEFF Research Database (Denmark)

    Friis, Tobias; Katsanos, Evangelos; Amador, Sandro

    Friction is one of the most efficient and economical mechanisms to reduce vibrations in structural mechanics. However, the estimation of the equivalent linear damping of the friction damped systems in experimental modal analysis and operational modal analysis can be adversely affected by several...... assumptions regarding the definition of the linear damping and the identification methods or may be lacking a meaningful interpretation of the damping. Along these lines, this project focuses on assessing the potential to estimate efficiently the equivalent linear damping of friction systems in random...

  18. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    International Nuclear Information System (INIS)

    Yu, Zhiyong

    2013-01-01

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right

  19. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyong, E-mail: yuzhiyong@sdu.edu.cn [Shandong University, School of Mathematics (China)

    2013-12-15

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right.

  20. Linear Programming, the Simplex Algorithm and Simple Polytopes

    Directory of Open Access Journals (Sweden)

    Das Bhusan

    2010-09-01

    Full Text Available In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.

  1. Random skew plane partitions with a piecewise periodic back wall

    DEFF Research Database (Denmark)

    Boutillier, Cedric; Mkrtchyan, Sevak; Reshetikhin, Nicolai

    Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes. Muc...

  2. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  3. The 300-500 GeV e+e- linear collider

    International Nuclear Information System (INIS)

    Settles, R.

    1993-03-01

    This report is a brief review of the physics opportunities of a 300-500 GeV ε + ε - Linear Collider and of the state-of-the-art of the machine technology, subjects of detailed discussion at the ICFA Workshop on Physics and Experimentation at Linear Colliders held in Finland in September 1991. Theoretical and experimental aspects of a broad range of physics issues were studied about the Standard Model and beyond, a few examples of which are covered here. Highlights are given on the topics of the Top Quark, the Higgs Boson of the Standard Model and of its Minimal Supersymmetric extension, and the Discovery Potential. A summary is given of the status of Machine R and D as covered at Finland and as subsequently updated at The ECFA Workshop on ε + ε - Linear Colliders LC92 held in Bavaria in July 1992. (orig.)

  4. Influence of defects on the effective electrical conductivity of a monolayer produced by random sequential adsorption of linear k-mers onto a square lattice

    Science.gov (United States)

    Tarasevich, Yuri Yu.; Laptev, Valeri V.; Goltseva, Valeria A.; Lebovka, Nikolai I.

    2017-07-01

    The effect of defects on the behaviour of electrical conductivity, σ, in a monolayer produced by the random sequential adsorption of linear k-mers (particles occupying k adjacent sites) onto a square lattice is studied by means of a Monte Carlo simulation. The k-mers are deposited on the substrate until a jamming state is reached. The presence of defects in the lattice (impurities) and of defects in the k-mers with concentrations of dl and dk, respectively, is assumed. The defects in the lattice are distributed randomly before deposition and these lattice sites are forbidden for the deposition of k-mers. The defects of the k-mers are distributed randomly on the deposited k-mers. The sites filled with k-mers have high electrical conductivity, σk, whereas the empty sites, and the sites filled by either types of defect have a low electrical conductivity, σl, i.e., a high-contrast, σk /σl ≫ 1, is assumed. We examined isotropic (both the possible x and y orientations of a particle are equiprobable) and anisotropic (all particles are aligned along one given direction, y) deposition. To calculate the effective electrical conductivity, the monolayer was presented as a random resistor network and the Frank-Lobb algorithm was used. The effects of the concentrations of defects dl and dk on the electrical conductivity for the values of k =2n, where n = 1 , 2 , … , 5, were studied. Increase of both the dl and dk parameters values resulted in decreases in the value of σ and the suppression of percolation. Moreover, for anisotropic deposition the electrical conductivity along the y direction was noticeably larger than in the perpendicular direction, x. Phase diagrams in the (dl ,dk)-plane for different values of k were obtained.

  5. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    Science.gov (United States)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  6. Recent results on stability and response bounds of linear systems - a review

    DEFF Research Database (Denmark)

    Pommer, Christian; Kliem, Wolfhard

    2006-01-01

    The literature on linear systems emerging from second order differential equations is extensive because such systems are ubiquitous in modeling, particularly modeling of mechanical systems. This paper offers an overview of some of the recent research in this field, in particular on the subject...

  7. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  8. Discrete random signal processing and filtering primer with Matlab

    CERN Document Server

    Poularikas, Alexander D

    2013-01-01

    Engineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering.Numerous Useful Examples, Problems, and Solutions - An Extensive and Powerful ReviewWritten for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offe

  9. Principal Component Analysis: Resources for an Essential Application of Linear Algebra

    Science.gov (United States)

    Pankavich, Stephen; Swanson, Rebecca

    2015-01-01

    Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…

  10. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  11. Modified linear predictive coding approach for moving target tracking by Doppler radar

    Science.gov (United States)

    Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao

    2016-07-01

    Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.

  12. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  13. Extension of the renormalizability criterion to the case of arbitrary unperturbed Lagrangian

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1979-01-01

    Extension of the renormalizability criterium of the perturbation theory is generalized in the case, when an unperturbed lagrangian is not a lagrangian of free fields L 0 . The derivating functional of the Green function, written in the form of a function integral is disintegrated by the perturbed lagrangian L 1 when building the perturbation theory. Described are ultraviolet divergences and possibilities of their elimination in eucledian space. The criterion permits to state extension renormalizability of the perturbation theory for eVery point L 0 and the direction L 1 assigned in this point in linear space of different lagrangians. According to the Weinberg theorem the grade asymptotics of Green functions is not changed at slight shift from the initial point in the supernormalized direction. For any point and any direction the extension of the perturbation theory is supernormalized in this space

  14. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  15. Linear infrastructure impacts on landscape hydrology.

    Science.gov (United States)

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  16. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    Science.gov (United States)

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  17. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    Science.gov (United States)

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Turning an Extension Aide into an Extension Agent

    Science.gov (United States)

    Seevers, Brenda; Dormody, Thomas J.

    2010-01-01

    For any organization to remain sustainable, a renewable source of faculty and staff needs to be available. The Extension Internship Program for Juniors and Seniors in High School is a new tool for recruiting and developing new Extension agents. Students get "hands on" experience working in an Extension office and earn college credit…

  19. Designing and application of SAN extension interface based on CWDM

    Science.gov (United States)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  20. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    International Nuclear Information System (INIS)

    Hoelzl, M; Merkel, P; Lackner, K; Strumberger, E; Huijsmans, G T A; Aleynikova, K; Liu, F; Atanasiu, C; Nardon, E; Fil, A; McAdams, R; Chapman, I

    2014-01-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described

  1. Pseudo-random Trees: Multiple Independent Sequence Generators for Parallel and Branching Computations

    Science.gov (United States)

    Halton, John H.

    1989-09-01

    A class of families of linear congruential pseudo-random sequences is defined, for which it is possible to branch at any event without changing the sequence of random numbers used in the original random walk and for which the sequences in different branches show properties analogous to mutual statistical independence. This is a hitherto unavailable, and computationally desirable, tool.

  2. On the null distribution of Bayes factors in linear regression

    Science.gov (United States)

    We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...

  3. Equidistant Linear Network Codes with maximal Error-protection from Veronese Varieties

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    2012-01-01

    Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possible altered vectorspace. Ralf Koetter and Frank R. Kschischang in Coding for errors and erasures in random network coding (IEEE Transactions on Information Theory...... construct explicit families of vector-spaces of constant dimension where any pair of distinct vector-spaces are equidistant in the above metric. The parameters of the resulting linear network codes which have maximal error-protection are determined....

  4. Non linear stability analysis of parallel channels with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish Mani; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2016-12-01

    Highlights: • Nonlinear instabilities in natural circulation loop are studied. • Generalized Hopf points, Sub and Supercritical Hopf bifurcations are identified. • Bogdanov–Taken Point (BT Point) is observed by nonlinear stability analysis. • Effect of parameters on stability of system is studied. - Abstract: Linear stability analysis of two-phase flow in natural circulation loop is quite extensively studied by many researchers in past few years. It can be noted that linear stability analysis is limited to the small perturbations only. It is pointed out that such systems typically undergo Hopf bifurcation. If the Hopf bifurcation is subcritical, then for relatively large perturbation, the system has unstable limit cycles in the (linearly) stable region in the parameter space. Hence, linear stability analysis capturing only infinitesimally small perturbations is not sufficient. In this paper, bifurcation analysis is carried out to capture the non-linear instability of the dynamical system and both subcritical and supercritical bifurcations are observed. The regions in the parameter space for which subcritical and supercritical bifurcations exist are identified. These regions are verified by numerical simulation of the time-dependent, nonlinear ODEs for the selected points in the operating parameter space using MATLAB ODE solver.

  5. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Directory of Open Access Journals (Sweden)

    Linhai Gan

    2017-01-01

    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  6. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    Science.gov (United States)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  7. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    Science.gov (United States)

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  8. Apatite fission track analysis: geological thermal history analysis based on a three-dimensional random process of linear radiation damage

    International Nuclear Information System (INIS)

    Galbraith, R.F.; Laslett, G.M.; Green, P.F.; Duddy, I.R.

    1990-01-01

    Spontaneous fission of uranium atoms over geological time creates a random process of linearly shaped features (fission tracks) inside an apatite crystal. The theoretical distributions associated with this process are governed by the elapsed time and temperature history, but other factors are also reflected in empirical measurements as consequences of sampling by plane section and chemical etching. These include geometrical biases leading to over-representation of long tracks, the shape and orientation of host features when sampling totally confined tracks, and 'gaps' in heavily annealed tracks. We study the estimation of geological parameters in the presence of these factors using measurements on both confined tracks and projected semi-tracks. Of particular interest is a history of sedimentation, uplift and erosion giving rise to a two-component mixture of tracks in which the parameters reflect the current temperature, the maximum temperature and the timing of uplift. A full likelihood analysis based on all measured densities, lengths and orientations is feasible, but because some geometrical biases and measurement limitations are only partly understood it seems preferable to use conditional likelihoods given numbers and orientations of confined tracks. (author)

  9. Effective Perron-Frobenius eigenvalue for a correlated random map

    Science.gov (United States)

    Pool, Roman R.; Cáceres, Manuel O.

    2010-09-01

    We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.

  10. Level Of Extension Agents Motivation And Effectiveness In Abia State Nigeria.

    Directory of Open Access Journals (Sweden)

    Machiadikwe N. Benjamin Agbarevo Nwogu

    2015-08-01

    Full Text Available Motivation is known to affect effectiveness of workers but the level of extension agents motivation and how this has affected their effectiveness in Abia state is apparently unknown. A study was therefore conducted to determine the effect of motivation on effectiveness of extension agents in Abia State Nigeria. Two blocks were selected from each of the three zones in the state at the first stage giving total of 6 blocks. The second stage involved the selection of two sub-circles from each of the 6 blocks selected giving a total of 12 extension sub-circles. At the third stage 10 extension agents from each of the sub-circles were randomly selected giving a sample size of 120 extension agents. The data for the study was collected with use of a structured questionnaire. The extension agents level of motivation and effectiveness were measured with the aid of a 5 point Likert rating scale. Data collected was analyzed using both descriptive and inferential statistics. Descriptive statistics used were the mean frequencies and the Pearsons Product Moment Correlation Co-efficient which was used to determine the coefficient of correlation r . The inferential statistic used was the t-test of significance of relationship. The study found a significant relationship between the level of motivation and effectiveness of extension agents. Hence the null hypothesis which stated that there is no significant relationship between the level of motivation and effectiveness of extension agents was rejected and the alternative hypothesis accepted at 95 confidence level and 119 degrees of freedom.

  11. ANALYSIS OF HOLLOW COIL HELICAL EXTENSION SPRING AND THE STUDY OF OPTIMIZING THE WEIGHT

    OpenAIRE

    Naman Gupta*1, Manas purohit2 & Deepika potghan3

    2017-01-01

    This paper shows the study which deals with the weight reduction for tensile extension spring by changing the solid spring to hollow one. The springs which are generally used are in solid form due to which the weight of entire body in which the spring is attached gets increased. The forces which can be act on spring may be linear push or linear pull or radial type. This spring deflect by pulling and regain its shape when pulling is neglect. The weight of tensile spring is reduced by changing ...

  12. Effect of Low-Energy Linear Shockwave Therapy on Erectile Dysfunction

    DEFF Research Database (Denmark)

    Fojecki, Grzegorz L; Thiessen, Stefan; Osther, Palle Jørn Sloth

    2017-01-01

    INTRODUCTION: Previous studies have shown that focal low-energy extracorporeal shockwave therapy (Li-ESWT) can have a positive effect in men with erectile dysfunction (ED). Linear Li-ESWT (LLi-ESWT) for ED has not been previously assessed in a randomized trial. AIM: To evaluate the treatment...... MEASURES: The primary outcome measurement was an increase of at least five points on the IIEF-EF score. The secondary outcome measurement was an increased EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regression. RESULTS: Mean IIEF...

  13. Applications and extensions of degradation modeling

    International Nuclear Information System (INIS)

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs

  14. Applications and extensions of degradation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.; Subudhi, M.; Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International Corp., Columbus, OH (United States)

    1991-12-31

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  15. Applications and extensions of degradation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.; Subudhi, M.; Samanta, P.K. (Brookhaven National Lab., Upton, NY (United States)); Vesely, W.E. (Science Applications International Corp., Columbus, OH (United States))

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  16. Genetic parameters and correlations among linear type traits in the ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... of Holstein heredity (BLD), respectively. The fixed effect of technician was denoted by TEC, the random effect of animal additive genetic effect and residual effects were shown by A and E, respectively. Each of the fixed effects was investigated via SAS software (proc Generalized Linear Model). In this study,.

  17. Parallel linear solvers for simulations of reactor thermal hydraulics

    International Nuclear Information System (INIS)

    Yan, Y.; Antal, S.P.; Edge, B.; Keyes, D.E.; Shaver, D.; Bolotnov, I.A.; Podowski, M.Z.

    2011-01-01

    The state-of-the-art multiphase fluid dynamics code, NPHASE-CMFD, performs multiphase flow simulations in complex domains using implicit nonlinear treatment of the governing equations and in parallel, which is a very challenging environment for the linear solver. The present work illustrates how the Portable, Extensible Toolkit for Scientific Computation (PETSc) and scalable Algebraic Multigrid (AMG) preconditioner from Hypre can be utilized to construct robust and scalable linear solvers for the Newton correction equation obtained from the discretized system of governing conservation equations in NPHASE-CMFD. The overall long-tem objective of this work is to extend the NPHASE-CMFD code into a fully-scalable solver of multiphase flow and heat transfer problems, applicable to both steady-state and stiff time-dependent phenomena in complete fuel assemblies of nuclear reactors and, eventually, the entire reactor core (such as the Virtual Reactor concept envisioned by CASL). This campaign appropriately begins with the linear algebraic equation solver, which is traditionally a bottleneck to scalability in PDE-based codes. The computational complexity of the solver is usually superlinear in problem size, whereas the rest of the code, the “physics” portion, usually has its complexity linear in the problem size. (author)

  18. Organization of growing random networks

    International Nuclear Information System (INIS)

    Krapivsky, P. L.; Redner, S.

    2001-01-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A k . When A k grows more slowly than linearly with k, the number of nodes with k links, N k (t), decays faster than a power law in k, while for A k growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A k is asymptotically linear, N k (t)∼tk -ν , with ν dependent on details of the attachment probability, but in the range 2 -2 power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network

  19. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    Directory of Open Access Journals (Sweden)

    Santana Isabel

    2011-08-01

    Full Text Available Abstract Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI, but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.

  20. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations

    KAUST Repository

    Castrillon, Julio; Nobile, Fabio; Tempone, Raul

    2016-01-01

    In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem

  1. SOME SYSTEMATIC SAMPLING STRATEGIES USING MULTIPLE RANDOM STARTS

    OpenAIRE

    Sampath Sundaram; Ammani Sivaraman

    2010-01-01

    In this paper an attempt is made to extend linear systematic sampling using multiple random starts due to Gautschi(1957)for various types of systematic sampling schemes available in literature, namely(i)  Balanced Systematic Sampling (BSS) of  Sethi (1965) and (ii) Modified Systematic Sampling (MSS) of Singh, Jindal, and Garg  (1968). Further, the proposed methods were compared with Yates corrected estimator developed with reference to Gautschi’s Linear systematic samplin...

  2. H∞ control for uncertain linear system over networks with Bernoulli data dropout and actuator saturation.

    Science.gov (United States)

    Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping

    2018-03-01

    This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Bayesian Estimation of Two-Parameter Weibull Distribution Using Extension of Jeffreys' Prior Information with Three Loss Functions

    Directory of Open Access Journals (Sweden)

    Chris Bambey Guure

    2012-01-01

    Full Text Available The Weibull distribution has been observed as one of the most useful distribution, for modelling and analysing lifetime data in engineering, biology, and others. Studies have been done vigorously in the literature to determine the best method in estimating its parameters. Recently, much attention has been given to the Bayesian estimation approach for parameters estimation which is in contention with other estimation methods. In this paper, we examine the performance of maximum likelihood estimator and Bayesian estimator using extension of Jeffreys prior information with three loss functions, namely, the linear exponential loss, general entropy loss, and the square error loss function for estimating the two-parameter Weibull failure time distribution. These methods are compared using mean square error through simulation study with varying sample sizes. The results show that Bayesian estimator using extension of Jeffreys' prior under linear exponential loss function in most cases gives the smallest mean square error and absolute bias for both the scale parameter α and the shape parameter β for the given values of extension of Jeffreys' prior.

  4. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    Science.gov (United States)

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  5. Separation and Extension of Cover Inequalities for Conic Quadratic Knapsack Constraints with Generalized Upper Bounds

    DEFF Research Database (Denmark)

    Atamtürk, Alper; Muller, Laurent Flindt; Pisinger, David

    2013-01-01

    Motivated by addressing probabilistic 0-1 programs we study the conic quadratic knapsack polytope with generalized upper bound (GUB) constraints. In particular, we investigate separating and extending GUB cover inequalities. We show that, unlike in the linear case, determining whether a cover can...... be extended with a single variable is NP-hard. We describe and compare a number of exact and heuristic separation and extension algorithms which make use of the structure of the constraints. Computational experiments are performed for comparing the proposed separation and extension algorithms...

  6. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  7. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals.

    Science.gov (United States)

    Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel

    2018-02-27

    Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .

  8. Performance of Power Systems under Sustained Random Perturbations

    Directory of Open Access Journals (Sweden)

    Humberto Verdejo

    2014-01-01

    Full Text Available This paper studies linear systems under sustained additive random perturbations. The stable operating point of an electric power system is replaced by an attracting stationary solution if the system is subjected to (small random additive perturbations. The invariant distribution of this stationary solution gives rise to several performance indices that measure how well the system copes with the randomness. These indices are introduced, showing how they can be used for the optimal tuning of system parameters in the presence of noise. Results on a four-generator two-area system are presented and discussed.

  9. A differential calculus for random matrices with applications to (max,+)-linear stochastic systems

    NARCIS (Netherlands)

    Heidergott, B.F.

    2001-01-01

    We introducet he concept of weak differentiabilityf or randomm atricesa nd therebyo btain closedform analytical expressions for derivatives of functions of random matrices. More specifically, we develop a calculus of weak differentiationf or randomm atricest hat resembles the standardc alculus of

  10. Log-correlated random-energy models with extensive free-energy fluctuations: Pathologies caused by rare events as signatures of phase transitions

    Science.gov (United States)

    Cao, Xiangyu; Fyodorov, Yan V.; Le Doussal, Pierre

    2018-02-01

    We address systematically an apparent nonphysical behavior of the free-energy moment generating function for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index H =0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM) introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017), 10.1103/PhysRevLett.118.090601] based on the two-dimensional Gaussian free field with background charges and directly related to the Liouville field theory. All these models share anomalously large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested numerically.

  11. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.

    Science.gov (United States)

    Felleki, M; Lee, D; Lee, Y; Gilmour, A R; Rönnegård, L

    2012-12-01

    The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large datasets. Random effects for both the mean and residual variance parts of the model are estimated together with their variance/covariance components. An important feature of the algorithm is that it can fit a correlation between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using ASReml. The difference in variance component estimates between the two implementations is investigated, as well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen (2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the estimated correlation between the random genetic effects being -0·52 for IRWLS and -0·62 in Sorensen & Waagepetersen (2003).

  12. Generalized probabilistic theories and conic extensions of polytopes

    Science.gov (United States)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K.; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in {{{R}}n}, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization.

  13. Generalized probabilistic theories and conic extensions of polytopes

    International Nuclear Information System (INIS)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R n , the classical capacity of the channel realized by sending GPT states and measuring them is bounded by logn. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization. (paper)

  14. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  15. Linear algebra and group theory for physicists

    CERN Document Server

    Rao, K N Srinivasa

    2006-01-01

    Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...

  16. Laboratory beam-plasma interactions: linear and nonlinear

    International Nuclear Information System (INIS)

    Christiansen, P.J.; Jain, V.K.; Bond, J.W.

    1982-01-01

    The present investigation is concerned with the configuration of a cool plasma (often magnetized axially) penetrated by an injected electron beam. The attempt is made to demonstrate that despite unavoidable scaling limitations, laboratory experiments can illuminate, in a controlled fashion, details of beam plasma interaction processes in a way which will never be possible in the space plasma physics. In view of the increasing interest in high frequency instabilities in the auroral zone, the possibilities for interesting cross fertilizations of the two fields appear to be extensive. The linear theory is considered along with low frequency couplings and indirect effects. Attention is given to the evidence for the existence of exponentially growing instabilities in beam plasma interactions. The consequences of such instabilities are also explored and some processes of nonlinear processes are discussed, taking into account quasi-linear effects, trapping effects, nonlinear effects, trapping effects, nonlinear wave-wave interactions, and self-modulation and cavitation. 80 references

  17. Effect of Farming, Social, Economical and Extension Characteristics of Rice Farmers on Land Consolidation in Sari County, Iran

    Directory of Open Access Journals (Sweden)

    G. Dinpanah

    2011-06-01

    Full Text Available The purpose of this study was to determine effect of farming, social, economical and extension characteristics of rice farmer on land consolidation. The research population consisted of 329, farmers who were selected randomly by using randomized stratified sampling method. The methodological approach of this study was causal- comparative. Validity of the instrument was established by a panel of experts consisting of senior faculty members in agricultural extension and education department, and research committee advisors. Reliability analysis was conducted by using and Cronbach alpha formula and result was found to be 0.82. The results showed that means of farmers age, rice farming experience and rice-cultivated land acreage of rice were highly effective in land. Results also showed that factors like means for farm acreage, social influence, social participation, attitude of rice farmers toward land consolidation, yield, income, cost-benefit, mass media, information sources extension courses and education levels of rice farmers were very effective on land consolidation.

  18. Linear study of Kelvin-Helmholtz instability for a viscous compressible fluid

    International Nuclear Information System (INIS)

    Hallo, L.; Gauthier, S.

    1992-01-01

    The linear phase of the process leading to a developed turbulence is particularly important for the study of flow stability. A Galerkin spectral method adapted to the study of the mixture layer of one fluid is proposed from a sheared initial velocity profile. An algebraic mapping is developed to improve accuracy near high gradient zone. Validation is obtained by analytic methods for non-viscous flow and multi-domain spectral methods for viscous and compressible flow. Rates of growth are presented for subsonic and slightly supersonic flow. An extension of the method is presented for the study of the linear stability of a mixture with variable concentration and transport properties

  19. Applications of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  20. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.

    Science.gov (United States)

    Yavorska, Olena O; Burgess, Stephen

    2017-12-01

    MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  1. Duloxetine in the long-term management of diabetic peripheral neuropathic pain: An open-label, 52-week extension of a randomized controlled clinical trial.

    Science.gov (United States)

    Wernicke, Joachim F; Raskin, Joel; Rosen, Amy; Pritchett, Yili L; D'Souza, Deborah N; Iyengar, Smriti; Knopp, Kelly; Le, Trong K

    2006-09-01

    Duloxetine hydrochloride, a selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitor, is relatively balanced in its affinity for both 5-HT and NE reuptake inhibition and is the first US Food and Drug Administration-approved prescription drug for the management of diabetic peripheral neuropathic pain (DPNP). The aim of this study was to determine whether management of DPNP with duloxetine interferes with the treatment of diabetes. It also examined the tolerability of long-term exposure to duloxetine with regard to the progression of diabetic complications, and assessed the impact of DPNP management with duloxetine versus routine care. This was a 52-week, multicenter, re-randomized, open-label extension of a parallel, double-blind, randomized, placebo-controlled, acute (12-week) study. Patients who completed the duloxetine or placebo acute treatment period were randomly reassigned in a 2:1 ratio to treatment with duloxetine 60 mg BID or routine care for an additional 52 weeks. The study included male and female outpatients aged ≥18 years with a diagnosis of DPNP caused by type 1 or type 2 diabetes. Over the course of the 52-week study, visits were scheduled on the following weeks (of the extension phase of the study): 1 (via phone only), 2, 4, 8, 12, 20, 28, 40, and 52. Tolerability was assessed by review and analyses of discontinuation rates, adverse events (AEs), laboratory data, vital signs, electrocardiographic results, concomitant medications, and diabetic complications. Treatment-emergent AEs (TEAEs) were defined as AEs that appeared during therapy (were not present at baseline) or were exacerbated during treatment. Data on AEs and concomitant medications were collected at every visit. Data on blood pressure, heart rate, and significant hypoglycemic events were collected at every visit starting from week 2. Fasting clinical chemistry and electrolyte group laboratory assessments were done at every visit, starting from week 4. Electrocardiographic

  2. Altruism Can Proliferate through Population Viscosity despite High Random Gene Flow

    Science.gov (United States)

    Schonmann, Roberto H.; Vicente, Renato; Caticha, Nestor

    2013-01-01

    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic alleles, applicable under broad conditions. PMID:23991035

  3. Altruism can proliferate through population viscosity despite high random gene flow.

    Directory of Open Access Journals (Sweden)

    Roberto H Schonmann

    Full Text Available The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.

  4. Analysis of a monetary union enlargement in the framework of linear-quadratic differential games

    NARCIS (Netherlands)

    Plasmans, J.E.J.; Engwerda, J.C.; van Aarle, B.; Michalak, T.

    2009-01-01

    "This paper studies the effects of a monetary union enlargement using the techniques and outcomes from an extensive research project on macroeconomic policy coordination in the EMU. Our approach is characterized by two main pillars: (i) linear-quadratic differential games to capture externalities,

  5. Linear bioconvection in a suspension of randomly swimming, gyrotactic micro-organisms

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Hill, N.A.

    1998-01-01

    We have analyzed the initiation of pattern formation in a layer of finite depth for Pedley and Kessler's new model [J. Fluid Mech. 212, 155 (1990)] of bioconvection. This is the first analysis of bioconvection in a realistic geometry using a model that deals with random swimming in a rational...... manner. We have considered the effects of a distribution of swimming speeds, which has not previously received attention in theoretical papers and find that it is important in calculating the diffusivity. Our predictions of initial pattern wavelengths are reasonably close to the observed ones but better...

  6. Does a more extensive mucosal excision prevent haemorrhoidal recurrence after stapled haemorrhoidopexy? Long-term outcome of a randomized controlled trial.

    Science.gov (United States)

    Altomare, D F; Pecorella, G; Tegon, G; Aquilino, F; Pennisi, D; De Fazio, M

    2017-06-01

    The study aimed in a multicentric randomized controlled trial to define the role of a more extensive mucosal resection on recurrence of mucosal prolapse in patients with Stage III haemorrhoids undergoing stapled haemorrhoidopexy. In all, 135 patients were randomized to treatment with a PPH-01/03 (Ethicon EndoSurgery) or an EEA (Covidien) stapler. They were reviewed after a minimum follow-up of 4 years to determine the rate of recurrent mucosal prolapse and general condition (wellness evaluation score). Postoperative bowel dysfunction was assessed using the Rome III criteria. Eighty-seven (65%) of the 135 patients (48 in the EEA stapler group and 37 in the PPH group) were available for long-term follow-up. The two groups were comparable for age, gender and duration of follow-up (mean 49.3 ± 5.4 months and 49.0 ± 5.3 months respectively). In the EEA group, 11 (23%) patients had some degree of recurrent prolapse compared with 12 (32%) in the PPH group (P = 0.409). Persistence of anal bleeding was significantly higher in the PPH group (P = 0.04) while the postoperative Haemorrhoid Symptom Score was significantly better in the EEA group (1.73 ± 1.65 vs 3.17 ± 1.94, P < 0.001). The wellness evaluation score was significantly better in the EEA group (1.2 ± 1.27 vs 0.6 ± 1.0, P = 0.028). Furthermore, 7 (15%) of the patients in the EEA group complained of some evacuation disturbance compared with 13 (36%) in the PPH group (P = 0.021). The study failed to demonstrate any significant difference in the long-term recurrence rate of Stage III haemorrhoids using EEA or PPH. Nevertheless, use of the larger volume EEA provides better symptom resolution compared with PPH. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  7. Non-linear sigma model on the fuzzy supersphere

    International Nuclear Information System (INIS)

    Kurkcuoglu, Seckin

    2004-01-01

    In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)

  8. Hyperchaotic encryption based on multi-scroll piecewise linear Systems

    Czech Academy of Sciences Publication Activity Database

    García-Martínez, M.; Ontanon-García, L.J.; Campos-Cantón, E.; Čelikovský, Sergej

    2015-01-01

    Roč. 270, č. 1 (2015), s. 413-424 ISSN 0096-3003 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperchaotic encryption * Piecewise linear systems * Stream cipher * Pseudo-random bit generator * Chaos theory * Multi-scrollattractors Subject RIV: BC - Control Systems Theory Impact factor: 1.345, year: 2015 http://library.utia.cas.cz/separaty/2015/TR/celikovsky-0446895.pdf

  9. Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2005-01-01

    By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.

  10. Engineering and physics considerations for a linear theta-pinch hybrid reactor (LTPHR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1976-01-01

    A fusion-fission hybrid reactor based on pulsed, high-β, linear theta-pinch magnetic confinement is considered. A preliminary design which incorporates key physics, engineering and economic considerations is presented. An extensive presentation of the system energy balance is made, and this energy balance is evaluated parametrically. The feasibility of end-loss reduction is addressed

  11. Phenomenology of non-minimal supersymmetric models at linear colliders

    International Nuclear Information System (INIS)

    Porto, Stefano

    2015-06-01

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  12. Use of multivariate extensions of generalized linear models in the analysis of data from clinical trials

    OpenAIRE

    ALONSO ABAD, Ariel; Rodriguez, O.; TIBALDI, Fabian; CORTINAS ABRAHANTES, Jose

    2002-01-01

    In medical studies the categorical endpoints are quite often. Even though nowadays some models for handling this multicategorical variables have been developed their use is not common. This work shows an application of the Multivariate Generalized Linear Models to the analysis of Clinical Trials data. After a theoretical introduction models for ordinal and nominal responses are applied and the main results are discussed. multivariate analysis; multivariate logistic regression; multicategor...

  13. A Repetition Test for Pseudo-Random Number Generators

    OpenAIRE

    Gil, Manuel; Gonnet, Gaston H.; Petersen, Wesley P.

    2017-01-01

    A new statistical test for uniform pseudo-random number generators (PRNGs) is presented. The idea is that a sequence of pseudo-random numbers should have numbers reappear with a certain probability. The expectation time that a repetition occurs provides the metric for the test. For linear congruential generators (LCGs) failure can be shown theoretically. Empirical test results for a number of commonly used PRNGs are reported, showing that some PRNGs considered to have good statistical propert...

  14. ACORN—A new method for generating sequences of uniformly distributed Pseudo-random Numbers

    Science.gov (United States)

    Wikramaratna, R. S.

    1989-07-01

    A new family of pseudo-random number generators, the ACORN ( additive congruential random number) generators, is proposed. The resulting numbers are distributed uniformly in the interval [0, 1). The ACORN generators are defined recursively, and the ( k + 1)th order generator is easily derived from the kth order generator. Some theorems concerning the period length are presented and compared with existing results for linear congruential generators. A range of statistical tests are applied to the ACORN generators, and their performance is compared with that of the linear congruential generators and the Chebyshev generators. The tests show the ACORN generators to be statistically superior to the Chebyshev generators, while being statistically similar to the linear congruential generators. However, the ACORN generators execute faster than linear congruential generators for the same statistical faithfulness. The main advantages of the ACORN generator are speed of execution, long period length, and simplicity of coding.

  15. Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors

    Science.gov (United States)

    Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen

    2012-01-01

    Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…

  16. Effect of strong-focusing field distortions on particle motion in a linear accelerator

    International Nuclear Information System (INIS)

    Bondarev, B.I.; Durkin, A.P.; Solov'ev, L.Yu.

    1979-01-01

    The increased sensitivity of quadrupole focusing channel used in the highenergetic part of the linear accelerator makes it necessary to pay serious attention to the effect of various distortions of focusing fields on the transverse motion of the beam. The distortions may cause the inadmissible losses of particles in the accelerator. To achieve this aim the main equation of disturbed motion of particles in the linear accelerator, obtained by analogy with the cyclic accelerator theory is presented. The investigation of the solutions of this equation has permitted to obtain the analytical formulas for the estimation of the beam size increase under the effect of focusing field distortions of various types, such as structural non-linearity, gradient errors, random non-linearity, channel axis deformation. While studying the effect of structural non-linearity considered are the resonance effects and obtained are the relations describing the maximum beam size increase in the channel of the linear accelerator in the presence and in the absence of the resonance

  17. Covariant extensions and the nonsymmetric unified field

    International Nuclear Information System (INIS)

    Borchsenius, K.

    1976-01-01

    The problem of generally covariant extension of Lorentz invariant field equations, by means of covariant derivatives extracted from the nonsymmetric unified field, is considered. It is shown that the contracted curvature tensor can be expressed in terms of a covariant gauge derivative which contains the gauge derivative corresponding to minimal coupling, if the universal constant p, characterizing the nonsymmetric theory, is fixed in terms of Planck's constant and the elementary quantum of charge. By this choice the spinor representation of the linear connection becomes closely related to the spinor affinity used by Infeld and Van Der Waerden (Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.; 9:380 (1933)) in their generally covariant formulation of Dirac's equation. (author)

  18. Non-linear electrodynamics in Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Kerner, R.

    1987-01-01

    The most general variational principle based on the invariants of the Riemann tensor and leading to the second order differential equations should contain, in dimensions higher than four, the invariants of the Gauss-Bonnet type. In five dimensions the lagrangian should be a linear combination of the scalar curvature and the second-order invariant. The equations of the electromagnetic field are derived in the absence of scalar and gravitational fields of the Kaluza-Klein model. They yield the unique extension of Maxwell's system in the Kaluza-Klein theory. Some properties of eventual solutions are discussed [fr

  19. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

    2001-01-01

    We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...

  20. Twenty-seven years of phase III trials for patients with extensive disease small-cell lung cancer: disappointing results.

    Directory of Open Access Journals (Sweden)

    Isao Oze

    Full Text Available BACKGROUND: Few studies have formally assessed whether treatment outcomes have improved substantially over the years for patients with extensive disease small-cell lung cancer (ED-SCLC enrolled in phase III trials. The objective of the current investigation was to determine the time trends in outcomes for the patients in those trials. METHODS AND FINDINGS: We searched for trials that were reported between January 1981 and August 2008. Phase III randomized controlled trials were eligible if they compared first-line, systemic chemotherapy for ED-SCLC. Data were evaluated by using a linear regression analysis. RESULTS: In total, 52 trials were identified that had been initiated between 1980 and 2006; these studies involved 10,262 patients with 110 chemotherapy arms. The number of randomized patients and the proportion of patients with good performance status (PS increased over time. Cisplatin-based regimens, especially cisplatin and etoposide (PE regimen, have increasingly been studied, whereas cyclophosphamide, doxorubicin, and vincristine-based regimens have been less investigated. Multiple regression analysis showed no significant improvement in survival over the years. Additionally, the use of a PE regimen did not affect survival, whereas the proportion of patients with good PS and the trial design of assigning prophylactic cranial irradiation were significantly associated with favorable outcome. CONCLUSIONS AND SIGNIFICANCE: The survival of patients with ED-SCLC enrolled in phase III trials did not improve significantly over the years, suggesting the need for further development of novel targets, newer agents, and comprehensive patient care.

  1. Modelos lineares e não lineares inteiros para problemas da mochila bidimensional restrita a 2 estágios Linear and nonlinear integer models for constrained two-stage two-dimensional knapsack problems

    Directory of Open Access Journals (Sweden)

    Horacio Hideki Yanasse

    2013-01-01

    Full Text Available Neste trabalho revemos alguns modelos lineares e não lineares inteiros para gerar padrões de corte bidimensionais guilhotinados de 2 estágios, incluindo os casos exato e não exato e restrito e irrestrito. Esses problemas são casos particulares do problema da mochila bidimensional. Apresentamos também novos modelos para gerar esses padrões de corte, baseados em adaptações ou extensões de modelos para gerar padrões de corte bidimensionais restritos 1-grupo. Padrões 2 estágios aparecem em diferentes processos de corte, como, por exemplo, em indústrias de móveis e de chapas de madeira. Os modelos são úteis para a pesquisa e o desenvolvimento de métodos de solução mais eficientes, explorando estruturas particulares, a decomposição do modelo, relaxações do modelo etc. Eles também são úteis para a avaliação do desempenho de heurísticas, já que permitem (pelo menos para problemas de tamanho moderado uma estimativa do gap de otimalidade de soluções obtidas por heurísticas. Para ilustrar a aplicação dos modelos, analisamos os resultados de alguns experimentos computacionais com exemplos da literatura e outros gerados aleatoriamente. Os resultados foram produzidos usando um software comercial conhecido e mostram que o esforço computacional necessário para resolver os modelos pode ser bastante diferente.In this work we review some linear and nonlinear integer models to generate two stage two-dimensional guillotine cutting patterns, including the constrained, non constrained, exact and non exact cases. These problems are particular cases of the two dimensional knapsack problems. We also present new models to generate these cutting patterns, based on adaptations and extensions of models that generate one-group constrained two dimensional cutting patterns. Two stage patterns arise in different cutting processes like, for instance, in the furniture industry and wooden hardboards. The models are useful for the research and

  2. Double elementary Goldstone Higgs boson production in future linear colliders

    Science.gov (United States)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2018-03-01

    The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.

  3. ANALYSIS OF FUZZY QUEUES: PARAMETRIC PROGRAMMING APPROACH BASED ON RANDOMNESS - FUZZINESS CONSISTENCY PRINCIPLE

    OpenAIRE

    Dhruba Das; Hemanta K. Baruah

    2015-01-01

    In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM...

  4. Statistical study of the non-linear propagation of a partially coherent laser beam

    International Nuclear Information System (INIS)

    Ayanides, J.P.

    2001-01-01

    This research thesis is related to the LMJ project (Laser MegaJoule) and thus to the study and development of thermonuclear fusion. It reports the study of the propagation of a partially-coherent laser beam by using a statistical modelling in order to obtain mean values for the field, and thus bypassing a complex and costly calculation of deterministic quantities. Random fluctuations of the propagated field are supposed to comply with a Gaussian statistics; the laser central wavelength is supposed to be small with respect with fluctuation magnitude; a scale factor is introduced to clearly distinguish the scale of the random and fast variations of the field fluctuations, and the scale of the slow deterministic variations of the field envelopes. The author reports the study of propagation through a purely linear media and through a non-dispersive media, and then through slow non-dispersive and non-linear media (in which the reaction time is large with respect to grain correlation duration, but small with respect to the variation scale of the field macroscopic envelope), and thirdly through an instantaneous dispersive and non linear media (which instantaneously reacts to the field) [fr

  5. Private randomness expansion with untrusted devices

    International Nuclear Information System (INIS)

    Colbeck, Roger; Kent, Adrian

    2011-01-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  6. Private randomness expansion with untrusted devices

    Science.gov (United States)

    Colbeck, Roger; Kent, Adrian

    2011-03-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices—even ones created by an adversarial agent—while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  7. Private randomness expansion with untrusted devices

    Energy Technology Data Exchange (ETDEWEB)

    Colbeck, Roger; Kent, Adrian, E-mail: rcolbeck@perimeterinstitute.ca, E-mail: a.p.a.kent@damtp.cam.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2011-03-04

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  8. The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm

    OpenAIRE

    Daniel De Wolf; Yves Smeers

    2000-01-01

    The problem of distributing gas through a network of pipelines is formulated as a cost minimization subject to nonlinear flow-pressure relations, material balances, and pressure bounds. The solution method is based on piecewise linear approximations of the nonlinear flow-pressure relations. The approximated problem is solved by an extension of the Simplex method. The solution method is tested on real-world data and compared with alternative solution methods.

  9. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    NARCIS (Netherlands)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Hasankiadeh, Q. Dorosti; Falcke, H.; Horandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-01-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a

  10. On Complex Random Variables

    Directory of Open Access Journals (Sweden)

    Anwer Khurshid

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper, it is shown that a complex multivariate random variable  is a complex multivariate normal random variable of dimensionality if and only if all nondegenerate complex linear combinations of  have a complex univariate normal distribution. The characteristic function of  has been derived, and simpler forms of some theorems have been given using this characterization theorem without assuming that the variance-covariance matrix of the vector  is Hermitian positive definite. Marginal distributions of  have been given. In addition, a complex multivariate t-distribution has been defined and the density derived. A characterization of the complex multivariate t-distribution is given. A few possible uses of this distribution have been suggested.

  11. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    Science.gov (United States)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  12. A scalar-vector model of quark-antiquark interaction under linear confinement

    International Nuclear Information System (INIS)

    Chakrabarty, S.

    1992-08-01

    Considering the idea that the constituent quark mass is the dressed sum of current quark mass and dynamical quark mass, and using the standard values of current quark masses we obtain approximate values of constituent quark masses, which are then used in our extensively studied Bethe-Salpeter-reduced potential model. We find that the mass formulas become much simpler for linear potential ar with zero anomalous magnetic moment (λ), the values of scalar-vector fraction (η) and 'a' in the linear potential being (1/4) and (1/5) respectively. Also, some of the quantities can be related to each other and the match with experimental data is good. (author). 18 refs, 3 tabs

  13. Pseudo-random number generator for the Sigma 5 computer

    Science.gov (United States)

    Carroll, S. N.

    1983-01-01

    A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.

  14. Beam dynamics in stripline linear induction accelerators

    International Nuclear Information System (INIS)

    Adler, R.J.

    1983-01-01

    Stripline (parallel plate transmission line) pulsed power modules have been considered for application to advanced high current linear accelerators. Some advantages of the stripline designs include compact size, easy maintenance, and most importantly, the small number of switches required (one switch per 2 MeV). The principle drawback of stripline designs is that they impart a NET transverse force to particles in the gap. This is shown to result in randomized transverse momentum, and NET, constructive transverse guiding center motion. In this paper, a semi-quantitative analysis of several facets of the problem is presented

  15. Random functions via Dyson Brownian Motion: progress and problems

    International Nuclear Information System (INIS)

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-01-01

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C"2 locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  16. Random functions via Dyson Brownian Motion: progress and problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoyuan; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen,Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  17. Combined slope ratio analysis and linear-subtraction: An extension of the Pearce ratio method

    Science.gov (United States)

    De Waal, Sybrand A.

    1996-07-01

    A new technique, called combined slope ratio analysis, has been developed by extending the Pearce element ratio or conserved-denominator method (Pearce, 1968) to its logical conclusions. If two stoichiometric substances are mixed and certain chemical components are uniquely contained in either one of the two mixing substances, then by treating these unique components as conserved, the composition of the substance not containing the relevant component can be accurately calculated within the limits allowed by analytical and geological error. The calculated composition can then be subjected to rigorous statistical testing using the linear-subtraction method recently advanced by Woronow (1994). Application of combined slope ratio analysis to the rocks of the Uwekahuna Laccolith, Hawaii, USA, and the lavas of the 1959-summit eruption of Kilauea Volcano, Hawaii, USA, yields results that are consistent with field observations.

  18. Mixed models, linear dependency, and identification in age-period-cohort models.

    Science.gov (United States)

    O'Brien, Robert M

    2017-07-20

    This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, Oscar [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile)

    2015-09-01

    An extension of the Poincaré group with half-integer spin generators is explicitly constructed. We start discussing the case of three spacetime dimensions, and as an application, it is shown that hypergravity can be formulated so as to incorporate this structure as its local gauge symmetry. Since the algebra admits a nontrivial Casimir operator, the theory can be described in terms of gauge fields associated to the extension of the Poincaré group with a Chern-Simons action. The algebra is also shown to admit an infinite-dimensional non-linear extension, that in the case of fermionic spin-3/2 generators, corresponds to a subset of a contraction of two copies of WB{sub 2}. Finally, we show how the Poincaré group can be extended with half-integer spin generators for d≥3 dimensions.

  20. Interaction of random wave-current over uneven and porous bottoms

    International Nuclear Information System (INIS)

    Suo Yaohong; Zhang Zhonghua; Zhang Jiafan; Suo Xiaohong

    2009-01-01

    Starting from linear wave theory and applying Green's second identity and considering wave-current interaction for porous bottoms and variable water depth, the comprehensive mild-slope equation model theory of wave-current interaction is developed, then paying attention to the effect of random waves, by use of Kubo et al.'s method, a model theory of the interaction between random waves and current over uneven and porous bottoms is established. Finally the characteristics of the random waves are discussed numerically from both the geometric-optics approximation and the target spectrum.

  1. Near-infrared reflectance analysis by Gauss-Jordan linear algebra

    International Nuclear Information System (INIS)

    Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

    1983-01-01

    Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored

  2. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  3. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  4. Evidence of Non-extensivity in Earth's Ambient Noise

    Science.gov (United States)

    Koutalonis, Ioannis; Vallianatos, Filippos

    2017-12-01

    The study of ambient seismic noise is one of the important scientific and practical research challenges, due to its use in a number of geophysical applications. In this work, we describe Earth's ambient noise fluctuations in terms of non-extensive statistical physics. We found that Earth's ambient noise increments follow the q-Gaussian distribution. This indicates that Earth's ambient noise's fluctuations are not random and present long-term memory effects that could be described in terms of Tsallis entropy. Our results suggest that q values depend on the time length used and that the non-extensive parameter, q, converges to value q → 1 for short-time windows and a saturation value of q ≈ 1.33 for longer ones. The results are discussed from the point of view of superstatistics introduced by Beck [Contin Mech Thermodyn 16(3):293-304, 2004] and connects the q values with the system's degrees of freedom. Our work indicates that the converged (maximum) value is q = 1.33 and is related to 5 degrees of freedom.

  5. Exercise effects in a virtual type 1 diabetes patient: Using stochastic differential equations for model extension

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Schmidt, S.; Nørgaard, K.

    2013-01-01

    extension incorporating exercise effects on insulin and glucose dynamics. Our model is constructed as a stochastic state space model consisting of a set of stochastic differential equations (SDEs). In a stochastic state space model, the residual error is split into random measurement error...

  6. Nonabelian Gauged Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    Yongbin RUAN

    2017-01-01

    The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.

  7. Design of Long Period Pseudo-Random Sequences from the Addition of -Sequences over

    Directory of Open Access Journals (Sweden)

    Ren Jian

    2004-01-01

    Full Text Available Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of -sequences with pairwise-prime linear spans (AMPLS. Using -sequences as building blocks, the proposed method proved to be an efficient and flexible approach to construct long period pseudo-random sequences with desirable properties from short period sequences. Applying the proposed method to , a signal set is constructed.

  8. On stochastic differential equations with random delay

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2011-01-01

    We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation

  9. Image encryption using random sequence generated from generalized information domain

    International Nuclear Information System (INIS)

    Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou

    2016-01-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)

  10. Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.

    Science.gov (United States)

    Shao, Lijing

    2014-03-21

    The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.

  11. Linear models in the mathematics of uncertainty

    CERN Document Server

    Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

    2013-01-01

    The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

  12. Sociologists in Extension

    Science.gov (United States)

    Christenson, James A.; And Others

    1977-01-01

    The article describes the work activities of the extension sociologist, the relative advantage and disadvantage of extension roles in relation to teaching/research roles, and the relevance of sociological training and research for extension work. (NQ)

  13. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  14. Sensitivity analysis for missing dichotomous outcome data in multi-visit randomized clinical trial with randomization-based covariance adjustment.

    Science.gov (United States)

    Li, Siying; Koch, Gary G; Preisser, John S; Lam, Diana; Sanchez-Kam, Matilde

    2017-01-01

    Dichotomous endpoints in clinical trials have only two possible outcomes, either directly or via categorization of an ordinal or continuous observation. It is common to have missing data for one or more visits during a multi-visit study. This paper presents a closed form method for sensitivity analysis of a randomized multi-visit clinical trial that possibly has missing not at random (MNAR) dichotomous data. Counts of missing data are redistributed to the favorable and unfavorable outcomes mathematically to address possibly informative missing data. Adjusted proportion estimates and their closed form covariance matrix estimates are provided. Treatment comparisons over time are addressed with Mantel-Haenszel adjustment for a stratification factor and/or randomization-based adjustment for baseline covariables. The application of such sensitivity analyses is illustrated with an example. An appendix outlines an extension of the methodology to ordinal endpoints.

  15. Probabilistic deletion of copies of linearly independent quantum states

    International Nuclear Information System (INIS)

    Feng Jian; Gao Yunfeng; Wang Jisuo; Zhan Mingsheng

    2002-01-01

    We show that each of two copies of the nonorthogonal states randomly selected from a certain set S can be probabilistically deleted by a general unitary-reduction operation if and only if the states are linearly independent. We derive a tight bound on the best possible deleting efficiencies. These results for 2→1 probabilistic deleting are also generalized into the case of N→M deleting (N,M positive integers and N>M)

  16. Logic regression and its extensions.

    Science.gov (United States)

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Employing Theories Far beyond Their Limits - Linear Dichroism Theory.

    Science.gov (United States)

    Mayerhöfer, Thomas G

    2018-05-15

    Using linear polarized light, it is possible in case of ordered structures, such as stretched polymers or single crystals, to determine the orientation of the transition moments of electronic and vibrational transitions. This not only helps to resolve overlapping bands, but also assigning the symmetry species of the transitions and to elucidate the structure. To perform spectral evaluation quantitatively, a sometimes "Linear Dichroism Theory" called approach is very often used. This approach links the relative orientation of the transition moment and polarization direction to the quantity absorbance. This linkage is highly questionable for several reasons. First of all, absorbance is a quantity that is by its definition not compatible with Maxwell's equations. Furthermore, absorbance seems not to be the quantity which is generally compatible with linear dichroism theory. In addition, linear dichroism theory disregards that it is not only the angle between transition moment and polarization direction, but also the angle between sample surface and transition moment, that influences band shape and intensity. Accordingly, the often invoked "magic angle" has never existed and the orientation distribution influences spectra to a much higher degree than if linear dichroism theory would hold strictly. A last point that is completely ignored by linear dichroism theory is the fact that partially oriented or randomly-oriented samples usually consist of ordered domains. It is their size relative to the wavelength of light that can also greatly influence a spectrum. All these findings can help to elucidate orientation to a much higher degree by optical methods than currently thought possible by the users of linear dichroism theory. Hence, it is the goal of this contribution to point out these shortcomings of linear dichroism theory to its users to stimulate efforts to overcome the long-lasting stagnation of this important field. © 2018 Wiley-VCH Verlag GmbH & Co. KGa

  18. Supplementary Material for: Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-01-01

    We propose a new class of transGaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States. Supplementary materials for this article are available online.

  19. Linear growth increased in young children in an urban slum of Haiti: a randomized controlled trial of a lipid-based nutrient supplement.

    Science.gov (United States)

    Iannotti, Lora L; Dulience, Sherlie Jean Louis; Green, Jamie; Joseph, Saminetha; François, Judith; Anténor, Marie-Lucie; Lesorogol, Carolyn; Mounce, Jacqueline; Nickerson, Nathan M

    2014-01-01

    Haiti has experienced rapid urbanization that has exacerbated poverty and undernutrition in large slum areas. Stunting affects 1 in 5 young children. We aimed to test the efficacy of a daily lipid-based nutrient supplement (LNS) for increased linear growth in young children. Healthy, singleton infants aged 6-11 mo (n = 589) were recruited from an urban slum of Cap Haitien and randomly assigned to receive: 1) a control; 2) a 3-mo LNS; or 3) a 6-mo LNS. The LNS provided 108 kcal and other nutrients including vitamin A, vitamin B-12, iron, and zinc at ≥80% of the recommended amounts. Infants were followed monthly on growth, morbidity, and developmental outcomes over a 6-mo intervention period and at one additional time point 6 mo postintervention to assess sustained effects. The Bonferroni multiple comparisons test was applied, and generalized least-squares (GLS) regressions with mixed effects was used to examine impacts longitudinally. Baseline characteristics did not differ by trial arm except for a higher mean age in the 6-mo LNS group. GLS modeling showed LNS supplementation for 6 mo significantly increased the length-for-age z score (±SE) by 0.13 ± 0.05 and the weight-for-age z score by 0.12 ± 0.02 compared with in the control group after adjustment for child age (P < 0.001). The effects were sustained 6 mo postintervention. Morbidity and developmental outcomes did not differ by trial arm. A low-energy, fortified product improved the linear growth of young children in this urban setting. The trial was registered at clinicaltrials.gov as NCT01552512.

  20. The invariant measure of random walks in the quarter-plane: respresentation in geometric terms

    NARCIS (Netherlands)

    Chen, Y.; Boucherie, Richardus J.; Goseling, Jasper

    We consider the invariant measure of homogeneous random walks in the quarter-plane. In particular, we consider measures that can be expressed as a finite linear combination of geometric terms and present conditions on the structure of these linear combinations such that the resulting measure may

  1. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    Science.gov (United States)

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Physical states in the canonical tensor model from the perspective of random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)

    2015-01-07

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.

  3. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  4. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: Long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study.

    Science.gov (United States)

    Papp, Kim A; Krueger, James G; Feldman, Steven R; Langley, Richard G; Thaci, Diamant; Torii, Hideshi; Tyring, Stephen; Wolk, Robert; Gardner, Annie; Mebus, Charles; Tan, Huaming; Luo, Yingchun; Gupta, Pankaj; Mallbris, Lotus; Tatulych, Svitlana

    2016-05-01

    Tofacitinib is an oral Janus kinase inhibitor being investigated for psoriasis. We sought to report longer-term tofacitinib efficacy and safety in patients with moderate to severe psoriasis. Data from 2 identical phase-III studies, Oral-treatment Psoriasis Trial Pivotal 1 and 2, were pooled with data from these patients in an ongoing open-label long-term extension study. Patients (n = 1861) were randomized 2:2:1 to tofacitinib 5 mg, 10 mg, or placebo twice daily (BID). At week 16, placebo patients were rerandomized to tofacitinib. Pivotal study participants could enroll into the long-term extension where they received tofacitinib at 10 mg BID for 3 months, after which dosing could be 5 or 10 mg BID. At week 28, the proportions of patients randomized to tofacitinib 5 and 10 mg BID achieving 75% or greater reduction in Psoriasis Area and Severity Index score from baseline were 55.6% and 68.8%, and achieving Physician Global Assessment of clear or almost clear were 54.7% and 65.9%. Efficacy was maintained in most patients through 24 months. Serious adverse events and discontinuations because of adverse events were reported in less than 11% of patients over 33 months of tofacitinib exposure. There was no dose comparison beyond week 52. Oral tofacitinib demonstrated sustained efficacy in patients with psoriasis through 2 years, with 10 mg BID providing greater efficacy than 5 mg BID. No unexpected safety findings were observed. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Competency Modeling in Extension Education: Integrating an Academic Extension Education Model with an Extension Human Resource Management Model

    Science.gov (United States)

    Scheer, Scott D.; Cochran, Graham R.; Harder, Amy; Place, Nick T.

    2011-01-01

    The purpose of this study was to compare and contrast an academic extension education model with an Extension human resource management model. The academic model of 19 competencies was similar across the 22 competencies of the Extension human resource management model. There were seven unique competencies for the human resource management model.…

  6. Linear combinations come alive in crossover designs.

    Science.gov (United States)

    Shuster, Jonathan J

    2017-10-30

    Before learning anything about statistical inference in beginning service courses in biostatistics, students learn how to calculate the mean and variance of linear combinations of random variables. Practical precalculus examples of the importance of these exercises can be helpful for instructors, the target audience of this paper. We shall present applications to the "1-sample" and "2-sample" methods for randomized short-term 2-treatment crossover studies, where patients experience both treatments in random order with a "washout" between the active treatment periods. First, we show that the 2-sample method is preferred as it eliminates "conditional bias" when sample sizes by order differ and produces a smaller variance. We also demonstrate that it is usually advisable to use the differences in posttests (ignoring baseline and post washout values) rather than the differences between the changes in treatment from the start of the period to the end of the period ("delta of delta"). Although the intent is not to provide a definitive discussion of crossover designs, we provide a section and references to excellent alternative methods, where instructors can provide motivation to students to explore the topic in greater detail in future readings or courses. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Siemens experience on linear and nonlinear analyses of out-of-phase BWR instabilities

    International Nuclear Information System (INIS)

    Kreuter, D.; Wehle, F.

    1995-01-01

    The Siemens design code STAIF has been applied extensively for linear analysis of BWR instabilities. The comparison between measurements and STAIF calculations for different plants under various conditions has shown good agreement for core-wide and regional instabilities. Based on the high quality of STAIF, the North German TUeV has decided to replace the licensing requirement of extensive stability measurements by predictive analyses with the code STAIF. Nonlinear stability analysis for beyond design boundary conditions with RAMONA has shown dryout during temporarily reversed flow at core inlet in case of core-wide oscillations. For large out-of-phase oscillations, dryout occurs already for small, still positive channel inlet flow. (orig.)

  8. A randomized phase II study of carboplatin with weekly or every-3-week nanoparticle albumin-bound paclitaxel (abraxane) in patients with extensive-stage small cell lung cancer.

    Science.gov (United States)

    Grilley-Olson, Juneko E; Keedy, Vicki L; Sandler, Alan; Moore, Dominic T; Socinski, Mark A; Stinchcombe, Thomas E

    2015-02-01

    Platinum plus etoposide is the standard therapy for extensive-stage small cell lung cancer (ES-SCLC) and is associated with significant myelosuppression. We hypothesized that the combination of carboplatin and nanoparticle albumin-bound paclitaxel (nab-paclitaxel) would be better tolerated. We investigated carboplatin with nab-paclitaxel on every-3-week and weekly schedules. This noncomparative randomized phase II trial used a two-stage design. The primary objective was objective response rate, and secondary objectives were progression-free survival, overall survival, and toxicity. Patients with ES-SCLC and an Eastern Cooperative Oncology Group performance status ≤2 and no prior chemotherapy were randomized in a 1:1 ratio to arm A (carboplatin area under the curve [AUC] of 6 on day 1 and nab-paclitaxel of 300 mg/m(2) on day 1 every 3 weeks) or arm B (carboplatin AUC of 6 on day 1 and nab-paclitaxel 100 mg/m(2) on days 1, 8, and 15 every 21 days). Response was assessed after every two cycles. Patients required frequent dose reductions, treatment delays, and omission of the weekly therapy. The trial was closed because of slow accrual. Carboplatin and nab-paclitaxel demonstrated activity in ES-SCLC but required frequent dose adjustments. ©AlphaMed Press; the data published online to support this summary is the property of the authors.

  9. On the linear programming bound for linear Lee codes.

    Science.gov (United States)

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  10. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study

    DEFF Research Database (Denmark)

    O'Connor, P; Comi, G; Montalban, X

    2009-01-01

    OBJECTIVE: To report the results of a 24-month extension of a phase II trial assessing the efficacy, safety, and tolerability of the once-daily oral sphingosine-1-phosphate receptor modulator, fingolimod (FTY720), in relapsing multiple sclerosis (MS). METHODS: In the randomized, double-blind, pla...

  11. Expected number of real roots for random linear combinations of orthogonal polynomials associated with radial weights

    OpenAIRE

    Bayraktar, Turgay

    2017-01-01

    In this note, we obtain asymptotic expected number of real zeros for random polynomials of the form $$f_n(z)=\\sum_{j=0}^na^n_jc^n_jz^j$$ where $a^n_j$ are independent and identically distributed real random variables with bounded $(2+\\delta)$th absolute moment and the deterministic numbers $c^n_j$ are normalizing constants for the monomials $z^j$ within a weighted $L^2$-space induced by a radial weight function satisfying suitable smoothness and growth conditions.

  12. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials

    International Nuclear Information System (INIS)

    Gelebart, Lionel; Mondon-Cancel, Romain

    2013-01-01

    FFT-based methods are used to solve the problem of a heterogeneous unit-cell submitted to periodic boundary conditions, which is of a great interest in the context of numerical homogenization. Recently (in 2010), Brisard and Zeman proposed simultaneously to use Conjugate Gradient based solvers in order to improve the convergence properties (when compared to the basic scheme, proposed initially in 1994). The purpose of the paper is to extend this idea to the case of non-linear behaviors. The proposed method is based on a Newton-Raphson algorithm and can be applied to various kinds of behaviors (time dependant or independent, with or without internal variables) through a conventional integration procedure as used in finite element codes. It must be pointed out that this approach is fundamentally different from the traditional FFT-based approaches which rely on a fixed-point algorithm (e.g. basic scheme, Eyre and Milton accelerated scheme, Augmented Lagrangian scheme, etc.). The method is compared to the basic scheme on the basis of a simple application (a linear elastic spherical inclusion within a non-linear elastic matrix): a low sensitivity to the reference material and an improved efficiency, for a soft or a stiff inclusion, are observed. At first proposed for a prescribed macroscopic strain, the method is then extended to mixed loadings. (authors)

  13. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  14. Quasi-linear theory for a tokamak plasma in the presence of cyclotron resonance

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.

    1993-01-01

    Quasi-linear diffusion equations for the distribution function of trapped and circulating particles interacting with waves in a tokamak by means of cyclotron resonance are derived. The resulting equations reveal new features of quasi-linear diffusion and are of two kinds, one which involves bounce resonances overlapping in velocity space and one with well separated bounce resonances. These two cases correspond to situations where the phase of the wave-particle interaction between successive resonances can be considered as random or deterministic, respectively. An analysis of the conditions of applicability of the new equations is carried out and previous well-known forms of the quasi-linear diffusion equations are shown to be recovered in the proper limits. (10 refs., 3 figs.)

  15. As the extension, so the twist : Artificial internal structures blur the boundary between materials and machines

    NARCIS (Netherlands)

    Coulais, C.

    2017-01-01

    More than 350 years ago, Robert Hooke wrote, “As the extension, so the force,” when he appreciated how solids deform. This law of linear elasticity applies to all materials and as such constitutes the foundation of solid mechanics. On page 1072 of this issue, Frenzel et al. (1) created and

  16. Tampa Bay Extension Agents’ Views of Urban Extension: Philosophy and Program Strategies

    Directory of Open Access Journals (Sweden)

    Amy Harder

    2017-06-01

    Full Text Available The purpose of this article was to explore the concept of urban Extension as perceived by Extension agents within the Tampa Bay area, one of Florida’s fastest growing metropolitan areas. From a theoretical perspective, it is critical to understand Extension agents’ beliefs about urban Extension because behaviors are directly related to attitudes (Ajzen, 2012. In 2016, a qualitative investigation was undertaken to explore the perspectives of 23 agents working within the Tampa Bay area. Results showed the majority of agents believed that context and client needs are unique for urban Extension, and that to a lesser extent, unique agent expertise is required. Further, these beliefs impacted how agents reported their approach to programming, with an emphasis on providing convenience and seeking partnerships. Difficulties were identified related to identifying the role of Extension in a resource-rich environment of service providers, which contributed to the existence of a perceived disconnect between urban audiences and Extension. Opportunities exist for Extension leadership to provide strategic organizational support that will enhance agents’ abilities to succeed in the metropolitan environment.

  17. Quantization of O(N) non-linear sigma models as the stochastic motion on Ssup(N-1)

    International Nuclear Information System (INIS)

    Aldazabal, G.; Parga, N.

    1983-09-01

    We obtain the Langevin equations for the stochastic quantization of the O(N) non-linear sigma model by studying the random (Gaussian) motion on the sphere Ssup(N-1). We prove the equivalence of this procedure with a different one where the random forces are elements of the O(N) algebra. A proof that our approach yields in the equilibrium regime the quantum field theory is also given. (author)

  18. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  19. RandomSpot: A web-based tool for systematic random sampling of virtual slides.

    Science.gov (United States)

    Wright, Alexander I; Grabsch, Heike I; Treanor, Darren E

    2015-01-01

    This paper describes work presented at the Nordic Symposium on Digital Pathology 2014, Linköping, Sweden. Systematic random sampling (SRS) is a stereological tool, which provides a framework to quickly build an accurate estimation of the distribution of objects or classes within an image, whilst minimizing the number of observations required. RandomSpot is a web-based tool for SRS in stereology, which systematically places equidistant points within a given region of interest on a virtual slide. Each point can then be visually inspected by a pathologist in order to generate an unbiased sample of the distribution of classes within the tissue. Further measurements can then be derived from the distribution, such as the ratio of tumor to stroma. RandomSpot replicates the fundamental principle of traditional light microscope grid-shaped graticules, with the added benefits associated with virtual slides, such as facilitated collaboration and automated navigation between points. Once the sample points have been added to the region(s) of interest, users can download the annotations and view them locally using their virtual slide viewing software. Since its introduction, RandomSpot has been used extensively for international collaborative projects, clinical trials and independent research projects. So far, the system has been used to generate over 21,000 sample sets, and has been used to generate data for use in multiple publications, identifying significant new prognostic markers in colorectal, upper gastro-intestinal and breast cancer. Data generated using RandomSpot also has significant value for training image analysis algorithms using sample point coordinates and pathologist classifications.

  20. Pseudo-Hermitian random matrix theory

    International Nuclear Information System (INIS)

    Srivastava, S.C.L.; Jain, S.R.

    2013-01-01

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  2. Marginal and Random Intercepts Models for Longitudinal Binary Data with Examples from Criminology

    Science.gov (United States)

    Long, Jeffrey D.; Loeber, Rolf; Farrington, David P.

    2009-01-01

    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…

  3. Evolutionary formalism from random Leslie matrices in biology

    International Nuclear Information System (INIS)

    Caceres, M.O.; Caceres-Saez, I.

    2008-07-01

    We present a perturbative formalism to deal with linear random matrix difference equations. We generalize the concept of the population growth rate when a Leslie matrix has random elements (i.e., characterizing the disorder in the vital parameters). The dominant eigenvalue of which defines the asymptotic dynamics of the mean value population vector state, is presented as the effective growth rate of a random Leslie model. This eigenvalue is calculated from the largest positive root of a secular polynomial. Analytical (exact and perturbative calculations) results are presented for several models of disorder. A 3 x 3 numerical example is applied to study the effective growth rate characterizing the long-time dynamics of a population biological case: the Tursiops sp. (author)

  4. The impact of brand extension fit, extension strategy and product exposure on attitudinal responses to brand extensions

    OpenAIRE

    Farstad, Lena Kvelland; Jabran, Mohammed

    2013-01-01

    Brand extensions have for decades been one of the most used strategies for growth, but the sad reality is that 8 out of 10 extensions fail, making the likelihood of failure unattractively high. In addition, competition and pressure on margins increases as retailers’ power improves due to proliferation of private labels. As a result, managers are eager for new innovative strategies that can differentiate their extension and improve likelihood of success. The purpose of this paper is therefore ...

  5. 76 FR 64299 - Notice of Intent to Request Revision and Extension of a Currently Approved Information Collection

    Science.gov (United States)

    2011-10-18

    ..., cotton, potatoes, soybeans, and wheat. Sample fields are randomly selected for these crops, plots are... (NASS) to request revision and extension of a currently approved information collection, the Field Crops... Agriculture, (202) 720-4333. SUPPLEMENTARY INFORMATION: Title: Field Crops Objective Yield. OMB Control Number...

  6. Universality of quadratic to linear magnetoresistance crossover in disordered conductors

    Science.gov (United States)

    Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique

    Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).

  7. Faster Simulation Methods for the Nonstationary Random Vibrations of Non-linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüo, U.; Nielsen, Søren R.K.

    1996-01-01

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  8. Ryu-Takayanagi formula for symmetric random tensor networks

    Science.gov (United States)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.

  9. Virtual In-Silico Modeling Guided Catheter Ablation Predicts Effective Linear Ablation Lesion Set for Longstanding Persistent Atrial Fibrillation: Multicenter Prospective Randomized Study.

    Science.gov (United States)

    Shim, Jaemin; Hwang, Minki; Song, Jun-Seop; Lim, Byounghyun; Kim, Tae-Hoon; Joung, Boyoung; Kim, Sung-Hwan; Oh, Yong-Seog; Nam, Gi-Byung; On, Young Keun; Oh, Seil; Kim, Young-Hoon; Pak, Hui-Nam

    2017-01-01

    Objective: Radiofrequency catheter ablation for persistent atrial fibrillation (PeAF) still has a substantial recurrence rate. This study aims to investigate whether an AF ablation lesion set chosen using in-silico ablation (V-ABL) is clinically feasible and more effective than an empirically chosen ablation lesion set (Em-ABL) in patients with PeAF. Methods: We prospectively included 108 patients with antiarrhythmic drug-resistant PeAF (77.8% men, age 60.8 ± 9.9 years), and randomly assigned them to the V-ABL ( n = 53) and Em-ABL ( n = 55) groups. Five different in-silico ablation lesion sets [1 pulmonary vein isolation (PVI), 3 linear ablations, and 1 electrogram-guided ablation] were compared using heart-CT integrated AF modeling. We evaluated the feasibility, safety, and efficacy of V-ABL compared with that of Em-ABL. Results: The pre-procedural computing time for five different ablation strategies was 166 ± 11 min. In the Em-ABL group, the earliest terminating blinded in-silico lesion set matched with the Em-ABL lesion set in 21.8%. V-ABL was not inferior to Em-ABL in terms of procedure time ( p = 0.403), ablation time ( p = 0.510), and major complication rate ( p = 0.900). During 12.6 ± 3.8 months of follow-up, the clinical recurrence rate was 14.0% in the V-ABL group and 18.9% in the Em-ABL group ( p = 0.538). In Em-ABL group, clinical recurrence rate was significantly lower after PVI+posterior box+anterior linear ablation, which showed the most frequent termination during in-silico ablation (log-rank p = 0.027). Conclusions: V-ABL was feasible in clinical practice, not inferior to Em-ABL, and predicts the most effective ablation lesion set in patients who underwent PeAF ablation.

  10. Remote optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.; Al-Sunni, Fouad; Liu, Bo

    2014-01-01

    This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system

  11. Singlet Extensions of the MSSM with ℤ4R Symmetry

    International Nuclear Information System (INIS)

    Ratz, Michael; Vaudrevange, Patrick K. S.

    2015-01-01

    We discuss singlet extensions of the MSSM with ℤ 4 R symmetry. We show that holomorphic zeros can avoid a potentially large coefficient of the term linear in the singlet. The emerging model has both an effective μ term and a supersymmetric mass term for the singlet μ N which are controlled by the gravitino mass. The μ term turns out to be suppressed against μ N by about one or two orders of magnitude. We argue that this class of models might provide us with a solution to the little hierarchy problem of the MSSM

  12. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  13. Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains

    Energy Technology Data Exchange (ETDEWEB)

    Egbe, Daniel A.M.; Adam, Getachew; Pivrikas, Almantas; Ulbricht, Christoph; Ramil, Alberto M.; Sariciftci, Niyazi Serdar [Johannes Kepler Univ., Linz (AT). Linz Inst. for Organic Solar Cells (LIOS); Hoppe, Harald [Technische Univ. Ilmenau (Germany). Inst. of Physics and Inst. of Micro- and Nanotechnologies; Rathgeber, Silke [Mainz Univ. (Germany). Inst. of Physics

    2010-07-01

    The random distribution of segments of linear octyloxy side chains and of branched 2-ethylhexyloxy side chains, on the backbone of anthracene containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene) (PPE-PPV) has resulted in a side chain based statistical copolymer, denoted AnE-PVstat, showing optimized features as compared to the well defined homologues AnE-PVaa, -ab, -ba and -bb, whose constitutional units are incorporated into its backbone. WAXS studies on AnE-P's demonstrate the highest degree of order at the self-assembly state of AnE-PVstat, which is confirmed by its highly structured thin film absorption band. Electric field independent charge carrier mobility ({mu}{sub hole}) for AnE-PVstat was demonstrated by CELIV and OFET measurements, both methods resulting in similar {mu}{sub hole} values of up to 5.43 x 10{sup -4} cm{sup 2}/Vs. Upon comparison, our results show that charge carrier mobility as measured by CELIV technique is predominantly an intrachain process and less an interchain one, which is in line with past photoconductivity results from PPE-PPV based materials. The present side chain distribution favors efficient solar cell active layer phase separation. As a result, a smaller amount of PC{sub 60}BM is needed to achieve relatively high energy conversion efficiencies above 3 %. The efficiency of {eta}{sub AM1.5} {approx} 3.8 % obtained for AnE-PVstat:PC{sub 60}BM blend is presently the state-of-art value for PPV-based materials. (orig.)

  14. Reliability and Validity Assessment of a Linear Position Transducer

    Science.gov (United States)

    Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.

    2015-01-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  15. Simulating propagation of coherent light in random media using the Fredholm type integral equation

    Science.gov (United States)

    Kraszewski, Maciej; Pluciński, Jerzy

    2017-06-01

    Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.

  16. Study of RNA structures with a connection to random matrix theory

    International Nuclear Information System (INIS)

    Bhadola, Pradeep; Deo, Nivedita

    2015-01-01

    This manuscript investigates the level of complexity and thermodynamic properties of the real RNA structures and compares the properties with the random RNA sequences. A discussion on the similarities of thermodynamical properties of the real structures with the non linear random matrix model of RNA folding is presented. The structural information contained in the PDB file is exploited to get the base pairing information. The complexity of an RNA structure is defined by a topological quantity called genus which is calculated from the base pairing information. Thermodynamic analysis of the real structures is done numerically. The real structures have a minimum free energy which is very small compared to the randomly generated sequences of the same length. This analysis suggests that there are specific patterns in the structures which are preserved during the evolution of the sequences and certain sequences are discarded by the evolutionary process. Further analyzing the sequences of a fixed length reveal that the RNA structures exist in ensembles i.e. although all the sequences in the ensemble have different series of nucleotides (sequence) they fold into structures that have the same pairs of hydrogen bonding as well as the same minimum free energy. The specific heat of the RNA molecule is numerically estimated at different lengths. The specific heat curve with temperature shows a bump and for some RNA, a double peak behavior is observed. The same behavior is seen in the study of the random matrix model with non linear interaction of RNA folding. The bump in the non linear matrix model can be controlled by the change in the interaction strength.

  17. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    CERN Document Server

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  18. Fundamentals of linear systems for physical scientists and engineers

    CERN Document Server

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  19. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  20. Contribution to the application of the random vibration theory to the seismic analysis of structures via state variables

    International Nuclear Information System (INIS)

    Maestrini, A.P.

    1979-04-01

    Several problems related to the application of the theory of random by means of state variables are studied. The well-known equations that define the propagation of the mean and the variance for linear and non-linear systems are first presented. The Monte Carlo method is next resorted to in order to determine the applicability of the hypothesis of a normally distributed output in case of linear systems subjected to non-Gaussian excitations. Finally, attention is focused on the properties of linear filters and modulation functions proposed to simulate seismic excitations as non stationary random processes. Acceleration spectra obtained by multiplying rms spectra by a constant factor are compared with design spectra suggested by several authors for various soil conditions. In every case, filter properties are given. (Author) [pt