WorldWideScience

Sample records for raman laser induced

  1. Laser-induced alteration of Raman spectra for micron-sized solid particles

    Science.gov (United States)

    Böttger, U.; Pavlov, S. G.; Deßmann, N.; Hanke, F.; Weber, I.; Fritz, J.; Hübers, H.-W.

    2017-04-01

    The Raman Laser Spectrometer (RLS) instrument on board of the future ESAs ExoMars mission will analyze micron-sized powder samples in a low pressure atmosphere. Such micron-sized polycrystalline solid particles might be heated by the laser during the Raman measurements. Here, we report on the temperature-induced alteration of Raman spectra from micron-sized polycrystalline solid particles by comparing Raman spectra on silicon and the rock forming minerals olivine and pyroxene taken at different laser intensities and different ambient temperatures. Our analyses indicate that laser-induced heating results in both broadening and shifting of characteristic Raman lines in the Stokes and anti-Stokes spectral regions. For elementary crystalline silicon a significant local temperature increase and relevant changes in Raman spectra have been observed in particles with median sizes below 250 μm. In comparison, significantly weaker laser-induced Raman spectral changes were observed in more complex rock-forming silicate minerals; even for lower grain sizes. Laser power densities realized in the RLS ExoMars instrument should cause only low local heating effects and, thus, negligible frequency shifts of the major Raman lines in common silicate minerals such as olivine and pyroxene.

  2. Combined raman/laser-induced breakdown spectrometer: space and non-space applications

    NARCIS (Netherlands)

    Sandtke, M.; Laan, E.C.; Ahlers, B.

    2010-01-01

    TNO has developed the combination of two spectroscopic analysis methods in one instrument. Raman spectroscopy and Laser-induced Breakdown Spectroscopy (LIBS) were brought together for an instrument to be flown on the ExoMars mission from the European Space Agency (ESA) to investigate the Martian (su

  3. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  4. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  5. Combined raman/laser-induced breakdown spectrometer: space and non-space applications

    NARCIS (Netherlands)

    Sandtke, M.; Laan, E.C.; Ahlers, B.

    2010-01-01

    TNO has developed the combination of two spectroscopic analysis methods in one instrument. Raman spectroscopy and Laser-induced Breakdown Spectroscopy (LIBS) were brought together for an instrument to be flown on the ExoMars mission from the European Space Agency (ESA) to investigate the Martian

  6. Raman thermometry: Effective temperature of the nonuniform temperature field induced by a Gaussian laser

    Energy Technology Data Exchange (ETDEWEB)

    Očenášek, Jan, E-mail: ocenasek@ntc.zcu.cz; Voldřich, Josef [New Technologies Research Centre, University of West Bohemia in Pilsen, Plzeň 30614 (Czech Republic)

    2015-12-21

    Raman spectroscopy is a widely applied analytical technique with numerous applications that is based on inelastic scattering of monochromatic light, which is typically provided by a laser. Irradiation of a sample by a laser beam is always accompanied by an increase in the sample temperature, which may be unwanted or may be beneficial for studying temperature-related effects and determining thermal parameters. This work reports analyses of the temperature field induced by a Gaussian laser to calculate the Raman scattered intensity related to each temperature value of the nonuniform field present on the sample. The effective temperature of the probed field, calculated as an average weighted by the laser intensity, is demonstrated to be about 70% of the maximum temperature irrespective of the absorption coefficient or the laser focus. Finally, using crystalline silicon as a model material, it is shown that this effective value closely approximates the temperature value identified from the thermally related peak shift.

  7. Effect of Laser-Induced Heating on Raman Measurement within a Silicon Microfluidic Channel

    Directory of Open Access Journals (Sweden)

    Ying Lin

    2015-06-01

    Full Text Available When Raman microscopy is adopted to detect the chemical and biological processes in the silicon microfluidic channel, the laser-induced heating effect will cause a temperature rise in the sample liquid. This undesired temperature rise will mislead the Raman measurement during the temperature-influencing processes. In this paper, computational fluid dynamics simulations were conducted to evaluate the maximum local temperature-rise (MLT. Through the orthogonal analysis, the sensitivity of potential influencing parameters to the MLT was determined. In addition, it was found from transient simulations that it is reasonable to assume the actual measurement to be steady-state. Simulation results were qualitatively validated by experimental data from the Raman measurement of diffusion, a temperature-dependent process. A correlation was proposed for the first time to estimate the MLT. Simple in form and convenient for calculation, this correlation can be efficiently applied to Raman measurement in a silicon microfluidic channel.

  8. Raman and Luminescence Investigation of Rare Earth Doped Laser-Induced Crystals-in-Glass

    Science.gov (United States)

    Knorr, Brian; Stone, Adam; Jain, Himanshu; Dierolf, Volkmar

    2015-03-01

    Laser induced crystallization of glasses is a highly spatially selective process which has the potential to produce compact, integrated optics within a glass matrix. In LaBGeO5 low temperature Combined Excitation Emission Spectroscopy (CEES) revealed that erbium incorporates into both glass-ceramics and laser-induced crystals-in-glass in predominantly one type of environment (site). The energy levels of this site were quantified. The fluorescence characteristics of the erbium ions in any site in the laser-induced crystals were found to be only weakly influenced by the irradiation conditions during growth. On the other hand, a hidden parameter, potentially boron deficiency-related defects, resulted in a significant change in the incorporation behavior of the erbium ions. Scanning confocal Raman and fluorescence spectroscopy showed that the energies of the Raman modes are shifted and the erbium fluorescence intensity is inhomgeneously distributed, despite the host glass being homogeneously doped, across the cross-sections of laser-induced crystals in glass. These fluctuations within the Raman and fluorescence are spatially correlated, implying that different erbium sites form preferentially at different locations in the crystal cross-section.

  9. Laser-induced gratings in the gas phase excited via Raman-active transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D.N. [General Physics Inst., Russian Academy of Sciences, Moscow (Russian Federation); Bombach, R.; Hemmerling, B.; Hubschmid, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We report on a new time resolved coherent Raman technique that is based on the generation of thermal gratings following a population change among molecular levels induced by stimulated Raman pumping. This is achieved by spatially and temporally overlapping intensity interference patterns generated independently by two lasers. When this technique is used in carbon dioxide, employing transitions which belong to the Q-branches of the {nu}{sub 1}/2{nu}{sub 2} Fermi dyad, it is possible to investigate molecular energy transfer processes. (author) 2 figs., 10 refs.

  10. Advancing the experimental design for simultaneous acquisition of laser induced plasma and Raman signals using a single pulse

    Science.gov (United States)

    Choi, Soo-Jin; Choi, Jae-Jun; Yoh, Jack J.

    2016-09-01

    Simultaneous acquisition was performed of combined signals that show highly resolved and identifiable peaks of both LIBS and Raman signals. A LIBS-Raman combination using a single light source is a daunting task, because the energy required for Raman shift is relatively low, compared to the energy required for laser ablation. Here, we utilize an expanded-focused beam that allows simultaneous detection of the signals of laser induced plasma and Raman shift. A beam expander obtains the Raman signal with minimized interference from the plasma, and a focusing lens of small diameter generates strong laser induced plasma for LIBS. The position of the focusing lens can be adjusted to control the area of Raman scattering to ensure a strong Raman signal. In the proposed design, the key to minimized interference is to generate the Raman scattering apart from the plasma, which allows for sufficiently long gate width and wide area for Raman detection. Furthermore, axial relocation of the end of the optical fiber can easily optimize the Raman, LIBS, or combined Raman-LIBS signal.

  11. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  12. Raman fiber lasers

    Science.gov (United States)

    Supradeepa, V. R.; Feng, Yan; Nicholson, Jeffrey W.

    2017-02-01

    High-power fiber lasers have seen tremendous development in the last decade, with output powers exceeding multiple kilowatts from a single fiber. Ytterbium has been at the forefront as the primary rare-earth-doped gain medium owing to its inherent material advantages. However, for this reason, the lasers are largely confined to the narrow emission wavelength region of ytterbium. Power scaling at other wavelength regions has lagged significantly, and a large number of applications rely upon the diversity of emission wavelengths. Currently, Raman fiber lasers are the only known wavelength agile, scalable, high-power fiber laser technology that can span the wavelength spectrum. In this review, we address the technology of Raman fiber lasers, specifically focused on the most recent developments. We will also discuss several applications of Raman fiber lasers in laser pumping, frequency conversion, optical communications and biology.

  13. Laser-induced synthesis of metal-carbon materials for implementing surface-enhanced Raman scattering

    Science.gov (United States)

    Kucherik, A.; Arakelian, S.; Vartanyan, T.; Kutrovskaya, S.; Osipov, A.; Povolotskaya, A.; Povolotskii, A.; Man'shina, A.

    2016-08-01

    Metal-carbon materials exhibiting surface-enhanced Raman scattering have been synthesized by laser irradiation of colloidal systems consisting of carbon and noble metal nanoparticles. The dependence of the Raman scattering intensity on the material composition and laser irradiation conditions has been investigated. The possibility of recording the Raman spectrum of organic dye rhodamine 6G, deposited in amount of 10-6 M on the substrate obtained from a colloidal solution is demonstrated.

  14. Raman study of localized recrystallization of amorphous silicon induced by laser beam

    KAUST Repository

    Tabet, Nouar A.

    2012-06-01

    The adoption of amorphous silicon based solar cells has been drastically hindered by the low efficiency of these devices, which is mainly due to a low hole mobility. It has been shown that using both crystallized and amorphous silicon layers in solar cells leads to an enhancement of the device performance. In this study the crystallization of a-Si prepared by PECVD under various growth conditions has been investigated. The growth stresses in the films are determined by measuring the curvature change of the silicon substrate before and after film deposition. Localized crystallization is induced by exposing a-Si films to focused 532 nm laser beam of power ranging from 0.08 to 8 mW. The crystallization process is monitored by recording the Raman spectra after various exposures. The results suggest that growth stresses in the films affect the minimum laser power (threshold power). In addition, a detailed analysis of the width and position of the Raman signal indicates that the silicon grains in the crystallized regions are of few nm diameter. © 2012 IEEE.

  15. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  16. Kinetics of the laser-induced solid phase crystallization of amorphous silicon-Time-resolved Raman spectroscopy and computer simulations

    Science.gov (United States)

    Očenášek, J.; Novák, P.; Prušáková, L.

    2017-01-01

    This study demonstrates that a laser-induced crystallization instrumented with Raman spectroscopy is, in general, an effective tool to study the thermally activated crystallization kinetics. It is shown, for the solid phase crystallization of an amorphous silicon thin film, that the integral intensity of Raman spectra corresponding to the crystalline phase grows linearly in the time-logarithmic scale. A mathematical model, which assumes random nucleation and crystal growth, was designed to simulate the crystallization process in the non-uniform temperature field induced by laser. The model is based on solving the Eikonal equation and the Arhenius temperature dependence of the crystal nucleation and the growth rate. These computer simulations successfully approximate the crystallization process kinetics and suggest that laser-induced crystallization is primarily thermally activated.

  17. Raman monitoring of a catalytic system at work: Influence of the reactant on the sensitivity to laser-induced heating

    Science.gov (United States)

    Schnee, Josefine; Gaigneaux, Eric M.

    2017-02-01

    Characterizing catalysts under working conditions is crucial to understand and to optimize their behavior and performance. However, when Raman spectroscopy is used, attention has to be paid to laser-induced artefacts. While laser irradiation is often claimed to lead to a temperature gradient between the integral catalyst bed and the sampling point, neither the circumstances when such effect appears, nor if it systematically occurs or not, are really explored in details. The present paper shows that the sensitivity of a catalyst to laser-induced heating largely depends on the gas composition under which the analysis is done, in particular that it depends whether the catalyst has adsorbed reactant molecules or not. These aspects are here addressed via the Raman in situ exploration of H3PW12O40. This heteropolyacid is a widely used acid catalyst due to its very high Brönsted acidity, approaching the superacid region. In particular, we have investigated the impact of laser irradiation in the Raman monitoring of solid H3PW12O40 at work under a flow of methanol in nitrogen at 50 °C. When 1 single spectrum of H3PW12O40 was measured after 3 h of exposure to methanol, the characteristic Csbnd H vibration bands of adsorbed methanol appeared. However, when spectra were measured continuously throughout the experiment, the same Csbnd H vibration bands were observed only during the first hour, then they disappeared and the characteristic bands of polyaromatic molecules appeared. Under continuous laser irradiation, adsorbed methanol was thus converted into polyaromatic coke as resulting from a laser-induced heating. However, the spectra collected under pure nitrogen show that the laser does not heat the catalyst in the absence of methanol. UV-Vis revealed the reason of the laser-induced heating in the presence of methanol, and the subsequent formation of coke. Actually the catalyst gets reduced by the adsorbed methanol, what darkens the catalyst bed. Such a darkening renders

  18. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides.

    Science.gov (United States)

    Oztekin, Erman K; Smith, Sarah E; Hahn, David W

    2015-04-01

    Differential-laser induced perturbation spectroscopy (DLIPS) is a new spectral analysis technique for classification and identification, with key potential applications for analysis of complex biomolecular systems. DLIPS takes advantage of the complex ultraviolet (UV) laser–material interactions based on difference spectroscopy by coupling low intensity UV laser perturbation with a traditional spectroscopy probe. Here, we quantify the DLIPS performance using a Raman scattering probe in classification of basic constituents of collagenous tissues, namely, the amino acids glycine, L-proline, and L-alanine, and the dipeptides glycine–glycine, glycine–alanine and glycine–proline and compare the performance to a traditional Raman spectroscopy probe via several multivariate analyses. We find that the DLIPS approach yields an ~40% improvement in discrimination among these tissue building blocks. The effects of the 193-nm perturbation laser are further examined by assessing the photodestruction of targeted material molecular bonds. The DLIPS method with a Raman probe holds promise for future tissue diagnosis, either as a stand-alone technique or as part of an orthogonal biosensing scheme.

  19. Brillouin/Raman compensation of the Kerr-effect-induced bias in a nonlinear ring laser gyroscope.

    Science.gov (United States)

    Luo, Zhang; Yuan, Xiaodong; Zhu, Zhihong; Liu, Ken; Ye, Weimin; Zeng, Chun; Ji, Jiarong

    2013-04-01

    In this Letter, the beat frequency at rest of a ring laser gyroscope with nonlinear effects is discussed in detail. Even without an additional intensity-stabilizing system, the random nullshift bias induced by the Kerr effect is compensated by the phase shift associated with the stimulated Brillouin/Raman scattering. And the nonlinear stimulated scattering also serves as the gain mechanism of the gyroscope. And thus the influence of the fluctuation of the injected pump intensity on the beat frequency is eliminated.

  20. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates.

    Science.gov (United States)

    Oujja, M; Vázquez-Calvo, C; Sanz, M; Álvarez de Buergo, M; Fort, R; Castillejo, M

    2012-02-01

    This article reports on a compositional investigation of stone patinas: thin colored layers applied for protective and/or aesthetic purposes on architectural or sculptural substrates of cultural heritage. The analysis and classification of patinas provide important information of historic and artistic interest, as their composition reflects local practices, the availabilities of different materials, and the development of technological knowledge during specific historical periods. Model patinas fabricated according to traditional procedures and applied onto limestone, and a historic patina sample from the main façade of the San Blas Monastery in Lerma (a village in the province of Burgos, Spain), were analyzed by laser-induced fluorescence and Fourier transform Raman spectroscopy. The results obtained demonstrate the ability of these two analytical techniques to identify the key components of each formulation and those of the reaction products which result from the chemical and mineralogical transformations that occur during aging, as well as to provide information that can aid the classification of different types of patinas.

  1. Laser induced fluorescence and Raman spectroscopy in capillary electrophoresis as an possible instrument for extraterrestrial life signs detection.

    Science.gov (United States)

    Mikhail, Gorlenko; Cheptcov, Vladimir; Anton, Maydykovskiy; Eugeniy, Vasilev

    The one of a significant aims in extraterrestrial exploration is a seeking for a life traces in a open space and planetary objects. Complex composition and unknown origin of suspected signs of life required у new analytical approaches and technical solutions. The promising assai here can be Laser induced fluorescence and Raman spectroscopy methods. The combined instrument developed by our team reveal the advantage of capillary electrophoresis assays in a junction with laser induced fluorescence detection technology. We optimized excitation configuration of fluorescence in capillary electrophoresis to reduce pumping laser power up to 1 mW and decrease background scattering. The improvement of the device sensitivity at poor sample concentration we achieved by incorporating fluorescence flow-through cuvette into spectrometer. That allows to simplify setup, to minimize weight and increase reproducibility of measurements. The device has been tasted in complex organic chemical mixes and microbial strains differentiation tasks. 3d multinational spectra allow us to increase the spectra information loads in comparison with ordinary capillary electrophoresis approaches. Possible updating the device with Raman approach can even furthermore multiple the differentiation power of the instrument. The analytical module developed using this approach can be potentially effectively used in extraterrestrial researches as a payload of the future spacecraft.

  2. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy

    Science.gov (United States)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2015-12-01

    Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.

  3. Transient bond scission of polytetrafluoroethylene under laser-induced shock compression studied by nanosecond time-resolved Raman spectroscopy

    Science.gov (United States)

    Nakamura, Kazutaka; Wakabayashi, Kunihiko; Konodo, Ken-Ichi

    2001-06-01

    Nanosecond time-resolved Raman spectroscopy has been performed to study polymer films, polytetrafluoroethylene (PTFE), under laser driven shock compression at laser power density of 4.0 GW/cm^2. The overtone-mode line of PTFE showed red shift (18 cm-1) at delay time of 9.3 ns due to the shock compression and corresponding pressure was estimated to be approximately 2.7 GPa by analyzing static and shock compression data. The estimated pressure was in good agreement with that estimated by ablation pressure in glass-confined geometry. A new vibrational line at 1900 cm-1 appeared only under shock compression and was assigned to the C=C streching in transient species such as a monomer (C_2F_4) produced by the shock-induced bond scission. Intensity of the new line increased with increasing delay time along propagation of the shock compression with a shock velocity of 2.5 km/s.

  4. Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering.

    Science.gov (United States)

    Rebollar, Esther; Sanz, Mikel; Pérez, Susana; Hernández, Margarita; Martín-Fabiani, Ignacio; Rueda, Daniel R; Ezquerra, Tiberio A; Domingo, Concepción; Castillejo, Marta

    2012-12-05

    We report on the fabrication of gold coated nanostructured polymer thin films and on their characterization as substrates for surface enhanced Raman spectroscopy (SERS). Laser induced periodic surface structures (LIPSS) were obtained on thin polymer films of poly(trimethylene terephthalate) (PTT) upon laser irradiation with the fourth harmonic of a Nd:YAG laser (266 nm, pulse duration 6 ns) resulting in a period close to the incident wavelength. The nanostructured polymer substrates were coated with a nanoparticle assembled gold layer by pulsed laser deposition using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns). Different deposition times resulted in thicknesses from a few nanometres up to several tens of nanometres. Analysis by atomic force microscopy and grazing incident small angle X-ray scattering showed that gold coating preserved the LIPSS relief. The capabilities of the produced nanostructures as substrates for SERS have been investigated using benzenethiol as a test molecule. The SERS signal is substantially larger than that observed for a gold-coated flat substrate. Advantages of this new type of SERS substrates are discussed.

  5. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium

    Science.gov (United States)

    Bashir, Shazia; Shahid Rafique, M.; Nathala, Chandra S. R.; Ajami, Ali; Husinsky, Wolfgang

    2015-05-01

    The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8 J cm-2 for pulse duration of ∼25 fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100 fs, for a constant fluence of 11.8 J cm-2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4-4 mJ cm-2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370 nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25 fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.

  6. Radiation-reaction-force-induced nonlinear mixing of Raman sidebands of an ultraintense laser pulse in a plasma.

    Science.gov (United States)

    Kumar, Naveen; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2013-09-06

    Stimulated Raman scattering of an ultraintense laser pulse in plasmas is studied by perturbatively including the leading order term of the Landau-Lifshitz radiation reaction force in the equation of motion for plasma electrons. In this approximation, the radiation reaction force causes a phase shift in nonlinear current densities that drive the two Raman sidebands (anti-Stokes and Stokes waves), manifesting itself into the nonlinear mixing of two sidebands. This mixing results in a strong enhancement in the growth of the forward Raman scattering instability.

  7. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy

    Science.gov (United States)

    Osticioli, I.; Mendes, N. F. C.; Nevin, A.; Gil, Francisco P. S. C.; Becucci, M.; Castellucci, E.

    2009-08-01

    Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provided information regarding the elemental and molecular composition of the samples; additionally, an analytical protocol for the differentiation between natural (lapis lazuli) and artificial ultramarine blue pigments is proposed. In particular LIBS analysis has allowed the discrimination between pigments on the basis of peaks ascribed to calcium. The presence of calcite in the natural blue pigments has been confirmed following Raman spectroscopy in specific areas of the samples, and micro-Raman and optical microscopy have further corroborated the presence of calcite inclusions in the samples of natural origin. Finally multivariate analysis of Laser induced breakdown spectra using principal component analysis (PCA) further enhanced the differentiation between natural and artificial ultramarine blue pigments.

  8. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy.

    Science.gov (United States)

    Osticioli, I; Mendes, N F C; Nevin, A; Gil, Francisco P S C; Becucci, M; Castellucci, E

    2009-08-01

    Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provided information regarding the elemental and molecular composition of the samples; additionally, an analytical protocol for the differentiation between natural (lapis lazuli) and artificial ultramarine blue pigments is proposed. In particular LIBS analysis has allowed the discrimination between pigments on the basis of peaks ascribed to calcium. The presence of calcite in the natural blue pigments has been confirmed following Raman spectroscopy in specific areas of the samples, and micro-Raman and optical microscopy have further corroborated the presence of calcite inclusions in the samples of natural origin. Finally multivariate analysis of Laser induced breakdown spectra using principal component analysis (PCA) further enhanced the differentiation between natural and artificial ultramarine blue pigments.

  9. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  10. Laser-induced synthesis of metallic silver-gold nanoparticles encapsulated in carbon nanospheres for surface-enhanced Raman spectroscopy and toxins detection

    Science.gov (United States)

    Povolotskiy, Alexey; Povolotckaia, Anastasia; Petrov, Yuriy; Manshina, Alina; Tunik, Sergey

    2013-09-01

    Metallic silver-gold nanoparticles (1-5 nm) encapsulated into carbon nanospheres (20-30 nm) were synthesized via laser-induced chemical liquid phase deposition. The obtained carbon-silver-gold nanostructures were characterized by high specific surface area and demonstrated high sensitivity as a material for surface-enhanced Raman scattering and adsorption properties allowing analyte extraction from a dilute solution for quantitative monitoring of low concentration components.

  11. A Remote Raman and Laser-Induced Fluorescence Spectrometer and its Application for Lidar Remote Sensing of Martian Atmosphere

    Science.gov (United States)

    Ismail, S.; Sharma, S. K.; Angel, S. M.; Lucey, P. G.; McKay, C. P.; Misra, A. K.; Mouginis-Mark, P. J.; Newsom, H.; Scott, E. R.; Singh, U. N.; Taylor, J. G.; Porter, J. N.

    2005-05-01

    A combined remote Raman and Laser Induced Fluorescence (RLIF) spectrometer was proposed as a mast-mounted instrument for the Mars Science Laboratory (MSL). This remote RLIF system is capable of conducting reconnaissance of fluorescence materials and minerals with high sensitivity (e.g., carbonates, sulfates, phosphates, quartz, etc.) that can be recorded with a single 532 nm (35 mJ) laser pulse of 8 ns half-width. The RLIF system is also capable of identification of mineral, organic, and biogenic materials and is sitable for atmospheric studies of Mars. This instrument design is based on a prototypes that was developed with partial support from NASA's Planetary Instrument Definition and Development Program (PIDDP) at the University of Hawaii. This prototype instrument has been modified to operate in the lidar mode to obtain Mie-Rayleigh scattering profiles in the atmosphere for studying meteorological processes in the marine atmosphere. Application of RLIF to obtain range-resolved atmospheric backscattering profiles using the AOTF technique are capable of providing atmospheric backscatter profiles. Data from RLIF can be used to retrieve optical properties of dust aerosols and clouds, including the profiling of scattering intensity, location of cloud base and thickness, atmospheric extinction, and de-polarization. These measurements can be made at high vertical resolution up to altitudes >5 km. Simultaneous measurements can be made of atmospheric CO2 and its variations; surface CO2-ice and water-ice; and surface and subsurface hydrated methane on Mars. Capability of RLIF and examples of atmospheric measurements applicable to RLIF will be presented in this paper.

  12. Structural Changes Induced in Grapevine (Vitis vinifera L. DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    Directory of Open Access Journals (Sweden)

    Nicoleta E. Dina

    2016-05-01

    Full Text Available In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L. varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs infrared (IR laser pulse irradiation (λ = 1100 nm are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA, eight different grapevine varieties were discriminated.

  13. Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    CERN Document Server

    Ni, Jielei; Zhang, Haisu; Zeng, Bin; Yao, Jinping; Li, Guihua; Jing, Chenrui; Xie, Hongqiang; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical species in atmosphere by rotational Raman scattering of molecules.

  14. Laser irradiation induced spectral evolution of the Laser irradiation induced spectral evolution of the surface-enhanced Raman scattering(SERS)of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly

    Institute of Scientific and Technical Information of China (English)

    TONG LianMing; ZHU Tao; LIU ZhongFan

    2007-01-01

    The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan(4-tBBM)on gold nanopanlcles assembly under laser irradiation is reported.The reIative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time.Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance(SPR)induced heat in the gold nanoparticles assembly is the origin of the spectraI evolution.During the process of self-assembly,4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group.The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.

  15. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasana, E-mail: prasanasahoo@gmail.com [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India); Murthy, P. Sriyutha [Bhabha Atomic Research Centre, Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division (India); Dhara, S., E-mail: dhara@igcar.gov.in [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India); Venugopalan, V. P. [Bhabha Atomic Research Centre, Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division (India); Das, A.; Tyagi, A. K. [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India)

    2013-08-15

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga{sup 3+} (ionic radius {approx}0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe{sup 2+} (ionic radius {approx}0.077 nm), which is essential for energy metabolism.

  16. Laser irradiation induced spectral evolution of the surface-enhanced Raman scattering(SERS) of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan (4-tBBM) on gold nanoparticles assembly under laser irradiation is reported. The relative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time. Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance (SPR) induced heat in the gold nanoparticles assembly is the origin of the spectral evolution. During the process of self-assembly, 4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group. The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.

  17. Passively mode locked Raman laser

    CERN Document Server

    Liang, W; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2010-01-01

    We report on the observation of a novel mode locked optical comb generated at the Raman offset (Raman comb) in an optically pumped crystalline whispering gallery mode resonator. Mode locking is confirmed via measurement of the radio-frequency beat note produced by the optical comb on a fast photodiode. Neither the conventional Kerr comb nor hyper-parametric oscillation is observed when the Raman comb is present.

  18. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A.; Jovanovic, M.

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  19. Backward Raman Amplifier for Laser Wakefield Accelerator

    Science.gov (United States)

    Ludwig, Joshua; Masson-Laborde, Paul-Edouard; Huller, Stefan; Rozmus, Wojciech; Wilks, Scott C.

    2016-10-01

    Particle in cell simulations via SCPIC and theoretical work on Raman amplification and laser wake field acceleration will be presented. Laser energy depletion has been shown to be a limiting factor during wake field acceleration. This work focuses on optimizing parameters for Raman amplification to work in conjunction with wake field acceleration in order in order to sustain an accelerating laser pulse as it generates plasma waves. It has been shown that laser pulses undergo red shifting during wake generation. Our work demonstrates that this red shifting results in a detuning between pump and seed in the backward Raman Amplifier. This detuning limits the amount of energy that can be transferred from the pump to the seed, and places new limits on backward Raman amplification. To overcome this limiting factor, this study makes use of a chirped pump allowing for extended coupling to the accelerating pulse. Three wave coupling model of Raman amplifier with a frequency shift term due to wake field will also be discussed and compared with PIC simulations.

  20. On-Chip Diamond Raman Laser

    CERN Document Server

    Latawiec, Pawel; Burek, Michael J; Hausmann, Birgit J M; Bulu, Irfan; Loncar, Marko

    2015-01-01

    Synthetic single-crystal diamond has recently emerged as a promising platform for Raman lasers at exotic wavelengths due to its giant Raman shift, large transparency window and excellent thermal properties yielding a greatly enhanced figure-of-merit compared to conventional materials. To date, diamond Raman lasers have been realized using bulk plates placed inside macroscopic cavities, requiring careful alignment and resulting in high threshold powers (~W-kW). Here we demonstrate an on-chip Raman laser based on fully-integrated, high quality-factor, diamond racetrack micro-resonators embedded in silica. Pumping at telecom wavelengths, we show Stokes output discretely tunable over a ~100nm bandwidth around 2-{\\mu}m with output powers >250 {\\mu}W, extending the functionality of diamond Raman lasers to an interesting wavelength range at the edge of the mid-infrared spectrum. Continuous-wave operation with only ~85 mW pump threshold power in the feeding waveguide is demonstrated along with continuous, mode-hop-fr...

  1. High Power Photonic Crystal Fibre Raman Laser

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; YU Yong-Qin; GUO Chun-Yu; GUO Yuan; LIU Cheng-Xiang

    2006-01-01

    A cw Raman laser based on a 100-m photonic crystal fibre is demonstrated with up to 3.8 W output power at the incident pump power of 12 W, corresponding to an optical-to-optical efficiency of about 31.6%. The second order Stokes light, which is firstly reported in a cw photonic crystal fibre Raman laser, is obtained at 1183nm with an output power of 1.6 W and a slope efficiency of about 45.7%.

  2. Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes.

    Science.gov (United States)

    Mildren, R P; Piper, J A

    2008-03-01

    We report increased wavelength options from Raman lasers for Raman media having two Raman modes of similar gain coefficient. For an external-cavity potassium gadolinium tungstate Raman laser pumped at 532 nm, we show that two sets of Stokes orders are generated simultaneously by appropriate orientation of the Raman crystal, and also wavelengths that correspond to sums of the two Raman modes. Up to 14 visible Stokes lines were observed in the wavelength range 555-675 nm. The increase in Stokes wavelengths also enables a much greater selection of wavelengths to be accessed via intracavity nonlinear sum frequency and difference frequency mixing. For example, we demonstrate 30 output wavelength options for a wavelength-selectable 271-321 nm Raman laser with intracavity sum frequency mixing in BBO. We also present a theoretical analysis that enables prediction of wavelength options for dual Raman mode systems.

  3. Mode decoupling in solid state ring laser based on stimulated Raman effect in polar crystals

    Institute of Scientific and Technical Information of China (English)

    Luo Zhang; Yuan Xiao-Dong; Ye Wei-Min; Zeng Chun; Ji Jia-Rong

    2011-01-01

    In this paper we study the gain saturation induced mode-coupling control in solid state ring laser devices based on the stimulated Raman effect of the polar crystals in order to realize solid state ring laser gyroscopes. We theoretically investigate the mode coupling induced by gain saturation between clockwise (CW) and counterclockwise (CCW) propagating laser modes. Because the CW and CCW running waves are pumped with counter-propagating lasers respectively, the independent coexistence can be ensured.

  4. Laser tweezers Raman spectroscopy of single cells

    Science.gov (United States)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  5. Highly Stable PM Raman Fiber Laser at 1680 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Liu, Xiaomin; Rottwitt, Karsten

    2013-01-01

    We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm.......We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm....

  6. Ultrashort mode-locked lasers with additional Raman active elements

    Science.gov (United States)

    Trunov, V. I.; Kirpichnikov, A. V.; Pestryakov, Efim V.; Petrov, V. V.; Komarov, A. K.; Komarov, Konstantin P.

    2002-05-01

    Numerical simulation of ultrashort pulse generation in the laser with a composite active medium and additional Raman active element in a cavity has been done. It was created that for some laser parameters the optimization of a Raman gain and a frequency shift values was resulted in additional shortening of pulse duration.

  7. Terahertz Raman laser based on silicon doped with phosphorus

    NARCIS (Netherlands)

    Pavlov, S. G.; Hubers, H. W.; Bottger, U.; Zhukavin, R. K.; Shastin, V. N.; Hovenier, J. N.; Redlich, B.; Abrosimov, N. V.; Riemann, H.

    2008-01-01

    Raman-type stimulated emission at frequencies between 5.0 and 5.2 THz as well as between 6.1 and 6.4 THz has been realized in silicon crystals doped by phosphorus donors. The Raman laser operates at around 5 K under optical excitation by a pulsed, frequency-tunable infrared free electron laser. The

  8. Raman Laser Polymerization of C60 Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Ryoei Kato

    2012-01-01

    Full Text Available Photopolymerization of C60 nanowhiskers (C60NWs was investigated by using a Raman spectrometer in air at room temperature, since the polymerized C60NWs are expected to exhibit a high mechanical strength and a thermal stability. Short C60NWs with a mean length of 4.4 μm were synthesized by LLIP method (liquid-liquid interfacial precipitation method. The Ag(2 peak of C60NWs shifted to the lower wavenumbers with increasing the laser beam energy dose, and an energy dose more than about 1520 J/mm2 was found necessary to obtain the photopolymerized C60NWs. However, excessive energy doses at high-power densities increased the sample temperature and lead to the thermal decomposition of polymerized C60 molecules.

  9. Detection of diamond in ore using pulsed laser Raman spectroscopy

    CSIR Research Space (South Africa)

    Lamprecht, GH

    2007-10-01

    Full Text Available The viability of using pulsed laser excited Raman spectroscopy as a method for diamond detection from ore, has been investigated. In this method the spontaneous Stokes Raman signal is used as indicator of diamond, and a dual channel system...

  10. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  11. Raman crystal lasers in the visible and near-infrared

    Institute of Scientific and Technical Information of China (English)

    EICHLERH.J.; GADG.M.A.; KAMINSKIIA.A.; RHEEH.

    2003-01-01

    Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064/μm were developed. High reflection mirrors for the Stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15 - 1.32/μm. Second harmonic generation of the generated Raman lasers was observed. Eifficient multiple Stokes and anti-Stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.

  12. Raman crystal lasers in the visible and near-infrared

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≈120 ps Nd: YAG laser at 1.064 μm were developed. High reflection mirrors for the Stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15-1.32 μm. Second harmonic generation of the generated Raman lasers was observed. Eifficient multiple Stokes and anti-Stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.

  13. Raman study on single-walled carbon nanotubes with different laser excitation energies

    Indian Academy of Sciences (India)

    S S Islam; Khurshed Ahmad Shah; H S Mavi; A K Shaukla; S Rath; Harsh

    2007-06-01

    The industrial use of carbon nanotubes is increasing day by day; therefore, it is very important to identify the nature of carbon nanotubes in a bundle. In this study, we have used the Raman spectroscopic analysis on vertically aligned single-walled carbon nanotubes (SWCNTs) grown by the chemical vapour deposition (CVD) technique. The grown sample is excited with two laser excitation wavelengths, 633 nm from He–Ne laser and 514.5 nm from Ar+ laser. Raman spectrum in the backscattering geometry provides the characteristic spectra of SWCNTs with its radial breathing mode (RBM), defect-induced disorder mode (D band), and highenergy modes (G and M bands). The Raman signal positions of the spectra in RBM, G and M bands confirm the grown sample to be of semiconducting type in nature.

  14. PULSED KGd(WO42 RAMAN LASER: TOWARDS EMISSION LINEWIDTH NARROWING

    Directory of Open Access Journals (Sweden)

    V. G. Savitski

    2015-01-01

    Full Text Available The linewidth of a KGd(WO42 pulsed Raman laser is analysed experimentally for different configurations of the Raman and pump resonators: with narrow and broadband pump emission profiles, with and without linewidth narrowing elements in the Raman laser resonator, with and without injection seeding into the Raman cavity. The benefits of a narrow linewidth pump source in combination with linewidth narrowing elements in the Raman laser cavity for the efficient linewidth narrowing of the Raman emission are explained. 20 kW peak-power pulses at 1156 nm with 0,43 cm -1 emission linewidth are demonstrated from an injection seeded KGW Raman laser

  15. Continuous-wave Raman laser pumped within a semiconductor disk laser cavity.

    Science.gov (United States)

    Parrotta, Daniele C; Lubeigt, Walter; Kemp, Alan J; Burns, David; Dawson, Martin D; Hastie, Jennifer E

    2011-04-01

    A KGd(WO₄)₂ Raman laser was pumped within the cavity of a cw diode-pumped InGaAs semiconductor disk laser (SDL). The Raman laser threshold was reached for 5.6 W of absorbed diode pump power, and output power up to 0.8 W at 1143 nm, with optical conversion efficiency of 7.5% with respect to the absorbed diode pump power, was demonstrated. Tuning the SDL resulted in tuning of the Raman laser output between 1133 and 1157 nm.

  16. A Fourier transform Raman spectrometer with visible laser excitation

    CERN Document Server

    Dzsaber, S; Bernáth, B; Gyüre, B; Fehér, T; Kramberger, C; Pichler, T; Simon, F

    2014-01-01

    We present the development and performance of a Fourier transformation (FT) based Raman spectrometer working with visible laser (532 nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot-noise limits the detector performance and therein they are outperformed by grating based, dispersive ones. We show that contrary to this common belief, the recent advances of high-performance interference filters makes the FT-Raman design a valid alternative to dispersive Raman spectrometers for samples which do not luminesce. We critically compare the performance of our spectrometer to two dispersive ones: a home-built single channel and a state-of-the-art CCD based instruments. We demonstrate a similar or even better sensitivity than the CCD based dispersive spectrometer particularly when the laser power density is considered. The instrument possesses all the known advantages of the FT principle of spectral accuracy, high throughput, and economic design. We also d...

  17. Low noise Raman lasers for yellow-orange spectrum coverage

    Science.gov (United States)

    Landru, Nicolas; Rouvillain, Julien; Le Bail, Guy; Georges, Thierry

    2011-02-01

    Diode lasers have been demonstrated to operate over a great part of the visible spectrum: InGaN diodes cover the violet-blue- green part (635 nm). Some fluorophorus in biotechnology applications are excited by intermediate wavelengths, from 540 to 630 nm. Optically pumped InGaAs lasers were demonstrated from 460 nm up to 580 nm. Standard frequency doubled diode pumped solid state (DPSS) lasers lack of suitable transition to cover the 565-650nm region. It is possible to modify the semiconductor composition to extend the frequency range or to frequency mix DPSS laser wavelengths, but it comes either with a significant R&D effort or with a complexity in the design. Raman scattering can red-shift the strong transitions of Nd or Yb lasers so that many wavelengths lying in the 1080-1300 nm range can be achieved. Recently several CW diode pumped Raman lasers were demonstrated, some of them including intra-cavity frequency doubling or mixing. The problems with these Raman lasers are the high pump threshold and the high noise. Based on monolithic cavities, we have built several visible Raman lasers with a reduced loss presenting a low pump threshold (<1W) and a high slope efficiency. Output powers in excess of 100 mW were achieved at 588 nm with a 2.5W 808 nm pump. Laser emissions from 556 nm up to more than 610 nm were demonstrated. Noise of these lasers was analyzed and means to reach low noise operation will be discussed at the conference.

  18. Laser-Raman remote temperature sensing in liquids

    Science.gov (United States)

    Pan, Y.; Faw, R. E.; Lester, T. W.

    1984-06-01

    A feasibility study has been conducted on the use of laser-Raman spectroscopy as a remote temperature sensing technique for liquids. Empirical relations between the temperature and parameters describing Raman band intensities were determined over a temperature range of 15 to 65 °C in carbon tetrachloride, benzene, ethylene glycol, aqueous sodium nitrate (5 M), and water. Using a 2-W argon ion laser and two 0.25-m monochromators in tandem, it was possible to measure temperatures in water to within 2 °C and, in ethylene glycol, to within 4 °C.

  19. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... demonstrate a monolithic RM Raman fiber laser (RFL), which acts as a pump for a Raman amplifier (RA) at 1810 nm. The lasing wavelength of a RFL, thus also for a RA, can in principle be designed arbitrarily within the entire wavelength range from the Erbium band up to the Thulium/Holmium band...... of OFS PM Raman fiber, with an estimated propagation loss of 0.42/0.46/1.3 dB/km at 1564/1679/1810 nm. The Raman gain coefficient was measured to be gR=2.66/2.35 W-1km-1 at 1679/1810 nm. The laser curve of the RFL is depicted in Fig. 1b, with a slope efficiency of 67 %. The high slope efficiency...

  20. Raman Studies Of Laser Damaged Single- And Multi-Layer Optical Coatings

    Science.gov (United States)

    Exarhos, G. J.; Morse, P. L.

    1985-11-01

    Structural changes in dielectric optical coatings induced thermally or by high energy pulsed laser irradiation have been studied by the non-destructive technique of Raman Spectroscopy. A two laser (damage, probe) arrangement was used to characterize the damage process in crystalline and amorphous TiO2 and Zr02 coatings on silica during irradiation and at longer times following the onset of damage. Raman measurements were also undertaken to assess the effects of coating phase and microcrystalline grain orientation on laser induced damage in Ti02. Results suggest that certain phases have higher damage thresholds for comparable coating thicknesses and that thermal and electronic excitation effects are important considerations for modeling the damage process.

  1. DURIP-97 Sodium Guide Star Raman Laser

    Science.gov (United States)

    2007-11-02

    now been transferred from our laser development laboratory to the astronomical adaptive optics group where it is being modified for practical applications as a guide star laser. This is a project funded by the Air Force.

  2. Application of laser Raman spectroscopy to dental diagnosis

    Science.gov (United States)

    Izawa, Takahiro; Wakaki, Moriaki

    2005-03-01

    The aim of this research is related with the diagnosis of caries by use of a laser. We study the fundamental characterization of the diagnosis method using both fluorescence and Raman scattering spectroscopy. We try to evaluate the possibility of the caries diagnosis using Raman spectroscopy and its clinical application. We focus on the PO34- ion that flows out with the dissolution of hydroxyapatite (HAp), and the fluorescence that increases in connection with caries. The Raman line of P-O vibration is overlapped on the continuous, background spectrum by fluorescence. Consequently, we try to find out the correlation between a healthy part and a carious part by analyzing both fluorescence and Raman spectra. It was found that Raman intensity of HAp at carious lesion was weaker than those of healthy parts and the florescence intensity at the same portions was stronger. We have obtained the feasibility to estimate the degree of caries and health condition by deriving the ratio between Raman and florescence intensity. And the trial measurements in vivo were carried out to verify the availability of the method by using a fiber probe type multi channel Raman spectrometer. The process of remineralization is under researching for the development of preventive medicine.

  3. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355 nm

    Science.gov (United States)

    Zhang, Zhen; Huang, Jin; Geng, Feng; Zhou, Xiaoyan; Feng, Shiquan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo; Tang, Yongjian

    2013-11-01

    In order to explore the damage mechanisms of K9 glass irradiated by high energy density ultraviolet laser, laser-induced fluorescence and Raman spectra were investigated. Compared the fluorescence spectra of damaged area, undamaged area and sub-damaged area, it can be conclude that the fluorescence spectrum of sub-damaged area is different from the structure of the other two areas. Especially, the main peak of the spectra at 415 nm reveals the unique characteristics of K9 glass. The structure at the sub-damaged area enhances intensity of the Raman scattering spectra. Three peaks of the spectra at about 500 nm and two characteristic peaks at about 550 nm exhibit the characterization of damaged area. A peak of the Raman scattering spectra at 350 nm which related to water can be observed. The relationship between intensity of Raman scattering and laser intensity at 355 nm is investigated by confocal Raman microscopy. At sub-damage area, signal of Raman scattering is rather high and decreased dramatically with respect to energy density. The major band at about 1470 cm-1 sharpened and moved to higher frequency with densification. These phenomena demonstrate that the structure of sub-damaged area has some characterization compared with the damaged area. The investigation of defect induced fluorescence and Raman spectra on surface of K9 glass is important to explore the damage mechanisms of optical materials irradiated by ultraviolet laser irradiation at 355 nm.

  4. Raman induced soliton self-frequency shift in microresonator Kerr frequency combs

    CERN Document Server

    Karpov, Maxim; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J

    2015-01-01

    The formation of temporal dissipative solitons in continuous wave laser driven microresonators enables the generation of coherent, broadband and spectrally smooth optical frequency combs as well as femtosecond pulses with compact form factor. Here we report for the first time on the observation of a Raman-induced soliton self-frequency shift for a microresonator soliton. The Raman effect manifests itself in amorphous SiN microresonator based single soliton states by a spectrum that is hyperbolic secant in shape, but whose center is spectrally red-shifted (i.e. offset) from the continuous wave pump laser. The Raman induced spectral red-shift is found to be tunable via the pump laser detuning and grows linearly with peak power. The shift is theoretically described by the first order shock term of the material's Raman response, and we infer a Raman shock time of 20 fs for amorphous SiN. Moreover, we observe that the Raman induced frequency shift can lead to a cancellation or overcompensation of the soliton recoi...

  5. Albedo and laser threshold of a diffusive Raman gain medium

    CERN Document Server

    Selden, Adrian C

    2010-01-01

    The diffuse reflectance (albedo) and transmittance of a Raman random gain medium are calculated via semi-analytic two-stream equations with power-dependent coefficients. The results show good qualitative agreement with the experimental data for barium nitrate powder. A divergence in reflectance at a critical gain is interpreted as the threshold for diffusive Raman laser generation. The dependence of the generation threshold on the scattering parameters is analysed and the feedback effect of Fresnel reflection at the gain boundaries evaluated. The addition of external mirrors, particularly at the pumped surface, significantly reduces the threshold gain.

  6. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    Science.gov (United States)

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  7. Coherent Raman spectro-imaging with laser frequency combs

    CERN Document Server

    Ideguchi, Takuro; Bernhardt, Birgitta; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2013-01-01

    Optical spectroscopy and imaging of microscopic samples have opened up a wide range of applications throughout the physical, chemical, and biological sciences. High chemical specificity may be achieved by directly interrogating the fundamental or low-lying vibrational energy levels of the compound molecules. Amongst the available prevailing label-free techniques, coherent Raman scattering has the distinguishing features of high spatial resolution down to 200 nm and three-dimensional sectioning. However, combining fast imaging speed and identification of multiple - and possibly unexpected- compounds remains challenging: existing high spectral resolution schemes require long measurement times to achieve broad spectral spans. Here we overcome this difficulty and introduce a novel concept of coherent anti-Stokes Raman scattering (CARS) spectro-imaging with two laser frequency combs. We illustrate the power of our technique with high resolution (4 cm-1) Raman spectra spanning more than 1200 cm-1 recorded within le...

  8. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning

    2006-01-01

    Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images are then con......Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images...... are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges...

  9. Laser-Induced Continuum Structure of NO Molecules in Two-Colour Femtosecond Pulsed Laser Fields

    Institute of Scientific and Technical Information of China (English)

    WANG Sen-Ming; YUAN Kai-Jun; CONG Shu-Lin

    2006-01-01

    The method of quantum wave packet dynamics is used to study the multiphoton ionization of NO molecules via a two-photon Raman coupling and a laser-induced continuum structure (LICS) state in two-colour strong femtosecond pulsed laser fields.Time-and energy-resolved photoelectron energy spectra are calculated for describing three photoionization channels.The population transfers through the LICS and the Raman coupling passages and discussed.

  10. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  11. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D.; Prawer, S.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  12. Ring-Down Spectroscopy for Characterizing a CW Raman Laser

    Science.gov (United States)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2007-01-01

    .A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to

  13. The Central Raman Laser Facility at the Pierre Auger Observatory

    Science.gov (United States)

    medina, C.; Mayotte, E.; Wiencke, L. R.; Rizi, V.; Grillo, A.

    2013-12-01

    We describe the newly upgraded Central Raman Laser Facility (CRLF) located close to the center of the Piere Auger observatory (PAO) in Argentina. The CRLF features a Raman Lidar receiver, a 335 nm wavelength solid state laser, a robotic beam energy calibration system, and a weather station, all powered by solar energy and operated autonomously using a single board computer. The system optics are arranged to direct the laser beam into the atmosphere in steered and vertical modes with adjustable polarization settings,and it is measured in a bi-static configuration by the 4 fluorescence stations of the Pierre Auger observatory. Additionally the system optics can be easily switched to provide a fixed vertical beam that is measured by a Raman Lidar receiver in mono-static configuration,allowing an independent measurement of the aerosol optical depth τ(z,t) and other properties of the atmosphere. A description of the CLRF's installation, hardware and software integration, initial operations and examples of data collected, will also be presented.

  14. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.

    Science.gov (United States)

    Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto

    2005-05-02

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  15. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers

    Science.gov (United States)

    Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto

    2005-05-01

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  16. Raman probing of competitive laser heating and local recrystallization effect in ZnO nanocrystals.

    Science.gov (United States)

    Ye, J D; Parkinson, P; Ren, F F; Gu, S L; Tan, H H; Jagadish, C

    2012-10-01

    The competitive laser-induced local heating and recrystallization effects in ZnO nanocrystals embedded in a MgO/ZnO stack are reported via resonance Raman spectra. The dependence of the intensity, energy, and resonance effects of the longitudinal optical (LO) phonon on laser excitation condition are discussed in the context of Fröhlich interaction. Redistribution of defects, impurity-diffusion, and grain regrowth caused by thermal and photochemical effects lead to significant changes in coupling strength of electron-phonon interaction, and the resonance behaviors are strongly affected by the interplay of local heating, heat trapping, and local structural modification in such nanostructures.

  17. Laser induced nuclear reactions

    Science.gov (United States)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang, Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 1019W/cm2. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 1019Wcm-2.

  18. Coherently controlling Raman-induced grating in atomic media

    CERN Document Server

    Arkhipkin, V G; Timofeev, I V

    2015-01-01

    We consider dynamically controllable periodic structures, called Raman induced gratings, in three- and four-level atomic media, resulting from Raman interaction in a standing-wave pump. These gratings are due to periodic spatial modulation of the Raman nonlinearity and fundamentally differ from the ones based on electromagnetically induced transparency. The transmission and reflection spectra of such gratings can be simultaneously amplified and controlled by varying the pump field intensity. It is shown that a transparent medium with periodic spatial modulation of the Raman gain can be opaque near the Raman resonance and yet at the same time it can be a non-linear amplifying mirror. We also show that spectral properties of the Raman induced grating can be controlled with the help of an additional weak control field.

  19. Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broadband Raman laser.

    Science.gov (United States)

    Gao, Xiao Qiang; Long, Ming Liang; Meng, Chen

    2016-08-20

    We demonstrate an efficient approach to realizing an extra-cavity, synchronously pumped, stimulated Raman cascaded process under low repetition frequency (1 kHz) pump conditions. We also construct a compact KGd(WO4)2 (KGW) crystal picosecond Raman laser that has been configured as the developed method. A pulse-train green laser pumped the corresponding 70 mm long KGW crystal Raman cavity. The pulse train contains six pulses, about 800 ps separated, for every millisecond; thus, it can realize synchronous pumping between pump pulse and the pumped Raman cavity. The investigated system produced a collinear Raman laser output that includes six laser lines covering the 532 to 800 nm spectra. This is the first report on an all-solid-state, high-average-power picosecond collinear multi-wavelength (more than three laser components) laser to our knowledge. This method has never been reported on before in the synchronously pumped stimulated Raman scattering (SRS) realm.

  20. Low-noise Raman fiber amplifier pumped by semiconductor disk laser.

    Science.gov (United States)

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Okhotnikov, O G

    2011-03-28

    A 1.3 µm Raman fiber amplifier pumped by 1.22 µm semiconductor disk laser in co-propagation geometry is demonstrated. Measured relative intensity noise of -148 dB/Hz over frequency range up to 3.5 GHz was measured at 900 mW of pump power. 9 dB gain was achieved with co-propagating pumping geometry with less than 2 dB additional noise induced by amplifier to the signal. Nearly shot-noise-limited operation of semiconductor disk laser combined with the diffraction-limited beam allows for efficient core-pumping of the single-mode fiber Raman amplifiers and represents a highly practical approach which takes full advantage of co-propagating pumping.

  1. Barium Nitrate Raman Laser Development for Remote Sensing of Ozone

    Science.gov (United States)

    McCray, Christopher L.; Chyba, Thomas H.

    1997-01-01

    In order to understand the impact of anthropogenic emissions upon the earth's environment, scientists require remote sensing techniques which are capable of providing range-resolved measurements of clouds, aerosols, and the concentrations of several chemical constituents of the atmosphere. The differential absorption lidar (DIAL) technique is a very promising method to measure concentration profiles of chemical species such as ozone and water vapor as well as detect the presence of aerosols and clouds. If a suitable DIAL system could be deployed in space, it would provide a global data set of tremendous value. Such systems, however, need to be compact, reliable, and very efficient. In order to measure atmospheric gases with the DIAL technique, the laser transmitter must generate suitable on-line and off-line wavelength pulse pairs. The on-line pulse is resonant with an absorption feature of the species of interest. The off-line pulse is tuned so that it encounters significantly less absorption. The relative backscattered power for the two pulses enables the range-resolved concentration to be computed. Preliminary experiments at NASA LaRC suggested that the solid state Raman shifting material, Ba(NO3)2, could be utilized to produce these pulse pairs. A Raman oscillator pumped at 532 nm by a frequency-doubled Nd:YAG laser can create first Stokes laser output at 563 nm and second Stokes output at 599 nm. With frequency doublers, UV output at 281 nm and 299 nm can be subsequently obtained. This all-solid state system has the potential to be very efficient, compact, and reliable. Raman shifting in Ba(NO3)2, has previously been performed in both the visible and the infrared. The first Raman oscillator in the visible region was investigated in 1986 with the configurations of plane-plane and unstable telescopic resonators. However, most of the recent research has focused on the development of infrared sources for eye-safe lidar applications.

  2. ExoMars Raman laser spectrometer for Exomars

    Science.gov (United States)

    Rull, F.; Sansano, A.; Díaz, E.; Canora, C. P.; Moral, A. G.; Tato, C.; Colombo, M.; Belenguer, T.; Fernández, M.; Manfredi, J. A. R.; Canchal, R.; Dávila, B.; Jiménez, A.; Gallego, P.; Ibarmia, S.; Prieto, J. A. R.; Santiago, A.; Pla, J.; Ramos, G.; Díaz, C.; González, C.

    2011-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. ExoMars 2018 main Scientific objective is "Searching for evidence of past and present life on Mars". Raman Spectroscopy is used to analyze the vibrational modes of a substance either in the solid, liquid or gas state. It relies on the inelastic scattering (Raman Scattering) of monochromatic light produced by atoms and molecules. The radiation-matter interaction results in the energy of the exciting photons to be shifted up or down. The shift in energy appears as a spectral distribution and therefore provides an unique fingerprint by which the substances can be identified and structurally analyzed. The RLS is being developed by an European Consortium composed by Spanish, French, German and UK partners. It will perform Raman spectroscopy on crushed powdered samples inside the Rover's Analytical Laboratory Drawer. Instrument performances are being evaluated by means of simulation tools and development of an instrument prototype.

  3. Raman Laser Spectrometer for 2020 ExoMars

    Science.gov (United States)

    Moral, Andoni G.; Pérez, Carlos; INTA, University of Valladolid, INSA, Leicester University, IRAP, RAL, OHB

    2016-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission.ExoMars 2020 main scientific objective is "Searching for evidence of past and present life on Mars".Raman Spectroscopy is used to analyze the vibrational modes of a substance either in the solid, liquid or gas state. It relies on the inelastic scattering (Raman Scattering) of monochromatic light produced by atoms and molecules. The radiation-matter interaction results in the energy of the exciting photons to be shifted up or down. The shift in energy appears as a spectral distribution and therefore provides an unique fingerprint by which the substances can be identified and structurally analyzed.The RLS is being developed by an European Consortium composed by Spanish, UK, French and German partners. It will perform Raman spectroscopy on crushed powdered samples, obtained from 2 meters depth under Mars surface, inside the Rover's Analytical Laboratory Drawer.After a wide campaign for evaluating Instrument performances by means of simulation tools and development of an instrument prototype, Instrument Structural and Thermal Model was successfully delivered on February 2015, and the Engineering and Qualification Model has been manufactured and is expected to be delivered by November 2016, after a testing campaign developed during Q2 & Q3 of 2016.A summary of main Instrument performances obtained during the last months, achieving high levels of spectral resolution and accuracy in the obtained spectra.

  4. [Rapid detection of chlorinated organic mixture by laser Raman spectroscopy].

    Science.gov (United States)

    Ma, Jing

    2014-07-01

    In order to realize the rapid, nondestructive detection of organic compounds, a two-dimensional analysis method based on technology of laser Raman spectroscopy was proposed. The results show that using 532 nm laser as excitation light source, the observation of 236.2, 348.9, 449.4 and 513.6 cm(-1), the four vibrational Raman spectra, and the intensity ratio of 6.4 : 1.7: 9.4 : 1.0 can determine the existence of tetrachloroethylene. The observation of 707.5, 1 087.9, 1 175.8 and 3 078.6 cm(-1), the four vibrational Raman spectra, and the intensity ratio of 9.6 : 6.4 : 1.0 : 3.9 can determine the existence of chlorobenzene. In other words, that through the comprehensive study of spectral lines and intensity ratio of some spectral lines, the presence of organic compounds in the mixed solution can be determined quickly. In the aspect of quantitative analysis, using multi-spectral analysis combined with least square fitting method can improve the reliability of the measurement, The accuracy of sample concentration was 98.4%. This spectral measurement method is a potential tool for organic component identification and concentration analysis which has a prosperous application prospects.

  5. Raman forward scattering of high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2002-06-23

    Raman forward scattering of a high-intensity, short-duration, frequency-chirped laser pulse propagating in an underdense plasma is examined. The growth of the direct forward scattered light is calculated for a laser pulse with a linear frequency chirp in various spatio-temporal regimes. This includes a previously undescribed regime of strongly-coupled four-wave nonresonant interaction, which is important for relativistic laser intensities. In all regimes of forward scattering, it is shown that the growth rate increases (decreases) for positive (negative) frequency chirp. The effect of chirp on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth rates. Relation of these results to recent experiments is discussed.

  6. Raman Spectroscopic Measurements of Co2 Dissolved in Seawater for Laser Remote Sensing in Water

    Directory of Open Access Journals (Sweden)

    Somekawa Toshihiro

    2016-01-01

    Full Text Available We examined the applicability of Raman lidar technique as a laser remote sensing tool in water. The Raman technique has already been used successfully for measurements of CO2 gas dissolved in water and bubbles. Here, the effect of seawater on CO2 Raman spectra has been evaluated. A frequency doubled Q-switched Nd:YAG laser (532 nm was irradiated to CO2 gas dissolved in a standard seawater. In seawater, the Raman signals at 984 and 1060-1180 cm-1 from SO42- were detected, which shows no spectral interference caused by Raman signals derived from CO2.

  7. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion

    Science.gov (United States)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.

    2016-10-01

    A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.

  8. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre.

    Science.gov (United States)

    Kobtsev, Sergey; Kukarin, Sergey; Kokhanovskiy, Alexey

    2015-07-13

    Reported for the first time is picosecond-range pulse generation in an all-fibre Raman laser based on P₂O₅-doped silica fibre. Employment of phosphor-silicate fibre made possible single-cascade spectral transformation of pumping pulses at 1084 nm into 270-ps long Raman laser pulses at 1270 nm. The highest observed fraction of the Stokes component radiation at 1270 nm in the total output of the Raman laser amounted to 30%. The identified optimal duration of the input pulses at which the amount of Stokes component radiation in a ~16-m long phosphorus-based Raman fibre converter reaches its maximum was 140-180 ps.

  9. Laser amplifier based on Raman amplification in plasma (Conference Presentation)

    Science.gov (United States)

    Vieux, Gregory; Cipiccia, Silvia; Lemos, Nuno R. C.; Ciocarlan, Cristian; Grant, Peter A.; Grant, David W.; Ersfeld, Bernhard; Hur, MinSup; Lepipas, Panagiotis; Manahan, Grace; Reboredo Gil, David; Subiel, Anna; Welsh, Gregor H.; Wiggins, S. Mark; Yoffe, Samuel R.; Farmer, John P.; Aniculaesei, Constantin; Brunetti, Enrico; Yang, Xue; Heathcote, Robert; Nersisyan, Gagik; Lewis, Ciaran L. S.; Pukhov, Alexander; Dias, João. Mendanha; Jaroszynski, Dino A.

    2017-05-01

    The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm-1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr-1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.

  10. Acquisition of a Modular, Multi-laser, Raman-AFM Instrument for Multdisciplinary Research

    Science.gov (United States)

    2015-04-28

    Acquisition of a Modular, Multi-laser, Raman- AFM Instrument for Multdisciplinary Research A four-laser, confocal Raman/Atomic Force Scanning...microscope (Raman- AFM ) (priced at ~ $496,000) has been acquired From Horiba Scientific. Acquisition of this instrument has enhanced the research and...capabilities as well as provides high resolution topographical and depth imaging capabilities through the AFM . The views, opinions and/or findings

  11. Study of thymidylate synthetase-function by laser Raman spectroscopy.

    Science.gov (United States)

    Sharma, R K; Kisliuk, R L; Verma, S P; Wallach, D F

    1975-05-23

    The Laser-Raman spectra of thymidylate synthetase have been obtained with 488 nm excitation from an argon ion laser. Raman bands observed in the range 600-800 cm-minus-1 have been assigned to functional groups of constituent amino acids. The band positions and intensities in the Amide I (1600-1700 cm-minus-1) and Amide III (1200-1300 cm-minus-1) regions, suggest that the enzyme is a mixture of alpha-helical and unordered conformations. Low levels of beta-structure cannot be excluded. The spectra of the ternary complex formed by reacting thymidylate synthetase with (+)-L-methylenetetrahydrofolate and fluorodeoxyuridylate reveals a new band at 1618 cm-minus-1 assigned to the C=N stretching vibration. This band may be due to formation of dihydrofolate or an iminium ion. The overall secondary structure of thymidylate synthetase does not change on formation of the ternary complex. However, the spectrum of the complex indicates local changes in groups such as ionized carboxyl (1400 cm-minus-1), tryptophan (1003 cm-minus-1) and CH-3, CH-2 deformation modes (1440-1470 cm-minus-1).

  12. Ultra-long fiber Raman lasers: design considerations

    Science.gov (United States)

    Koltchanov, I.; Kroushkov, D. I.; Richter, A.

    2015-03-01

    In frame of the European Marie Currie project GRIFFON [http://astonishgriffon.net/] the usage of a green approach in terms of reduced power consumption and maintenance costs is envisioned for long-span fiber networks. This shall be accomplished by coherent transmission in unrepeatered links (100 km - 350 km) utilizing ultra-long Raman fiber laser (URFL)-based distributed amplification, multi-level modulation formats, and adapted Digital Signal Processing (DSP) algorithms. The URFL uses a cascaded 2-order pumping scheme where two (co- and counter-) ˜ 1365 nm pumps illuminate the fiber. The URFL oscillates at ˜ 1450 nm whereas amplification is provided by stimulated Raman scattering (SRS) of the ˜ 1365 nm pumps and the optical feedback is realized by two Fiber Bragg gratings (FBGs) at the fiber ends reflecting at 1450 nm. The light field at 1450 nm provides amplification for signal waves in the 1550 nm range due to SRS. In this work we present URFL design studies intended to characterize and optimize the power and noise characteristics of the fiber links. We use a bidirectional fiber model describing propagation of the signal, pump and noise powers along the fiber length. From the numerical solution we evaluate the on/off Raman gain and its bandwidth, the signal excursion over the fiber length, OSNR spectra, and the accumulated nonlinearities. To achieve best performance for these characteristics the laser design is optimized with respect to the forward/backward pump powers and wavelengths, input/output signal powers, reflectivity profile of the FBGs and other parameters.

  13. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser

    Science.gov (United States)

    Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming

    2017-03-01

    In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.

  14. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  15. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system.

    Science.gov (United States)

    Zinin, Pavel V; Prakapenka, Vitali B; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  16. Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber

    Institute of Scientific and Technical Information of China (English)

    Shan Qin; Yongbo Tang; Daru Chen

    2006-01-01

    A stable and uniform multi-wavelength fiber laser based on the hybrid gain of a dispersion compensating fiber as the Raman gain medium and an erbium-doped fiber (EDF) is introduced. The gain competition effects in the fiber Raman amplification (FRA) and EDF amplification are analyzed and compared experimentaUy. The FRA gain mechanism can suppress the gain competition effectively and make the present multi-wavelength laser stable at room temperature. The hybrid gain medium can also increase the lasing bandwidth compared with a pure EDF laser, and improve the power conversion efficiency compared with a pure fiber Raman laser.

  17. A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

    NARCIS (Netherlands)

    Maruyama, Y.; Blacksberg, J.; Charbon, E.

    2013-01-01

    A 1024 8 time-gated, single-photon avalanche diode line sensor is presented for time-resolved laser Raman spectroscopy and laser-induced breakdown spectroscopy. Two different chip geometries were implemented and characterized. A type-I sensor has a maximum photon detection efficiency of 0.3% and

  18. A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

    NARCIS (Netherlands)

    Maruyama, Y.; Blacksberg, J.; Charbon, E.

    2013-01-01

    A 1024 8 time-gated, single-photon avalanche diode line sensor is presented for time-resolved laser Raman spectroscopy and laser-induced breakdown spectroscopy. Two different chip geometries were implemented and characterized. A type-I sensor has a maximum photon detection efficiency of 0.3% and med

  19. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    Science.gov (United States)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  20. Raman free-electron laser with a coaxial wiggler

    Science.gov (United States)

    Farokhi, B.; Maraghechi, B.; Willett, J. E.

    2000-10-01

    A one-dimensional theory of the stimulated Raman scattering mechanism for a coaxial free-electron laser (FEL) is developed. The beam-frame FEL dispersion relation and a formula for the lab-frame spatial growth rate are derived. A numerical study of the growth rate for the coaxial wiggler is made and compared with that for the helical wiggler. Except for a part of the group II orbits, the growth rate is found to be less than the helical wiggler. Relativistic effects due to the transverse oscillation of electrons in the wiggler field prevent the FEL operation from approaching magnetoresonance. In the absence of these relativistic mass effects, the calculations show a magnetoresonance associated with the first spatial harmonic and a much narrower resonance at the third spatial harmonic.

  1. Confocal volume in laser Raman microscopy depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yutaka; Kanematsu, Wataru [National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimo-Shidami, Moryama-ku, Nagoya 463-8560 (Japan)

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  2. The ExoMars Raman Laser Spectrometer: Performance and Optimisation

    Science.gov (United States)

    Hutchinson, Ian; EDWARDS, Howell G. M.; Ingley, Richard; Waltham, Nick; ExoMars RLS Team

    2016-10-01

    The ExoMars rover, which is due for launch in 2020, will incorporate an analytical laboratory for interrogating the composition of drill cores retrieved from the near sub-surface of the planet. The laboratory includes a Raman spectrometer with a green laser (532 nm) that will be used to investigate the molecular and structural properties of the material within the samples. The ExoMars, Raman Laser Spectrometer (RLS) is expected to be the first instrument of its kind to be used on another planet.In preparation for the deployment and operation of the RLS instrument, a broad range of laboratory and fieldwork activities are currently being performed in order to ensure optimum scientific return from the mission. These studies include: science operations and data exploitation, terrestrial analogue studies (and laboratory simulations) and lessons learned from previous planetary mission experiences.Here we report on the status of the RLS science team activities related to studies of terrestrial analogues. This work includes the recovery and characterisation of appropriate samples from various field-site locations (e.g. clay based samples and materials recovered from dry deserts) that reflect the nature of the materials that are expected to be present in the landing site locations currently anticipated for the ExoMars rover mission. Other work includes the detailed analysis of such analogue samples using flight-like prototype instruments, both in-situ and in the laboratory.A summary of the results obtained from all of these studies is presented along with an overview of the anticipated performance capabilities of the instrument. Particular emphasis is placed on the design and performance of the camera system (including both the detector and data processing sub-systems).

  3. A fiber-laser-based stimulated Raman scattering spectral microscope

    Science.gov (United States)

    Nose, Keisuke; Ozeki, Yasuyuki; Kishi, Tatsuya; Sumimura, Kazuhiko; Kanematsu, Yasuo; Itoh, Kazuyoshi

    2013-02-01

    Stimulated Raman scattering (SRS) spectral microscopy is a powerful technique for label-free biological imaging because it allows us to distinguish chemical species with overlapping Raman bands. Here we present an SRS spectral microscope based only on fiber lasers (FL's), which offer the possibilities of downsizing and simplification of the system. A femtosecond figure-8 Er-FL at a repetition rate of 54.4 MHz is used to generate pump pulses. After amplified by an Er doped fiber amplifier, Er-FL pulses are spectrally compressed to 2-ps second harmonic pulses. For generating Stokes pulses, a femtosecond Yb-FL pulses at a repetition rate of 27.2 MHz is used. Then these lasers are synchronized by a phase locked loop, which consists of a two-photon absorption photodetector, a loop filter, a phase modulator in the Er- FL cavity, and a piezo electric transducer in the Yb-FL cavity. The intensity noise of pump pulses is reduced by the collinear balanced detection (CBD) technique based on delay-and-add fiber lines. Experimentally, we confirmed that the intensity noise level of probe pulses was close to the shot noise limit. The Stokes pulses are introduced to a wavelength tunable band pass filter (BPF), which consists of a galvanomirror scanner, a 4-f optical system, a reflection grating, and a collimator. This system is able to scan the wavenumber from 2850 cm-1 to 3100 cm-1 by tuning the BPF. We succeeded in the spectral imaging of a mixture of polystyrene beads and poly(methyl methacrylate) beads.

  4. Raman-Shifted XeCl Laser Development for a Spaceborne Blue-Green Source.

    Science.gov (United States)

    1982-02-01

    RAMAN-SHIFTED XeCI LASER DEVELOPMENT FOR A SPACEBORNE BLUE-GREEN SOURCE E. A. Stappaerts, M. J. Plummer, W. H. Long, Jr., S. J. Brosnan, H. Komine, and J...TITLE (and S.britJ S. TYPE OF REPORT 6 PEPIOD COVEPED Raman-Shifted XeCl Laser Development for a Technical Report Spaceborne Blue-Green Source: Interim...0.7% cm𔃻 312 nm I0 A 50 ns/DIV. FIGURE 5.3-1 MEASURED GAIN AND LOSS IN XeC1 87 81-34 AD-A133 078 RAMAN-SHIFED XEC LASER DEVELOPMENT FOR A

  5. Power scaling of high efficiency 1.5micron cascaded Raman fiber lasers

    CERN Document Server

    Supradeepa, V R

    2013-01-01

    High power fiber lasers operating at the 1.5micron wavelength region have attractive features like eye-safety and atmospheric transparency, and cascaded Raman fiber lasers offer a convenient method to obtain high power sources at these wavelengths. A limitation to power scaling however has been the lower conversion efficiency of these lasers. We recently introduced a high efficiency architecture for high power cascaded Raman fiber lasers applicable for 1.5micron fiber lasers. Here we demonstrate further power scaling using this new architecture. Using numerical simulations we identify the ideal operating conditions for the new architecture. We demonstrate a high efficiency 1480nm cascaded Raman fiber laser with an output power of 301 W, comparable to record power levels achieved with rare-earth doped fiber lasers in the 1.5 micron wavelength region.

  6. Nd: YAG Laser-Pumped Raman-Shifted Methane Laser as an Eye-safe Laser Rangefmder

    Directory of Open Access Journals (Sweden)

    Jai Paul Dudeja

    1989-07-01

    Full Text Available In this article, a feasibility study of the design and performance of a laser rangefinder emitting at an eye-safe wavelength of 1.54 micron, is reported. It is a Raman-shifted laser where an Nd:YAG laser emitting at a wavelength of 1.06 micron is used as pumping source that is incident on a Raman cell containing methane gas at a very high pressure, rsulting in the Stokes radiation at 1.54 micron. Conversion efficiencies as higb as 40 per cent have been reported so far by some workers and continued efforts are on to increase this value close tothe theoretical Qmits. A comparative performance of this laser, proposed as a futuristic military rangefinder, is studied vis-a-vis commonly used Nd:YAG lasers as well as more recent rangefinders using CO2 lasers. A comparison of this laser emitting at 1.54 micron,with Er : glass laser emitting at the same wavelength, is also discussed.

  7. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber.

    Science.gov (United States)

    Zhu, Gongwen; Geng, Lixiang; Zhu, Xiushan; Li, Li; Chen, Qian; Norwood, R A; Manzur, T; Peyghambarian, N

    2015-03-23

    Raman lasers based on mid-infrared fibers operating at 3-5 µm atmospheric transparency window are attractive sources for several applications. Compared to fluoride and chalcogenide fibers, tellurite fibers are more advantageous for high power Raman fiber laser sources at 3-5 µm because of their broader Raman gain bandwidth, much larger Raman shift and better physical and chemical properties. Here we report on our simulations for the development of 10-watt-level 3-5 µm Raman lasers using tellurite fibers as the nonlinear gain medium and readily available continuous-wave (cw) and Q-switched erbium-doped fluoride fiber lasers at 2.8 µm as the pump sources. Our results show that a watt-level or even ten-watt-level fiber laser source in the 3-5 µm atmospheric transparency window can be achieved by utilizing the 1st- and 2nd-order Raman scattering in the tellurite fiber. The presented numerical study provides valuable guidance for future 3-5 um Raman fiber laser development.

  8. Laser-induced periodic surface structuring of biopolymers

    Science.gov (United States)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  9. Investigation of pre-pulse pumping laser for preserving temporal waveform of stimulated Raman scattering

    Science.gov (United States)

    Chen, Junchi; Su, Hongpeng; Peng, Yujie; Guo, Xiaoyang; Wang, Zhanshan; Leng, Yuxin

    2017-01-01

    A modified polarized beam combination technique is proposed for preserving the temporal waveforms of stimulated Raman scattering. 1064 nm pre-pulse pumping lasers prior to the main pumping laser with a delay time are generated and injected into a Ba(NO3)2 Raman medium to excite the crystal firstly. The influences of pre-pulse lasers with various energy levels on the temporal shapes of Raman lasers are investigated, and it is demonstrated that the temporal waveforms of the Raman laser are distorted once the energies of the pre-pulse are below and above the required energy for preserving the temporal shapes of Stokes radiation. It is also discovered that the temporal shape of the 1197 nm Raman laser cannot be perfectly preserved if the energy of the 1064 nm main laser is too low or the relative delay time is too large. Moreover, the optical conversion efficiency and Stokes laser energy obtained under pumping lasers with single and double intensity peaks are compared.

  10. Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation

    Science.gov (United States)

    Fazio, E.; Trusso, S.; Ponterio, R. C.

    2013-05-01

    The identification of pigments used in ancient times represents an interesting task in order to discriminate a production of a precise geographic area or to trace out the ancient commercial networks. Conventional micro-Raman spectroscopy (MRS), being a non-destructiveness technique, has been largely used for the analysis of dyes. Nevertheless several pigments, especially of organic origin, show weak Raman activity beside a strong a fluorescence that prevents their identification. Surface enhanced Raman scattering (SERS) can address such difficulties. The presence of noble metal nanoparticles induces a giant amplification of the Raman signal beside the fluorescence quenching. In this work we present the use of gold and silver nanoparticles to enhance the Raman signal of some commercial red organic dyes: bazilwood, dragon's blood, carmine and madder lake. The nanoparticles were prepared adopting two approaches: (1) ablating metallic targets in water using a pulsed Nd:YAG laser at 532 nm and (2) depositing the nanoparticles on glass substrates by means of a KrF excimer laser ablation process, performed in a controlled argon atmosphere.

  11. Fast single-photon avalanche diode arrays for laser Raman spectroscopy

    NARCIS (Netherlands)

    Blacksberg, J.; Maruyama, Y.; Charbon, E.; Rossman, G.R.

    2011-01-01

    We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite an

  12. Fast single-photon avalanche diode arrays for laser Raman spectroscopy

    NARCIS (Netherlands)

    Blacksberg, J.; Maruyama, Y.; Charbon, E.; Rossman, G.R.

    2011-01-01

    We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite an

  13. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser.

    Science.gov (United States)

    Demidovich, A A; Grabtchikov, A S; Lisinetskii, V A; Burakevich, V N; Orlovich, V A; Kiefer, W

    2005-07-01

    Continuous-wave Raman generation in a compact solid-state laser system pumped by a multimode diode laser is demonstrated. The Stokes radiation of stimulated Raman scattering at 1.181 microm is generated as a result of self-frequency conversion of the 1.067 microm laser radiation in Nd3+:KGd(WO4)2 crystal placed in the cavity. The Raman threshold was measured at 1.15 W of laser diode power. The highest output power obtained at the Stokes wavelength was 54 mW. The anomalous delay of Raman generation relative to the start of laser generation (the oscillation buildup) due to slow accumulation of Stokes photons in the cavity at low Raman gain and Raman threshold dependence not only on the laser intensity but also on the time of laser action are observed.

  14. High-Power Continuous-Wave Directly-Diode-Pumped Fiber Raman Lasers

    Directory of Open Access Journals (Sweden)

    Tianfu Yao

    2015-11-01

    Full Text Available We describe novel fiber Raman lasers pumped directly by spectrally combined high power multimode laser diodes at 975 nm and emitting at 1019 nm. With a commercial multimode graded-index fiber, we reached 20 W of laser output power with a record slope efficiency of 80%. With an in-house double-clad fiber, the beam quality improved to M2 = 1.9, albeit with lower output power and slope efficiency due to higher fiber loss. We believe this is the first publication of a fiber Raman laser cladding-pumped directly by diodes.

  15. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Science.gov (United States)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  16. Dual-wavelength Raman spectroscopy approach for studying fluid-phase equilibria using a single laser.

    Science.gov (United States)

    Kiefer, Johannes

    2010-06-01

    A novel Raman spectroscopy setup for the investigation of multiphase fluid mixtures is proposed. The total output of a frequency-doubled Nd:YAG laser is separated into a strong 532 nm beam for generating Raman signals in the vapor phase and the weak residual of the fundamental 1064 nm radiation to be utilized as laser source for Raman scattering in the liquid phase. This approach will provide sufficient signal intensity from the gas (despite low density) for determination of mixture composition and at the same time it facilitates recording high-resolution spectra from the liquid in order to allow studying molecular physics phenomena together with concentration measurements.

  17. Noninvasive laser Raman detection of carotenoid antioxidants in living human skin

    Science.gov (United States)

    Gellermann, Werner; Ermakov, Igor V.; Ermakova, Maia R.; McClane, Robert W.

    2001-05-01

    We have used resonance Raman scattering as a novel non- invasive optical technology to measure carotenoid antioxidants in human skin of healthy volunteers. Using blue-green laser excitation, clearly distinguishable carotenoid Raman spectra are obtained which are superimposed on a large skin autofluorescence background. The Raman spectra are obtained rapidly, i.e. within about 30 seconds, and the required laser light exposure levels are well within safety standards. Our technique can be used for rapid screening of carotenoid antioxidant levels in large populations and may have applications for assessing the risk for cutaneous diseases.

  18. Monitoring Dynamic Protein Expression in Single Living E. Coli. Bacterial Cells by Laser Tweezers Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Winhold, H; Corzett, M H; Ulloa, J M; Cosman, M; Balhorn, R; Huser, T

    2007-01-09

    Laser tweezers Raman spectroscopy (LTRS) is a novel, nondestructive, and label-free method that can be used to quantitatively measure changes in cellular activity in single living cells. Here, we demonstrate its use to monitor changes in a population of E. coli cells that occur during overexpression of a protein, the extracellular domain of myelin oligodendrocyte glycoprotein (MOG(1-120)) Raman spectra were acquired of individual E. coli cells suspended in solution and trapped by a single tightly focused laser beam. Overexpression of MOG(1-120) in transformed E. coli Rosetta-Gami (DE3)pLysS cells was induced by addition of isopropyl thiogalactoside (IPTG). Changes in the peak intensities of the Raman spectra from a population of cells were monitored and analyzed over a total duration of three hours. Data was also collected for concentrated purified MOG(1-120) protein in solution, and the spectra compared with that obtained for the MOG(1-120) expressing cells. Raman spectra of individual, living E. coli cells exhibit signatures due to DNA and protein molecular vibrations. Characteristic Raman markers associated with protein vibrations, such as 1257 cm{sup -1}, 1340 cm{sup -1}, 1453 cm{sup -1} and 1660 cm{sup -1}, are shown to increase as a function of time following the addition of IPTG. Comparison of these spectra and the spectra of purified MOG protein indicates that the changes are predominantly due to the induction of MOG protein expression. Protein expression was found to occur mostly within the second hour, with a 470% increase relative to the protein expressed in the first hour. A 230% relative increase between the second and third hour indicates that protein expression begins to level off within the third hour. It is demonstrated that LTRS has sufficient sensitivity for real-time, nondestructive, and quantitative monitoring of biological processes, such as protein expression, in single living cells. Such capabilities, which are not currently available in

  19. High Efficiency Pulse Acetone Liquid Raman Laser Using DCM Fluorescent Dye as the Enhancement Medium

    Institute of Scientific and Technical Information of China (English)

    CHENG Andrew Yuk-Sun; YANG Jing-Guo; CHAN Mau-Hing

    2006-01-01

    Pumped by a frequency-doubled Nd:YAG laser, 10-Hz repetition rate, 320-mJ pump energy, and 5.1-ns pulse width, a liquid Raman laser using acetone as the Raman shifting medium has been established. The residual pump laser pulse and the generated Stokes pulse are directed to a DCM dye cell for energy enhancement of the Stokes pulse. The Raman laser system is capable to produce a laser pulse at wavelength 630 nm, with single pulse energy of 120 mJ, peak power of 70 MW and an average power of 1200 mW. The energy conversion efficiency is 37.5%, or equivalently a quantum efficiency of 44.5%.

  20. Raman spectroscopy of femtosecond laser written low propagation loss optical waveguides in Schott N-SF8 glass

    Science.gov (United States)

    Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Ramos, M.; Fernandez, T. T.; Rampini, S.; Ferrari, M.; Ramponi, R.; Fernández, P.; Gholipour, B.; Soci, C.; Eaton, S. M.

    2017-10-01

    We have performed high repetition rate femtosecond laser bulk modification of TiO2-SiO2 based glass (Schott N-SF8 glass), leading to a decrease in the refractive index near the focal volume. From μRaman and X-ray microanalysis we have associated the decrease in the refractive index to a volume expansion due to glass network modifications induced by the laser irradiation. By writing two lines close together we have been able to confine the optical mode and obtain propagation losses of 0.7 dB/cm in the near infrared.

  1. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.

    Science.gov (United States)

    Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko

    2013-07-01

    Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs.

  2. Accuracy of the Laser Raman system for KATRIN

    CERN Document Server

    Schlösser, M; Hötzel, M; Käfer, W

    2012-01-01

    The aim of the Karlsruhe Tritium Neutrino experiment (KATRIN) is the direct (model-independent) measurement of the neutrino mass. For that purpose a windowless gaseous tritium source is used, with a tritium throughput of 40 g/day. In order to reach the design sensitivity of 0.2 eV/c^{2} (90% C.L.) the key parameters of the tritium source, i.e. the gas inlet rate and the gas composition, have to be stabilized and monitored at the 0.1% level (1 sigma). Any small change of the tritium gas composition will manifest itself in non-negligible effects on the KATRIN measurements; therefore, Laser Raman spectroscopy (LARA) is the method of choice for the monitoring of the gas composition because it is a non-invasive and fast in-line measurement technique. In these proceedings, the requirements of KATRIN for statistical and systematical uncertainties of this method are discussed. An overview of the current performance of the LARA system in regard to precision will be given. In addition, two complementary approaches of i...

  3. Efficient evaluation of impairment induced by distributed fiber Raman amplifier using error vector magnitude techniques in unrepeated coherent communication system

    Science.gov (United States)

    Shan, Yuanyuan; Sun, Junqiang

    2016-06-01

    We investigate the impairment induced by relative intensity noise (RIN) of Raman pump in an ultra-long unrepeated multi-level modulated coherent optical communication system. By adopting error vector magnitude (EVM) techniques, we proposed a simple and high efficient numerical method to calculate and analyze the impact of Raman pump RIN on the coherent receiver system. Both intensity and phase noise are taken into consideration in our numerical simulations when choosing Raman pump lasers with different RIN and using different signals. Our simulation result shows that higher-order phase-modulated signal is more sensitive to RIN of the Raman pump. Comparing to the phase noise, intensity noise induced by RIN of the Raman pump can generally be ignored. Apart from the well-known walk-off parameter, nonlinear parameters and Raman-gain coefficient also play important roles in the complex noise transfer process. Our calculation makes it possible to quickly and accurately evaluate the hybrid distributed fiber Raman amplification (DFRA) along with remotely-pumped erbium-doped fiber amplification (EDFA) in ultra-long unrepeated transmission systems.

  4. Single Brillouin frequency shifted S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in ring cavity

    Science.gov (United States)

    Reshak, A. H.; Hambali, N. A. M. Ahmad; Shahimin, M. M.; Wahid, M. H. A.; Anwar, Nur Elina; Alahmed, Zeyad A.; Chyský, J.

    2016-10-01

    This paper is focusing on simulation and analyzing of S-band multi-wavelength Brillouin-Raman fiber laser performance utilizing fiber Bragg grating and Raman amplifier in ring cavity. Raman amplifier-average power model is employed for signal amplification. This laser system is operates in S-band wavelength region due to vast demanding on transmitting the information. Multi-wavelength fiber lasers based on hybrid Brillouin-Raman gain configuration supported by Raman scattering effect have attracted significant research interest due to its ability to produced multi-wavelength signals from a single light source. In multi-wavelength Brillouin-Raman fiber, single mode fiber is utilized as the nonlinear gain medium. From output results, 90% output coupling ratio has ability to provide the maximum average output power of 43 dBm at Brillouin pump power of 20 dBm and Raman pump power of 14 dBm. Furthermore, multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier is capable of generated 7 Brillouin Stokes signals at 1480 nm, 1510 nm and 1530 nm.

  5. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  6. Blue Up-Conversion Fibre Laser Pumped by a 1120-nm Raman Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    QIN Guan-Shi; HUANG Sheng-Hong; FENG Yan; SHIRAKAWA A.; MUSHA M.; UEDA Ken-ichi

    2005-01-01

    @@ A Tm3+-doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibre up-conversion laser pumped by a 1120-nm Raman fibre laser is demonstrated with blue output power levels up to 116mW. For the output mirror with 80% reflectivity, the slope efficiency is about 15%, the optical-to-optical conversion efficiency is 11%, and the maximum un-saturated output power is 116mW. For 60% reflectivity, the slope efficiency is about 18% and the opticalto-optical conversion efficiency is 12%, whilst the maximum saturated output power is about 80mW due to the existence of photo-degradation effect in Tm3+ doped ZBLAN glass fibre.

  7. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    Science.gov (United States)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  8. Experimental demonstration of mode-selective phonon excitation of 6H-SiC by a mid-infrared laser with anti-Stokes Raman scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed [Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Sonobe, Taro [Kyoto University Research Administration Office, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki [Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011 (Japan)

    2013-10-28

    Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.

  9. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  10. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    Science.gov (United States)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  11. Red emitting monolithic dual wavelength DBR diode lasers for shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Sumpf, B.; Maiwald, M.; Müller, A.; Bugge, F.; Fricke, J.; Ressel, P.; Pohl, J.; Erbert, G.; Tränkle, G.

    2014-02-01

    Raman lines are often obscured by background light or fluorescence especially when investigating biological samples or samples containing impurities. Shifted excitation Raman difference spectroscopy (SERDS) is a technique to overcome this. By exciting the sample with two slightly shifted wavelengths, it is possible to separate the Raman lines and distortions. In this paper, monolithic dual wavelength DBR diode lasers meeting the demands of Raman spectroscopy and SERDS will be presented. The wavelengths are stabilized and selected by using deeply-etched 10th order surface gratings with different periods manufactured using i-line wafer stepper lithography. Two possible resonator concepts, i.e. a mini-array of two parallel DBR RW-lasers and a Y-branch DBR laser, will be compared. Established excitation wavelengths for Raman spectroscopy at 671 nm and 785 nm are chosen. The total laser length is 3 mm; the ridge width is 2.2 μm for the 785 nm devices and 5 μm for the 671 nm lasers. The length of the DBR gratings is 500 μm. The devices at 671 nm reach output powers up to 100 mW having an emission width smaller than 12 pm (FWHM). The 785 nm lasers show output powers up to 200 mW and a narrow emission below 22 pm. For the dual wavelength lasers the spectral distance between the two excitation lines is about 0.5 nm as targeted. The power consumption at both wavelengths is below 1 W. These data proof that the devices are well suited for their application in portable Raman measurement systems such as handheld devices using SERDS.

  12. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    Science.gov (United States)

    2015-06-19

    power. The efficiencies and brightness achieved are found to be higher than expected by current theories for thermal effects in diamond. The project...understand the importance of other cavity parameters on laser behaviour in order to assist with future optimization of designs. We thus developed a model...three areas not originally planned in the proposal. 1) Raman beam combination The technique of Raman beam combination, which has been investigated

  13. Preparations for the Launch of the EXOMARS Raman Laser Spectrometer — A Review of Recent Studies Which Highlight the Astrobiological and Geological Capabilities of Portable Raman Instrumentation

    Science.gov (United States)

    Hutchinson, I. B.; Edwards, H. G. M.; Ingley, R.; Harris, L.; McHugh, M.; Malherbe, C.; Jehlicka, J.; Marshall, C.; Parnell, J.

    2014-06-01

    A review of experiments performed on natural and analogue samples with prototype/portable instrumentation in preparation for the launch of the Raman Laser Spectrometer instrument on the ExoMars rover.

  14. Observation of the effective linear polarization induced by the asymmetrical Raman gain of YVO4 crystal

    Science.gov (United States)

    Zhuang, Fengjiang; Lin, Zhiyang; Zhu, Siqi

    2016-10-01

    We originally present a linearly polarized Raman radiation emitted from an actively Q-switched Nd:YAG/YVO4 laser. An 1175.25 nm Raman output was achieved using a uniaxial a-cut YVO4 crystal in a Z-shape laser cavity. The stable Raman power of 1.8 W was obtained, corresponding conversion efficiency of 8.8% from 1064 nm to 1175 nm. The Raman radiation with a polarization extinction ratio of 10.4-dB was observed for the first time. Our experimental results demonstrate that the asymmetrical Raman crystal gain can result in a uniform linear polarization and permit emitting orthogonal polarization radiation in a cascaded Raman laser.

  15. Spectroscopic ellipsometric and Raman spectroscopic investigations of pulsed laser treated glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Csontos, J., E-mail: jcsontos@titan.physx.u-szeged.hu [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); Pápa, Z.; Gárdián, A. [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); Füle, M. [University of Szeged, Department of Experimental Physics, Dóm tér 9, H-6720 Szeged (Hungary); Budai, J. [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); Toth, Z. [University of Szeged, Department of Optics and Quantum Electronics, Dóm tér 9, H-6720 Szeged (Hungary); University of Szeged, Department of Oral Biology and Experimental Dental Research, Tisza Lajos krt. 64, H-6720 Szeged (Hungary)

    2015-05-01

    Highlights: • Laser treatment modifies the top layer of glassy carbon as shown by ellipsometry. • Raman signal is composed from signals of the layer and the glassy carbon substrate. • Using volumetric fluence allows to compare the effects of different lasers. • Melting effects of glassy carbon was observed in case of Nd:YAG laser treatment. - Abstract: In this study spectroscopic ellipsometry (SE) and Raman spectroscopy are applied to study structural modification of glassy carbon, due to high intensity laser ablation. Two KrF lasers with different pulse durations (480 fs and 18 ns), an ArF (20 ns), and a frequency doubled Nd:YAG laser (8 ns) were applied to irradiate the surface of glassy carbon targets. The main characteristics of the different laser treatments are compared by introducing the volumetric fluence which takes into account the different absorption values at different wavelengths. SE showed the appearance of a modified layer on the ablated surfaces. In the case of the ns lasers the thickness of this layer was in the range of 10–60 nm, while in the case of fs laser it was less than 20 nm. In all cases the average refractive index (n) of the modified layers slightly decreased compared to the refractive index of glassy carbon. Increase in extinction coefficient (k) was observed in the cases of ArF and fs KrF laser treatment, while the k values decreased significantly in the cases of nanosecond pulse duration KrF and Nd:YAG laser treatments. In the Raman spectra of the ablated areas the characteristic D and G peaks were widened due to appearance of an amorphous phase. Both Raman spectroscopy and SE indicate that the irradiated areas show carbon nanoparticle formation in all cases.

  16. Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum.

    Science.gov (United States)

    Michel, Sébastien; Courjaud, Antoine; Mottay, Eric; Finot, Christophe; Dudley, John; Rigneault, Hervé

    2011-02-01

    We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600-2000 cm(-1) spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant contribution, the Raman resonance frequency, and the linewidth.

  17. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  18. The application of Raman and anti-stokes Raman spectroscopy for in situ monitoring of structural changes in laser irradiated titanium dioxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, Stephanie J. [Centre for Research in Energy and Environment, School of Engineering, Robert Gordon University, Aberdeen AB10 1FR (United Kingdom); Al-Obaidi, Ala H.R. [Smart Light Devices, Unit 13, Tyseal Base, Craigshaw Crescent Aberdeen, West Tullos Industrial Estate, Aberdeen AB12 3AW (United Kingdom); Lee, Soo-Keun [School of Environmental Science and Engineering, POSTECH, San 31 Hyoja Dong Nam-Gu, Pohang, Kyungpook 790-784 (Korea, Republic of); McStay, Daniel [Discovery Technologies Ltd., Redshank House, Alness Point Business Park, Alness IV17 0IJ (United Kingdom); Robertson, Peter K.J. [Centre for Research in Energy and Environment, School of Engineering, The Robert Gordon University, Aberdeen AB10 1FR (United Kingdom)]. E-mail: peter.robertson@rgu.ac.uk

    2006-09-15

    The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO{sub 2} has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO{sub 2} spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm{sup -1} (A1g), 197 cm{sup -1} (Eg), 398 cm{sup -1} (B1g), 515 cm{sup -1} (A1g), and 640 cm{sup -1} (Eg) assigned to anatase which were replaced by bands at 143 cm{sup -1} (B1g), 235 cm{sup -1} (2 phonon process), 448 cm{sup -1} (Eg) and 612 cm{sup -1} (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO{sub 2} changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO{sub 2} and allow characterisation of the effect of laser irradiation upon TiO{sub 2}. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process.

  19. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  20. Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing

    Science.gov (United States)

    Passaro, Vittorio M.N.; De Leonardis, Francesco

    2009-01-01

    In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481

  1. Stimulated Raman scattering of light absorbing media excited by ultrashort laser pulses

    Science.gov (United States)

    Marchevskiy, F. N.; Strizhevskiy, V. L.; Feshchenko, V. P.

    1985-01-01

    The fluctuation-dissipation theory of spontaneous and stimulated vibration Raman scattering is worked out taking into account the dissipation losses at frequencies of laser pump and scattering radiation. General expressions are found, which describe the absolute intensities and shape, energy and duration of scattered pulses in terms of the parameters of the medium and the the input laser pulses. The general regularities are analyzed in detail. Conditions are found for the realization of spontaneous or stimulated Raman scattering and its dependence on absorption, pulse duration and other parameters of the problem.

  2. Dual-Comb Coherent Raman Spectroscopy with Lasers of 1-GHz Pulse Repetition Frequency

    CERN Document Server

    Mohler, Kathrin J; Yan, Ming; Hänsch, Theodor W; Picqué, Nathalie

    2016-01-01

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate spectra of liquids, which span 1100 cm$^{-1}$ of Raman shifts. At a resolution of 6 cm$^{-1}$, their measurement time may be as short as 5 microseconds for a refresh rate of 2 kHz. The waiting period between acquisitions is improved ten-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  3. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    Science.gov (United States)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  4. Laser induced structural vibration

    Science.gov (United States)

    Koss, L. L.; Tobin, R. C.

    1983-01-01

    A technique is described for exciting structural vibration by using a focussed laser beam to vaporize material from a target attached to the structure. The rapid ejection of material results in an impulsive reaction to the target which is transmitted to the structure. The method has been studied with a Nd: glass laser, operated in the long pulse mode, in combination with a bismuth target attached in turn to a ballistic pendulum and cantilever beam. The specific mechanical energy was found to be proportional to the laser pulse energy raised to a power in the range 2.5-2.9. The highest efficiency of energy transfer achieved for the first vibrational mode of the cantilever was about 2 millipercent for the maximum laser pulse energy used, 1.5 J, the signal to noise ratio then being about 40 dB.

  5. Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry.

    Science.gov (United States)

    de Carvalho, Paula Kariluce; Silveira, Landulfo; Barbosa, Danillo; Munin, Egberto; Salgado, Miguel Angel Castillo; Villaverde, Antonio Balbin

    2016-01-01

    The objective of this controlled experimental study was to analyze the changes in the Achilles tendons of rats with experimentally induced tendinitis after treatment with platelet-rich plasma (PRP) and/or laser therapies by histometry to quantify fibroblasts and by Raman spectroscopy to determine the biochemical concentration of collagen types I and III. Fifty-four male Wistar rats were divided into six treatment groups: control (G1); PRP only (G2); irradiation with 660 nm laser (G3); irradiation with 830 nm laser (G4); PRP plus 660 nm laser irradiation (G5); and PRP plus 830 nm laser irradiation (G6). Injuries (partial tenotomy) were inflicted in the middle third of the Achilles tendon, with PRP added prior to suture in the appropriate experimental groups. A diode laser (model Laser Flash® III, DMC Equipamentos Ltda, São Carlos, SP, Brazil) that can be operated in two wavelengths 660 and 830 nm was used for irradiation treatments. The irradiation protocol was energy density of 70 J/cm², 20 s irradiation time, and 0.028 cm² spot area, per point in three points in the injured. The histometry was made in micrographical images of the H&E stained sections and evaluated by ImageJ (version 1.46r)®. Raman spectra were collected using a dispersive spectrometer at 830 nm excitation, 200 mW power, and 10 s integration time (P-1 Raman system, Lambda Solutions, Inc. MA, USA). The relative amount of type I collagen was significantly greater in the PRP plus 830 nm laser irradiation group (468 ± 188) than in the control (147 ± 137), 630 nm laser only (191 ± 117), and 830 nm laser only (196 ± 106) groups (p < 0.01), while the quantity of type III collagen was significantly greater in the PRP-only group compared to both irradiated groups without PRP (p < 0.05). Treatment with PRP combined with irradiation at 830 nm resulted in a larger number of fibroblasts and increased concentration of type I collagen, thus accelerating the healing of the injured

  6. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.

    Science.gov (United States)

    Liu, Xin; Lebedkin, Sergei; Besser, Heino; Pfleging, Wilhelm; Prinz, Stephan; Wissmann, Markus; Schwab, Patrick M; Nazarenko, Irina; Guttmann, Markus; Kappes, Manfred M; Lemmer, Uli

    2015-01-27

    Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.

  7. PLIF thermometry in shock tunnel flows using a Raman-shifted tunable excimer laser

    Science.gov (United States)

    Palma, P. C.; McIntyre, T. J.; Houwing, A. F. P.

    Planar laser-induced fluorescence is performed in a free-piston shock tunnel by using a Raman-shifted tunable excimer laser to excite nitric oxide molecules in the flow. Two different flowfields are examined to test the difficulties associated with applying the technique to shock tunnels: the bluff body flow produced by a 25 mm diameter cylinder; and the oblique shock and expansion fan produced by a 35° half-angle wedge. For the cylinder, the maximum flow enthalpy was limited to 4.1 MJ kg -1 due to high flow luminosity which is produced by metallic contaminants in the flow. A reflective filter is used to reduce the influence of flow luminosity making these measurements feasible. Freestream temperature measurements are in excellent agreement with those predicted from numerical flow calculations. Large uncertainties were observed for the high-temperature post-shock results. Several higher enthalpy shots (14 MJ kg -1) were also performed with the wedge and showed an insignificant amount of contaminant emission.

  8. [Analysis of astaxanthin in Phaffia rhodozyma using laser tweezers raman spectroscopy].

    Science.gov (United States)

    Wang, Xue; Sun, Mei-Juan; Liu, Jun-Xian; Deng, Yang-Ge; Mo, Yu-Xiang; Tao, Zhan-Hua

    2012-09-01

    In the present paper, a method was established based on laser tweezer Raman spectroscopy for rapid quantification of astaxanthin in Phaffia rhodozyma cells. First, the Raman spectra of astaxanthin standard solution with different concentrations were determined and the standard curve for astaxanthin with the peak intensity at 1 520 cm- was plotted; And then the Phaffia yeast cells cultivated in different nitrogen source and carbon source medium were divided into two parts, one for the detection of Raman spectra, and the other for the determination of ultraviolet visible spectrophotometry; Finally the relationship between the two methods was analyzed. The correlation coefficient of standard curve for astaxanthin is 0.998 3. Comparing laser tweezers Raman spectroscopy method with traditional ultraviolet visible spectrophotometry in analyzing the content of astaxanthin in unit mass Phaffia rhodozyma and the yield of astaxanthin in unit volume fermentation broth of Phaffia rhodozyma, the authors found that the data obtained have good linear relationship. And the correlation coefficients are 0.917 7 and 0.905 4, respectively. Therefore, both methods have almost the same effect of measuement. But laser tweezers Raman spectroscopy method is more efficient in the quantitative analysis of astaxanthin in Phaffia rhodozyma cells.

  9. Laminar-Turbulent Transition in Raman Fiber Lasers: A First Passage Statistics Based Analysis

    CERN Document Server

    Chattopadhyay, Amit K; Sugavanam, Srikanth; Tarasov, Nikita; Churkin, Dmitry

    2016-01-01

    Loss of coherence with increasing excitation amplitudes and spatial size modulation is a fundamental problem in designing Raman fiber lasers. While it is known that ramping up laser pump power increases the amplitude of stochastic excitations, such higher energy inputs can also lead to a transition from a linearly stable coherent laminar regime to a non-desirable disordered turbulent state. This report presents a new statistical methodology, based on first passage statistics, that classifies lasing regimes in Raman fiber lasers, thereby leading to a fast and highly accurate identification of a strong instability leading to a laminar-turbulent phase transition through a self-consistently defined order parameter. The results have been consistent across a wide range of pump power values, heralding a breakthrough in the non-invasive analysis of fiber laser dynamics.

  10. Laser-induced fluorescence in high pressure solid propellant flames.

    Science.gov (United States)

    Edwards, T; Weaver, D P; Campbell, D H

    1987-09-01

    The application of laser-induced fluorescence (LIF) to the study of high pressure solid propellant flames is described. The distribution of the OH and CN radicals was determined in several solid propellant flames at pressures up to 3.5 MPa. The greatest difficulty in these measurements was the separation of the desired LIF signals from the large scattering at the laser wavelength from the very optically thick propellant flames. Raman experiments using 308-nm excitation were also attempted in the propellant flames but were unsuccessful due to LIF interferences from OH and NH.

  11. Determination of Salinity in Fluid Inclusions with Laser Raman Spectroscopy Technique

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A preliminary study was conducted to outline the laser Raman spectroscopy technique for determination of salinity in the aqueous phase in fluid inclusions. The skewing parameters of the Raman profiles of the calibration solutions determined were used to derive a calibration curve for the estimation of the equivalent mass fraction NaCl in aqueous solutions. This technique was also verified in the analysis of the natural fluid inclusions from Tongshankou porphyry Cu (Mo) deposit, Hubei Province, China. Although the analyses on the natural fluid inclusions are limited, an acceptable agreement has been reached on the salinities, for most fluid inclusions, determined by the Raman spectroscopy and microthermometry techniques, indicating the reliability of the Raman technique for determination of salinity in fluid inclusion studies.

  12. Two-Photon Raman Gain in a Laser Driven Potassium Vapor

    Science.gov (United States)

    1996-02-01

    Stokes wave. With powerful laser beams, Raman scattering involving multiple pump and probe photons can appear, producing light at the subharmonics of the...laser fre- quency drifts. High-speed cavity length variations are corrected using a piezo - electrically driven mirror, while a rotating Brewsters...emergence of resonances at subharmonics of the ground-state splitting. I attribute these intensity dependent spectral features 8Recall that working with small

  13. Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Clark; Nathaniel J. Fisch

    2003-02-06

    A critical issue in the generation of ultra-intense, ultra-short laser pulses by backward Raman scattering in plasma is the stability of the pumping pulse to premature backscatter from thermal fluctuations in the preformed plasma. Malkin et al. [V.M. Malkin, et al., Phys. Rev. Lett. 84 (6):1208-1211, 2000] demonstrated that density gradients may be used to detune the Raman resonance in such a way that backscatter of the pump from thermal noise can be stabilized while useful Raman amplification persists. Here plasma conditions for which the pump is stable to thermal Raman backscatter in a homogeneous plasma and the density gradients necessary to stabilize the pump for other plasma conditions are quantified. Other ancillary constraints on a Raman amplifier are also considered to determine a specific region in the Te-he plane where Raman amplification is feasible. By determining an operability region, the degree of uncertainty in density or temperature tolerable for an experimental Raman amplifier is thus also identified. The fluid code F3D, which includes the effects of thermal fluctuations, is used to verify these analytic estimates.

  14. Raman Laser Spectrometer internal Optical Head current status: opto-mechanical redesign to minimize the excitation laser trace

    Science.gov (United States)

    Sanz, Miguel; Ramos, Gonzalo; Moral, Andoni; Pérez, Carlos; Belenguer, Tomás; del Rosario Canchal, María; Zuluaga, Pablo; Rodriguez, Jose Antonio; Santiago, Amaia; Rull, Fernando; Instituto Nacional de Técnica Aeroespacial (INTA), Universidad de Valladolid (UVa), Ingeniería de Sistemas para la Defesa de España S.A. (ISDEFE)

    2016-10-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instruments of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). The original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks.The investigation revealing that the laser trace was not properly filtered as well as the iOH opto-mechanical redesign are reported on. After the study of the Long Pass Filters Optical Density (OD) as a function of the filtering stage to the detector distance, a new set of filters (Notch filters) was decided to be evaluated. Finally, and in order to minimize the laser trace, a new collection path design (mainly consisting on that the collimation and filtering stages are now separated in two barrels, and on the kind of filters to be used) was required. Distance between filters and collimation stage first lens was increased, increasing the OD. With this new design and using two Notch filters, the laser trace was reduced to assumable values, as can be observed in the functional test comparison also reported on this paper.

  15. Surface Enhanced Raman Scattering (SERS Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation

    Directory of Open Access Journals (Sweden)

    Samuel P. Hernandez-Rivera

    2013-03-01

    Full Text Available Gold and silver nanoparticles (NPs were prepared in water, acetonitrile and isopropanol by laser ablation methodologies. The average characteristic (longer size of the NPs obtained ranged from 3 to 70 nm. 4-Aminobenzebethiol (4-ABT was chosen as the surface enhanced Raman scattering (SERS probe molecule to determine the optimum irradiation time and the pH of aqueous synthesis of the laser ablation-based synthesis of metallic NPs. The synthesized NPs were used to evaluate their capacity as substrates for developing more analytical applications based on SERS measurements. A highly energetic material, TNT, was used as the target compound in the SERS experiments. The Raman spectra were measured with a Raman microspectrometer. The results demonstrate that gold and silver NP substrates fabricated by the methods developed show promising results for SERS-based studies and could lead to the development of micro sensors.

  16. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Science.gov (United States)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  17. Measurement of Fuel Concentration Distribution in a Sooting Flame through Raman Scattering

    OpenAIRE

    林田, 和宏; 天谷, 賢児; 佐藤, 桂司; 新井, 雅隆

    2006-01-01

    Spontaneous Raman spectroscopy with KrF excimer laser was applied to obtain a fuel concentration distribution in a sooting flame. In the case of sooting flame, fluorescence from polycyclic aromatic hydrocarbons (PAH) and laser-induced incandescence (LII) from soot particles appeared with Raman scattering. These background emissions overlapped on the Raman scattering. In order to separate the Raman scattering and the background emissions, polarization property of laser-induced emissions was ut...

  18. Treatment of Laser-Induced Retinal Injuries

    Science.gov (United States)

    1989-06-29

    Distribution List (enclosed) bI’TF rruIoN STATEMEN A Approved for publi reljaso Disatbunon Unlimited TREATMENT OF LASER-INDUCED RETINAL INJURIES FINAL...suprathreshold retinal laser lesions II. Subthreshold retinal laser lesions III. Effect of steroid treatment on laser-induced retinal injury Discussion and...In the present study we investigated the effect of corticosteroid treatment of argon laser-induced retinal injury on vitreal accumulation of both

  19. Steroid-induced osteoporosis monitored by Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-03-01

    Glucocorticoids are frequently used to treat inflammatory disorders such as rheumatoid arthritis. Unfortunately, extended exposure to this steroid is the leading cause of physician-induced osteoporosis, leaving patients susceptible to fractures at rates of 30-50%. In this presentation, we report correlations between Raman spectra and biomechanical strength tests on bones of glucocorticoid- and placebo- treated mice. Both wild-type mice and a transgenic model of rheumatoid arthritis have been studied. A two-way ANOVA model reveals statistically significant spectral differences as influenced by glucocorticoid treatment and mouse type.

  20. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kaichen; Zhang, Chentao; Zhou, Rui; Ji, Rong; Hong, Minghui

    2016-05-16

    Surface enhanced Raman spectroscopy (SERS) has drawn much research interest in the past decades as an efficient technique to detect low-concentration molecules. Among many technologies, which can be used to fabricate SERS substrates, laser ablation is a simple and high-speed method to produce large-area SERS substrates. This work investigates the angular texturing effect by dynamic laser ablation and its influence on SERS signals. By tuning the angle between the Si surface and laser irradiation, the distributions and sizes of laser induced hybrid micro/nano-structures are studied. By decorating with a silver film, plenty of hot spots can be created among these structures for SERS. It is found that when the incident laser angle is 15° at the laser fluence of 16.0 J/cm2, the SERS performance is well optimized. This work realizes antisymmetric distribution of nanoparticles deposited on Si surface, which provides a flexible tuning of the hybrid micro/nano-structures' fabrication with high controllability for practical applications.

  1. Nanocrystalline silicon films prepared by laser-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    傅广生; 于威; 李社强; 侯海虹; 彭英才; 韩理

    2003-01-01

    The excimer laser-induced crystallization technique has been used to investigate the preparation of nanocrystalline silicon (nc-Si) from amorphous silicon (α-Si) thin films on silicon or glass substrates. The α-Si films without hydrogen grown by pulsed-laser deposition are chosen as precursor to avoid the problem of hydrogen effluence during annealing.Analyses have been performed by scanning electron microscopy, atomic force microscopy, Raman scattering spectroscopy and high-resolution transmission-electron microscopy. Experimental results show that silicon nanocrystals can be formed through laser annealing. The growth characters of nc-Si are strongly dependent on the laser energy density. It is shown that the volume of the molten silicon predominates essentially the grain size of nc-Si, and the surface tension of the crystallized silicon is responsible for the mechanism of nc-Si growth.

  2. Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser

    CERN Document Server

    Bohnet, Justin G; Weiner, Joshua M; Cox, Kevin C; Thompson, James K

    2012-01-01

    We experimentally study the relaxation oscillations and amplitude stability properties of an optical laser operating deep into the bad-cavity regime using a laser-cooled $^{87}$Rb Raman laser. By combining measurements of the laser light field with non-demolition measurements of the atomic populations, we infer the response of the the gain medium represented by a collective atomic Bloch vector. The results are qualitatively explained with a simple model. Measurements and theory are extended to include the effect of intermediate repumping states on the closed-loop stability of the oscillator and the role of cavity-feedback on stabilizing or enhancing relaxation oscillations. This experimental study of the stability of an optical laser operating deep into the bad-cavity regime will guide future development of superradiant lasers with ultranarrow linewidths.

  3. Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser.

    Science.gov (United States)

    Bohnet, Justin G; Chen, Zilong; Weiner, Joshua M; Cox, Kevin C; Thompson, James K

    2012-12-21

    We experimentally study the relaxation oscillations and amplitude stability properties of an optical laser operating deep into the bad-cavity regime using a laser-cooled ^{87}Rb Raman laser. By combining measurements of the laser light field with nondemolition measurements of the atomic populations, we infer the response of the gain medium represented by a collective atomic Bloch vector. The results are qualitatively explained with a simple model. Measurements and theory are extended to include the effect of intermediate repumping states on the closed-loop stability of the oscillator and the role of cavity feedback on stabilizing or enhancing relaxation oscillations. This experimental study of the stability of an optical laser operating deep into the bad-cavity regime will guide future development of superradiant lasers with ultranarrow linewidths.

  4. A quasi-continuous superradiant Raman laser with < 1 intracavity photon

    Directory of Open Access Journals (Sweden)

    Bohnet Justin G.

    2013-08-01

    Full Text Available Steady-state collective emission from ensembles of laser cooled atoms has been proposed as a method for generating sub-millihertz linewidth optical lasers, with potential for broad impacts across science and technology. We have built a model system that tests key predictions for such active oscillators using a Raman laser with laser cooled atoms as the gain medium. The laser operates deep in the bad-cavity, or superradiant, regime of laser physics, where the cavity decay rate is much greater than the atomic coherence decay rate. Specifically, we demonstrate that a system of 106 87Rb atoms trapped in a 1D standing wave optical lattice can spontaneously synchronize and collectively emit a quasi-continuous coherent optical output, even when the intracavity field contains on average < 1 photon.

  5. Parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping

    Science.gov (United States)

    Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav

    2017-05-01

    Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.

  6. 1.5-μm low threshold, high efficiency Erbium-Raman random fiber laser

    Science.gov (United States)

    Wu, H.; Wang, Z. N.; Sun, W.; He, Q. H.; Rao, Y. J.

    2017-04-01

    We report a low threshold, high efficiency random fiber laser with hybrid Erbium-Raman gain. The numerical analysis is made to describe the power performance of the proposed Erbium-Raman random fiber laser and reveal the high efficiency generation in this simple configuration. Thanks to the hybrid gain, the experimentally achieved laser threshold has been reduced to 60 mW. The optical conversion efficiency is of record high in the 1.5 μm regime, reaching 61.5% when pump power is 2 W. This work provides an effective way to generate high efficiency stable 1.5 μm random lasing, which could have important applications in optical fiber sensing and communication.

  7. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.

    Science.gov (United States)

    Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F

    2010-04-15

    We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.

  8. Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter

    Science.gov (United States)

    Welch, Eric; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.

  9. Coherence of a squeezed sodium atom laser generated from Raman output coupling

    Institute of Scientific and Technical Information of China (English)

    Huiyong He; Chunjia Huang

    2009-01-01

    The coherence of a squeezed sodium atom laser generated from a Raman output coupler,in which the sodium atoms in Bose-Einstein condensate (BEC) intcract with two light beams consisting of a weaker squeezed coherent probe light and a stronger classical coupling light,is investigated.The results show that in the case of a large mean number of BEC atoms and a weaker probe light field,the atom laser is antibunching,and this atom laser is second-order coherent if the number of BEC atoms in traps is large enough.

  10. STUDY ON THE MICROSTRUCTURE AND PROPERTY OF PET FIBER BY LASER RAMAN MICROSCOPE

    Institute of Scientific and Technical Information of China (English)

    YIN Xiuli

    1994-01-01

    In this paper, the microstructure change of one step-draw PET fiber has been studied by various methods, such as, Laser Raman Microscope, Wide-angle X-ray, Density-gradient and Polarizing Microscope. The computer has been used to resolve overlapped bands in the Raman spectra. Then the band changes have been correlated with trans, gauche and stressed transconformations indicated by a conformational index. Based on these indices, the relationship between the conformation change of glycol units in the fiber structure and the macromechanical properties of fiber is expounded.

  11. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    Science.gov (United States)

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  12. Facile synthesis of AgCl/polydopamine/Ag nanoparticles with in-situ laser improving Raman scattering effect

    Science.gov (United States)

    Zhang, Yan; Zhang, Wenqi; Wang, Lin; Wang, Feng; Yang, Haifeng

    2017-01-01

    We reported a simple and fast method to prepare a composite material of polydopamine (PDA) adlayer covered cubic AgCl core, which was inlaid with Ag nanoparticles (NPs), shortly named as AgCl/PDA/AgNPs. The resultant AgCl/PDA/AgNPs could be employed as surface-enhanced Raman scattering (SERS) substrate for in-situ detection and the SERS activity could be further greatly improved due to the production of more AgNPs upon laser irradiation. With 4-mercaptopyridine (4-Mpy) as the probe molecule, the enhancement factor could reach 107. Additionally, such SERS substrate shows good reproducibility with relative standard deviation of 7.32% and long term stability (after storage for 100 days under ambient condition, SERS intensity decay is less than 25%). In-situ elevating SERS activity of AgCl/PDA/AgNPs induced by laser may be beneficial to sensitive analysis in practical fields.

  13. Onset of stimulated Raman scattering of a laser in a plasma in the presence of hot drifting electrons

    Science.gov (United States)

    Gupta, D. N.; Yadav, Pinki; Jang, D. G.; Hur, M. S.; Suk, H.; Avinash, K.

    2015-05-01

    Stimulated Raman scattering of a laser in plasmas with energetic drifting electrons was investigated by analyzing the growth of interacting waves during the Raman scattering process. The Langmuir wave and scattered electromagnetic sideband wave grow initially and are dampened after attaining a maximum level that indicates a periodic exchange of energy between the pump wave and the daughter waves. The presence of energetic drifting electrons in the laser-produced plasma influences the stimulated Raman scattering process. The plasma wave generated by Raman scattering may be influenced by the energetic electrons, which enhance the growth rate of the instability. Our results show that the presence of energetic (hot) drifting electrons in a plasma has an important effect on the evolution of the interacting waves. This phenomenon is modeled via two-dimensional particle-in-cell simulations of the propagation and interaction of the laser under Raman instability.

  14. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    constructed using slab1-3 or fiber laser technology4-15. Slab technology generally involves sum-frequency mixing of 1064 and 1319 nm in a lithium...triborate crystal to obtain 589 nm. Another way of achieving the desired output wavelength of 589 nm for sodium guidestar laser applications is through...been obtained from an ytterbium-doped photonic band gap fiber laser with a 320 kHz linewidth13. Finally, 85 W of single frequency (1 MHz) 1178 nm was

  15. Three-dimensional topographic scanning electron microscope and Raman spectroscopic analyses of the irradiation effect on teeth by Nd:YAG, Er: YAG, and CO(2) lasers.

    Science.gov (United States)

    Yamada, Magda K; Uo, Motohiro; Ohkawa, Shoji; Akasaka, Tsukasa; Watari, Fumio

    2004-10-15

    A three-dimensional analyzer installed in a scanning electron microscope was used to evaluate the morphology and surface roughness using noncontact profilometry. Observations were carried out on the enamel and dentin surface irradiated by three different lasers: Nd:YAG (wavelength 1.06 microm), Er:YAG (2.94 microm), and CO(2) (10.6 microm). Spectroscopic analysis was done by Raman spectroscopy for nonirradiated and laser-irradiated surfaces. The lasers were applied perpendicularly to vertically sectioned and polished human extracted caries-free molars. The tooth was sectioned at each cavity for cross-section analysis after laser irradiation. Irradiation by Nd:YAG and CO(2) lasers of the enamel surface showed an opaque white color, different from dentin where the surface turned black. The Er:YAG laser induced no changes in color of the dentin. Numerous cracks associated with thermal stress were observed in the CO(2) laser-irradiated dentin. Noncontact surface profile analysis of Er:YAG laser-irradiated enamel and dentin showed the deepest cavities, and direct cross-sectional observations of them showed similar cavity outlines. The CO(2) laser-irradiated dentin had the least surface roughness. Raman spectroscopic analysis showed that fluorescence from the laser-irradiated tooth was generally greater than from nonirradiated teeth. Bands in dentin attributed to organic collagen matrix were lost after Nd:YAG and CO(2) laser irradiation, and a broad peak due to amorphous carbon appeared. The Er:YAG laser-irradiated dentin showed no sign of a carbon band and had more suitable results for dental ablation. Noncontact surface profile analysis was effective to evaluate the structural change in the tooth in the microarea of study after laser irradiation.

  16. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  17. Laser Raman spectroscopic analysis of polymorphic forms in microliter fluid volumes.

    Science.gov (United States)

    Anquetil, Patrick A; Brenan, Colin J H; Marcolli, Claudia; Hunter, Ian W

    2003-01-01

    Knowledge and control of the polymorphic phase of chemical compounds are important aspects of drug development in the pharmaceutical industry. We report herein in situ and real-time Raman spectroscopic polymorphic analysis of optically trapped microcrystals in a microliter volume format. The system studied in particular was the recrystallization of carbamazepine (CBZ) in methanol. Raman spectrometry enabled noninvasive measurement of the amount of dissolved CBZ in a sample as well as polymorphic characterization, whereas exclusive recrystallization of either CBZ form I or CBZ form III from saturated solutions was achieved by specific selection of sample cell cooling profiles. Additionally, using a microcell versus a macroscopic volume gives the advantage of reaching equilibrium much faster while using little compound quantity. We demonstrate that laser Raman spectral polymorphic analysis in a microliter cell is a potentially viable screening platform for polymorphic analysis and could lead to a new high throughput method for polymorph screening.

  18. Laser-induced tobacco protoplast fusion

    Institute of Scientific and Technical Information of China (English)

    李银妹; 关力劼; 楼立人; 崔国强; 姚湲; 王浩威; 操传顺; 鲁润龙; 陈曦

    1999-01-01

    Laser tweezers can manipulate small particles, such as cells and organdies. When coupling them with laser microbeam selective fusion of two tobacco protoplasts containing some chloroplast was achieved. Physical and biological variables that affect laser trapping and laser-induced fusion were also discussed. The results show that the effect of chloroplast content and distribution on the yield of cell fusion is remarkable.

  19. Wavelength Selection For Laser Raman Spectroscopy of Putative Martian Habitats and Biomolecules

    Science.gov (United States)

    Wynn-Williams, D. D.; Newton, E. M. G.; Edwards, H. G. M.

    Pigments are key potential biomarkers for any former life on Mars because of the selective pressure of solar radiation on any biological system that could have evolved at its surface. We have found that the near -Infrared laser Raman spectrometer available to use was eminently suitable for diagnostic analysis of pigments because of their minimal autofluorescence at its 1064 nm excitation wav elength. However, we have now evaluated a diverse range of excitation wavelengths to confirm this choice, to ensure that we have the best technique to seek for pigments and their derivatives from any former surface life on Mars. The Raman is weak relative to fluorescence, which results in elevated baseline and concurrent swamping of Raman bands. We confirm the molecular information available from near-IR FT Raman spectra for two highly pigmented UV-tolerant epilithic Antarctic lichens (Acarospora chlorop hana and Caloplaca saxicola) from Victoria Land, a whole endolithic microbial community and endolithic cyanobacterium Chroococcidiopsis from within translucent sandstone of the Trans -Antarctic Mountains, and the free- living cyanobacterium Nostoc commune from Alexander Island, Antarctic Peninsula region. We also show that much of the information we require on biomolecules is not evident from lasers of shorter wavelengths. A miniature 1064 nm Raman spectrometer with an In-Ga-As detector sensitive to IR is being developed by Montana State University (now existing as a prototype) as the prime instrument for a proposed UK-led Mars rover mission (Vanguard). Preliminary spectra from this system confirm the suitability of the near-IR laser.

  20. 1.3 µm Raman-bismuth fiber amplifier pumped by semiconductor disk laser.

    Science.gov (United States)

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Golant, K M; Okhotnikov, O G

    2011-03-28

    A hybrid Raman-bismuth fiber amplifier pumped in co-propagation configuration by a single 1.22 µm semiconductor disk laser is presented. The unique attribute of this dual-gain system is that both amplifiers require the pump source with the same wavelength because pump-Stokes spectral shift in 1.3 µm Raman amplifier and pump-gain bandwidth separation in 1.3 µm bismuth fiber amplifier have the same value. Residual pump power at the output of Raman amplifier in this scheme is efficiently consumed by bismuth-doped fiber thus increasing the overall conversion efficiency. The small-signal gain of 18 dB at 1.3 W of pump power has been achieved for hybrid scheme which is by 9 dB higher as compared with isolated Raman amplifier without bismuth fiber. Low noise performance of pump semiconductor disk laser with RIN of -150 dB/Hz combined with nearly diffraction-limited beam quality and Watt-level output powers allows for efficient core-pumping of a single-mode fiber amplifier systems and opens up new opportunities for amplification in O-band spectral range.

  1. Raman spectroscopic differentiation of beef and horse meat using a 671 nm microsystem diode laser

    Science.gov (United States)

    Ebrahim, Halah Al; Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2013-11-01

    A non-invasive Raman spectroscopic approach for meat species identification and quality detection was successfully demonstrated for the two closely related species beef and horse. Fresh beef and horse muscles were cut and ice-stored at 5 °C, and time-dependent Raman measurements were performed daily up to 12 days postmortem. Applying a 671 nm microsystem diode laser and a laser power of 50 mW, spectra were recorded with integration times of 1-4 s. A pronounced offset of the Raman spectra was observed between horse and beef, with high fluorescence background for horse compared to beef for all days of storage. Principal components analysis was applied for data evaluation revealing a clear distinction between beef and horse meat which can be attributed to differences in the myoglobin content of both species. Furthermore, separations according to aging and spoilage for the two species could be identified simultaneously. Therefore, Raman spectroscopy might be an efficient test method for meat species identification in combination with spoilage detection.

  2. Investigation of germanium implanted with aluminum by multi-laser micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Napolitani, E. [MATIS IMM-CNR at Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Impellizzeri, G. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Giarola, M. [Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy); De Salvador, D. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Privitera, V.; Priolo, F. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Mariotto, G. [Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy); Carnera, A. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-08-31

    Germanium samples, implanted with aluminum and annealed, have been investigated by micro-Raman spectroscopy using different excitation lines with the aim of gaining insights about the Al distribution at different depths beneath the sample surface and to correlate the Raman spectra with the electrical and chemical profiles, obtained by Spreading Resistance Profiling (SRP) and Secondary Ions Mass Spectrometry (SIMS) measurements, respectively. The intensity of the Al–Ge Raman peak at about 370 cm{sup −1}, due to the local vibrational mode of the substitutional Al atoms in the Ge matrix, has been directly related to the SRP behavior, while no correlation has been observed with SIMS profiles. These findings show that the electrically active content is entirely due to the substitutional Al atoms. Finally, a clear down shift is observed for the Ge–Ge Raman peak at ∼ 300 cm{sup −1}, which also seems to be directly related to the active content of Al dopant atoms. This work shows that micro-Raman spectroscopy can be a suitable tool for the study of doping profiles in Ge. - Highlights: ► Al-implanted Ge and annealed were studied by micro-Raman spectroscopy. ► Using different laser lines we have investigated the implants at different depths. ► The Al–Ge Raman peak at about 370 cm{sup −1} is directly related to the SRP behavior. ► The electrically active content is entirely due to the substitutional Al atoms. ► Carrier effects are observed on the Ge–Ge peak at ∼ 300 cm{sup −1}.

  3. High Efficient C6H12 Raman Laser Enhanced by DCM Fluorescence

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Bo; LIANG Hui-Min; WANG Zhi-Hua; LUO Shi-Rong; YANG Jing-Guo; ZHENG Wan-Guo; WEI Xiao-Feng; HE Shao-Bo; CHEN Yuan-Bin

    2007-01-01

    @@ We report the first-order Stokes output (wavelength of 627.6 nm) from C6H12 enhanced by DCM dye fluorescence with high energy conversion efficiency of 47.9%, quantum conversion efficiency of 56.5%. To our knowledge, it is the highest conversion efficiency of stimulated Raman scattering obtained from liquid Raman laser. A 532nm frequency doubled Nd:YAG laser with 8Hz repetition rate is employed as the pump source, and the enhancement medium is DCM dye solution in ethanol. The conversion efficiencies at various pump energies and various pump repetition rates are measured and analysed. The enhancement mechanism of SRS together with its potential application is discussed.

  4. 2 μm Raman fiber laser based on a multimaterial chalcogenide microwire

    Science.gov (United States)

    Abdukerim, Nurmemet; Li, Lizhu; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2017-04-01

    We report a Raman fiber laser based on a multimaterial chalcogenide microwire. The microwire structure comprises a core of As38Se62, a cladding of As38S62, and a coating of poly-methyl methacrylate. The microwire is a robust, high confinement waveguide compatible with the mid-infrared. With the microwire inserted in a ring cavity, Raman laser oscillation at a wavelength of 2.025 μm occurs from synchronous pumping at a wavelength of 1.938 μm. The input peak power required to reach threshold is 4.6 W and the power slope efficiency is 4.5%. Numerical simulations are in good agreement with experimental results and predict chirp-free femtosecond pulses.

  5. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light

    National Research Council Canada - National Science Library

    Zhu, Haiyong; Duan, Yanmin; Zhang, Ge; Huang, Chenghui; Wei, Yong; Shen, Hongyuan; Zheng, Yiqun; Huang, Lingxiong; Chen, Zhenqiang

    2009-01-01

    .... A 30-mm-length double-end diffusion-bonded Nd:YVO(4) crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering...

  6. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO_4 self-Raman laser producing 7.9 W yellow light

    National Research Council Canada - National Science Library

    Haiyong Zhu; Yanmin Duan; Ge Zhang; Chenghui Huang; Yong Wei; Hongyuan Shen; Yiqun Zheng; Lingxiong Huang; Zhenqiang Chen

    2009-01-01

    .... A 30-mm-length double-end diffusion-bonded Nd:YVO_4 crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering...

  7. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses.

    Science.gov (United States)

    Ozeki, Yasuyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2012-02-01

    We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of 225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information.

  8. Surface-enhanced Raman scattering in femtosecond laser-nanostructured Ag substrate

    Energy Technology Data Exchange (ETDEWEB)

    Dai Ye; He Min; Yan Xiaona; Ma Guohong [Department of Physics, Shanghai University, Shanghai 200444 (China); Lu Bo, E-mail: yedai@shu.edu.cn [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China)

    2011-02-01

    We demonstrate that a surface-enhanced Raman scattering (SERS) substrate could be directly fabricated on the surface of Ag film by femtosecond laser micromachining. According to the morphology observation by SEM, an amount of nanoparticles, nanoprotrusions, and nanospikes were found to form in the ablation region and the density and size distribution of these Ag nanoparticles depended possibly on the incident laser intensity. Additionally, a large area of nanostructured region was produced by fast line scanning, and an enhancement factor of {approx}10{sup 5} was obtained in this region after the sample was soaked in the rhodamine 6G solution for 30 min.

  9. Development of Raman-shifted probe laser beam for plasma diagnosis using polaro-interferometer

    Indian Academy of Sciences (India)

    M P Kamath; A P Kulkarni; S Jain; P K Tripathi; A S Joshi; P A Naik; P D Gupta

    2010-11-01

    Optical diagnostics of laser-produced plasma requires a coherent, polarized probe beam synchronized with the pump beam. The probe beam should have energy above the background emission of plasma. Though the second harmonic probe beam satisfies most of the requirements, the plasma emission is larger at the harmonic frequencies of the pump. Hence, at high intensities we need a probe beam at non-harmonic frequencies. We have set up a Raman frequency shifted probe beam using a pressurized hydrogen cell that is pumped by the second harmonic of the Nd glass laser that operates at only one Stokes line of 673.75 nm.

  10. Dynamic Characteristics of Growing Modes of Raman Instability from Intense Laser Beam Propagating Through Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Bing; CHEN Tao; CHEN Shi-Gang

    2004-01-01

    An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.

  11. Portable Raman spectroscopy using retina-safe (1550 nm) laser excitation

    Science.gov (United States)

    Brouillette, Carl; Smith, Wayne; Donahue, Michael; Huang, Hermes; Shende, Chetan; Sengupta, Atanu; Inscore, Frank; Patient, Michael; Farquharson, Stuart

    2012-06-01

    The use of portable Raman analyzers to identify unknown substances in the field has grown dramatically during the past decade. Measurements often require the laser beam to exit the confines of the sample compartment, which increases the potential of eye or skin damage. This is especially true for most commercial analyzers, which use 785 nm laser excitation. To overcome this safety concern, we have built a portable FT-Raman analyzer using a 1550 nm retina-safe excitation laser. Excitation at 1550 nm falls within the 1400 to 2000 nm retina-safe range, so called because the least amount of damage to the eye occurs in this spectral region. In contrast to wavelengths below 1400 nm, the retina-safe wavelengths are not focused by the eye, but are absorbed by the cornea, aqueous and vitreous humor. Here we compare the performance of this system to measurements of explosives at shorter wavelengths, as well as its ability to measure surface-enhanced Raman spectra of several chemicals, including the food contaminant melamine.

  12. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    Science.gov (United States)

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid.

  13. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    CERN Document Server

    Li, Daojing; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  14. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and ...

  15. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    Science.gov (United States)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  16. Laser induced structural transformation in chalcogenide based superlattices

    Science.gov (United States)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-05-01

    Superlattices made of alternating layers of nominal GeTe and Sb2Te3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  17. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  18. Laser radar studies: A study of the feasibility of remote measurement of atmospheric density and turbidity by means of rotational Raman scattering of laser light

    Science.gov (United States)

    Reiss, N.; Schotland, R. M.

    1973-01-01

    A remote sensing technique is described which utilizes elastic scattering and rotational Raman scattering of laser light in the atmosphere to obtain soundings of turbidity, transmissivity and density. A scheme is devised whereby, through selective weighting of the rotational Raman lines, the effect of atmospheric temperature structure may be eliminated. The close spectral proximity of the elastic and Raman-scattered signals, combined with the fact that the Raman scattering is quite weak, produces special requirements for the spectroscopic and light-gathering components of a rotational Raman laser radar system. These requirements are investigated. A computation of typical signal-to-noise ratios is made. It is shown that daytime signal-to-noise ratios greater than 10 db are to be expected for observation heights of 5 km and below. For nighttime work, 10 db signal-to-noise ratios are achievable to altitudes as high as 15 km.

  19. Raman tweezers spectroscopy study of free radical induced oxidative stress leading to eryptosis

    Science.gov (United States)

    Barkur, Surekha; Bankapur, Aseefhali; Chidangil, Santhosh

    2016-11-01

    Raman tweezers spectroscopy study of effect of free radicals was carried out on erythrocytes. We prepared hydroxyl radicals using Fenton reaction (which yields hydroxyl radicals). Raman spectra were acquired from single, trapped erythrocytes after supplementing with these free radicals. The changes in the Raman bands such as 1211 cm-1, 1224 cm-1, 1375 cm-1 indicate deoxygenation of red blood cells (RBCs). Our study shows that free radicals can induce oxidative stress on erythrocytes. The changes in the Raman spectra as well as shape of erythrocytes indicate that oxidative stress can trigger eryptosis in erythrocytes.

  20. XPS and μ-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Armyanov, S., E-mail: armyanov@ipc.bas.bg [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Stankova, N.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, E.; Kolev, K.; Georgieva, J. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Steenhaut, O.; Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research Group, SURF “Electrochemical and Surface Engineering” (Belgium)

    2015-10-01

    Data about the chemical status of poly(dimethylsiloxane) (PDMS) after nanosecond Q-switched Nd:YAG laser treatment with near infrared, visible and ultraviolet radiation are presented. The μ-Raman spectroscopy analyses reveal as irradiation result a new sharp peak of crystalline silicon. In addition, broad bands appear assigned to D band of amorphous carbon and G band of microcrystalline and polycrystalline graphite. The μ-Raman spectra are variable taken in different inspected points in the trenches formed by laser treatment. The XPS surface survey spectra indicate the constituent elements of PDMS: carbon, oxygen and silicon. The spectra of detail XPS scans illustrate the influence of the laser treatment. The position of Si 2p peaks of the treated samples is close to the value of non-treated except that irradiated by 1064 nm 66 pulses, which is shifted by 0.9 eV. Accordingly, a shift by 0.4 eV is noticed of the O 1s peak, which reflects again a stronger oxidation of silicon. The curve fitting of Si 2p and O 1s peaks after this particular laser treatment shows the degree of conversion of organic to inorganic silicon that takes place during the irradiation.

  1. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    Science.gov (United States)

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter; Messerly, Michael J.; Pax, Paul H.

    2016-09-20

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  2. Structural changes in nanostructured catalytic oxides monitored by Raman spectroscopy: Effect of the laser heating

    Science.gov (United States)

    Oliveira, Alcemira C.; da Silva, Antonio N.; Junior, Jose Alves L.; Freire, Paulo T. C.; Oliveira, Alcineia C.; Filho, Josué M.

    2017-03-01

    The laser power effects on the structural properties of nanostructured oxides were studied by Raman spectroscopy. The nanostructured CeO2, ZrO2, SnO2, TiO2 and MnOx oxides were prepared by a nanocasting route and characterized through various physicochemical techniques. The structural features of the solids were accompanied by varying the incident laser power from 2.0 to 9.1 mW. The laser caused local heating on the surface of the nanostructured solids and influenced on their particle sizes. The CeO2, TiO2 and MnOx spectra exhibited particle size changes due to thermal effects. Elevated laser power up to 9.1 mW accelerated the sintering of CeO2, TiO2 and MnOx particles in contrast to SnO2 counterparts. Simultaneously, the creation of defects in the aforesaid oxide structures was suggested upon increasing the laser power from 2.0 to 9.1 mW. The phase transformation from MnOx-related phases to α-Mn2O3 and the oxidation of these phases were observed. Tetragonal ZrO2 showed a very stable structure under laser heating, envisaging further catalytic applications upon using mild laser power.

  3. Water Raman normalization of airborne laser fluorosensor measurements - A computer model study

    Science.gov (United States)

    Poole, L. R.; Esaias, W. E.

    1982-01-01

    The technique for normalizing airborne lidar measurements of chlorophyll fluoresence by the water Raman scattering signal is investigated for laser-excitation wavelengths of 480 and 532 nm using a semianalytic Monte Carlo methodology (SALMON). The signal-integration depth for chlorophyll fluorescence Z(90,F), is found to be insensitive to excitation wavelength and ranges from a maximum of 4.5 m in clearest waters to less than 1 m at a chlorophyll concentration of 20 microgram/liter. For excitation at 532 nm, the signal-integration depth for Raman scattering, Z(90,R), is comparable to Z(90,F). For excitation at 480 nm, Z(90,R) is four times as large as Z(90,F) in clearest waters but nearly equivalent at chlorophyll concentrations greater than 2-3 microgram/liter. Absolute signal levels are stronger with excitation at 480 nm than with excitation at 532 nm, but this advantage must be weighed against potential ambiguities resulting from different integration depths for the fluorescence and Raman scattering signals in clearer waters. To the precision of the simulations, Raman normalization produces effectively linear response to chlorophyll concentration for both excitation wavelengths.

  4. Raman spectroscopy of organic dyes adsorbed on pulsed laser deposited silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, E.; Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina, Italy. (Italy); Valenti, A. [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina, Italy. (Italy); Ossi, P.M., E-mail: paolo.ossi@polimi.it [Dipartimento di Energia, Politecnico di Milano, via Ponzio 34-3, 20133 Milano, Italy. (Italy); Trusso, S.; Ponterio, R.C. [CNR-Istituto per i Processi Chimico-Fisici Sede di Messina, V.le F. Stagno d’Alcontres 37, I-98158 Messina, Italy. (Italy)

    2013-08-01

    The results of a surface-enhanced Raman scattering (SERS) study performed on representative organic and inorganic dyes adsorbed on silver nanostructured thin films are presented and discussed. Silver thin films were deposited on glass slides by focusing the beam from a KrF excimer laser (wavelength 248 nm, pulse duration 25 ns) on a silver target and performing the deposition in a controlled Ar atmosphere. Clear Raman spectra were acquired for dyes such as carmine lake, garanza lake and brazilwood overcoming their fluorescence and weak Raman scattering drawbacks. UV–visible absorption spectroscopy measurements were not able to discriminate among the different chromophores usually referred as carmine lake (carminic, kermesic and laccaic acid), as brazilwood (brazilin and brazilein) and as garanza lake (alizarin and purpurin). SERS measurements showed that the analyzed samples are composed of a mixture of different chromophores: brazilin and brazilein in brazilwood, kermesic and carminic acid in carmine lake, alizarin and purpurin in garanza lake. Detection at concentration level as low as 10{sup −7} M in aqueous solutions was achieved. Higher Raman intensities were observed using the excitation line of 632.8 nm wavelength with respect to the 785 nm, probably due to a pre-resonant effect with the molecular electronic transitions of the dyes.

  5. Stimulated Raman scattering in helium with soft-x-ray laser radiation

    Science.gov (United States)

    Fill, E. E.; van Enk, S. J.; Zhang, Jian; Lambropoulos, P.

    1996-12-01

    We report calculations for stimulated Raman scattering (SRS) with pump photons from a soft-x-ray laser. The Raman transitions from the 1 1S0 ground state to the 2 1S0 and 3 1S0 metastable states of helium at 20.6 and 22.9 eV, respectively, are considered. We calculate χ(3) for pump photons with an energy close to the autoionizing resonances (2s2p)1P at 60.15 eV and (sp,23+)1P at 63.66 eV. SRS gain coefficients are derived for x-ray laser lines in close resonance with the autoionizing levels, viz., the 3p(3/2,3/2)2-->3s(3/2,1/2)1 transition in neonlike selenium (λ=20.64 nm) and the analogous transition in neonlike bromine (λ=19.47 nm). It is shown that the Raman gain coefficient with experimentally realistic parameters is significant and that a high gain length product can be achieved even with pump intensities below 1011 W/cm2.

  6. Detailed study of four-wave mixing in Raman DFB fiber lasers.

    Science.gov (United States)

    Shi, Jindan; Horak, Peter; Alam, Shaif-Ul; Ibsen, Morten

    2014-09-22

    We both experimentally and numerically studied the ultra-compact wavelength conversion by using the four-wave mixing (FWM) process in Raman distributed-feedback (R-DFB) fiber lasers. The R-DFB fiber laser is formed in a 30 cm-long commercially available Ge/Si standard optical fiber. The internal generated R-DFB signal acts as the pump wave for the FWM process and is in the normal dispersion range of the fiber. Utilizing a tunable laser source as a probe wave, FWM frequency conversion up to ~40 THz has been demonstrated with conversion efficiency > -40 dB. The principle of such a wide bandwidth and high conversion efficiency in such a short R-DFB cavity has been theoretically analyzed. The simulation results match well with the experimental data.

  7. Modeling of laser induced periodic surface structures

    NARCIS (Netherlands)

    Skolski, J.Z.P.; Römer, G.R.B.E.; Huis in 't Veld, A.J.; Mitko, V.S.; Obona, J.V.; Ocelik, V.; Hosson, J.T.M. de

    2010-01-01

    In surfaces irradiated by short laser pulses, Laser Induced Periodic Surface Structures (LIPSS) have been observed on all kind of materials for over forty years. These LIPSS, also referred to as ripples, consist of wavy surfaces with periodicity equal or smaller than the wavelength of the laser radi

  8. Cost effective nanostructured copper substrates prepared with ultrafast laser pulses for explosives detection using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Syed [School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Podagatlapalli, G. Krishna; Soma, Venugopal Rao, E-mail: svrsp@uohyd.ernet.in, E-mail: soma-venu@yahoo.com [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Mohiddon, Md. Ahamad [Center for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India)

    2014-06-30

    Ultrafast laser pulses induced surface nanostructures were fabricated on a copper (Cu) target through ablation in acetone, dichloromethane, acetonitrile, and chloroform. Surface morphological information accomplished from the field emission scanning electron microscopic data demonstrated the diversities of ablation mechanism in each case. Fabricated Cu substrates were utilized exultantly to investigate the surface plasmon (localized and propagating) mediated enhancements of different analytes using surface enhance Raman scattering (SERS) studies. Multiple utility of these substrates were efficiently demonstrated by collecting the SERS data of Rhodamine 6G molecule and two different secondary explosive molecules such as 5-amino-3-nitro-l,2,4-triazole and trinitrotoluene on different days which were weeks apart. We achieved significant enhancement factors of >10{sup 5} through an easily adoptable cleaning procedure.

  9. Luminescence, optical and laser Raman scattering studies on γ -irradiated terbium-doped potassium iodide crystals

    Science.gov (United States)

    Bangaru, S.

    2011-02-01

    This paper reports the thermoluminescence (TL), optical absorption and other laser Raman scattering studies performed on terbium-doped KI crystals γ-irradiated at room temperature. Photoluminescence studies confirm the presence of terbium ions in the KI matrix in their trivalent form. Formation of V3- and Z1-centres on F-bleaching of γ-irradiated crystals was observed. The characteristic emission due to Tb3+ ions in the spectral distribution under optically stimulated emission and TL emission confirms the participation of the Tb3+ ions in the recombination process. The Raman bands were identified as the totally symmetric vibration modes of f.c.c. species KI:Tb3+.

  10. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  11. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser

    CERN Document Server

    del Pino, Javier; Feist, Johannes

    2016-01-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.

  12. A multi-milliJoule femtosecond Raman laser emitting at 1.28 um

    CERN Document Server

    Vicario, Carlo; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-01-01

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 um by stimulated Raman scattering in pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:Sapphire amplifier. The Stokes pulse carries energy of 4.4 mJ and is recompressed down to 66 fs by reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile and conversion efficiency at a repetition rate of 100 Hz and 10 Hz. The demonstrated laser will benefit intense THz generation applications from highly nonlinear organic crystals.

  13. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser

    Science.gov (United States)

    del Pino, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes

    2016-12-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this Letter, we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the midinfrared.

  14. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Walker, Robert; Traulsen, Marie Lund

    2015-01-01

    an applied potential.1-3 The presented work explores the polarisation induced changes in LSM electrode composition by utilizing in operando Raman spectroscopy and post mortem ToF-SIMS depth profiling on LSM thin film model electrodes fabricated by pulsed laser deposition on YSZ substrates with a thin (200 nm...... recorded through the LSM thin film electrodes and revealed distinct compositional changes throughout the electrodes (Figure 2). The electrode elements and impurities separated into distinct layers that were more pronounced for the stronger applied polarisations. The mechanism behind this separation...

  15. Non-invasive laser Raman detection of lycopene and ž-carotene antioxidants in skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2003-07-01

    The predominant long-chain carotenoids found in the human skin are lycopene and β-carotene. They are powerful antioxidants and thought to act as scavengers for free radicals and single oxygen that are formed by excessive exposure of skin to sunlight. However the role of the particular representatives of the carotenoid antioxidants family in the skin defense mechanism is still unclear and has to be clarified. We demonstrate the opportunity for fast non-invasive selective quantitative detection of β-carotene and lycopene in human skin employing Raman spectroscopy. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the molecules under blue and green laser excitation we were able to characterize quantitativly the concentrations of each carotenoid in alive human skin. In this method we take an advantage of different Raman cross-section spectral profile for β-carotene and lycopene molecules. This novel technique allows the quantitative assessment of individual carotenoid species in the skin rather then the cumulative level of long-chain carotenoids mixture as we could measure in our previous works. The required laser light exposure levels are well within safety standards. Prelimininary dichoromatic Raman measurements reveal significant differences in the carotenoid composition of different volunteer's skin: even in statistically small group of seven subjects the ratio of β-carotene-to-lycopene in their skin vary from 0.5 to 1.6. This technique holds promise as a method of rapid screening of carotenoids composition of human skin in large populations and suitable in clinical studies for assessing the risk for cutaneous diseases.

  16. Monitoring changes of proteins and lipids in laser welded aorta tissue using Raman spectroscopy and basis biochemical component analyses

    Science.gov (United States)

    Liu, C. H.; Wang, W. B.; Alimova, A.; Sriramoju, V.; Kartazayev, V.; Alfano, R. R.

    2009-02-01

    The changes of Raman spectra from ex-vivo porcine aorta tissues were studied before and after laser tissue welding (LTW). Raman spectra were measured and compared for normal and welded tissues in both tunica adventitial and intimal sides. The vibrational modes at the peak of 1301 cm-1 and the weak shoulder peak of 1264 cm-1 of amide III for the normal tissue changed to a peak at 1322cm-1 and a relative intense peak at 1264cm-1, respectively, for the welded tissue. The Raman spectra were analyzed using a linear regression fitting method and compared with characteristic Raman spectra from proteins and lipids compounds. The relative biochemical molecular composition changes of proteins (Collagen types I, III, V and Elastin) and lipids for the laser welded tissue were modeled by basis biochemical component analyses (BBCA) and compared with the normal tissue.

  17. Microfabrication of polystyrene microbead arrays by laser induced forward transfer

    Science.gov (United States)

    Palla-Papavlu, Alexandra; Dinca, Valentina; Paraico, Iurie; Moldovan, Antoniu; Shaw-Stewart, James; Schneider, Christof W.; Kovacs, Eugenia; Lippert, Thomas; Dinescu, Maria

    2010-08-01

    In this study we describe a simple method to fabricate microarrays of polystyrene microbeads (PS-μbeads) on Thermanox coverslip surfaces using laser induced forward transfer (LIFT). A triazene polymer layer which acts as a dynamic release layer and propels the closely packed microspheres on the receiving substrate was used for this approach. The deposited features were characterized by optical microscopy, scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. Ultrasonication was used to test the adherence of the transferred beads. In addition, the laser ejection of the PS-μbead pixels was investigated by time resolved shadowgraphy. It was found that stable PS-μbeads micropatterns without any specific immobilization process could be realized by LIFT. These results highlight the increasing role of LIFT in the development of biomaterials, drug delivery, and tissue engineering.

  18. Surgical Treatment of Laser Induced Eye Injuries

    Science.gov (United States)

    1990-12-05

    AD-A234 849 CONTRACT NO.: DAMD17-89-C-9026 TITLE: SURGICAL TREATMENT OF LASER INDUCED EYE INJURIES AUTHORS: Leonard M. Hjelmeland, Maurice B. Landers...62787A 62787A878 BA JDA318205 11. TITLE (Include Secirity Classification) (U) Surgical Treatment of Laser Induced Eye Injuries 12. PERSONAL AUTHOR(S...TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP RA 3; Lasers; Eye injury ; Surgery 09 03 06 04 19. ABSTRACT

  19. Laser-Induced Energy Transfer in Solids

    NARCIS (Netherlands)

    Morsink, J.B.W.; Rullmann, Johan; Wiersma, Douwe

    1981-01-01

    Laser-induced energy transfer was observed and studied in the system pentacene doped into naphthalene. The transfer spectrum shows a remarkable correspondence with the host density of states function. The rate for laser-induced energy transfer is given and it is concluded that most likely, intermole

  20. Non-destructive analysis of the nuclei of transgenic living cells using laser tweezers and near-infrared raman spectroscopic technique

    National Research Council Canada - National Science Library

    Tang, Wei; Newton, Ronald J; Xie, Chang An; Li, Yong Qing; Whitley, Nicki

    2005-01-01

    ...) system in this investigation. A low power diode laser at 785 nm was used for both laser optical trapping of single transgenic cells and excitation for near-infrared Raman spectroscopy of the nuclei of synchronized cells, which...

  1. Highly efficient cascaded P-doped Raman fiber laser pumped by Nd:YVO4 solid-state laser

    Institute of Scientific and Technical Information of China (English)

    Chaohong Huang; Zhiping Cai; Zhengqian Luo; Wencai Huang; Huiying Xu; Chenchun Ye

    2008-01-01

    A highly efficient cascaded P-doped Raman fiber laser (RFL) pumped by a 1064-nm continuous wave (CW) Nd:YVO4 solid-state laser is reported. 1.15-W CW output power at 1484 nm is obtained while the input pump power is 4 W, corresponding to the power conversion efficiency of 28.8%. The threshold pump power for the second-order Stokes radiation is 1.13 W. The slope efficiency is as high as 42.6%. The experimental results are in good agreement with theoretical ones. Furthermore, the power instability of the P-doped RFL at 1484 nm in an hour is observed to be less than 5%.

  2. Raman backscatter as a remote laser power sensor in high-energy-density plasmas

    CERN Document Server

    Moody, J D; Divol, L; Michel, P; Robey, H F; LePape, S; Ralph, J; Ross, J S; Glenzer, S H; Kirkwood, R K; Landen, O L; MacGowan, B J; Nikroo, A; Williams, E A

    2013-01-01

    Stimulated Raman backscatter (SRS) is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching SRS between a shot reducing outer vs a shot reducing inner power we infer that ~half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous non-disruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

  3. A superradiant laser based on two-photon Raman transition of caesium atoms

    CERN Document Server

    Liu, Pengfei

    2013-01-01

    We propose a superradiant laser based on two-photon Raman transition of caesium-133 atoms which collectively emit photons on an ultra narrow transition into the mode of a low Q resonator known as optical bad-cavity regime. The spin-spin correlation which characterizes the collective effect is demonstrated. We theoretically predict that the optical radiation has an extremely narrow linewidth in the 98 (1) *10-2 mHz range, smaller than the transition itself due to collective effects, and a power level of 7 (1)*10-10 W is possible, which can provide a possible new way to realize an optical clock with a millihertz linewidth.

  4. Series solution to the laser-ion interaction in a Raman-type configuration

    CERN Document Server

    Feng, M

    2001-01-01

    The Raman interaction of a trapped ultracold ion with two travelling wave lasers is studied analytically with series solutions, in the absence of the rotating wave approximation (RWA) and the restriction of both the Lamb-Dicke limit and the weak excitation regime. The comparison is made between our solutions and those under the RWA to demonstrate the validity region of the RWA. As a practical example, the preparation of Schr\\"odinger-cat states with our solutions is proposed beyond the weak excitation regime.

  5. Measurement of Fuel Concentration Distribution in a Sooting Flame through Raman Scattering

    Science.gov (United States)

    Hayashida, Kazuhiro; Amagai, Kenji; Satoh, Keiji; Arai, Masataka

    Spontaneous Raman spectroscopy with KrF excimer laser was applied to obtain a fuel concentration distribution in a sooting flame. In the case of sooting flame, fluorescence from polycyclic aromatic hydrocarbons (PAH) and laser-induced incandescence (LII) from soot particles appeared with Raman scattering. These background emissions overlapped on the Raman scattering. In order to separate the Raman scattering and the background emissions, polarization property of laser-induced emissions was utilized. Since the background emissions were depolarized whereas the Raman scattering was highly polarized, it is possible to subtract the background emissions from the overlapping signal of the Raman scattering and the background emissions. Subtracting the emission signals for the electric vector of the laser light perpendicular and parallel to the direction of observation allows to extract the precise Raman signals. By using this technique, detailed fuel concentration distribution in sooting flames could be obtained based on Raman scattering.

  6. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses.

    Science.gov (United States)

    Liu, Jun; Zhang, Jun; Kobayashi, Takayoshi

    2008-07-01

    As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands.

  7. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser-machine...

  8. Monitoring electrostatically-induced deflection, strain and doping in suspended graphene using Raman spectroscopy

    Science.gov (United States)

    Metten, Dominik; Froehlicher, Guillaume; Berciaud, Stéphane

    2017-03-01

    Electrostatic gating offers elegant ways to simultaneously strain and dope atomically thin membranes. Here, we report on a detailed in situ Raman scattering study on graphene, suspended over a Si/SiO2 substrate. In such a layered structure, the intensity of the Raman G- and 2D-mode features of graphene are strongly modulated by optical interference effects and allow an accurate determination of the electrostatically-induced membrane deflection, up to irreversible collapse. The membrane deflection is successfully described by an electromechanical model, which we also use to provide useful guidelines for device engineering. In addition, electrostatically-induced tensile strain is determined by examining the softening of the Raman features. Due to a small residual charge inhomogeneity, we find that non-adiabatic anomalous phonon softening is negligible compared to strain-induced phonon softening. These results open perspectives for innovative Raman scattering-based readout schemes in two-dimensional nanoresonators.

  9. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-01

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly

  11. Nonlinear Raman Shift Induced by Exciton-to-Trion Transformation in Suspended Trilayer MoS2

    CERN Document Server

    Taghinejad, Hossein; Tarasov, Alexey; Tsai, Meng-Yen; Hosseinnia, Amir H; Campbell, Philip M; Eftekhar, Ali A; Vogel, Eric M; Adibi, Ali

    2015-01-01

    Layered two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have recently attracted remarkable attention because of their unique physical properties. Here, we use photoluminescence (PL) and Raman spectroscopy to study the formation of the so- called trions in a synthesized freestanding trilayer MoS2. A trion is a charged quasi-particle formed by adding one electron or hole to a neutral exciton (a bound electron-hole pair). We demonstrate accurate control over the transformation of excitons to trions by tuning the power of the optical pump (laser). Increasing the power of the excitation laser beyond a certain threshold (~ 4 mW) allows modulation of trion-to-exciton PL intensity ratio as well as the spectral linewidth of both trions and excitons. Via a systematic and complementary Raman analysis we disclose a strong coupling between laser induced exciton-to-trion transformation and the characteristic phononic vibrations of MoS2. The onset of such an optical transformation corresponds to the ...

  12. Sensitive Raman gas analysis using a 500 mW external cavity diode laser at 410 nm

    Science.gov (United States)

    Li, Bin; Luo, Shiwen; Yu, Anlan; Gao, Jun; Sun, Pengfei; Wang, Xinbing; Zuo, Duluo

    2017-09-01

    Sensitive Raman gas analysis based on a home-made high power 410 nm Littrow-arranged external cavity diode laser (ECDL) and a parabolic sample cell is presented. Using a commercially available violet laser diode and a reflective holographic grating, the ECDL achieves a maximum output power of 505 mW with line-width about 50 pm. Spontaneous Raman scattering of ambient air is acquired with this ECDL, in which an imaging Raman spectrometer is applied. Strong Raman signals of O2, N2 and H2O are observed with 1 s exposure time; a limit of detection (LOD) of CO2 about 210 ppm is achieved with an exposure time of 100 s and a 3.5-fold enhancement to the signal level is also demonstrated compared with a 532 nm green laser with the same exciting power. The results show that violet diode laser can be an attractive excitation source for Raman gas analysis.

  13. Raman scattering probe of ion-implanted and pulse laser annealed GaAs

    Science.gov (United States)

    Verma, Prabhat; Jain, K. P.; Abbi, S. C.

    1996-04-01

    We report Raman scattering studies of phosphorus-ion-implanted and subsequently pulse laser annealed (PLA) GaAs. The threshold value of implantation fluence for the disappearance of one-phonon modes in the Raman spectrum of ion-implanted GaAs sample is found to be greater than that for the two-phonon modes by an order of magnitude. The phonon correlation length decreases with increasing disorder. The lattice reconstruction process during PLA creates microcrystallites for incomplete annealing, whose sizes can be given by the phonon correlation lengths, and are found to increase with the annealing power density. The intensity ratio of the Raman spectra corresponding to the allowed longitudinal-optical (LO)-phonon mode to the forbidden transverse-optical (TO)-phonon mode, ILO/ITO, is used as a quantitative measure of crystallinity in the implantation and PLA processes. The threshold annealing power density is estimated to be 20 MW/cm2 for 70 keV phosphorus-ion-implanted GaAs at a fluence of 5×1015 ions/cm2. The localized vibrational mode of phosphorus is observed in PLA samples for fluences above 1×1015 ions/cm2.

  14. Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique

    Science.gov (United States)

    Onari, Seinosuke; Miura, Masaaki; Matsuishi, Kiyoto

    2002-09-01

    Bi nanoparticles are prepared by means of laser ablation in Ar atmosphere (0.2-10 Torr) with KrF (248 nm) excimer laser of the power 200 mJ. The size of the Bi particles estimated by TEM measurements is in the range 3-10 nm. Raman active E g mode shifts to a higher frequency and becomes broader for a sample prepared in a lower pressure of Ar atmosphere. However, the peak frequency and the bandwidth of A 1g mode show almost no change with the change of the particle size. These experimental results can be well explained by a phonon confinement model of Campbell and Fauchet by taking the phonon dispersion properties that the E g mode of the crystal has a large dependence on the wave numbers near the Γ point, but the A 1g mode is rather independent of the phonon wave numbers.

  15. Adaptation of a commercial Raman spectrometer for multiline and broadband laser operation

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Gabor [Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest (Hungary); Kramberger, Christian [Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna (Austria); Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Friedrich, Alexander; Pichler, Thomas [Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna (Austria); Simon, Ferenc [Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest (Hungary); Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna (Austria)

    2011-11-15

    A commercial single laser line Raman spectrometer is modified to accommodate multiline and tunable dye lasers, thus combining the high sensitivity of such single monochromator systems with broadband operation. Such instruments rely on high-throughput interference filters that perform both beam alignment and Rayleigh filtering. Our set-up handles this dual task with two independent elements: a beam splitter and a long pass filter. Filter rotation shifts the transmission passband, effectively expanding the range of operation. Operation is demonstrated on single-walled carbon nanotubes, for which the set-up was optimized. As the set-up operates with standard optical elements it can be customized for specific needs with relative ease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging.

    Science.gov (United States)

    Wang, Zhiyong; Yang, Yaliang; Luo, Pengfei; Gao, Liang; Wong, Kelvin K; Wong, Stephen T C

    2010-06-07

    We investigated the possibility of using standard commercial multimode fibers (MMF), Corning SMF28 fibers, to deliver picosecond excitation lasers for coherent anti-Stokes Raman scattering (CARS) imaging. We theoretically and/or experimentally analyzed issues associated with the fiber delivery, such as dispersion length, walk-off length, nonlinear length, average threshold power for self-phase modulations, and four-wave mixing (FWM). These analyses can also be applied to other types of fibers. We found that FWM signals are generated in MMF, but they can be filtered out using a long-pass filter for CARS imaging. Finally, we demonstrated that MMF can be used for delivery of picosecond excitation lasers in the CARS imaging system without any degradation of image quality.

  17. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  18. Continuous-wave anti-Stokes Raman laser based on phase-matched nondegenerate four-wave mixing.

    Science.gov (United States)

    Zaitsu, Shin-ichi; Imasaka, Totaro

    2015-01-01

    We demonstrate phase-matched nondegenerate four-wave mixing (FWM) in a high-finesse optical cavity using a gaseous Raman-active medium pumped by two independent continuous-wave lasers. Efficient upconversion is achieved for pump beams at different wavelengths under phase-matched conditions by optimizing the total dispersion of the hydrogen-filled optical cavity. The independent control of the pump-beam polarizations leads to further enhancement of the upconversion efficiency arising from a larger Raman gain than that in degenerate FWM. This approach offers a promising alternative for a narrow-linewidth tunable light source for highly precise laser spectroscopy.

  19. Thermal damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM

    CSIR Research Space (South Africa)

    Masina, BN

    2011-07-01

    Full Text Available damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM BN Masina1, BW Mwakikunga2, M Elayaperumal2, A Forbes1, and R Bodkin3 1CSIR National Laser Centre, PO BOX 395, Pretoria 0001, South Africa 2CSIR... Slide 11 Optical images at the surface of the PCD layer Initial 15 min 968 K 25 min 979 K 5 min 895 K Dark phase is cobalt or tungsten Grey phase is diamond Slide 12 Raman shift at the surface of the PCD layer 600 800 1000 1200 1400 1600 1800 2000 0 2000...

  20. Study of the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Chen Bin; Yu Bing-Kun; Yan Xiao-Na; Qiu Jian-Rong; Jiang Xiong-Wei; Zhu Cong-Shan

    2004-01-01

    This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB2O4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB2O4 crystals is also produced. Further studies demonstrate that LT phase BaB2O4 crystals are formed in the HT phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.

  1. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures...

  2. Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study.

    Science.gov (United States)

    Gruszecki, Wiesław I; Gospodarek, Małgorzata; Grudziński, Wojciech; Mazur, Radosław; Gieczewska, Katarzyna; Garstka, Maciej

    2009-02-26

    Raman scattering spectra of light-harvesting complex LHCII isolated from spinach were recorded with an argon laser, tuned to excite the most red-absorbing LHCII-bound xanthophylls (514.5 nm). The intensity of the nu(4) band (at ca. 950 cm-1) corresponding to the out-of-plane wagging modes of the C-H groups in the resonance Raman spectra of carotenoids appears to be inversely dependent on the probing laser power density. This observation can be interpreted in terms of excitation-induced change of configuration of the protein-bound xanthophyll owing to the fact that the intensity of this particular band is diagnostic of a chromophore twisting resulting from its binding to the protein environment. The comparison of the shape of the nu(4) band of a xanthophyll involved in the light-induced spectral changes with the shape of the nu(4) band of the xanthophylls present in LHCII, reported in the literature, lets us conclude that, most probably, violaxanthin is a pigment that undergoes light-driven changes of molecular configuration but also the involvement of lutein may not be excluded. Possible physical mechanisms responsible for the configuration changes and physiological importance of the effect observed are discussed.

  3. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    Science.gov (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  4. Stimulated Raman scattering in hydrogen by ultrashort laser pulse in the keV regime

    Science.gov (United States)

    Bachau, H.; Dondera, M.

    2016-04-01

    This letter addresses the problem of stimulated Raman excitation of a hydrogen atom submitted to an ultrashort and intense laser pulse in the keV regime. The pulse central frequency ω of 55 a.u. (about 1.5 keV) is in the weakly relativistic regime, ω ≤ c/a0 (c is the speed of light in vacuum and a 0 the Bohr radius) and the pulse duration is τ ≈ 18.85 a.u. (about 456 attoseconds). We solve the corresponding time-dependent Schrödinger equation (TDSE) using a spectral approach, retardation (or nondipole) effects are included up to O(1/c) , breaking the conservation of the magnetic quantum number m and forcing the resolution of the TDSE in a three-dimensional space. Due to the laser bandwidth, which is of the order of the ionization potential of hydrogen, stimulated Raman scattering populates nlm excited states (n and l are the principal and azimuthal quantum numbers, respectively). The populations of these excited states are calculated and analyzed in terms of l and m quantum numbers, this showing the contributions of the retardation effects and their relative importance.

  5. Raman study of TiO2 coatings modified by UV pulsed laser

    Science.gov (United States)

    Belka, Radosław; Keczkowska, Justyna; Sek, Piotr

    2016-12-01

    The TiO2 coatings were prepared by simple sol-gel method and modified by UV pulsed laser. TiO2, also know as titania, is a ceramic compound, existing in numerous polymorphic forms, mainly as tetragonal rutile and anatase, and rhomboidal brookite. Rutile is the most stable form of titanium dioxide, whereas anatase is a metastable form, created in lower temperatures than rutile. Anatase is marked with higher specific surface area, porosity and a higher number of surface hydroxyl groups as compared to rutile. The unique optical and electronic properties of TiO2 results in its use as semiconductors dielectric mirrors, sunscreen and UV-blocking pigments and especially as photocatalyst. In this paper, the tetraisopropoxide was used as Ti precursor according to sol-gel method. An organic base was applied during sol preparation. Prepared gel was coated on glass substrates and calcined in low temperature to obtain amorphous phase of titania. Prepared coatings were modified by UV picosecond pulse laser with different pulse repetition rate and pulse power. Physical modification of the coatings using laser pulses was intended in order change the phase content of the produced material. Raman spectroscopy (RS) method was applied to studies of modified coatings as it is one of the basic analytical techniques, supporting the identification of compounds and obtaining information about the structure. Especially, RS is a useful method for distinguishing the anatase and rutile phases. In these studies, anatase to rutile transformation was observed, depending on laser parameters.

  6. Thermal Stress-Induced Birefringence in Borate Glass Irradiated by Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    DAI Ye; YU Bing-Kun; LU Bo; QIU Jian-Rong; YAN Xiao-Na; JIANG Xiong-Wei; ZHU Cong-Shan

    2005-01-01

    @@ Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.

  7. Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy

    Science.gov (United States)

    Li, Chunhong; Zheng, Wanguo; Zhu, Qihua; Chen, Jun; Wang, B. Y.; Ju, Xin

    2016-10-01

    We present an original study on the non-destructive evaluation of the microstructure evolution of fused silica induced by pulsed UV laser irradiation at low fluence (less than 50% Fth). Positron annihilation spectroscopy discloses that the spatial size of the vacancy cluster is increased exponentially with the linearly elevated laser fluence. Particularly, the vacancy cluster size in bulk silica is significantly increased by 14.5% after irradiated by pulsed 355 nm laser at F = 14 J/cm2 (50% Fth), while the void size varies only ∼2%. UV laser-excited Raman results suggest that the bond length and average bond angle of Sisbnd Osbnd Si bridging bond are both slightly reduced. Results reveals that the rearrangement process of (Sisbnd O)n fold rings and breakage of the Sisbnd O bridging bond in bulk silica occurred during pulsed UV laser irradiation. The micro-structural changes were taken together to clarify the effect of sub-threshold laser fluence on material stability of silica glass. The obtained data provide important information for studying material stability and controlling the lifetime of fused silica optics for high power laser system.

  8. Raman signature modification induced by copper nanoparticles in silicate glass

    OpenAIRE

    2005-01-01

    International audience; Composite materials formed by metal nanoclusters embedded in glasses/glazes have been produced for centuries (Roman hematinum and Renaissance alassonti, Coptic lustre-painted glass and Islamic lustre ceramics). Comparisons were drawn from Raman analyses of alkali borosilicate glasses coloured by copper as “blue” Cu2+ (peak absorption at 750 nm), as “colourless” Cu+, and as “opaque red” Cu0 (peak absorptions at ~420 and 570 nm). In particular, Raman analyses of copper-r...

  9. Dual-wavelength Y-branch distributed Bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy.

    Science.gov (United States)

    Maiwald, Martin; Eppich, Bernd; Fricke, Jörg; Ginolas, Arnim; Bugge, Frank; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2014-01-01

    A dual-wavelength Y-branch distributed Bragg reflector (DBR) diode laser at 785 nm is presented as an excitation light source for shifted excitation Raman difference spectroscopy (SERDS). The monolithic device was realized with deeply etched surface DBR gratings using one-step epitaxy. An optical output power of 140 mW was obtained in continuous-wave (CW) operation for each laser cavity, with emission wavelengths of the device at 784.50 and 785.12 nm. A spectral width of the laser emission of 30 pm (0.5 cm(-1)), including 95% of optical power, was measured. The mean spectral distance of both excitation lines is 0.63 nm (10.2 cm(-1)) over the whole operating range. Raman experiments using polystyrene as the test sample and ambient light as the interference source were carried out and demonstrate the suitability of the dual-wavelength diode laser for SERDS.

  10. Characterization of Air Plane Soot Surrogates using Raman spectroscopy and laser ablation techniques

    Science.gov (United States)

    Chazallon, Bertrand; Ortega, Ismael Kenneth; Ikhenazene, Raouf; Pirim, Claire; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier

    2016-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. Aircraft exhaust plumes contain species (gases and soot particles) produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Soot particles emitted by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied for many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. The reasons behind these discrepancies reside in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g., with respect to fuel or combustion techniques. In this work, we use Raman microscopy (514 and 785 nm excitation wavelengths) and ablation techniques (Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particle surrogates produced from a CAST generator (propane fuel, four different global equivalence ratios). They are produced as analogues of air-plane soot collected at different engine regimes (PowerJet SaM-146 turbofan) simulating a landing and take-off (LTO) cycle (MERMOSE project (http://mermose.onera.fr/)) [6]. The spectral parameters of the first-order Raman bands of these soot samples are analyzed using a de-convolution approach described by Sadezky et al. (2005) [5]. A systematic Raman analysis is carried out to select a number of parameters (laser wavelength, irradiance at sample, exposure time) that will alter the sample and the

  11. Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering.

    Science.gov (United States)

    Zhang, Lisheng; Fang, Yan; Zhang, Pengxiang

    2008-01-01

    The highly ordered anodic aluminum oxide (AAO) template was fabricated using aluminum anodizing in electrolytes with two-step method, which apertures were about 50-80nm. The nickel nanowires with about 40-70nm in diameter was prepared on the AAO template by laser-MBE (molecular beam epitaxy). And high quality Raman spectra of SudanII were obtained on the glass covered with the nickel nanowires. On the nickel nanowires there are both surface enhanced Raman scattering (SERS) and tip enhanced Raman scattering (TERS). The new observations not only enlarge the range of SERS applications, but also imply a possible new enhancement mechanism. Otherwise the Raman and SERS frequencies of SudanII molecule were calculated using, respectively, DFT and B3PW91.

  12. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    Science.gov (United States)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  13. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Jou...... of these in the Raman signals....

  14. TECHNIQUE OF ESTIMATE OF ABSORPTION COEFFICIENT LASER RADIATION IN BORON DOPED DIAMONDS BY INTENSITY OF RAMAN SCATTERING

    Directory of Open Access Journals (Sweden)

    O. N. Poklonskaya

    2013-01-01

    Full Text Available Results of measurements of Raman scattering at the room temperature in air in boron doped synthetic diamonds (five with boron concentrations 2·1017; 6·1017; 2·1018; 1,7·1019; 1·1020 cm–3 and one intentionally undoped are presented. The laser with wavelength 532 nm was used for Raman scattering excitation. Dependences of integral intensity and halfwidth of diamond Raman line with respect to the doping level are presented. In the geometrical optics approximation an expression for doped to undoped integral intensity ratio is obtained. Qualitative estimates of conductivity of the studied samples are conducted. The obtained results can be applied for mapping of near-surface laser radiation absorption coefficient of synthetic single crystal diamonds and for their quality control.

  15. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    Science.gov (United States)

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm(-1) were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Science.gov (United States)

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  17. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2016-12-01

    Full Text Available Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group; Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1 exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1 area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention.

  18. Feasibility study for electron beam and laser Raman non-intrusive diagnostic measurements in hypersonic blowdown wind tunnels

    Science.gov (United States)

    Powell, Homer M.; Ventrice, Carl A.; Yanta, William; Hedlund, Eric; Moyers, Richard L.

    Calculations based upon density measurements are presented for assessing the feasibility of electron beam and laser Raman flow diagnostic techniques for hypersonic blowdown wind tunnels of the Naval-Surface-Weapons-Center class. It is concluded that the electron beam technique is applicable only for flow visualization purposes, even at the low end of the test envelope.

  19. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2008-12-30

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.

  20. Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rusak, D A; Anthony, T P; Bell, Z T

    2015-11-01

    Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer to this technique as surface-enhanced laser-induced breakdown spectroscopy.

  1. Laser induced white lighting of graphene foam

    Science.gov (United States)

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources.

  2. Laser induced white lighting of graphene foam

    Science.gov (United States)

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources. PMID:28112254

  3. Laser-Induced Incandescence: Excitation Intensity

    Science.gov (United States)

    Vander Wal, Randall L.; Jensen, Kirk A.

    1998-03-01

    Assumptions of theoretical laser-induced incandescence (LII) models along with possible effects of high-intensity laser light on soot aggregates and the constituent primary particles are discussed in relation to selection of excitation laser fluence. Ex situ visualization of laser-heated soot by use of transmission electron microscopy reveals significant morphological changes (graphitization) induced by pulsed laser heating. Pulsed laser transmission measurements within a premixed laminar sooting flame suggest that soot vaporization occurs for laser fluences greater than 0.5 J cm 2 at 1064 nm. Radial LII intensity profiles at different axial heights in a laminar ethylene gas jet diffusion flame reveal a wide range of signal levels depending on the laser fluence that is varied over an eight fold range. Results of double-pulse excitation experiments in which a second laser pulse heats in situ the same soot that was heated by a prior laser pulse are detailed. These two-pulse measurements suggest varying degrees of soot structural change for fluences below and above a vaporization threshold of 0.5 J cm 2 at 1064 nm. Normalization of the radial-resolved LII signals based on integrated intensities, however, yields self-similar profiles. The self-similarity suggests robustness of LII for accurate relative measurement of soot volume fraction despite the morphological changes induced in the soot, variations in soot aggregate and primary particle size, and local gas temperature. Comparison of LII intensity profiles with soot volume fractions ( f v ) derived by light extinction validates LII for quantitative determination of f v upon calibration for laser fluences ranging from 0.09 to 0.73 J cm 2 .

  4. Analysis of the enamel/adhesive resin interface with laser Raman microscopy.

    Science.gov (United States)

    Miyazaki, Masashi; Sato, Hikaru; Onose, Hideo; Moore, B Keith; Platt, Jeffery A

    2003-01-01

    Adhesion of resin composites into enamel is currently believed to rely on infiltration of bonding resin into the porous zone, establishing micromechanical retention to etched enamel. This study investigated the change in chemical composition of the enamel/resin interface using a laser Raman microscopic system (System-2000, Renishaw). Two-step bonding systems, Mac Bond II (Tokuyama Corp), Clearfil Mega Bond and Single Bond (3M/ESPE) were employed. Resin composites were bonded to bovine enamel with bonding systems and sectioned through the bonded interface. The sectioned surfaces were then polished with diamond pastes down to 1.0 microm particle size. Raman spectra were successively recorded along a line perpendicular to the enamel/ resin interface. The sample stage was moved in 0.2 microm increments on a computer-controlled X-Y precision table. Additional spectra from samples of enamel and cured bonding resins were recorded for reference. The relative amounts of the hydroxyapatite (960cm(-1), P-O), bonding agent (640cm(-1), aromatic ring) and alkyl group (1450cm(-1), C-H) in the enamel/resin bonding area were calculated. From Raman spectroscopy, a gradual decrease in hydroxyapatite was observed, and it was estimated to extend 2.2-2.6 microm for Mac Bond II, 1.2-1.6 pm for Clearfil Mega Bond and 5.2-5.6 microm for Single Bond. Furthermore, the enamel/resin interface represents a gradual transition of bonding agent from the resin to tooth side. Evidence of poor saturation of adhesive resin in etched enamel with Single Bond was detected. From the results of this study, non-uniform resin infiltration into etched enamel was detected and the degree of resin infiltration was found to be different among the bonding systems used.

  5. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy.

    Science.gov (United States)

    Winters, Y D; Lowenstein, T K; Timofeeff, M N

    2013-11-01

    Carotenoids are common components of many photosynthetic organisms and are well known from the red waters of hypersaline ecosystems where they are produced by halophilic algae and prokaryotes. They are also of great interest as biomarkers in extraterrestrial samples. Few laser Raman spectroscopy studies have examined ancient field samples, where pigments and microscopic life are less defined. Here, we have identified carotenoids in ancient halite brine inclusions, 9 ka to 1.44 Ma in age, from borehole cores taken from Death Valley, Saline Valley, and Searles Lake, California, for the first time with laser Raman spectroscopy. Carotenoids occurred in fluid inclusions as colorless to red-brown amorphous and crystalline masses associated with spheroidal algal cells similar in appearance to the common halophilic alga Dunaliella. Spectra from carotenoid standards, including β-carotene, lycopene, and lutein, were compared to microscopically targeted carotenoids in fluid inclusions. Carotenoids produced characteristic bands in the Raman spectrum, 1000-1020 cm⁻¹ (v₃), 1150-1170 cm⁻¹ (v₂), and 1500-1550 cm⁻¹ (v₁), when exposed to visible laser excitation. Laser Raman analyses confirmed the presence of carotenoids with these characteristic peaks in ancient halite. A number of band sets were repeated at various depths (ages), which suggests the stability of this class of organic molecules. Carotenoids appear well preserved in ancient salt, which supports other observations, for example, preserved DNA and live cells, that fluid inclusions in buried halite deposits preserve intact halophilic microbial ecosystems. This work demonstrates the value of laser Raman spectroscopy and carotenoids in extraterrestrial exploration for remnants of microbial life.

  6. Laser-noise-induced correlations and anti-correlations in Electromagnetically Induced Transparency

    CERN Document Server

    Cruz, L S; Gómez, J G A; Lezama, A; Martinelliinst1, M; Nussenzveig, P; Valente, P

    2006-01-01

    High degrees of intensity correlation between two independent lasers were observed after propagation through a rubidium vapor cell in which they generate Electromagnetically Induced Transparency (EIT). As the optical field intensities are increased, the correlation changes sign (becoming anti-correlation). The experiment was performed in a room temperature rubidium cell, using two diode lasers tuned to the $^{85}$Rb $D_2$ line ($\\lambda = 780$nm). The cross-correlation spectral function for the pump and probe fields is numerically obtained by modeling the temporal dynamics of both field phases as diffusing processes. We explored the dependence of the atomic response on the atom-field Rabi frequencies, optical detuning and Doppler width. The results show that resonant phase-noise to amplitude-noise conversion is at the origin of the observed signal and the change in sign for the correlation coefficient can be explained as a consequence of the competition between EIT and Raman resonance processes.

  7. Design and Calibration of a Raman Spectrometer for use in a Laser Spectroscopy Instrument Intended to Analyze Martian Surface and Atmospheric Characteristics for NASA

    Science.gov (United States)

    Lucas, John F.; Hornef, James

    2016-01-01

    This project's goal is the design of a Raman spectroscopy instrument to be utilized by NASA in an integrated spectroscopy strategy that will include Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Induced Florescence Spectroscopy (LIFS) for molecule and element identification on Mars Europa, and various asteroids. The instrument is to be down scaled from a dedicated rover mounted instrument into a compact unit with the same capabilities and accuracy as the larger instrument. The focus for this design is a spectrometer that utilizes Raman spectroscopy. The spectrometer has a calculated range of 218 nm wavelength spectrum with a resolution of 1.23 nm. To filter out the laser source wavelength of 532 nm the spectrometer design utilizes a 532 nm wavelength dichroic mirror and a 532 nm wavelength notch filter. The remaining scatter signal is concentrated by a 20 x microscopic objective through a 25-micron vertical slit into a 5mm diameter, 1cm focal length double concave focusing lens. The light is then diffracted by a 1600 Lines per Millimeter (L/mm) dual holographic transmission grating. This spectrum signal is captured by a 1-inch diameter double convex 3 cm focal length capture lens. An Intensified Charge Couple Device (ICCD) is placed within the initial focal cone of the capture lens and the Raman signal captured is to be analyzed through spectroscopy imaging software. This combination allows for accurate Raman spectroscopy to be achieved. The components for the spectrometer have been bench tested in a series of prototype developments based on theoretical calculations, alignment, and scaling strategies. The mounting platform is 2.5 cm wide by 8.8 cm long by 7 cm height. This platform has been tested and calibrated with various sources such as a neon light source and ruby crystal. This platform is intended to be enclosed in a ruggedized enclosure for mounting on a rover platform. The size and functionality of the Raman spectrometer allows for the rover to

  8. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  9. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  10. Results obtained with the Tropospheric Ozone DIAL System Using a YAG Laser and Raman Cells

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.

    2012-12-01

    This poster will detail the findings of the ground based Differential Absorption Lidar (DIAL) system built and operated at the NASA Goddard Space Flight Center (Beltsville, MD 38.99° N, 76.84° W) in 2012. Current atmospheric satellites cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, NASA has funded the ground based Tropospheric Ozone Lidar Network (TOLNET) which currently consists of five stations across the US. The Goddard instrument is based on the Differential Absorption Lidar (DIAL) technique, and has initially transmitted two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm, and the DIAL technique exploits this difference between the two returned signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman Cells, filled with high pressure Hydrogen and Deuterium. Stimulated Raman Scattering within the focus shifts the pump wavelength, and the first Stokes shift in each cell produces the required wavelengths. With the knowledge of the ozone absorption coefficient at these two wavelengths, the vertical number density can then be derived. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make long term ozone profile measurements in the Washington, DC - Baltimore area.

  11. A comparison of crud phases appearing on some Swedish BWR fuel rods using Laser Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden)]|[Lulea Univ. of Technology (Sweden)

    2002-07-01

    Previous investigations showed that laser Raman spectroscopy (LRS) can be used as a phase specific analytical tool for radioactive fuel crud samples and also for details in the underlying layer of zirconium dioxide. It is relatively easy to record Raman spectra that discriminate between chemical phases for all crud oxides of interest. The method has therefore been recommended for crud investigations within the Swedish program. At ideal conditions the resolution is about 1 {mu}m, permitting detailed position determination of crud phases in the sample. Therefore LRS is a very good complement to X-ray diffraction (XRD). The methods for sample preparation and handling of radioactive crud samples for LRS turn out to be relatively simple. A detailed LRS study on fuel crud samples from Barsebaeck 2, Forsmark 2, Forsmark 3 and Ringhals 1 was performed in this work. All of those Swedish BWRs were operated at different conditions at the time of sampling. The chemistry regimes covered NWC, HWC and other variable conditions. Also different types of fuel, exposure times and sampling positions were selected. (authors)

  12. Laser Raman and infra-red spectra of biomolecule: 5-aminouracil

    Indian Academy of Sciences (India)

    J S Singh

    2008-03-01

    Laser Raman (200-4000 cm-1) and IR (200-4000 cm-1) spectra of 5-aminouracil were recorded in the region 200{4000 cm-1. Assuming a planar geometry and C point group symmetry, it has been possible to assign all the 36 (25′ + 11″) normal modes of vibration for the first time. The two NH bonds of the NH2 group appear to be equivalent as the NH2 stretching frequencies satisfy the empirical relation proposed for the two equivalent NH bonds of the NH2 group. The two NH2 stretching frequencies are distinctly separated from the CH/NH ring stretching frequencies. A strong and sharp IR band at 3360 cm-1 could be identified as the anti-symmetric NH2 mode whereas the band at 3290 cm-1 with smaller density could be identified as the symmetric NH2 stretching mode. All other bands have also been assigned different fundamentals/overtones/combinations.

  13. Laser Raman spectrometric determination of oxy-anions in nuclear waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.G.

    1977-03-01

    Oxy-anions in complex nuclear process-waste materials are being determined by laser Raman spectrometry (LRS). The double internal-standard technique developed by Marston is applied to the simultaneous determination of up to x anions in alkaline solutions. The method of Marston has been extended to solutions prepared from the solids formed in nuclear waste storage tanks. As many as six anions, aluminate, chromate, nitrate, nitrite, phosphate, and sulfate, are simultaneously determined in about one hour. Carbonate may also be determined, but in the presence of the prevalent nitrate, a chemical separation is required. Individual methods have been relegated to a secondary status due to the many advantages of LRS. Advantages such as small sample size, speed of analysis, accuracy, and specificity will be discussed. The typical precision obtained for analyses in high concentration is around five percent relative standard deviation.

  14. Design and simulation of 1310 nm and 1480 nm single-mode photonic crystal fiber Raman lasers.

    Science.gov (United States)

    Varshney, S K; Sasaki, K; Saitoh, K; Koshiba, M

    2008-01-21

    We have numerically investigated the Raman lasing characteristics of a highly nonlinear photonic crystal fiber (HNPCF). HNPCF Raman lasers are designed to deliver outputs at 1.3 microm and 1.48 microm wavelengths through three and six cascades of Raman Stokes cavities when the pumps of 1117 nm and 1064 nm are injected into HNPCF module, respectively. A quantum efficiency of approximately 47% was achieved in a short length of HNPCF for 1.3 microm lasing wavelength. The HNPCF design is modified further to operate in single-mode fashion keeping intact its Raman lasing characteristics. The modified HNPCF design consists of two air-hole rings where the higher-order modes in the central core are suppressed by enhancing their leakage losses drastically, thus ceasing their propagation in the short length of HNPCF. On the other hand, the fundamental mode is well confined to the central core region, unaffecting its lasing performances. Further, the lasing characteristics of HNPCF at 1480 nm are compared with conventional highly nonlinear fiber Raman laser operating at 1480 nm. It is found that one can reduce the fiber length by five times in case of HNPCF with nearly similar conversion efficiency.

  15. Laser Induced Damage Studies in Borosilicate Glass Using nanosecond and sub nanosecond pulses

    CERN Document Server

    Rastogi, Vinay; Munda, D S

    2016-01-01

    The damage mechanism induced by laser pulse of different duration in borosilicate glass widely used for making confinement geometry targets which are important for laser driven shock multiplication and elongation of pressure pulse, is studied. We measured the front and rear surface damage threshold of borosilicate glass and their dependency on laser parameters. In this paper, we also study the thermal effects on the damage diameters, generated at the time of plasma formation. These induced damage width, geometries and microstructure changes are measured and analyzed with optical microscope, scanning electron microscope and Raman spectroscopy. The results show that at low energies symmetrical damages are found and these damage width increases nonlinearly with laser intensity. The emitted optical spectrum during the process of breakdown is also investigated and is used for the characterization of emitted plasma such as plasma temperature and free electron density. Optical emission lines from Si I at 500 nm, Si ...

  16. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  17. Nonreciprocal lasing and polarization selectivity in silicon ring Raman lasers based on micro- and nano-scale waveguides

    Science.gov (United States)

    Vermeulen, N.

    2012-06-01

    In this paper I present a generic model that describes the lasing characteristics of continuous-wave circular and racetrack-shaped ring Raman lasers based on micro- and nano-scale silicon waveguides, including their lasing directionality and polarization behavior. This model explicitly takes into account the effective Raman gain values for forward and backward lasing, the Raman amplification in the bus waveguide, and the spatial gain variations for different polarization states in the ring structure. I show numerically that ring lasers based on micro-scale waveguides generate unidirectional lasing in either the forward or backward direction because of an asymmetry in nonlinear losses at near-infrared telecommunication wavelengths, whereas those based on nanowires yield only backward lasing due to a non-reciprocity in effective gain. Furthermore, the model indicates that backward lasing can yield a significantly higher lasing output at the bus waveguide facets than lasing in the forward direction. Finally, considering a TE-polarized pump input for a (100) grown silicon ring Raman laser, I demonstrate numerically that the polarization state of the lasing radiation strongly depends on whether micro-scale or nano-scale waveguides are used.

  18. Unraveling shock-induced chemistry using ultrafast lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David S [Los Alamos National Laboratory

    2009-01-01

    The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation of fast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state of materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to micro-engineered interfaces in tunable energetic mixtures.

  19. Laser-induced forward transfer of hybrid carbon nanostructures

    Science.gov (United States)

    Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2016-06-01

    Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO2 nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO2 pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500-700 mJ/cm2 it is possible to transfer thick (4 μm) CNW and CNW:SnO2 pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO2 pixels obtained by LIFT can be ultimately applied in technological applications.

  20. Monolithic Y-branch dual wavelength DBR diode laser at 671nm for shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Maiwald, M.; Fricke, J.; Ginolas, A.; Pohl, J.; Sumpf, B.; Erbert, G.; Tränkle, G.

    2013-05-01

    A dual-wavelength laser diode source suitable for shifted excitation Raman difference spectroscopy (SERDS) is presented. This monolithic device contains two ridge waveguide (RW) sections with wavelengths adjusted distributed Bragg reflection (DBR) gratings as rear side mirrors. An integrated Y-branch coupler guides the emission into a common output aperture. The two wavelengths are centered at 671 nm with a well-defined spectral spacing of about 0.5 nm, i.e. 10 cm-1. Separate RW sections can be individually addressed by injection current. An output power up to 110 mW was achieved. Raman experiments demonstrate the suitability of these devices for SERDS.

  1. A double-interferometer laser system for cold 87Rb atom gyroscopes based on stimulated Raman transitions

    CERN Document Server

    Song, Ningfang; Li, Wei; Li, Yang; Liu, Jixun; Xu, Xiaobin; Pan, Xiong

    2014-01-01

    We proposed and implemented a double-interferometer laser system to manipulate cold 87Rb atoms to interfere. A frequency-modulated continuous-wave technique was applied to determine and compensate the optical path difference between the two Raman beams. With a coherent self-heterodyne method, the beat signal's FWHM linewidth was measured and the obtained linewidth of ~1Hz mainly limited by the resolution bandwidth of the spectrum analyzer indicates a good coherence degree of the two Raman beams, paving the way to realize a highly sensitive atom gyroscope.

  2. Laser-Induced Particle Adsorption on Atomically Thin MoS2.

    Science.gov (United States)

    Tran Khac, Bien Cuong; Jeon, Ki-Joon; Choi, Seung Tae; Kim, Yong Soo; DelRio, Frank W; Chung, Koo-Hyun

    2016-02-10

    Atomically thin molybdenum disulfide (MoS2) shows great potential for use in nanodevices because of its remarkable electronic, optoelectronic, and mechanical properties. These material properties are often dependent on the thickness or the number of layers, and hence Raman spectroscopy is widely used to characterize the thickness of atomically thin MoS2 due to the sensitivity of the vibrational spectrum to thickness. However, the lasers used in Raman spectroscopy can increase the local surface temperature and eventually damage the upper layers of the MoS2, thereby changing the aforementioned material properties. In this work, the effects of lasers on the topography and material properties of atomically thin MoS2 were systematically investigated using Raman spectroscopy and atomic force microscopy. In detail, friction force microscopy was used to study the friction characteristics of atomically thin MoS2 as a function of laser powers from 0.5 to 20 mW and number of layers from 1 to 3. It was found that particles formed on the top surface of the atomically thin MoS2 due to laser-induced thermal effects. The degree of particle formation increased as the laser power increased, prior to the thinning of the atomically thin MoS2. In addition, the degree of particle formation increased as the number of MoS2 layers increased, which suggests that the thermal behavior of the supported MoS2 may differ depending on the number of layers. The particles likely originated from the atmosphere due to laser-induced heating, but could be eliminated via appropriate laser powers and exposure times, which were determined experimentally. The outcomes of this work indicate that thermal management is crucial in the design of reliable nanoscale devices based on atomically thin MoS2.

  3. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  4. 1 400-1 500 nm,Different Material-doped Raman Fiber Lasers Pumped by Nd∶YVO4 Laser

    Institute of Scientific and Technical Information of China (English)

    MEI Jin-jie; LIU De-ming; WANG Ying; HUANG De-xiu

    2003-01-01

    Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO4 laser pumping at wavelength of 1 342 nm,single mode output power of above 500 mW (optical-to-optical conversion efficiency of 50%) is simulated in the range of 1 400-1 500 nm.Using high-germanium,high-phosphate and high-borate silicate fibers as the gain medium,laser output at wavelengths of 1 420,1 450,1 480 and 1 495 nm can be achieved with different geometries,which are just as pumping C-band and L-band distributed Raman fiber amplifiers.

  5. Raman-induced Spin-Orbit Coupling in Optical Superlattices

    Science.gov (United States)

    Li, Junru; Huang, Wujie; Shteynas, Boris; Burchesky, Sean; Top, Furkan; Jamison, Alan; Ketterle, Wolfgang

    2016-05-01

    We demonstrate a new scheme for spin-orbit coupling (SOC) of ultracold atoms. Instead of internal (hyperfine) states, two lowest bands in an optical superlattice were used as pseudospins. A Raman process was implemented to provide coupling between pseudospin and momentum. With single internal state and far-detuned beams used, our new scheme will allow convenient generalisation to a wide range of atoms. Pseudospin interaction is tuneable by controlling the superlattice, allowing us to study many-body phenomena in SOC systems such as the stripe phase.

  6. Transcutaneous monitoring of steroid-induced osteoporosis with Raman spectroscopy

    Science.gov (United States)

    Maher, Jason R.; Inzana, Jason; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2012-01-01

    Although glucocorticoids are among the most frequently prescribed anti-inflammatory agents used in the treatment of rheumatoid arthritis, extended exposure to this steroid hormone is the leading cause of iatrogenic osteoporosis. Recently, Raman spectroscopy has been utilized to exploit biochemical differences between osteoporotic and normal bones in order to predict fracture risk. In this presentation, we report the results of ongoing research in our laboratory towards the clinical translation of this technique. We will discuss strategies for the transcutaneous acquisition of spectra from the tibiae of mice that are of sufficient quality to generate accurate predictions of fracture risk.

  7. Laser-induced forward transfer of hybrid carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); National Institute for Lasers, Plasma, and Radiation Physics, Lasers Department, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele (Romania); Filipescu, M., E-mail: mihaela.filipescu@inflpr.ro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); National Institute for Lasers, Plasma, and Radiation Physics, Lasers Department, Atomistilor 409, 077125 Magurele (Romania); Vizireanu, S. [National Institute for Lasers, Plasma, and Radiation Physics, Lasers Department, Atomistilor 409, 077125 Magurele (Romania); Vogt, L. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Antohe, S. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele (Romania); Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma, and Radiation Physics, Lasers Department, Atomistilor 409, 077125 Magurele (Romania); Wokaun, A.; Lippert, T. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2016-06-30

    Highlights: • Rapid prototyping of carbon nanowalls (CNW) and functionalized CNWs is described. • CNW and CNW:SnO{sub 2} pixels are successfully printed by laser-induced forward transfer. • Flexible (polyimide) and rigid (glass) supports are used as substrates. • 4 μm thick CNW and CNW:SnO{sub 2} pixels maintain their morphology and structure after LIFT. - Abstract: Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO{sub 2} nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO{sub 2} pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500–700 mJ/cm{sup 2} it is possible to transfer thick (4 μm) CNW and CNW:SnO{sub 2} pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO{sub 2} pixels obtained by LIFT can be ultimately applied in technological applications.

  8. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  9. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan; Commandré, Mireille [Institut Fresnel, CNRS, Aix-Marseille Université, Ecole Centrale Marseille, Campus de St Jérôme, 13013 Marseille (France); Duchateau, Guillaume [CELIA, UMR 5107 Université Bordeaux 1-CNRS-CEA, 351 Cours de la Libération, 33405 Talence Cedex (France)

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched laser and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.

  10. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition.

    Science.gov (United States)

    Ahlawat, Anju; Mishra, Dileep K; Sathe, V G; Kumar, Ravi; Sharma, T K

    2013-01-16

    The local domain structure of a strain free, 150 nm thick, epitaxially grown single crystalline thin film of CaCu(3)Ti(4)O(12) is probed by polarized Raman spectroscopy. The polarization dependence of the Raman intensities of the observed bands as a function of varying angle between the domain axes and the polarization vector of the scattered laser photon is measured. Theoretical formulations involving the Raman tensor are presented, which enable determination of the domain structure from the observed polarized Raman spectra, and a single-crystal-like domain structure is found. The Raman tensor elements and domain orientation direction were determined by fitting the observed Raman intensities with theoretical calculations and by carrying out Raman mapping of the film. Our data show an absence of twin domain structure and twin domain boundaries in the single-crystal-like epitaxial thin films of CaCu(3)Ti(4)O(12).

  11. The effect of induced multipoles on the fifth-order Raman response

    NARCIS (Netherlands)

    la Cour Jansen, T.; Duppen, K.; Snijders, J. G.

    2003-01-01

    In our previous work we developed the Finite Field method in order to calculate the fifth-order Raman response. The method was applied to calculate various polarization components of the two-dimensional response of liquid CS2. So far, all calculations relied on the dipole-induced dipole. Accurate ti

  12. Anisotropic collision-induced Raman scattering by the Kr:Xe gas mixture.

    Science.gov (United States)

    Dixneuf, S; Chrysos, M; Rachet, F

    2009-08-21

    We report anisotropic collision-induced Raman scattering intensities by the Kr-Xe atomic pair recorded in a gas mixture of Kr and Xe at room temperature. We compare them to quantum-mechanical calculations on the basis of modern incremental polarizability models of either ab initio post-Hartree-Fock or density functional theory methods.

  13. Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel.

    Science.gov (United States)

    Ortiz-Morales, M; Soto-Bernal, J J; Frausto-Reyes, C; Acosta-Ortiz, S E; Gonzalez-Mota, R; Rosales-Candelas, I

    2015-06-15

    Iron chromium oxide microspheres were generated by pulsed laser irradiation on the surface of two commercial samples of stainless steel at room temperature. An Ytterbium pulsed fiber laser was used for this purpose. Raman spectroscopy was used for the characterization of the microspheres, whose size was found to be about 0.2-1.7 μm, as revealed by SEM analysis. The laser irradiation on the surface of the stainless steel modified the composition of the microspheres generated, affecting the concentration of the main elemental components when laser power was increased. Furthermore, the peak ratio of the main bands in the Raman spectra has been associated to the concentration percentage of the main components of the samples, as revealed by Energy-Dispersive X-ray Spectroscopy (EDS) analysis. These experiments showed that it is possible to generate iron chromium oxide microspheres on stainless steel by laser irradiation and that the concentration percentage of their main components is associated with the laser power applied.

  14. Pulsed laser deposited Ag nanoparticles on nickel hydroxide nanosheet arrays for highly sensitive surface-enhanced Raman scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yuting; Wang, Huanwen; Chen, Xiao [Department of Chemistry, Tongji University, Shanghai 200092 (China); Wang, Xuefeng, E-mail: xfwang@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Wei, Huige [Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States); Guo, Zhanhu, E-mail: zhanhu.guo@lamar.edu [Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2014-10-15

    Highlights: • Silver nanoparticles (NPs) were deposited on nickel hydroxide nanosheet (NS) arrays by pulsed laser deposition (PLD) for surface-enhanced Raman scattering (SERS) spectroscopy. • The Ag/Ni(OH){sub 2} composite film exhibits very high Raman scattering enhancement ability, possessing an enhancement factor as high as 5 × 10{sup 6}. • The enhancement ability of the substrate was strongly dependent on the size and interparticle gap of Ag NPs. • The 3D structure of Ni(OH){sub 2} NS arrays and the charge transfer of Ag NPs may be responsible for this high sensitivity Raman phenomenon. - Abstract: In the present work, silver nanoparticles (NPs) were deposited on nickel hydroxide nanosheet (NS) arrays by pulsed laser deposition (PLD) for surface-enhanced Raman scattering (SERS) spectroscopy. The effective high specific surface area with silver NPs decorated on the NS arrays was revealed by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The microstructure and optical property of this three-dimensional (3D) substrate were investigated by X-ray diffraction (XRD) and UV–vis spectra, respectively. Using rhodamine 6G (R6G) as probe molecules with the concentration down to 10{sup −5} M, the Ag/Ni(OH){sub 2} composite film exhibits very high Raman scattering enhancement ability, possessing an enhancement factor as high as 5 × 10{sup 6}. It has been found that the enhancement ability of the substrate was strongly dependent on the size and interparticle gap of Ag NPs rather than the testing position on the film surface. In addition, the 3D structure of Ni(OH){sub 2} NS arrays and the charge transfer of Ag NPs may be responsible for this high sensitivity Raman phenomenon.

  15. Treatment of Laser Induced Retinal Injuries.

    Science.gov (United States)

    1986-04-02

    END 1.0 1.18 Yl(-ROCOPY Ri yjTuION If ’,! (HART !. UIH; iLruud @ N TREATMENT OF LASER INDUCED RETINAL INJURIES (ANNUAL REPORT 00 DTIC Michael Belkin...NO. CCESSION NO _______________________________61102A I102BS1O0 CF 1i. 446 TITLE (Indude S*.curny Claifkaion) TREATMENT OF LASER INDUCED RETINAL... INJURIES PERSONAL AUTHOR(S) M. BELKIN N. NAVEH a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Mont. D y) S. PAGE COUNT FROM Xaj& TO l 2Ann

  16. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  17. Recent Advances in Deep-Sea in situ Geochemical Measurements by ROV Deployed Laser Raman Spectroscopy.

    Science.gov (United States)

    Peltzer, E. T.; Henthorn, R.; Hester, K. C.; Kirkwood, W. J.; Rosal, J.; Salamy, K. A.; Scholfield, J.; Shane, F. F.; Sherman, A. D.; Walz, P. M.; Brewer, P. G.

    2007-12-01

    Raman spectroscopy is a valuable analytical technique for making in situ geochemical measurements. It is applicable to liquids, solids and gases; requires little or no sample preparation; and is rapid with typical analysis times of several minutes or less. These features combine to make it an ideal technique for deployment and use on remotely operated vehicles in a variety of applications. We report results from our second generation laser Raman spectrometer (DORISS2), developed in conjunction with Kaiser Optical Systems, Inc., which is both lighter and more robust than the original design. Packaged within a single titanium pressure housing rated to 4000m, DORISS2 has a floating optical bench which minimizes misalignments and preserves instrument calibration both during and between dives. The pressure compensated fiber optic cables have improved signal strength from 8% to 88% at 1024 m greatly reducing the time required to acquire a sample spectrum and allowing the detection of lower concentrations of trace components. Development of the precision underwater positioner (PUP) has enabled the spectroscopic analysis of opaque targets where a focusing precision of +/- 0.1 mm is required. This has allowed us to investigate the composition of authigenic minerals (such as hydrothermal vent precipitates) and gas hydrates in their native and undisturbed condition, such as the massive outcrops on the seafloor at Barkley Canyon, or to inspect the fine-scale inhomogeneities that occur in seafloor synthesis experiments conducted in Monterey Bay. The recent development of a single axis positioner (SAP) has allowed us to use DORISS2 when payload weight is an issue, in places where the seafloor is too steep to safely deploy PUP, or where operational conditions (such as an overhanging ledge) are too restrictive and where PUP does not fit. The SAP adds a new degree of flexibility we have not previously had and has even permitted the analysis of scale carotenoids in a live rock fish

  18. Raman spectral features of single walled carbon nanotubes synthesized by laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-05

    Full Text Available In Raman spectra of SWCNTs, there are many features which can be identifed with specific phonon modes and with specific Raman scattering processes that contribute to each feature. Mechanical, elastic and thermal properties are strongly influenced...

  19. Tunable KrF laser-induced fluorescence of C2 in a sooting flame

    Science.gov (United States)

    Brockhinke, A.; Hartlieb, A. T.; Kohse-Höinghaus, K.; Crosley, D. R.

    1998-11-01

    We have observed laser-induced fluorescence of two different band systems of C2 in a flame, excited by a tunable KrF laser near 248 nm. The first comprises several P and R lines of the (1,0) band of the e 3@g-a 3@u Fox-Herzberg system, with fluorescence bands extending past 350 nm. The second is the band head region of the (7,1) band of the D 1Du+LB' 1Dg+ system, with fluorescence at 232 nm from D to the X 1Dg+ ground state. Neither band has been previously observed in any environment. The flame in these experiments is highly sooting, and the C2 seen here is likely produced by laser vaporization of the soot with subsequent laser photolysis of a C2 precursor. In a rich flame, this fluorescence could cause interferences in other studies such as KrF laser Raman scattering. Moreover, signal level calculations suggest native C2 near 10 ppm could be readily observed using the Fox-Herzberg excitation. Raman measurements of major species (X̾.01) in the same flame, using the KrF laser, are in good agreement with a model prediction.

  20. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    Science.gov (United States)

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  1. Raman microspectroscopy of nanodiamond-induced structural changes in albumin

    Science.gov (United States)

    Svetlakova, Anastasiya S.; Brandt, Nikolay N.; Priezzhev, Alexander V.; Chikishev, Andrey Yu.

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND-protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  2. In vivo molecular evaluation of guinea pig skin incisions healing after surgical suture and laser tissue welding using Raman spectroscopy.

    Science.gov (United States)

    Alimova, A; Chakraverty, R; Muthukattil, R; Elder, S; Katz, A; Sriramoju, V; Lipper, Stanley; Alfano, R R

    2009-09-01

    The healing process in guinea pig skin following surgical incisions was evaluated at the molecular level, in vivo, by the use of Raman spectroscopy. After the incisions were closed either by suturing or by laser tissue welding (LTW), differences in the respective Raman spectra were identified. The study determined that the ratio of the Raman peaks of the amide III (1247 cm(-1)) band to a peak at 1326 cm(-1) (the superposition of elastin and keratin bands) can be used to evaluate the progression of wound healing. Conformational changes in the amide I band (1633-1682 cm(-1)) and spectrum changes in the range of 1450-1520 cm(-1) were observed in LTW and sutured skin. The stages of the healing process of the guinea pig skin following LTW and suturing were evaluated by Raman spectroscopy, using histopathology as the gold standard. LTW skin demonstrated better healing than sutured skin, exhibiting minimal hyperkeratosis, minimal collagen deposition, near-normal surface contour, and minimal loss of dermal appendages. A wavelet decomposition-reconstruction baseline correction algorithm was employed to remove the fluorescence wing from the Raman spectra.

  3. Graphitic carbon nanospheres: A Raman spectroscopic investigation of thermal conductivity and morphological evolution by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe; Sahoo, Satyaprakash, E-mail: satya504@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Chitturi, Venkateswara Rao; Katiyar, Ram S., E-mail: satya504@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00936-8377 (United States)

    2015-12-07

    Graphitic carbon nanospheres (GCNSs) were prepared by a unique acidic treatment of multi-walled nanotubes. Spherical morphology with a narrow size distribution was confirmed by transmission electron microscopy studies. The room temperature Raman spectra showed a clear signature of D- and G-peaks at around 1350 and 1591 cm{sup −1}, respectively. Temperature dependent Raman scattering measurements were performed to understand the phonon dynamics and first order temperature coefficients related to the D- and G-peaks. The temperature dependent Raman spectra in a range of 83–473 K were analysed, where the D-peak was observed to show a red-shift with increasing temperature. The relative intensity ratio of D- to G-peaks also showed a significant rise with increasing temperature. Such a temperature dependent behaviour can be attributed to lengthening of the C-C bond due to thermal expansion in material. The estimated value of the thermal conductivity of GCNSs ∼0.97 W m{sup −1} K{sup −1} was calculated using Raman spectroscopy. In addition, the effect of pulsed laser treatment on the GCNSs was demonstrated by analyzing the Raman spectra of post irradiated samples.

  4. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping.

    Science.gov (United States)

    Jia, Xin-Hong; Rao, Yun-Jiang; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Han; Zhu, Ye-Yu; Peng, Fei

    2013-10-21

    A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4 km with 5 m spatial resolution and ~ ± 1.4 °C temperature uncertainty is successfully demonstrated.

  5. Laser-Raman and FT-IR spectroscopic studies of peptide-analogues of silkmoth chorion protein segments.

    Science.gov (United States)

    Benaki, D C; Aggeli, A; Chryssikos, G D; Yiannopoulos, Y D; Kamitsos, E I; Brumley, E; Case, S T; Boden, N; Hamodrakas, S J

    1998-07-01

    Silkmoth chorion, the proteinaceous major component of the eggshell, with extraordinary mechanical and physiological properties, consists of a complex set of proteins, which have a tripartite structure: a central, evolutionarily conserved, domain and two more variable 'arms'. Peptide-analogues of silkmoth chorion protein central domain segments have been synthesized. Laser-Raman and infrared spectroscopic studies suggest the preponderance of antiparallel beta-pleated sheet structure for these peptides, both in solution and in the solid state.

  6. BRIEF COMMUNICATIONS: Influence of intracavity stimulated Raman scattering on self-modulation of a ring laser emitting ultrashort pulses

    Science.gov (United States)

    Yashkir, Yu N.; Yashkir, O. V.

    1991-11-01

    An investigation is made of the generation of ultrashort pulses in a ring laser in the presence of intracavity nonlinear losses due to stimulated Raman scattering. A numerical analysis of the attractors of the problem is used in a study of typical lasing regimes: stable, unstable regular, and unstable irregular (optical turbulence). A change in the nonlinearity parameter reveals also "intermittence" regions. An analysis is made of the influence of feedback provided by the Stokes radiation on the localization of an instability region.

  7. Stoichiometric changes to KH2PO4 during laser-induced breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Negres, R A; Kucheyev, S O; DeMange, P; Carr, C W; Demos, S G

    2004-11-15

    The local structure of KH{sub 2}PO{sub 4} crystals (so-called KDP) at laser-induced damage sites created by irradiation with {approx} 3-ns, 355-nm laser pulses is studied by a combination of Raman scattering and photoluminescence spectroscopies. We compare spectra from pristine material, surface and bulk laser-induced damage sites, as well as from KPO{sub 3} references. Results show that irradiation with uences above the laser-induced breakdown threshold leads to stoichiometric changes at surface damage sites but not at bulk damage sites. New spectroscopic features are attributed to dehydration products. For the laser irradiation conditions used in this study, the decomposed near-surface layer absorbs photons at {approx} 3.4 eV (364 nm). These results may help explain the recently reported observation that surface laser damage sites in KDP crystals tend to grow with subsequent exposure to high-power laser pulses, while bulk damage sites do not.

  8. UV Laser-Induced DNA Photochemistry

    Science.gov (United States)

    1991-05-13

    nicking of DNA) can be described by a Poisson distribution (Armitage, 1971; Kroeber and LaForge, 1980). Such a distribution can be used to determine...specificity of the alkali-sensitive lesions induced in DNA by high intensity ultraviolet laser radiation", Photochem. Photohiol. 52:509-517 Kroeber , D.W

  9. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    Science.gov (United States)

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  10. Laser-induced axion photoproduction

    Science.gov (United States)

    Brodsky, S. J.; Mottola, E.; Muzinich, I. J.; Soldate, M.

    1986-01-01

    Axion photoproduction is suggested as a systematic technique for investigating the coupling of new elementary pseudoscalar or scalar particles in the megaelectronvolt mass range to leptons, photons, and hadronic matter. The experiments involve a configuration where a low-energy photon collides with a relativistic electron beam. Threshold production energies of 300 GeV can be accomplished with an optical laser, and those of 14.5-50 GeV can be achieved with wigglers directed onto an electron beam. With this scheme, at least 10 to the -7th of the electrons can be converted to axions, providing a 1-100 thousand/s relativistic beam of axions.

  11. Ultraviolet Raman scattering from persistent chemical warfare agents

    Science.gov (United States)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  12. Raman studies of gluten proteins aggregation induced by dietary fibres.

    Science.gov (United States)

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Kowalski, Radosław; Gruszecki, Wiesław I

    2016-03-01

    Interactions between gluten proteins and dietary fibre preparations are crucial in the baking industry. The addition of dietary fibre to bread causes significant reduction in its quality which is influenced by changes in the structure of gluten proteins. Fourier transform Raman spectroscopy was applied to determine changes in the structure of gluten proteins modified by seven dietary fibres. The commercially available gluten proteins without starch were mixed with the fibres in three concentrations: 3%, 6% and 9%. The obtained results showed that all fibres, regardless of their origin, caused the same kind of changes i.e. decrease in the α-helix content with a simultaneous increase in the content of antiparallel-β-sheet. The results indicated that presence of cellulose was the probable cause of these changes, and lead to aggregation or abnormal folding of the gluten proteins. Other changes observed in the gluten structure concerning β-structures, conformation of disulphide bridges, and aromatic amino acid environment, depended on the fibres chemical composition.

  13. Raman spectroscopic study on structure of human immunodeficiency virus (HIV) and hypericin-induced photosensitive damage of HIV

    Institute of Scientific and Technical Information of China (English)

    XU; Yiming; LU; Chuanzong

    2005-01-01

    The first Raman spectra of HIV1- HIV2 in human sera and hypericin-induced photosensitive damage of the virus have been obtained. The prominent Raman lines in the spectra are assigned respectively to the carbohydrates of viral glycoprotein, RNA, protein and lipid. The spectra are dominated by Raman scattering of the carbohydrates. The lines of D-Mannose and N-acetylglucosamine in carbohydrates are obvious and there is a β-configuration in the anomeric C1 position in D-Mannose. The viral RNA duplexes bound assumes an A-form geometry. The lines of backbone phosphate group, bases (involving interbase hydrogen bonding) and ribose of the RNA are complete and distinct. The secondary structure of the viral protein maintains β-helix, β-sheet, β-turn and random coil. Its side chains are rich and vary from tryptophan, phenylalanine and "buried" tyrosine; the stable conformation of the S-S bond of gauche-gauche-gauche; the two forms of C-S bonds of gauche and trans ; to sulfhydrl group and ionized and unionized carboxyl groups. The viral lipid bilayer molecules are probably in the liquid ordered phase or the gel phase. It was observed that the hypericin-induced photosensitive damage of HIV1-HIV2 in human sera changed various components of HIV1-HIV2 in different degrees : The orderly A-form viral RNA would become a disordered viral RNA. There were a breakage of interbase hydrogen bonds and disruption of vertical base-base stacking interactions. In addition, the groups of ribos and four bases were damaged obviously. A decrease in ordered structure (α-helix and α-sheet) of viral protein is accompanied by an increase in random coil. The Tyr buried in the three-dimensional structure of protein was damaged, but it was still "buried" and the damage of C-S bond of trans form was stronger. The groups of carbohydrates, including D-Mannos and N-acetyl glucosamine, in viral envelope glycoprotein had also been changed. The hydrophilic C-N bond of choline in viral lipid was damaged

  14. Study on the formation of peroxodisulfate ion on platinum anode using laser raman spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, Akimasa; Takenaka, Yutaka; Matsugidaira, Shin' ichi; Yasuzawa, Toru; Fujikawa, Toshiyuki; Sakamoto, Eibun

    1988-09-05

    In order to determine the reaction intermediates in the electrolysis formation of peroxodisulfate ion (S/sub 2/O/sub 8//sup 2/minus//), the galvanostatic oxidation of SO/sub 4//sup 2/minus// ion and HSO/sub 4//sup /minus// ion on platinum has been investigated in an H-shaped cell with a glass-filter. The electrolysis was carried out at constant curent density of 1 A/cm/sup 2/ in ammonium sulfate solution or mixed solution of ammonium sulfate and sulfuric acid. Produced S/sub 2/O/sub 8//sup 2/minus// or HSO/sub 5//sup /minus// was determined by both iodometry and permanganometry, whereas SO/sub 4//sup 2/minus// or HSO/sub 4//sup /minus// by the laser Raman spectrometry. On the formation of S/sub 2/O/sub 8//sup 2/minus//, it was revealed that not only SO/sub 4//sup -/ but also HSO/sub 4//sup /minus// will react and that the rate constant of S/sub 2/O/sub 8//sup 2/minus// formation from SO/sub 4//sup 2/minus// is about two times larger than that from HSO/sub 4//sup /minus//. 12 references, 7 figures, 3 tables.

  15. Laser-induced lipolysis on adipose cells

    Science.gov (United States)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  16. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop.

    Science.gov (United States)

    Wang, Kai; Yao, Zhanwei; Li, Runbing; Lu, Sibin; Chen, Xi; Wang, Jin; Zhan, Mingsheng

    2016-02-10

    We report a hybrid scheme for phase-coherent Raman lasers with low phase noise in a wide frequency range. In this scheme, a pair of Raman lasers with a frequency difference of 3.04 GHz is generated by the ±1-order diffracted lights of an acousto-optic modulator (1.52 GHz), where a feedback loop is simultaneously applied for suppressing the phase noise. The beat width of the Raman lasers is narrower than 3 Hz. In the low-frequency range, the phase noise of the Raman lasers is suppressed by 35 dB with the feedback. The phase noise is less than -109  dBc/Hz in the high-frequency range. The sensitivity of an atom gyroscope employing the hybrid Raman lasers can be implicitly improved 10 times. Due to the better high-frequency response, the sensitivity is not limited by the durations of Raman pulses. This work is important for improving the performance of atom-interferometer-based measurements.

  17. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  18. Laser induced ponderomotive convection in water

    CERN Document Server

    Shneider, M N

    2015-01-01

    A new mechanism for inducing convection during IR laser interaction with water or any absorbing polar liquid is described theoretically. The numerical simulations performed using the developed model show that the ponderomotive force produces water flow in the direction of the laser beam propagation. In the later stage of interaction, when water temperature rises, the Archimedes force becomes first comparable and then dominant producing convection directed against the vector of gravitational acceleration (upward). The theoretical estimates and the numerical simulations predict fluid dynamics that is similar to the observed in the previous experiments.

  19. Laser induced forward transfer of soft materials

    Science.gov (United States)

    Palla-Papavlu, A.; Dinca, V.; Luculescu, C.; Shaw-Stewart, J.; Nagel, M.; Lippert, T.; Dinescu, M.

    2010-12-01

    A strong research effort is presently aimed at patterning methodologies for obtaining controlled defined micrometric polymeric structures for a wide range of applications, including electronics, optoelectronics, sensors, medicine etc. Lasers have been identified as appropriate tools for processing of different materials, such as ceramics and metals, but also for soft, easily damageable materials (biological compounds and polymers). In this work we study the dynamics of laser induced forward transfer (LIFT) with a gap between the donor and the receiver substrates, which is the basis for possible applications that require multilayer depositions with high spatial resolution.

  20. Laser induced fluorescence technique for environmental applications

    Science.gov (United States)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  1. Development and deployment of a precision underwater positioning system for in situ laser Raman spectroscopy in the deep ocean

    Science.gov (United States)

    White, Sheri N.; Kirkwood, William; Sherman, Alana; Brown, Mark; Henthorn, Richard; Salamy, Karen; Walz, Peter; Peltzer, Edward T.; Brewer, Peter G.

    2005-12-01

    The field of ocean geochemistry has recently been expanded to include in situ laser Raman spectroscopic measurements in the deep ocean. While this technique has proved to be successful for transparent targets, such as fluids and gases, difficulty exists in using deep submergence vehicle manipulators to position and control the very small laser spot with respect to opaque samples of interest, such as many rocks, minerals, bacterial mats, and seafloor gas hydrates. We have developed, tested, and successfully deployed by remotely operated vehicle (ROV) a precision underwater positioner (PUP) which provides the stability and precision movement required to perform spectroscopic measurements using the Deep Ocean Raman In situ Spectrometer (DORISS) instrument on opaque targets in the deep ocean for geochemical research. The positioner is also adaptable to other sensors, such as electrodes, which require precise control and positioning on the seafloor. PUP is capable of translating the DORISS optical head with a precision of 0.1 mm in three dimensions over a range of at least 15 cm, at depths up to 4000 m, and under the normal range of oceanic conditions (T, P, current velocity). The positioner is controlled, and spectra are obtained, in real time via Ethernet by scientists aboard the surface vessel. This capability has allowed us to acquire high quality Raman spectra of targets such as rocks, shells, and gas hydrates on the seafloor, including the ability to scan the laser spot across a rock surface in sub-millimeter increments to identify the constituent mineral grains. These developments have greatly enhanced the ability to obtain in situ Raman spectra on the seafloor from an enormous range of specimens.

  2. Identification of Laser-induced Lamb waves

    Energy Technology Data Exchange (ETDEWEB)

    Castro C, M.; Lopez, J.A. [Physics Department, U. 1: El Paso, El Paso, TX 79968 (United States); Osegueda, R. [FAST Center, Burgess Hall, U. 1: El Paso, El Paso, TX 79968 (United States)

    2007-07-01

    We studied experimentally the ultrasonic propagating modes produced by a laser pulse of 532 nm while impinging on an aluminum plate. The beam, shaped as a line, induced various Lamb modes whose relative power varied with the laser line length. Identification of their mode was performed by detecting the ultrasonic modes with piezoelectric detectors along a propagation direction orthogonal to the line, and using two dimensional fast Fourier transform. Good agreement is observed between theoretical and experimental dispersion curves for the first fundamental symmetric and anti-symmetric modes. Results are shown for 12 and 24 mm laser line-length at 13.6 and 16.8 ns pulse-width. (Author)

  3. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva, A.A., E-mail: anvsilv@gmail.com [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Nazarov, I.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg (Russian Federation); Olshin, P.K.; Povolotskiy, A.V. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation); Sokolov, I.A. [St.Petersburg State Polytechnical University, St.Petersburg (Russian Federation); LTD “AtomTjazhMash”, St.Petersburg (Russian Federation); Manshina, A.A. [Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg (Russian Federation)

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.

  4. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  5. DNA deposition through laser induced forward transfer.

    Science.gov (United States)

    Colina, M; Serra, P; Fernández-Pradas, J M; Sevilla, L; Morenza, J L

    2005-02-15

    Laser induced forward transfer (LIFT) is a laser direct write technique that appears to be specially adequate for the production of biosensors, since it permits to deposit patterns of biomolecules with high spatial resolution. In the LIFT technique, a laser pulse is focused on a thin film of the material to be transferred through a transparent support, and under the action of the laser pulse, a small fraction of the film is transferred to a receptor substrate that is placed parallel to the film-support system. In the case of biomolecules transfer, the thin film consists in a liquid solution containing the biomolecules. In this work, microarrays of two different cDNAs have been both spotted by LIFT and pin microspotting onto a poly-L-lysine treated glass slide. Once transferred, all the microarrays have been submitted to hybridization with the complementary strands of the spotted cDNAs, each one tagged with a different fluorochrome. Comparative fluorescence scanner analyses have revealed that the microarrays transferred through LIFT are equivalent to those transferred through pin microspotting in terms of signal intensity and gene discrimination capacity, and that the action of the laser pulse does not result in significant damage of the transferred DNA.

  6. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    Science.gov (United States)

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o.

    2013-06-01

    We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100-1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ(3) without introducing any arbitrary parameter in the maximum entropy method (MEM).

  7. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  8. Laser-induced incandescence from laser-heated silicon nanoparticles

    Science.gov (United States)

    Menser, Jan; Daun, Kyle; Dreier, Thomas; Schulz, Christof

    2016-11-01

    This work describes the application of temporally and spectrally resolved laser-induced incandescence to silicon nanoparticles synthesized in a microwave plasma reactor. Optical properties for bulk silicon presented in the literature were extended for nanostructured particles analyzed in this paper. Uncertainties of parameters in the evaporation submodel, as well as measurement noise, are incorporated into the inference process by Bayesian statistics. The inferred nanoparticle sizes agree with results from transmission electron microscopy, and the determined accommodation coefficient matches the values of the preceding study.

  9. Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping

    Science.gov (United States)

    Jiang, P. B.; Sheng, Q.; Ding, X.; Sun, B.; Liu, J.; Zhao, C.; Zhang, G. Z.; Yu, X. Y.; Li, B.; Wu, L.; Yao, J. Q.

    2017-01-01

    An acousto-optic (AO) Q-switched dual-wavelength laser operating at 1.5 μm eye-safe region is demonstrated via stimulated Raman scatting of a-cut YVO4-Nd:YVO4 crystal within an end-pumped dual-wavelength Nd:GYSGG laser cavity. The in-band pumping absorption peak and coefficient of the dual-wavelength laser crystal Nd:GYSGG are measured in order to carry out efficient pumping, thus overcoming the drawbacks of short thermal focal length of the crystal and scale up the eye-safe output. Under 23.2 W absorbed pump power, 2.11 W of simultaneous dual-wavelength outputs at 1497 and 1516 nm are obtained with a pulse repetition rate of 23 kHz and a corresponding conversion efficiency of 9.1%.

  10. Laser-Induced Breakdown Spectroscopy in Africa

    Directory of Open Access Journals (Sweden)

    M. A. Kasem

    2015-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, known also as laser-induced plasma spectroscopy (LIPS, is a well-known spectrochemical elemental analysis technique. The field of LIBS has been rapidly matured as a consequence of growing interest in real-time analysis across a broad spectrum of applied sciences and recent development of commercial LIBS analytical systems. In this brief review, we introduce the contributions of the research groups in the African continent in the field of the fundamentals and applications of LIBS. As it will be shown, the fast development of LIBS in Africa during the last decade was mainly due to the broad environmental, industrial, archaeological, and biomedical applications of this technique.

  11. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail: alessandro.degiacomo@ba.imip.cnr.it; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)

    2007-12-15

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)

  12. Laser-induced damage of TiO2/SiO2 high reflector at 1064 nm

    Science.gov (United States)

    Yao, Jianke; Ma, Jianyong; Xiu, Cheng; Fan, Zhengxiu; Jin, Yunxia; Zhao, Yuanan; He, Hongbo; Shao, Jianda; Huang, Huolin; Zhang, Feng; Wu, Zhengyun

    2008-04-01

    A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064nm with a 12ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR.

  13. Laser-Induced Breakdown in Liquid Helium

    Science.gov (United States)

    Sirisky, S.; Yang, Y.; Wei, W.; Maris, H. J.

    2017-10-01

    We report on experiments in which focused laser light is used to induce optical breakdown in liquid helium-4. The threshold intensity has been measured over the temperature range from 1.1 to 2.8 K with light of wavelength 1064 nm. In addition to the measurement of the threshold, we have performed experiments to study how the breakdown from one pulse modifies the probability that a subsequent pulse will result in breakdown.

  14. Laser induced nuclear waste transmutation

    CERN Document Server

    Hirlimann, Charles

    2016-01-01

    When producing electricity that collects the mass energy that is available at the time of the induced disintegration of radioactive elements, other unstable elements are produced with half-life span durations ranging from less than one second to hundreds of thousands of years and which are considered as waste. Managing nuclear waste with a half-life of less than 30 years is an easy task, as our societies clearly know how to keep buildings safe for more than a century, the time it takes for the activity to be divided by a factor of 8. High-activity, long-lasting waste that can last for thousands of years or even longer, up to geological time laps, cannot be taken care of for such long durations. Therefore, these types of waste are socially unacceptable; nobody wants to leave a polluted planet to descendants.

  15. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.

    Science.gov (United States)

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-02-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential.

  16. Laser-induced torques in metallic ferromagnets

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  17. Compact Ultraintense Femtosecond Laser via Raman Amplifier and Compressor in Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Suckewer, Szymon [Princeton Univ., NJ (United States)

    2016-03-01

    The main objective of this project was to conduct experimental and theoretical research to find conditions leading to higher, than previously obtained efficiency η of transfer the pump energy into the short seed beam in plasma of Stimulated Raman Back-Scattering (SRBS). We have demonstrated very large amplification and compression in our earlier SRBS plasma. However, the efficiency η was much too low to reach very high intensity of the output beam in the focal spot. Recently, by solving a very difficult technical SRBS’ problem, namely, the creation of very reproducible and much larger diameter plasma channels than in our earlier research, we propose a new approach to obtain higher efficiency η. The crucial new result was a very reproducible, low noise amplified seed in the larger diameter of the plasma channel leading to the higher efficiency. Using this new setup and very encouraging results about increase efficiency continuing this approach in the future the efficiency is expect to reach the range of η ≈15 - 20 % required to develop practical SRBS plasma laser. Intellectual Merit: The model for the present project was created by our earlier SRBS experiments. The main objective of those experiments was to amplify and compress the seed pulses in a plasma . The experiments demonstrated an unprecedented large pulse intensity amplification of 20,000 in system of 2-passes in ~2mm long plasma, and the seed pulse compression from 550fsec down to ~50fsec. The pump and seed beams in the present project have diameters of ~0.2–0.25mm each, propagating in ~0.35 - 0.45mm diameter and ~2-2.5mm long plasma channels (optimal length for our SRBS experiment) with input pump and seed intensities of 2x1014 and 3x1013 W/cm2, respectively. Such an SRBS system design was “prescribed” by computer simulations, which predict elimination of the SRBS “ saturation” for a such relatively short plasma channel. Plasma channels has been created by combining shorter (200psec) and

  18. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; ZHANG Xiao-Min; HAN Wei; LI Fu-Quan; ZHOU Li-Dan; FENG Bin; XIANG Yong

    2011-01-01

    @@ We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-IQ TIL, with a 1053nm, 20-cm-diameter, linearly polarized, ins flat-topped laser pulse.An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm.The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components.The observed speckle pattern with smalldiameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering.A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  19. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    Science.gov (United States)

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology.

  20. Transmission stability and Raman-induced amplitude dynamics in multichannel soliton-based optical waveguide systems

    Science.gov (United States)

    Peleg, Avner; Nguyen, Quan M.; Tran, Thinh P.

    2016-12-01

    We study transmission stability and dynamics of pulse amplitudes in N-channel soliton-based optical waveguide systems, taking into account second-order dispersion, Kerr nonlinearity, delayed Raman response, and frequency dependent linear gain-loss. We carry out numerical simulations with systems of N coupled nonlinear Schrödinger (NLS) equations and compare the results with the predictions of a simplified predator-prey model for Raman-induced amplitude dynamics. Coupled-NLS simulations for single-fiber transmission with 2 ≤ N ≤ 4 frequency channels show stable oscillatory dynamics of soliton amplitudes at short-to-intermediate distances, in excellent agreement with the predator-prey model's predictions. However, at larger distances, we observe transmission destabilization due to resonant formation of radiative sidebands, which is caused by Kerr nonlinearity. The presence of linear gain-loss in a single fiber leads to a limited increase in transmission stability. Significantly stronger enhancement of transmission stability is achieved in a nonlinear N-waveguide coupler due to efficient suppression of radiative sideband generation by the linear gain-loss. As a result, the distances along which stable Raman-induced dynamics of soliton amplitudes is observed are significantly larger in the waveguide coupler system compared with the single-fiber system.

  1. Pulsed laser-induced formation of silica nanogrids

    National Research Council Canada - National Science Library

    Ihlemann, Jürgen; Weichenhain-Schriever, Ruth

    2014-01-01

    ... ) coating through the transparent substrate. A polydimethylsiloxane (PDMS) superstrate (cover layer) coated on top of the SiO x film prior to laser exposure serves as confinement for controlled laser-induced structure formation...

  2. Wiggler Effects on the Growth Rate of a Raman Free-electron Laser with Axial Magnetic Field or Ion-Channel Guiding

    CERN Document Server

    Maraghechi, Behrouz

    2004-01-01

    A relativistic theory for Raman backscattering in the beam frame of electrons is presented and is used to find the growth rate of a free-electron laser (FEL), in the Raman regime. A one dimensional helical wiggler and an axial magnetic field are considered. The effects of static self-electric and self-magnetic fields, induced by the steady-state charge density and currents of the non-neutral electron beam, are taken into account to find the steady-state trajectories. The wiggler effects on the linear dispersion relations of the space-charge wave and radiation are included in the analysis. A numerical computation is conducted to compare the growth rate of the excited waves with nonrelativistic treatment. It was found that self-field effects increase the growth rate in the group II orbits and decrease it in the group I orbits. However, the wiggler effects on growth rate are stronger and increase the growth rate on both group I and group II orbits. The discontinuity, due to the cyclotron resonance with the radia...

  3. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Spizzichino, Valeria, E-mail: valeria.spizzichino@enea.it; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems. - Highlights: • Applications of LIBS to archeometry are reviewed. • Complementary among LIBS, LIF, Raman and multivariate analysis is highlighted. • Three major areas of successful LIBS application in archeometry are identified. • Significant results have been presented for several different materials.

  4. Evaluation of laser photobiomodulation on bone defect in the femur of osteoporotic rats: a Raman spectral study

    Science.gov (United States)

    Soares, Luiz Guilherme P.; Aciole, Jouber Mateus d. S.; Neves, Bruno Luiz R. C.; Silveira, Landulfo; Pinheiro, Antônio L. B.

    2015-03-01

    Phototherapies have shown positive effects on the bone repair process, increasing the blood supply to the injured area. The aim of this study was to assess through Raman spectroscopy, the efficacy of laser phototherapy (λ = 780 nm, P = 70 mW, CW, 20.4 J/cm2 per session, 163.2 J/cm2 per treatment) on the bone repair process of osteoporotic rats. The osteoporosis induction was achieved by ovariectomy surgery. Thirty Wistar rats were divided into 4 groups (Basal; OVX, OVX + Clot and OVX + Clot + Laser), then subdivided into 2 subgroups according to the experimental time (15 and 30 days). After the osteoporosis induction time (60 days), a bone defect with 2 mm was created with a trephine drill in the right femur in the animals of groups OVX, Clot and Clot + Laser. After surgery, the irradiation protocol was applied in the same groups on repeated sessions every 48 hours during 15 days. The samples were analyzed by Raman Spectroscopy to assess the inorganic content of phosphate and carbonated hydroxyapatite (~960 and 1070 cm-1, respectively) and organic lipids and proteins (~1454 cm-1). Statistical analysis (ANOVA, Student-T test) showed significant difference between groups Basal, OVX + Clot, and OVX + Clot + Laser for the inorganic content peaks at ~960 (p≤0.001), and ~1070 cm-1 (p≤0.001) in both periods of 15 and 30 days, however on peak at ~1450 cm-1 no differences were detected. It was concluded that the Laser phototherapy increased deposition of HA on bone repair process of osteoporotic rats.

  5. Impact of zirconium dopants on the lasing efficiency of Raman microcavity laser

    Science.gov (United States)

    Choi, Hyungwoo; Armani, Andrea M.

    2017-02-01

    Whispering Gallery Mode (WGM) silica microresonators are a particularly unique group of microcavities in the sense that they can confine light inside the device for an extended period of time while maintaining a high quality (Q) factor due to the total internal reflection. As a result, WGM resonators have high circulating optical power, which can cause nonlinear optical processes such as stimulated Raman scattering (SRS). It has been demonstrated that SRS has been observed in various WGM silica microresonators with the sub-mW Raman lasing threshold. However, in case of the Raman lasing efficiency, it is limited by the intrinsic property of silica itself, which is the Raman gain coefficient. Therefore, in the present work, we introduce a hybrid silica toroidal microcavity in order to enhance the Raman lasing efficiency. First, we synthesize a suite of silica sol-gels doped with a range of Zirconium (Zr) concentrations and integrate the material with silica toroidal microresonator. The intrinsic Raman gain of the Zr-doped silica is measured using Raman spectroscopy, and the values show a clear dependence on Zr dopant concentrations. The lasing performance is characterized using a 765 nm pump source, and the Raman emissions for the coated devices are detected at 790 nm and longer. The lasing emission and characteristic threshold curves are quantified using both an optical spectrum analyzer and an optical spectrograph. The lasing slope efficiency of exhibits a marked increase from 3.37% to 47.43% as the Zr concentration increases due to the Raman gain improvement. These values are particularly notable as they are the unidirectional, not bidirectional, lasing efficiencies.

  6. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.

    Science.gov (United States)

    Kneipp, Janina; Li, Xiangting; Sherwood, Margaret; Panne, Ulrich; Kneipp, Harald; Stockman, Mark I; Kneipp, Katrin

    2008-06-01

    Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as "nanolenses". Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 10(9). The "chemically clean" preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications.

  7. Assessment of argon ion laser dispersive Raman spectroscopy for hot cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B.A.

    1995-02-24

    Characterization of high-level waste tank materials at Hanford is conducted to support safety assessments and waste treatment activities. Raman spectroscopy is expected to give chemical species information which may assist in defining layering in tank waste. This report describes the dispersive Raman system used in this year`s investigation and the methology used to collect and evaluate data taken on tank waste samples. The current argon-ion Raman system was found not to be suitable for screening of tank cores, owing to silica interference, fluorescence interferences, and the extensive time required to collect and treat the data. Recommendations are given for further development.

  8. Solid State Raman Materials Characterization for High Average Power 1.3 micrometer Laser Frequency Shift

    Science.gov (United States)

    1999-01-01

    reflectivity at 1067 rim wavelength. Solid state phototrop filter based on gallium -scandium- gadolinium garnet doped with chromium was used as a passive Q-switch... gadolinium tungstate, KGd(W0 4)2 exhibited efficient Raman properties . In spite of the fact that its Raman gain coefficient at 1064 nm (6 cm/GW) is twice less...studied by high- temperature Raman scattering (HTRS) technique. According to [1], the lattice cell of KGd(W04) 2 low - temperature modification is a base

  9. Fabrication and characteristics of self-assembly nano-polystyrene films by laser induced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Tingting [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Cai, Congzhong [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Peng, Liping [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Wu, Weidong, E-mail: wuweidongding@163.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2013-10-01

    The self-assembly nano-polystyrene (PS) films have been prepared by laser induced CVD at room temperature. The XPS, Raman and UV–vis absorption spectra all indicated that the films were PS. The optical properties, microstructure and controllable nanostructure of PS films have been investigated. Dewetting-like microstructure in PS films was investigated and uniform island structures with a diameter of about 200 nm were observed at the deposition pressure of 14 Pa. The films possess good toughness and precisely controlled thicknesses. The free-standing PS films with thickness of 10 nm could be obtained by this method though a series of process.

  10. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  11. Laser induced fluorescence of dental caries

    Science.gov (United States)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  12. Nanodot formation induced by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  13. Laser induced fluorescence of dental caries

    Science.gov (United States)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  14. Non-destructive Analysis of the Nuclei of Transgenic Living Cells Using Laser Tweezers and Near-infrared Raman Spectroscopic Technique

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Ronald J. Newton; Chang-An Xie; Yong-Qing Li; Nicki Whitley

    2005-01-01

    Transgenic cell lines of loblolly pine (Pinus taeda L.) were analyzed by a compact laser-tweezers-Raman-spectroscopy (LTRS) system in this investigation. A low power diode laser at 785 nm was used for both laser optical trapping of single transgenic cells and excitation for near-infrared Raman spectroscopy of the nuclei of synchronized cells, which were treated as single organic particles, at the S-phase of the cell cycle. Transgenic living cells with gfp and uidA genes were used as biological samples to test this LTRS technique. As expected, different Raman spectra were observed from the tested biological samples. This technique provides a high sensitivity and enables real-time spectroscopic measurements of transgenic cell lines. It could be a valuable tool for the study of the fundamental cell and molecular biological process by trapping single nucleus and by providing a wealth of molecular information about the nuclei of cells.

  15. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  16. Laser-Induced Incandescence in Microgravity

    Science.gov (United States)

    VanderWal, Randy L.

    1997-01-01

    Knowledge of soot concentration is important due to its presence and impact upon a wide range of combustion processes ranging from diffusion to premixed flames, laminar to turbulent processes and homogeneous to heterogeneous combustion. Measurement of soot volume fraction (f(sub v)) is essential to discerning its formation and growth. The presence of soot also affects other physical and chemical properties of combustion thereby affecting studies not directly concerned with either its formation or growth, such as radiative heat transfer, CO oxidation and fuel vaporization or pyrolysis rates. Microgravity offers unique opportunities for studying both soot growth and the effect of soot radiation upon flame structure and spread. Spatial scales and residence time scales are greatly extended in 0-g facilitating soot growth studies. With the varied geometries, short duration microgravity test times and time-varying processes there is a demand for measurement of f(sub v) with high spatial and temporal resolution. Laser-induced incandescence (LII) has advanced f(sub v) measurements in many 1-g combustion processes. To create laser-induced incandescence, a pulsed high intensity laser heats soot to incandescence temperatures. Using appropriate spectral and temporal detection conditions, the resulting incandescence can be selectively detected apart from the non-laser-heated soot and flame gases. Theoretical modelling and experiments have shown that the resulting incandescence is representative of f(sub v). Using an intensified array camera and a laser sheet for excitation, one- and two-dimensionally resolved LII images of f(sub v) have been obtained in 1-g. LII has been characterized and developed at NASA-Lewis for soot volume fraction determination in a wide range of 1-g combustion applications. Broadly grouped, the characterization work has included studies of excitation intensity, excitation wavelength and the optimum temporal and spectral detection conditions to enable an

  17. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.

    Science.gov (United States)

    Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2015-05-04

    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.

  18. Ultrastable and Compact Deep UV Laser Source for Raman Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deep-ultraviolet (UV) Raman spectroscopy is a powerful method to collect chemically specific information about complex samples because deep-UV (?? < 250 nm)...

  19. New technology for the investigation of water vapor sorption-induced crystallographic form transformations of chemical compounds: a water vapor sorption gravimetry-dispersive Raman spectroscopy coupling.

    Science.gov (United States)

    Feth, Martin Philipp; Jurascheck, Jörg; Spitzenberg, Michael; Dillenz, Jürgen; Bertele, Günter; Stark, Herbert

    2011-03-01

    In this study, a new dynamic water vapor sorption gravimetry (DWVSG)-Raman spectroscopy coupled system is presented and described for the investigation of water (de)sorption-induced solid-phase transition of active pharmaceutical ingredients (APIs). The innovative characteristic of the system is the possibility to measure up to 23 samples gravimetrically and spectroscopically in one sorption/desorption experiment. The used dispersive RXN1 Raman system with a 6-mm laser spot P(h) AT probe head is ideal for this kind of coupled technology, as the energy density at the point of measurement of the sample is low, which grants that gravimetrical data and the state of the sample (phase transformations or even degradation) are not influenced by the laser beam. The capabilities of the system were tested by the investigation of a crystalline, nonstoichiometric hydrate form (form 1) and the corresponding X-ray amorphous form of an API (SAR474832). For the crystalline hydrate form, it was possible to correlate the weight loss at low humidities to a crystallographic phase transition (form 2). Furthermore, it was possible to show that the phase transition is reversible upon water uptake (sorption cycle); however, a further intermediate crystal form (form 3) is involved in the rehydration process. By multivariate curve resolution analysis of the Raman spectra, the form distribution diagrams of the desorption/sorption cycle could be constructed. For the amorphous material, the recrystallization process was monitored by the changes in the Raman spectra. The recrystallization point was detected at high humidities (>90% relative humidity), the crystal phase formed was identified (form 1), and the time needed for the conversion into the crystalline state was determined. The form transformation processes were visualized by contour plots (time/humidity vs. wavenumber vs. Raman intensity). In summary, it was concluded that the presented water sorption gravimetry-Raman spectroscopy

  20. Pulsed-laser-induced damage in semiconductors Ge, ZnS, and ZnSe at 10.6um

    Science.gov (United States)

    Lefranc, Sebastian; Kudriavtsev, Eugene M.; Autric, Michel L.

    1998-04-01

    Laser irradiation induced damage to several materials of interest for use as 10.6 micrometers laser system windows is investigated in this paper. The irradiation source in these single shot experiments was a pulsed TEA CO2 laser. Damage initiation in semiconductors has been studied during the interaction by measuring the variation of the transmitted intensity of a He- Ne and a CO2 cw lasers through the samples. Results show that damages appear at the beginning of the laser-matter interaction process on both surfaces and in the bulk of the materials. The damaged materials have been characterized for various incident fluences by means of optical microscopy and scanning electron microscopy in terms of topography and morphology. The modified surface chemical analysis and the structural analysis have been carried out using energy dispersive x-ray and Raman spectroscopy.

  1. Suppression of a parasitic pump side-scattering in backward Raman amplifiers of laser pulses in plasmas

    Science.gov (United States)

    Solodov, Andrei; Malkin, Vladimir; Fisch, Nathaniel

    2003-10-01

    In backward Raman amplifiers (BRA), the pump laser pulse can be prematurely depleted through Raman scattering, seeded by the plasma noise, as the pump encounters plasma before reaching the counter-propagating seed pulse. It was shown previously that detuning of the Raman resonance, either by a plasma density gradient or a pump frequency chirp, can prevent the premature pump backscattering, even while the desired amplification of the seed pulse persists with a high efficiency. However, parasitic pump side-scattering is not automatically suppressed together with the parasitic backscattering, and might be even more dangerous for BRA. What we show here is that by combining the above two detuning mechanisms one can suppress parasitic pump side-scattering as well. Apart from the simplest counterpropagating geometry, we examine BRA for arbitrary angles between the directions of pump and seed propagation. We show that, by selecting an appropriate direction of the plasma density gradient, one can favorably minimize the detuning in the direction of the seed pulse propagation, while strongly suppressing the parasitic pump side-scattering in all the other directions. This work was supported in part by DOE and DARPA.

  2. Complementary analysis of tissue homogenates composition obtained by Vis and NIR laser excitations and Raman spectroscopy

    Science.gov (United States)

    Staniszewska-Slezak, Emilia; Malek, Kamilla; Baranska, Malgorzata

    2015-08-01

    Raman spectroscopy and four excitation lines in the visible (Vis: 488, 532, 633 nm) and near infrared (NIR: 785 nm) were used for biochemical analysis of rat tissue homogenates, i.e. myocardium, brain, liver, lung, intestine, and kidney. The Vis Raman spectra are very similar for some organs (brain/intestines and kidney/liver) and dominated by heme signals when tissues of lung and myocardium were investigated (especially with 532 nm excitation). On the other hand, the NIR Raman spectra are specific for each tissue and more informative than the corresponding ones collected with the Vis excitations. The spectra analyzed without any special pre-processing clearly illustrate different chemical composition of each tissue and give information about main components e.g. lipids or proteins, but also about the content of some specific compounds such as amino acid residues, nucleotides and nucleobases. However, in order to obtain the whole spectral information about tissues complex composition the spectra of Vis and NIR excitations should be collected and analyzed together. A good agreement of data gathered from Raman spectra of the homogenates and those obtained previously from Raman imaging of the tissue cross-sections indicates that the presented here approach can be a method of choice for an investigation of biochemical variation in animal tissues. Moreover, the Raman spectral profile of tissue homogenates is specific enough to be used for an investigation of potential pathological changes the organism undergoes, in particular when supported by the complementary FTIR spectroscopy.

  3. Laser-Induced Breakdown Spectroscopy: Capabilities and Applications

    Science.gov (United States)

    2010-07-01

    sample preparation. 14 6. References 1. Cremers D.A.; Radziemski, L. J. Handbook of Laser-Induced Breakdown Spectroscopy; West Sussex, England...30 (21), 2882–2884. 17. Salle, B.; Lacour, J. L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers , D. A.; et al. Laser- Induced Breakdown Spectroscopy...90. Martin , M. Z.; Labbe, N.; Andre, N.; Harris, R.; Ebinger, M.; Wullschleger, S. D.; et al. High Resolution Applications of Laser-Induced

  4. Laser-induced breakdown spectroscopy in Asia

    Science.gov (United States)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  5. Effects of LED or laser phototherapy on bone defects grafted with MTA and irradiated with laser or LED light: a comparative Raman spectroscopic study

    Science.gov (United States)

    Pinheiro, Antonio L. B.; Soares, Luiz G. P.; Barbosa, Artur Felipe S.; Silveira, Landulfo, Jr.

    2012-03-01

    We studied peaks of calcium hydroxyapatite - CHA on defects grafted with MTA, treated or not with Light Emitting Diode - LED or IR Laser. 54 rats were divided in 6 groups each subdivided into 3 subgroups (15,21,30d). LED (λ850 +/- 10nm) or IR Laser (λ850 nm) was applied over (LED) or in 4 points around the defect at 48 h intervals for 15 days. Raman readings were taken at the surface of the defect. The smaller overall intensity of the peak was found in Group MTA + Laser (1510.2 +/- 274.1) and the highest on Group LED (2322 +/- 715). There were no statistically significant differences between non-irradiated subjects on regards the CHA peaks. On the other hand, there were statistically significant differences between the Group Clot and LED, Clot and Laser, and Clot and MTA + Laser (p =0.01, p = 0.02, p = 0.003). There were no significant differences between Group MTA and MTA + LED (p=0.2) but significant differences were seen between Groups MTA and MTA + Laser (p=0.01). Significant differences were also observed between Groups LED and Laser (p MTA + LED and MTA + Laser (p=0.009). MTA, due to its characteristics, seemed to be directly affected by the light. However, the use of either phototherapy positively affected bone healing similarly as observed on different studies using other biomaterials. The overall analysis of our results indicated that the use of either light source resulted in a better, more advanced, and of quality bone repair.

  6. Surface-Enhanced Raman Scattering activity of Ag/graphene/polymer nanocomposite films synthesized by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Petreska, Gordana Siljanovska; Blazevska-Gilev, Jadranka [Faculty of Technology and Metallurgy (FTM), University St. Cyril and Methodius, Ruger Boskovic 16, 1000 Skopje, The Former Yugoslav Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Fajgar, Radek, E-mail: fajgar@icpf.cas.cz [Institute of Chemical Process Fundamentals of the AS CR, Rozvojova 135, 165 02 Prague (Czech Republic); Tomovska, Radmila, E-mail: radmila.tomovska@ehu.es [POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa etorbidea 72, Donostia-San Sebastián 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-08-01

    Nanocomposites composed of poly(butylacrylate-co-methyl methacrylate) and graphene were ablated with a transversely excited atmosphere CO{sub 2} laser using an incident fluence of up to 7.3 J cm{sup −2}. This resulted in a deposition of thin composite films with graphene sheets that were very well distributed in the polymer matrix. The active substrates for Surface-Enhanced Raman Scattering (SERS) were prepared by subsequent depositions of silver nanoparticles on the surface of the composite films, with an ArF excimer laser ablation of elemental silver. The deposits were characterized by means of spectroscopy, microscopy, and diffraction techniques. The SERS substrate performance was tested using Rhodamine 6G as a probe substance. The probe substance was detected at low concentrations and a highly enhanced Raman signal was achieved. - Highlight: • Deposition of graphene nanosheet s-polymer nanocomposites was achieved. • Nanocomposites were decorated by deposited Ag nanoparticles on the film surface. • Ag/GNS/polymer thin films were tested as SERS substrate using Rhodamine 6G. • The enhancement factor of Ag/GNS/polymer substrate was calculated to be around 22. • Both chemical and electromagnetic mechanisms contribute to the SERS enhancement.

  7. A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry.

    Science.gov (United States)

    Reparaz, J S; Chavez-Angel, E; Wagner, M R; Graczykowski, B; Gomis-Bresco, J; Alzina, F; Sotomayor Torres, C M

    2014-03-01

    We present a novel contactless technique for thermal conductivity determination and thermal field mapping based on creating a thermal distribution of phonons using a heating laser, while a second laser probes the local temperature through the spectral position of a Raman active mode. The spatial resolution can be as small as 300 nm, whereas its temperature accuracy is ±2 K. We validate this technique investigating the thermal properties of three free-standing single crystalline Si membranes with thickness of 250, 1000, and 2000 nm. We show that for two-dimensional materials such as free-standing membranes or thin films, and for small temperature gradients, the thermal field decays as T(r) ∝ ln(r) in the diffusive limit. The case of large temperature gradients within the membranes leads to an exponential decay of the thermal field, T ∝ exp[ - A·ln(r)]. The results demonstrate the full potential of this new contactless method for quantitative determination of thermal properties. The range of materials to which this method is applicable reaches far beyond the here demonstrated case of Si, as the only requirement is the presence of a Raman active mode.

  8. Laser induced single spot oxidation of titanium

    Science.gov (United States)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  9. Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation

    Science.gov (United States)

    Fuerbach, A.; Gross, S.; Little, D.; Arriola, A.; Ams, M.; Dekker, P.; Withford, M.

    2016-07-01

    Tightly focused femtosecond laser pulses can be used to alter the refractive index of virtually all optical glasses. As the laser-induced modification is spatially limited to the focal volume of the writing beam, this technique enables the fabrication of fully three-dimensional photonic structures and devices that are automatically embedded within the host material. While it is well understood that the laser-material interaction process is initiated by nonlinear, typically multiphoton absorption, the actual mechanism that results in an increase or sometimes decrease of the refractive index of the glass strongly depends on the composition of the material and the process parameters and is still subject to scientific studies. In this paper, we present an overview of our recent work aimed at uncovering the physical and chemical processes that contribute to the observed material modification. Raman microscopy and electron microprobe analysis was used to study the induced modifications that occur within the glass matrix and the influence of atomic species migration forced by the femtosecond laser writing beam. In particular, we concentrate on borosilicate, heavy metal fluoride and phosphate glasses. We believe that our results represent an important step towards the development of engineered glass types that are ideally suited for the fabrication of photonic devices via the femtosecond laser direct write technique.

  10. Compact Continuous-Wave Nd:YVO4 Laser with Self-Raman Conversion and Sum Frequency Generation

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-Yong; ZHANG Ge; DUAN Yan-Min; HUANG Cheng-Hui; WEI Yong

    2011-01-01

    @@ Low threshold and compact cw Nd:YVO4 self-Raman lasers at 1176 nm and sum-frequency mixing of fundamental and first-Stokes wavelengths are demonstrated.A 20-mm Nd:YVO4 crystal is adopted in a compact plane-concave resonator.The results show that the cw Raman conversion is sensitive to cavity length.At an incident pump power of 22.5 W,output power of 1.53 W at 1175.6 nm is achieved,corresponding to the threshold of only 0.8 W and the slop efficiency of 8.1%.Intra-cavity sum-frequency generation is realized in a type-Ⅱ phase-matching cut KTP crystal,480 m W at 558.6 nm is obtained at incident pump power of 12 W.%Low threshold and compact cw Nd:YVO4 self-Ranman lasers at 11 76 nm and sum-frequency mixing of fundamental and first-Stokes wavelengths are demonstrated. A 20-mm Nd:YVO4 crystal is adopted in a compact plane-concave resonator. The results show that the cw Raman conversion is sensitive to cavity length. At an incident pump power of 22.5 W, output power of 153 W at 1175.6nm is achieved, corresponding to the threshold of only 0.8 W and the slop effciency of 8. 1% Intra-cavity sum- frequency generation is realized in a type-Ⅱ phase-matching cut KTP Crystal, 480mW at 558.6nm is obtained at incident pump power of 12 W.

  11. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  12. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M; Stolken, J; Vignes, R; Norton, M

    2009-11-02

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO{sub 2} lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO{sub 2} laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work they present the results of 351 nm, 3 ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO{sub 2} laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1 {approx} 40s square pulse CO{sub 2} laser exposures created over 0.5-1.25 kW/cm{sup 2} with a 1-3 mm 1/e{sup 2} diameter beam (T{sub max} {approx} 1500-3000 K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for T{sub max} {ge} 2000 K. The effect of cooling rate on fictive temperature caused by CO{sub 2} laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  13. Laser remote sensing of tropospheric aerosol over Southern Ireland using a backscatter Raman LIDAR

    Science.gov (United States)

    Ruth, Albert A.; Acheson, Karen; Apituley, Arnoud; Chaikovsky, Anatoli; Nicolae, Doina; Ortiz-Amezcua, Pablo; Stoyanov, Dimitar; Trickl, Thomas

    2016-04-01

    Raman backscatter coefficients, extinction coefficients and lidar ratios were measured with a ground based Raman lidar system at University College Cork, Ireland, during the periods of July 2012 - August 2012, April 2013 - December 2013 and March 2014 - May 2014. Statistical analysis of these parameters in this time provided information about seasonal effects of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer. The mean of the altitude of the top of the planetary boundary layer over these time periods is 950 ± 302 m. The values are larger in summer, 1206 ± 367 m, than in winter, 735 m. The altitude of the top of the planetary boundary layer measured at Cork is lower than most EARLINET stations. Raman backscatter coefficients above and altitude of 2 km are highest in summer and spring where the values are greater than 0.28 Mm-1 sr-1. Winter values of Raman backscatter coefficient are less than 0.06 Mm-1 sr-1. These seasonal effects are consistent with most EARLINET stations. Large aerosol loads were detected in July 2013 due to a Canadian forest fire event. HYSPLIT air-mass back trajectory models were used to trace the origin of the detected aerosol layers. The aerosol forecast model, MACC, was used to further investigate and verify the propagation of the smoke. The Lidar ratio values and Klett and Raman backscatter coefficients at Cork, for the 4th July, the 7th to 9th of July and the 11th July were compared with observations at Cabauw, Minsk, Granada, Bucharest, Sofia and Garmisch. Lidar ratio values for the smoke detected at Cork were determined to be between 33 sr and 62 sr. The poster will discuss the seasonal changes of Raman backscatter coefficients and the altitude of the top of the planetary boundary layer at Cork. An investigation of a Canadian forest fire event measured at Cork will be compared with other data from the EARLINET database.

  14. Proximal Analysis of Regolith Habitats and Protective Biomolecules in Situ by Laser Raman Spectroscopy: Overview of Terrestrial Antarctic Habitats and Mars Analogs

    Science.gov (United States)

    Wynn-Williams, D. D.; Edwards, H. G. M.

    2000-04-01

    Fourier-transform laser Raman spectroscopy in the near infrared (1064 nm) has been used to characterize a variety of key pigments and biomolecules produced by cyanobacteria and other stresstolerant microbes in material from extreme Antarctic cold deserts analogous to martian habitats. These compounds include photosynthetic pigments and sunscreens to protect against harmful UV radiation in the light zone (chlorophyll, scytonemin, β-carotene) and photoprotective minerals, such as silica containing iron (III) oxide. Calcium oxalate mono- and dihydrate produced as a result of the biological weathering processes and stress-protective compounds, necessary to protect organisms against desiccation, freezing temperatures, and hypersalinity, such as water-replacement molecules (trehalose), are also monitored. From the results obtained using Antarctic samples, it is shown that a laser-based system can be used to characterize biomolecules in their natural state within their mineral microhabitats. Because of the similarities between the Antarctic cold desert ecosystems, which represent some of the most extreme terrestrial environmental habitats, and putative martian analogs, the laser-Raman spectrosocopic approach is proposed for the detection of former life on Mars analogs to terrestrial cyanobacteria under stress, such as stromatolites, evaporites, and endolithic communities. To this end, the spectral database that is being accumulated from laser-Raman studies of these Antarctic communities will provide a resource of potential biomarkers for future remote laser-Raman analysis on future Mars missions.

  15. Laser induced periodic surface structures on pyrolytic carbon prosthetic heart valve

    Science.gov (United States)

    Stepak, Bogusz D.; Łecka, Katarzyna M.; Płonek, Tomasz; Antończak, Arkadiusz J.

    2016-12-01

    Laser-induced periodic surface structures (LIPSS) can appear in different forms such as ripples, grooves or cones. Those highly periodic wavy surface features which are frequently smaller than incident light wavelength bring possibility of nanostructuring of many different materials. Furthermore, by changing laser parameters one can obtain wide spectrum of periodicities and geometries. The aim of this research was to determine possibility of nanostructuring pyrolytic carbon (PyC) heart valve leaflets using different irradiation conditions. The study was performed using two laser sources with different pulse duration (15 ps, 450 fs) as well as different wavelengths (1064, 532, 355 nm). Both low and high spatial frequency LIPSS were observed for each set of irradiation parameters. In case femtosecond laser pulses we obtained deep subwavelength ripple period which was even ten times smaller than applied wavelength. Obtained ripple period was ranging from 90 up to 860 nm. Raman spectra revealed the increase of disorder after laser irradiation which was comparable for both pico- and femtosecond laser.

  16. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    OpenAIRE

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; LEPROUX, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between th...

  17. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  18. Femtosecond laser induced microripple on PDMS surface

    Institute of Scientific and Technical Information of China (English)

    Jin Xie; Changhe Zhou; Wei Wang; Tengfei Wu

    2009-01-01

    laser pulses and the subsequent cool-down solidification of the melting PDMS along with the movement of the femtosecond laser spot. This result will be helpful to understand the interaction between the femtosecond laser and the polymer.

  19. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands

    Science.gov (United States)

    Kang, Zhiwen; Chen, Jiajie; Ho, Ho-Pui

    2016-05-01

    Surface-enhanced Raman scattering (SERS) typically requires hot-spots generated in nano-fabricated plasmonic structures. Here we report a highly versatile approach based on the use of random gold nano-island substrates (AuNIS). Hot spots are produced through the entrapment of colloidal plasmonic nano-crystals at the interface between AuNIS and a microbubble, which is generated from the localized plasmonic absorption of a focused laser beam. The entrapment strength is strongly dependent on the shape of the microbubble, which is in turn affected by the surface wetting characteristics of the AuNIS with respect to the solvent composition. The laser power intensity required to trigger microbubble-induced SERS is as low as 200 μW μm-2. Experimental results indicate that the SERS limit of detection (LOD) for molecules of 4-MBA (with -SH bonds) is 10-12 M, R6G or RhB (without -SH bonds) is 10-7 M. The proposed strategy has potential applications in low-cost lab-on-chip devices for the label-free detection of chemical and biological molecules.

  20. Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer electrolyte.

    Science.gov (United States)

    Hema, M; Selvasekarapandian, S; Hirankumar, G; Sakunthala, A; Arunkumar, D; Nithya, H

    2010-01-01

    Ion conducting polymer electrolyte PVA:NH(4)NO(3) has been prepared by solution casting technique and characterized using XRD, Raman and ac impedance spectroscopic analyses. The amorphous nature of the polymer films has been confirmed by XRD and Raman spectroscopy. An insight into the deconvoluted Raman peaks of upsilon(1) vibration of NO(3)(-) anion for the polymer electrolyte reveals the dominancy of ion aggregates at higher NH(4)NO(3) concentration. From the ac impedance studies, the highest ion conductivity at 303 K has been found to be 7.5x10(-3)Scm(-1) for 80PVA:20NH(4)NO(3). The conductivity of the polymer electrolytes has been found to depend on the degree of dissociation of the salt in the host polymer matrix. The combination of the above-mentioned analyses has proven worth while and in fact necessary in order to achieve better understanding of these complex systems.

  1. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create opt

  2. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  3. Raman spectrum of Si nanowires: temperature and phonon confinement effects

    Science.gov (United States)

    Anaya, J.; Torres, A.; Hortelano, V.; Jiménez, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Rogel, R.; Pichon, L.

    2014-03-01

    The Raman spectrum of Si nanowires (NWs) is a matter of controversy. Usually, the one-phonon band appears broadened and shifted. This behaviour is interpreted in terms of phonon confinement; however, similar effects are observed for NWs with dimensions for which phonon confinement does not play any relevant role. In this context, the temperature increase induced by the laser beam is recognized to play a capital role in the shape of the spectrum. The analysis of the Raman spectrum, under the influence of the heating induced by the laser beam, is strongly dependent on the excitation conditions and the properties of the NWs. We present herein an analysis of the Raman spectrum of Si NWs based on a study of the interaction between the laser beam and the NWs, for both ensembles of NWs and individual NWs, taking account of the temperature increase in the NWs under the focused laser beam and the dimensions of the NWs.

  4. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana

    2015-10-09

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  5. Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air

    Directory of Open Access Journals (Sweden)

    Hsuan I Wang

    2012-01-01

    Full Text Available We demonstrate an effective method to prepare wurtzite phase ZnSe nanoparticles from zincblende ZnSe single crystal using femtosecond pulse laser ablation. The fabricated ZnSe nanoparticles are in spherical shape and uncontaminated while synthesized under ambient environment. By controlling the laser fluences, the average size of ZnSe nanoparticles can be varied from ~16 nm to ~22 nm in diameter. In Raman spectra, the surface phonon mode becomes dominant in the smaller average particle size with uniform size distribution. The interesting phase transition from the zinc blende structure of ZnSe single crystal to wurtzite structure of ZnSe nanoparticles may have been induced by the ultrahigh ablation pressure at the local area due to the sudden injection of high energy leading to solid-solid transition.

  6. Laser induced phase locking of hydrogen plasma striations

    Energy Technology Data Exchange (ETDEWEB)

    Glab, W.; Nayfeh, M.H.

    1982-04-01

    Laser induced transient striations of a hydrogen discharge plasma are studied as a function of the ''detuning'' of the discharge parameters from the steady-state oscillatory response conditions. We observed laser induced phase locking of the steady-state striations.

  7. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...

  8. Signs of the Biological Effect of ~2 μm Low-Intensity Laser Radiation in Raman and Absorption Spectra of Blood

    Science.gov (United States)

    Batay, L. E.; Khodasevich, I. A.; Khodasevich, M. A.; Gorbunova, N. B.; Manina, E. Yu.

    2016-09-01

    Local exposure of experimental animals to low-intensity emission from a thulium laser (λ = 1.96 μm) leads to changes in the Raman and IR absorption spectra of blood. This indicates development of systemic effects caused by direct excitation of water molecules by radiation with wavelength ~2 μm, in particular modifi cation of the hemoglobin molecule.

  9. Laser-induced damage of 1064-nm narrow-band interference filters under different laser modes

    Institute of Scientific and Technical Information of China (English)

    Weidong Gao(高卫东); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    The laser-induced damage behavior of narrow-band interference filters was investigated with a Nd:YAG laser at 1064 nm under single-pulse mode and free-running laser mode.The absorption measurement of such coatings has been performed by surface thermal lensing(STL)technique.The relationship between damage morphology and absorption under the two different laser modes was studied in detail.The explanation was given by the standing-wave distribution theory.

  10. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Gun LiNa; TANG ZhiLie; XING Da

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than twophoton confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  11. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  12. Pressure-induced Phase Transition in Oleic Acid Studied by Raman Spectroscopy

    Science.gov (United States)

    Fan, Ya; Zhou, Jing; Li, Shuang; Guan, Fu-Ying; Xu, Da-Peng

    2011-11-01

    High-pressure Raman studies up to 0.84 GPa are performed on oleic acid. Spectral analysis indicates that oleic acid undergoes a pressure-induced phase transition in the 0.29-0.36 GPa range. Only one high-pressure phase below 0.84 GPa is present, in which the polymethylene chains take the ordered all-trans conformation, with the methyl end of the chains exhibiting the ordered tt chain-end conformation and the olefin group taking the skew-cis-skew' conformation. The conformational characters of the oleic acid molecule show that the high-pressure phase is the same as the low-temperature crystalline γ phase. The pressure-induced phase transition is typical of first-order transitions and the transition path during compression is different from that during cooling.

  13. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  14. [Research on the Quantitative Analysis for In-Situ Detection of Acid Radical Ions Using Laser Raman Spectroscopy].

    Science.gov (United States)

    Chen, Jing; Li, Ying; Du, Zeng-feng; Gu, Yan-hong; Guo, Jin-jia

    2015-09-01

    Laser Raman spectroscopy as an in situ analytical technology can enable detailed investigation of the ocean environment. It is necessary to set up a quantitative analysis method based on laser Raman spectroscopy to understand the marine status in situ. In the laboratory investigations, varied concentration of HCO3(-), SO4(2-) and coastal waters of Qingdao are taken as the samples, operating 532 nm of laser, using fiber optic probes to simulate detection mode in situ. Raman spectra are analyzed using the method of internal standard normalization, multiple linear regression (MLR), general Partial Least Squares (PLS) and PLS based on dominant factor respectively in data processing. It was found that correlation coefficients of calibration curves are not high in internal standard normalization method and predicted relative errors on the prepared samples are much high, so internal standard normalization method cannot be effectively used in the quantitative analysis of HCO3(-), SO4(2-) in the water. And with the multiple linear regression, the analysis accuracy was improved effectively. The calibration curve of PLS based on dominant factor showed that the SO4(2-) and HCO3(-) of pre-made solution with correlation coefficient R2 of 0.990 and 0.916 respectively. The 30 mmol · L(-1) of SO4(2-) and 20 mmol · L(-1) of HCO3(-) in two target samples were determined with the relative errors lower than 3.262% and 5.267% respectively. SO4(2-) in the coastal waters as the research object was analyzed by above-mentioned methods, comparing with 28.01 mmol · L(-1) by ion chromatography. It was demonstrated that PLS based on dominant factor method is superior to the rest of the three analysis methods, which can be used in situ calibration, with the mean relative error about 1.128%. All the results show that analysis accuracy would be improved by the PLS based on dominant factor method to predict concentration of acid radical ions.

  15. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  16. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2012-11-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by acids generated by the photo-ionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  17. Effect of native defects and laser-induced defects on multi-shot laser-induced damage in multilayer mirrors

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Yuanan Zhao; Tanda Shao; Zhengxiu Fan

    2011-01-01

    The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated. The HfO2/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE). Laser damage testing is carried out on both the 1-on-l and S-on-1 regimes using 355-nm pulsed laser at a duration of 8 ns. It is found that the single-shot laser-induced damage threshold (LIDT) is much higher than the multi-shot LIDT. In the multi-shot mode, the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects. The surface morphologies of the samples are observed by optical microscopy. Moreover, the number of laser-induced defects affects the damage probability of the samples. A correlative model based on critical conduction band (CB) electron density (ED) is presented to simulate the multi-shot damage behavior.%@@ The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated.The Hf02/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE).Laser damage testing is carried out on both the 1-on-1 and S-on-1 regimes using 355-nn pulsed laser at a duration of 8 us.It is found that the single-shot laser-induced damage threshold(LIDT)is much higher than the multi-shot LIDT.In the multi-shot mode,the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects.The surface morphologies of the samples are observed by optical microscopy.Moreover,the number of laser-induced defects affects the damage probability of the samples.A correlative model based on critical conduction band(CB)electron density(ED)is presented to simulate the multi-shot damage behavior.

  18. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection.

    Science.gov (United States)

    Lux, Oliver; Sarang, Soumya; Williams, Robert J; McKay, Aaron; Mildren, Richard P

    2016-11-28

    We report a narrowband and tunable diamond Raman laser generating eye-safe radiation suitable for water vapor detection. Frequency conversion of a tunable pump laser operating from 1063 to 1066 nm to the second order Stokes component in an external standing-wave cavity yielded 7 W of multimode output power in the wavelength range from 1483 to 1488 nm at a conversion efficiency of 21%. Stable single longitudinal mode operation was achieved over the whole tuning range at low power (0.1 W), whereas incorporation of a volume Bragg grating as an output coupler enabled much higher stable power to be attained (0.5 W). A frequency stability of 40 MHz was obtained over a minute without active cavity stabilization. It was found that mode stability is aided via seeding of the second Stokes by four-wave mixing, which leads to a doubling of the mode-hopping interval. The laser was employed for the detection of water vapor in ambient air, demonstrating its potential for remote sensing applications.

  19. Synchronized and timing-stabilized pulse generation from a gain-switched laser diode for stimulated Raman scattering microscopy

    Science.gov (United States)

    Tokunaga, Kyoya; Fang, Yi-Cheng; Yokoyama, Hiroyuki; Ozeki, Yasuyuki

    2016-03-01

    We present a picosecond laser source based on a gain-switched laser diode (GS-LD) that can be applied to stimulated Raman scattering (SRS) microscopy. A 1.06-μm GS-LD was used to generate 14-ps pulses at a repetition rate of 38 MHz. The GS-LD was driven by 200-ps electrical pulses, which were triggered through a toggle flip-flop (T-FF). As a result, the GS-LD pulses were subharmonically synchronized to Ti:sapphire laser (TSL) pulses at a repetition rate of 76 MHz. We investigated the timing jitter of GS-LD pulses and found it to be less than 2.5 ps. We also show that the trigger delay can be less sensitive to the optical power of TSL pulses by controlling the threshold voltage of the T-FF. As a result, GS-LD pulses sufficiently overlapped with TSL pulses even when we scanned the wavelength of the TSL pulses. We demonstrate the SRS imaging of HeLa cells with GS-LD pulses and TSL pulses, proving that GS-LD is readily applicable to SRS microscopy as a compact and stable pulse source.

  20. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, S [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, M A [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan, Toluca Edo. de Mexico, 50110 (Mexico); Sanchez-Perez, C [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico); Esparza-GarcIa, A [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico)

    2007-04-15

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO{sub 3} phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm.

  1. Raman-gain induced loss-compensation in whispering-gallery-microresonators and single-nanoparticle detection with whispering-gallery Raman-microlasers

    CERN Document Server

    Ozdemir, Sahin Kaya; Yang, Xu; Peng, Bo; Yilmaz, Huzeyfe; He, Lina; Monifi, Faraz; Long, Gui Lu; Yang, Lan

    2014-01-01

    Recently optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms to achieve label-free detection of nanoscale objects and to reach single molecule sensitivity. The ultimate detection performance of WGMRs are limited by energy dissipation in the material they are fabricated from. Up to date, to improve detection limit, either rare-earth ions are doped into the WGMR to compensate losses or plasmonic resonances are exploited for their superior field confinement. Here, we demonstrate, for the first time, enhanced detection of single-nanoparticle induced mode-splitting in a silica WGMR via Raman-gain assisted loss-compensation and WGM Raman lasing. Notably, we detected and counted individual dielectric nanoparticles down to a record low radius of 10 nm by monitoring a beatnote signal generated when split Raman lasing lines are heterodyne-mixed at a photodetector. This dopant-free scheme retains the inherited biocompatibility of silica, and could find widespread use for sensing in bio...

  2. Second (1178 nm) and third (1242 nm) Stokes Raman fiber lasers without intermediate Stokes cavities

    Science.gov (United States)

    Mejía, E. B.; Juárez-Hernández, M.; De la Cruz-May, L.

    2017-07-01

    We report and propose a simple Raman fiber laser scheme that generates two or three order Raman Stokes components by using a single strong (unidirectional) cavity formed by a high-reflecting fiber Bragg grating and air-glass interface (fiber output); the intermediate cavities are non-grating, weak and bi-directional cavities that serve as ‘virtual links’ or energy reservoirs. Once the strong cavity reaches operation, it practically consumes (converts) all the energy from pump and intermediate components into a single and clamped (unidirectional) signal. For example, the use of second-Stokes fiber Bragg grating together with glass-air output operated and harvested practically all the energy. Analogously, third Stokes emission was obtained by changing the grating and hence relying on first and second non-grating formed intermediate cavities. The system uses commercial silica fiber and minimizes the use of lossy and costly fiber Bragg gratings. This proposal broadens the possibilities for covering the entire 1000-2000 nm window for applications that use silica fibers.

  3. Laser Raman detection of platelet as a non-invasive approach for early and differential diagnosis of Alzheimer's disease

    Science.gov (United States)

    Chen, P.; Tian, Q.; Baek, S. J.; Shang, X. L.; Park, A.; Liu, Z. C.; Yao, X. Q.; Wang, J. Z.; Wang, X. H.; Cheng, Y.; Peng, J.; Shen, A. G.; Hu, J. M.

    2011-07-01

    Early and differential diagnosis of Alzheimer's disease (AD) is a problem that puzzled many doctors. Reliable markers in easy-assembling samples are of considerable clinical diagnostic value. In this work, laser Raman spectroscopy (LRS) was developed a new method that potentially allows early and differential diagnosis of AD from the platelet sample. Raman spectra of platelets isolated from different ages of AD transgenic mice and non-transgenic controls were collected and analyzed. Multilayer perceptron networks (MLP) classification method was used to classify spectra and establish the diagnostic models. For differential diagnosis, spectra of platelets isolated from AD, Parkinson's disease (PD) and vascular dementia (VD) mice were also discriminated. Two notable spectral differences at 740 and 1654 cm-1 were revealed in the mean spectrum of platelets isolated from AD transgenic mice and the controls. MLP displayed a powerful ability in the classifying of early, advanced AD and the control group, and in differential diagnosis of PD and advanced AD, as well as VD and advanced AD. The results suggest that platelet detecting by LRS coupled with MLP analysis appears to be an easy and accurate method for early and differential diagnosis of AD. This technique could be rapidly promoted from laboratory to the hospital.

  4. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    Science.gov (United States)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  5. Studies of growth, microstructure, Raman spectroscopy and annealing effect of pulsed laser deposited Ca-doped NBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palai, R [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Romans, E J [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Martin, R W [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Docherty, F T [Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Maas, P [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Pegrum, C M [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom)

    2005-01-07

    Superconducting thin films of Nd{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (x = 0.03 and 0.08) have been grown on single crystal SrTiO{sub 3} substrates by pulsed laser deposition. The statistical methods of Experimental Design and regression analysis were used to optimize the film properties and to understand the correlation between the growth parameters and film properties. The orientation of the films was investigated by x-ray diffraction. The surface morphology of the films was examined by atomic force microscopy and scanning tunnelling microscopy. Qualitative and quantitative elemental analyses of the films were carried out using electron probe microanalysis. Micro-Raman spectroscopy was used to study the oxygen sublattice vibrations of the films. The effect of annealing on the superconducting transition temperature of the patterned films was also studied.

  6. Injection-locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in $^{43}$Ca$^+$

    CERN Document Server

    Linke, N M; Lucas, D M

    2013-01-01

    We describe the injection locking of two infrared (794 nm) laser diodes which are each part of a frequency doubled laser system. An acousto-optic modulator (AOM) in the injection path gives an offset of 1.6 GHz between the lasers for driving Raman transitions between states in the hyperfine split (by 3.2 GHz) ground level of $^{43}$Ca$^+$. The offset can be disabled for use in $^{40}$Ca$^+$. We measure the relative linewidth of the frequency-doubled beams to be 42 mHz in an optical heterodyne measurement. The use of both injection locking and frequency doubling combines spectral purity with high optical power. Our scheme is applicable for providing Raman beams across other ion species and neutral atoms where coherent optical manipulation is required.

  7. Analysis of the dentin-resin interface by use of laser Raman spectroscopy.

    Science.gov (United States)

    Miyazaki, M; Onose, H; Moore, B K

    2002-12-01

    Adhesion of resin-bonding agents to dentin is currently believed to result from impregnation of adhesive resin into superficially demineralized dentin. The purpose of this study was to investigate the chemical composition of the resin-impregnated dentin (hybrid) layer using a micro-Raman spectroscopy. Resin composites were bonded to bovine dentin with the two-step bonding systems, and specimens were sectioned parallel to dentinal tubules. These surfaces were then polished down to 1 microm diamond pastes. Raman spectra were successively recorded along a line perpendicular to the dentin-adhesive interface by steps of 0.2 microm on a computer controlled X-Y stage. The relative amounts of hydroxyapatite (960 cm(-1), P-O), adhesive resin (640 cm(-1), aromatic ring), and organic substrate (1450 cm(-1), C-H) in the dentin-adhesive bonding area were calculated. From the Raman spectroscopy results, the hybrid layer represents a gradual transition in the relative amount of adhesive from the resin side to dentin side. Evidence of poor saturation of the adhesive resin in the demineralized dentin with the one-bottle adhesive system was detected. From the results of this study, inhomogeneity of the hybrid layer composition was detected, and the degree of resin impregnation was found to be different between the bonding systems tested.

  8. Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis

    Science.gov (United States)

    Krishnakumar, N.; Sulfikkarali, N. K.; Manoharan, S.; Venkatachalam, P.

    2013-11-01

    Raman spectroscopy is a vibrational spectroscopic technique that can be used to optically probe the biomolecular changes associated with tumor progression. The aim of the present study is to investigate the biomolecular changes in chemopreventive response of prepared naringenin-loaded nanoparticles (NARNPs) relative to efficacy of free naringenin (NAR) during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis by Fourier Transform Raman (FT-Raman) spectroscopy. Oral squamous cell carcinoma (OSCC) was developed in the buccal pouch of golden Syrian hamsters by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. Raman spectra differed significantly between the control and tumor tissues, with tumors showing higher percentage signals for nucleic acids, phenylalanine and tryptophan and a lower in the percentage of phospholipids. Moreover, oral administration of free NAR and NARNPs significantly increased phospholipids and decreased the levels of tryptophan, phenylalanine and nucleic acid contents. On a comparative basis, NARNPs was found to have a more potent antitumor effect than free NAR in completely preventing the formation of squamous cell carcinoma and in improving the biochemical status to a normal range in DMBA-induced oral carcinogenesis. The present study further suggest that Raman spectroscopy could be a valuable tool for rapid and sensitive detection of specific biomolecular changes in response to chemopreventive agents.

  9. Laser induced periodic surface structure formation in germanium above laser damage fluence by mid IR femtosecond laser irradiation

    Science.gov (United States)

    Kafka, Kyle; Austin, Drake; Cheng, Jian; Trendafilov, Simeon; Shvets, Gennady; Li, Hui; Yi, Allen; Blaga, Cosmin I.; DiMauro, L. F.; Chowdhury, Enam

    2014-11-01

    Laser induced periodic surface structures (LIPSS) were generated via interaction of multiple 90 femtosecond 1900 - 3600 nm mid IR laser pulses (3 -10,000) on single crystal Ge targets. For specific laser parameters, both low and high frequency LIPSS are found together, which are oriented perpendicular to each other. Study of polarization dependence of LIPSS revealed that orientation and symmetry of interaction could be controlled by rotating polarization of laser pulses. Low frequency LIPSS formation was consistent with surface plasmon coupling of laser pulses with excited Ge.

  10. Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L.; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Bowers, K. J.; Bergen, B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Michel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-01-15

    Nonlinear physics governing the kinetic behavior of stimulated Raman scattering (SRS) in multi-speckled laser beams has been identified in the trapping regime over a wide range of k{lambda}{sub D} values (here k is the wave number of the electron plasma waves and {lambda}{sub D} is the Debye length) in homogeneous and inhomogeneous plasmas. Hot electrons from intense speckles, both forward and side-loss hot electrons produced during SRS daughter electron plasma wave bowing and filamentation, seed and enhance the growth of SRS in neighboring speckles by reducing Landau damping. Trapping-enhanced speckle interaction through transport of hot electrons, backscatter, and sidescatter SRS light waves enable the system of speckles to self-organize and exhibit coherent, sub-ps SRS bursts with more than 100% instantaneous reflectivity, resulting in an SRS transverse coherence width much larger than a speckle width and a SRS spectrum that peaks outside the incident laser cone. SRS reflectivity is found to saturate above a threshold laser intensity at a level of reflectivity that depends on k{lambda}{sub D}: higher k{lambda}{sub D} leads to lower SRS and the reflectivity scales as {approx}(k{lambda}{sub D}){sup -4}. As k{lambda}{sub D} and Landau damping increase, speckle interaction via sidescattered light and side-loss hot electrons decreases and the occurrence of self-organized events becomes infrequent, leading to the reduction of time-averaged SRS reflectivity. It is found that the inclusion of a moderately strong magnetic field in the laser direction can effectively control SRS by suppressing transverse speckle interaction via hot electron transport.

  11. 5,000 h reliable operation of 785nm dual-wavelength DBR-RW diode lasers suitable for Raman spectroscopy and SERDS

    Science.gov (United States)

    Sumpf, Bernd; Müller, André; Maiwald, Martin

    2016-03-01

    Monolithic wavelength stabilized diode lasers, e.g. distributed Bragg reflector (DBR) ridge waveguide (RW) lasers, are well-suited light sources for compact and portable Raman spectroscopic systems. In the case of in situ and outdoor investigations, the weak Raman lines are often superimposed by daylight, artificial light sources or fluorescence signals from the samples under study. Among others, shifted excitation Raman difference spectroscopy (SERDS) has been demonstrated as a powerful and easy-to-use technique to separate the Raman lines from disturbing background signals. SERDS is based on subsequential excitation of the sample with two slightly shifted wavelengths. The Raman lines follow the change in the excitation wavelength whereas the non-Raman signals remain unchanged. For SERDS dual-wavelength light sources, e.g., mini-arrays containing two DBR-RW lasers, are requested. Moreover, for portable Raman instruments such as handheld devices robust and reliable excitation light sources with lifetimes > 1,000 h are preferred. In this work, reliability investigations of dual-wavelength DBR-RW mini-arrays over a total test time of 5,000 h are presented. Wavelength stabilization and narrowing of the spectral emission is realized by 10th-order DBR surface gratings defined by i-line wafer stepper technology. The DBR-section has a length of 500 μm, the devices a total length of 3 mm. The ridge waveguide has a stripe width of 2.2 μm. Maximum output powers up to 215 mW per emitter were measured. Over the whole power range, 95 % of the emitted power is within a spectral width of 0.15 nm (2.5 cm-1), which is smaller than the spectral width needed to resolve most Raman lines of solid and liquid samples. In a step-stress test, the devices were tested at 50 mW, followed by 75 mW and finally at 100 mW per emitter. Electro-optical and spectral measurements were performed before, during and after the test. All emitters under study did not show any deterioration of their

  12. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Traulsen, Marie Lund; Norrman, Kion

    2015-01-01

    Polarization induced changes in LSM electrode composition were investigated by utilizing in operando Raman spectroscopy and post mortem TOF-SIMS depth profiling. Experiments were conducted on cells with 160 nm thick (La0.85Sr0.15)0.9MnO3±δ thin film electrodes in 10% O2 at 700 °C under various...

  13. Wideband multiwavelength output generation based on cascaded four-wave mixing in distributed Raman amplifier utilizing a Fabry-Pérot laser diode

    Science.gov (United States)

    Al-Alimi, A. W.; Cholan, N. A.; Yaacob, M. H.; Mahdi, M. A.

    2017-08-01

    Multiwavelength output generation based on cascaded four-wave mixing in a distributed Raman amplifier is demonstrated experimentally. The technique consists of launching a probe signal and Fabry-Pérot pump source in a co-propagating setup into a 2 km length of highly nonlinear fiber. In this configuration, the Fabry-Pérot laser diode plays two roles; as a Raman pump and as a source for multiple wavelengths generation. The output of multiple wavelengths with 27.8 GHz spacing centered around the probe signal is generated over 43 nm operation bandwidth. Besides, the bandwidth of the multiwavelength spectrum is also investigated at different wavelength ranges.

  14. Raman Spectroscopy of Irradiation Effect in Three Carbon Allotropes Induced by Low Energy B Ions

    Institute of Scientific and Technical Information of China (English)

    FU Yun-Chong; JIN Yun-Fan; YAO Cun-Feng; ZHANG Chong-Hong

    2009-01-01

    Irradiation effect in three carbon allotropes C6o, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Rarnan spectroscopy technique. The differences on irradiation sensitivity and structural stability for C6o, HOPG and diamond are compared. The analysis results indicate that C6o is the most sensitive for B ions irradiation, diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections σ of C6o, diamond and HOPG deduced from the Raman spectra are 7.78 × 10-15, 6.38 × 10-15 and 1.31 × 10-15 cm-2, respectively.

  15. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase......-sensitive amplifiers. We show that the model agrees with earlier fully quantum approaches in the linear gain regime, whereas in the saturated gain regime, in which the classical equations are valid, we predict that the amplifier increases the signal-to-noise ratio by generating an amplitude-squeezed state of light....... Also, in the same process, we analyze the quantum noise properties of the pump, which is difficult using standard quantum approaches, and we discover that the pump displays complicated dynamics in both the linear and the nonlinear gain regimes....

  16. Tissue tearing caused by pulsed laser-induced ablation pressure.

    Science.gov (United States)

    Cummings, J P; Walsh, J T

    1993-02-01

    Pressure induced by ablative pulses of laser radiation is shown to correlate with the mechanical disruption of tissue. The ablation pressure induced during Er:YSGG laser irradiation of skin, liver, and aorta was calculated from a ballistic pendulum-based measurement of recoil momentum. The ejected material and ablation crater were examined grossly and microscopically after ablation. A gas-dynamic model of laser-induced vaporization was used to understand the measured pressures. The results show that mechanical disruption of tissue occurs when the ablation pressure exceeds the strength of the irradiated tissue at sites of intrinsic weakness.

  17. FIBER AND INTEGRATED OPTICS, LASER APPLICATIONS, AND OTHER PROBLEMS IN QUANTUM ELECTRONICS: Raman scattering spectra recorded in the course of the water-ice phase transition and laser diagnostics of heterophase water systems

    Science.gov (United States)

    Glushkov, S. M.; Panchishin, I. M.; Fadeev, V. V.

    1989-04-01

    The method of laser Raman spectroscopy was used to study heterophase water systems. The apparatus included an argon laser, an optical multichannel analyzer, and a microcomputer. The temperature dependences of the profiles of the valence (stretching) band in the Raman spectrum of liquid water between + 50 °C and - 7 °C and of polycrystalline ice Ih (from 0 to - 62 °C) were determined, as well as the spectral polarization characteristics of the Raman valence band. A method was developed for the determination of the partial concentrations of the H2O molecules in liquid and solid phases present as a mixture. An analysis was made of the errors of the method and the sources of these errors. Applications of the method to multiparameter problems in more complex water systems (for example, solutions of potassium iodide in water) were considered. Other potential practical applications of the method were discussed.

  18. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    Science.gov (United States)

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.

  19. Picosecond laser-induced water condensation in a cloud chamber.

    Science.gov (United States)

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-05

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

  20. Defect-induced Raman spectroscopy in single-layer graphene with boron and nitrogen substitutional defects by theoretical investigation

    Science.gov (United States)

    Jiang, Jie; Pachter, Ruth; Islam, Ahmad E.; Maruyama, Benji; Boeckl, John J.

    2016-10-01

    Although advances in heteroatom incorporation into the single-layer graphene lattice resulted in films with large carrier densities, careful characterization by Raman spectroscopy is important for assessment of the material's quality. We investigated theoretically I(D)/I(D‧) Raman intensity ratios induced by B- and N- substitutional doping, demonstrated to be consistent with measurements. Calculated Fermi level shifts showed that for a moderate doping density results are comparable to electrolyte gating, while analytical analysis of the electron-defect scattering provided insight into changes of cross-sections. Effects of doping density on the D band intensity and broadening were quantified, and will assist in graphene characterization.

  1. Laser-induced forward transfer of carbon nanowalls for soft electrodes fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, Catalin, E-mail: constantinescu@lp3.univ-mrs.fr [Aix-Marseille Université/CNRS, LP3 laboratory (UMR CNRS 7341), F-13288 Marseille (France); INFLPR – National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Bucharest (Romania); Vizireanu, Sorin, E-mail: s_vizi@infim.ro [INFLPR – National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Bucharest (Romania); Ion, Valentin [INFLPR – National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Bucharest (Romania); Aldica, Gheorghe [NIMP – National Institute of Materials Physics, Magurele RO-077125, Bucharest (Romania); Stoica, Silviu Daniel; Lazea-Stoyanova, Andrada [INFLPR – National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Bucharest (Romania); Alloncle, Anne-Patricia; Delaporte, Philippe [Aix-Marseille Université/CNRS, LP3 laboratory (UMR CNRS 7341), F-13288 Marseille (France); Dinescu, Gheorghe [INFLPR – National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Bucharest (Romania)

    2016-06-30

    Graphical abstract: - Highlights: • Carbon nanowalls (CNW) are grown on quartz substrates, by plasma techniques. • Thermal, morphological and electrical investigations of CNW are presented. • Laser-induced forward transfer of CNW pixels is demonstrated. • Raman spectrometry of printed pixels vs. donor CNW is discussed. - Abstract: Carbon nanowalls (CNW) are two-dimensional interconnected graphitic nanostructures that have a few μm in length and height, reaching typical thicknesses of a few tens of nm. We present results on such layers synthesized in a low pressure argon plasma jet, injected with acetylene and hydrogen, on transparent substrates (quartz) heated at 600 °C, without catalyst. Thermogravimetric analysis reveals that the CNW are stable up to 420 °C in air, and Raman spectroscopy investigations highlight their graphene-like structure. Finally, using a pulsed Nd:YAG laser device (355 nm, 50 ps), we show that 2D-arrays of CNW (pixels and lines) can be printed by laser-induced forward transfer (LIFT), preserving their architecture and structure. Electrical measurements on 1 μm thick CNW demonstrate typical values in the range of 357.5–358.4 Ω for the samples grown on Au/Cr electrodes, and in the range of 450.1–474.7 Ω for the LIFT printed lines (under positive, negative, and neutral polarization; 1 kHz–5 MHz frequency range; 500 mV and 1 V, respectively). Their morphology is highlighted by means of optical and electronic microscopy. Such structures have potential applications as soft conductive lines, in sensor development and/or embedding purposes.

  2. Supercontinuum generation enhanced by conventional Raman amplification at pumping by nanosecond pulses from a directly modulated DFB laser

    Science.gov (United States)

    Rojas-Laguna, Roberto; Gutiérrez-Gutiérrez, Jaime; Kuzin, Evgeny A.; Ibarra-Escamilla, Baldemar; Mendoza-Vázquez, Sergio; Estudillo-Ayala, Julián Moisés; Haus, Joseph W.

    2007-02-01

    We investigated spectral broadening in a standard fiber using a nanosecond directly modulated DFB laser (λ=1549 nm), amplified by a two stage Erbium-doped fiber amplifier. The amplifier provided amplification of 2-mW peak power input pulses to 100-W peak power output pulses. In other hand, the directly modulation of DFB lasers caused transient oscillations at the beginning of pulses. In our case pulses consisted of a 2-ns transient part followed by a steady-state plateau. We used a monochromator to measure the spectrum at the fiber output. A fast photodetector was placed at the monochromator output and pulse shapes were measured for different wavelengths. This technique allowed the separate measurement of different parts in output pulses spectrum. We used the SMF-28 fiber with the standard dispersion of 20 ps/nm-km for our wavelength. We made measurements of the output spectra for three fiber lengths: 0.6-km, 4.46-km and 9.15-km; finding that the initial transient part of a pulse shows supercontinuum generation whereas the plateau results in conventional Raman amplification of this supercontinuum.

  3. Semiconductors Investigated by Time Resolved Raman Absorption and Photoluminescence Spectroscopy Using Femtosecond and Picosecond Laser Techniques.

    Science.gov (United States)

    1983-05-05

    This report summarizes the research progress achieved in the period 1979-1982 in the research effort supported by AFOSR 80-0079. Two main areas of research are: picosecond and subpicosecond laser development and application and time-resolved studies of semiconductors. In the subpicosecond laser development program we investigated a variety of cavities of different physical parameters. A stable and reliable oscillator, which produces 200 fsec pulses, has been developed using

  4. Picosecond laser induced periodic surface structure on copper thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Thi Trang Dai; Petit, Agnès; Semmar, Nadjib, E-mail: nadjib.semmar@univ-orleans.fr

    2014-05-01

    LIPSS (Laser Induced Periodic Surface Structure) formation on copper thin films induced by a picosecond laser beam (Nd:YAG laser at 266 nm, 42 ps and 10 Hz) was studied experimentally. Copper thin films were deposited on glass and silicon substrates by magnetron sputtering. The surface modifications of irradiated zones were analyzed by scanning electron microscopy. Two distinct types of LIPSS were identified with respect to the laser fluence (F), number of laser shots (N) and substrate material. Namely, with a number of laser shots (1000 < N < 10,000) and a fluence of (200 mJ/cm{sup 2} < F < 500 mJ/cm{sup 2}), Low Spatial Frequency LIPSS (LSFL with a spatial period of Λ ∼ 260 nm and an orientation perpendicular to polarization) and High Spatial Frequency LIPSS (HSFL with a spatial period of Λ ∼ 130 nm and an orientation parallel to the polarization) were observed. The regime of regular spikes formation was determined for N ≥ 1000. Moreover, the 2D-map of the relationship among LIPSS formation, laser fluence and number of laser shots on copper thin film with two different substrates was established. A physics interpretation of regular spikes and LIPSS formation on copper thin film induced by ps laser with overlapping multi-shots is proposed based on experimental data and the theory of Plateau-Rayleigh instability.

  5. Picosecond laser induced periodic surface structure on copper thin films

    Science.gov (United States)

    Huynh, Thi Trang Dai; Petit, Agnès; Semmar, Nadjib

    2014-05-01

    LIPSS (Laser Induced Periodic Surface Structure) formation on copper thin films induced by a picosecond laser beam (Nd:YAG laser at 266 nm, 42 ps and 10 Hz) was studied experimentally. Copper thin films were deposited on glass and silicon substrates by magnetron sputtering. The surface modifications of irradiated zones were analyzed by scanning electron microscopy. Two distinct types of LIPSS were identified with respect to the laser fluence (F), number of laser shots (N) and substrate material. Namely, with a number of laser shots (1000 LIPSS (LSFL with a spatial period of Λ ∼ 260 nm and an orientation perpendicular to polarization) and High Spatial Frequency LIPSS (HSFL with a spatial period of Λ ∼ 130 nm and an orientation parallel to the polarization) were observed. The regime of regular spikes formation was determined for N ≥ 1000. Moreover, the 2D-map of the relationship among LIPSS formation, laser fluence and number of laser shots on copper thin film with two different substrates was established. A physics interpretation of regular spikes and LIPSS formation on copper thin film induced by ps laser with overlapping multi-shots is proposed based on experimental data and the theory of Plateau-Rayleigh instability.

  6. Gas permeation and temperature effects in laser-induced delamination

    NARCIS (Netherlands)

    Fedorov, Alexander; Vellinga, Willem-Pier; De Hosson, Jeff

    Laser-induced delamination (LID) is a technique aimed at measuring the work of adhesion of thin polymer coatings on metal substrates. A laser Pulse is used to create a blister that initiates delamination of the film under pressure. The stress fields in the blister wall and the work of adhesion of

  7. Adhesion of polymer coatings studied by laser-induced delamination

    NARCIS (Netherlands)

    Fedorov, A; De Hosson, JTM

    2005-01-01

    This paper concentrates on the laser-induced delamination technique, aimed at measuring the practical work of adhesion of thin polymer coatings on metal substrates. In this technique an infrared laser-pulsed beam is used to create an initial blister. Upon increasing the pulse intensity, the size of

  8. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    Science.gov (United States)

    Zhang, Haisu; Tzortzakis, Stelios

    2016-05-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  9. Towards Friction Control using laser-induced periodic Surface Structures

    NARCIS (Netherlands)

    Eichstädt, J.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2011-01-01

    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two D

  10. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    Energy Technology Data Exchange (ETDEWEB)

    Bito, Kotatsu [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Analytical Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497 (Japan); Okuno, Masanari [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kano, Hideaki [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tenodai, Tsukuba, Ibaraki 305-8573 (Japan); Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Leproux, Philippe [Institut de Recherche XLIM, UMR CNRS No. 7252, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); LEUKOS, ESTER Technopole, 1 Avenue d’Ester, 87069 Limoges Cedex (France); Couderc, Vincent [Institut de Recherche XLIM, UMR CNRS No. 7252, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Institute of Molecular Science and Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2013-06-20

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ{sup (3)} without introducing any arbitrary parameter in the maximum entropy method (MEM)

  11. Medical Applications of Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  12. The efficacy of the use of IR laser phototherapy (LPT) on bone defect grafted with biphasic ceramic on rats with iron deficiency anemia: Raman spectroscopy analysis.

    Science.gov (United States)

    Rosa, Cristiane Becher; de Castro, Isabele Cardoso Vieira; Júnior, João Alves Reis; Aragão, Juliana Silveira; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-05-01

    The aim of this study was to evaluate bone repair in anemic and non-anemic rats submitted or not to laser phototherapy and hydroxyapatite graft. Animals were divided in eight groups of five animals: Clot; Laser; Graft; Graft + Laser; iron deficiency anemia (IDA) + Clot; IDA + Laser; IDA + graft; IDA + graft + Laser. When appropriate irradiation with infrared laser was done during 15 days at a 48-h interval. Animals were killed at day 30; samples were analyzed by Raman spectroscopy. Three shifts were studied and statistically analyzed: ~960, ~1,070, and ~1,454 cm(-1). Graft + laser showed highest ~960 peak was statistically different from all other healthy groups. No statistical difference was found between Clot and IDA + Clot in any shift. The IDA + Graft and IDA + Graft + Laser groups had low mean peak values for shifts ~960, ~1,070, and ~1,454 cm(-1). The results in this study indicate that using hydroxyapatite (HA) and laser irradiation in healthy subjects is favorable to mineral deposition and bone maturation, this being of importance for some groups at risk, such as astronauts. In iron deficiency anemia cases, the use of graft, associated or not to laser irradiation, resulted in low collagen and low carbonate and phosphate HA.

  13. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  14. Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.

    Science.gov (United States)

    Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas

    2015-09-01

    In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources.

  15. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    Science.gov (United States)

    Spizzichino, Valeria; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems.

  16. Pressure-induced Phase Transition in Oleic Acid Studied by Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    FAN Ya; ZHOU Jing; LI Shuang; GUAN Fu-Ying; XU Da-Peng

    2011-01-01

    High-pressure Raman studies up to 0.84 GPa are performed on oleic acid.Spectral analysis indicates that oleic acid undergoes a pressure-induced phase transition in the 0.29-0.36 GPa range.Only one high-pressure phase below 0.84 GPa is present,in which the polymethylene chains take the ordered all-trans conformation,with the methyl end of the chains exhibiting the ordered tt chain-end conformation and the olefin group taking the skewcis-skew' conformation.The conformational characters of the oleic acid molecule show that the high-pressure phase is the same as the low-temperature crystalline γ phase.The pressure-induced phase transition is typical of first-order transitions and the transition path during compression is different from that during cooling.Oleic acid (C1sH34O2) is one of the unsaturated fatty acids that appear naturally in a liquid state.It is one of the most common components of human diets,preventing coronary disease and breast cancer and benefiting people with diabetes.[1] A molecule of oleic acid possesses a carbon double bond,C =C,which leads to the occurrence of a phase transition when pressure is applied.[2] Therefore,the significance of high-pressure processing has recently increased as an alternative method of food preservation.So far some physical properties of oleic acid under pressures below 1 GPa have been investigated using a piston-cylinder device as a high-pressure apparatus.[2-10] However,no high-pressure Raman or any other in-situ experimental research on pressure-induced phase transition in oleic acid has been reported.In addition,the freezing point of oleic acid is 13.3℃,below which oleic acid crystallizes in three forms,namely,α,β and γ[11-17]%High-pressure Raman studies up to 0.84 Gpa are performed on oleic acid. Spectral analysis indicates that oleic acid undergoes a pressure-induced phase transition in the 0.29-0.36 Gpa range. Only one high-pressure phase below 0.84 Gpa is present, in which the polymethylene chains take the

  17. Thermal desorption from surfaces with laser-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, Pawel; Panczyk, Tomasz; Rudzinski, Wladyslaw

    2002-12-30

    Monte Carlo simulation method was used to mimic surface damage development caused by short laser pulses. The influence of pulsed laser irradiation on the creation of defect concentration was examined in the case of a model surface. In particular, the dependence of the intact surface area on a number of laser scans was studied and compared with the experimental results obtained for Rh(1 1 1) crystal face. Changes in the adsorptivoperties of the surface produced by laser irradiation are explained with the help of a simple geometric model connecting the laser intensity and the disordered area generated by a single laser shot. It was demonstrated that exponential decay of the Low Energy Electron Diffraction (LEED) signal with the number of laser scans, which is observed experimentally, may result directly from the overlapping of the laser spots created on the surface. This effect becomes enhanced when the laser intensity, hence the spot size, increases. The importance of laser-induced defects in the kinetics of catalytic/separation processes was examined in the case of temperature programmed desorption (TPD) spectra from surfaces subjected to a different number of laser shots. The spectra were simulated by employing the Monte Carlo method as well as by application of the absolute rate theory (ART) coupled with the mean field approximation. The results obtained with both methods were in a good agreement even when weak lateral interactions in the adsorbed phase were allowed.

  18. Birefringence-Directed Raman Selection Rules in 2D Black Phosphorus Crystals.

    Science.gov (United States)

    Mao, Nannan; Wu, Juanxia; Han, Bowen; Lin, Jingjing; Tong, Lianming; Zhang, Jin

    2016-05-01

    The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses.

  19. Applicability of confocal Raman microscopy for the signal detective of organic reagents in a PDMS microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Yeol; Choo, Jae Bum; Ahn, Yoo Min; Kim, Yang S. [Hanyang University, Ansan (Korea, Republic of)

    2002-07-01

    A PDMS microfluidic chip has been constructed using a photolithographic fabrication technique. Confocal laser-induced Raman microscopy has been utilized for the signal detection of chemical species in a PDMS microfluidic chip. The CC1{sub 4} benzene binary mixtures with different % concentrations have been prepared and injected into the PDMS chip using a microsyringe pump. Raman spectra were measured by focusing the Ar{sup +} laser on a microfluidic channel using a 10x objective lens. The concentration of each solvent mixture has been determined from the ratio of Raman intensity profiles, which were measured by integrating the area of characteristic Raman peaks for CC1{sub 4} and benzene. In this work, the feasibility of confocal laser-induced Raman microscopy for the quantitative analysis of organic reagents in a PDMS microfluidic chip will be demonstrated.

  20. Dynamical behavior of laser-induced nanoparticles during remote processing

    Science.gov (United States)

    Scholz, Tobias; Dickmann, Klaus; Ostendorf, Andreas

    2014-02-01

    Laser remote processing is used in a wide field of industrial applications. Among other things, it is characterized by flexible beam guidance in combination with high processing velocities. But in most cases process gas support in the interaction zone is omitted. Consequently, interaction mechanism between the vapor plume and the incident laser radiation can dynamically affect the process stability. Referring to remote welding with high brilliant laser sources having a wavelength around 1 μm, the interaction between the incident laser radiation and formed particles plays an important role. The presented work shows results of the investigation of the laser-induced particle formation during the laser welding of stainless steel with a 2 kW fiber laser under remote conditions. It is therefore concentrated on the dynamical behavior of the laser-induced particle formation and the dependence of the particle formation on the laser beam power. TEM images of formed particles were analyzed. In addition, the radiation of a LED was directed through the vapor plume. On the one hand, the dynamic of the attenuation was considered. On the other hand, the Rayleigh approximation was used in order to evaluate the detected signals.

  1. Quasi-continuous-wave 589-nm radiation based on intracavity frequency-doubled Nd:GGG/BaWO4 Raman laser

    Science.gov (United States)

    Liu, Yang; Liu, Zhaojun; Cong, Zhenhua; Men, Shaojie; Rao, Han; Xia, Jinbao; Zhang, Sasa; Zhang, Huaijin

    2016-07-01

    Quasi-continuous-wave (QCW) 589-nm radiation was realized based on a frequency-doubled crystalline Raman laser. The fundamental wave with macro-micro-pulse trains was generated from an acousto-optically Q-switched QCW diode side-pumped Nd:GGG laser. Intracavity Raman conversion was accomplished by a BaWO4 crystal and the second harmonic generation was finished by a KTP crystal. Under a pumping power of 126.0 W with a macro-pulse frequency of 300 Hz and duration of 300 μs, the maximum 589 nm output power of 4.2 W was obtained at a micro-pulse frequency of 33.3 kHz. The micro-pulse width was 13.6 ns.

  2. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H(2)-filled inhibited coupling Kagome fiber.

    Science.gov (United States)

    Benoît, Aurélien; Beaudou, Benoit; Alharbi, Meshaal; Debord, Benoit; Gérôme, Frédéric; Salin, François; Benabid, Fetah

    2015-06-01

    We report on the generation of over 5 octaves wide Raman combs using inhibited coupling Kagome guiding hollow-core photonic crystal fiber filled with hydrogen and pumped with 22.7 W average power and 27 picosecond pulsed fiber laser. Combs spanning from ~321 nm in the UV to ~12.5 µm in the long-wavelength IR (i.e. from 24 THz to 933 THz) with different spectral content and with an output average power of up to ~10 W were generated. In addition to the clear potential of such a comb as a laser source emitting at spectral ranges, which existing technology poorly addresses like long-wavelength IR and UV, the combination of high Raman net gain and short pump-pulse duration makes these spectra an excellent candidate for intra-pulse waveform synthesis.

  3. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  4. Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm

    Institute of Scientific and Technical Information of China (English)

    徐贲; 岳古明; 张寅超; 胡欢陵; 周军; 胡顺星

    2003-01-01

    A pulsed Nd:YAG laser at 355nm is used to pump Raman cell filled with D2,D2/Ar and D2/He.With adequately adjusted parameters,the maximum photon conversion efficiency of the first-order Stokes light(S1,396.796nm)reaches 33.33% in D2/Ar and the stability of S1 in pure D2 is fairly high,the energy drift being less than 10% when the pump energy drifts in the range of 5%.The conversion efficiency and stability,which are functions of the composition and pressure of the Raman medium and the energy of pump laser,are investigated.The result has been used to optimize the laser transmitter system for a differential absorption lidar system to measure NO2 concentration profiles.

  5. Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation

    Science.gov (United States)

    Naseri, Tayebeh; Moradi, Ronak

    2017-01-01

    Some optical properties including the linear and nonlinear susceptibility and electromagnetically induced phase grating (EIG) in graphene under Raman excitation is studied. A single-layer graphene nanostructure driven by coherent and incoherent fields is investigated theoretically. It is revealed that by adjusting the amplitude of control and incoherent fields, the linear and nonlinear absorption as well as Kerr nonlinearity of the medium can be optimized. It is realized that the enhanced Kerr nonlinearity can occur with zero linear absorption and nonlinear amplification. Furthermore, it should be noted that EIG in graphene is studied for the first time. The results indicate that the diffraction efficiency of the phase grating is dramatically enhanced by controlling the amplitude of coherent and incoherent fields, and an efficient electromagnetically induced phase grating can be obtained. A novel result shows a considerable improvement of the intensity of higher-order diffractions and switching between different orders of grating via incoherent pumping field. Therefore, this model can be used in real experiments for the development of new types of nanoelectronic devices used for the realization of all-optical switching processes.

  6. Solid-State Raman Converters for High-Average Power Chemical Oxygen Iodine Laser

    Science.gov (United States)

    1998-01-01

    spectral resolution of the system was 0.2-1.0 cmŕ. The argon laser plasma discharge lines were cut by an additional ÖD •TM...Principles of Nonlinear Optics. New York; Wiley, 1984, ch. 10. 15. R. L. Carman , F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes

  7. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    Science.gov (United States)

    Wu, Taotao; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-01

    Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm2. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the "positive feedback" effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. The oxide films were thin, orientated and badly crystallized. The oxidation process was influenced by the grain orientation of the metal substrate. These results made the mechanism of laser-induced oxidation of iron clear and provided available experimental data for accurate modeling of the oxidation kinetics.

  8. Research on laser induced acoustic source based underwater communication system

    Science.gov (United States)

    Lei, Lihua; Zhou, Ju; Zhang, Lei; Wan, Xiaoyun

    2016-10-01

    Acoustic transducers are traditionally used to generate underwater acoustical energy with the device physically immersed in water. Novel methods are required for communicating from an in-air platform or surface vessel to a submerged vessel. One possible noncontact downlink communication system involves the use of laser induced acoustic source. The most common mechanisms of opto-acoustic energy conversion are, by order of increasing laser energy density and efficiency, thermal expansion, surface evaporation and optical breakdown. The laser induced acoustic source inherently bears the obvious advantage of not requiring any physical transducer in the medium. At the same time, acoustic energy propagation is efficient in water, whereas optical energy propagate well in air, leading to a more efficiency opto-acoustic communication method. In this paper, an opto-acoustic underwater Communication system is described, aiming to study and analysis whether laser induced sound could achieve good performance for effective communication in practical application.

  9. Multiwavelength Raman fiber ring laser with the spectrum profile broadened by parametric four wave mixing in highly nonlinear dispersion-shifted fibers

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Qing Wang; Wei Zhang; Xiaoming Liu; Jiangde Peng

    2005-01-01

    @@ A broadband multiwavelength Raman fiber ring laser (RFRL) covering the whole C-band at room temperature are presented. The effect of the intracavity highly nonlinear dispersion-shifted fiber on broadening and flattening the output spectrum envelope is discussed and experimentally demonstrated. More than 45-dB extinction-ratio multiwavelength output from 1527.76 to 1566.86 nm with 100-GHz channel spacing and 2.1-dB power ripple has been achieved by carefully controlling the individual powers of three pump lasers.

  10. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  11. Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs.

    Science.gov (United States)

    Sones, C L; Feinaeugle, M; Sposito, A; Gholipour, B; Eason, R W

    2012-07-02

    We present femtosecond laser-induced forward transfer of focused ion beam pre-machined discs of crystalline magneto-optic yttrium iron garnet (YIG) films. Debris-free circular micro-discs with smooth edges and surface uniformity have been successfully printed. The crystalline nature of the printed micro-discs has not been altered by the LIFT printing process, as was confirmed via micro-Raman measurements.

  12. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  13. Development And Optical Absorption Properties Of A Laser Induced Plasma During CO2-Laser Processing

    Science.gov (United States)

    Beyer, E.; Bakowsky, L.; Loosen, P.; Poprawe, R.; Herziger, G.

    1984-03-01

    Laser material processing is accompanied by a laser induced plasma in front of the target surface as soon as the laser radiation exceeds a certain critical intensity. For cw CO2-laser machining of metal targets the threshold for plasma onset is about 106 W/cm2. Critical condition for plasma generation at this intensity level is to reach evaporation temperature at the target's surface. At intensity levels exceeding 106 W/cm2 the laser light is interacting with the laser induced plasma and then the plasma in turn interacts with the target. The absorptivity is no longer constant, but increases with increasing intensity of the incident radiation, so that the total amount of power coupled to the target is increasing. This holds up to intensity levels of 2'10 Wicm2. Then the plasma begins to withdraw from the target surface, thus interrupting plasma-target interaction so that the laser power is no longer coupled into the target completely. The results of laser welding (welding depth) in the intensity level of 106 W/cm2 are governed by the product of incident intensity times focus radius, so that welding results are a measure to determine focus radius and laser intensity.

  14. Multi-wavelength passively Q-switched c-cut Nd:YVO4 self-Raman laser with Cr4+:YAG saturable absorber

    Science.gov (United States)

    Lin, H. Y.; Pan, X.; Huang, X. H.; Xiao, M.; Liu, X.; Sun, D.; Zhu, W. Z.

    2016-06-01

    A multi-wavelength passively Q-switched self-Raman laser with a c-cut Nd:YVO4 both as laser and Raman medium is reported. With the increasing pump power, the multi-wavelength laser including the fundamental line at 1067.4 nm, 1st-Stokes at 1097.9 nm, 2nd-Stokes at 1130.1 nm, and 3rd-Stokes at 1163.6 nm is generated sequentially. At a pump power of 5.0 W, the maximum output power of the four discrete lines are 186.8 mW, 246.5 mW, 158.4 mW and 63.6 mW, with corresponding optical conversion efficiencies of 3.7%, 4.9%, 3.2% and 1.3% respectively. The total stimulated Raman scattering conversion efficiency is 9.4%. To our best knowledge, this is the first report of the 2nd-Stokes at 1130.1 nm and 3rd-Stokes at 1163.6 nm.

  15. Raman and UV-Vis Spectroscopy Applied to the Analysis of Liver Tissues from Rats with Myocardial Ischemia Induced by Isoproterenol

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-cheng; ZOU Ying-gang; HUANG Yu-xin; GAO Hai-mei; CHEN Lei; PEI Jin

    2011-01-01

    The application of the laser Raman spectroscopic(LRS) technique for the analysis of liver tissues from rats with myocardial ischemia induced by isoproterenol(ISO) was described.Animal model of myocardial ischemia was established for rats induced by ISO.Rats were randomly divided into four groups as normal group and myocardial ischemia groups.We observed the successful myocardial ischemia model via serum enzymes levels and hematoxylin-eosin(HE) staining,and detected the liver tissue of the rats from normal group and liver tissue of the rats from myocardial ischemia groups via UV-Vis spectroscopy(UV-Vis) and LRS,and the changes of the absorbance spectra were compared in the above four different groups.The results show that ISO can induce rat myocardial ischemia successfully.The spectrum of normal liver tissue supernatant exhibits a strong absorption band at 968 nm,but no absorption band appears in the spectra of liver tissue supernatant solutions from the rats with myocardial ischemia induction after 2,12 and 72 h presented at 968 nm.LRS results show that Raman intensities of the precipitates suffered from ISO-treatment after 2,12 and 72 h were obviously increased compared with that of the precipitate of the liver tissue of the normal rats suffered from 0.9 g/L normal saline(NS) treatment.These results indicate that LRS and UV-Vis can be harmless,nondestructive,rapid and effective methods for analyzing different pathological specimens of liver tissue from myocardial ischemia rats.

  16. Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown

    Science.gov (United States)

    Varghese, Babu; Bonito, Valentina; Jurna, Martin; Palero, Jonathan; Verhagen, Margaret Hortonand Rieko

    2015-01-01

    We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown. Furthermore, irradiance threshold gradually decreases with the increase in the absorption properties of the medium. Creating breakdown with lower irradiance threshold that is specific at the target chromophore can provide intrinsic target selectivity and improve safety and efficacy of skin treatment methods that use laser induced breakdown. PMID:25909007

  17. Innovative Drug Injection via Laser Induced Plasma

    Science.gov (United States)

    Han, Tae-hee; Yoh, Jack J.

    2010-10-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of the nozzle is 125 um and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  18. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  19. Liposome micropatterning based on laser-induced forward transfer

    Science.gov (United States)

    Palla-Papavlu, Alexandra; Paraico, Iurie; Shaw-Stewart, James; Dinca, Valentina; Savopol, Tudor; Kovacs, Eugenia; Lippert, Thomas; Wokaun, Alexander; Dinescu, Maria

    2011-03-01

    The numerous properties of liposomes, i.e., nontoxicity, biodegradability, and their ability to encapsulate different biological active substances in aqueous and lipid phase, make them perfect models of biomembranes. Liposomes made up of phospholipids may be used to study new applications such as cell targeting or, under specific experimental conditions, may be applied in micro and nano-sized biosensors. This study demonstrates the capability of direct laser printing of liposomes in micron-scale patterns for the realization of biosensors or drug delivery systems. The transfer experiments were carried out onto ordinary glass substrates, and optical microscopy images reveal that well-defined patterns without splashes can be obtained for a narrow range of laser transfer fluences using 193 nm irradiation and an intermediate triazene polymer. The triazene polymer with different thicknesses was used as sacrificial layer with the purpose of protecting the liposome solution from direct laser irradiation. It was found that the thickness of the sacrificial layer should exceed 150 nm to obtain clean, debris-free patterns. Moreover, the integrity of the liposomes after laser transfer was maintained as demonstrated through fluorescence microscopy. Raman spectroscopy data suggest that the chemical composition of the liposomes does not change for transfer fluences in the range of 40 to 60 mJ/cm2. Following these results, one can envision that liposome patterns obtained by LIFT can be ultimately applied for in vitro and in vivo studies.

  20. Active Laser and Raman Materials for 1.3-5 Micron Spectral Range

    Science.gov (United States)

    2006-03-01

    1989, pp. 270 (in Russian) 31. Handbook of lasers with selected data on optical technology, Ed. R.J. Pressley, Chemical Rubber Co, Cleveland, 1971 32...decreasing from surface to volume. Black surface has high electric conductivity . The results of electron microanalysis indicate that color is connected with...effective samples purification from tungsten without it destroying. The dipping of green yttria compact into crumb from yttria particles was

  1. Laser-induced quantum pumping in graphene

    Energy Technology Data Exchange (ETDEWEB)

    San-Jose, Pablo [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid (Spain); Prada, Elsa; Kohler, Sigmund [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Schomerus, Henning [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-10-08

    We investigate non-adiabatic electron pumping in graphene generated by laser irradiation with linear polarization parallel or perpendicular to the transport direction. Transport is dominated by the spatially asymmetric excitation of electrons from evanescent into propagating modes. For a laser with parallel polarization, the pumping response exhibits a subharmonic resonant enhancement which directly probes the Fermi energy; no such enhancement occurs for perpendicular polarization. The resonance mechanism relies on the chirality of charge carriers in graphene.

  2. In situ Raman monitoring of He{sup 2+} irradiation induced damage in a UO{sub 2} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Guimbretière, G.; Canizarès, A.; Duval, F.; Raimboux, N.; Omnée, R.; Ammar, M. R.; Simon, P. [CNRS/UPR3079 CEMHTI, 45071 Orléans Cedex 2 et Université d' Orléans, 45067 Orléans Cedex 2 (France); Desgranges, L. [CEA/DEN/DEC Bat 352 Cadarache, 13108 Saint Paul lez Durance (France); Caraballo, R.; Jégou, C. [CEA/DTCD/SECM/LMPA, Marcoule 30207 Bagnols Sur Ceze (France)

    2013-07-22

    The in situ Raman probing of a UO{sub 2} ceramic in [Ar/H{sub 2}, 95/5] gas atmosphere followed by exposure to He{sup 2+} ionic irradiation coming from a cyclotron accelerator was implemented. It was observed that the growth of Raman defect bands exhibits a unique kinetic nicely modelized by a simple direct impact model, and with an annealing rate constant of 5.6 × 10{sup −4} ± 4 × 10{sup −5} s{sup −1} for an ionic flow of 50 nA and an ions-beam induced sample heating of 170 ± 10 °C. Also, it was observed that the Ar plasma induced by the ions-beam is a sensitive probe of the presence of the ions-beam.

  3. The investigation on the pressure-induced phase transition in linoleic acid by in situ Raman spectroscopy

    Science.gov (United States)

    Ya, Fan; Jing, Zhou; Da-Peng, Xu

    2014-08-01

    With diamond anvil cell as a high-pressure apparatus, the in situ Raman spectra of linoleic acid from normal pressure to 1.29 GPa were measured to investigate the effect of pressure on the structural changes. In the pressure ranges of 0.07-0.12 GPa and 0.31-0.53 GPa, the significant changes in Raman spectra show that linoleic acid undergoes two pressure-induced phase transitions. Spectral analysis indicates that the polymethylene chain of linoleic acid molecule transforms from the disordered gauche conformation to the ordered trans conformation in the range of 0.07-0.12 GPa. And the polymethylene chain of linoleic acid molecule remains the ordered trans conformation whereas the conformation of the olefin group significantly changes and the degree of conformational order increases in the range of 0.31-0.53 GPa. The pressure-induced phase transitions in linoleic acid are reversible.

  4. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid

    Science.gov (United States)

    Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.

    2015-03-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  5. Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis.

    Science.gov (United States)

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-05-01

    The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.

  6. Reactive laser-induced ablation as approach to titanium oxycarbide films

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, V., E-mail: jandova@icpf.cas.cz; Fajgar, R.; Dytrych, P.; Kostejn, M.; Drinek, V.; Kupcik, J.

    2015-09-01

    The IR laser-induced reactive ablation of frozen titanium ethoxide target was studied. The method involves the laser ablation of titanium ethoxide at − 140 °C in gaseous methane (4–50 Pa) atmosphere. This process leads to reactions of the ablative species with hydrocarbon in the gaseous phase. During the ablation of the frozen target excited species interact with methane molecules. The reactive ablation process leads to the formation of a smooth thin film. The thickness of prepared films depends on the number of IR pulses and their composition depends on the pressure of gaseous methane. This reactive IR ablation proceeds as a carbidation process providing nanostructured films with good adhesion to various substrates (glass, metals, KBr) depending on the carbon content in prepared films. Particles are also stabilized by layer preventing their surface oxidation in the atmosphere. The described results are important in the general context for the synthesis of reactive particles in the gas phase. The final products are characterized by spectroscopic, microscopic and diffraction techniques: SEM/EDX, HRTEM, electron diffraction, Raman spectroscopy and XPS. - Highlights: • IR laser ablation of frozen target of titanium ethoxide leads to a reduction in the gaseous methane (4-50 Pa). • Films deposited in methane have Ti/O/C stoichiometry and are oxidized in the atmosphere. • Layers deposited in methane are reduced and have less O in the topmost layers.

  7. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  8. Optofluidic lens actuated by laser-induced solutocapillary forces

    Science.gov (United States)

    Malyuk, A. Yu.; Ivanova, N. A.

    2017-06-01

    We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.

  9. Image Analysis of Plasma Induced by Focused IR Pulsed Laser

    Directory of Open Access Journals (Sweden)

    Ahmad Hadi Ali

    2011-12-01

    Full Text Available Plasma induced by focused laser beam is very essential especially in laser material interaction. Preliminary study leading to this research has been carried out. A Q-switch Nd:YAG laser was employed as a source of energy. The laser was focused using a wide-angle camera lens. The formation of plasma at the focal region was visualized perpendicularly using a CCD video camera interfaced to an image processing system. The dynamic expansion of the laser plasma was grabbed in conjunction with a high-speed photographic system. The observation results show that the plasma was formed in an ellipsoidal shape. The lateral width and the length of the plasma were found gradually increased

  10. Laser-induced break-up of water jet waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Couty, P.; Hoffmann, P. [EPFL/STI/IOA/Advanced Photonics Laboratory, Lausanne BM, 1015, Lausanne (Switzerland); Spiegel, A.; Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Ugurtas, B.I. [EPFL/STI/IMHEF/Laboratory Fluid Mechanics, Lausanne, 1015, Lausanne (Switzerland)

    2004-06-01

    In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser ({lambda}=532 nm). The jet diameter was 48 {mu}m and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets. (orig.)

  11. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  12. Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, G.H. [Physics Department of University Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n" o – CEP 24210-346 – Niterói, Rio de Janeiro (Brazil); Rocha, A.A. [Department of Analytical Chemistry of the Fluminense Federal University (UFF), Niterói, Rio de Janeiro CEP: 24020-141 (Brazil); Damasceno, R.N. [Biomass and Water Research Center of the Fluminense Federal University (NAB/UFF), Niterói, Rio de Janeiro (Brazil); Legnaioli, S.; Lorenzetti, G.; Pardini, L. [Institute of Chemistry of Organometallic Compounds Of CNR, Research Area of National Research Council, Via G. Moruzzi, 1 — 56124 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Institute of Chemistry of Organometallic Compounds Of CNR, Research Area of National Research Council, Via G. Moruzzi, 1 — 56124 Pisa (Italy)

    2013-09-01

    Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence. - Highlights: • Samples of scales from petroleum pipelines were analyzed using double pulse LIBS. • LIBS is proposed as an alternative method to conventional analytical techniques. • The scale growth is influenced by the product of corrosion in the column of production. • The diffusion of pipe material into the inlay is important for the growth of scale.

  13. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  14. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  15. Time-resolved laser-induced breakdown spectroscopy of aluminum

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-yun; ZHANG Wei-jun; WANG Zhen-ya; HAO Li-qing; HUANG Ming-qiang; ZHAO Wen-wu; LONG Bo; Zhao Wei

    2008-01-01

    We develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy (LIBS) in our laboratory, which can be used for the determination of elements in solids, liquids and aerosols. A description of the instrumentation, including laser, sample chamber and detection, is followed by a brief discussion. The time-resolved LIBS of aluminum at atmospheric pressure is presented. At the end, the possibilities and later uses of this technique are briefly discussed.

  16. Towards Friction Control using laser-induced periodic Surface Structures

    OpenAIRE

    Eichstädt, J.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2011-01-01

    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two D2-Experiments. For the transfer of results from static experiments to areas of LIPSS we propose the discrete accumulation of fluences. Areas covered by homogeneously distributed LIPSS were machined...

  17. Raman Spectroscopy of the Interferon-Induced 2’,5’-Oligoadenylates

    Science.gov (United States)

    1987-06-25

    generation of the Raman spectrum of triethyl ammonium ion ••••••••••••••••••••••••••••••• 41 12. structures of purine, adenine, purine riboside , adenosine...ribose 5 1-phosphate, AMP, and ATP........ 48 13. Raman spectra of adenine and purine •••••••.••••••••• 49 14. Raman spectra of purine riboside and... nicotinamide adenine dinucleotide; TFAB, triethyl anunonium bicarbonate; TFA, triethyl amm::mium. ion; CD circular _dichroism; NMR, nuclear magnetic

  18. Efficiencies of Rotational Raman, and Rayleigh Techniques for Laser Remote Sensing of the Atmospheric Temperature

    Science.gov (United States)

    Ivanova, I. D.; Gurdev, L. L.; Mitev, V. M.

    1992-01-01

    Various lidar methods have been developed for measuring the atmospheric temperature, making use of the temperature dependant characteristics of rotational Raman scattering (RRS) from nitrogen and oxygen, and Rayleigh or Rayleigh-Brillowin scattering (RS or RBS). These methods have various advantages and disadvantages as compared to each other but their potential accuracies are principal characteristics of their efficiency. No systematic attempt has been undertaken so far to compare the efficiences, in the above meaning, of different temperature lidar methods. Two RRS techniques have been compared. Here, we do such a comparison using two methods based on the detection and analysis of RS (RBS) spectra. Four methods are considered here for measuring the atmospheric temperature. One of them (Schwiesow and Lading, 1981) is based on an analysis of the RS linewidth with two Michelson interferometers (MI) in parallel. The second method (Shimisu et al., 1986) employs a high-resolution analysis of the RBS line shape. The third method (Cooney, 1972) employs the temperature dependance of the RRS spectrum envelope. The fourth method (Armstrong, 1974) makes use of a scanning Fabry-Perot interferometer (FPI) as a comb filter for processing the periodic RRS spectrum of the nitrogen. Let us denote the corresponding errors in measuring the temperature by sigma(sub MI), sigma(sub HR), sigma(sub ENV), and sigma(sub FPI). Let us also define the ratios chi(sub 1) = sigma(sub MI)/sigma(sub ENV), chi(sub 2) = sigma(sub HR)/sigma(sub ENV), and chi(sub 3) = sigma(sub FPI)/sigma(sub ENV) interpreted as relative errors with respect to sigma(sub ENV).

  19. Laser Raman detection for oral cancer based on a Gaussian process classification method

    Science.gov (United States)

    Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Zhang, Chijun; Chen, He; Luo, Yusheng; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Jia, Jun; Shen, Aiguo; Hu, Jiming

    2013-06-01

    Oral squamous cell carcinoma is the most common neoplasm of the oral cavity. The incidence rate accounts for 80% of total oral cancer and shows an upward trend in recent years. It has a high degree of malignancy and is difficult to detect in terms of differential diagnosis, as a consequence of which the timing of treatment is always delayed. In this work, Raman spectroscopy was adopted to differentially diagnose oral squamous cell carcinoma and oral gland carcinoma. In total, 852 entries of raw spectral data which consisted of 631 items from 36 oral squamous cell carcinoma patients, 87 items from four oral gland carcinoma patients and 134 items from five normal people were collected by utilizing an optical method on oral tissues. The probability distribution of the datasets corresponding to the spectral peaks of the oral squamous cell carcinoma tissue was analyzed and the experimental result showed that the data obeyed a normal distribution. Moreover, the distribution characteristic of the noise was also in compliance with a Gaussian distribution. A Gaussian process (GP) classification method was utilized to distinguish the normal people and the oral gland carcinoma patients from the oral squamous cell carcinoma patients. The experimental results showed that all the normal people could be recognized. 83.33% of the oral squamous cell carcinoma patients could be correctly diagnosed and the remaining ones would be diagnosed as having oral gland carcinoma. For the classification process of oral gland carcinoma and oral squamous cell carcinoma, the correct ratio was 66.67% and the erroneously diagnosed percentage was 33.33%. The total sensitivity was 80% and the specificity was 100% with the Matthews correlation coefficient (MCC) set to 0.447 213 595. Considering the numerical results above, the application prospects and clinical value of this technique are significantly impressive.

  20. Dependence of Electromagnetically Induced Transparency on Laser Linewidth

    Institute of Scientific and Technical Information of China (English)

    郭瑞民; 肖峰; 刘成; 张宇; 陈徐宗

    2003-01-01

    The influence of the linewidth of coupling laser on the electromagnetically induced transparency (EIT) spectral width is theoretically investigated. The model to describe the EIT spectral width is based on the standard semi-classical theory. The result shows that the effect of the linewidth of coupling laser is equivalent to an additional relaxation between two ground states in the A-type configuration. A broadening linewidth of coupling laser implies the increasing relaxation between the two ground states, which will make the wider EIT spectral linewidth.

  1. Femtosecond laser induced porosity in poly-methyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Baset, Farhana, E-mail: fbaset@gmail.com; Villafranca, Ana, E-mail: avillafr@uottawa.ca; Guay, Jean-Michel, E-mail: guay_jeanmichel@hotmail.com; Bhardwaj, Ravi, E-mail: ravi.bhardwaj@uottawa.ca

    2013-10-01

    We show that femtosecond laser ablation of poly-methyl methacrylate (PMMA) induces porosity within the ablation crater that increases with pulse energy/fluence and number of laser shots. For deeper craters the porosity evolves into 3D honeycomb like structure on the sidewalls. Using imaging technique, we show that the porous area fraction decreases with pulse energy while the pore size distribution peaks at a pore area of 0.037 μm{sup 2} at higher energies. In line ablation, the pore size increases with the speed at which the laser focus is moved.

  2. Trace metal mapping by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Jozef [ORNL; Novotny, Dr. Karel [Masaryk University; Hrdlicka, A [Brno University of Technology, Czech Republic; Malina, R [Brno University of Technology, Czech Republic; Hartl, M [Brno University of Technology, Czech Republic; Kizek, R [Mendel University of Brno; Adam, V [Mendel University of Brno

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  3. Computer simulations of laser-induced melting of aluminum

    Science.gov (United States)

    Tang, Hong; Bai, Mingze; Dou, Yusheng; Ran, Qi; Lo, Glenn V.

    2013-04-01

    Laser-induced solid-to-liquid phase transitions in 100 nm aluminum film were simulated using a hybrid model that combines molecular dynamics (MD) with a continuum description of the laser excitation and a two-temperature method (TTM) to model the relaxation of conduction band electrons. When the laser fluence provides more energy than needed for a complete melting of the film, the phase transition is characterized by an ultrafast collapse of the crystal structure within 2-3 ps. Otherwise, the transition involves a homogeneous nucleation and growth of liquid zones inside the crystal and a heterogeneous propagation of transition fronts from the external surfaces or nucleated liquid zones.

  4. Could near-infrared Raman spectroscopy be correlated with the METAVIR scores in liver lesions induced by hepatitis C virus?

    Science.gov (United States)

    Gaggini, Marcio Cesar Reino; Navarro, Ricardo Scarparo; Stefanini, Aline Reis; Sano, Rubens Sato; Silveira, Landulfo

    2013-03-01

    The liver is responsible for several basic functions in human body how the syntheses of the most main proteins and degradation process of toxins, drugs and alcohols. In present days, the viral hepatitis C is one of the highest causes of chronic hepatic illness worldwide, affecting around 3% of the world population. The liver biopsy is considered the gold standard for diagnosing hepatic fibrosis; however, the biopsies may be questioned because of potential sampling error, morbidity, possible mortality and relatively high costs. Spectroscopy techniques such as Raman spectroscopy have been used for diagnosis of human tissues, with favorable results. Raman spectroscopy has been employed to distinguish normal from hepatic lesions through spectral features mainly of proteins, nucleic acids and lipids. In this study, eleven patients with diagnoses of chronic hepatitis C underwent hepatic biopsies having two hepatic fragments collected: one was scored through METAVIR system and the other one was submitted to near-infrared Raman spectroscopy using a dispersive spectrometer (830 nm wavelength, 300 mW laser power and 20 s exposure time). Five spectra were collected in each fragment and submitted to Principal Components Analysis (PCA). Results showed a good correlation between the Raman spectroscopy features and the stage of hepatic fibrosis and inflammation. PCA showed that samples with higher degree of fibrosis presented higher amount of protein features (collagen), whereas samples of higher degree of inflammation presented higher features of hemoglobin, in accordance to the expected evolution of the chronic hepatitis. It has been found an important biomarker for the beginning of hepatic lesion (quinone) with a spectral feature at 1595 cm-1.

  5. Laser induced damage in optical materials: 1989

    Science.gov (United States)

    Bennett, H. E.; Chase, L. L.; Guenther, A. H.; Newnam, B. E.; Soileau, M. J.

    1990-10-01

    The 21st Annual Symposium on Optical Materials for High Power Lasers was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and, finally, Fundamental Mechanisms. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power apparatus. The wavelength range of the prime interest included surface characterization, thin film substrate boundaries, and advances in fundamental laser matter threshold interactions and mechanisms. The scalling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail.

  6. Thermally induced mode distortion and its limit to power scaling of fiber lasers.

    Science.gov (United States)

    Ke, Wei-Wei; Wang, Xiao-Jun; Bao, Xian-Feng; Shu, Xiao-Jian

    2013-06-17

    A general model is proposed to describe thermal-induced mode distortion in the step-index fiber (SIF) high power lasers. Two normalized parameters in the model are able to determine the mode characteristic in the heated SIFs completely. Shrinking of the mode fields and excitation of the high-order modes by the thermal-optic effect are investigated. A simplified power amplification model is used to describe the output power redistribution under various guiding modes. The results suggest that fiber with large mode area is more sensitive on the thermally induced mode distortion and hence is disadvantaged in keeping the beam quality in high power operation. The model is further applied to improve the power scaling analysis of Yb-doped fiber lasers. Here the thermal effect is considered to couple with the optical damage and the stimulated Raman scattering dynamically, whereas direct constraint from the thermal lens is relaxed. The resulting maximal output power is from 67kW to 97kW, depending on power fraction of the fundamental mode.

  7. Detection of Receptor-Induced Glycoprotein Conformational Changes on Enveloped Virions by Using Confocal Micro-Raman Spectroscopy

    Science.gov (United States)

    Lu, Xiaonan; Liu, Qian; Benavides-Montano, Javier A.; Nicola, Anthony V.; Aston, D. Eric; Rasco, Barbara A.

    2013-01-01

    Conformational changes in the glycoproteins of enveloped viruses are critical for membrane fusion, which enables viral entry into cells and the pathological cell-cell fusion (syncytia) associated with some viral infections. However, technological capabilities for identifying viral glycoproteins and their conformational changes on actual enveloped virus surfaces are generally scarce, challenging, and time-consuming. Our model, Nipah virus (NiV), is a syncytium-forming biosafety level 4 pathogen with a high mortality rate (40 to 75%) in humans. Once the NiV attachment glycoprotein (G) (NiV-G) binds the cell receptor ephrinB2 or -B3, G triggers conformational changes in the fusion glycoprotein (F) that result in membrane fusion and viral entry. We demonstrate that confocal micro-Raman spectroscopy can, within minutes, simultaneously identify specific G and F glycoprotein signals and receptor-induced conformational changes in NiV-F on NiV virus-like particles (VLPs). First, we identified reproducible G- and F-specific Raman spectral features on NiV VLPs containing M (assembly matrix protein), G, and/or F or on NiV/vesicular stomatitis virus (VSV) pseudotyped virions via second-derivative transformations and principal component analysis (PCA). Statistical analyses validated our PCA models. Dynamic temperature-induced conformational changes in F and G or receptor-induced target membrane-dependent conformational changes in F were monitored in NiV pseudovirions in situ in real time by confocal micro-Raman spectroscopy. Advantageously, Raman spectroscopy can identify specific protein signals in relatively impure samples. Thus, this proof-of-principle technological development has implications for the rapid identification and biostability characterization of viruses in medical, veterinary, and food samples and for the analysis of virion glycoprotein conformational changes in situ during viral entry. PMID:23283947

  8. Determination of flame temperature using laser induced fluorescence (LIF)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Lina Augusta Martins Ramos da [Instituto Tecnologico de Aeronautica (ITA/DCTA), Sao Jose dos Campos, SP (Brazil); Barreta, Gilberto; Carinhana Junior, Dermeval; Toledo, Antonio Osny de [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    Full text: Laser Induced Fluorescence, LIF, is one of the most used techniques in combustion diagnostics. The excitation method is based on the spontaneous spectrum from atoms or molecules that were excited by laser radiation. In general, intermediated combustion species, as OH and CH radicals, are used as temperature probes. Usually, several rotational levels are used by tuning the laser afterwards across the corresponding absorption transitions. The emission spectrum is detected in a convenient spectral range. The accuracy of measurements depends on the laser linewidth, the delay between the laser excitation and spectra detection and, mainly, the spectral interval of laser excitation. In this work, OH LIF spectra from stoichiometric LPG (Liquefied Petroleum Gas) flames were obtained using a tuned laser with a spectral range set from 282 nm up to 283 nm. This corresponds to the rotation levels of the 0-1 vibration band of OH radical. The laser energy was ca. 0.2 mJ. The emission spectrum was collected in the spectral range of the 305-310 nm, which corresponds to the region of the 0-0 band. The temperature was determined by the Boltzmann method. This is based on the measurement of the relative peak intensities of the emission spectrum. A plot of natural logarithm of line intensities versus energy level returns a straight line, whose slope is the inverse of the rotational temperature. The flame temperature was ca. 2300 K. This value is consistent with previous results obtained in our laboratory. (author)

  9. Ultraviolet Laser-induced ignition of RDX single crystal

    Science.gov (United States)

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-02-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique.

  10. Broadband Fiber Raman Power-Amplifier for Narrow Linewidth Tunable Seed Lasers Used in Spectroscopic Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an energy and space efficient high power continuous wave (cw) narrow linewidth broadband fiber Raman amplifier (FRA) with spectrally tunable...

  11. Self-induced white-light seeding laser in a femtosecond laser filament

    CERN Document Server

    Chu, Wei; Xie, Hongqiang; Ni, Jielei; Yao, Jinping; Zeng, Bin; Zhang, Haisu; Jing, Chenrui; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    We report, for what we believe to be the first time, on the generation of remote self-seeding laser amplification by using only one 800 nm Ti:Sapphire femtosecond laser pulse. The laser pulse (~ 40 fs) is first used to generate a filament either in pure nitrogen or in ambient air in which population inversion between ground and excited states of nitrogen molecular ions is realized. Self-induced white light inside the filament is then serving as the seed to be amplified. The self-induced narrow-band laser at 428 nm has a pulse duration of ~2.6 ps with perfect linear polarization property. This finding opens new possibilities for remote detection in the atmosphere.

  12. Laser-induced pattern formation from homogeneous polyisoprene solutions

    Institute of Scientific and Technical Information of China (English)

    Lin Dian-Yang; Li Ming; Wang Shu-Jie; Lü Zhi-Wei

    2008-01-01

    This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C60 induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns change with the increase of the laser irradiation time. In the initial phase, the patterns with concentric ring-shaped structure are formed. In the end, the patterns become speckle-shaped. The incubation time of the transmitted beam widening is inversely proportional to the laser power density and solution concentration. The pattern formation results from the optical-field-induced refractive index changes in the solutions, but the mechanism of optical-field-induced refractive index changes in the polymer solutions needs to be further studied.

  13. Research on laser induced particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Natascha; Buescher, Markus [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Willi, Oswald; Jung, Ralph [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet Duesseldorf (Germany); Seltmann, Michael [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); FH Aachen (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany)

    2009-07-01

    By directing a high-power, ultrashort laser pulse onto a thin foil, it is now possible to produce electron, proton and ion beams. However, for realizing reliable laser-driven accelerators one must still overcome fundamental and technological limitations. One current challenge is to continuously provide mass-limited targets into the laser focus in which its energy can be effectively converted into kinetic energy of the accelerated ions. IKP and ILPP have initiated a corresponding joint project based on a worldwide unique frozen pellet target that can provide a regular flux of frozen spheres of e.g. H2, N2, Ar and Xe, and the 100-TW laser system PULSAR at ILPP. As a first step measurements are carried out with conventional gas and foil targets. These measurements include detector developement for fast particle detection and magnetic focusing of the particle beam as well as optical probing of the plasma itself, in order to better understand the ion-acceleration mechanisms. The talk outlines the status of the research and the results of the first measurements.

  14. Ultrasound induced by CW laser cavitation bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P, E-mail: korneev@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Apt. Postal 51 y 216 CP72000, Puebla, Pue. (Mexico)

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  15. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light.

    Science.gov (United States)

    Zhu, Haiyong; Duan, Yanmin; Zhang, Ge; Huang, Chenghui; Wei, Yong; Shen, Hongyuan; Zheng, Yiqun; Huang, Lingxiong; Chen, Zhenqiang

    2009-11-23

    A high power and efficient 588 nm yellow light is demonstrated through intracavity frequency doubling of an acousto-optic Q-switched self-frequency Raman laser. A 30-mm-length double-end diffusion-bonded Nd:YVO(4) crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering. A 15-mm-length LBO with non-critical phase matching (theta = 90 degrees, phi = 0 degrees) cut was adopted for efficient second-harmonic generation. The focus position of incident pump light and both the repetition rate and the duty cycle of the Q-switch have been optimized. At a repetition rate of 110 kHz and a duty cycle of 5%, the average power of 588 nm light is up to 7.93 W while the incident pump power is 26.5 W, corresponding to an overall diode-yellow conversion efficiency of 30% and a slope efficiency of 43%.

  16. Raman laser based on a KGd(WO4)2 crystal: generation of stokes components in the 1.7-1.8 μm range*

    Science.gov (United States)

    Dashkevich, V. I.; Orlovich, V. A.

    2013-01-01

    We have studied the lasing characteristics of a Raman laser based on an Nd:KGW crystal, converting multimode emission of a pulsed Nd:KGW laser with working transition 4F3/2-4I13/2 (1351 nm) to Stokes components with wavelengths in the 1700-1800 nm range. We show that when the pump polarization coincides with the N m axis of the optical indicatrix of KGW ( E || N m ), the conversion efficiency for converting the pump radiation to the single second Stokes component with λ ~ 1786 nm reaches 17.5%, which results in an ~6.6 mJ Raman pulse. For E || N g , the conversion efficiency increases up to 22.5% and generation of an ~15 ns pulse occurs on four Stokes components with wavelengths 1704, 1744, 1770, and 1786 nm due to involvement of 86 cm-1, 767 cm-1, and 901 cm-1 vibrational modes in the stimulated Raman (SRS) process. We have determined the spectral distribution of the pulse energy. A total of 11 Stokes components are generated with participation of the indicated vibrational modes.

  17. Split-probe hybrid femtosecond/picosecond rotational CARS for time-domain measurement of S-branch Raman linewidths within a single laser shot.

    Science.gov (United States)

    Patterson, Brian D; Gao, Yi; Seeger, Thomas; Kliewer, Christopher J

    2013-11-15

    We introduce a multiplex technique for the single-laser-shot determination of S-branch Raman linewidths with high accuracy and precision by implementing hybrid femtosecond (fs)/picosecond (ps) rotational coherent anti-Stokes Raman spectroscopy (CARS) with multiple spatially and temporally separated probe beams derived from a single laser pulse. The probe beams scatter from the rotational coherence driven by the fs pump and Stokes pulses at four different probe pulse delay times spanning 360 ps, thereby mapping collisional coherence dephasing in time for the populated rotational levels. The probe beams scatter at different folded BOXCARS angles, yielding spatially separated CARS signals which are collected simultaneously on the charge coupled device camera. The technique yields a single-shot standard deviation (1σ) of less than 3.5% in the determination of Raman linewidths and the average linewidth values obtained for N(2) are within 1% of those previously reported. The presented technique opens the possibility for correcting CARS spectra for time-varying collisional environments in operando.

  18. Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm

    Science.gov (United States)

    Farinello, Paolo; Pirzio, Federico; Zhang, Xingyu; Petrov, Valentin; Agnesi, Antonio

    2015-09-01

    Raman conversion with a 50-mm-long SrWO4 crystal in a single-pass, traveling-wave setup has been investigated in both purely steady-state and transient stimulated Raman scattering (SRS) regimes. For steady-state SRS experiment, we employed as a pump source a Q-Switched master oscillator power amplifier (MOPA) laser system at 1064 nm, delivering 325 μJ, 550-ps-long pulses with diffraction limited beam quality and high spectral purity. At 2-kHz repetition rate, we obtained up to 90 μJ pulse energy and 250 ps pulse duration at 1180 nm, with a conversion slope efficiency close to quantum limit. To approach the transient SRS regime, we pumped the same crystal with 16-ps-long pulses from a hybrid MOPA laser system based on a mode-locked Yb-fiber oscillator followed by a diode-pumped bulk Nd:YVO4 power amplifier. At the maximum incident pump average power of 3.75 W, we obtained 1.4 W at the first Stokes Raman-shifted wavelength of 1180 nm (37 % optical-to-optical conversion efficiency), with 15 ps pulse duration and 70 % conversion slope efficiency.

  19. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng, E-mail: xfwang@tongji.edu.cn

    2015-08-30

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH){sub 4} nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10{sup 6} and a maximum relative standard deviation (RSD) of 0.18. • Ag{sub 2}O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH){sub 4} nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10{sup 6} and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag{sub 2}O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH){sub 4} NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO{sub 2} NBAs, which is much less active.

  20. Phase transformation and nanograting structure on TiO2 rutile single crystal induced by infrared femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Liang; Yang Jun-Yi; Lu Bo; Ma Guo-Hong

    2007-01-01

    In this paper, Titanium dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond laser pulses with repetition rate of 250 kHz. For a P-polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was formed. The periodicity is much less than the laser wavelength. The direction of nanograting alignment depends on the polarization laser beam. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of Alg Raman vibrating mode decreases apparently within the ablation crater. With the increase of irradiation time and laser average power, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase.