WorldWideScience

Sample records for rainfall-related flooding risks

  1. Impact of climate change on extreme rainfall events and flood risk

    Indian Academy of Sciences (India)

    The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts ...

  2. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  3. Towards large scale stochastic rainfall models for flood risk assessment in trans-national basins

    Science.gov (United States)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    While extensive research has been devoted to rainfall-runoff modelling for risk assessment in small and medium size watersheds, less attention has been paid, so far, to large scale trans-national basins, where flood events have severe societal and economic impacts with magnitudes quantified in billions of Euros. As an example, in the April 2006 flood events along the Danube basin at least 10 people lost their lives and up to 30 000 people were displaced, with overall damages estimated at more than half a billion Euros. In this context, refined analytical methods are fundamental to improve the risk assessment and, then, the design of structural and non structural measures of protection, such as hydraulic works and insurance/reinsurance policies. Since flood events are mainly driven by exceptional rainfall events, suitable characterization and modelling of space-time properties of rainfall fields is a key issue to perform a reliable flood risk analysis based on alternative precipitation scenarios to be fed in a new generation of large scale rainfall-runoff models. Ultimately, this approach should be extended to a global flood risk model. However, as the need of rainfall models able to account for and simulate spatio-temporal properties of rainfall fields over large areas is rather new, the development of new rainfall simulation frameworks is a challenging task involving that faces with the problem of overcoming the drawbacks of the existing modelling schemes (devised for smaller spatial scales), but keeping the desirable properties. In this study, we critically summarize the most widely used approaches for rainfall simulation. Focusing on stochastic approaches, we stress the importance of introducing suitable climate forcings in these simulation schemes in order to account for the physical coherence of rainfall fields over wide areas. Based on preliminary considerations, we suggest a modelling framework relying on the Generalized Additive Models for Location, Scale

  4. Impact of climate change on extreme rainfall events and flood risk in ...

    Indian Academy of Sciences (India)

    events and flood risk in India. P Guhathakurta∗. , O P Sreejith and P A Menon. India Meteorological Department, Shivajinagar, Pune 411 005, India. ∗ e-mail: pguhathakurta@rediffmail.com. The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to ...

  5. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    Science.gov (United States)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  6. Possible impacts of climate change on heavy rainfall-related flooding risks in Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.S.; Li, G.; Li, Q; Auld, H. [Meteorological Service of Canada Branch, Environment Canada, Toronto, Ontario (Canada)

    2008-07-01

    The overarching purpose of this study is to project changes in occurrence frequency of future heavy rainfall and high-flow events under downscaled climate change scenarios for four selected river watersheds (Grand, Humber, Thames, Rideau Rivers) in Ontario, Canada. This study comprises of three major parts: (1) historical simulation modeling to verify the events, (2) statistical downscaling to provide station-scale climate change scenarios, and (3) estimates of changes in frequency and magnitude of future events in 21st century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology/hydrology and various regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This talk will introduce this research project and outline the modeling exercise and result verification process. The major findings on future estimates from the study will be summarized in the presentation as well. The results show that under downscaled climate change scenarios, frequency of the future heavy rainfall and high-/low-flow events for four selected river basins in Ontario could increase in the future. One of the major conclusions from the studies is that the procedures used in the study have the potential to be incorporated into municipal/community emergency response plans, thus providing them with real-time forecasting information to minimize the risks. The implementation of the significant increases in future heavy rainfall-related flooding risks should be taken into consideration when revising engineering infrastructure design standards (including infrastructure maintenance and new construction) and developing adaptation strategies and policies. (author)

  7. Possible impacts of climate change on heavy rainfall-related flooding risks in Ontario, Canada

    International Nuclear Information System (INIS)

    Cheng, C.S.; Li, G.; Li, Q; Auld, H.

    2008-01-01

    The overarching purpose of this study is to project changes in occurrence frequency of future heavy rainfall and high-flow events under downscaled climate change scenarios for four selected river watersheds (Grand, Humber, Thames, Rideau Rivers) in Ontario, Canada. This study comprises of three major parts: (1) historical simulation modeling to verify the events, (2) statistical downscaling to provide station-scale climate change scenarios, and (3) estimates of changes in frequency and magnitude of future events in 21st century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology/hydrology and various regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This talk will introduce this research project and outline the modeling exercise and result verification process. The major findings on future estimates from the study will be summarized in the presentation as well. The results show that under downscaled climate change scenarios, frequency of the future heavy rainfall and high-/low-flow events for four selected river basins in Ontario could increase in the future. One of the major conclusions from the studies is that the procedures used in the study have the potential to be incorporated into municipal/community emergency response plans, thus providing them with real-time forecasting information to minimize the risks. The implementation of the significant increases in future heavy rainfall-related flooding risks should be taken into consideration when revising engineering infrastructure design standards (including infrastructure maintenance and new construction) and developing adaptation strategies and policies. (author)

  8. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g. DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized catchment area of 440ha and 10.400inhab. located in Jutland (Denmark), which has received the impact of several pluvial flooding in the last recent years. A historical rainfall dataset from the last 35 years from two different rain gauges located at 2 and 10 km from the study area has been provided by the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI). The most extreme 25 rainfall events have been selected through a two-step multi-criteria procedure, ensuring an adequate variability of rainfall, from extreme high peak storms with a short duration to moderate rainfall with longer duration. In addition, a coupled 1D/2D surface and network UDS model of the catchment area developed in an integrated MIKE URBAN and MIKE Flood model (DHI 2014), considering both permeable and impermeable areas, in combination with a DTM (2x2m res.) has been used to study and assess in detail flood RP. Results show an ambiguous relation between rainfall RP and flood response. Local flood levels, flood area and volume RP estimates should therefore not be neglected in

  9. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  10. Simple Method for Assessing Spread of Flood Prone Areas under Historical and Future Rainfall in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto

    2014-06-01

    Full Text Available From 1931 to 2010 the flood frequency in Upper Citarum Watershed had increased sharply indicating the decline of the wateshed quality. With the change of climate, risk of the flood may get worse. This study aims to determine effective rainfall that caused flooding and to evaluate the impact of future rainfall changes on the flood prone areas. Effective rainfall which contributes to direct runoff (DRO and leads to flooding was determined using regression equation relating the DRO and cumulative rainfall of a number of consecutive days. Mapping the flood prone areas was developed using the GIS techniques. Results showed that the effective rainfall which caused flooding was the rainfall accumulation for four consecutive days before occurrence of peak of DRO. The percentage of accuracy between estimated and actual flood maps was about 76.9%. According to historical rainfall, the flood prone areas spreaded at right and left directions of the Upstream Citarum River. If this area experiences the climate change, the frequency and flood extents will increase. This study can only identify locations and possibility of flood occurrence but it cannot demonstrate widespread of flood inundation precisely. However, this simple approach can evaluate the flood frequency and intensity quite well.

  11. Urban flood return period assessment through rainfall-flood response modelling

    DEFF Research Database (Denmark)

    Murla, Damian; Thorndahl, Søren Liedtke

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS......), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g.DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may...... cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized...

  12. Evaluation of Stochastic Rainfall Models in Capturing Climate Variability for Future Drought and Flood Risk Assessment

    Science.gov (United States)

    Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.

    2016-12-01

    One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.

  13. An Advanced Method to Apply Multiple Rainfall Thresholds for Urban Flood Warnings

    Directory of Open Access Journals (Sweden)

    Jiun-Huei Jang

    2015-11-01

    Full Text Available Issuing warning information to the public when rainfall exceeds given thresholds is a simple and widely-used method to minimize flood risk; however, this method lacks sophistication when compared with hydrodynamic simulation. In this study, an advanced methodology is proposed to improve the warning effectiveness of the rainfall threshold method for urban areas through deterministic-stochastic modeling, without sacrificing simplicity and efficiency. With regards to flooding mechanisms, rainfall thresholds of different durations are divided into two groups accounting for flooding caused by drainage overload and disastrous runoff, which help in grading the warning level in terms of emergency and severity when the two are observed together. A flood warning is then classified into four levels distinguished by green, yellow, orange, and red lights in ascending order of priority that indicate the required measures, from standby, flood defense, evacuation to rescue, respectively. The proposed methodology is tested according to 22 historical events in the last 10 years for 252 urbanized townships in Taiwan. The results show satisfactory accuracy in predicting the occurrence and timing of flooding, with a logical warning time series for taking progressive measures. For systems with multiple rainfall thresholds already in place, the methodology can be used to ensure better application of rainfall thresholds in urban flood warnings.

  14. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China

    Directory of Open Access Journals (Sweden)

    J. J. Lian

    2013-02-01

    Full Text Available Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms. The combined effect of multiple sources and the joint probability of extremes should be considered to assess and manage flood risk better. This paper aims to study the combined effect of rainfall and the tidal level of the receiving water body on flood probability and severity in Fuzhou City, which has a complex river network. Flood severity under a range of precipitation intensities, with return periods (RPs of 5 yr to 100 yr, and tidal levels was assessed through a hydrodynamic model verified by data observed during Typhoon Longwang in 2005. According to the percentages of the river network where flooding occurred, the threshold conditions for flood severity were estimated in two scenarios: with and without working pumps. In Fuzhou City, working pumps efficiently reduce flood risk from precipitation within a 20-yr RP. However, the pumps may not work efficiently when rainfall exceeds a 100-yr RP because of the limited conveyance capacity of the river network. Joint risk probability was estimated through the optimal copula. The joint probability of rainfall and tidal level both exceeding their threshold values is very low, and the greatest threat in Fuzhou comes from heavy rainfall. However, the tidal level poses an extra risk of flood. Given that this extra risk is ignored in the design of flood defense in Fuzhou, flood frequency and severity may be higher than understood during design.

  15. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    Science.gov (United States)

    Gaitan, S.; ten Veldhuis, J. A. E.

    2015-06-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  16. Damaging Rainfall and Flooding. The Other Sahel Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Tarhule, A. [Department of Geography, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73079 (United States)

    2005-10-01

    Damaging rainfall and rain-induced flooding occur from time to time in the drought-prone Sahel savannah zone of Niger in West Africa but official records of these events and their socioeconomic impacts do not exist. This paper utilized newspaper accounts between 1970 and 2000 to survey and illustrate the range of these flood hazards in the Sahel. During the study interval, 53 newspaper articles reported 79 damaging rainfall and flood events in 47 different communities in the Sahel of Niger. Collectively, these events destroyed 5,580 houses and rendered 27,289 people homeless. Cash losses and damage to infrastructure in only three events exceeded $4 million. Sahel residents attribute these floods to five major causes including both natural and anthropogenic, but they view the flood problem as driven primarily by land use patterns. Despite such awareness, traditional coping strategies appear inadequate for dealing with the problems in part because of significant climatic variability. Analysis of several rainfall measures indicates that the cumulative rainfall in the days prior to a heavy rain event is an important factor influencing whether or not heavy rainfall results in flooding. Thus, despite some limitations, newspaper accounts of historical flooding are largely consistent with measured climatic variables. The study demonstrates that concerted effort is needed to improve the status of knowledge concerning flood impacts and indeed other natural and human hazards in the Sahel.

  17. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    Directory of Open Access Journals (Sweden)

    S. Gaitan

    2015-06-01

    Full Text Available Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  18. Flooding from Intense Rainfall: an overview of project SINATRA

    Science.gov (United States)

    Cloke, Hannah

    2014-05-01

    Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by

  19. Correlations between rainfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    DEFF Research Database (Denmark)

    Spekkers, Matthieu; Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus...... to underestimations of correlations between rainfall and damage variables. Rainfall data from two rain gauges were used to extract rainfall characteristics. From cross correlations between time series of rainfall and claim data, it can be concluded that rainfall events induce claims mostly on the same day, but also...

  20. The Use of Rainfall Variability in Flood Countermeasure Planning

    Directory of Open Access Journals (Sweden)

    Iis Catur Wulan Dhari

    2017-09-01

    Full Text Available One of the impacts of climate change is the unpredictable shifting of seasons and rainfall patterns which caused flooding. Rejoso Watershed in Pasuruan Regency is one of the watersheds that suffer from flooding almost every year due to watershed degradation characterized by land conversion and changes in the hydrological behavior including the extreme rainfall pattern. This research was aimed to investigate the effect of rainfall variability on runoff and floodwater level profile along the river channel to provide technical and non-technical recommendation for handling flood problems. The hydrological analysis was performed using HEC-HMS version 4.0 software and the hydraulic analysis was conducted using HEC-RAS version 5.0.3 software. Several variations of extreme rainfall pattern were applied in the rainfall-runoff calculation to determine the representative flood discharges that will be used as input to the hydraulic simulation for evaluating the characteristics of flood water level. The result of the research shows that rainfall with the same depth yet varies in duration and starting time generate different flood hydrographs. Rejoso River could not store flood discharge with return period of 2 years with peak discharge of 201.46 m3/s that causing overflow along the stream. The recommendation to handle flood problems is by normalization, which could reduce the overtopping at several river reaches of 4,927 m, while the combination of normalization and embankment could reduce 7,843 m from the existing river length of 12,396 m.

  1. Stochastic Urban Pluvial Flood Hazard Maps Based upon a Spatial-Temporal Rainfall Generator

    Directory of Open Access Journals (Sweden)

    Nuno Eduardo Simões

    2015-06-01

    Full Text Available It is a common practice to assign the return period of a given storm event to the urban pluvial flood event that such storm generates. However, this approach may be inappropriate as rainfall events with the same return period can produce different urban pluvial flooding events, i.e., with different associated flood extent, water levels and return periods. This depends on the characteristics of the rainfall events, such as spatial variability, and on other characteristics of the sewer system and the catchment. To address this, the paper presents an innovative contribution to produce stochastic urban pluvial flood hazard maps. A stochastic rainfall generator for urban-scale applications was employed to generate an ensemble of spatially—and temporally—variable design storms with similar return period. These were used as input to the urban drainage model of a pilot urban catchment (~9 km2 located in London, UK. Stochastic flood hazard maps were generated through a frequency analysis of the flooding generated by the various storm events. The stochastic flood hazard maps obtained show that rainfall spatial-temporal variability is an important factor in the estimation of flood likelihood in urban areas. Moreover, as compared to the flood hazard maps obtained by using a single spatially-uniform storm event, the stochastic maps generated in this study provide a more comprehensive assessment of flood hazard which enables better informed flood risk management decisions.

  2. Surrogate modeling of joint flood risk across coastal watersheds

    Science.gov (United States)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  3. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    Science.gov (United States)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood

  4. Rainfall variability and floods occurrence in the city of Bamenda (Northwest of Cameroon

    Directory of Open Access Journals (Sweden)

    Frederic Saha

    2017-06-01

    Full Text Available This study is based on analysis of rainfall data from 1951-2010 collected at the climatic station of Bamenda. We also use the results of a questionnaire survey applied to 172 households in at-risk neighborhoods. The inventory of some cases of flooding that occurred in the city of Bamenda was done through focus groups. The appreciation of the socio-economic and demographic environment is based on surveys among Cameroonian Households by the National Institute of Statistics (NIS and General Census of Population and Housing. Statistical examination revealed that annual rainfall in the city of Bamenda experienced a break in 1958. This break buckled the wettest decade of the series. After three decades of worsening, rainfall is experiencing rising since early 1990. The average profile of the annual distribution of rainfall shows a concentration of over 53% in 03 months (July, August and September. During these three months, the rivers of the city know their flood flows and populations in the valleys are affected. The analysis of the annual number of rainy days shows a downward trend and an increase of extreme rainfall event frequency (≥50mm in 24h. It is also apparent that more and more years are experiencing erratic distribution of their precipitation. Then, the perception of people is significantly reduced. Subsistence activities are also affected and development is facing new subtleties. In conclusion, the rainfall experienced strong variability in the city of Bamenda. This situation reinforces the risk of flooding by increasing flood water and increasing the vulnerability of populations.

  5. A Semi Risk-Based Approach for Managing Urban Drainage Systems under Extreme Rainfall

    Directory of Open Access Journals (Sweden)

    Carlos Salinas-Rodriguez

    2018-03-01

    Full Text Available Conventional design standards for urban drainage systems are not set to deal with extreme rainfall events. As these events are becoming more frequent, there is room for proposing new planning approaches and standards that are flexible enough to cope with a wide range of rainfall events. In this paper, a semi risk-based approach is presented as a simple and practical way for the analysis and management of rainfall flooding at the precinct scale. This approach uses various rainfall events as input parameters for the analysis of the flood hazard and impacts, and categorises the flood risk in different levels, ranging from very low to very high risk. When visualised on a map, the insight into the risk levels across the precinct will enable engineers and spatial planners to identify and prioritise interventions to manage the flood risk. The approach is demonstrated for a sewer district in the city of Rotterdam, the Netherlands, using a one-dimensional (1D/two-dimensional (2D flood model. The risk level of this area is classified as being predominantly very low or low, with a couple of locations with high and very high risk. For these locations interventions, such as disconnection and lowering street profiles, have been proposed and analysed with the 1D/2D flood model. The interventions were shown to be effective in reducing the risk levels from very high/high risk to medium/low risk.

  6. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  7. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia

    Science.gov (United States)

    White, C. J.; Franks, S. W.; McEvoy, D.

    2015-06-01

    Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  8. A rainfall distribution and their influence on flood generation in the eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Lenka Gaňová

    2013-01-01

    Full Text Available This paper aims to geographically assess the flood occurrence in eastern Slovakia by using one of the methods of multi-criteria analysis – rank sum method. Flood risk assessment is conducted in three specific cases: the long term period 1989–2009, the extremely wet 2010 year, and the extremely dry 2011 year. In the analyses, some of the causative factors for flooding in a basin area are taken into account. We use set of causative factors concerning mostly hydrological and physio-geographical characteristic of the target area that can be measured and evaluated such as soil type, daily precipitation (for the years 1989–2009, 2010, 2011, land use, catchment area and basin slope. For recommendation which causative factors should be preferred we use method of multicriteria analysis – ranking method. In the ranking method (RM, every factor/criterion under consideration is ranked in the order of the decision-maker’s preference. Geographic approach to flood risk assessment provides a descriptive presentation of the results obtained. Geographic information systems as a visualization tool is presented in a manner that aids understanding in a user friendly way.Regarding our task of flood risk assessment, the partial results are three composite maps, which present comparison of flood risk zones in percentage of the area in years 1989–2009, 2010, and 2011. The composite maps are background for risk assessment of the impact of rainfall on flood generation.This study of hydrological data and physio-geographical characteristic was carried out with the purpose of the identification of flood risk occurrence in eastern Slovakia. Results from our study shows, that rainfall distribution has high influence on flood risk of the area. Area percentage with very high flood risk index was calculated for “wet” year 2010 as 11.73 %, for “dry” year 2011 as 0.01 % and for period 1989–2009 as 0.28 %.

  9. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    Science.gov (United States)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  10. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    Science.gov (United States)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two

  11. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    Science.gov (United States)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  12. Using subseasonal-to-seasonal (S2S extreme rainfall forecasts for extended-range flood prediction in Australia

    Directory of Open Access Journals (Sweden)

    C. J. White

    2015-06-01

    Full Text Available Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal. Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  13. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator

    Science.gov (United States)

    Costa, Veber; Fernandes, Wilson

    2017-11-01

    Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods

  14. A Bayesian decision approach to rainfall thresholds based flood warning

    Directory of Open Access Journals (Sweden)

    M. L. V. Martina

    2006-01-01

    Full Text Available Operational real time flood forecasting systems generally require a hydrological model to run in real time as well as a series of hydro-informatics tools to transform the flood forecast into relatively simple and clear messages to the decision makers involved in flood defense. The scope of this paper is to set forth the possibility of providing flood warnings at given river sections based on the direct comparison of the quantitative precipitation forecast with critical rainfall threshold values, without the need of an on-line real time forecasting system. This approach leads to an extremely simplified alert system to be used by non technical stakeholders and could also be used to supplement the traditional flood forecasting systems in case of system failures. The critical rainfall threshold values, incorporating the soil moisture initial conditions, result from statistical analyses using long hydrological time series combined with a Bayesian utility function minimization. In the paper, results of an application of the proposed methodology to the Sieve river, a tributary of the Arno river in Italy, are given to exemplify its practical applicability.

  15. A framework of integrated hydrological and hydrodynamic models using synthetic rainfall for flash flood hazard mapping of ungauged catchments in tropical zones

    Directory of Open Access Journals (Sweden)

    W. Lohpaisankrit

    2016-05-01

    Full Text Available Flash flood hazard maps provide a scientific support to mitigate flash flood risk. The present study develops a practical framework with the help of integrated hydrological and hydrodynamic modelling in order to estimate the potential flash floods. We selected a small pilot catchment which has already suffered from flash floods in the past. This catchment is located in the Nan River basin, northern Thailand. Reliable meteorological and hydrometric data are missing in the catchment. Consequently, the entire upper basin of the main river was modelled with the help of the hydrological modelling system PANTA RHEI. In this basin, three monitoring stations are located along the main river. PANTA RHEI was calibrated and validated with the extreme flood events in June 2011 and July 2008, respectively. The results show a good agreement with the observed discharge data. In order to create potential flash flood scenarios, synthetic rainfall series were derived from temporal rainfall patterns based on the radar-rainfall observation and different rainfall depths from regional rainfall frequency analysis. The temporal rainfall patterns were characterized by catchment-averaged rainfall series selected from 13 rainstorms in 2008 and 2011 within the region. For regional rainfall frequency analysis, the well-known L-moments approach and related criteria were used to examine extremely climatic homogeneity of the region. According to the L-moments approach, Generalized Pareto distribution was recognized as the regional frequency distribution. The synthetic rainfall series were fed into the PANTA RHEI model. The simulated results from PANTA RHEI were provided to a 2-D hydrodynamic model (MEADFLOW, and various simulations were performed. Results from the integrated modelling framework are used in the ongoing study to regionalize and map the spatial distribution of flash flood hazards with four levels of flood severities. As an overall outcome, the presented framework

  16. Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping.

    Science.gov (United States)

    Mahmoud, Shereif H; Gan, Thian Yew

    2018-04-26

    The effects of urbanization and climate change impact to the flood risk of two governorates in Egypt were analyzed. Non-parametric change point and trend detection algorithms were applied to the annual rainfall, rainfall anomaly, and temperature anomaly of both study sites. Next, change points and trends of the annual and monthly surface runoff data generated by the Curve Number method over 1948-2014 were also analyzed to detect the effects of urbanization on the surface runoff. Lastly, a GIS decision support system was developed to delineate flood susceptibility zones for the two governorates. The significant decline in annual rainfall and rainfall anomaly after 1994 at 8.96 and 15.3 mm/decade respectively was likely due to climate change impact, especially significant warming trend since 1976 at 0.16 °C/decade, though that could partly be attributed to rapid urbanization. Since 1970, effects of urbanization to flood risk are clear, because despite a decline in rainfall, the annual surface runoff and runoff anomaly show positive trends of 12.7 and of 14.39 mm/decade, respectively. Eleven flood contributing factors have been identified and used in mapping flood susceptibility zones of both sites. In the El-Beheira governorate, 9.2%, 17.9%, 32.3%, 28.3% and 12.3% of its area are categorized as very high, high, moderate, low and very low susceptibility to flooding, respectively. Similarly, in Alexandria governorate, 15.9%, 33.5%, 41%, 8.8% and 0.8% of its area are categorized as very high, high, moderate, low and very low susceptibility to flooding, respectively. Very high and high susceptible zones are located in the northern, northwestern and northeastern parts of the Beheira governorates, and in the northeastern and northwestern parts of Alexandria. The flood related information obtained in this study will be useful to assist mitigating potential flood damages and future land use planning of both governorates of Egypt. Copyright © 2018 Elsevier B.V. All

  17. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  18. Urban flooding and health risk analysis by use of quantitative microbial risk assessment

    DEFF Research Database (Denmark)

    Andersen, Signe Tanja

    D thesis is to identify the limitations and possibilities for optimising microbial risk assessments of urban flooding through more evidence-based solutions, including quantitative microbial data and hydrodynamic water quality models. The focus falls especially on the problem of data needs and the causes......, but also when wading through a flooded area. The results in this thesis have brought microbial risk assessments one step closer to more uniform and repeatable risk analysis by using actual and relevant measured data and hydrodynamic water quality models to estimate the risk from flooding caused...... are expected to increase in the future. To ensure public health during extreme rainfall, solutions are needed, but limited knowledge on microbial water quality, and related health risks, makes it difficult to implement microbial risk analysis as a part of the basis for decision making. The main aim of this Ph...

  19. Modeling of Flood Risk for the Continental United States

    Science.gov (United States)

    Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.

    2011-12-01

    The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from

  20. Rainfall characteristics and occurrence of floods in Gombe ...

    African Journals Online (AJOL)

    Gombe metropolis has been experiencing urban flooding particular in the last two decades. The flood disasters of 2004, 2012 and 2014 in the metropolis were alarming. This paper is aimed at analyzing the rainfall characteristics of Gombe metropolis in order to examine the implications on the occurrence of flooding in the ...

  1. Should seasonal rainfall forecasts be used for flood preparedness?

    NARCIS (Netherlands)

    Coughlan, E.R.; Stephens, E.; Bischiniotis, K.; van Aalst, M.; van den Hurk, B.J.J.M.; Mason, S.; Nissan, H.; Pappenberger, F.

    2017-01-01

    In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale

  2. Dam Construction in Lancang-Mekong River Basin Could Mitigate Future Flood Risk From Warming-Induced Intensified Rainfall: Dam Mitigate Flood Risk in Mekong

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Changjiang Institute of Survey, Planning, Design and Research, Wuhan China; Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Joint Center for Global Change Studies, Beijing China; Ruby Leung, L. [Pacific Northwest National Laboratory, Richland WA USA; Li, Hong-Yi [Department of Land Resources and Environmental Sciences and Institute on Ecosystems, Montana State University, Bozeman MT USA; Zhao, Jianshi [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Tian, Fuqiang [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Yang, Kun [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Joint Center for Global Change Studies, Beijing China; Sothea, Khem [Mekong Institute of Cambodia, Phnom Penh Cambodia

    2017-10-25

    Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, with more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.

  3. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    OpenAIRE

    Carolien Toté; Domingos Patricio; Hendrik Boogaard; Raymond van der Wijngaart; Elena Tarnavsky; Chris Funk

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Cl...

  4. ANALYSIS OF RAINFALL PATTERN AND FLOOD INCIDENCES IN WARRI METROPOLIS, NIGERIA

    Directory of Open Access Journals (Sweden)

    R. Olanrewaju

    2017-01-01

    Full Text Available Climate change has led to changes in the known patterns of rainfall and other climatic variables as well as increase in the frequency and magnitude of natural disasters including floods in different parts of the world; and flood is indeed a global environmental issue that had destroyed lives and property amidst other untold hardships. The study examined rainfall characteristics in Warri metropolis for the past 30 years (1986-2015 vis-à-vis the flood situation in the metropolis; as well as the factors responsible and adaptation strategies to flood in the area. Dividing the study area into four zones after Sada (1977, the researchers collected rainfall data from the archives of Nigerian Meteorological Agency; 268 copies of questionnaire and oral interview were used. The result of the correlation analysis performed showed a negative relationship of -0.156 between rainfall and time (years, this implies that rainfall is decreasing over time. The trend line regression equation Y=243.75-0.4572X, confirms that rainfall in Warri Metropolis is decreasing at the rate of -0.45 per year. However, the p-value 0.412 is greater than 0.05, hence, the trend is not statistically significant at 95% level of confidence. It was discovered that rainfall, absence of drainage and poor urban planning practices (as factor 1 contributed 51.09% while overflowing of rivers, blocked/ poor drainage and untarred roads (as factor 2 contributed 44.10% variance to flood occurrence in the metropolis. Recommendations given included continual monitoring and study of rainfall characteristics and other climatic data and dissemination of such information for planning purposes; construction of integrated drainage system and river rechannelisation, legislation against dumping of refuse on roads and drainages; proper urban planning including implementation of the metropolitan urban drainage master plan. 

  5. ENSO-Based Index Insurance: Approach and Peru Flood Risk Management Application

    Science.gov (United States)

    Khalil, A. F.; Kwon, H.; Lall, U.; Miranda, M. J.; Skees, J. R.

    2006-12-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable, and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations data are inadequate to develop an index due to short time-series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here, ENSO related climate indices are explored for use as a proxy to extreme rainfall in one of the departments of Peru -- Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions (MFIs) to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods, but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many micro-enterprises. The reliability and quality of the local rainfall data is variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (a) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall; (b) the potential for clustering of payoffs; (c) the potential that the index could be predicted with some lead time prior to the flood season; and (d) evidence for climate change or non-stationarity in the flood exceedance probability from the long ENSO record. Finally, prospects for

  6. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    Science.gov (United States)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional

  7. Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps

    Science.gov (United States)

    Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter

    2017-04-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.

  8. Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City

    Directory of Open Access Journals (Sweden)

    Tao Cheng

    2017-01-01

    Full Text Available Climate change and rapid urbanization have aggravated the rainstorm flood in Jinan City during the past decades. Jinan City is higher in the south and lower in the north with a steep slope inclined from the south to the north. This results in high-velocity overland flow and deep waterlogging, which poses a tremendous threat to pedestrians and vehicles. Therefore, it is vital to investigate the rainstorm flood and further perform flood risk zoning. This study is carried out in the “Sponge City Construction” pilot area of Jinan City, where the InfoWorks ICM 2D hydrodynamic model is utilized for simulating historical and designed rainfall events. The model is validated with observations, and the causes for errors are analyzed. The simulated water depth and flow velocity are recorded for flood risk zoning. The result shows that the InfoWorks ICM 2D model performed well. The flood risk zoning result shows that rainfalls with larger recurrence intervals generate larger areas of moderate to extreme risk. Meanwhile, the zoning results for the two historical rainfalls show that flood with a higher maximum hourly rainfall intensity is more serious. This study will provide scientific support for the flood control and disaster reduction in Jinan City.

  9. Effects of changes along the risk chain on flood risk

    Science.gov (United States)

    Duha Metin, Ayse; Apel, Heiko; Viet Dung, Nguyen; Guse, Björn; Kreibich, Heidi; Schröter, Kai; Vorogushyn, Sergiy; Merz, Bruno

    2017-04-01

    Interactions of hydrological and socio-economic factors shape flood disaster risk. For this reason, assessment of flood risk ideally takes into account the whole flood risk chain from atmospheric processes, through the catchment and river system processes to the damage mechanisms in the affected areas. Since very different processes at various scales are interacting along the flood risk, the impact of the single components is rather unclear. However for flood risk management, it is required to know the controlling factor of flood damages. The present study, using the flood-prone Mulde catchment in Germany, discusses the sensitivity of flood risk to disturbances along the risk chain: How do disturbances propagate through the risk chain? How do different disturbances combine or conflict and affect flood risk? In this sensitivity analysis, the five components of the flood risk change are included. These are climate, catchment, river system, exposure and vulnerability. A model framework representing the complete risk chain is combined with observational data to understand how the sensitivities evolve along the risk chain by considering three plausible change scenarios for each of five components. The flood risk is calculated by using the Regional Flood Model (RFM) which is based on a continuous simulation approach, including rainfall-runoff, 1D river network, 2D hinterland inundation and damage estimation models. The sensitivity analysis covers more than 240 scenarios with different combinations of the five components. It is investigated how changes in different components affect risk indicators, such as the risk curve and expected annual damage (EAD). In conclusion, it seems that changes in exposure and vulnerability seem to outweigh changes in hazard.

  10. Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns

    Directory of Open Access Journals (Sweden)

    S. Hettiarachchi

    2018-03-01

    Full Text Available The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA Atlas 14 intensity–duration–frequency (IDF relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1 How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2 Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081–2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results

  11. The use of geostationary satellite based rainfall estimation and rainfall-runoff modelling for regional flash flood assessment

    OpenAIRE

    Suseno, Dwi Prabowo Yuga

    2013-01-01

    The availability of rainfall triggered hazard information such as flash flood is crucial in the flood disaster management and mitigation. However, providing that information is mainly hampered by the shortage of data because of the sparse, uneven or absence the hydrological or meteorological observation. Remote sensing techniques that make frequent observations with continuous spatial coverage provide useful information for detecting the hydrometeorological phenomena such as rainfall and floo...

  12. FREQUENCY ANALYSIS OF RAINFALL FOR FLOOD CONTROL IN ...

    African Journals Online (AJOL)

    The Niger Delta Region of Nigeria is within the mangrove forest region and is crisscrossed by series of streams and creeks. As a result of the high rainfall volume within this region there is a tendency for severe flooding to occur. These flood events have severe consequences on lives and properties. It is therefore necessary ...

  13. Establishing a rainfall threshold for flash flood warnings based on the DFFG method in Yunnan province, China

    Science.gov (United States)

    Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.

    2017-12-01

    Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an

  14. Analysis of regional natural flow for evaluation of flood risk according to RCP climate change scenarios

    Science.gov (United States)

    Lee, J. Y.; Chae, B. S.; Wi, S.; KIm, T. W.

    2017-12-01

    Various climate change scenarios expect the rainfall in South Korea to increase by 3-10% in the future. The future increased rainfall has significant effect on the frequency of flood in future as well. This study analyzed the probability of future flood to investigate the stability of existing and new installed hydraulic structures and the possibility of increasing flood damage in mid-sized watersheds in South Korea. To achieve this goal, we first clarified the relationship between flood quantiles acquired from the flood-frequency analysis (FFA) and design rainfall-runoff analysis (DRRA) in gauged watersheds. Then, after synthetically generating the regional natural flow data according to RCP climate change scenarios, we developed mathematical formulas to estimate future flood quantiles based on the regression between DRRA and FFA incorporated with regional natural flows in unguaged watersheds. Finally, we developed a flood risk map to investigate the change of flood risk in terms of the return period for the past, present, and future. The results identified that the future flood quantiles and risks would increase in accordance with the RCP climate change scenarios. Because the regional flood risk was identified to increase in future comparing with the present status, comprehensive flood control will be needed to cope with extreme floods in future.

  15. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  16. Communicating Flood Risk with Street-Level Data

    Science.gov (United States)

    Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.

    2015-12-01

    Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.

  17. Exploring public databases to characterize urban flood risks in Amsterdam

    Science.gov (United States)

    Gaitan, Santiago; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2015-04-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to decide upon investment to reduce their impacts. Obvious flooding factors affecting flood risk include sewer systems performance and urban topography. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall and socioeconomic characteristics may help to explain probability and impacts of urban flooding. Several public databases were analyzed: complaints about flooding made by citizens, rainfall depths (15 min and 100 Ha spatio-temporal resolution), grids describing number of inhabitants, income, and housing price (1Ha and 25Ha resolution); and buildings age. Data analysis was done using Python and GIS programming, and included spatial indexing of data, cluster analysis, and multivariate regression on the complaints. Complaints were used as a proxy to characterize flooding impacts. The cluster analysis, run for all the variables except the complaints, grouped part of the grid-cells of central Amsterdam into a highly differentiated group, covering 10% of the analyzed area, and accounting for 25% of registered complaints. The configuration of the analyzed variables in central Amsterdam coincides with a high complaint count. Remaining complaints were evenly dispersed along other groups. An adjusted R2 of 0.38 in the multivariate regression suggests that explaining power can improve if additional variables are considered. While rainfall intensity explained 4% of the incidence of complaints, population density and building age significantly explained around 20% each. Data mining of public databases proved to be a valuable tool to identify factors explaining variability in occurrence of urban pluvial flooding, though additional variables must be considered to fully explain flood risk variability.

  18. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    Science.gov (United States)

    Paquet, Emmanuel

    2017-04-01

    The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the

  19. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  20. A space-time hybrid hourly rainfall model for derived flood frequency analysis

    Directory of Open Access Journals (Sweden)

    U. Haberlandt

    2008-12-01

    Full Text Available For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series.

    First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in

  1. Rainfall thresholds and flood warning: an operative case study

    Directory of Open Access Journals (Sweden)

    V. Montesarchio

    2009-02-01

    Full Text Available An operative methodology for rainfall thresholds definition is illustrated, in order to provide at critical river section optimal flood warnings. Threshold overcoming could produce a critical situation in river sites exposed to alluvial risk and trigger the prevention and emergency system alert. The procedure for the definition of critical rainfall threshold values is based both on the quantitative precipitation observed and the hydrological response of the basin. Thresholds values specify the precipitation amount for a given duration that generates a critical discharge in a given cross section and are estimated by hydrological modelling for several scenarios (e.g.: modifying the soil moisture conditions. Some preliminary results, in terms of reliability analysis (presence of false alarms and missed alarms, evaluated using indicators like hit rate and false alarm rate for the case study of Mignone River are presented.

  2. Impact of the Rainfall Duration and Temporal Rainfall Distribution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results

    Directory of Open Access Journals (Sweden)

    Nejc Bezak

    2018-02-01

    Full Text Available In the case of ungauged catchments, different procedures can be used to derive the design hydrograph and design peak discharge, which are crucial input data for the design of different hydrotechnical engineering structures, or the production of flood hazard maps. One of the possible approaches involves using a hydrological model where one can calculate the design hydrograph through the design of a rainfall event. This study investigates the impact of the design rainfall on the combined one-dimensional/two-dimensional (1D/2D hydraulic modelling results. The Glinščica Stream catchment located in Slovenia (central Europe is used as a case study. Ten different design rainfall events were compared for 10 and 100-year return periods, where we used Huff curves for the design rainfall event definition. The results indicate that the selection of the design rainfall event should be regarded as an important step, since the hydraulic modelling results for different scenarios differ significantly. In the presented experimental case study, the maximum flooded area extent was twice as large as the minimum one, and the maximum water velocity over flooded areas was more than 10 times larger than the minimum one. This can lead to the production of very different flood hazard maps, and consequently planning very different flood protection schemes.

  3. Dealing with rainfall forecast uncertainties in real-time flood control along the Demer river

    Directory of Open Access Journals (Sweden)

    Vermuyten Evert

    2016-01-01

    Full Text Available Real-time Model Predictive Control (MPC of hydraulic structures strongly reduces flood consequences under ideal circumstances. The performance of such flood control may, however, be significantly affected by uncertainties. This research quantifies the influence of rainfall forecast uncertainties and related uncertainties in the catchment rainfall-runoff discharges on the control performance for the Herk river case study in Belgium. To limit the model computational times, a fast conceptual model is applied. It is calibrated to a full hydrodynamic river model. A Reduced Genetic Algorithm is used as optimization method. Next to the analysis of the impact of the rainfall forecast uncertainties on the control performance, a Multiple Model Predictive Control (MMPC approach is tested to reduce this impact. Results show that the deterministic MPC-RGA outperforms the MMPC and that it is inherently robust against rainfall forecast uncertainties due to its receding horizon strategy.

  4. Challenges of torrential flood risk management in Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Ana M.

    2015-01-01

    Full Text Available Torrential floods are the natural hydrological hazards manifesting as a consequence of extreme rainfall episodes which have a quick response from the watersheds of small areas, steep slopes and intensive soil erosion. Taking in consideration the nature of torrential flood (sudden and destructive occurrence and the fact they are the most frequent natural hazards in Serbia, torrential flood risk management is a real challenge. Instead of partial solutions for flood protection, integrated torrential flood risk management is more meaningful and effective. The key steps should be an improvement of the legal framework on national level and an expansion of technical and biological torrent control works in river basins. Consequences for society can be significantly reduced if there is an efficient forecast and timely warning, rescue and evacuation and if affected population is educated about flood risks and measures which can be undertaken in case of emergency situation. In this paper, all aspects of torrential flood risk management are analyzed. [Projekat Ministarstva nauke Republike Srbije, br. 47007 III

  5. Floods: vulnerability, risks and management. A joint report of ETC CCA and ICM

    NARCIS (Netherlands)

    Hilden, M.; Dankers, R.; Kjeldsen, T.R.; Hannaford, J.; Kuhlicke, C.; Kuusisto, J.; Linde, te A.H.; Ludwig, F.

    2012-01-01

    This report describes floods in a European context with the purpose of highlighting factors that contribute to the occurrence and adverse consequences of floods, and possibilities to reduce flood risks from inland waters and rainfall. It includes a discussion on changes in flood patterns and

  6. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  7. The Integration of the Adaptation Approach into EU and Dutch Legislation on Flood Risk Management

    NARCIS (Netherlands)

    Gilissen, Herman Kasper

    2015-01-01

    Climate change, worldwide, gives rise to multifarious issues concerning water management. This will lead to both an increase of flood risks and risks related to drought and water scarcity, mostly as a result of sea level rise, increasing river discharges and heavy rainfall, respectively longer, more

  8. Challenges of Modeling Flood Risk at Large Scales

    Science.gov (United States)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing

  9. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  10. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  11. Grey Forecast Rainfall with Flow Updating Algorithm for Real-Time Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jui-Yi Ho

    2015-04-01

    Full Text Available The dynamic relationship between watershed characteristics and rainfall-runoff has been widely studied in recent decades. Since watershed rainfall-runoff is a non-stationary process, most deterministic flood forecasting approaches are ineffective without the assistance of adaptive algorithms. The purpose of this paper is to propose an effective flow forecasting system that integrates a rainfall forecasting model, watershed runoff model, and real-time updating algorithm. This study adopted a grey rainfall forecasting technique, based on existing hourly rainfall data. A geomorphology-based runoff model can be used for simulating impacts of the changing geo-climatic conditions on the hydrologic response of unsteady and non-linear watershed system, and flow updating algorithm were combined to estimate watershed runoff according to measured flow data. The proposed flood forecasting system was applied to three watersheds; one in the United States and two in Northern Taiwan. Four sets of rainfall-runoff simulations were performed to test the accuracy of the proposed flow forecasting technique. The results indicated that the forecast and observed hydrographs are in good agreement for all three watersheds. The proposed flow forecasting system could assist authorities in minimizing loss of life and property during flood events.

  12. Assessment of vulnerability to extreme flash floods in design storms.

    Science.gov (United States)

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  13. ICUD-0147 Extreme event statistics of urban pluvial floods – Return period assessment and rainfall variability impacts

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    A return period assessment of urban flood has been performed and its adhered impact of rainfall variability studied over a urban drainage catchment area in Aalborg, Denmark. Recorded rainfall from 7 rain gauges has been used, located in a range of 7.5Km and for a period varying form 18-37 years....... Return period of rainfall and flood at catchment and local scale has been estimated, its derived ambiguities analysed and the variability of rain gauge based rainfall investigated regarding to flood estimation results. Results show a clear contrast between rainfall and flood return period estimates...

  14. FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES

    Directory of Open Access Journals (Sweden)

    Dinu Cristian

    2017-09-01

    Full Text Available The use of artificial neural networks (ANNs in modelling the hydrological processes has become a common approach in the last two decades, among side the traditional methods. In regard to the rainfall-runoff modelling, in both traditional and ANN models the use of ground rainfall measurements is prevalent, which can be challenging in areas with low rain gauging station density, especially in catchments where strong focused rainfall can generate flash-floods. The weather radar technology can prove to be a solution for such areas by providing rain estimates with good time and space resolution. This paper presents a comparison between different ANN setups using as input both ground and radar observations for modelling the rainfall-runoff process for Bahluet catchment, with focus on a flash-flood observed in the catchment.

  15. Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit

    Science.gov (United States)

    Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.

    2017-12-01

    In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.

  16. Flood Risk Analysis in Denpasar City, Bali, Indonesia

    Science.gov (United States)

    Kusmiyarti, T. B.; Wiguna, P. P. K.; Ratna Dewi, N. K. R.

    2018-02-01

    Denpasar city is a Capital City of Bali Province and one of the leading tourist destinations in Indonesia. Denpasar area is relatively flat with high rain fall intensity with the domince of settlement. This makes Denpasar City becomes prone area of flood. The aim of this research is to find out the spatial distribution flood hazard and the risk of population which are affected to the flood hazard. Weighting, scoring and overlaying method were used in this research. Six indicators were used to analyze the flood hazard: landuse, rainfall, type of soil, slope, altitute and drainage density. The vulnerability is analyzed per Desa or Kelurahan (Rustic/Neighborhood) with the indicator of age, education and population density. Risk was calculated by multiplied hazard with vulnerability and divided with coping capacity. In this research, coping capacity is determined by the amount of internal budget for each Desa or Kelurahan for development purpose. Flood risk in Denpasar city is divided into five classes, very low risk, low risk, medium risk, high risk and very high risk. Total population with very high risk reached 202478 people or 13.16% of total population. The total area is 780.7 ha or 16.02% from total settlement in Denpasar city. Total population with high risk reached 202478 people or 13.16% of total population. The total area is 780.7 ha or 16.02% from total settlement in Denpasar city. The number of population with medium risk reached 202478 people or 33.51% of total population which occupied 22.95% of total settlements or 1118.18 ha. The total number of population with low risk reached 79435 people or 13.14% of total population with area of low flood risk is 716.89 ha or 14.71% of total settlements in Denpasar City. Very low flood risk with total population at risk reached 19184 people or 31.74% of total population and occupied 2003.54 areas or 41.12% of total areas of settlements.

  17. Beyond the Floodplain: Drivers of Flood Risk in Coastal Cities

    Science.gov (United States)

    Rosenzweig, B.; McPhearson, T.; Rosi, E. J.

    2017-12-01

    While the catastrophic impacts of Hurricane Katrina increased awareness of coastal flood risk, conventional approaches to flood risk assessment do not adequately represent the drivers of flood risk in the unique, highly engineered landscape of dense cities. We review the recent (1996-2016) history of flooding events and current regional climate change projection for 4 diverse coastal cities in the United States: San Juan, Miami, Baltimore and New York. Our review suggests that while all 4 of these cities face increased risk from direct coastal flooding with climate change, pluvial flooding will be an additional, important driver of risk that is currently poorly quantified. Unlike other types of flooding, pluvial flood risk is not limited to a contiguous riverine or coastal floodplain, but is instead driven by interactions between spatially variable geophysical drivers (intense rainfall, shallow groundwater, and influent tidal water), social drivers (patterns of land use) and technical drivers (urban stormwater and coastal infrastructure). We discuss approaches for quantitative assessment of pluvial flood risk, the challenges presented by the lack of data on geophysical flooding drivers in dense cities, and opportunities for integrated research to provide the scientific information needed by practitioners.

  18. Interdisciplinary Approach for Assessment of Continental River Flood Risk: A Case Study of the Czech Republic

    Science.gov (United States)

    Ushiyama, Tomoki; Kwak, Youngjoo; Ledvinka, Ondřej; Iwami, Yoichi; Danhelka, Jan

    2017-04-01

    In this research, GIS-based hydrological model-driven approach produces the distribution of continent-level flood risk based on national-level GIS data. In order to reveal flood hazard, exposure, and vulnerability in a large river basin, the system employs the simplified model such as GFiD2M (Global Flood inundation Depth 2-dimension Model) to calculate the differential inundation depth and the economic loss by pixel-based statistical processing, considering climate and socioeconomic scenarios, the representative concentration pathways emissions and the shared socioeconomic pathways, despite current limitations of data collections and poor data availability. We need new approaches to seek the possibility of its national-scale application, so that the framework can bring (1) improved flood inundation map (i.e., discharge, depth, velocity) using rainfall runoff inundation model, based on the in-situ data (rain-gauge and water level), validated with Earth Observation data, i.e., MODIS, (2) advanced flood forecasting using radar and satellite observed rainfall for national-level operational hydrological observations, (3) potential economic impact with the effect of flood hazard and risk under climate and socioeconomic changes based on rainfall from general circulation model. The preliminary examinations showed the better possibility of a nation-wide application for integrated flood risk management. At the same time, the hazard and risk model were also validated against event-based flood inundation of a national-level flood in the Czech Republic. Within the Czech Republic, although radar rainfall data have been used in operational hydrology for some time, there are also other products capable of warning us about the potential risk of floods. For instance, images from Europe's Sentinel satellites have not been evaluated for their use in Czech hydrology. This research is at the very beginning of a validation and its evaluation, focusing mainly on heavy rainfall and

  19. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    Science.gov (United States)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  20. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  1. RISK VIP: Evaluation of Flood Risk on the French Railway Network Using an Innovative GIS Approach

    Directory of Open Access Journals (Sweden)

    Cheetham Mark

    2016-01-01

    on a reach of over 380km of railway line. In order to characterise the component “probability”, data relating to important historic rainfall events have been used in the model against which known incidents on the railway line have been subsequently analysed. Initial results are very positive with a high level of capture of known incidents by the model in relation to the type of flooding recorded. The model RiskVIP allows the evaluation of flood risk to be undertaken at different scales and will aid in targeting precise reaches of railway line to be studied in more detail. It is a tool which can aid in the management of flood risk on the railway network, optimising for example the maintenance program of drainage structures, ensuring monitoring and inspections are targeted at problem reaches, identifying areas where civil works are necessary and improving the overall resilience of the railway system.

  2. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    Science.gov (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  3. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Sørup, Hjalte Jomo Danielsen; Madsen, Henrik

    2013-01-01

    Climate change is expected to influence the occurrence and magnitude of rainfall extremes and hence the flood risks in cities. Major impacts of an increased pluvial flood risk are expected to occur at hourly and sub-hourly resolutions. This makes convective storms the dominant rainfall type...... in relation to urban flooding. The present study focuses on high-resolution regional climate model (RCM) skill in simulating sub-daily rainfall extremes. Temporal and spatial characteristics of output from three different RCM simulations with 25 km resolution are compared to point rainfall extremes estimated...... from observed data. The applied RCM data sets represent two different models and two different types of forcing. Temporal changes in observed extreme point rainfall are partly reproduced by the RCM RACMO when forced by ERA40 re-analysis data. Two ECHAM forced simulations show similar increases...

  4. Flood Hazard and Risk Analysis in Urban Area

    Science.gov (United States)

    Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien

    2017-04-01

    Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.

  5. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  6. Increasing risk of compound flooding from storm surge and rainfall for major US coastal cities

    Science.gov (United States)

    Wahl, Thomas; Jain, Shaleen; Bender, Jens; Meyers, Steven; Luther, Mark

    2016-04-01

    Flood risk is a well-known facet of natural hazards along the US coastline where nearly 40% of the population resides in coastal counties. Given the heavy reliance on the coastal zone for natural resources and economic activity, flood preparedness and safety is a key element of long-term resilience. A clear understanding of the various flood types and changes in the frequency of their occurrence is critical towards reliable estimates of vulnerability and potential impacts in the near-term as well as into the future. When the two main flood drivers for coastal areas storm surge and heavy precipitation occur in tandem the potential for significant flooding is much greater than from either in isolation. Exploring the probability of these 'compound events' and understanding the processes driving them is essential to mitigate the associated high impact risks. For the contiguous US the likelihood of the joint occurrence of the two phenomena is largely unknown. Here we show - using storm surge and precipitation records spanning the last century - that the risk of compound flooding is higher for the US east and Gulf coasts, relative to the west coast. We also show that the number of compound events has increased significantly over the last century along large coastline stretches including many of the major coastal cities. For New York City - as an example - this increase is attributed to a shift towards storm surge weather patterns also favouring high precipitation. Preliminary analyses reveal that these synoptic scale changes are closely linked to large scale and low frequency climate variations. Our results demonstrate the importance of assessing the risk of compound flooding within the design process of coastal and urban infrastructure in a non-stationary framework and to explore the potential effects of climate change on these high impact events.

  7. A spatial assessment framework for evaluating flood risk under extreme climates.

    Science.gov (United States)

    Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina

    2015-12-15

    Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change. Copyright © 2015. Published by Elsevier B.V.

  8. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  9. Flood Risk Characterization for the Eastern United States

    Science.gov (United States)

    Villarini, G.; Smith, J. A.; Ntelekos, A. A.

    2009-04-01

    Tropical cyclones landfalling in the eastern United States pose a major risk for insured property and can lead to extensive damage through storm surge flooding, inland flooding or extreme windspeeds. Current hurricane cat-models do not include calculations of inland flooding from the outer rainfall bands of tropical cyclones but the issue is becoming increasingly important for commercial insurance risk assessment. The results of this study could be used to feed into the next generation of hurricane cat-models and assist in the calculation of damages from inland hurricane flood damage. Annual maximum peak discharge records from more than 400 stations in the eastern United States with at least 75 years of record to examine the role of landfalling tropical cyclones in controlling the upper tail of inland flood risk for the eastern United States. In addition to examining tropical cyclone inland flood risk at specific locations, the spatial extent of extreme flooding from lanfalling tropical cyclones is analyzed. Analyses of temporal trends and abrupt changes in the mean and variance of annual flood peaks are performed. Change-point analysis is performed using the non-parametric Pettitt test. Two non-parametric (Mann-Kendall and Spearman) tests and one parametric (Pearson) test are applied to detect the presence of temporal trends. Flood risk characterization centers on assessments of the spatial variation in "upper tail" properties of annual flood peak distributions. The modeling framework for flood frequency analysis is provided by the Generalized Additive Models for Location Scale and Shape (GAMLSS).

  10. Real-time dynamic control of the Three Gorges Reservoir by coupling numerical weather rainfall prediction and flood forecasting

    DEFF Research Database (Denmark)

    Wang, Y.; Chen, H.; Rosbjerg, Dan

    2013-01-01

    In reservoir operation improvement of the accuracy of forecast flood inflow and extension of forecast lead-time can effectively be achieved by using rainfall forecasts from numerical weather predictions with a hydrological catchment model. In this study, the Regional Spectrum Model (RSM), which...... is developed by the Japan Meteorological Agency, was used to forecast rainfall with 5 days lead-time in the upper region of the Three Gorges Reservoir (TGR). A conceptual hydrological model, the Xinanjiang Model, has been set up to forecast the inflow flood of TGR by the Ministry of Water Resources Information...... season 2012 as example, real-time dynamic control of the FLWL was implemented by using the forecasted reservoir flood inflow as input. The forecasted inflow with 5 days lead-time rainfall forecast was evaluated by several performance indices, including the mean relative error of the volumetric reservoir...

  11. Spatial Analysis of High-Resolution Radar Rainfall and Citizen-Reported Flash Flood Data in Ultra-Urban New York City

    Directory of Open Access Journals (Sweden)

    Brianne Smith

    2017-09-01

    Full Text Available New York City (NYC is an ultra-urban region, with over 50% impervious cover and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but these methods cannot be used in ultra-urban areas. Here we create a high-resolution radar rainfall dataset for NYC and utilize citizen and expert reports of flooding throughout the city to study flash flooding in NYC. Results indicate that interactions between the urban area and land–sea boundary have an important impact on the spatial variability of both heavy rainfall and flooding, sometimes in contrast to results obtained for other cities. Top days of daily and hourly rainfall exhibit a rainfall maximum over the city center and an extended region of higher rainfall downwind of the city. The mechanism for flooding appears to vary across the city, with high groundwater tables influencing more coastal areas and high rain rates or large rain volumes influencing more inland areas. There is also a strong relationship between sewer type and flood frequency, with fewer floods observed in combined sewer areas. Flooding is driven by maximum one-hour to one-day rainfall, which is often substantially less rain than observed for the city-wide daily maximum.

  12. Simulation of rainfall-runoff for major flash flood events in Karachi

    Science.gov (United States)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  13. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Science.gov (United States)

    Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  14. Lightning activity, rainfall and flash flooding – occasional or interrelated events? A case study in the island of Crete

    Directory of Open Access Journals (Sweden)

    A. G. Koutroulis

    2012-04-01

    Full Text Available The majority of cyclones passing over Crete in late autumn to early winter originate from southwest, west and northwest and are of varying size and intensity. A number of these cyclones cause flash floods. The present study reports the possible relationships between lighting activity and high precipitation related to flash flood events. In this study an attempt was made to correlate the lightning number and location, recorded by the ZEUS lightning detection system, with the rainfall characteristics for sixteen rain events (4 flood and 12 non-flood events on the island of Crete, during the period 2008–2009. Spatiotemporal analysis of rain and rain rate with flash count was performed with respect to distance (radius of flashes from raingauge location at various temporal scales, in order to examine the correlation of accumulated rainfall and lightning activity. The maximum attained statistical significant correlation was obtained within a circular area of an average radius of 15 km around the raingauge, and an average time lag of flash count prior precipitation accumulation of 15 min. The maximum correlation between the lightning and rainfall data is obtained for shorter time lags for the flood events (15 min than the non-flood events (25 min, that could reflect the faster propagation of flood triggering storms due to high convective activity. Results show increased lightning activity occurring during flood triggering storms, by an average of four times higher. Furthermore, there is evidence that the number of flashes that occur during a precipitation event is related to precipitation depth when the latter is adequate to produce a flood event. Differences between flood and non-flood producing storms need to be further assessed by analyzing more independent parameters, including the synoptic conditions and dominant flash flood hydrological generating processes.

  15. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    Science.gov (United States)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic

  16. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  17. Application of flood-intensity-duration curve, rainfall-intensity-duration curve and time of concentration to analyze the pattern of storms and their corresponding floods for the natural flood events

    Science.gov (United States)

    Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun

    2016-04-01

    The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  18. GIS-based flood risk model evaluated by Fuzzy Analytic Hierarchy Process (FAHP)

    Science.gov (United States)

    Sukcharoen, Tharapong; Weng, Jingnong; Teetat, Charoenkalunyuta

    2016-10-01

    Over the last 2-3 decades, the economy of many countries around the world has been developed rapidly but it was unbalanced development because of expecting on economic growth only. Meanwhile it lacked of effective planning in the use of natural resources. This can significantly induce climate change which is major cause of natural disaster. Hereby, Thailand has also suffered from natural disaster for ages. Especially, the flood which is most hazardous disaster in Thailand can annually result in the great loss of life and property, environment and economy. Since the flood management of country is inadequate efficiency. It is unable to support the flood analysis comprehensively. This paper applied Geographic Information System and Multi-Criteria Decision Making to create flood risk model at regional scale. Angthong province in Thailand was used as the study area. In practical process, Fuzzy logic technique has been used to improve specialist's assessment by implementing with Fuzzy membership because human decision is flawed under uncertainty then AHP technique was processed orderly. The hierarchy structure in this paper was categorized the spatial flood factors into two levels as following: 6 criteria (Meteorology, Geology, Topography, Hydrology, Human and Flood history) and 8 factors (Average Rainfall, Distance from Stream, Soil drainage capability, Slope, Elevation, Land use, Distance from road and Flooded area in the past). The validity of the pair-wise comparison in AHP was shown as C.R. value which indicated that the specialist judgment was reasonably consistent. FAHP computation result has shown that the first priority of criteria was Meteorology. In addition, the Rainfall was the most influencing factor for flooding. Finally, the output was displayed in thematic map of Angthong province with flood risk level processed by GIS tools. The map was classified into: High Risk, Moderate Risk and Low Risk (13.20%, 75.58%, and 11.22% of total area).

  19. The Irma-sponge Project Frhymap: Flood Risk and Hydrological Mapping

    Science.gov (United States)

    Hoffmann, L.; Pfister, L.

    In the context of both increasing socio-economic developments in floodplains and the recent heavy floodings that have occurred in the Rhine and Meuse basins, the need for reliable hydro-climatological data, easily transposable hydrological and hydraulic models, as well as risk management tools has increased crucially. In the FRHYMAP project, some of these issues were addressed within a common mesoscale experimen- tal basin: the Alzette river basin, located in the Grand-duchy of Luxembourg. The various aspects concerning flooding events, reaching from the hydro-climatological analysis of field data to the risk assessment of socio-economic impacts, taking into account past and future climate and landuse changes were analysed by the six partici- pating research institutes (CREBS, L; CEREG, F; DLR, D; EPFL, CH; UB, D; VUB, B). Hydro-climatological data analysis over the past five decades has shown that in the study area, the increase in westerly and south-westerly atmospheric circulation patterns induced higher winter rainfall totals, leading to more frequent groundwater resurgences and ultimately also to higher daily maximum streamflow of the Alzette. The thus increased flood hazard has nonetheless a certain spatial variability, closely linked to the rainfall distribution patterns, which are strongly depending on the topo- graphical characteristics of the study area. Although the overall regime of the Alzette is more dependent on climate fluctuations, land use changes (mining activities, urbani- sation) had a marked effect on the rainfall-runoff relationship in some sub-basins over the last decades. By linking model parameters to physiographical basin characteris- tics, regionalised and thus easily transposable hydrological models were developed. Within a study area with very little long-term observation series, this technique, com- bined with the use of hydraulic models, allowed to define hydrological hazard pro- ducing and hydrological risk exposed areas. The

  20. The role of interactions along the flood process chain and implications for risk assessment

    Science.gov (United States)

    Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno

    2017-04-01

    Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.

  1. TIME SERIES CHARACTERISTIC ANALYSIS OF RAINFALL, LAND USE AND FLOOD DISCHARGE BASED ON ARIMA BOX-JENKINS MODEL

    Directory of Open Access Journals (Sweden)

    Abror Abror

    2014-01-01

    Full Text Available Indonesia located in tropic area consists of wet season and dry season. However, in last few years, in river discharge in dry season is very little, but in contrary, in wet season, frequency of flood increases with sharp peak and increasingly great water elevation. The increased flood discharge may occur due to change in land use or change in rainfall characteristic. Both matters should get clarity. Therefore, a research should be done to analyze rainfall characteristic, land use and flood discharge in some watershed area (DAS quantitatively from time series data. The research was conducted in DAS Gintung in Parakankidang, DAS Gung in Danawarih, DAS Rambut in Cipero, DAS Kemiri in Sidapurna and DAS Comal in Nambo, located in Tegal Regency and Pemalang Regency in Central Java Province. This research activity consisted of three main steps: input, DAS system and output. Input is DAS determination and selection and searching secondary data. DAS system is early secondary data processing consisting of rainfall analysis, HSS GAMA I parameter, land type analysis and DAS land use. Output is final processing step that consisting of calculation of Tadashi Tanimoto, USSCS effective rainfall, flood discharge, ARIMA analysis, result analysis and conclusion. Analytical calculation of ARIMA Box-Jenkins time series used software Number Cruncher Statistical Systems and Power Analysis Sample Size (NCSS-PASS version 2000, which result in time series characteristic in form of time series pattern, mean square errors (MSE, root mean square ( RMS, autocorrelation of residual and trend. Result of this research indicates that composite CN and flood discharge is proportional that means when composite CN trend increase then flood discharge trend also increase and vice versa. Meanwhile, decrease of rainfall trend is not always followed with decrease in flood discharge trend. The main cause of flood discharge characteristic is DAS management characteristic, not change in

  2. Evaluation of sub daily satellite rainfall estimates through flash flood modelling in the Lower Middle Zambezi Basin

    Directory of Open Access Journals (Sweden)

    T. Matingo

    2018-05-01

    Full Text Available Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013–2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System daily model calibration Nash Sutcliffe efficiency (NSE for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015–2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized

  3. A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes

    Science.gov (United States)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe

    2015-04-01

    Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of

  4. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  5. Improving the accuracy of flood forecasting with transpositions of ensemble NWP rainfall fields considering orographic effects

    Science.gov (United States)

    Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei

    2016-08-01

    The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.

  6. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    Science.gov (United States)

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  7. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  8. El Niño-Southern Oscillation-based index insurance for floods: Statistical risk analyses and application to Peru

    Science.gov (United States)

    Khalil, Abedalrazq F.; Kwon, Hyun-Han; Lall, Upmanu; Miranda, Mario J.; Skees, Jerry

    2007-10-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate-related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations, data are inadequate to develop an index because of short time series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here El Niño-Southern Oscillation (ENSO) related climate indices are explored for use as a proxy to extreme rainfall in one of the districts of Peru, Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many microenterprises. The reliability and quality of the local rainfall data are variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (1) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall, (2) the effect of sampling uncertainties and the strength of the proxy's association to local outcome, (3) the potential for clustering of payoffs, (4) the potential that the index could be predicted with some lead time prior to the flood season, and (5) evidence

  9. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC)

    Science.gov (United States)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.

    2013-11-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET (http://www.crue-eranet.net/) Funding Initiative: FREEMAN, IMRA and URFlood.

  10. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model

    Science.gov (United States)

    Aronica, G. T.; Candela, A.

    2007-12-01

    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  11. Improving flood risk mapping in Italy: the FloodRisk open-source software

    Science.gov (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  12. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  13. Return period assessment of urban pluvial floods through modelling of rainfall–flood response

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Thorndahl, Søren Liedtke; Rasmussen, Michael Robdrup

    2018-01-01

    Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to design systems to minimize potential flood damages. Traditional, simple design of urban drainage systems assumes agreement between rainfall return period and its consequent flood return period......; however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a surface flood return period assessment was carried out at Lystrup (Denmark), which has received the impact...... of flooding in recent years. A 35 years' rainfall dataset together with a coupled 1D/2D surface and network model was used to analyse and assess flood return period response. Results show an ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff relationships will...

  14. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Assessing the Impacts of Flooding Caused by Extreme Rainfall Events Through a Combined Geospatial and Numerical Modeling Approach

    Science.gov (United States)

    Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.

    2016-06-01

    In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the

  16. Estimates of present and future flood risk in the conterminous United States

    Science.gov (United States)

    Wing, Oliver E. J.; Bates, Paul D.; Smith, Andrew M.; Sampson, Christopher C.; Johnson, Kris A.; Fargione, Joseph; Morefield, Philip

    2018-03-01

    Past attempts to estimate rainfall-driven flood risk across the US either have incomplete coverage, coarse resolution or use overly simplified models of the flooding process. In this paper, we use a new 30 m resolution model of the entire conterminous US with a 2D representation of flood physics to produce estimates of flood hazard, which match to within 90% accuracy the skill of local models built with detailed data. These flood depths are combined with exposure datasets of commensurate resolution to calculate current and future flood risk. Our data show that the total US population exposed to serious flooding is 2.6-3.1 times higher than previous estimates, and that nearly 41 million Americans live within the 1% annual exceedance probability floodplain (compared to only 13 million when calculated using FEMA flood maps). We find that population and GDP growth alone are expected to lead to significant future increases in exposure, and this change may be exacerbated in the future by climate change.

  17. A long-term, continuous simulation approach for large-scale flood risk assessments

    Science.gov (United States)

    Falter, Daniela; Schröter, Kai; Viet Dung, Nguyen; Vorogushyn, Sergiy; Hundecha, Yeshewatesfa; Kreibich, Heidi; Apel, Heiko; Merz, Bruno

    2014-05-01

    The Regional Flood Model (RFM) is a process based model cascade developed for flood risk assessments of large-scale basins. RFM consists of four model parts: the rainfall-runoff model SWIM, a 1D channel routing model, a 2D hinterland inundation model and the flood loss estimation model for residential buildings FLEMOps+r. The model cascade was recently undertaken a proof-of-concept study at the Elbe catchment (Germany) to demonstrate that flood risk assessments, based on a continuous simulation approach, including rainfall-runoff, hydrodynamic and damage estimation models, are feasible for large catchments. The results of this study indicated that uncertainties are significant, especially for hydrodynamic simulations. This was basically a consequence of low data quality and disregarding dike breaches. Therefore, RFM was applied with a refined hydraulic model setup for the Elbe tributary Mulde. The study area Mulde catchment comprises about 6,000 km2 and 380 river-km. The inclusion of more reliable information on overbank cross-sections and dikes considerably improved the results. For the application of RFM for flood risk assessments, long-term climate input data is needed to drive the model chain. This model input was provided by a multi-site, multi-variate weather generator that produces sets of synthetic meteorological data reproducing the current climate statistics. The data set comprises 100 realizations of 100 years of meteorological data. With the proposed continuous simulation approach of RFM, we simulated a virtual period of 10,000 years covering the entire flood risk chain including hydrological, 1D/2D hydrodynamic and flood damage estimation models. This provided a record of around 2.000 inundation events affecting the study area with spatially detailed information on inundation depths and damage to residential buildings on a resolution of 100 m. This serves as basis for a spatially consistent, flood risk assessment for the Mulde catchment presented in

  18. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    Löwe, Roland; Urich, Christian; Sto Domingo, Nina

    Flood risk in cities is strongly affected by the development of the city itself. Many studies focus on changes in the flood hazard as a result of, for example, changed degrees of sealing in the catchment or climatic changes. However, urban developments in flood prone areas can affect the exposure...... to the hazard and thus have large impacts on flood risk. Different urban socio-economic development scenarios, rainfall inputs and options for the mitigation of flood risk, quickly lead to a large number of scenarios that need to be considered in the planning of the development of a city. This calls...... for automated analyses that allow the planner to quickly identify if, when and how infrastructure should be modified. Such analysis, which accounts for the two-way interactions between city development and flood risk, is possible only to a limited extent in existing tools. We have developed a software framework...

  19. Flash flood forecasting, warning and risk management: the HYDRATE project

    International Nuclear Information System (INIS)

    Borga, M.; Anagnostou, E.N.; Bloeschl, G.; Creutin, J.-D.

    2011-01-01

    Highlights: → We characterize flash flood events in various regions of Europe. → We provide guidance to improve observations and monitoring of flash floods. → Flash floods are associated to orography and are influenced by initial soil moisture conditions. → Models for flash flood forecasting and flash flood hazard assessment are illustrated and discussed. → We examine implications for flood risk policy and discuss recommendations received from end users. - Abstract: The management of flash flood hazards and risks is a critical component of public safety and quality of life. Flash-floods develop at space and time scales that conventional observation systems are not able to monitor for rainfall and river discharge. Consequently, the atmospheric and hydrological generating mechanisms of flash-floods are poorly understood, leading to highly uncertain forecasts of these events. The objective of the HYDRATE project has been to improve the scientific basis of flash flood forecasting by advancing and harmonising a European-wide innovative flash flood observation strategy and developing a coherent set of technologies and tools for effective early warning systems. To this end, the project included actions on the organization of the existing flash flood data patrimony across Europe. The final aim of HYDRATE was to enhance the capability of flash flood forecasting in ungauged basins by exploiting the extended availability of flash flood data and the improved process understanding. This paper provides a review of the work conducted in HYDRATE with a special emphasis on how this body of research can contribute to guide the policy-life cycle concerning flash flood risk management.

  20. Modelling and assessment of urban flood hazards based on rainfall intensity-duration-frequency curves reformation

    OpenAIRE

    Ghazavi, Reza; Moafi Rabori, Ali; Ahadnejad Reveshty, Mohsen

    2016-01-01

    Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormw...

  1. The climate and flood risk potential of northern areas of Pakistan

    International Nuclear Information System (INIS)

    Awan, S.A.

    2002-01-01

    The extreme floods in northern parts of Pakistan are caused by glacier lake outbursts and Dam-Breaks following landslides, which block river valleys. Geographically glacier dams in mountain rivers and valleys have occurred from the east-western and west-western Karakuram ranges and in the lesser Karakuram range floods which arise from Karakuram precipitation and temperature of various region pose greater problem, as these floods are neither homogeneous nor stationary. These floods arise from various generating mechanisms i. e. generated by melting of snow and glacier and those generated from the monsoon rainfall and dam-breaks following landslide into the river and out burst of glacier lake. The estimation of present and future risk of flooding at sites in northern Pakistan requires an understanding, of the climate, which provides, the generating mechanism of floods. Climates are extremely variable and depend op broad global circulation patterns and local topographic influences. The variables of the climate are studied using available data, with emphasis on temperature and precipitation Spatial Co-relation in northern area stations have been conducted to find Co-relation Co-efficient, using regression analysis. This is spread over intra seasonal and inter station comparison. The time series analysis of the climatic variables has been conducted to examine geographically and statistically the trend in their behaviour. This may be reflected in the hydrological regime of glaciers and rivers and it can cause non linear flood series through changes in any one of the flood generating mechanism. The climate feed-back mechanism has been discussed, which are practically important because they assist seasonal prediction of climate and flow in the Indus. Additionally if climate warming is causing an upward Trend in winter and spring temperature and reduction in snowfall, the effect might be felt more widely over the region. The non-linear changes with elevation and differences

  2. THE FLOOD RISK IN THE LOWER GIANH RIVER: MODELLING AND FIELD VERIFICATION

    Directory of Open Access Journals (Sweden)

    NGUYEN H. D.

    2016-03-01

    Full Text Available Problems associated with flood risk definitely represent a highly topical issue in Vietnam. The case of the lower Gianh River in the central area of Vietnam, with a watershed area of 353 km2, is particularly interesting. In this area, periodically subject to flood risk, the scientific question is strongly linked to risk management. In addition, flood risk is the consequence of the hydrological hazard of an event and the damages related to this event. For this reason, our approach is based on hydrodynamic modelling using Mike Flood to simulate the runoff during a flood event. Unfortunately the data in the studied area are quite limited. Our computation of the flood risk is based on a three-step modelling process, using rainfall data coming from 8 stations, cross sections, the topographic map and the land-use map. The first step consists of creating a 1-D model using Mike 11, in order to simulate the runoff in the minor river bed. In the second step, we use Mike 21 to create a 2-D model to simulate the runoff in the flood plain. The last step allows us to couple the two models in order to precisely describe the variables for the hazard analysis in the flood plain (the water level, the speed, the extent of the flooding. Moreover the model is calibrated and verified using observational data of the water level at hydrologic stations and field control data (on the one hand flood height measurements, on the other hand interviews with the community and with the local councillors. We then generate GIS maps in order to improve flood hazard management, which allows us to create flood hazard maps by coupling the flood plain map and the runoff speed map. Our results show that: the flood peak, caused by typhoon Nari, reached more than 6 m on October 16th 2013 at 4 p.m. (its area was extended by 149 km². End that the typhoon constitutes an extreme flood hazard for 11.39%, very high for 10.60%, high for 30.79%, medium for 31.91% and a light flood hazard for 15

  3. Flood prediction, its risk and mitigation for the Babura River with GIS

    Science.gov (United States)

    Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.

    2018-03-01

    This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.

  4. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

    OpenAIRE

    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang

    2011-01-01

    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  5. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    Following wildfires, emergency-response and public-safety agencies are often faced with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storm events themselves. We here provide information critical to this process for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 am and 4 pm, along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storm events from recently burned areas in southern California was used to develop a system for classifying the magnitude of postfire hydrologic events. The three-class system is based on differences between the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions that may lead to debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow- and flood-event magnitude information. The within-storm rainfall accumulations (A) and durations (D) below which Magnitude I events are expected, and above which Magnitude II events may occur, are defined by A=0.4D0.55. The function A=0.6D0.50 defines the within-storm rainfall accumulations and durations above which a Magnitude III event will occur in response to a regional-scale storm, and a Magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.1D0

  6. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  7. Dynamic Critical Rainfall-Based Flash Flood Early Warning and Forecasting for Medium-Small Rivers

    Science.gov (United States)

    Liu, Z.; Yang, D.; Hu, J.

    2012-04-01

    China is extremely frequent food disasters hit countries, annual flood season flash floods triggered by rainfall, mudslides, landslides have caused heavy casualties and property losses, not only serious threaten the lives of the masses, but the majority of seriously restricting the mountain hill areas of economic and social development and the people become rich, of building a moderately prosperous society goals. In the next few years, China will focus on prevention and control area in the flash flood disasters initially built "for the surveillance, communications, forecasting, early warning and other non-engineering measure based, non-engineering measures and the combinations of engineering measures," the mitigation system. The latest progresses on global torrential flood early warning and forecasting techniques are reviewed in this paper, and then an early warning and forecasting approach is proposed on the basis of a distributed hydrological model according to dynamic critical rainfall index. This approach has been applied in Suichuanjiang River basin in Jiangxi province, which is expected to provide valuable reference for building a national flash flood early warning and forecasting system as well as control of such flooding.

  8. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  9. Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America

    Science.gov (United States)

    Vorosmarty, Charles J.; de Guenni, Lelys Bravo; Wollheim, Wilfred M.; Pellerin, Brian A.; Bjerklie, David M.; Cardoso, Manoel; D'Almeida, Cassiano; Colon, Lilybeth

    2013-01-01

    Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960–2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.

  10. Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America.

    Science.gov (United States)

    Vörösmarty, Charles J; Bravo de Guenni, Lelys; Wollheim, Wilfred M; Pellerin, Brian; Bjerklie, David; Cardoso, Manoel; D'Almeida, Cassiano; Green, Pamela; Colon, Lilybeth

    2013-11-13

    Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960-2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.

  11. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016 for Flood Hazard Mapping in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Niranga Alahacoon

    2018-03-01

    Full Text Available Critical information on a flood-affected area is needed in a short time frame to initiate rapid response operations and develop long-term flood management strategies. This study combined rainfall trend analysis using Asian Precipitation—Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE gridded rainfall data with flood maps derived from Synthetic Aperture Radar (SAR and multispectral satellite to arrive at holistic spatio-temporal patterns of floods in Sri Lanka. Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR data were used to map flood extents for emergency relief operations while eight-day Moderate Resolution Imaging Spectroradiometer (MODIS surface reflectance data for the time period from 2001 to 2016 were used to map long term flood-affected areas. The inundation maps produced for rapid response were published within three hours upon the availability of satellite imagery in web platforms, with the aim of supporting a wide range of stakeholders in emergency response and flood relief operations. The aggregated time series of flood extents mapped using MODIS data were used to develop a flood occurrence map (2001–2016 for Sri Lanka. Flood hotpots identified using both optical and synthetic aperture average of 325 km2 for the years 2006–2015 and exceptional flooding in 2016 with inundation extent of approximately 1400 km2. The time series rainfall data explains increasing trend in the extreme rainfall indices with similar observation derived from satellite imagery. The results demonstrate the feasibility of using multi-sensor flood mapping approaches, which will aid Disaster Management Center (DMC and other multi-lateral agencies involved in managing rapid response operations and preparing mitigation measures.

  12. Evaluation of critical storm duration rainfall estimates used in flood ...

    African Journals Online (AJOL)

    The results showed that the RMLA&SI approach can be considered as the preferred DDF relationship in future design flood estimations. The results also showed that a direct relationship exists between the catchment area and TC, thus ARFs can be explicitly expressed in terms of only the catchment area. Keywords: Rainfall ...

  13. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS in Water Resources and Flood Risk Management

    Directory of Open Access Journals (Sweden)

    Xianwei Wang

    2018-05-01

    Full Text Available Water is one of the most critical natural resources that maintain the ecosystem and support people’s daily life. Pressures on water resources and disaster management are rising primarily due to the unequal spatial and temporal distribution of water resources and pollution, and also partially due to our poor knowledge about the distribution of water resources and poor management of their usage. Remote sensing provides critical data for mapping water resources, measuring hydrological fluxes, monitoring drought and flooding inundation, while geographic information systems (GIS provide the best tools for water resources, drought and flood risk management. This special issue presents the best practices, cutting-edge technologies and applications of remote sensing, GIS and hydrological models for water resource mapping, satellite rainfall measurements, runoff simulation, water body and flood inundation mapping, and risk management. The latest technologies applied include 3D surface model analysis and visualization of glaciers, unmanned aerial vehicle (UAV video image classification for turfgrass mapping and irrigation planning, ground penetration radar for soil moisture estimation, the Tropical Rainfall Measuring Mission (TRMM and the Global Precipitation Measurement (GPM satellite rainfall measurements, storm hyetography analysis, rainfall runoff and urban flooding simulation, and satellite radar and optical image classification for urban water bodies and flooding inundation. The application of those technologies is expected to greatly relieve the pressures on water resources and allow better mitigation of and adaptation to the disastrous impact of droughts and flooding.

  14. Some aspects of risks and natural hazards in the rainfall variability space of Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Derron, Marc-Henri; Jaboyedoff, Michel; Penna, Ivanna; Kanevski, Mikhaïl

    2014-05-01

    Rwanda is facing challenges related to its dispersed population and their density. Risk assessment for natural disasters is becoming important in order to reduce the extent and damages of natural disasters. Rwanda is a country with a diversity of landscapes. Its mountains and marshes have been considered as a water reserve, a forest and grazing reserve by the population (currently around 11 million). Due to geologic and climate conditions, the country is subject of different natural processes, in particular hydrological events (flooding and also landslides), but also earthquakes and volcanism, which the communities have to live with in the western part. In the last years, population expansion for land by clearing of forests and draining marshes, seems to be acting as an aggravating factor. Therefore, a risk assessment for rainfall related hazards requires a deep understanding of the precipitation patterns. Based on satellite image interpretation, historical reports of events, and the analysis of rainfalls variability mapping and probabilistic analyses of events, the aim of this case study is to produce an overview and a preliminary assessment of the hazards scenario in Rwanda.

  15. Surface water flood risk and management strategies for London: An Agent-Based Model approach

    Directory of Open Access Journals (Sweden)

    Jenkins Katie

    2016-01-01

    Full Text Available Flooding is recognised as one of the most common and costliest natural disasters in England. Flooding in urban areas during heavy rainfall is known as ‘surface water flooding’, considered to be the most likely cause of flood events and one of the greatest short-term climate risks for London. In this paper we present results from a novel Agent-Based Model designed to assess the interplay between different adaptation options, different agents, and the role of flood insurance and the flood insurance pool, Flood Re, in the context of climate change. The model illustrates how investment in adaptation options could reduce London’s surface water flood risk, today and in the future. However, benefits can be outweighed by continued development in high risk areas and the effects of climate change. Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, it offers no additional benefits in terms of overall risk reduction, and will face increasing pressure due to rising surface water flood risk in the future. The modelling approach and findings are highly relevant for reviewing the proposed Flood Re scheme, as well as for wider discussions on the potential of insurance schemes, and broader multi-sectoral partnerships, to incentivise flood risk management in the UK and internationally.

  16. Risk Evaluation of Multiple Hazards during Sediment and Water Related Disasters in a Small Basin

    Science.gov (United States)

    Yamanoi, Kazuki; Fujita, Masaharu

    2016-04-01

    To reduce human damage due to sediment and water related disasters induced by heavy rainfall, warning and evacuation system is very important. In Japan, the Meteorological Agency issues the sediment disaster alert when the potential of sediment disaster increases. Following the alert, local government issues evacuation advisory considering the alert and premonitory phenomena. However, it is very difficult for local people to perceive the dangerousness around them because the alert and advisory do not contain any definite information. Therefore, they sometimes misjudge the evacuation action. One reason of this is not only crucial hazards but also relatively small-scale multiple hazards take place and rise evacuation difficulties during sediment and water related disaster. Examples of small-scale hazards include: rainfall-associated hazards such as poor visibility or road submergence; landslide-associated hazards such as slope failure or sediment inflow; and flood-associated hazards such as overtopping of river dike, inundation, or destruction of bridges. The purpose of this study was to estimate the risk of multiple hazards during disaster events by numerical simulation. We applied the integrated sediment runoff model on unit channels, unit slopes, and slope units to an actual sediment and water related disaster occurred in a small basin in Tamba city, Hyogo, Japan. The maximum rainfall per hour was 91 mm (17/09/2014 2:00˜3:00) and the maximum daily precipitation was 414mm. The integrated model contains semi-physical based landslide prediction (sediment production) model, rainfall runoff model employing the kinematic wave method, model of sediment supply to channels, and bedload and suspended sediment transport model. We evaluated the risk of rainfall-associated hazards in each slope unit into 4 levels (Level I ˜ IV) using the rainfall intensity Ir [mm/hour]. The risk of flood- associated hazards were also estimated using the ratio of calculated water level and

  17. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    Science.gov (United States)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  18. INVESTIGATION OF QUANTIFICATION OF FLOOD CONTROL AND WATER UTILIZATION EFFECT OF RAINFALL INFILTRATION FACILITY BY USING WATER BALANCE ANALYSIS MODEL

    OpenAIRE

    文, 勇起; BUN, Yuki

    2013-01-01

    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  19. Disaster risk profile and existing legal framework of Nepal: floods and landslides

    Directory of Open Access Journals (Sweden)

    Gaire S

    2015-09-01

    Full Text Available Surya Gaire, Rafael Castro Delgado, Pedro Arcos González Unit for Research in Emergency and Disaster, Department of Medicine, University of Oviedo, Campus del Cristo, Oviedo, Asturias, SpainAbstract: Nepal has a complicated geophysical structure that is prone to various kinds of disasters. Nepal ranks the most disaster-prone country in the world and has experienced several natural calamities, causing high property and life losses. Disasters are caused by natural processes, but may be increased by human activities. The overall objective of this paper is to analyze the disaster risk profile and existing legal framework of Nepal. The paper is based on secondary data sources. Major causative factors for floods and landslides are heavy and continuous rainfall, outburst floods, infrastructure failure, and deforestation. Historical data of natural disasters in Nepal show that water-induced disasters have killed hundreds of people and affected thousands every year. Likewise, properties worth millions of US dollars have been damaged. There is an increasing trend toward landslides and floods, which will likely continue to rise if proper intervention is not taken. A positive correlation between water-induced disasters and deaths has been observed. Nepal has a poor Index for Risk Management (INFORM. There are fluctuations in the recording of death data caused by flood and landslides. The Government of Nepal focuses more on the response phase than on the preparedness phase of disasters. The existing disaster management act seems to be weak and outdated. There is a gap in current legal procedure, so the country is in dire need of a comprehensive legal framework. The new proposed act seems to take a much broader approach to disaster management. With a long-term vision of managing disaster risk in the country, the Government of Nepal has begun the Nepal Risk Reduction Consortium (NRRC in collaboration with development and humanitarian partners. In order to

  20. Probabilistic Rainfall Intensity-Duration-Frequency Curves for the October 2015 Flooding in South Carolina

    Science.gov (United States)

    Phillips, R.; Samadi, S. Z.; Meadows, M.

    2017-12-01

    The potential for the intensity of extreme rainfall to increase with climate change nonstationarity has emerged as a prevailing issue for the design of engineering infrastructure, underscoring the need to better characterize the statistical assumptions underlying hydrological frequency analysis. The focus of this study is on developing probabilistic rainfall intensity-duration-frequency (IDF) curves for the major catchments in South Carolina (SC) where the October 02-05, 2015 floods caused infrastructure damages and several lives to be lost. Continuous to discrete probability distributions including Weibull, the generalized extreme value (GEV), the Generalized Pareto (GP), the Gumbel, the Fréchet, the normal, and the log-normal functions were fitted to the short duration (i.e., 24-hr) intense rainfall. Analysis suggests that the GEV probability distribution provided the most adequate fit to rainfall records. Rainfall frequency analysis indicated return periods above 500 years for urban drainage systems with a maximum return level of approximately 2,744 years, whereas rainfall magnitude was much lower in rural catchments. Further, the return levels (i.e., 2, 20, 50,100, 500, and 1000 years) computed by Monte Carlo method were consistently higher than the NOAA design IDF curves. Given the potential increase in the magnitude of intense rainfall, current IDF curves can substantially underestimate the frequency of extremes, indicating the susceptibility of the storm drainage and flood control structures in SC that were designed under assumptions of a stationary climate.

  1. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  2. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    Science.gov (United States)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  3. Analysis of Hydrological Sensitivity for Flood Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Sharma

    2018-02-01

    Full Text Available In order for the Indian government to maximize Integrated Water Resource Management (IWRM, the Brahmaputra River has played an important role in the undertaking of the Pilot Basin Study (PBS due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the Rainfall-Runoff-Inundation (RRI hydrological model was used to simulate the recent historical flood in order to understand and improve the integrated flood risk management plan. The ultimate objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation Model (DEM resources, coupled with DEM smoothing techniques, with a particular focus on the comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer (MODIS-detected flood extents.

  4. Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows

    Science.gov (United States)

    Haberlandt, U.; Radtke, I.

    2014-01-01

    Derived flood frequency analysis allows the estimation of design floods with hydrological modeling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices regarding precipitation input, discharge output and consequently the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets and to propose the most suitable approach. Event based and continuous, observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output, short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in northern Germany with the hydrological model HEC-HMS (Hydrologic Engineering Center's Hydrologic Modeling System). The results show that (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, and (III) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the

  5. Using FEMA FIS, HAZUS and WMOST to Evaluate Effectiveness of GI in Moderating Flood-Related Risks

    Science.gov (United States)

    The ability to accurately assess flood-related risks and costs as well as the effectiveness of green infrastructure on moderating those risks is critical for both emergency management and long-term planning. Potential flooding depths, land use and building conditions are needed ...

  6. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2018-01-01

    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  7. Characterization of rainfall events and correlation with reported disasters: A case in Cali, Colombia

    Science.gov (United States)

    Canon, C. C.; Tischbein, B.; Bogardi, J.

    2017-12-01

    Flood maps generally display the area that a river might overflow after a rainfall event takes place, under different scenarios of climate, land use/land cover, and/or failure of dams and dikes. However, rainfall is not limited to feed runoff and enlarge the river: it also causes minor disasters outside the map's highlighted area. The city of Cali in Colombia illustrates very well this situation: its flat topography and its major critical infrastructure near the river make it flood-risk prone; a heavy rainfall event would potentially deplete drinking water, electrical power and drainage capacity, and trigger outbreaks of water-borne diseases in the whole city, not only in the flooded area. Unfortunately, the government's disaster prevention strategies focus on the floodplain and usually overlook the aftermath of these minor disasters for being milder and scattered. Predicted losses in flood maps are potentially big, while those from minor disasters over the city are small but real, and citizens, utility companies and urban maintenance funds must constantly take them over. Mitigation and prevention of such minor disasters can save money for the development of the city in other aspects. This paper characterizes hundreds of rainfall events selected from 10-min step time series from 2006 to 2017, and finds their correlation with reported rainfall-related disasters throughout Cali, identified by date and neighborhood. Results show which rainfall parameters are most likely to indicate the occurrence of such disasters and their approximate location in the urban area of Cali. These results, when coupled with real-time observations of rainfall data and simulations of drainage network response, may help citizens and emergency bodies prioritize zones to assist during heavy storms. In the long term, stakeholders may also implement low impact development solutions in these zones to reduce flood risks.

  8. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    NARCIS (Netherlands)

    Tote, C.; Patricio, D.; Boogaard, H.L.; Wijngaart, van der R.; Tarnavsky, E.; Funk, C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and

  9. Impacts of channel deposition on the risk of flooding in a watershed

    Science.gov (United States)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  10. Impact of modelling scale on probabilistic flood risk assessment: the Malawi case

    Directory of Open Access Journals (Sweden)

    Rudari Roberto

    2016-01-01

    Full Text Available In the early months of 2015, destructive floods hit Malawi, causing deaths and economic losses. Flood risk assessment outcomes can be used to increase scientific-supported awareness of risk. The recent increase in availability of high resolution data such as TanDEM-X at 12m resolution makes possible the use of detailed physical based flood hazard models in risk assessment. Nonetheless the scale of hazard modelling still remains an issue, which requires a compromise between level of detail and computational efforts. This work presents two different approaches on hazard modelling. Both methods rely on 32-years of numeric weather re-analysis and rainfall-runoff transformation through a fully distributed WFLOW-type hydrological model. The first method, applied at national scale, uses fast post-processing routines, which estimate flood water depth at a resolution of about 1×1km. The second method applies a full 2D hydraulic model to propagate water discharge into the flood plains and best suites for small areas where assets are concentrated. At the 12m resolution, three hot spots with a model area of approximately 10×10 km are analysed. Flood hazard maps obtained with both approaches are combined with flood impact models at the same resolution to generate indicators for flood risk. A quantitative comparison of the two approaches is presented in order to show the effects of modelling scale on both hazard and impact losses.

  11. Definition of a shortcut methodology for assessing flood-related Na-Tech risk

    Directory of Open Access Journals (Sweden)

    E. Marzo

    2012-11-01

    Full Text Available In this paper a qualitative methodology for the initial assessment of flood-related Na-Tech risk was developed as a screening tool to identify which situations require a much more expensive quantitative risk analysis (QRA. Through the definition of some suitable key hazard indicators (KHIs, the proposed methodology allows the identification of the Na-Tech risk level associated with a given situation; the analytical hierarchy process (AHP was used as a multi-criteria decision tool for the evaluation of such qualitative KHIs. The developed methodology was validated through two case studies by comparing the predicted risk levels with the results of much more detailed QRAs previously presented in literature and then applied to the real flood happened at Spolana a.s., Neratovice, Czech Republic in August 2002.

  12. Iowa Flood Information System

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  13. Propagation of radar rainfall uncertainty in urban flood simulations

    Science.gov (United States)

    Liguori, Sara; Rico-Ramirez, Miguel

    2013-04-01

    hydrodynamic sewer network model implemented in the Infoworks software was used to model the rainfall-runoff process in the urban area. The software calculates the flow through the sewer conduits of the urban model using rainfall as the primary input. The sewer network is covered by 25 radar pixels with a spatial resolution of 1 km2. The majority of the sewer system is combined, carrying both urban rainfall runoff as well as domestic and trade waste water [11]. The urban model was configured to receive the probabilistic radar rainfall fields. The results showed that the radar rainfall ensembles provide additional information about the uncertainty in the radar rainfall measurements that can be propagated in urban flood modelling. The peaks of the measured flow hydrographs are often bounded within the uncertainty area produced by using the radar rainfall ensembles. This is in fact one of the benefits of using radar rainfall ensembles in urban flood modelling. More work needs to be done in improving the urban models, but this is out of the scope of this research. The rainfall uncertainty cannot explain the whole uncertainty shown in the flow simulations, and additional sources of uncertainty will come from the structure of the urban models as well as the large number of parameters required by these models. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and the UK Environment Agency for providing the various data sets. We also thank Yorkshire Water Services Ltd for providing the urban model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1. References [1] Browning KA, 1978. Meteorological applications of radar. Reports on Progress in Physics 41 761 Doi: 10.1088/0034-4885/41/5/003 [2] Rico-Ramirez MA, Cluckie ID, Shepherd G, Pallot A, 2007. A high-resolution radar experiment on the island of Jersey. Meteorological Applications 14: 117-129. [3] Villarini G, Krajewski WF

  14. Towards flash flood prediction in the dry Dead Sea region utilizing radar rainfall information

    Science.gov (United States)

    Morin, E.; Jacoby, Y.; Navon, S.; Bet-Halachmi, E.

    2009-04-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model utilizing radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on five years of data for one of the catchments. Validation was performed for a subsequent five-year period for the same catchment and then for an entire ten year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood-warning model is feasible for catchments in the area studied.

  15. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information

    Science.gov (United States)

    Morin, Efrat; Jacoby, Yael; Navon, Shilo; Bet-Halachmi, Erez

    2009-07-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Validation was performed for a subsequent 5-year period for the same catchment and then for an entire 10-year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.

  16. A Bayesian Network approach for flash flood risk assessment

    Science.gov (United States)

    Boutkhamouine, Brahim; Roux, Hélène; Pérès, François

    2017-04-01

    Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by

  17. Economic Risk Evaluation in Urban Flooding and Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy

    Directory of Open Access Journals (Sweden)

    Roberta Pellicani

    2018-03-01

    Full Text Available Estimating economic losses caused on buildings and other civil engineering works due to flooding events is often a difficult task. The accuracy of the estimate is affected by the availability of detailed data regarding the return period of the flooding event, vulnerability of exposed assets, and type of economy run in the affected area. This paper aims to provide a quantitative methodology for the assessment of economic losses associated with flood scenarios. The proposed methodology was performed for an urban area in Southern Italy prone to hydrogeological instabilities. At first, the main physical characteristics of the area such as rainfall, land use, permeability, roughness, and slopes of the area under investigation were estimated in order to obtain input for flooding simulations. Afterwards, the analysis focused on the spatial variability incidence of the rainfall parameters in flood events. The hydraulic modeling provided different flood hazard scenarios. The risk curve obtained by plotting economic consequences vs. the return period for each hazard scenario can be a useful tool for local authorities to identify adequate risk mitigation measures and therefore prioritize the economic resources necessary for the implementation of such mitigation measures.

  18. Flood risk management in Flanders: from flood risk objectives to appropriate measures through state assessment

    Directory of Open Access Journals (Sweden)

    Verbeke Sven

    2016-01-01

    Full Text Available In compliance with the EU Flood Directive to reduce flood risk, flood risk management objectives are indispensable for the delineation of necessary measures. In Flanders, flood risk management objectives are part of the environmental objectives which are judicially integrated by the Decree on Integrated Water Policy. Appropriate objectives were derived by supporting studies and extensive consultation on a local, regional and policy level. Under a general flood risk objective sub-objectives are formulated for different aspects: water management and safety, shipping, ecology, and water supply. By developing a risk matrix, it is possible to assess the current state of flood risk and to judge where action is needed to decrease the risk. Three different states of flood risk are distinguished: a acceptable risk, where no action is needed, b intermediate risk where the risk should be reduced by cost efficient actions, and c unacceptable risk, where action is necessary. For each particular aspect, the severity of the consequences of flooding is assessed by quantifiable indicators, such as economic risk, people at risk and ecological flood tolerance. The framework also allows evaluating the effects of the implemented measures and the autonomous development such as climate change and land use change. This approach gives a quantifiable assessment of state, and enables a prioritization of flood risk measures for the reduction of flood risk in a cost efficient and sustainable way.

  19. Risk-informed local action planning against flooding: lessons learnt and way forward for a case study in Spain

    Directory of Open Access Journals (Sweden)

    Castillo-Rodríguez J.T.

    2016-01-01

    Full Text Available After 29 years of the largest flood event in modern times (with the highest recorded rainfall rate at the Iberian Peninsula with 817 mm in 24 hours, the municipality of Oliva faces the challenge of mitigating flood risk through the development and implementation of a local action plan, in line with other existent and ongoing structural measures for flood risk reduction. Located 65 km from Valencia, on the South-Eastern coast of Spain, Oliva is affected by pluvial, river and coastal flooding and it is characterized by a complex and wide-ranging geography and high seasonal variation in population. A quantitative flood risk analysis has been performed to support the definition of flood risk management strategies. This paper shows how hazard, exposure and vulnerability analyses provide valuable information for the development of a local action plan against flooding, for example by identifying areas with highest societal and economic risk levels. It is concluded that flood risk management actions, such as flood warning and monitoring or evacuation, should not be applied homogenously at local scale, but instead actions should be adapted based on spatial clustering. Implications about the impact of education and training on flood risk reduction are also addressed and discusse

  20. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    OpenAIRE

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of individuals to undertake flood risk mitigation measures, as well as the public's demand for flood protection, and therefore provide useful insights for flood risk management. This study empirically exa...

  1. Flood Risk Management in Remote and Impoverished Areas—A Case Study of Onaville, Haiti

    Directory of Open Access Journals (Sweden)

    Valentin Heimhuber

    2015-07-01

    Full Text Available In this study, geographic information system (GIS-based hydrologic and hydraulic modeling was used to perform a flood risk assessment for Onaville, which is a fairly new, rapidly growing informal settlement that is exposed to dangerous flash-flood events. Since records of historic floods did not exist for the study area, design storms with a variety of significant average return intervals (ARIs were derived from intensity-duration-frequency (IDF curves and transformed into design floods via rainfall-runoff modeling in hydrologic engineering center’s hydrologic modeling system (HEC-HMS. The hydraulic modeling software hydrologic engineering center’s river analysis system (HEC-RAS was used to perform one-dimensional, unsteady-flow simulations of the design floods in the Ravine Lan Couline, which is the major drainage channel of the area. Topographic data comprised a 12 m spatial resolution TanDEM-X digital elevation model (DEM and a 30 cm spatial resolution DEM created with mapping drones. The flow simulations revealed that large areas of the settlement are currently exposed to flood hazard. The results of the hydrologic and hydraulic modeling were incorporated into a flood hazard map which formed the basis for flood risk management. We present a grassroots approach for preventive flood risk management on a community level, which comprises the elaboration of a neighborhood contingency plan and a flood risk awareness campaign together with representatives of the local community of Onaville.

  2. Using integrated modeling for generating watershed-scale dynamic flood maps for Hurricane Harvey

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P. J.

    2017-12-01

    Hurricane Harvey, which was categorized as a 1000-year return period event, produced unprecedented rainfall and flooding in Houston. Although the expected rainfall was forecasted much before the event, there was no way to identify which regions were at higher risk of flooding, the magnitude of flooding, and when the impacts of rainfall would be highest. The inability to predict the location, duration, and depth of flooding created uncertainty over evacuation planning and preparation. This catastrophic event highlighted that the conventional approach to managing flood risk using 100-year static flood inundation maps is inadequate because of its inability to predict flood duration and extents for 500-year or 1000-year return period events in real-time. The purpose of this study is to create models that can dynamically predict the impacts of rainfall and subsequent flooding, so that necessary evacuation and rescue efforts can be planned in advance. This study uses a 2D integrated surface water-groundwater model called ICPR (Interconnected Channel and Pond Routing) to simulate both the hydrology and hydrodynamics for Hurricane Harvey. The methodology involves using the NHD stream network to create a 2D model that incorporates rainfall, land use, vadose zone properties and topography to estimate streamflow and generate dynamic flood depths and extents. The results show that dynamic flood mapping captures the flood hydrodynamics more accurately and is able to predict the magnitude, extent and time of occurrence for extreme events such as Hurricane Harvey. Therefore, integrated modeling has the potential to identify regions that are more susceptible to flooding, which is especially useful for large-scale planning and allocation of resources for protection against future flood risk.

  3. Urban Flooding Analysis Using Radar Rainfall Data and 2-D Hydrodynamic Model: A Pilot Study of Back Cover Area, Portland, Maine

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Eugene [Argonne National Lab. (ANL), Argonne, IL (United States); Pierce, Julia [Argonne National Lab. (ANL), Argonne, IL (United States); Mahat, Vinod [Argonne National Lab. (ANL), Argonne, IL (United States); Jared, Alissa [Argonne National Lab. (ANL), Argonne, IL (United States); Collis, Scott [Argonne National Lab. (ANL), Argonne, IL (United States); Verner, Duane [Argonne National Lab. (ANL), Argonne, IL (United States); Wall, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with a heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.

  4. Geomorphology-based unit hydrograph models for flood risk management: case study in Brazilian watersheds with contrasting physiographic characteristics

    Directory of Open Access Journals (Sweden)

    SAMUEL BESKOW

    2018-05-01

    Full Text Available ABSTRACT Heavy rainfall in conjunction with an increase in population and intensification of agricultural activities have resulted in countless problems related to flooding in watersheds. Among the techniques available for direct surface runoff (DSR modeling and flood risk management are the Unit Hydrograph (UH and Instantaneous Unit Hydrograph (IUH. This study focuses on the evaluation of predictive capability of two conceptual IUH models (Nash and Clark, considering their original (NIUH and CIUH and geomorphological approaches (NIUHGEO and CIUHGEO, and their advantages over two traditional synthetics UH models - Triangular (TUH and Dimensionless (DUH, to estimate DSR hydrographs taking as reference two Brazilian watersheds with contrasting geomorphological and climatic characteristics. The main results and conclusions were: i there was an impact of the differences in physiographical characteristics between watersheds, especially those parameters associated with soil; the dominant rainfall patterns in each watershed had an influence on flood modeling; and ii CIUH was the most satisfactory model for both watersheds, followed by NIUH, and both models had substantial superiority over synthetic models traditionally employed; iii although geomorphological approaches for IUH had performances slightly better than TUH and DUH, they should not be considered as standard tools for flood modeling in these watersheds.

  5. Derived flood frequency analysis using different model calibration strategies based on various types of rainfall-runoff data - a comparison

    Science.gov (United States)

    Haberlandt, U.; Radtke, I.

    2013-08-01

    Derived flood frequency analysis allows to estimate design floods with hydrological modelling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices about precipitation input, discharge output and consequently regarding the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets. Event based and continuous observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in Northern Germany with the hydrological model HEC-HMS. The results show that: (i) the same type of precipitation input data should be used for calibration and application of the hydrological model, (ii) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, (iii) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the application for derived flood frequency analysis.

  6. Incidence and risk factors for post-traumatic stress disorder in a population affected by a severe flood.

    Science.gov (United States)

    Fontalba-Navas, A; Lucas-Borja, M E; Gil-Aguilar, V; Arrebola, J P; Pena-Andreu, J M; Perez, J

    2017-03-01

    We aimed to study the risk of developing post-traumatic stress disorder (PTSD) symptoms in people who resided in an affected area by an extremely severe flood, and sociodemographic risk factors associated with this condition. A geographic information system (GIS) was used to distribute the rainfall data. A case-control study was developed to study the relationship between PTSD and sociodemographic risk factors. To delineate the areas affected by the flood and the intensity of this rainfall in comparison with historical hydrological data, we employed geographical information systems (GIS). Then, we recruited a representative sample of the affected population and another population sample that lived at the time of this disaster in adjacent geographical areas that were not affected. Both groups were randomly selected in primary care practices, from December 1st 2012 to January 31st 2013. All participants, 70 from the affected areas and 91 from the non-affected, filled a sociodemographic questionnaire and the trauma questionnaire (TQ) to identify and rate PTSD symptoms. Our GIS analysis confirmed that the amount of precipitation in 2012 in the areas affected by the flood was exceptionally high compared with historical average rainfall data (461l per square metre vs 265). Individuals who resided in the affected areas at the time of the flood were at much higher risk of developing PTSD symptoms (OR: 8.18; 95% CI: 3.99-17.59) than those living in adjacent, non-affected localities. Among the sociodemographic variables included in this study, only material and financial losses were strongly associated with the onset of PTSD (P disorder, may help develop effective plans to minimize the negative impact of these natural disasters on public health. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. A Strategy for a Parametric Flood Insurance Using Proxies

    Science.gov (United States)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  8. Calibration of a rainfall-runoff hydrological model and flood simulation using data assimilation

    Science.gov (United States)

    Piacentini, A.; Ricci, S. M.; Thual, O.; Coustau, M.; Marchandise, A.

    2010-12-01

    Rainfall-runoff models are crucial tools for long-term assessment of flash floods or real-time forecasting. This work focuses on the calibration of a distributed parsimonious event-based rainfall-runoff model using data assimilation. The model combines a SCS-derived runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The SCS-derived runoff model is parametrized by the initial water deficit, the discharge coefficient for the soil reservoir and a lagged discharge coefficient. The Lag and Route routing model is parametrized by the velocity of travel and the lag parameter. These parameters are assumed to be constant for a given catchment except for the initial water deficit and the velocity travel that are event-dependent (landuse, soil type and moisture initial conditions). In the present work, a BLUE filtering technique was used to calibrate the initial water deficit and the velocity travel for each flood event assimilating the first available discharge measurements at the catchment outlet. The advantages of the BLUE algorithm are its low computational cost and its convenient implementation, especially in the context of the calibration of a reduced number of parameters. The assimilation algorithm was applied on two Mediterranean catchment areas of different size and dynamics: Gardon d'Anduze and Lez. The Lez catchment, of 114 km2 drainage area, is located upstream Montpellier. It is a karstic catchment mainly affected by floods in autumn during intense rainstorms with short Lag-times and high discharge peaks (up to 480 m3.s-1 in September 2005). The Gardon d'Anduze catchment, mostly granite and schistose, of 545 km2 drainage area, lies over the departements of Lozère and Gard. It is often affected by flash and devasting floods (up to 3000 m3.s-1 in September 2002). The discharge observations at the beginning of the flood event are assimilated so that the BLUE algorithm provides optimal values for the initial water deficit and the

  9. Regional flood reconstruction in Kullu District (Himachal Pradesh, India): implication for Disaster Risk Management

    Science.gov (United States)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Trappmann, Daniel; Shekhar, Mayank; Bhattacharyya, Amalava

    2016-04-01

    Floods are a common natural hazard in the Western Indian Himalayas. They usually occur when humid monsoon airs are lifted along the Himalayan relief, thereby creating intense orographic rainfall and runoff, a process which is often enhanced by simultaneous snowmelt. Monsoon floods are considered a major threat in the region and frequently affect inhabited valleys, disturbing the status quo of communities, stressing the future welfare and condition of their economic development. Given the assumption that ongoing and future climatic changes may impact on monsoon patterns and extreme precipitation, the implementation of adaptation policies in this region is critically needed in order to improve local resilience of Himalayan communities. However, its success implementation is highly dependent on system knowledge and hence reliable baseline data of past disasters. In this communication, we demonstrate how newly gained knowledge on past flood incidents may improve flood hazard and risk assessments. Based on growth-ring analysis of trees growing in the floodplains and other, more classical paleo-hydrology techniques, we reconstruct the regional flood activity for the last decades. This information is then included as non-systematic data into the regional flood frequency by using Bayesian Markov Monte Carlo Chain algorithms, so as to analyse the impact of the additional data on flood hazard assessments. Moreover, through a detailed analysis of three flood risk hotspots, we demonstrate how the newly gained knowledge on past flood disasters derived from indirect proxies can explain failures in the implementation of disaster risk management (DRM). Our methodology allowed identification of thirty-four unrecorded flood events at the study sites located in the upper reaches since the early 20th century, and thus completion of the existing flood history in the region based on flow measurements in the lower part of the catchment. We observe that 56% of the floods occurred

  10. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  11. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    Science.gov (United States)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  12. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  13. Constructing risks – Internalisation of flood risks in the flood risk management plan

    NARCIS (Netherlands)

    Roos, Matthijs; Hartmann, T.; Spit, T.J.M.; Johann, Georg

    Traditional flood protection methods have focused efforts on different measures to keep water out of floodplains. However, the European Flood Directive challenges this paradigm (Hartmann and Driessen, 2013). Accordingly, flood risk management plans should incorporate measures brought about by

  14. A free and open source QGIS plugin for flood risk analysis: FloodRisk

    Science.gov (United States)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo

    2016-04-01

    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  15. Assessment of flood risk in Tokyo metropolitan area

    Science.gov (United States)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  16. Relationship of Rainfall Distribution and Water Level on Major Flood 2014 in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nur Hishaam Sulaiman

    2017-01-01

    Full Text Available Climate change gives impact on extreme hydrological events especially in extreme rainfall. This article discusses about the relationship of rainfall distribution and water level on major flood 2014 in Pahang River Basin, Malaysia in helping decision makers to flood management system. Based on DID Malaysia rainfall station, 56 stations have being use as point in this research and it is including Pahang, Terengganu, Kelantan and Perak. Data set for this study were analysed with GIS analysis using interpolation method to develop Isohyet map and XLstat statistical software for PCA and SPC analyses. The results that were obtained from the Isohyet Map for three months was mid-November, rainfall started to increase about in range of 800mm-1200mm and the intensity keep increased to 2200mm at mid-December 2014. The high rainfall intensity sense at highland that is upstream of Pahang River. The PCA and SPC analysis also indicates the high relationship between rainfall and water level of few places at Pahang River. The Sg. Yap station and Kg. Serambi station obtained the high relationship of rainfall and water level with factor loading value at 0.9330 and 0.9051 for each station. Hydrological pattern and trend are extremely affected by climate such as north east monsoon season that occurred in South China Sea and affected Pahang during November to March. The findings of this study are important to local authorities by providing basic data as guidelines to the integrated river management at Pahang River Basin.

  17. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Science.gov (United States)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  18. Multi-dimensional perspectives of flood risk - using a participatory framework to develop new approaches to flood risk communication

    Science.gov (United States)

    Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy

    2017-04-01

    Flooding is a major hazard across Europe which, since, 1998 has caused over €52 million in damages and displaced over half a million people. Climate change is predicted to increase the risks posed by flooding in the future. The 2007 EU Flood Directive cemented the use of flood risk maps as a central tool in understanding and communicating flood risk. Following recent flooding in England, an urgent need to integrate people living at risk from flooding into flood management approaches, encouraging flood resilience and the up-take of resilient activities has been acknowledged. The effective communication of flood risk information plays a major role in allowing those at risk to make effective decisions about flood risk and increase their resilience, however, there are emerging concerns over the effectiveness of current approaches. The research presented explores current approaches to flood risk communication in England and the effectiveness of these methods in encouraging resilient actions before and during flooding events. The research also investigates how flood risk communications could be undertaken more effectively, using a novel participatory framework to integrate the perspectives of those living at risk. The research uses co-production between local communities and researchers in the environmental sciences, using a participatory framework to bring together local knowledge of flood risk and flood communications. Using a local competency group, the research explores what those living at risk from flooding want from flood communications in order to develop new approaches to help those at risk understand and respond to floods. Suggestions for practice are refined by the communities to co-produce recommendations. The research finds that current approaches to real-time flood risk communication fail to forecast the significance of predicted floods, whilst flood maps lack detailed information about how floods occur, or use scientific terminology which people at risk

  19. The Significance of the Spatial Variability of Rainfall on the Numerical Simulation of Urban Floods

    Directory of Open Access Journals (Sweden)

    Laurent Guillaume Courty

    2018-02-01

    Full Text Available The growth of urban population, combined with an increase of extreme events due to climate change call for a better understanding and representation of urban floods. The uncertainty in rainfall distribution is one of the most important factors that affects the watershed response to a given precipitation event. However, most of the investigations on this topic have considered theoretical scenarios, with little reference to case studies in the real world. This paper incorporates the use of spatially-variable precipitation data from a long-range radar in the simulation of the severe floods that impacted the city of Hull, U.K., in June 2007. This radar-based rainfall field is merged with rain gauge data using a Kriging with External Drift interpolation technique. The utility of this spatially-variable information is investigated through the comparison of computed flooded areas (uniform and radar against those registered by public authorities. Both results show similar skills at reproducing the real event, but differences in the total precipitated volumes, water depths and flooded areas are illustrated. It is envisaged that in urban areas and with the advent of higher resolution radars, these differences will be more important and call for further investigation.

  20. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk

    OpenAIRE

    Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB); Asian Development Bank (ADB)

    2012-01-01

    This publication presents a shift in the People’s Republic of China from flood control depending on structural measures to integrated flood management using both structural and non-structural measures. The core of the new concept of integrated flood management is flood risk management. Flood risk management is based on an analysis of flood hazard, exposure to flood hazard, and vulnerability of people and property to danger. It is recommended that people learn to live with flood risks, gaining...

  1. Causes and Model Skill of the Persistent Intense Rainfall and Flooding in Paraguay during the Austral Summer 2015-2016

    Science.gov (United States)

    Doss-Gollin, J.; Munoz, A. G.; Pastén, M.

    2017-12-01

    During the austral summer 2015-16 severe flooding displaced over 150,000 people on the Paraguay River system in Paraguay, Argentina, and Southern Brazil. This flooding was out of phase with the typical seasonal cycle of the Paraguay River, and was driven by repeated intense rainfall events in the Lower Paraguay River basin. Using a weather typing approach within a diagnostic framework, we show that enhanced moisture inflow from the low-level jet and local convergence associated with baroclinic systems favored the development of mesoscale convective activity and enhanced precipitation. The observed circulation patterns were made more likely by the cross-timescale interactions of multiple climate mechanisms including the strong, mature El Niño event and an active Madden-Julien Oscillation in phases four and five. We also perform a comparison of the rainfall predictability using seasonal forecasts from the Latin American Observatory of Climate Events (OLE2) and sub-seasonal forecasts produced by the ECMWF. We find that the model output precipitation field exhibited limited skill at lead times beyond the synoptic timescale, but that a Model Output Statistics (MOS) approach, in which the leading principal components of the observed rainfall field are regressed on the leading principal components of model-simulated rainfall fields, substantially improves spatial representation of rainfall forecasts. Possible implications for flood preparedness are briefly discussed.

  2. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    Science.gov (United States)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    described. The project was created as a testbed for evaluating and prototyping key technologies for rapid acquisition and distribution of data products for decision support systems to monitor floods and enable flood risk assessment. The system provides access to real-time products on rainfall estimates and flood potential forecast derived from the Tropical Rainfall Measuring Mission (TRMM) mission with lag time of 6 h, alerts from the Global Disaster Alert and Coordination System (GDACS) with lag time of 4 h, and the Coupled Routing and Excess STorage (CREST) model to generate alerts. These are alerts are used to trigger satellite observations. With deployed SPS service for NASA's EO-1 satellite it is possible to automatically task sensor with re-image capability of less 8 h. Therefore, with enabled computational and storage services provided by Grid and cloud infrastructure it was possible to generate flood maps within 24-48 h after trigger was alerted. To enable interoperability between system components and services OGC-compliant standards are utilized. [1] Hluchy L., Kussul N., Shelestov A., Skakun S., Kravchenko O., Gripich Y., Kopp P., Lupian E., "The Data Fusion Grid Infrastructure: Project Objectives and Achievements," Computing and Informatics, 2010, vol. 29, no. 2, pp. 319-334.

  3. Long-term experiences with pluvial flood risk management

    Directory of Open Access Journals (Sweden)

    Fritsch Kathrina

    2016-01-01

    Full Text Available The awareness of pluvial (rain-related flood risk has grown significantly in the past few years but pluvial flooding is not handled with the same intensity throughout Europe. A variety of methods and modelling technologies are used to assess pluvial flood hazard and risk and to develop suggestions for flood mitigation measures. A brief overview of current model approaches is followed by the description of a modelling methodology that has been developed throughout the last 15 years with the focus on processing large scale areas. Experiences from several projects show that only high quality models of whole catchment areas yield results with enough accuracy to gain credibility among stakeholders, planners and the public. As a best practice example shows, the model approach also helps to plan effective decentral flood protection measures. To ensure successful flood risk management, a long-term preservation of flood risk awareness among local authorities and the public is necessary.

  4. Tangible Results and Progress in Flood Risks Management with the PACTES Initiative

    Science.gov (United States)

    Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane

    The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view

  5. Analysis of historical rainfall data and associated risks on rain-fed tef ...

    African Journals Online (AJOL)

    The central theme for this paper is studying the rainfall behavior over the past six decades in relation to the major rainfall induced risks for the rain-fed “tef” production system using 59 years of rainfall data. Risk of dry spell during germination and flowering is computed whereas crop water requirement satisfaction index is ...

  6. Rainfall estimation in the context of post-event flash flood analysis

    Science.gov (United States)

    Delrieu, Guy; Boudevillain, Brice; Bouilloud, Ludovic

    2010-05-01

    Due to their spatial coverage and space-time resolution, operational weather radar networks offer unprecedented opportunities for the observation of flash flood generating storms. However, the radar rainfall estimation quality highly depends on the relative locations of the event and the radar(s). A mountainous environment obviously adds to the complexity of the radar quantitative precipitation estimation (QPE). A pragmatic methodology was developed within the EC-funded HYDRATE project to take the best benefit of the existing rainfall observations (radar and raingauge data) for given flash-flood cases: 1) A precise documentation of the radar characteristics (location, parameters, operating protocol, data archives and processing) needs first to be established. The radar(s) detection domain(s) can then be characterized using the "hydrologic visibility" concepts (Pellarin et al. J Hydrometeor 3(5) 539-555 2002). 2) Rather dense raingauge observations (operational, amateur) are usually available at the event time scale while few raingauge time series exist at the hydrologic time steps. Such raingauge datasets need to be critically analysed; a geostatistical approach is proposed for this task. 3) A number of identifications can be implemented prior to the radar data re-processing: a) Special care needs to be paid to (residual) ground clutter which has a dramatic impact of radar QPE. Dry-weather maps and rainfall accumulation maps may help in this task. b) Various sources of power losses such as screening, wet radome, attenuation in rain need to be identified and quantified. It will be shown that mountain returns can be used to quantify attenuation effects at C-band. c) Radar volume data is required to characterize the vertical profile of reflectivity (VPR), eventually conditioned on rain type (convective, widespread). When such data is not available, knowledge of the 0°C isotherm and the scanning protocol may help detecting bright-band contaminations that critically

  7. Investigation of Flood Risk Assessment in Inaccessible Regions using Multiple Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Lim, J.; Lee, K. S.

    2017-12-01

    Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution

  8. Composite Flood Risk for Virgin Island

    Science.gov (United States)

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  9. Climate change-induced impacts on urban flood risk influenced by concurrent hazards

    DEFF Research Database (Denmark)

    Pedersen, A. N.; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten

    2012-01-01

    hazards, rainfall and sea surge, are both important. The core in the methodology is the application of copula functions as an extension of one-dimensional risk analysis and projections of future climatic changes. The results for Greater Copenhagen indicate that the dependence between the hazards is weak......In coastal regions, several hazards may lead to floods, and if they occur concurrently, the damage will be higher than for the hazards individually. The paper outlines an approach for carrying out a risk analysis with several hazards and applies it on a case study in Greater Copenhagen where two...... and that climate change most likely will not increase the correlation. The overall change in flood return periods over a forecast horizon of 110 years are estimated to decrease by one to three orders of magnitude....

  10. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    Science.gov (United States)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  11. A new methodology for dynamic modelling of health risks arising from wastewater influenced urban flooding

    Science.gov (United States)

    Jørgensen, Claus; Mark, Ole; Djordjevic, Slobodan; Hammond, Michael; Khan, David M.; Erichsen, Anders; Dorrit Enevoldsen, Ann; Heinicke, Gerald; Helwigh, Birgitte

    2015-04-01

    Indroduction Urban flooding due to rainfall exceeding the design capacity of drainage systems is a global problem and it has significant economic and social consequences. While the cost of the direct flood damages of urban flooding is well understood, the indirect damages, like the water borne diseases is in general still poorly understood. Climate changes are expected to increase the frequency of urban flooding in many countries which is likely to increase water borne diseases. Diarrheal diseases are most prevalent in developing countries, where poor sanitation, poor drinking water and poor surface water quality causes a high disease burden and mortality, especially during floods. The level of water borne diarrhea in countries with well-developed water and waste water infrastructure has been reduced to an acceptable level, and the population in general do not consider waste water as being a health risk. Hence, exposure to wastewater influenced urban flood water still has the potential to cause transmission of diarrheal diseases. When managing urban flooding and planning urban climate change adaptations, health risks are rarely taken into consideration. This paper outlines a novel methodology for linking dynamic urban flood modelling with Quantitative Microbial Risk Assessment (QMRA). This provides a unique possibility for understanding the interaction between urban flooding and the health risks caused by direct human contact with flood water and provides an option for reducing the burden of disease in the population through the use of intelligent urban flood risk management. Methodology We have linked hydrodynamic urban flood modelling with quantitative microbial risk assessment (QMRA) to determine the risk of infection caused by exposure to wastewater influenced urban flood water. The deterministic model MIKE Flood, which integrates the sewer network model in MIKE Urban and the 2D surface model MIKE21, was used to calculate the concentration of pathogens in the

  12. Evaluation methodology for flood damage reduction by preliminary water release from hydroelectric dams

    Science.gov (United States)

    Ando, T.; Kawasaki, A.; Koike, T.

    2017-12-01

    IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits

  13. Estimates of peak flood discharge for 21 sites in the Front Range in Colorado in response to extreme rainfall in September 2013

    Science.gov (United States)

    Moody, John A.

    2016-03-21

    Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an

  14. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    Science.gov (United States)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for

  15. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare

    2016-01-01

    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  16. Effects of variability in probable maximum precipitation patterns on flood losses

    Science.gov (United States)

    Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul

    2018-05-01

    The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.

  17. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    Science.gov (United States)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  18. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of

  19. Flood risk governance arrangements in Europe

    Science.gov (United States)

    Matczak, P.; Lewandowski, J.; Choryński, A.; Szwed, M.; Kundzewicz, Z. W.

    2015-06-01

    The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements) project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency) of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  20. Flood risk governance arrangements in Europe

    Directory of Open Access Journals (Sweden)

    P. Matczak

    2015-06-01

    Full Text Available The STAR-FLOOD (Strengthening and Redesigning European Flood Risk Practices Towards Appropriate and Resilient Flood Risk Governance Arrangements project, funded by the European Commission, investigates strategies for dealing with flood risk in six European countries: Belgium, the UK, France, the Netherlands, Poland and Sweden and in 18 vulnerable urban regions in these countries. The project aims to describe, analyse, explain, and evaluate the main similarities and differences between the selected EU Member States in terms of development and performance of flood risk governance arrangements. It also discusses the scientific and societal importance of these similarities and differences. Attention is paid to identification and characterization of shifts in flood risk governance arrangements and in flood risk management strategies and to determination of triggering factors and restraining factors. An assessment of a change of resilience and appropriateness (legitimacy, effectiveness, efficiency of flood risk governance arrangements in Poland is presented and comparison with other European countries is offered.

  1. Analysis of Historical Rainfall Data and Associated Risks on Rain ...

    African Journals Online (AJOL)

    distribution over the last six decades and tries to do a number of weather induced risk analysis in relation to different rainfall events that has special importance to the local farmers. Different type of rainfall events over the past six decades was assessed in relation to Ethiopian rain fed” tef” production. Tef is an important ...

  2. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Uncertainty of Flood Forecasting Based on Radar Rainfall Data Assimilation

    Directory of Open Access Journals (Sweden)

    Xinchi Chen

    2016-01-01

    Full Text Available Precipitation is the core data input to hydrological forecasting. The uncertainty in precipitation forecast data can lead to poor performance of predictive hydrological models. Radar-based precipitation measurement offers advantages over ground-based measurement in the quantitative estimation of temporal and spatial aspects of precipitation, but errors inherent in this method will still act to reduce the performance. Using data from White Lotus River of Hubei Province, China, five methods were used to assimilate radar rainfall data transformed from the classified Z-R relationship, and the postassimilation data were compared with precipitation measured by rain gauges. The five sets of assimilated rainfall data were then used as input to the Xinanjiang model. The effect of precipitation data input error on runoff simulation was analyzed quantitatively by disturbing the input data using the Breeding of Growing Modes method. The results of practical application demonstrated that the statistical weight integration and variational assimilation methods were superior. The corresponding performance in flood hydrograph prediction was also better using the statistical weight integration and variational methods compared to the others. It was found that the errors of radar rainfall data disturbed by the Breeding of Growing Modes had a tendency to accumulate through the hydrological model.

  4. New challenges on uncertainty propagation assessment of flood risk analysis

    Science.gov (United States)

    Martins, Luciano; Aroca-Jiménez, Estefanía; Bodoque, José M.; Díez-Herrero, Andrés

    2016-04-01

    Natural hazards, such as floods, cause considerable damage to the human life, material and functional assets every year and around the World. Risk assessment procedures has associated a set of uncertainties, mainly of two types: natural, derived from stochastic character inherent in the flood process dynamics; and epistemic, that are associated with lack of knowledge or the bad procedures employed in the study of these processes. There are abundant scientific and technical literature on uncertainties estimation in each step of flood risk analysis (e.g. rainfall estimates, hydraulic modelling variables); but very few experience on the propagation of the uncertainties along the flood risk assessment. Therefore, epistemic uncertainties are the main goal of this work, in particular,understand the extension of the propagation of uncertainties throughout the process, starting with inundability studies until risk analysis, and how far does vary a proper analysis of the risk of flooding. These methodologies, such as Polynomial Chaos Theory (PCT), Method of Moments or Monte Carlo, are used to evaluate different sources of error, such as data records (precipitation gauges, flow gauges...), hydrologic and hydraulic modelling (inundation estimation), socio-demographic data (damage estimation) to evaluate the uncertainties propagation (UP) considered in design flood risk estimation both, in numerical and cartographic expression. In order to consider the total uncertainty and understand what factors are contributed most to the final uncertainty, we used the method of Polynomial Chaos Theory (PCT). It represents an interesting way to handle to inclusion of uncertainty in the modelling and simulation process. PCT allows for the development of a probabilistic model of the system in a deterministic setting. This is done by using random variables and polynomials to handle the effects of uncertainty. Method application results have a better robustness than traditional analysis

  5. Conditional flood frequency and catchment state: a simulation approach

    Science.gov (United States)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  6. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.

    Science.gov (United States)

    Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia

    2017-04-01

    Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies. © 2016 Society for Risk Analysis.

  7. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    Directory of Open Access Journals (Sweden)

    Dries L. T. Hegger

    2016-12-01

    Full Text Available European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM, including flood risk prevention (through proactive spatial planning, flood defense, flood risk mitigation, flood preparation, and flood recovery, makes countries more flood resilient. Although this thesis is plausible, it should still be empirically scrutinized. We aim to do this. Drawing on existing literature we operationalize the notion of "flood resilience" into three capacities: capacity to resist; capacity to absorb and recover; and capacity to transform and adapt. Based on findings from the EU FP7 project STAR-FLOOD, we explore the degree of diversification of FRM strategies and related flood risk governance arrangements at the national level in Belgium, England, France, the Netherlands, Poland, and Sweden, as well as these countries' achievement in terms of the three capacities. We found that the Netherlands and to a lesser extent Belgium have a strong capacity to resist, France a strong capacity to absorb and recover, and especially England a high capacity to transform and adapt. Having a diverse portfolio of FRM strategies in place may be conducive to high achievements related to the capacities to absorb/recover and to transform and adapt. Hence, we conclude that diversification of FRM strategies contributes to resilience. However, the diversification thesis should be nuanced in the sense that there are different ways to be resilient. First, the three capacities imply different rationales and normative starting points for flood risk governance, the choice between which is inherently political. Second, we found trade-offs between the three capacities, e.g., being resistant seems to lower the possibility to be absorbent. Third, to explain countries' achievements in terms of

  8. Extreme Rainfall In A City

    Science.gov (United States)

    Nkemdirim, Lawrence

    industrialization. The development of small cloud droplets into larger particles requires time. A single thunderstorm cell has a mean development time of about 20 minutes and a life time of around 45 minutes with a mean mind of 10m/s, an air parcel would travel 12 km from the beginning of droplet formation to the first precipitation. That means that the precipitation field is shifted downwind of settlements. It could also explain the the higher frequency of the trace to small amounts observed in Calgary since those events occur under relatively calm weather. Whereas the majority of studies have focused on summer convectional type events, little appears to have been done on the extreme rainfall events on which most structural designs are based. Is there a detectable urban bias in these events? Do urban areas intensify them? What are the implications of point distribution of extreme rainfall events on flood frequency across a city. This paper examines the spatial distribution of the mean annual maximum rainfall event in Calgary, Canada, with a view to determining the relative contribution of geographical setting and urbanisation to point patterns. The data are subsequently maximized to produce maps of probable maximum precipitation for the city. The major results are as follows: (a) position along storm path is the most important variable determining maximum rainfall hazard, (b) higher grounds receive up to seventy percent more maximum rainfall than values based on spatial trend, (c) urban structure and geometry correlate negatively with maximum rainfall intensity, however, (d) zones of maximum flood peaks are found down slope of areas of maximum precipitation increasing flood hazard in the inner city in spite of its lower precipitation. Drainage networks based on point rainfall patterns have proved grossly inadequate for flood mitigation. The new design based on this study recognizes the strong moisture gradients caused by rapid movement of water and other elements down slope. Snow

  9. Statistical analysis of the uncertainty related to flood hazard appraisal

    Science.gov (United States)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  10. Optimization of urban spatial development against flooding and other climate risks, and wider sustainability objectives

    OpenAIRE

    Caparros-Midwood Daniel; Dawson Richard; Barr Stuart

    2016-01-01

    A spatial optimization framework has been developed to help urban areas mitigate climate risks such as flooding and to curb resource use and greenhouse gas emissions. Measures required to address these issues often conflict with each other, for example more compact cities typically use less energy for transportation but increase runoff from high intensity rainfall events. Balancing potential trade-offs and maximizing synergies between these risks and vulnerabilities is therefore a multi-dimen...

  11. Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.

    Directory of Open Access Journals (Sweden)

    Alison M Jones

    Full Text Available In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.

  12. Lessons learned from Khartoum flash flood impacts: An integrated assessment.

    Science.gov (United States)

    Mahmood, Mohamad Ibrahim; Elagib, Nadir Ahmed; Horn, Finlay; Saad, Suhair A G

    2017-12-01

    This study aims at enabling the compilation of key lessons for decision makers and urban planners in rapidly urbanizing cities regarding the identification of representative, chief causal natural and human factors for the increased level of flash flood risk. To achieve this, the impacts of flash flood events of 2013 and 2014 in the capital of Sudan, Khartoum, were assessed using seven integrated approaches, i.e. rainfall data analysis, document analysis of affected people and houses, observational fieldwork in the worst flood affected areas, people's perception of causes and mitigation measures through household interviews, reported drinking water quality, reported water-related diseases and social risk assessment. Several lessons have been developed as follows. Urban planners must recognize the devastating risks of building within natural pathways of ephemeral watercourses. They must also ensure effective drainage infrastructures and physio-geographical investigations prior to developing urban areas. The existing urban drainage systems become ineffective due to blockage by urban waste. Building of unauthorized drainage and embankment structures by locals often cause greater flood problems than normal. The urban runoff is especially problematic for residential areas built within low-lying areas having naturally low infiltration capacity, as surface water can rapidly collect within hollows and depressions, or beside elevated roads that preclude the free flow of floodwater. Weak housing and infrastructure quality are especially vulnerable to flash flooding and even to rainfall directly. Establishment of services infrastructure is imperative for flash flood disaster risk reduction. Water supply should be from lower aquifers to avoid contaminant groundwater. Regular monitoring of water quality and archiving of its indicators help identify water-related diseases and sources of water contamination in the event of environmental disasters such as floods. Though the

  13. Analysis of convection-permitting simulations for capturing heavy rainfall events over Myanmar Region

    Science.gov (United States)

    Acierto, R. A. E.; Kawasaki, A.

    2017-12-01

    Perennial flooding due to heavy rainfall events causes strong impacts on the society and economy. With increasing pressures of rapid development and potential for climate change impacts, Myanmar experiences a rapid increase in disaster risk. Heavy rainfall hazard assessment is key on quantifying such disaster risk in both current and future conditions. Downscaling using Regional Climate Models (RCM) such as Weather Research and Forecast model have been used extensively for assessing such heavy rainfall events. However, usage of convective parameterizations can introduce large errors in simulating rainfall. Convective-permitting simulations have been used to deal with this problem by increasing the resolution of RCMs to 4km. This study focuses on the heavy rainfall events during the six-year (2010-2015) wet period season from May to September in Myanmar. The investigation primarily utilizes rain gauge observation for comparing downscaled heavy rainfall events in 4km resolution using ERA-Interim as boundary conditions using 12km-4km one-way nesting method. The study aims to provide basis for production of high-resolution climate projections over Myanmar in order to contribute for flood hazard and risk assessment.

  14. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Directory of Open Access Journals (Sweden)

    A. Luke

    2018-04-01

    Full Text Available Flood hazard mapping in the United States (US is deeply tied to the National Flood Insurance Program (NFIP. Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1 legends that frame flood intensity both qualitatively and quantitatively, and (2 flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1 standing water depths following the flood, (2 the erosive potential of flowing water, and (3 pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating

  15. Rainfall and runoff Intensity-Duration-Frequency Curves for Washington State considering the change and uncertainty of observed and anticipated extreme rainfall and snow events

    Science.gov (United States)

    Demissie, Y. K.; Mortuza, M. R.; Li, H. Y.

    2015-12-01

    The observed and anticipated increasing trends in extreme storm magnitude and frequency, as well as the associated flooding risk in the Pacific Northwest highlighted the need for revising and updating the local intensity-duration-frequency (IDF) curves, which are commonly used for designing critical water infrastructure. In Washington State, much of the drainage system installed in the last several decades uses IDF curves that are outdated by as much as half a century, making the system inadequate and vulnerable for flooding as seen more frequently in recent years. In this study, we have developed new and forward looking rainfall and runoff IDF curves for each county in Washington State using recently observed and projected precipitation data. Regional frequency analysis coupled with Bayesian uncertainty quantification and model averaging methods were used to developed and update the rainfall IDF curves, which were then used in watershed and snow models to develop the runoff IDF curves that explicitly account for effects of snow and drainage characteristic into the IDF curves and related designs. The resulted rainfall and runoff IDF curves provide more reliable, forward looking, and spatially resolved characteristics of storm events that can assist local decision makers and engineers to thoroughly review and/or update the current design standards for urban and rural storm water management infrastructure in order to reduce the potential ramifications of increasing severe storms and resulting floods on existing and planned storm drainage and flood management systems in the state.

  16. Coupled modelling of subsurface water flux for an integrated flood risk management

    Directory of Open Access Journals (Sweden)

    T. Sommer

    2009-07-01

    Full Text Available Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany. As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  17. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  18. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  19. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  20. ENSO impacts on flood risk at the global scale

    Science.gov (United States)

    Ward, Philip; Dettinger, Michael; Jongman, Brenden; Kummu, Matti; Winsemius, Hessel

    2014-05-01

    We present the impacts of El Niño Southern Oscillation (ENSO) on society and the economy, via relationships between ENSO and the hydrological cycle. We also discuss ways in which this knowledge can be used in disaster risk management and risk reduction. This contribution provides the most recent results of an ongoing 4-year collaborative research initiative to assess and map the impacts of large scale interannual climate variability on flood hazard and risk at the global scale. We have examined anomalies in flood risk between ENSO phases, whereby flood risk is expressed in terms of indicators such as: annual expected damage; annual expected affected population; annual expected affected Gross Domestic Product (GDP). We show that large anomalies in flood risk occur during El Niño or La Niña years in basins covering large parts of the Earth's surface. These anomalies reach statistical significance river basins covering almost two-thirds of the Earth's surface. Particularly strong anomalies exist in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially La Niña anomalies), and parts of South America. We relate these anomalies to possible causal relationships between ENSO and flood hazard, using both modelled and observed data on flood occurrence and extremity. The implications for flood risk management are many-fold. In those regions where disaster risk is strongly influenced by ENSO, the potential predictably of ENSO could be used to develop probabilistic flood risk projections with lead times up to several seasons. Such data could be used by the insurance industry in managing risk portfolios and by multinational companies for assessing the robustness of their supply chains to potential flood-related interruptions. Seasonal forecasts of ENSO influence of peak flows could also allow for improved flood early warning and regulation by dam operators, which could also reduce overall risks

  1. Quasi-continuous stochastic simulation framework for flood modelling

    Science.gov (United States)

    Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas

    2017-04-01

    Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.

  2. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    Science.gov (United States)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north

  3. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    Science.gov (United States)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  4. Modeling rainfall infiltration on hillslopes using Flux-concentration relation and time compression approximation

    Science.gov (United States)

    Wang, Jie; Chen, Li; Yu, Zhongbo

    2018-02-01

    Rainfall infiltration on hillslopes is an important issue in hydrology, which is related to many environmental problems, such as flood, soil erosion, and nutrient and contaminant transport. This study aimed to improve the quantification of infiltration on hillslopes under both steady and unsteady rainfalls. Starting from Darcy's law, an analytical integral infiltrability equation was derived for hillslope infiltration by use of the flux-concentration relation. Based on this equation, a simple scaling relation linking the infiltration times on hillslopes and horizontal planes was obtained which is applicable for both small and large times and can be used to simplify the solution procedure of hillslope infiltration. The infiltrability equation also improved the estimation of ponding time for infiltration under rainfall conditions. For infiltration after ponding, the time compression approximation (TCA) was applied together with the infiltrability equation. To improve the computational efficiency, the analytical integral infiltrability equation was approximated with a two-term power-like function by nonlinear regression. Procedures of applying this approach to both steady and unsteady rainfall conditions were proposed. To evaluate the performance of the new approach, it was compared with the Green-Ampt model for sloping surfaces by Chen and Young (2006) and Richards' equation. The proposed model outperformed the sloping Green-Ampt, and both ponding time and infiltration predictions agreed well with the solutions of Richards' equation for various soil textures, slope angles, initial water contents, and rainfall intensities for both steady and unsteady rainfalls.

  5. Sustainability appraisal and flood risk management

    International Nuclear Information System (INIS)

    Carter, Jeremy G.; White, Iain; Richards, Juliet

    2009-01-01

    This research establishes that sustainability appraisal (SA) has a role to play in strengthening spatial plans in the context of flooding issues. Indeed, evidence has been gathered to indicate that tentative steps are being taken in this direction during the SA of English regional spatial plans, which are used as an illustrative case study. In England as in many other countries, appraisal procedures including SA and strategic environmental assessment (SEA) are enshrined in planning law. An opportunity therefore exists to utilise existing and familiar planning tools to embed flooding considerations within spatial plans at an early stage in the planning process. SA (and similar appraisal tools such as SEA) can therefore usefully aid in the implementation of decision making principles and government policy relating to flooding. Moreover, with the threats associated with climate change becoming increasingly apparent, of which increased flood risk is a particular concern in many countries, there is a need develop appropriate adaptation responses. This article emphasizes the role that SA can play in managing future flood risk in this context

  6. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  7. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  8. A system for generating long streamflow records for study of floods of long return period: Phase 2

    International Nuclear Information System (INIS)

    Franz, D.D.; Kraeger, B.A.; Linsley, R.K.

    1989-02-01

    Knowledge of the return periods of large floods is required to make risk analyses for nuclear power plants subject to flooding from rivers. The system reported here combined the stochastic simulation of hourly rainfall data and daily pan evaporation data with the deterministic simulation of streamflow by using the synthetic rainfall and evaporation data as input to a calibrated rainfall runoff model. The sequence of annual maximum flood peaks from a synthetic record of 10,000 years or more was then analyzed to obtain estimates of flood frequency. The reasonableness of the flood frequency results must be evaluated on the degree of mimicry of the key characteristics of the observed rainfall data and the ability of the rainfall-runoff model to mimic the observed flood frequency during the calibration period. On this basis, the flood frequency results appeared to be a reasonable extrapolation of the data used in defining the model parameters. There is a need to develop regional parameters for the stochastic models and to conduct research on the relationship between the stochastic structure of rainfall and stochastic structure of flood frequency. The methodology is applicable, assuming a highly skilled analyst, to watersheds similar to those already tested

  9. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  10. Comparison of radar and numerical weather model rainfall forecasts in the perspective of urban flood prediction

    DEFF Research Database (Denmark)

    Lovring, Maite Monica; Löwe, Roland; Courdent, Vianney Augustin Thomas

    An early flood warning system has been developed for urban catchments and is currently running in online operation in Copenhagen. The system is highly dependent on the quality of rainfall forecast inputs. An investigation of precipitation inputs from Radar Nowcast (RN), Numerical Weather Prediction...

  11. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  12. Developing a Malaysia flood model

    Science.gov (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  13. Cyber Surveillance for Flood Disasters

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2015-01-01

    Full Text Available Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  14. Flood disaster and protection measures in Turkey Case Study: May 1998 flood disaster at North Western Black Sea Region of Turkey

    International Nuclear Information System (INIS)

    Gurer, Ibrahim; Ozguier, Hamza

    2004-01-01

    Due to geographical location, geology, and topography, Turkey undergoes three main types of natural disasters related to gravity flows; floods, landslides, and snow avalanches. Flooding is second important natural hazard after earthquakes with 18 floods and 23 deaths per year, on average. During 20-21 May 1998, the rainfall which was equal to about four times of long-term mean annual rainfall total of north western Black Sea geographical region of Turkey affected 35.000 m 2 , damaged 1300 km highway, 600 km roads to the villages, and 60 km railway. After the recession of the flood waters, the field survey done proved that 12 highway bridges, 91 small bridges on village roads and 6900 highway culverts, 13.800 m retaining wall and about 500 houses were severely damaged. During the last five years, with the loans and credits provided by World Bank, a series of flood protection structures were designed and built for the rehabilitation of the region. Mostly concentrating on non-structural flood protection studies, a work programme has been drafted in this framework to develop flood management and to reduce or eliminate long-term risk and damage to people and their property from natural hazards and their effects. In this case study, the factors causing the flood disaster are given, and the flood event is analyzed from hydrologic and morphologic points of view. Also the different types of the flood protection measures are exemplified and the experience gained in controlling the flood damages is presented.(Author)

  15. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  16. Risk factors for injuries in landslide- and flood-affected populations in Uganda.

    Science.gov (United States)

    Agrawal, Shreya; Gopalakrishnan, Tisha; Gorokhovich, Yuri; Doocy, Shannon

    2013-08-01

    The frequency of occurrence of natural disasters has increased over the past several decades, which necessitates a better understanding of human vulnerability, particularly in low-resource settings. This paper assesses risk factors for injury in the March 2010 floods and landslides in Eastern Uganda, and compares the effects of location, injury type, and severity. A stratified cluster survey of the disaster-affected populations was conducted five months after onset of the disasters. Probability proportional to size sampling was used to sample 800 households, including 400 affected by floods in Butaleja District and 400 affected by landslides in Bududa District. Flood- and landslide-affected populations were surveyed in July 2010 using a stratified cluster design. The odds of injury were 65% higher in the flood-affected groups than the landslide-affected groups in a logistic regression (OR = 0.35; 95% CI, 0.24-0.52; P disasters that occurred simultaneously in Eastern Uganda in 2010. In areas where landslides are prone to occur due to massive rainfalls or floods, preventative measures, such as early warning systems and evacuation, are more likely to increase the likelihood of people surviving, while for areas with massive floods, immediate and effective medical attention can save lives and improve injury outcomes.

  17. Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model

    Directory of Open Access Journals (Sweden)

    G. Moretti

    2008-08-01

    Full Text Available The estimation of the peak river flow for ungauged river sections is a topical issue in applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to this end, since they are potentially able to simulate the river flow at any location of the watershed drainage network. However, it is not fully clear to what extent these models can provide reliable simulations over a wide range of spatial scales. This issue is investigated here by applying a spatially distributed, continuous simulation rainfall-runoff model to infer the flood frequency distribution of the Riarbero River. This is an ungauged mountain creek located in northern Italy, whose drainage area is 17 km2. The hydrological model is first calibrated by using a 1-year record of hourly meteorological data and river flows observed at the outlet of the 1294 km2 wide Secchia River basin, of which the Riarbero is a tributary. The model is then validated by performing a 100-year long simulation of synthetic river flow data, which allowed us to compare the simulated and observed flood frequency distributions at the Secchia River outlet and the internal cross river section of Cavola Bridge, where the basin area is 337 km2. Finally, another simulation of hourly river flows was performed by referring to the outlet of the Riarbero River, therefore allowing us to estimate the related flood frequency distribution. The results were validated by using estimates of peak river flow obtained by applying hydrological similarity principles and a regional method. The results show that the flood flow estimated through the application of the distributed model is consistent with the estimate provided by the regional procedure as well as the behaviors of the river banks. Conversely, the method based on hydrological similarity delivers an estimate that seems to be not as reliable. The analysis highlights interesting perspectives for the application of

  18. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  19. The influence of the net rainfall mixed Curve Number – Green Ampt procedure in flood hazard mapping: a case study in Central Italy

    Directory of Open Access Journals (Sweden)

    Andrea Petroselli

    2013-09-01

    Full Text Available A net rainfall estimation procedure, referred to as Curve-Number For Green-Ampt (CN4GA, combining the Soil Conservation Service - Curve Number (SCS-CN method and the Green and Ampt (GA infiltration equation was recently developed, aiming to distribute at subdaily time resolution the information provided by the SCS-CN method. The initial abstraction and the total volume of rainfall provided by the SCS-CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation, whereas the GA infiltration model distributes the total volume of the rainfall excess provided by the SCS-CN method. In this study we evaluate the proposed procedure with reference to a real case comparing the flood mapping obtained applying the event-based approach for two different net rainfall scenarios: the proposed CN4GA and the common SCS-CN. Results underline that the net rainfall estimation step can affect the final flood mapping result.

  20. A methodology for flood risk appraisal in Lithuania

    Directory of Open Access Journals (Sweden)

    Kriščiukaitienė Irena

    2015-06-01

    Full Text Available This paper presents a methodology for flood risk mapping as envisaged by the Directive on the Assessment and Management of Flood Risks [Directive 2007/60/EC]. Specifically, we aimed at identifying the types of flood damage that can be estimated given data availability in Lithuania. Furthermore, we present the main sources of data and the associated cost functions. The methodology covers the following main types of flood threats: risk to inhabitants, risk to economic activity, and social risk. A multi-criteria framework for aggregation of different risks is proposed to provide a comprehensive appraisal of flood risk. On the basis of the proposed research, flood risk maps have been prepared for Lithuania. These maps are available for each type of flood risk (i.e. inhabitants, economic losses, social risk as well as for aggregate risk. The results indicate that flood risk management is crucial for western and central Lithuania, whereas other parts of the country are not likely to suffer from significant losses due to flooding.

  1. Developments in remote sensing technology enable more detailed urban flood risk analysis.

    Science.gov (United States)

    Denniss, A.; Tewkesbury, A.

    2009-04-01

    Spaceborne remote sensors have been allowing us to build up a profile of planet earth for many years. With each new satellite launched we see the capabilities improve: new bands of data, higher resolution imagery, the ability to derive better elevation information. The combination of this geospatial data to create land cover and usage maps, all help inform catastrophe modelling systems. From Landsat 30m resolution to 2.44m QuickBird multispectral imagery; from 1m radar data collected by TerraSAR-X which enables rapid tracking of the rise and fall of a flood event, and will shortly have a twin satellite launched enabling elevation data creation; we are spoilt for choice in available data. However, just what is cost effective? It is always a question of choosing the appropriate level of input data detail for modelling, depending on the value of the risk. In the summer of 2007, the cost of the flooding in the UK was approximately £3bn and affected over 58,000 homes and businesses. When it comes to flood risk, we have traditionally considered rising river levels and surge tides, but with climate change and variations in our own construction behaviour, there are other factors to be taken into account. During those summer 2007 events, the Environment Agency suggested that around 70% of the properties damaged were the result of pluvial flooding, where high localised rainfall events overload localised drainage infrastructure, causing widespread flooding of properties and infrastructure. To create a risk model that is able to simulate such an event requires much more accurate source data than can be provided from satellite or radar. As these flood events cause considerable damage within relatively small, complex urban environments, therefore new high resolution remote sensing techniques have to be applied to better model these events. Detailed terrain data of England and Wales, plus cities in Scotland, have been produced by combining terrain measurements from the latest

  2. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.

    2011-01-01

    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  3. Contribution of future urbanisation expansion to flood risk changes

    Science.gov (United States)

    Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin

    2016-04-01

    The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to

  4. Modeling urban flood risk territories for Riga city

    Science.gov (United States)

    Piliksere, A.; Sennikovs, J.; Virbulis, J.; Bethers, U.; Bethers, P.; Valainis, A.

    2012-04-01

    Riga, the capital of Latvia, is located on River Daugava at the Gulf of Riga. The main flooding risks of Riga city are: (1) storm caused water setup in South part of Gulf of Riga (storm event), (2) water level increase caused by Daugava River discharge maximums (spring snow melting event) and (3) strong rainfall or rapid snow melting in densely populated urban areas. The first two flooding factors were discussed previously (Piliksere et al, 2011). The aims of the study were (1) the identification of the flood risk situations in densely populated areas, (2) the quantification of the flooding scenarios caused by rain and snow melting events of different return periods nowadays, in the near future (2021-2050), far future (2071-2100) taking into account the projections of climate change, (3) estimation of groundwater level for Riga city, (4) the building and calibration of the hydrological mathematical model based on SWMM (EPA, 2004) for the domain potentially vulnerable for rain and snow melt flooding events, (5) the calculation of rain and snow melting flood events with different return periods, (6) mapping the potentially flooded areas on a fine grid. The time series of short term precipitation events during warm time period of year (id est. rain events) were analyzed for 35 year long time period. Annual maxima of precipitation intensity for events with different duration (5 min; 15 min; 1h; 3h; 6h; 12h; 1 day; 2 days; 4 days; 10 days) were calculated. The time series of long term simultaneous precipitation data and observations of the reduction of thickness of snow cover were analyzed for 27 year long time period. Snow thawing periods were detected and maximum of snow melting intensity for events with different intensity (1day; 2 days; 4 days; 7 days; 10 days) were calculated. According to the occurrence probability six scenarios for each event for nowadays, near and far future with return period once in 5, 10, 20, 50, 100 and 200 years were constructed based on

  5. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China

    Science.gov (United States)

    Yin, Jie; Yu, Dapeng; Yin, Zhane; Liu, Min; He, Qing

    2016-06-01

    Urban pluvial flood are attracting growing public concern due to rising intense precipitation and increasing consequences. Accurate risk assessment is critical to an efficient urban pluvial flood management, particularly in transportation sector. This paper describes an integrated methodology, which initially makes use of high resolution 2D inundation modeling and flood depth-dependent measure to evaluate the potential impact and risk of pluvial flash flood on road network in the city center of Shanghai, China. Intensity-Duration-Frequency relationships of Shanghai rainstorm and Chicago Design Storm are combined to generate ensemble rainfall scenarios. A hydrodynamic model (FloodMap-HydroInundation2D) is used to simulate overland flow and flood inundation for each scenario. Furthermore, road impact and risk assessment are respectively conducted by a new proposed algorithm and proxy. Results suggest that the flood response is a function of spatio-temporal distribution of precipitation and local characteristics (i.e. drainage and topography), and pluvial flash flood is found to lead to proportionate but nonlinear impact on intra-urban road inundation risk. The approach tested here would provide more detailed flood information for smart management of urban street network and may be applied to other big cities where road flood risk is evolving in the context of climate change and urbanization.

  6. A Vulnerability-Based, Bottom-up Assessment of Future Riverine Flood Risk Using a Modified Peaks-Over-Threshold Approach and a Physically Based Hydrologic Model

    Science.gov (United States)

    Knighton, James; Steinschneider, Scott; Walter, M. Todd

    2017-12-01

    There is a chronic disconnection among purely probabilistic flood frequency analysis of flood hazards, flood risks, and hydrological flood mechanisms, which hamper our ability to assess future flood impacts. We present a vulnerability-based approach to estimating riverine flood risk that accommodates a more direct linkage between decision-relevant metrics of risk and the dominant mechanisms that cause riverine flooding. We adapt the conventional peaks-over-threshold (POT) framework to be used with extreme precipitation from different climate processes and rainfall-runoff-based model output. We quantify the probability that at least one adverse hydrologic threshold, potentially defined by stakeholders, will be exceeded within the next N years. This approach allows us to consider flood risk as the summation of risk from separate atmospheric mechanisms, and supports a more direct mapping between hazards and societal outcomes. We perform this analysis within a bottom-up framework to consider the relevance and consequences of information, with varying levels of credibility, on changes to atmospheric patterns driving extreme precipitation events. We demonstrate our proposed approach using a case study for Fall Creek in Ithaca, NY, USA, where we estimate the risk of stakeholder-defined flood metrics from three dominant mechanisms: summer convection, tropical cyclones, and spring rain and snowmelt. Using downscaled climate projections, we determine how flood risk associated with a subset of mechanisms may change in the future, and the resultant shift to annual flood risk. The flood risk approach we propose can provide powerful new insights into future flood threats.

  7. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  8. Extreme value analysis of rainfall data for Kalpakkam

    International Nuclear Information System (INIS)

    Sharma, Pramod Kumar; John Arul, A.; Ramkrishnan, M.; Bhuvana, V.

    2016-01-01

    Flood hazard evaluation is an important safety study for a Nuclear Power Plant. In the present study flood hazard at PFBR site due to rainfall is evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment is daily annual maximum rainfall (24 hrs data). The observed data points have been fitted using Gumbel, power law, and exponential distribution and return period has been estimated. The predicted 100 yrs return period rainfall for Kalpakkam ranges from 240 mm to 365 mm in a day and 1000 yrs return period rainfall ranges from 320 mm to 790 min in a day. To study the stationarity of rainfall data a moving window estimate of the parameters (exponential distribution) have also been performed. (author)

  9. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System) for Sicily

    Science.gov (United States)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe

    2017-09-01

    The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce

  10. Urban flood perceptions and mitigative behaviours: Peterborough, Edmonton, and Toronto

    International Nuclear Information System (INIS)

    Sandink, D.

    2009-01-01

    This abstract presents research from two studies investigating urban flood perceptions and mitigative behaviours of private individuals in Canada. The first study, completed in July, 2006, investigated perceptions of overland flooding and sewer backup resulting from extreme rainfall events in Peterborough, Ontario. The second, completed in November, 2007, investigated sewer backup perceptions of homeowners in Edmonton, Alberta and Toronto, Ontario. The research studies sought to explore: Hazard and risk perceptions of individuals affected by overland flooding and sewer backup; Knowledge of mitigative options, and mitigative actions taken by individual residents to reduce the risk of basement flood damage; Attributions of responsibility for urban flood damages; Awareness of municipal actions designed to reduce urban flood risk; Satisfaction with the cost sharing tools of insurance and government relief.

  11. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  12. Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya

    Science.gov (United States)

    Nobert, Joel; Mugo, Margaret; Gadain, Hussein

    Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

  13. Improving Flood Risk Management for California's Central Valley: How the State Developed a Toolbox for Large, System-wide Studies

    Science.gov (United States)

    Pingel, N.; Liang, Y.; Bindra, A.

    2016-12-01

    More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency

  14. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  15. Return period curves for extreme 5-min rainfall amounts at the Barcelona urban network

    Science.gov (United States)

    Lana, X.; Casas-Castillo, M. C.; Serra, C.; Rodríguez-Solà, R.; Redaño, A.; Burgueño, A.; Martínez, M. D.

    2018-03-01

    Heavy rainfall episodes are relatively common in the conurbation of Barcelona and neighbouring cities (NE Spain), usually due to storms generated by convective phenomena in summer and eastern and south-eastern advections in autumn. Prevention of local flood episodes and right design of urban drainage have to take into account the rainfall intensity spread instead of a simple evaluation of daily rainfall amounts. The database comes from 5-min rain amounts recorded by tipping buckets in the Barcelona urban network along the years 1994-2009. From these data, extreme 5-min rain amounts are selected applying the peaks-over-threshold method for thresholds derived from both 95% percentile and the mean excess plot. The return period curves are derived from their statistical distribution for every gauge, describing with detail expected extreme 5-min rain amounts across the urban network. These curves are compared with those derived from annual extreme time series. In this way, areas in Barcelona submitted to different levels of flood risk from the point of view of rainfall intensity are detected. Additionally, global time trends on extreme 5-min rain amounts are quantified for the whole network and found as not statistically significant.

  16. Emotions, trust, and perceived risk: affective and cognitive routes to flood preparedness behavior.

    Science.gov (United States)

    Terpstra, Teun

    2011-10-01

    Despite the prognoses of the effects of global warming (e.g., rising sea levels, increasing river discharges), few international studies have addressed how flood preparedness should be stimulated among private citizens. This article aims to predict Dutch citizens' flood preparedness intentions by testing a path model, including previous flood hazard experiences, trust in public flood protection, and flood risk perceptions (both affective and cognitive components). Data were collected through questionnaire surveys in two coastal communities (n= 169, n= 244) and in one river area community (n= 658). Causal relations were tested by means of structural equation modeling (SEM). Overall, the results indicate that both cognitive and affective mechanisms influence citizens' preparedness intentions. First, a higher level of trust reduces citizens' perceptions of flood likelihood, which in turn hampers their flood preparedness intentions (cognitive route). Second, trust also lessens the amount of dread evoked by flood risk, which in turn impedes flood preparedness intentions (affective route). Moreover, the affective route showed that levels of dread were especially influenced by citizens' negative and positive emotions related to their previous flood hazard experiences. Negative emotions most often reflected fear and powerlessness, while positive emotions most frequently reflected feelings of solidarity. The results are consistent with the affect heuristic and the historical context of Dutch flood risk management. The great challenge for flood risk management is the accommodation of both cognitive and affective mechanisms in risk communications, especially when most people lack an emotional basis stemming from previous flood hazard events. © 2011 Society for Risk Analysis.

  17. Uncertainty quantification in flood risk assessment

    Science.gov (United States)

    Blöschl, Günter; Hall, Julia; Kiss, Andrea; Parajka, Juraj; Perdigão, Rui A. P.; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2017-04-01

    Uncertainty is inherent to flood risk assessments because of the complexity of the human-water system, which is characterised by nonlinearities and interdependencies, because of limited knowledge about system properties and because of cognitive biases in human perception and decision-making. On top of the uncertainty associated with the assessment of the existing risk to extreme events, additional uncertainty arises because of temporal changes in the system due to climate change, modifications of the environment, population growth and the associated increase in assets. Novel risk assessment concepts are needed that take into account all these sources of uncertainty. They should be based on the understanding of how flood extremes are generated and how they change over time. They should also account for the dynamics of risk perception of decision makers and population in the floodplains. In this talk we discuss these novel risk assessment concepts through examples from Flood Frequency Hydrology, Socio-Hydrology and Predictions Under Change. We believe that uncertainty quantification in flood risk assessment should lead to a robust approach of integrated flood risk management aiming at enhancing resilience rather than searching for optimal defense strategies.

  18. The European Flood Risk Directive and Ethics

    NARCIS (Netherlands)

    Mostert, E.; Doorn, N.

    2012-01-01

    The European Flood risk directive (2007/60/EC) requires EU Member States to review their system of flood risk management. In doing so, they will have to face ethical issues inherent in flood risk management. This paper discusses three such issues, using examples from the Netherlands. These issues

  19. A new flood type classification method for use in climate change impact studies

    Directory of Open Access Journals (Sweden)

    Thea Turkington

    2016-12-01

    Full Text Available Flood type classification is an optimal tool to cluster floods with similar meteorological triggering conditions. Under climate change these flood types may change differently as well as new flood types develop. This paper presents a new methodology to classify flood types, particularly for use in climate change impact studies. A weather generator is coupled with a conceptual rainfall-runoff model to create long synthetic records of discharge to efficiently build an inventory with high number of flood events. Significant discharge days are classified into causal types using k-means clustering of temperature and precipitation indicators capturing differences in rainfall amount, antecedent rainfall and snow-cover and day of year. From climate projections of bias-corrected temperature and precipitation, future discharge and associated change in flood types are assessed. The approach is applied to two different Alpine catchments: the Ubaye region, a small catchment in France, dominated by rain-on-snow flood events during spring, and the larger Salzach catchment in Austria, affected more by rainfall summer/autumn flood events. The results show that the approach is able to reproduce the observed flood types in both catchments. Under future climate scenarios, the methodology identifies changes in the distribution of flood types and characteristics of the flood types in both study areas. The developed methodology has potential to be used flood impact assessment and disaster risk management as future changes in flood types will have implications for both the local social and ecological systems in the future.

  20. Risk to life due to flooding in post-Katrina New Orleans

    Science.gov (United States)

    Miller, A.; Jonkman, S. N.; Van Ledden, M.

    2015-01-01

    Since the catastrophic flooding of New Orleans due to Hurricane Katrina in 2005, the city's hurricane protection system has been improved to provide protection against a hurricane load with a 1/100 per year exceedance frequency. This paper investigates the risk to life in post-Katrina New Orleans. In a flood risk analysis the probabilities and consequences of various flood scenarios have been analyzed for the central area of the city (the metro bowl) to give a preliminary estimate of the risk to life in the post-Katrina situation. A two-dimensional hydrodynamic model has been used to simulate flood characteristics of various breaches. The model for estimation of fatality rates is based on the loss of life data for Hurricane Katrina. Results indicate that - depending on the flood scenario - the estimated loss of life in case of flooding ranges from about 100 to nearly 500, with the highest life loss due to breaching of the river levees leading to large flood depths. The probability and consequence estimates are combined to determine the individual risk and societal risk for New Orleans. When compared to risks of other large-scale engineering systems (e.g., other flood prone areas, dams and the nuclear sector) and acceptable risk criteria found in literature, the risks for the metro bowl are found to be relatively high. Thus, despite major improvements to the flood protection system, the flood risk to life of post-Katrina New Orleans is still expected to be significant. Indicative effects of reduction strategies on the risk level are discussed as a basis for further evaluation and discussion.

  1. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    Science.gov (United States)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2017-02-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  2. Flood modelling with a distributed event-based parsimonious rainfall-runoff model: case of the karstic Lez river catchment

    Directory of Open Access Journals (Sweden)

    M. Coustau

    2012-04-01

    Full Text Available Rainfall-runoff models are crucial tools for the statistical prediction of flash floods and real-time forecasting. This paper focuses on a karstic basin in the South of France and proposes a distributed parsimonious event-based rainfall-runoff model, coherent with the poor knowledge of both evaporative and underground fluxes. The model combines a SCS runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The efficiency of the model is discussed not only to satisfactorily simulate floods but also to get powerful relationships between the initial condition of the model and various predictors of the initial wetness state of the basin, such as the base flow, the Hu2 index from the Meteo-France SIM model and the piezometric levels of the aquifer. The advantage of using meteorological radar rainfall in flood modelling is also assessed. Model calibration proved to be satisfactory by using an hourly time step with Nash criterion values, ranging between 0.66 and 0.94 for eighteen of the twenty-one selected events. The radar rainfall inputs significantly improved the simulations or the assessment of the initial condition of the model for 5 events at the beginning of autumn, mostly in September–October (mean improvement of Nash is 0.09; correction in the initial condition ranges from −205 to 124 mm, but were less efficient for the events at the end of autumn. In this period, the weak vertical extension of the precipitation system and the low altitude of the 0 °C isotherm could affect the efficiency of radar measurements due to the distance between the basin and the radar (~60 km. The model initial condition S is correlated with the three tested predictors (R2 > 0.6. The interpretation of the model suggests that groundwater does not affect the first peaks of the flood, but can strongly impact subsequent peaks in the case of a multi-storm event. Because this kind of model is based on a limited

  3. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    Directory of Open Access Journals (Sweden)

    Lei Yao

    2017-02-01

    Full Text Available In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA, Directly Connected Impervious Area (DCIA, and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp were simulated by using Strom Water Management Model (SWMM. The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1 imperviousness acts as an effective indicator in affecting both Qt and Qp; (2 reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3 different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  4. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    Science.gov (United States)

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  5. Use of documentary sources on past flood events for flood risk management and land planning

    Science.gov (United States)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  6. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  7. Assimilation of flood extent data with 2D flood inundation models for localised intense rainfall events

    Science.gov (United States)

    Neal, J. C.; Wood, M.; Bermúdez, M.; Hostache, R.; Freer, J. E.; Bates, P. D.; Coxon, G.

    2017-12-01

    Remote sensing of flood inundation extent has long been a potential source of data for constraining and correcting simulations of floodplain inundation. Hydrodynamic models and the computing resources to run them have developed to the extent that simulation of flood inundation in two-dimensional space is now feasible over large river basins in near real-time. However, despite substantial evidence that there is useful information content within inundation extent data, even from low resolution SAR such as that gathered by Envisat ASAR in wide swath mode, making use of the information in a data assimilation system has proved difficult. He we review recent applications of the Ensemble Kalman Filter (EnKF) and Particle Filter for assimilating SAR data, with a focus on the River Severn UK and compare these with complementary research that has looked at the internal error sources and boundary condition errors using detailed terrestrial data that is not available in most locations. Previous applications of the EnKF to this reach have focused on upstream boundary conditions as the source of flow error, however this description of errors was too simplistic for the simulation of summer flood events where localised intense rainfall can be substantial. Therefore, we evaluate the introduction of uncertain lateral inflows to the ensemble. A further limitation of the existing EnKF based methods is the need to convert flood extent to water surface elevations by intersecting the shoreline location with a high quality digital elevation model (e.g. LiDAR). To simplify this data processing step, we evaluate a method to directly assimilate inundation extent as a EnKF model state rather than assimilating water heights, potentially allowing the scheme to be used where high-quality terrain data are sparse.

  8. A press database on natural risks and its application in the study of floods in Northeastern Spain

    Directory of Open Access Journals (Sweden)

    M. C. Llasat

    2009-12-01

    Full Text Available The aim of this work is to introduce a systematic press database on natural hazards and climate change in Catalonia (NE of Spain and to analyze its potential application to social-impact studies. For this reason, a review of the concepts of risk, hazard, vulnerability and social perception is also included. This database has been built for the period 1982–2007 and contains all the news related with those issues published by the oldest still-active newspaper in Catalonia. Some parameters are registered for each article and for each event, including criteria that enable us to determine the importance accorded to it by the newspaper, and a compilation of information about it. This ACCESS data base allows each article to be classified on the basis of the seven defined topics and key words, as well as summary information about the format and structuring of the new itself, the social impact of the event and data about the magnitude or intensity of the event. The coverage given to this type of news has been assessed because of its influence on construction of the social perception of natural risk and climate change, and as a potential source of information about them. The treatment accorded by the press to different risks is also considered. More than 14 000 press articles have been classified. Results show that the largest number of news items for the period 1982–2007 relates to forest fires and droughts, followed by floods and heavy rainfalls, although floods are the major risk in the region of study. Two flood events recorded in 2002 have been analyzed in order to show an example of the role of the press information as indicator of risk perception.

  9. Risk-trading in flood management: An economic model.

    Science.gov (United States)

    Chang, Chiung Ting

    2017-09-15

    Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection

    Science.gov (United States)

    Liu, Maofeng

    Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET

  11. Exploring the potential of multivariate depth-damage and rainfall-damage models

    DEFF Research Database (Denmark)

    van Ootegem, Luc; van Herck, K.; Creten, T.

    2018-01-01

    In Europe, floods are among the natural catastrophes that cause the largest economic damage. This article explores the potential of two distinct types of multivariate flood damage models: ‘depth-damage’ models and ‘rainfall-damage’ models. We use survey data of 346 Flemish households that were...... victim of pluvial floods complemented with rainfall data from both rain gauges and weather radars. In the econometrical analysis, a Tobit estimation technique is used to deal with the issue of zero damage observations. The results show that in the ‘depth-damage’ models flood depth has a significant...... impact on the damage. In the ‘rainfall-damage’ models there is a significant impact of rainfall accumulation on the damage when using the gauge rainfall data as predictor, but not when using the radar rainfall data. Finally, non-hazard indicators are found to be important for explaining pluvial flood...

  12. Changing frequency of flooding in Bangladesh: Is the wettest place on Earth getting wetter?

    Science.gov (United States)

    Haustein, K.; Uhe, P.; Rimi, R.; Islam, A. S.; Otto, F. E. L.

    2017-12-01

    Human influence on the Asian monsoon is exerted by two counteracting forces, (1) anthropogenic warming due to the influence of increasing Greenhouse Gas (GHG) emissions and (2) radiative cooling due to increased amounts of anthropogenic aerosols. GHG emissions tend to intensify the water cycle and increase monsoon precipitation, whereas aerosols are considered to have the opposite effect. On larger scales, aerosols may be responsible for meridional circulation anomalies as well as direct cooling effects, with an associated tendency for drier monsoon seasons that compensate a change towards wetter conditions in a purely GHG-driven scenario. On regional scales, aerosols weaken the thermal contrast between land and ocean which acts to inhibit the monsoon too. As a result, neither observations nor model simulations that consider all human influences suggest clear changes in extreme precipitation at present. In actual reality we are essentially committed to more rainfall extremes already as aerosol pollution will eventually be reduced regardless of future GHG emissions. Thus we argue that it is crucial to assess the risk related to removing anthropogenic aerosols from the current world as opposed to standard experiments that use projected climate scenarios. We present results from on analysis of extreme precipitation that led to the Bangladesh floods in summer 2016. Since the Meghalaya Hills are the major contributor to flood waters in Bangladesh, we focus on this region, despite slightly higher rainfall anomalies further west. More specifically, we primarily analyze the grid point representing Cherrapunji, also known to be the wettest place on Earth (situated on the southern flank of Meghalaya Hills). We use the weather@home HadAM3P model at 50km spatial resolution. Our model results generally support the notion that rainfall extremes in Cherrapunji might have become more likely already. Mean rainfall is slightly lowered, but 21-day maximum rainfall under current

  13. Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    C. H. R. Lima

    2017-12-01

    Full Text Available Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life. Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps (SOMs that allows the linkage of large-scale processes to local-scale observations. The methodology is applied to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB in southern Brazil. The SOM clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes, including the South American low-level jet (SALLJ; extratropical cyclones; and the South Atlantic Convergence Zone (SACZ. Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are also found to be associated with these processes. Floods associated with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

  14. Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil

    Science.gov (United States)

    Lima, Carlos H. R.; AghaKouchak, Amir; Lall, Upmanu

    2017-12-01

    Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life. Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps (SOMs) that allows the linkage of large-scale processes to local-scale observations. The methodology is applied to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB) in southern Brazil. The SOM clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes, including the South American low-level jet (SALLJ); extratropical cyclones; and the South Atlantic Convergence Zone (SACZ). Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are also found to be associated with these processes. Floods associated with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

  15. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Global assessment of river flood protection benefits and corresponding residual risks under climate change

    Science.gov (United States)

    Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.

    2016-04-01

    Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish

  17. The index-flood and the GRADEX methods combination for flood frequency analysis.

    Science.gov (United States)

    Fuentes, Diana; Di Baldassarre, Giuliano; Quesada, Beatriz; Xu, Chong-Yu; Halldin, Sven; Beven, Keith

    2017-04-01

    Flood frequency analysis is used in many applications, including flood risk management, design of hydraulic structures, and urban planning. However, such analysis requires of long series of observed discharge data which are often not available in many basins around the world. In this study, we tested the usefulness of combining regional discharge and local precipitation data to estimate the event flood volume frequency curve for 63 catchments in Mexico, Central America and the Caribbean. This was achieved by combining two existing flood frequency analysis methods, the regionalization index-flood approach with the GRADEX method. For up to 10-years return period, similar shape of the scaled flood frequency curve for catchments with similar flood behaviour was assumed from the index-flood approach. For return periods larger than 10-years the probability distribution of rainfall and discharge volumes were assumed to be asymptotically and exponential-type functions with the same scale parameter from the GRADEX method. Results showed that if the mean annual flood (MAF), used as index-flood, is known, the index-flood approach performed well for up to 10 years return periods, resulting in 25% mean relative error in prediction. For larger return periods the prediction capability decreased but could be improved by the use of the GRADEX method. As the MAF is unknown at ungauged and short-period measured basins, we tested predicting the MAF using catchments climate-physical characteristics, and discharge statistics, the latter when observations were available for only 8 years. Only the use of discharge statistics resulted in acceptable predictions.

  18. How are flood risk estimates affected by the choice of return-periods?

    Science.gov (United States)

    Ward, P. J.; de Moel, H.; Aerts, J. C. J. H.

    2011-12-01

    Flood management is more and more adopting a risk based approach, whereby flood risk is the product of the probability and consequences of flooding. One of the most common approaches in flood risk assessment is to estimate the damage that would occur for floods of several exceedance probabilities (or return periods), to plot these on an exceedance probability-loss curve (risk curve) and to estimate risk as the area under the curve. However, there is little insight into how the selection of the return-periods (which ones and how many) used to calculate risk actually affects the final risk calculation. To gain such insights, we developed and validated an inundation model capable of rapidly simulating inundation extent and depth, and dynamically coupled this to an existing damage model. The method was applied to a section of the River Meuse in the southeast of the Netherlands. Firstly, we estimated risk based on a risk curve using yearly return periods from 2 to 10 000 yr (€ 34 million p.a.). We found that the overall risk is greatly affected by the number of return periods used to construct the risk curve, with over-estimations of annual risk between 33% and 100% when only three return periods are used. In addition, binary assumptions on dike failure can have a large effect (a factor two difference) on risk estimates. Also, the minimum and maximum return period considered in the curve affects the risk estimate considerably. The results suggest that more research is needed to develop relatively simple inundation models that can be used to produce large numbers of inundation maps, complementary to more complex 2-D-3-D hydrodynamic models. It also suggests that research into flood risk could benefit by paying more attention to the damage caused by relatively high probability floods.

  19. Near Real Time Flood Warning System for National Capital Territory of Delhi

    Science.gov (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.

    2017-12-01

    Extreme floods are common phenomena during Indian Monsoons. The National Capital Territory area of India, Delhi, frequently experiences fluvial as well as pluvial inundation due to its proximity to river Yamuna and poor functioning of its stormwater drainage system. The urban floods result in severe waterlogging and heavy traffic snarls, bringing life in this megapolis to a halt. The city has witnessed six major floods since 1900 and thus its residents are well conscious of potential flood risks but the city still lacks a flood warning system. The flood related risks can be considerably reduced, if not eliminated, by issuing timely warnings and implementing adaptive measures. Therefore, the present study attempts to develop a web based platform that integrates Web-GIS technology and mathematical simulation modelling to provide an effective and reliable early flood warning service for Delhi. The study makes use of India Metorological Department's Doppler radar-derived near real time rainfall estimates of 15 minutes time step. The developed SWMM model has been validated using information from gauges, monitoring sensors and crowd sourcing techniques and utilises capabilities of cloud computing on server side for fast processing. This study also recommends safe evacuation policy and remedial measures for flooding hotspots as part of flood risk management plan. With heightened risk of floods in fast urbanizing areas, this work becomes highly pertinent as flood warning system with adequate lead time can not only save precious lives but can also substantially reduce flood damages.

  20. An Agent-Based Model of Evolving Community Flood Risk.

    Science.gov (United States)

    Tonn, Gina L; Guikema, Seth D

    2017-11-17

    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  1. Framework for probabilistic flood risk assessment in an Alpine region

    Science.gov (United States)

    Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann

    2014-05-01

    Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the

  2. Unusual rainfall shift during monsoon period of 2010 in Pakistan ...

    African Journals Online (AJOL)

    Floods due to “blocking event” in the jet stream during 2010 caused intense rainfall and flash floods in northern Pakistan which resulted to riverine flooding in southern Pakistan. In the beginning of July 2010, changes in summer monsoon rainfall patterns caused the most severe flooding in Pakistan history. Process control ...

  3. Review of the flood risk management system in Germany after the major flood in 2013

    Directory of Open Access Journals (Sweden)

    Annegret H. Thieken

    2016-06-01

    Full Text Available Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1 an increased consideration of flood hazards in spatial planning and urban development, (2 comprehensive property-level mitigation and preparedness measures, (3 more effective flood warnings and improved coordination of disaster response, and (4 a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.

  4. The necessity of flood risk maps on Timis River

    International Nuclear Information System (INIS)

    Aldescu, Geogr Catalin

    2008-01-01

    The paper aims to clarify the necessity of risk reduction in flood prone areas along the Timis River. Different methods to reduce risk in flood prone areas are analyzed as well. According to the EU Flood Directive it is mandatory for the European countries to develop flood maps and flood risk maps. The maps help to assess the vulnerable zones in the floodable (i.e. flood prone) areas. Many European countries have produced maps which identify areas prone to flooding events for specific known return periods. In Romania the flood risk maps have not been yet produced, but the process has been started to be implemented at the national and regional level, therefore the first results will be soon available. Banat Hydrographical Area was affected by severe floods on Timis River in 2000, 2005 and 2006. The 2005 flood was the most devastating one with large economic losses. As a result of these catastrophes the need for generating flood risk maps along the Timis. River was clearly stated. The water management experts can use these maps in order to identify the 'hot spots' in Timis catchment, give the people a better understanding of flood risk issues and help reducing flood risk more efficient in the identified vulnerable areas.

  5. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  6. Gastrointestinal illness among triathletes swimming in non-polluted versus polluted seawater affected by heavy rainfall, Denmark, 2010-2011.

    Directory of Open Access Journals (Sweden)

    Nina Majlund Harder-Lauridsen

    Full Text Available Recent years have seen an increase in the frequency of extreme rainfall and subsequent flooding across the world. Climate change models predict that such flooding will become more common, triggering sewer overflows, potentially with increased risks to human health. In August 2010, a triathlon sports competition was held in Copenhagen, Denmark, shortly after an extreme rainfall. The authors took advantage of this event to investigate disease risks in two comparable cohorts of physically fit, long distance swimmers competing in the sea next to a large urban area. An established model of bacterial concentration in the water was used to examine the level of pollution in a spatio-temporal manner. Symptoms and exposures among athletes were examined with a questionnaire using a retrospective cohort design and the questionnaire investigation was repeated after a triathlon competition held in non-polluted seawater in 2011. Diagnostic information was collected from microbiological laboratories. The results showed that the 3.8 kilometer open water swimming competition coincided with the peak of post-flooding bacterial contamination in 2010, with average concentrations of 1.5x10(4 E. coli per 100 ml water. The attack rate of disease among 838 swimmers in 2010 was 42% compared to 8% among 931 swimmers in the 2011 competition (relative risk (RR 5.0; 95% CI: 4.0-6.39. In 2010, illness was associated with having unintentionally swallowed contaminated water (RR 2.5; 95% CI: 1.8-3.4; and the risk increased with the number of mouthfuls of water swallowed. Confirmed aetiologies of infection included Campylobacter, Giardia lamblia and diarrhoeagenic E. coli. The study demonstrated a considerable risk of illness from water intake when swimming in contaminated seawater in 2010, and a small but measureable risk from non-polluted water in 2011. This suggests a significant risk of disease in people ingesting small amounts of flood water following extreme rainfall in

  7. Gastrointestinal illness among triathletes swimming in non-polluted versus polluted seawater affected by heavy rainfall, Denmark, 2010-2011.

    Science.gov (United States)

    Harder-Lauridsen, Nina Majlund; Kuhn, Katrin Gaardbo; Erichsen, Anders Christian; Mølbak, Kåre; Ethelberg, Steen

    2013-01-01

    Recent years have seen an increase in the frequency of extreme rainfall and subsequent flooding across the world. Climate change models predict that such flooding will become more common, triggering sewer overflows, potentially with increased risks to human health. In August 2010, a triathlon sports competition was held in Copenhagen, Denmark, shortly after an extreme rainfall. The authors took advantage of this event to investigate disease risks in two comparable cohorts of physically fit, long distance swimmers competing in the sea next to a large urban area. An established model of bacterial concentration in the water was used to examine the level of pollution in a spatio-temporal manner. Symptoms and exposures among athletes were examined with a questionnaire using a retrospective cohort design and the questionnaire investigation was repeated after a triathlon competition held in non-polluted seawater in 2011. Diagnostic information was collected from microbiological laboratories. The results showed that the 3.8 kilometer open water swimming competition coincided with the peak of post-flooding bacterial contamination in 2010, with average concentrations of 1.5x10(4) E. coli per 100 ml water. The attack rate of disease among 838 swimmers in 2010 was 42% compared to 8% among 931 swimmers in the 2011 competition (relative risk (RR) 5.0; 95% CI: 4.0-6.39). In 2010, illness was associated with having unintentionally swallowed contaminated water (RR 2.5; 95% CI: 1.8-3.4); and the risk increased with the number of mouthfuls of water swallowed. Confirmed aetiologies of infection included Campylobacter, Giardia lamblia and diarrhoeagenic E. coli. The study demonstrated a considerable risk of illness from water intake when swimming in contaminated seawater in 2010, and a small but measureable risk from non-polluted water in 2011. This suggests a significant risk of disease in people ingesting small amounts of flood water following extreme rainfall in urban areas.

  8. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.

    2014-01-01

    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  9. Urban flood risk warning under rapid urbanization.

    Science.gov (United States)

    Chen, Yangbo; Zhou, Haolan; Zhang, Hui; Du, Guoming; Zhou, Jinhui

    2015-05-01

    In the past decades, China has observed rapid urbanization, the nation's urban population reached 50% in 2000, and is still in steady increase. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in increasing the urban flood risks and causing serious urban flooding losses. Urban flooding also increases health risks such as causing epidemic disease break out, polluting drinking water and damaging the living environment. In the highly urbanized area, non-engineering measurement is the main way for managing urban flood risk, such as flood risk warning. There is no mature method and pilot study for urban flood risk warning, the purpose of this study is to propose the urban flood risk warning method for the rapidly urbanized Chinese cities. This paper first presented an urban flood forecasting model, which produces urban flood inundation index for urban flood risk warning. The model has 5 modules. The drainage system and grid dividing module divides the whole city terrain into drainage systems according to its first-order river system, and delineates the drainage system into grids based on the spatial structure with irregular gridding technique; the precipitation assimilation module assimilates precipitation for every grids which is used as the model input, which could either be the radar based precipitation estimation or interpolated one from rain gauges; runoff production module classifies the surface into pervious and impervious surface, and employs different methods to calculate the runoff respectively; surface runoff routing module routes the surface runoff and determines the inundation index. The routing on surface grid is calculated according to the two dimensional shallow water unsteady flow algorithm, the routing on land channel and special channel is calculated according to the one dimensional unsteady flow algorithm. This paper then proposed the urban flood risk warning method that is called DPSIR model based

  10. Flood Risk Management in the UK%英国的洪水风险管理

    Institute of Scientific and Technical Information of China (English)

    史芳斌

    2006-01-01

    Approaches to reduce disruption and damage from flooding have changed significantly in recent years. Worldwide, there has been a significant move from a strategy of flood defence to one of flood risk management. Flood risk management includes the use of flood defences, where appropriate, but also recognizes that more managed flooding is essential to meeting goals for biodiversity and to sustain good ecological status in river and coastal systems. The author reviews the flood risk management and analyzes its development and future strategy in the UK. The study shows that flooding and its impacts seem to be increasing with the global climate change and social-economic development. Flood risk management therefore requires a holistic approach, addressing the scientific and engineering issues of rainfall, runoff, rivers and flood inundation as well as the human and socio-economic issues of planning, development and management.%为了减少洪水造成的破坏和损失,近年来世界各国的洪水管理已从单一的防洪工程向洪水风险管理转变.除了能进行有效的洪水防御外,洪水风险管理还被认为是维持生物多样性、河流及海岸生态系统的重要手段.回顾了英国的洪水风险管理及其组成体系,并分析讨论了未来可能面临的问题及应对措施.结果表明,随着全球气候变化及社会经济发展,洪水发生的频率及其影响正在增加.因此,如何全面综合考虑降雨、径流、河流、洪泛区以及人类活动、社会经济规划、发展和管理等诸多因素是实施洪水风险管理面临的重要课题.

  11. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  12. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    Science.gov (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  13. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System for Sicily

    Directory of Open Access Journals (Sweden)

    G. Brigandì

    2017-09-01

    Full Text Available The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System, specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF. The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall–streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall–runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall–runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015 have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002–2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall

  14. Pluvial, urban flood mechanisms and characteristics - Assessment based on insurance claims

    Science.gov (United States)

    Sörensen, Johanna; Mobini, Shifteh

    2017-12-01

    Pluvial flooding is a problem in many cities and for city planning purpose the mechanisms behind pluvial flooding are of interest. Previous studies seldom use insurance claim data to analyse city scale characteristics that lead to flooding. In the present study, two long time series (∼20 years) of flood claims from property owners have been collected and analysed in detail to investigate the mechanisms and characteristics leading to urban flooding. The flood claim data come from the municipal water utility company and property owners with insurance that covers property loss from overland flooding, groundwater intrusion through basement walls and flooding from the drainage system. These data are used as a proxy for flood severity for several events in the Swedish city of Malmö. It is discussed which rainfall characteristics give most flooding and why some rainfall events do not lead to severe flooding, how city scale topography and sewerage system type influence spatial distribution of flood claims, and which impact high sea level has on flooding in Malmö. Three severe flood events are described in detail and compared with a number of smaller flood events. It was found that the main mechanisms and characteristics of flood extent and its spatial distribution in Malmö are intensity and spatial distribution of rainfall, distance to the main sewer system as well as overland flow paths, and type of drainage system, while high sea level has little impact on the flood extent. Finally, measures that could be taken to lower the flood risk in Malmö, and other cities with similar characteristics, are discussed.

  15. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  16. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  17. Reflecting Societal Values in Designing Flood Risk Management Strategies

    Directory of Open Access Journals (Sweden)

    Adamson Mark

    2016-01-01

    Full Text Available In 2006, the Office of Public Works (OPW began the National Catchment-based Flood Risk Assessment and Management (CFRAM Programme through a series of pilot studies. A Multi-Criteria Analysis (MCA Framework was developed through the pilot studies that integrated a number of objectives related to a wide range of potential impacts and benefits into the core of process of appraising and selecting suitable flood risk management measures for a given area or location, and then for prioritising national investments for different schemes and projects. This MCA Framework, that provides a systematic process of developing a non-monetised but numerical indicator of benefit and impact, has since been implemented nationally in the preparation of the Flood Risk Management Plans (FRMPs. A key feature of the MCA is that it should represent societal values. To this end, nationally representative quantitative research was undertaken to determine global weights that reflect the perceived importance of each of the objectives for reducing economic, social and environmental / cultural risks in flood management strategies. Saaty’s Analytical Hierarchy Process (AHP, in conjunction with a pair-wise comparison of criteria relating to these risks, was utilised to determine weights. In excess of 1,000 structured interviews were completed where the relative importance of these objectives were assessed using a seven-point scale. The weighting given to each of the 13 specific objectives identified broadly followed expectations, with risk to people followed by risk to homes and properties being respectively the first and second most important, although some were given greater or less weighting than expected. The national application of the MCA Framework, using the weighted objectives based on this process, through the CFRAM Programme has generally lead to the identification of appropriate and, based on local consultation, acceptable options for each community.

  18. A new French flash flood warning service

    Directory of Open Access Journals (Sweden)

    de Saint-Aubin Céline

    2016-01-01

    Full Text Available The French State services in charge of flood forecasting supervise about 22,000 km among the 120,000 km of the French rivers within a warning procedure called Vigilance Crues (http://www.vigicrues.gouv.fr. Some recent dramatic flood events on small watershed not covered by Vigilance Crues highlight the need for a new warning procedure to anticipate violent flash floods that regularly affect rapid river-basins. Thus the concept emerged of an automatic warning service specifically dedicated to local crisis managers. This service will be less elaborated than Vigilance Crues, probably with false alarms and missed events sometimes, but it will deliver a first information. The generation of the warning is based on a simple rainfall-runoff hydrological model developed by Irstea on all French rivers, fed with radar-gauge rainfall grids provided by Meteo-France. Every fifteen minutes, the hydrological model estimates the discharges on the rivers eligible to the service and determine if certain thresholds corresponding to a high or very high flood are likely to be exceeded. The last step of the real-time system is to determine which municipalities are concerned with flood risk and send them an automatic warning by voice call, optionally by sms or email. A specific web interface is available for users to monitor the evolution of the flood risk on maps that are updated every 15 minutes. This new flash flood warning service will be operational early 2017 as a free service for about 8,000 French municipalities.

  19. A Cascading Storm-Flood-Landslide Guidance System: Development and Application in China

    Science.gov (United States)

    Zeng, Ziyue; Tang, Guoqiang; Long, Di; Ma, Meihong; Hong, Yang

    2016-04-01

    Flash floods and landslides, triggered by storms, often interact and cause cascading effects on human lives and property. Satellite remote sensing data has significant potential use in analysis of these natural hazards. As one of the regions continuously affected by severe flash floods and landslides, Yunnan Province, located in Southwest China, has a complex mountainous hydrometeorology and suffers from frequent heavy rainfalls from May through to late September. Taking Yunnan as a test-bed, this study proposed a Cascading Storm-Flood-Landslide Guidance System to progressively analysis and evaluate the risk of the multi-hazards based on multisource satellite remote sensing data. First, three standardized rainfall amounts (average daily amount in flood seasons, maximum 1h and maximum 6h amount) from the products of Topical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) were used as rainfall indicators to derive the StorM Hazard Index (SMHI). In this process, an integrated approach of the Analytic Hierarchy Process (AHP) and the Information-Entropy theory was adopted to determine the weight of each indicator. Then, land cover and vegetation cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS) products, soil type from the Harmonized World Soil Database (HWSD) soil map, and slope from the Shuttle Radar Topography Mission (SRTM) data were add as semi-static geo-topographical indicators to derive the Flash Flood Hazard Index (FFHI). Furthermore, three more relevant landslide-controlling indicators, including elevation, slope angle and soil text were involved to derive the LandSlide Hazard Index (LSHI). Further inclusion of GDP, population and prevention measures as vulnerability indicators enabled to consecutively predict the risk of storm to flash flood and landslide, respectively. Consequently, the spatial patterns of the hazard indices show that the southeast of Yunnan has more possibility to encounter with storms

  20. Increasing resilience through participative flood risk map design

    Science.gov (United States)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral

  1. The Influence of Flooding Risk on Infrastructure Development in Western Sydney

    Directory of Open Access Journals (Sweden)

    Alan Jeary

    2012-11-01

    Full Text Available Data relating to flood events in the west Sydney area of Windsor, have been re-analysed using extreme value statistics, and the analysis has shown that the risk of occurrence of the probable maximum flood is greater than previously assumed using conventional statistical methods.The response of the New South Wales Government to the perceived risk is discussed and the efficacy of their strategy of relying on passing information to local residents has been tested by the use of a survey of residents of the area.The survey of Windsor residents showed that a significant percentage of the population had no knowledge of the flood risk. Of the rest of the population there was little or no knowledge of the effects that a severe flood might have, and there was little appreciation of the yearly risk of floods that would affect the town. Overall, it was concluded that the main mitigation strategy of government has been ineffective.

  2. Calibration of commercial microwave link derived- rainfall and its relevance to flash flood occurrence in the Dead Sea area

    Science.gov (United States)

    Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich

    2016-04-01

    Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML

  3. Assessing the environmental justice consequences of flood risk: a case study in Miami, Florida

    Science.gov (United States)

    Montgomery, Marilyn C.; Chakraborty, Jayajit

    2015-09-01

    Recent environmental justice (EJ) research has emphasized the need to analyze social inequities in the distribution of natural hazards such as hurricanes and floods, and examine intra-ethnic diversity in patterns of EJ. This study contributes to the emerging EJ scholarship on exposure to flooding and ethnic heterogeneity by analyzing the racial/ethnic and socioeconomic characteristics of the population residing within coastal and inland flood risk zones in the Miami Metropolitan Statistical Area (MSA), Florida—one of the most ethnically diverse MSAs in the U.S. and one of the most hurricane-prone areas in the world. We examine coastal and inland flood zones separately because of differences in amenities such as water views and beach access. Instead of treating the Hispanic population as a homogenous group, we disaggregate the Hispanic category into relevant country-of-origin subgroups. Inequities in flood risk exposure are statistically analyzed using socio-demographic variables derived from the 2010 U.S. Census and 2007-2011 American Community Survey estimates, and 100-year flood risk zones from the Federal Emergency Management Agency (FEMA). Social vulnerability is represented with two neighborhood deprivation indices called economic insecurity and instability. We also analyze the presence of seasonal/vacation homes and proximity to public beach access sites as water-related amenity variables. Logistic regression modeling is utilized to estimate the odds of neighborhood-level exposure to coastal and inland 100-year flood risks. Results indicate that neighborhoods with greater percentages of non-Hispanic Blacks, Hispanics, and Hispanic subgroups of Colombians and Puerto Ricans are exposed to inland flood risks in areas without water-related amenities, while Mexicans are inequitably exposed to coastal flood risks. Our findings demonstrate the importance of treating coastal and inland flood risks separately while controlling for water-related amenities, and

  4. Flood hazard mapping of Palembang City by using 2D model

    Science.gov (United States)

    Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri

    2017-11-01

    Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.

  5. Quantitative flood risk assessment for Polders

    International Nuclear Information System (INIS)

    Manen, Sipke E. van; Brinkhuis, Martine

    2005-01-01

    In the Netherlands, the design of dikes and other water retaining structures is based on an acceptable probability (frequency) of overtopping. In 1993 a new safety concept was introduced based on total flood risk. Risk was defined as the product of probability and consequences. In recent years advanced tools have become available to calculate the actual flood risk of a polder. This paper describes the application of these tools to an existing lowland river area. The complete chain of calculations necessary to estimate the risk of flooding of a polder (or dike ring) is presented. The difficulties in applying the present day tools and the largest uncertainties in the calculations are shown

  6. Quantitative flood risk assessment for Polders

    Energy Technology Data Exchange (ETDEWEB)

    Manen, Sipke E. van [Ministry of Transport, Public Works and Water Management, Bouwdienst Rijkswaterstaat, Griffioenlaan 2, Utrecht 3526 (Netherlands)]. E-mail: s.e.vmanen@bwd.rws.minvenw.nl; Brinkhuis, Martine [Ministry of Transport, Public Works and Water Management, Delft (Netherlands)

    2005-12-01

    In the Netherlands, the design of dikes and other water retaining structures is based on an acceptable probability (frequency) of overtopping. In 1993 a new safety concept was introduced based on total flood risk. Risk was defined as the product of probability and consequences. In recent years advanced tools have become available to calculate the actual flood risk of a polder. This paper describes the application of these tools to an existing lowland river area. The complete chain of calculations necessary to estimate the risk of flooding of a polder (or dike ring) is presented. The difficulties in applying the present day tools and the largest uncertainties in the calculations are shown.

  7. Short-term ensemble radar rainfall forecasts for hydrological applications

    Science.gov (United States)

    Codo de Oliveira, M.; Rico-Ramirez, M. A.

    2016-12-01

    Flooding is a very common natural disaster around the world, putting local population and economy at risk. Forecasting floods several hours ahead and issuing warnings are of main importance to permit proper response in emergency situations. However, it is important to know the uncertainties related to the rainfall forecasting in order to produce more reliable forecasts. Nowcasting models (short-term rainfall forecasts) are able to produce high spatial and temporal resolution predictions that are useful in hydrological applications. Nonetheless, they are subject to uncertainties mainly due to the nowcasting model used, errors in radar rainfall estimation, temporal development of the velocity field and to the fact that precipitation processes such as growth and decay are not taken into account. In this study an ensemble generation scheme using rain gauge data as a reference to estimate radars errors is used to produce forecasts with up to 3h lead-time. The ensembles try to assess in a realistic way the residual uncertainties that remain even after correction algorithms are applied in the radar data. The ensembles produced are compered to a stochastic ensemble generator. Furthermore, the rainfall forecast output was used as an input in a hydrodynamic sewer network model and also in hydrological model for catchments of different sizes in north England. A comparative analysis was carried of how was carried out to assess how the radar uncertainties propagate into these models. The first named author is grateful to CAPES - Ciencia sem Fronteiras for funding this PhD research.

  8. Optimization of urban spatial development against flooding and other climate risks, and wider sustainability objectives

    Directory of Open Access Journals (Sweden)

    Caparros-Midwood Daniel

    2016-01-01

    Full Text Available A spatial optimization framework has been developed to help urban areas mitigate climate risks such as flooding and to curb resource use and greenhouse gas emissions. Measures required to address these issues often conflict with each other, for example more compact cities typically use less energy for transportation but increase runoff from high intensity rainfall events. Balancing potential trade-offs and maximizing synergies between these risks and vulnerabilities is therefore a multi-dimensional, spatial, challenge for urban planners. A spatial optimization framework is used to optimize the following objectives to minimize: (1 risk from heat waves; (2 risk from flooding; (3 the distance of new development to the current central business district; (4 urban sprawl to prevent increased travel costs; and (5 the development of green-space. The framework is applied to a real case study in the North East of England. From an initial configuration, alternative spatial configurations are tested against these objectives and the spatial pattern is evolved over successive generations to search for spatially optimum configurations. The resulting solutions provide planners with a range of robust spatial development patterns known to be best trade-offs which mitigate conflicts between risk and sustainability objectives.

  9. Heavy rainfall: An underestimated environmental risk for buildings?

    Directory of Open Access Journals (Sweden)

    Golz Sebastian

    2016-01-01

    Second, heavy rain may result in urban pluvial flooding due to sewer overflow that cause severe damage to buildings. A comprehensive study of the impacts and the consequences in Dresden (Germany, presented in the paper, revealed that the potential risks of flooding from sewers due to hydraulic overload can be estimated on building scale using the model approach IVART (Integrated Spatial Vulnerability and Risk Assessment Tool. Modelling results provide the basis to quantify the effectiveness and efficiency of flood resilience technologies.

  10. Promoting adaptive flood risk management: the role and potential of flood recovery mechanisms

    Directory of Open Access Journals (Sweden)

    Priest Sally J

    2016-01-01

    Full Text Available There is a high potential for recovery mechanisms to be used to incentivise the uptake of flood mitigation and loss reduction measures, undertake adaptation and promote community resilience. Indeed, creating a resilient response to flooding requires flood risk management approaches to be aligned and it needs to be ensured that recovery mechanisms to not provide disincentives for individuals and business to take proactive action to reduce risk. However, the degree to which it is desirable and effective for insurers and governments providing compensation to promote resilience and risk reduction depends upon how the cover or compensation is organised and the premiums which are charged. A review of international flood recovery mechanisms has been undertaken to identify firstly the types of schemes that exist and their characteristics. Analysis of existing instruments highlights that there are various potential approaches to encourage or require the uptake of flood mitigation and also discourage the construction of new development in high flood risk. However despite the presence of these instruments, those organising recovery mechanisms could be doing much more to incentivise increased resilience.

  11. Rainfall Intensity and Frequency Explain Production Basis Risk in Cumulative Rain Index Insurance

    Science.gov (United States)

    Muneepeerakul, Chitsomanus P.; Muneepeerakul, Rachata; Huffaker, Ray G.

    2017-12-01

    With minimal moral hazard and adverse selection, weather index insurance promises financial resilience to farmers struck by harsh weather conditions through swift compensation at affordable premium. Despite these advantages, the very nature of indexing gives rise to production basis risk as the selected weather indexes do not sufficiently correspond to actual damages. To address this problem, we develop a stochastic yield model, built upon a stochastic soil moisture model driven by marked Poisson rainfall. Our analysis shows that even under similar temperature and rainfall amount yields can differ significantly; this was empirically supported by a 2-year field experiment in which rain-fed maize was grown under very similar total rainfall. Here, the year with more intense, less-frequent rainfall produces a better yield—a rare counter evidence to most climate change projections. Through a stochastic yield model, we demonstrate the crucial roles of rainfall intensity and frequency in determining the yield. Importantly, the model allows us to compute rainfall pattern-related basis risk inherent in cumulative rain index insurance. The model results and a case study herein clearly show that total rainfall is a poor indicator of yield, imposing unnecessary production basis risk on farmers and false-positive payouts on insurers. Incorporating rainfall intensity and frequency in the design of rain index insurance can offer farmers better protection, while maintaining the attractive features of the weather index insurance and thus fulfilling its promise of financial resilience.

  12. Adaptation to flood risk: Results of international paired flood event studies

    NARCIS (Netherlands)

    Kreibich, Heidi; Di Baldassarre, G.; Vorogushyn, Sergiy; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.; Bubeck, P.; Caloiero, Tommaso; Chinh, Do. T.; Cortès, Maria; Gain, A.K.; Giampá, Vincenzo; Kuhlicke, C; Kundzewicz, Z.W.; Carmen Llasat, M; Mård, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, N.V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, A.H.; Ward, P.J.; Merz, B.

    2017-01-01

    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in

  13. Flood Risk Management Policy in Scotland: Research Questions Past, Present and Future

    Science.gov (United States)

    Wilkinson, Mark; Hastings, Emily; MacDonald, Jannette

    2016-04-01

    Scotland's Centre of Expertise for Waters (CREW) delivers accessible research and expert opinion to support the Scottish Government and its delivery partners in the development and implementation of water policy. It was established in 2011 by the Scottish Government (Rural and Environmental Science and Analytical Services) in recognition of a gap in the provision of short term advice and research to policy (development and implementation). Key policy areas include the Water Framework Directive, Floods Directive, Drinking Water Directive, Habitats Directive and Scotland's Hydro Nation Strategy. CREW is unique in its demand-driven and free service for policy makers and practitioners, managing the engagement between scientists, policy makers and practitioners to work effectively across this interface. The users of CREW are the Scottish Government, Scottish Environment Protection Agency, Scottish Natural Heritage and Scottish Water. CREW has funded around 100 projects relating to water policy since its inception in 2011. Of these, a significant number relate to flood risk management policy. Based on a review of work to date, this poster will give an overview of these projects and a forward look at the challenges that remain. From learning from community led flood risk management to surface water flood forecasting for urban communities, links will be made between sustainable and traditional flood risk management while considering the perceptions of stakeholders to flood risk management. How can we deliver fully integrated flood risk management options? How policy makers, scientists and land managers can better work together will also be explored.

  14. Development of a precipitation-area curve for warning criteria of short-duration flash flood

    Science.gov (United States)

    Bae, Deg-Hyo; Lee, Moon-Hwan; Moon, Sung-Keun

    2018-01-01

    This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events. The quantitative criteria are calculated based on flash flood guidance (FFG), which is defined as the depth of rainfall of a given duration required to cause frequent flooding (1-2-year return period) at the outlet of a small stream basin and is estimated using threshold runoff (TR) and antecedent soil moisture conditions in all sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002-2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC (receiver operating characteristic) analysis was used to obtain optimum rainfall values and a generalized precipitation-area (P-A) curve was developed for flash flood warning thresholds. The threshold function was derived as a P-A curve because the precipitation threshold with a short duration is more closely related to basin area than any other variables. For a brief description of the P-A curve, generalized thresholds for flash flood warnings can be suggested for rainfall rates of 42, 32 and 20 mm h-1 in sub-basins with areas of 22-40, 40-100 and > 100 km2, respectively. The proposed P-A curve was validated based on observed flash flood events in different sub-basins. Flash flood occurrences were captured for 9 out of 12 events. This result can be used instead of FFG to identify brief flash flood (less than 1 h), and it can provide warning information to decision-makers or citizens that is relatively simple, clear and immediate.

  15. Correlations between reinfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    NARCIS (Netherlands)

    Spekkers, M.H.; Zhou, Q.; Arnbjerg-Nielsen, K.; Clemens, F.H.L.R.; ten Veldhuis, J.A.E.

    2013-01-01

    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus,

  16. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    International Nuclear Information System (INIS)

    1995-05-01

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy's (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events

  17. Operational flood forecasting, warning and response for multi-scale flood risks in developing cities

    NARCIS (Netherlands)

    Rogelis Prada, M.C.

    2016-01-01

    Flood early warning systems are recognized as one of the most effective flood risk management instruments when correctly embedded in comprehensive flood risk management strategies and policies. Many efforts around the world are being put in place to advance the components that determine the

  18. Impacts of climate change on rainfall, seasonal flooding, and evapotranspiration in the Okavango Delta, Botswana

    Science.gov (United States)

    Konecky, B. L.; Noone, D.; Mosimanyana, E.; Gondwe, M.

    2016-12-01

    The Okavango Delta in northern Botswana is one of the world's richest biodiversity hotspots. A UNESCO World Heritage Site, the Delta is known for its unique annual flood pulse, whereby the wetland and its neighboring river systems are inundated with waters that travel nearly 1000 km before reaching this subtropical, semi-arid destination. The livelihoods of northern Botswana's ecosystems and human populations rely on these floods to supplement the short and variable rainy season, which in many years is too minimal to ameliorate regional drought. However, anthropogenic climate change is reducing the amount of water that reaches the delta by increasing evaporation from soils and rivers, and transpiration by vegetation, during its long transit to Botswana. Future changes in rainfall patterns, extreme events, and increased upstream water use could exacerbate this water stress. Unfortunately, it remains difficult to assess the impacts of climate change on the delta because few data exist to constrain its complex climatic and seasonal water cycling regimes. This study presents a novel characterization of the water cycle in and around the Okavango Delta based on a survey of free-flowing surface waters, stagnant pools, precipitation, and groundwater carried out during the 2016 rainy and early-flood season. We use stable isotope and water quality data to assess local moisture sources, transport, evaporation, wetland flushing, and land-atmosphere exchanges, all of which are subject to change under global warming. We find a strong evaporation gradient and a progressive flushing of stagnant swamp waters along the northeastern and northwestern channels of the Delta. The evaporation gradient is more limited in nearby rivers with more limited wetlands. We contrast results with a survey of the Delta performed in the 1970's in order to assess changes over the past 40 years. Since some of these changes may arise from rainfall supply, we also present new analysis of rainfall moisture

  19. Creating a Flood Risk Index to Improve Community Resilience

    Science.gov (United States)

    Klima, K.; El Gammal, L.

    2017-12-01

    While flood risk reduction is an existent discourse and agenda in policy and insurance, vulnerabilities vary between communities; some communities may have aging infrastructure, or an older/poorer population less able to absorb a flood, putting them at increased risk from the hazards. As a result, some are considering environmental justice aspects of flood risk reduction. To date, catastrophe models have focused on creating floodmaps (e.g., NOAA's Sea Level Rise Viewer, Climate Central's Surging Seas), or on linking hydrological models to economic loss models (e.g., HEC-RAS + HAZUS). However, this approach may be highly inequitable between areas of different income (as well as other demographics). Some have begun work on combining hydrology with vulnerability information (e.g., USACE's North Atlantic Comprehensive Coastal Study). To our knowledge, no one has tried to adapt the more advanced known heat risk theory to water risk by combining hydrology information (e.g., HEC-RAS, floodplain maps) with the social vulnerability (e.g., Cutter et al.) of the residents. This project will create a method to combine water hazard data with a derived water vulnerability index to help a community understand their current and future water risk. We will use the case study area of Pittsburgh, PA, which faces severe precipitation and riverine flooding hazards. Building on present literature of factors influencing water vulnerability contextualized to the Pittsburgh region, we will identify, quantify, and map the top factors impacting water vulnerability. We will combine these with flood maps to identify the geospatial distribution of water risk. This work will allow policy makers to identify location-specific aspects of water vulnerability and risk in any community, thus promoting environmental justice. It is possible that this type of original research would create maps of relative water risk that may prove as understandable to the general public as other flood maps, and may also

  20. Flood risk analysis procedure for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.

    1982-01-01

    This paper describes a methodology and procedure for determining the impact of floods on nuclear power plant risk. The procedures are based on techniques of fault tree and event tree analysis and use the logic of these techniques to determine the effects of a flood on system failure probability and accident sequence occurrence frequency. The methodology can be applied independently or as an add-on analysis for an existing risk assessment. Each stage of the analysis yields useful results such as the critical flood level, failure flood level, and the flood's contribution to accident sequence occurrence frequency. The results of applications show the effects of floods on the risk from nuclear power plants analyzed in the Reactor Safety Study

  1. Sustainable flood risk management – What is sustainable?

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Brudler, Sarah; Lerer, Sara Maria

    2016-01-01

    Sustainable flood risk management has to be achieved since flood protection is a fundamental societal service that we must deliver. Based on the discourse within the fields of risk management and sustainable urban water management, we discuss the necessity of assessing the sustainability of flood...... risk management, and propose an evaluation framework for doing so. We argue that it is necessary to include quantitative sustainability measures in flood risk management in order to exclude unsustainable solutions. Furthermore, we use the concept of absolute sustainability to discuss the prospects...... of maintaining current service levels without compromising future generation’s entitlement of services. Discussions on the sustainability of different overall flood risk schemes must take place. Fundamental changes in the approaches will require fundamental changes in the mind-sets of practitioners as well...

  2. Climate change and flood hazard: Evaluation of the SCHADEX methodology in a non-stationary context

    International Nuclear Information System (INIS)

    Brigode, Pierre

    2013-01-01

    Since 2006, Electricite de France (EDF) applies a new hydro-climatological approach of extreme rainfall and flood predetermination - the SCHADEX method - for the design of dam spillways. In a context of potential increase of extreme event intensity and frequency due to climate change, the use of the SCHADEX method in non-stationary conditions is a main interest topic for EDF hydrologists. Thus, the scientific goal of this Ph.D. thesis work has been to evaluate the ability of the SCHADEX method to take into account future climate simulations for the estimation of future extreme floods. The recognized inabilities of climate models and down-scaling methods to simulate (extreme) rainfall distribution at the catchment-scale have been avoided, by developing and testing new methodological approaches. Moreover, the decomposition of the flood-producing factors proposed by the SCHADEX method has been used for considering different simulated climatic evolutions and for quantifying the relative impact of these factors on the extreme flood estimation. First, the SCHADEX method has been applied in present time over different climatic contexts (France, Austria, Canada and Norway), thanks to several colorations with academic and industrial partners. A sensitivity analysis allowed to quantify the extreme flood estimation sensitivity to rainfall hazard, catchment saturation hazard and rainfall-runoff transformation, independently. The results showed a large sensitivity of SCHADEX flood estimations to the rainfall hazard and to the rainfall-runoff transformation. Using the sensitivity analysis results, tests have been done in order to estimate the future evolution of 'key' variables previously identified. New climate model outputs (done within the CMIP5 project) have been analyzed and used for determining future frequency of rainfall events and future catchment saturation conditions. Considering these simulated evolutions within the SCHADEX method lead to a significant decrease of

  3. Flood Risk Assessment Based On Security Deficit Analysis

    Science.gov (United States)

    Beck, J.; Metzger, R.; Hingray, B.; Musy, A.

    Risk is a human perception: a given risk may be considered as acceptable or unac- ceptable depending on the group that has to face that risk. Flood risk analysis of- ten estimates economic losses from damages, but neglects the question of accept- able/unacceptable risk. With input from land use managers, politicians and other stakeholders, risk assessment based on security deficit analysis determines objects with unacceptable risk and their degree of security deficit. Such a risk assessment methodology, initially developed by the Swiss federal authorities, is illustrated by its application on a reach of the Alzette River (Luxembourg) in the framework of the IRMA-SPONGE FRHYMAP project. Flood risk assessment always involves a flood hazard analysis, an exposed object vulnerability analysis, and an analysis combing the results of these two previous analyses. The flood hazard analysis was done with the quasi-2D hydraulic model FldPln to produce flood intensity maps. Flood intensity was determined by the water height and velocity. Object data for the vulnerability analysis, provided by the Luxembourg government, were classified according to their potential damage. Potential damage is expressed in terms of direct, human life and secondary losses. A thematic map was produced to show the object classification. Protection goals were then attributed to the object classes. Protection goals are assigned in terms of an acceptable flood intensity for a certain flood frequency. This is where input from land use managers and politicians comes into play. The perception of risk in the re- gion or country influences the protection goal assignment. Protection goals as used in Switzerland were used in this project. Thematic maps showing the protection goals of each object in the case study area for a given flood frequency were produced. Com- parison between an object's protection goal and the intensity of the flood that touched the object determine the acceptability of the risk and the

  4. Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers

    Directory of Open Access Journals (Sweden)

    G. Benito

    2011-04-01

    Full Text Available In this study we propose a multi-source data approach for quantifying long-term flooding and aquifer recharge in ungauged ephemeral rivers. The methodology is applied to the Buffels River, at 9000 km2 the largest ephemeral river in Namaqualand (NW South Africa, a region with scarce stream flow records limiting research investigating hydrological response to global change. Daily discharge and annual flood series (1965–2006 were estimated from a distributed rainfall-runoff hydrological model (TETIS using rainfall gauge records located within the catchment. The model was calibrated and validated with data collected during a two year monitoring programme (2005–2006 at two stream flow stations, one each in the upper and lower reaches of the catchment. In addition to the modelled flow records, non-systematic flood data were reconstructed using both sedimentary and documentary evidence. The palaeoflood record identified at least 25 large floods during the last 700 yr; with the largest floods reaching a minimum discharge of 255 m3 s−1 (450 yr return period in the upper basin, and 510 m3 s−1 (100 yr return period in the lower catchment. Since AD 1925, the flood hydrology of the Buffels River has been characterised by a decrease in the magnitude and frequency of extreme floods, with palaeoflood discharges (period 1500–1921 five times greater than the largest modelled floods during the period 1965–2006. Large floods generated the highest hydrograph volumes, however their contribution to aquifer recharge is limited as this depends on other factors such as flood duration and storage capacity of the unsaturated zone prior to the flood. Floods having average return intervals of 5–10 yr (120–140 m3 s−1 and flowing for 12 days are able to fully saturate the Spektakel aquifer in the lower Buffels River basin. Alluvial aquifer storage capacity limiting potential recharge

  5. Flood Impacts on People: from Hazard to Risk Maps

    Science.gov (United States)

    Arrighi, C.; Castelli, F.

    2017-12-01

    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  6. A framework for probabilistic pluvial flood nowcasting for urban areas

    Science.gov (United States)

    Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick

    2016-04-01

    Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the

  7. Flooding Risk for Coastal Infrastructure: a Stakeholder-Oriented Approach

    Science.gov (United States)

    Plater, A. J.; Prime, T.; Brown, J. M.; Knight, P. J.; Morrissey, K.

    2015-12-01

    A flood risk assessment for coastal energy infrastructure in the UK with respect to long-term sea-level rise and extreme water levels has been conducted using a combination of numerical modelling approaches (LISFLOOD-FP, SWAB, XBeach-G, POLCOMS). Model outputs have been incorporated into a decision-support tool that enables users from a wide spectrum of coastal stakeholders (e.g. nuclear energy, utility providers, local government, environmental regulators, communities) to explore the potential impacts of flooding on both operational (events to 10 years) and strategic (10 to 50 years) timescales. Examples illustrate the physical and economic impacts of flooding from combined extreme water levels, wave overtopping and high river flow for Fleetwood, NW England; changes in the extent of likely flooding arising from an extreme event due to sea-level rise for Oldbury, SW England; and the relative vulnerability to overtopping and breaching of sea defences for Dungeness, SE England. The impacts of a potential large-scale beach recharge scheme to mitigate coastal erosion and flood risk along the southern shoreline of Dungeness are also examined using a combination of coastal evolution and particle-tracking modelling. The research goal is to provide an evidence base for resource allocation, investment in interventions, and communication and dialogue in relation to sea-level rise to 2500 AD.

  8. Integration of social perception in flash flood risk management for resilience improvement

    Science.gov (United States)

    Diez-Herrero, Andres; Amerigo, Maria; Bodoque, Jose Maria; Garcia, Juan Antonio; Olcina-Cantos, Jorge

    2015-04-01

    Spain is, behind Switzerland, the second most mountainous country in Europe, which determines that after the occurrence of heavy or intense rainfall events, a fast hydrological response takes place due to steep slopes and strong hydrological connectivity. As a result, flash floods are, among natural hazards, the main social risk in Spain. In fact, they have provoked some of the greatest natural disasters in recent history of the country (e.g. Yebra and Almoguera in 1995, Biescas in 1996 or Badajoz in 1997, which totalized more than 200 deceased in the last decades). This work is focused on the village of Navaluenga (Central Spain), in which we have been studying flash floods, under the consideration of different perspectives and using different approaches, for the past 20 years; and in which the regional government has recently approved the Civil Protection Plan.In this research, we examine social perception of flash floodsthrough surveys and interviews; one turn previous to the communication plan and other one after this dissemination activities to population. To this end, the individual and groupal differences were explored, by taking into account socio-demographic variables. In addition, we have considered psychological and material dimensions of vulnerability associated to flood risk, as well as to the emotional dimension through the consideration of psyco-environmental variables.Thus, this research aims to identify what aspects of the social perception differs from scientific/technical knowledge acquired which, in turn, may decrease the efficiency of a risk mitigation plan or even determine its failure. To minimize this lack of harmony, and at the same time to increase awareness of population, we propose a risk communication plan to improve preparedness of the community. To this end, we propose an approach in which messages reach the population quickly and in an understandable way. In this regard, risk communication is based on the integration of suitable

  9. Application of polish experience in the implementation of the flood directive in Georgia – hydrological calculations

    Directory of Open Access Journals (Sweden)

    Diana Egiazarova

    2018-05-01

    Full Text Available This paper present an example of the implementation of hydrological calculation methods for delineation of flood risk zones in the conditions prevailing in Georgia. The results, described in the present paper, were obtained in the project “Study of hydraulic modelling against floods – 2nd stage – support to the competence and readiness of Georgian institutions” which was organized and implemented by Polish Center for International Aid (PCPM, and co-funded by the Ministry of Foreign Affairs of the Republic of Poland. The results related to the catchments of the Lopota, the Intsoba, the Chelti, the Avaniskhevi, the Shromiskhevi in Kakheti and the Aragvi. All the catchments named above are hydrologically ungauged, therefore, a rainfall-runoff hydrological model was required for generating hypothetical hydrographs. Based on the peak daily total rainfall for the multi-annual period 1966–2014, quantiles of rainfall with a specified exceedance probability were calculated. A rainfall hyetogram was found using the beta distribution function. Effective rainfall was calculated by the SCS-CN method. Details of the land profile, cover and soil conditions were obtained from the numerical land model as well as maps, generated as part of the project named above. The effective rainfall was transformed into runoff using a simple SCSUH model, based on the synthetic unit hydrograph. Studies indicated that total daily uniform rainfalls were random and could be described using the Fisher-Tippett distribution type III min. The results obtained by modeling were boundary conditions in the hydraulic model of transformation of the flood wave in rivers.

  10. Record Balkan floods of 2014 linked to planetary wave resonance.

    Science.gov (United States)

    Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan

    2016-04-01

    In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.

  11. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    Science.gov (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  12. [Climate changes, floods, and health consequences].

    Science.gov (United States)

    Michelozzi, Paola; de' Donato, Francesca

    2014-02-01

    In the European Region, floods are the most common natural disaster, causing extensive damage and disruption. In Italy, it has been estimated that over 68% of municipalities are at high hydrogeological risk and with the recent intense rainfall events local populations have been facing severe disruptions. The health consequences of floods are wide ranging and are dependent upon the vulnerability of the environment and the local population. Health effects can be a direct or indirect consequence of flooding. The immediate health impacts of floods include drowning, heart attacks, injuries and hypothermia. The indirect effects include, injuries and infections, water-borne infectious disease, mental health problems, respiratory disease and allergies in both the medium and long term after a flood. Future efforts should be addressed to integrate health preparedness and prevention measures into emergency flood plans and hydrological warning systems.

  13. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  14. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    Science.gov (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  15. Flood Simulation Using WMS Model in Small Watershed after Strong Earthquake -A Case Study of Longxihe Watershed, Sichuan province, China

    Science.gov (United States)

    Guo, B.

    2017-12-01

    Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.

  16. Climate change, uncertainty and investment in flood risk reduction

    OpenAIRE

    Pol, van der, T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies. Chapter 2 provides an overview of cost-benefit analysis (CBA) of flood risk management strategies under climate change uncertainty and new information. CBA is applied to determine optimal dike height...

  17. Developing a national programme of flood risk management measures: Moldova

    Directory of Open Access Journals (Sweden)

    Ramsbottom David

    2016-01-01

    Full Text Available A Technical Assistance project funded by the European Investment Bank has been undertaken to develop a programme of flood risk management measures for Moldova that will address the main shortcomings in the present flood management system, and provide the basis for long-term improvement. Areas of significant flood risk were identified using national hydraulic and flood risk modelling, and flood hazard and flood risk maps were then prepared for these high risk areas. The flood risk was calculated using 12 indicators representing social, economic and environmental impacts of flooding. Indicator values were combined to provide overall estimates of flood risk. Strategic approaches to flood risk management were identified for each river basin using a multi-criteria analysis. Measures were then identified to achieve the strategic approaches. A programme of measures covering a 20-year period was developed together with a more detailed Short-Term Investment Plan covering the first seven years of the programme. Arrangements are now being made to implement the programme. The technical achievements of the project included national hydrological and hydraulic modelling covering 12,000 km of river, the development of 2-dimensional channel and floodplain hydraulic models from a range of topographic and bathymetric data, and an integrated flood risk assessment that takes account of both economic and non-monetary impacts.

  18. Levee Setbacks: An Innovative, Cost Effective, and Sustainable Solution for Improved Flood Risk management

    Science.gov (United States)

    2017-06-30

    ER D C/ EL S R- 17 -3 Levee Setbacks: An Innovative , Cost-Effective, and Sustainable Solution for Improved Flood Risk Management En vi...EL SR-17-3 June 2017 Levee Setbacks: An Innovative , Cost-Effective, and Sustainable Solution for Improved Flood Risk Management David L. Smith...alternative view point is necessary. ERDC/EL SR-17-3 4 Levee setbacks are a relatively recent innovation in Corps flood risk management practice

  19. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  20. Assimilation of qualitative hydrological information in water-related risk framework

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Solomatine, Dimitri

    2013-04-01

    In recent years water-related risks are increasing worldwide. In particular, floods have been one of the most damaging natural disasters in Europe, in terms of economic losses. Non-structural measures such as flood risk mapping are generally used to reduce the impact of flood in important area. The increasing data availability makes it possible to develop new models which can be used to assimilate different kinds of information and reduce the uncertainty of the state of a basin. The aim of this work is to propose a methodology to assimilate uncertain, qualitative information within hydrological models in order to improve the evaluation of catchment responses. Qualitative information is defined here as the one that can be interpreted as and assimilated into a hydrological model as a fuzzy value, for instance those coming from text messages or citizen's pictures. The methodology is applied in the Brue catchment, located in the South West of England, having a drainage area of 135 km2, average annual rainfall of 867 mm and average discharge of 1.92 m3/s at Lovington considering the period among 1961 and 1990. In order to estimate the response of the catchment to a flood event with given intensity, a conceptual distributed hydrological model was implemented. First, the basin was divided in different sub-basins, then, the hydrograph at the outlet section was estimated using a Nash cascade model and the propagation of the flood wave was carried out considering the lag time in the other each sub-basins. The assimilation of the qualitative information was carried out using different techniques. The results of this work show how the spatial location and uncertainty of the qualitative information can affect the flow hydrograph in the outlet section and the consequent flood extent in the downstream area. This study is part of the FP7 European Project WeSenseIt.

  1. Managing flood risks in the Mekong Delta

    NARCIS (Netherlands)

    Hoang, Long Phi; Biesbroek, Robbert; Tri, Van Pham Dang; Kummu, Matti; Vliet, van Michelle T.H.; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2018-01-01

    Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management.

  2. Climate change, uncertainty and investment in flood risk reduction

    NARCIS (Netherlands)

    Pol, van der T.D.

    2015-01-01

    Economic analysis of flood risk management strategies has become more complex due to climate change. This thesis investigates the impact of climate change on investment in flood risk reduction, and applies optimisation methods to support identification of optimal flood risk management strategies.

  3. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Ward, Philip J; Jongman, Brenden; Weiland, Frederiek Sperna; Winsemius, Hessel C; Bouwman, Arno; Ligtvoet, Willem; Van Beek, Rens; Bierkens, Marc F P

    2013-01-01

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  4. Global drivers of future river flood risk

    Science.gov (United States)

    Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; van Beek, Ludovicus P. H.; Bierkens, Marc F. P.; Bouwman, Arno; Jongman, Brenden; Kwadijk, Jaap C. J.; Ligtvoet, Willem; Lucas, Paul L.; van Vuuren, Detlef P.; Ward, Philip J.

    2016-04-01

    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We present the first global future river flood risk projections that separate the impacts of climate change and socio-economic development. The projections are based on an ensemble of climate model outputs, socio-economic scenarios, and a state-of-the-art hydrologic river flood model combined with socio-economic impact models. Globally, absolute damage may increase by up to a factor of 20 by the end of the century without action. Countries in Southeast Asia face a severe increase in flood risk. Although climate change contributes significantly to the increase in risk in Southeast Asia, we show that it is dwarfed by the effect of socio-economic growth, even after normalization for gross domestic product (GDP) growth. African countries face a strong increase in risk mainly due to socio-economic change. However, when normalized to GDP, climate change becomes by far the strongest driver. Both high- and low-income countries may benefit greatly from investing in adaptation measures, for which our analysis provides a basis.

  5. Future flood risk estimates along the river Rhine

    NARCIS (Netherlands)

    te Linde, A.H.; Bubeck, P.; Dekkers, J.E.C.; de Moel, H.; Aerts, J.C.J.H.

    2011-01-01

    In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine

  6. A framework for global river flood risk assessments

    NARCIS (Netherlands)

    Winsemius, H.C.; van Beek, L.P.H.|info:eu-repo/dai/nl/14749799X; Jongman, B.; Ward, P.J.; Bouwman, A.

    2013-01-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and

  7. Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells

    Science.gov (United States)

    Renard, Florent

    2017-04-01

    The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.

  8. Future flood risk estimates along the river Rhine

    Directory of Open Access Journals (Sweden)

    A. H. te Linde

    2011-02-01

    Full Text Available In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine basin. To optimize spatial planning and flood management measures, studies are needed that quantify future flood risks and estimate their uncertainties. In this paper, we estimated the current and future fluvial flood risk in 2030 for the entire Rhine basin in a scenario study. The change in value at risk is based on two land-use projections derived from a land-use model representing two different socio-economic scenarios. Potential damage was calculated by a damage model, and changes in flood probabilities were derived from two climate scenarios and hydrological modeling. We aggregated the results into seven sections along the Rhine. It was found that the annual expected damage in the Rhine basin may increase by between 54% and 230%, of which the major part (~ three-quarters can be accounted for by climate change. The highest current potential damage can be found in the Netherlands (110 billion €, compared with the second (80 billion € and third (62 billion € highest values in two areas in Germany. Results further show that the area with the highest fluvial flood risk is located in the Lower Rhine in Nordrhein-Westfalen in Germany, and not in the Netherlands, as is often perceived. This is mainly due to the higher flood protection standards in the Netherlands as compared to Germany.

  9. Flash flood characterisation of the Haor area of Bangladesh

    Science.gov (United States)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  10. Partial Least Squares Regression for Determining the Control Factors for Runoff and Suspended Sediment Yield during Rainfall Events

    Directory of Open Access Journals (Sweden)

    Nufang Fang

    2015-07-01

    Full Text Available Multivariate statistics are commonly used to identify the factors that control the dynamics of runoff or sediment yields during hydrological processes. However, one issue with the use of conventional statistical methods to address relationships between variables and runoff or sediment yield is multicollinearity. The main objectives of this study were to apply a method for effectively identifying runoff and sediment control factors during hydrological processes and apply that method to a case study. The method combines the clustering approach and partial least squares regression (PLSR models. The case study was conducted in a mountainous watershed in the Three Gorges Area. A total of 29 flood events in three hydrological years in areas with different land uses were obtained. In total, fourteen related variables were separated from hydrographs using the classical hydrograph separation method. Twenty-nine rainfall events were classified into two rainfall regimes (heavy Rainfall Regime I and moderate Rainfall Regime II based on rainfall characteristics and K-means clustering. Four separate PLSR models were constructed to identify the main variables that control runoff and sediment yield for the two rainfall regimes. For Rainfall Regime I, the dominant first-order factors affecting the changes in sediment yield in our study were all of the four rainfall-related variables, flood peak discharge, maximum flood suspended sediment concentration, runoff, and the percentages of forest and farmland. For Rainfall Regime II, antecedent condition-related variables have more effects on both runoff and sediment yield than in Rainfall Regime I. The results suggest that the different control factors of the two rainfall regimes are determined by the rainfall characteristics and thus different runoff mechanisms.

  11. Designing a flood-risk education program in the Netherlands

    NARCIS (Netherlands)

    Bosschaert, A.; van der Schee, J.; Kuiper, W.

    2016-01-01

    This study focused on designing a flood-risk education program to enhance 15-year-old students’ flood-risk perception. In the flood-risk education program, learning processes were modeled in such a way that the arousal of moderate levels of fear should prompt experiential and analytical information

  12. Risk factors of diarrhoea among flood victims: a controlled epidemiological study.

    Science.gov (United States)

    Mondal, N C; Biswas, R; Manna, A

    2001-01-01

    The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.

  13. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  14. Climatic and hydrologic aspects of the 2008 Midwest floods

    Science.gov (United States)

    Budikova, D.; Coleman, J.; Strope, S. A.

    2010-12-01

    Between May and June 2008 the Midwest region of the United States (U.S.) experienced record flooding. The event was produced by distinct hydroclimatic conditions that included saturated antecedent soil moisture conditions and atmospheric circulation that guided moist air from the Gulf of Mexico into the area between late May and mid-June. The latter included a well-developed trough over the central/west U.S., a strong Great Plains Low Level Jet (GPLLJ), and unseasonably strong westerlies that promoted upper level divergence in regions of positive vorticity advection. The flooding coincided with a strongly negative phase of the North Atlantic Oscillation linked to the strength of the GPLLJ. The atmospheric flow contributed to flooding within three river basins across nine states. Iowa, southern Wisconsin, and central Indiana located within the Upper Mississippi River Basin (UMRB) and the Wabash River Basin were most impacted and also recorded the greatest anomalies in rainfall. Record rainfall, persistent multi-day precipitation events, high frequency of localized high-intensity rainfall events all contributed to the severity of the flooding. Conditions peaked between May 21 and June 13 when rain fell somewhere within the region each day. River discharge rates reached record levels in June at many locations; return periods throughout Iowa, southern Wisconsin and in central Indiana were estimated to exceed 100 years, and often times 200 years. Record river stage levels were observed during this time in similar areas. Conditions began to recover into July and August. The timing of occurrence of the precipitation and hydrological anomalies towards late spring and into early summer in the Midwest was rather unusual. The 2008 flood event occurred 15 years after the infamous 1993 event. The importance of its occurrence is underscored by the observed increasing trends in extreme and flood-related precipitation characteristics during the 20th century and the anticipated

  15. Event-based rainfall-runoff modelling of the Kelantan River Basin

    Science.gov (United States)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  16. Event-based rainfall-runoff modelling of the Kelantan River Basin

    International Nuclear Information System (INIS)

    Basarudin, Z; Adnan, N A; Latif, A R A; Syafiqah, N; Tahir, W

    2014-01-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area

  17. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Science.gov (United States)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  18. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    Directory of Open Access Journals (Sweden)

    M. Hagemeier-Klose

    2009-04-01

    Full Text Available Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey.

    The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  19. The Development and Assesment of Adaptation Pathways for Urban Pluvial Flooding

    Science.gov (United States)

    Babovic, F.; Mijic, A.; Madani, K.

    2017-12-01

    Around the globe, urban areas are growing in both size and importance. However, due to the prevalence of impermeable surfaces within the urban fabric of cities these areas have a high risk of pluvial flooding. Due to the convergence of population growth and climate change the risk of pluvial flooding is growing. When designing solutions and adaptations to pluvial flood risk urban planners and engineers encounter a great deal of uncertainty due to model uncertainty, uncertainty within the data utilised, and uncertainty related to future climate and land use conditions. The interaction of these uncertainties leads to conditions of deep uncertainty. However, infrastructure systems must be designed and built in the face of this deep uncertainty. An Adaptation Tipping Points (ATP) methodology was used to develop a strategy to adapt an urban drainage system in the North East of London under conditions of deep uncertainty. The ATP approach was used to assess the current drainage system and potential drainage system adaptations. These adaptations were assessed against potential changes in rainfall depth and peakedness-defined as the ratio of mean to peak rainfall. These solutions encompassed both traditional and blue-green solutions that the Local Authority are known to be considering. This resulted in a set of Adaptation Pathways. However, theses pathways do not convey any information regarding the relative merits and demerits of the potential adaptation options presented. To address this a cost-benefit metric was developed that would reflect the solutions' costs and benefits under uncertainty. The resulting metric combines elements of the Benefits of SuDS Tool (BeST) with real options analysis in order to reflect the potential value of ecosystem services delivered by blue-green solutions under uncertainty. Lastly, it is discussed how a local body can utilise the adaptation pathways; their relative costs and benefits; and a system of local data collection to help guide

  20. Flood forecasting within urban drainage systems using NARX neural network.

    Science.gov (United States)

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  1. Community perceptions and response to flood risks in Nyando District, Western Kenya

    Directory of Open Access Journals (Sweden)

    Hellen Nyakundi

    2010-04-01

    Full Text Available In Kenya, the ability of local people to resist the impact of disasters has not been given adequate attention. A descriptive cross sectional study sought to investigate community perceptions and responses to flood risks in low and high risk areas of the Nyando District, Western Kenya. A total of 528 households, six government officials and have project managers of Community Based Organizations (CBOs and Non Governmental Organizations (NGOs were interviewed. Additionally, seven Focus Group Discussions(FGDs involving three women, two male and two teacher groups were conducted. Data were analysed using the Statistical Package for the Social Sciences (SPSS Program. The Chi-square test was used to determine associations and di'erences between variables. In the study, 83% of the respondents were aware of Traditional Flood Knowledge (TFK and 80% acknowledged its use. Perception of the risk is influenced by several variables, most notably past experience of major floods and having survived them. Residents in the high risk areas had signfficantly higher levels of awareness and use of traditional flood knowledge. they were more aware of the nature of the flood related health risks they were exposed to and appeared better prepared for future flood risk. They were, however, more dependent on external aid. On the other hand, residents living in the low risk area reported better success with their response mechanisms.

  2. Methodology for flood risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.; Casada, M.L.; Fussell, J.B.

    1984-01-01

    The methodology for flood risk analysis described here addresses the effects of a flood on nuclear power plant safety systems. Combining the results of this method with the probability of a flood allows the effects of flooding to be included in a probabilistic risk assessment. The five-step methodology includes accident sequence screening to focus the detailed analysis efforts on the accident sequences that are significantly affected by a flood event. The quantitative results include the flood's contribution to system failure probability, accident sequence occurrence frequency and consequence category occurrence frequency. The analysis can be added to existing risk assessments without a significant loss in efficiency. The results of two example applications show the usefulness of the methodology. Both examples rely on the Reactor Safety Study for the required risk assessment inputs and present changes in the Reactor Safety Study results as a function of flood probability

  3. A framework for global river flood risk assessments

    Science.gov (United States)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2013-05-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM

  4. A framework for global river flood risk assessments

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2013-05-01

    Full Text Available There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population. The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE. We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from

  5. Assessing the effects of Climate Change on Urban Pluvial Flooding to provide a Risk Management Framework

    Science.gov (United States)

    Rianna, G.; Mercogliano, P.

    2017-12-01

    Urbanization increases the flood risk because of heightened vulnerability, stemming from population concentration and hazard due to soil sealing affecting the largest part of urban settlements and reducing the concentration time of interested basins. Furthermore, current and future hazards are exacerbated by expected increases in extreme rainfall events due to Climate Changes (CC) making inadequate urban drainage infrastructures designed under the assumption of steady conditions. In this work, we present a modeling chain/algorithm to assess potential increase in pluvial flood hazard able to take into account CC forcing. The adopted simulation chain reckon on three main elements: Regional Climate Model, COSMO_CLM, dynamically downscaling GCM CMCC_CM (Scoccimarro et al., 2011) and optimized, at high resolution (about 8km), by Bucchignani et al. (2015) on Italy provide projections about precipitation up to 2100 under two concentration scenarios (RCP4.5 and RCP8.5). Such projections are used in Equidistance Quantile Mapping (EQM) approach, developed by Srivastav et al. (2014) to estimate expected variations in IDF (Intensity-Duration-Frequency) curves calculated through Generalized Extreme Value (GEV) approach on the basis of available rainfall data. To this aim, 1971-2000 observations are used as reference. Finally, a 1-D/2-D coupled urban drainage/flooding model forced by IDF (current and projected) is used to simulate storm-sewer surcharge and surface inundation to establish the variations in urban flooding risk. As test case is considered the city center of Naples (Southern Italy). In this respective, the sewage and urban drainage network is highly complex due to the historical and subsequent transformations of the city. Under such constraints, the reliability of the results maybe deeply conditioned by uncertainties not undermining the illustrative purposes of the work. Briefly, EQM returns a remarkable increase in extreme precipitations; such increase is driven by

  6. Evolutionary leap in large-scale flood risk assessment needed

    OpenAIRE

    Vorogushyn, Sergiy; Bates, Paul D.; de Bruijn, Karin; Castellarin, Attilio; Kreibich, Heidi; Priest, Sally J.; Schröter, Kai; Bagli, Stefano; Blöschl, Günter; Domeneghetti, Alessio; Gouldby, Ben; Klijn, Frans; Lammersen, Rita; Neal, Jeffrey C.; Ridder, Nina

    2018-01-01

    Current approaches for assessing large-scale flood risks contravene the fundamental principles of the flood risk system functioning because they largely ignore basic interactions and feedbacks between atmosphere, catchments, river-floodplain systems and socio-economic processes. As a consequence, risk analyses are uncertain and might be biased. However, reliable risk estimates are required for prioritizing national investments in flood risk mitigation or for appraisal and management of insura...

  7. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    Science.gov (United States)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will

  8. Assessing Stability and Dynamics in Flood Risk Governance

    NARCIS (Netherlands)

    Hegger, D.L.T.; Driessen, P.P.J.; Dieperink, C.; Wiering, M.A.; Raadgever, G.T.; Rijswick, H.F.M.W. van

    2014-01-01

    European urban agglomerations face increasing flood risks due to urbanization and the effects of climate change. These risks are addressed at European, national and regional policy levels. A diversification and alignment of Flood Risk Management Strategies (FRMSs) can make vulnerable urban

  9. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    Science.gov (United States)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For

  10. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    Science.gov (United States)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  11. Estimation of initiating event frequency for external flood events by extreme value theorem

    International Nuclear Information System (INIS)

    Chowdhury, Sourajyoti; Ganguly, Rimpi; Hari, Vibha

    2017-01-01

    External flood is an important common cause initiating event in nuclear power plants (NPPs). It may potentially lead to severe core damage (SCD) by first causing the failure of the systems required for maintaining the heat sinks and then by contributing to failures of engineered systems designed to mitigate such failures. The sample NPP taken here is twin 220 MWe Indian standard pressurized heavy water reactor (PHWR) situated inland. A comprehensive in-house Level-1 internal event PSA for full power had already been performed. External flood assessment was further conducted in area of external hazard risk assessment in response to post-Fukushima measures taken in nuclear industries. The present paper describes the methodology to calculate initiating event (IE) frequency for external flood events for the sample inland Indian NPP. General extreme value (GEV) theory based on maximum likelihood method (MLM) and order statistics approach (OSA) is used to analyse the rainfall data for the site. Thousand-year return level and necessary return periods for extreme rainfall are evaluated. These results along with plant-specific topographical calculations quantitatively establish that external flooding resulting from upstream dam break, river flooding and heavy rainfall (flash flood) would be unlikely for the sample NPP in consideration.

  12. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  13. SHYREG, a national database of flood frequency estimation

    Directory of Open Access Journals (Sweden)

    Arnaud Patrick

    2016-01-01

    Full Text Available SHYREG method is a regionalized method for rainfall and flood frequency analysis (FFA. It is based on processes simulation. It couples an hourly rainfall generator with a rainfall-runoff model, simplified enough to be regionalized. The method has been calibrated using all hydro meteorological data available at the national level. In France, that represents about 2800 raingauges of the French Weather Service network and about 1800 stations of the hydrometric National Bank network. Then, the method has been regionalized to provide a rainfall and flow quantiles database. An evaluation of the method was carried out during different thesis works and more recently during the ANR project Extraflo, with the aim of comparing different FFA approaches. The accuracy of the method in estimating rainfall and flow quantiles has been proved, as well as its stability due to a parameterization based on average values. The link with rainfall seems preferable to extrapolation based solely on the flow. Thus, another interest of the method is to take into account extreme flood behaviour with help of rainfall frequency estimation. In addition, the approach is implicitly multi-durational, and only one regionalization meets all the needs in terms hydrological hazards characterisation. For engineering needs and to avoid repeating the method implementation, this method has been applied throughout a 50 meters resolution mesh to provide a complete flood quantiles database over the French territory providing regional information on hydrological hazards. However, it is subject to restrictions related to the nature of the method: the SHYREG flows are “natural”, and do not take into account specific cases like the basins highly influenced by presence of hydraulic works, flood expansion areas, high snowmelt or karsts. Information about these restrictions and uncertainty estimation is provided with this database, which can be consulted via web access.

  14. The dynamics of cultivation and floods in arable lands of Central Argentina

    Directory of Open Access Journals (Sweden)

    E. F. Viglizzo

    2009-04-01

    Full Text Available Although floods in watersheds have been associated with land-use change since ancient times, the dynamics of flooding is still incompletely understood. In this paper we explored the relations between rainfall, groundwater level, and cultivation to explain the dynamics of floods in the extremely flat and valuable arable lands of the Quinto river watershed, in central Argentina. The analysis involved an area of 12.4 million hectare during a 26-year period (1978–2003, which comprised two extensive flooding episodes in 1983–1988 and 1996–2003. Supported by information from surveys as well as field and remote sensing measurements, we explored the correlation among precipitation, groundwater levels, flooded area and land use. Flood extension was associated to the dynamics of groundwater level. While no correlation with rainfall was recorded in lowlands, a significant correlation (P<0.01 between groundwater and rainfall in highlands was found when estimations comprise a time lag of one year. Correlations between groundwater level and flood extension were positive in all cases, but while highly significant relations (P<0.01 were found in highlands, non significant relations (P>0.05 predominate in lowlands. Our analysis supports the existence of a cyclic mechanism driven by the reciprocal influence between cultivation and groundwater in highlands. This cycle would involve the following stages: (a cultivation boosts the elevation of groundwater levels through decreased evapotranspiration; (b as groundwater level rises, floods spread causing a decline of land cultivation; (c flooding propitiates higher evapotranspiration favouring its own retraction; (d cultivation expands again following the retreat of floods. Thus, cultivation would trigger a destabilizing feedback self affecting future cultivation in the highlands. It is unlikely that such sequence can work in lowlands. The results suggest that rather than responding directly

  15. Weighted normalized risk factor for floods risk assessment

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Elmoustafa

    2012-12-01

    Full Text Available Multi Criteria Analysis (MCA describes any structured approach used to determine overall preferences among alternative options, where options accomplish certain or several objectives. The flood protection of properties is a highly important issue due to the damage, danger and other hazards associated to it to human life, properties, and environment. To determine the priority of execution of protection works for any project, many aspects should be considered in order to decide the areas to start the data collection and analysis with. Multi criteria analysis techniques were tested and evaluated for the purpose of flood risk assessment, hydro-morphological parameters were used in this analysis. Finally a suitable technique was chosen and tested to be adopted as a mark of flood risk level and results were presented.

  16. The Total Risk Analysis of Large Dams under Flood Hazards

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2018-02-01

    Full Text Available Dams and reservoirs are useful systems in water conservancy projects; however, they also pose a high-risk potential for large downstream areas. Flood, as the driving force of dam overtopping, is the main cause of dam failure. Dam floods and their risks are of interest to researchers and managers. In hydraulic engineering, there is a growing tendency to evaluate dam flood risk based on statistical and probabilistic methods that are unsuitable for the situations with rare historical data or low flood probability, so a more reasonable dam flood risk analysis method with fewer application restrictions is needed. Therefore, different from previous studies, this study develops a flood risk analysis method for large dams based on the concept of total risk factor (TRF used initially in dam seismic risk analysis. The proposed method is not affected by the adequacy of historical data or the low probability of flood and is capable of analyzing the dam structure influence, the flood vulnerability of the dam site, and downstream risk as well as estimating the TRF of each dam and assigning corresponding risk classes to each dam. Application to large dams in the Dadu River Basin, Southwestern China, demonstrates that the proposed method provides quick risk estimation and comparison, which can help local management officials perform more detailed dam safety evaluations for useful risk management information.

  17. Distributional Effects of EU Flood Risk Management and the Law : The Netherlands, Flanders and France as case studies

    NARCIS (Netherlands)

    van Doorn-Hoekveld, Willemijn

    2018-01-01

    Flood risk management is a policy field in which the distribution of burdens and benefits plays an important role. As flood risks are distributed unequally among the members of society, people in risk areas benefit more from flood risk management than people living in a relativelyrisk-free’ area.

  18. Insurance against climate change and flood risk: Insurability and decision processes of insurers

    Science.gov (United States)

    Hung, Hung-Chih; Hung, Jia-Yi

    2016-04-01

    1. Background Major portions of the Asia-Pacific region is facing escalating exposure and vulnerability to climate change and flood-related extremes. This highlights an arduous challenge for public agencies to improve existing risk management strategies. Conventionally, governmental funding was majorly responsible and accountable for disaster loss compensation in the developing countries in Asia, such as Taiwan. This is often criticized as an ineffective and inefficient measure of dealing with flood risk. Flood insurance is one option within the toolkit of risk-sharing arrangement and adaptation strategy to flood risk. However, there are numerous potential barriers for insurance companies to cover flood damage, which would cause the flood risk is regarded as uninsurable. This study thus aims to examine attitudes within the insurers about the viability of flood insurance, the decision-making processes of pricing flood insurance and their determinants, as well as to examine potential solutions to encourage flood insurance. 2. Methods and data Using expected-utility theory, an insurance agent-based decision-making model was developed to examine the insurers' attitudes towards the insurability of flood risk, and to scrutinize the factors that influence their decisions on flood insurance premium-setting. This model particularly focuses on how insurers price insurance when they face either uncertainty or ambiguity about the probability and loss of a particular flood event occurring. This study considers the factors that are expected to affect insures' decisions on underwriting and pricing insurance are their risk perception, attitudes towards flood insurance, governmental measures (e.g., land-use planning, building codes, risk communication), expected probabilities and losses of devastating flooding events, as well as insurance companies' attributes. To elicit insurers' utilities about premium-setting for insurance coverage, the 'certainty equivalent,' 'probability

  19. Modelling Inland Flood Events for Hazard Maps in Taiwan

    Science.gov (United States)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage

  20. Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

    Science.gov (United States)

    Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD

    2018-01-01

    Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.

  1. Food Risk for Investors. Are you prepared?

    OpenAIRE

    Alnes, Kristina; Berg, Alexander O.; Clapp, Christa; Lannoo, Elisabeth; Pillay, Kamleshan

    2018-01-01

    The probability of flood risk is increasing with climate change, due to more intense and frequent extreme precipitation events. This may lead to coastal flooding, which can have significant impacts in combination with extreme weather and sea level rise. Inland flooding can also result from major storms or from sustained periods of above-average rainfall. Flood risk is observed in all regions of the world. To date, the focus of water risk analysis outside of the insurance in...

  2. Constraining continuous rainfall simulations for derived design flood estimation

    Science.gov (United States)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  3. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  4. River flood risk in Jakarta under scenarios of future change

    Science.gov (United States)

    Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.

    2016-03-01

    Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.

  5. IT infrastructure enabling open access for flood risk preparedness in South Africa

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2009-05-01

    Full Text Available The paper focuses on the information technology infrastructure required for the evaluation and monitoring of risk relating to floods in South Africa. It may be argued that in the context of developing countries, flood preparedness is more valuable...

  6. Future trends in flood risk in Indonesia - A probabilistic approach

    Science.gov (United States)

    Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip

    2014-05-01

    Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to

  7. The European Union approach to flood risk management and improving societal resilience: lessons from the implementation of the Floods Directive in six European countries

    Directory of Open Access Journals (Sweden)

    Sally J. Priest

    2016-12-01

    Full Text Available Diversity in flood risk management approaches is often considered to be a strength. However, in some national settings, and especially for transboundary rivers, variability and incompatibility of approaches can reduce the effectiveness of flood risk management. Placed in the context of increasing flood risks, as well as the potential for flooding to undermine the European Union's sustainable development goals, a desire to increase societal resilience to flooding has prompted the introduction of a common European Framework. We provide a legal and policy analysis of the implementation of the Floods Directive (2007/60/EC in six countries: Belgium (Flemish region, England, France, the Netherlands, Poland, and Sweden. Evaluation criteria from existing legal and policy literature frame the study of the Directive and its effect on enhancing or constraining societal resilience by using an adaptive governance approach. These criteria are initially used to analyze the key components of the EU approach, before providing insight of the implementation of the Directive at a national level. Similarities and differences in the legal translation of European goals into existing flood risk management are analyzed alongside their relative influence on policy and practice. The research highlights that the effect of the Floods Directive on increasing societal resilience has been nationally variable, in part because of its focus on procedural obligations, rather than on more substantive requirements. Analysis shows that despite a focus on transboundary river basin management, existing traditions of flood risk management have overridden objectives to harmonize flood risk management in some cases. The Directive could be strengthened by requiring more stringent cooperation and providing the competent authorities in international river basin districts with more power. Despite some shortcomings in directly affecting flood risk outcomes, the Directive has positively

  8. Health protection and risks for rescuers in cases of floods.

    Science.gov (United States)

    Janev Holcer, Nataša; Jeličić, Pavle; Grba Bujević, Maja; Važanić, Damir

    2015-03-01

    Floods can pose a number of safety and health hazards for flood-affected populations and rescuers and bring risk of injuries, infections, and diseases due to exposure to pathogenic microorganisms and different biological and chemical contaminants. The risk factors and possible health consequences for the rescuers involved in evacuation and rescuing operations during the May 2014 flood crisis in Croatia are shown, as well as measures for the prevention of injuries and illnesses. In cases of extreme floods, divers play a particularly important role in rescuing and first-response activities. Rescuing in contaminated floodwaters means that the used equipment such as diving suits should be disinfected afterwards. The need for securing the implementation of minimal health and safety measures for involved rescuers is paramount. Data regarding injuries and disease occurrences among rescuers are relatively scarce, indicating the need for medical surveillance systems that would monitor and record all injuries and disease occurrences among rescuers in order to ensure sound epidemiological data. The harmful effects of flooding can be reduced by legislation, improvement of flood forecasting, establishing early warning systems, and appropriate planning and education.

  9. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    KAUST Repository

    Deng, Liping

    2013-12-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  10. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    KAUST Repository

    Deng, Liping; McCabe, Matthew; Stenchikov, Georgiy L.; Evans, Jason; Kucera, Paul

    2013-01-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  11. BN-FLEMOps pluvial - A probabilistic multi-variable loss estimation model for pluvial floods

    Science.gov (United States)

    Roezer, V.; Kreibich, H.; Schroeter, K.; Doss-Gollin, J.; Lall, U.; Merz, B.

    2017-12-01

    Pluvial flood events, such as in Copenhagen (Denmark) in 2011, Beijing (China) in 2012 or Houston (USA) in 2016, have caused severe losses to urban dwellings in recent years. These floods are caused by storm events with high rainfall rates well above the design levels of urban drainage systems, which lead to inundation of streets and buildings. A projected increase in frequency and intensity of heavy rainfall events in many areas and an ongoing urbanization may increase pluvial flood losses in the future. For an efficient risk assessment and adaptation to pluvial floods, a quantification of the flood risk is needed. Few loss models have been developed particularly for pluvial floods. These models usually use simple waterlevel- or rainfall-loss functions and come with very high uncertainties. To account for these uncertainties and improve the loss estimation, we present a probabilistic multi-variable loss estimation model for pluvial floods based on empirical data. The model was developed in a two-step process using a machine learning approach and a comprehensive database comprising 783 records of direct building and content damage of private households. The data was gathered through surveys after four different pluvial flood events in Germany between 2005 and 2014. In a first step, linear and non-linear machine learning algorithms, such as tree-based and penalized regression models were used to identify the most important loss influencing factors among a set of 55 candidate variables. These variables comprise hydrological and hydraulic aspects, early warning, precaution, building characteristics and the socio-economic status of the household. In a second step, the most important loss influencing variables were used to derive a probabilistic multi-variable pluvial flood loss estimation model based on Bayesian Networks. Two different networks were tested: a score-based network learned from the data and a network based on expert knowledge. Loss predictions are made

  12. Insights from socio-hydrology modelling on dealing with flood risk: roles of collective memory, risk-taking attitude and trust (Invited)

    Science.gov (United States)

    Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.

    2013-12-01

    The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.

  13. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    Science.gov (United States)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  14. Rainfall reliability, drought and flood vulnerability in Botswana ...

    African Journals Online (AJOL)

    Rainfall data from 14 stations (cities, towns and major villages) spanning 26 years (1970 to 1995) were used to calculate reliability and vulnerability of rainfall in Botswana. Time series data for 72 years were generated from the long-term rainfall gauging stations and the number of wet and dry years determined. Apart from ...

  15. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods

    Science.gov (United States)

    Nakayama, Tadanobu; Shankman, David

    2013-01-01

    Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.

  16. The efficiency of asset management strategies to reduce urban flood risk.

    Science.gov (United States)

    ten Veldhuis, J A E; Clemens, F H L R

    2011-01-01

    In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.

  17. Quantitative risk analysis of urban flooding in lowland areas

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.

    2010-01-01

    Urban flood risk analyses suffer from a lack of quantitative historical data on flooding incidents. Data collection takes place on an ad hoc basis and is usually restricted to severe events. The resulting data deficiency renders quantitative assessment of urban flood risks uncertain. The study

  18. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Science.gov (United States)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  19. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hassan Zulkarnain

    2018-01-01

    Full Text Available The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015 data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM, as compared to Southwest monsoon (SWM. Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  20. Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model Approach.

    Science.gov (United States)

    Haer, Toon; Botzen, W J Wouter; de Moel, Hans; Aerts, Jeroen C J H

    2017-10-01

    Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent-based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss-reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low-probability/high-impact risks. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  1. Population trends of antelopes in Waza National Park (Cameroon) from 1960 to 2001: The interacting effects of rainfall, flooding and human interventions

    NARCIS (Netherlands)

    Scholte, P.; Adam, S.; Serge, B.K.

    2007-01-01

    Antelopes are prominent wildlife in Waza National Park, situated in Sahelo-Sudanian Cameroon, which has witnessed dramatic changes in rainfall and flooding. To assess their impacts, we reviewed 26 aerial and terrestrial surveys, comprising total, transect and localized counts. Estimated numbers of

  2. NOAA predicts moderate flood potential in Midwest, elevated risk of ice

    Science.gov (United States)

    March 20, 2014 U.S. Spring Flood Risk Map for 2014. U.S. Spring Flood Risk Map for 2014. (Credit: NOAA moderate flood potential in Midwest, elevated risk of ice jams; California and Southwest stuck with drought minor or moderate risk of exceeding flood levels this spring with the highest threat in the southern

  3. Specifying risk management standard for flood risk assessment: a framework for resources allocation

    Directory of Open Access Journals (Sweden)

    Yunika Anastasia

    2017-01-01

    Full Text Available General risk management standard, e.g. ISO 31000:2009, approaches risk as a coin with a pair of two sides, i.e. the threat and the opportunity. However, it is hardly the case of flood events which mainly come as threats. Despite the contrary, this study explores the potential applicability of the available risk management standards specifically for flood. It then also synthesizes the components to result a framework for allocating resources among various strategies to result the optimum flood risk reduction. In order to review its applicability, the framework is then reviewed using several historic flood risk reduction cases. Its results are qualitatively discussed and summarized including the possible improvement of the framework for further applications.

  4. Economic optimisation of flood risk management projects

    NARCIS (Netherlands)

    Tsimopoulou, V.

    2015-01-01

    The Netherlands has developed a flood risk management policy based on an economic rationale. After the flood disaster of 1953, when a large area of the south-western part of the country was flooded and more than 1800 people lost their lives, the so-called Delta Committee was installed, whose main

  5. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2016-01-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...... to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps...

  6. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  7. Flood Risk Management In Europe: an exploration of governance challenges

    NARCIS (Netherlands)

    Hegger, D.; Dieperink, C.; Green, C.; Driessen, Peter; Bakker, M.H.; Rijswick, H.F.M.W. van; Crabbé, A.; Ek, K.

    2013-01-01

    In order to make European regions more resilient to flood risks a broadening of Flood Risk Management strategies (FRMSs) might be necessary. The development and implementation of FRMSs like risk prevention, flood defence, mitigation, preparation and recovery is a matter of governance, a process of

  8. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    OpenAIRE

    Tramblay, Yves; Bouvier, Christophe; Martin, C.; Didon-Lescot, J. F.; Todorovik, D.; Domergue, J. M.

    2010-01-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture,...

  9. Driving into danger: Perception and communication of flash flood risk from a cultural perspective

    Science.gov (United States)

    Coles, A.; Hirschboeck, K. K.; Fryberg, S.

    2009-04-01

    Flood risk managers educate the public on the dangers of driving through flooded roadways, yet losses to life and property continue to occur. This study integrates cultural psychology and risk perception theory to explore how culture, psychological processes, and behavior influence one another. Flood risk managers in Tucson, Arizona collaborated in the development of a questionnaire mailed to local residents. Questions regarding levels of trust, self-efficacy, social autonomy, social incorporation, time perspective, and situational factors were analyzed with respect to whether respondents stated that they have or have not driven through a flooded roadway. Respondents' decisions are influenced by the presence of signs and barricades, passengers, risk of personal injury or damage to the vehicle, and the availability of flood-related information. The most influential factor is the prior successful crossing of other vehicles. The results illuminate complex interrelations among the cultural factors and provide considerations for future risk perception research.

  10. Usefulness and limitations of global flood risk models

    Science.gov (United States)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel

    2016-04-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742

  11. Effects of climate variability on global scale flood risk

    Science.gov (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  12. Effect of catchment properties and flood generation regime on copula selection for bivariate flood frequency analysis

    Science.gov (United States)

    Filipova, Valeriya; Lawrence, Deborah; Klempe, Harald

    2018-02-01

    Applying copula-based bivariate flood frequency analysis is advantageous because the results provide information on both the flood peak and volume. More data are, however, required for such an analysis, and it is often the case that only data series with a limited record length are available. To overcome this issue of limited record length, data regarding climatic and geomorphological properties can be used to complement statistical methods. In this paper, we present a study of 27 catchments located throughout Norway, in which we assess whether catchment properties, flood generation processes and flood regime have an effect on the correlation between flood peak and volume and, in turn, on the selection of copulas. To achieve this, the annual maximum flood events were first classified into events generated primarily by rainfall, snowmelt or a combination of these. The catchments were then classified into flood regime, depending on the predominant flood generation process producing the annual maximum flood events. A contingency table and Fisher's exact test were used to determine the factors that affect the selection of copulas in the study area. The results show that the two-parameter copulas BB1 and BB7 are more commonly selected in catchments with high steepness, high mean annual runoff and rainfall flood regime. These findings suggest that in these types of catchments, the dependence structure between flood peak and volume is more complex and cannot be modeled effectively using a one-parameter copula. The results illustrate that by relating copula types to flood regime and catchment properties, additional information can be supplied for selecting copulas in catchments with limited data.

  13. Analysis and modelling of spatio-temporal properties of daily rainfall over the Danube basin

    Science.gov (United States)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    Central and Eastern Europe are prone to severe floods due to heavy rainfall that cause societal and economic damages, ranging from agriculture to water resources, from the insurance/reinsurance sector to the energy industry. To improve the flood risk analysis, a better characterisation and modelling of the rainfall patterns over this area, which involves the Danube river watershed, is strategically important. In this study, we analyse the spatio-temporal properties of a large data set of daily rainfall time series from 15 countries in the Central Eastern Europe through different lagged and non-lagged indices of associations that quantify both the overall dependence and extreme dependence of pairwise observations. We also show that these measures are linked to each other and can be written in a unique and coherent notation within the copula framework. Moreover, the lagged version of these measures allows exploring some important spatio-temporal properties of the rainfall fields. The exploratory analysis is complemented by the preliminary results of a spatio-temporal rainfall simulation performed via a compound model based upon the Generalized Additive Models for Location, Scale and Shape (GAMLSS) and meta-elliptical multivariate distributions.

  14. Climate change track in river floods in Europe

    Directory of Open Access Journals (Sweden)

    Z. W. Kundzewicz

    2015-06-01

    Full Text Available A holistic perspective on changing river flood risk in Europe is provided. Economic losses from floods have increased, principally driven by the expanding exposure of assets at risk. Climate change (i.e. observed increase in precipitation intensity, decrease of snowpack and other observed climate changes might already have had an impact on floods. However, no gauge-based evidence had been found for a climate-driven, widespread change in the magnitude/frequency of floods during the last decades. There are strong regional and sub-regional variations in the trends. Moreover, it has not been generally possible to attribute rain-generated peak streamflow trends to anthropogenic climate change. Physical reasoning suggests that projected increases in the frequency and intensity of heavy rainfall would contribute to increases in rain-generated local floods, while less snowmelt flooding and earlier spring peak flows in snowmelt-fed rivers are expected. However, there is low confidence in future changes in flood magnitude and frequency resulting from climate change. The impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes. Discussion of projections of flood hazard in Europe is offered. Attention is drawn to a considerable uncertainty - over the last decade or so, projections of flood hazard in Europe have largely changed.

  15. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    Science.gov (United States)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and

  16. Assessing urban potential flooding risk and identifying effective risk-reduction measures.

    Science.gov (United States)

    Cherqui, Frédéric; Belmeziti, Ali; Granger, Damien; Sourdril, Antoine; Le Gauffre, Pascal

    2015-05-01

    Flood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour. According to the literature, causes of blockages vary widely from one case to another: it is impossible to provide utility managers with effective recommendations on how to improve the level of protection. It is therefore vital to analyse each context in order to define an appropriate strategy. Here we propose a method to represent and assess the flooding risk, using GIS and data gathered during operation and maintenance. Our method also identifies potential management responses. The approach proposed aims to provide decision makers with clear and comprehensible information. Our method has been successfully applied to the Urban Community of Bordeaux (France) on 4895 interventions related to flooding recorded during the 2009-2011 period. Results have shown the relative importance of different issues, such as human behaviour (grease, etc.) or operational deficiencies (roots, etc.), and lead to identify corrective and proactive. This study also confirms that blockages are not always directly due to the network itself and its deterioration. Many causes depend on environmental and operating conditions on the network and often require collaboration between municipal departments in charge of roads, green spaces, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modelling the interaction between flooding events and economic growth

    Directory of Open Access Journals (Sweden)

    J. Grames

    2015-06-01

    Full Text Available Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014. These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  18. Feasibility Study on the Satellite Rainfall Data for Prediction of Sediment- Related Disaster by the Japanese Prediction Methodology

    Science.gov (United States)

    Shimizu, Y.; Ishizuka, T.; Osanai, N.; Okazumi, T.

    2014-12-01

    In this study, the sediment-related disaster prediction method which based ground gauged rainfall-data, currently practiced in Japan was coupled with satellite rainfall data and applied to domestic large-scale sediment-related disasters. The study confirmed the feasibility of this integrated method. In Asia, large-scale sediment-related disasters which can sweep away an entire settlement occur frequently. Leyte Island suffered from a huge landslide in 2004, and Typhoon Molakot in 2009 caused huge landslides in Taiwan. In the event of these sediment-related disasters, immediate responses by central and local governments are crucial in crisis management. In general, there are not enough rainfall gauge stations in developing countries. Therefore national and local governments have little information to determine the risk level of water induced disasters in their service areas. In the Japanese methodology, a criterion is set by combining two indices: the short-term rainfall index and long-term rainfall index. The short-term rainfall index is defined as the 60-minute total rainfall; the long-term rainfall index as the soil-water index, which is an estimation of the retention status of fallen rainfall in soil. In July 2009, a high-density sediment related disaster, or a debris flow, occurred in Hofu City of Yamaguchi Prefecture, in the western region of Japan. This event was calculated by the Japanese standard methodology, and then analyzed for its feasibility. Hourly satellite based rainfall has underestimates compared with ground based rainfall data. Long-term index correlates with each other. Therefore, this study confirmed that it is possible to deliver information on the risk level of sediment-related disasters such as shallow landslides and debris flows. The prediction method tested in this study is expected to assist for timely emergency responses to rainfall-induced natural disasters in sparsely gauged areas. As the Global Precipitation Measurement (GPM) Plan

  19. Urbanism, climate change and floods: Case of Tlemcen city

    Directory of Open Access Journals (Sweden)

    Hayat Adjim

    2018-03-01

    Full Text Available After a drought during the 1990s, Tlemcen has experienced heavy rainfall in recent years which caused several floods. They have become frequent and usually cause large damage. We then asked ourselves questions about the reasons for this deregulation of rainfall and floods. We have assumed that climate change has led to deregulation of precipitation and that the urbanization and morphology of the site are the causes of the floods. For this, we analyzed the rainfall data and study the configuration of the town of Tlemcen. We noticed then that Tlemcen town undergoes the climate changes effects per a diminution of the multi-annual mean of rainfall between 1974 and 2008, and a slight displacement of the rainfall from April to November after 2008. Finally, the principal reason of floods is the thoughtless urban sprawl on the water courses also favored by an unfavourable topography.

  20. Hierarchical Modelling of Flood Risk for Engineering Decision Analysis

    DEFF Research Database (Denmark)

    Custer, Rocco

    protection structures in the hierarchical flood protection system - is identified. To optimise the design of protection structures, fragility and vulnerability models must allow for consideration of decision alternatives. While such vulnerability models are available for large protection structures (e...... systems, as well as the implementation of the flood risk analysis methodology and the vulnerability modelling approach are illustrated with an example application. In summary, the present thesis provides a characterisation of hierarchical flood protection systems as well as several methodologies to model...... and robust. Traditional risk management solutions, e.g. dike construction, are not particularly flexible, as they are difficult to adapt to changing risk. Conversely, the recent concept of integrated flood risk management, entailing a combination of several structural and non-structural risk management...

  1. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    Science.gov (United States)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  2. Rainfall threshold definition using an entropy decision approach and radar data

    Directory of Open Access Journals (Sweden)

    V. Montesarchio

    2011-07-01

    Full Text Available Flash flood events are floods characterised by a very rapid response of basins to storms, often resulting in loss of life and property damage. Due to the specific space-time scale of this type of flood, the lead time available for triggering civil protection measures is typically short. Rainfall threshold values specify the amount of precipitation for a given duration that generates a critical discharge in a given river cross section. If the threshold values are exceeded, it can produce a critical situation in river sites exposed to alluvial risk. It is therefore possible to directly compare the observed or forecasted precipitation with critical reference values, without running online real-time forecasting systems. The focus of this study is the Mignone River basin, located in Central Italy. The critical rainfall threshold values are evaluated by minimising a utility function based on the informative entropy concept and by using a simulation approach based on radar data. The study concludes with a system performance analysis, in terms of correctly issued warnings, false alarms and missed alarms.

  3. A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Chinh Luu

    2018-04-01

    Full Text Available Vietnam is highly vulnerable to flood and storm impacts. Holistic flood risk assessment maps that adequately consider flood risk factors of hazard, exposure, and vulnerability are not available. These are vital for flood risk preparedness and disaster mitigation measures at the local scale. Unfortunately, there is a lack of knowledge about spatial multicriteria decision analysis and flood risk analysis more broadly in Vietnam. In response to this need, we identify and quantify flood risk components in Quang Nam province through spatial multicriteria decision analysis. The study presents a new approach to local flood risk assessment mapping, which combines historical flood marks with exposure and vulnerability data. The flood risk map output could assist and empower decision-makers in undertaking flood risk management activities in the province. Our study demonstrates a methodology to build flood risk assessment maps using flood mark, exposure and vulnerability data, which could be applied in other provinces in Vietnam.

  4. “Expect More Floods In 2013”: An analysis of flood preparedness in ...

    African Journals Online (AJOL)

    In 2013, the Nigerian Meteorological Agency (NIMET) issued a prediction of heavy rainfall with consequent flooding in some major cities of Nigeria particularly Ibadan. In light of the country's previous flood experiences, citizens and government were promptly alerted and advised to be fully prepared for imminent floods.

  5. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China

    Science.gov (United States)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai

    2018-05-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  6. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  7. Preparing for local adaptation: Understanding flood risk perceptions in Pittsburgh

    Science.gov (United States)

    Wong-Parodi, G.; Klima, K.

    2016-12-01

    In cities such as Pittsburgh, aging and insufficient infrastructure contributes to flashfloods and numerous combined sewer overflows annually, contaminating streets, basements and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme events in Western Pennsylvania. For a storm water adaptation plan to be implemented successfully, the City of Pittsburgh will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop risk communications effectively, the City and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. To that end we surveyed 1,376 Pittsburgh residents on a variety of flood risk topics through an online or paper survey in Fall 2015. On balance, residents were relatively knowledgeable about storm water and see the City's current infrastructure as being inadequate to meet future risk. Moreover, they see the risk of runoff events as increasing and especially among those who live in hazardous flood areas. Residents expressed interest in having a dedicated fund to deal with runoff events. Among those queried about their willingness-to-pay, those asked to pay $15 were most interested in a dedicated fund and for green infrastructure (as opposed to gray infrastructure) in particular. Finally, while most residents favored green infrastructure in terms of its attractiveness and perceived affects on mitigating climate change many did not see it as effective at addressing flooding as gray infrastructure. We found people understand the risk and are open to doing something about it. However, more guidance and information on appropriate ways to adapt locally in terms that make sense to residents could enhance informed support for adaptation measures.

  8. Spillway design implications resulting from changes in rainfall extremes

    International Nuclear Information System (INIS)

    Muzik, I.

    1999-01-01

    A study was conducted in order to determine how serious implications regarding spillway design of small dams would result from changes in flood frequencies and magnitudes, because of changes in rainfall regime in turn brought on by climate change due to carbon dioxide accumulation in the atmosphere. The region selected for study was the central Alberta foothills and adjacent prairie environment. A study watershed, representative of the region, was chosen to assess the present and possible future flood frequency-magnitude relationships. A Monte Carlo simulation method was used in conjunction with rainfall-runoff modelling of the study watershed to generate data for flood frequency analysis of maximum annual flood series corresponding to the present and future climate scenarios. The impact of resulting differences in design floods for small dams on spillway design was investigated using the Prairie Farm Rehabilitation Administration small dam design method. Changes in the mean and standard deviation of rainfall depth of design storms in a region will result in new probability distributions of the maximum annual flood flows. A 25% increase in the mean and standard deviation of design rainfall depth resulted in greater increases of 1:2 and 1:100 flood flows than a 50% increase in the standard deviation alone did. Under scenario 1, the 1:2 flood flows increased more than did the 1:100 flows. Scenario 2 produced opposite results, whereby the 1:100 flows increased more than did the 1:2 flows. It seems that a climate change of the type of scenario 1 would result in a more severe increase in flood flows than scenario 2 would. Retrofitting existing spillways of small dams would in most cases require increasing flow capacities of both operating and auxilliary spillways. 23 refs

  9. Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models

    Directory of Open Access Journals (Sweden)

    A. E. Sikorska

    2012-04-01

    Full Text Available Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauged urban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a procedure to explicitly account for input uncertainty and model structure deficits using Bayesian statistics with a continuous-time autoregressive error model. In addition, we propose a concise procedure to derive prior parameter distributions from base data and successfully apply the methodology to an urban catchment in Warsaw, Poland. Based on our results, we are able to demonstrate that the autoregressive error model greatly helps to meet the statistical assumptions and to compute reliable prediction intervals. In our study, we found that predicted peak flows were up to 7 times higher than observations. This was reduced to 5 times with Bayesian updating, using only few discharge measurements. In addition, our analysis suggests that imprecise rainfall information and model structure deficits contribute mostly to the total prediction uncertainty. In the future, flood predictions in ungauged basins will become more important due to ongoing urbanization as well as anthropogenic and climatic changes. Thus, providing reliable measures of uncertainty is crucial to support decision making.

  10. Assessment of flood Response Characteristics to Urbanization and extreme flood events-Typhoons at Cheongju, Chungbuk

    Science.gov (United States)

    Chang, HyungJoon; Lee, Hyosang; Hwang, Myunggyu; Jang, Sukhwan

    2016-04-01

    The changes of land use influence on the flood characteristics, which depend on rainfall runoff procedures in the catchment. This study assesses the changes of flood characteristics due to land use changes between 1997 and 2012. The catchment model (HEC-HMS) is calibrated with flood events of 1990's and 2000's respectively, then the design rainfall of 100, 200, 500year return period are applied to this model, which represent the catchment in 1990's and 2000's, to assess the flood peaks. Then the extreme flood events (i.e., 6 typhoon events) are applied to assess the flood responses. The results of comparison between 1990's and 2000's show that the flood peak and level of 2000's are increasing and time to peak of 2000's is decreasing comparing to those of 1990's :3% to 78% increase in flood peak, 3% in flood level and 10.2% to 16% decrease in time to peak in 100year return period flood. It is due to decreasing of the farmland area (2.18%), mountainous area (8.88%), and increasing of the urbanization of the area (5.86%). This study also estimates the responses to extreme flood events. The results of 2000's show that the increasing of the flood peak and time to peak comparing to 1990's. It indicates that the extreme rainfall is more responsible at unurbanized catchment ( 2000's), which resulting with a 11% increasing of the peak volume. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  11. Flood risk reduction and flow buffering as ecosystem services - Part 2: Land use and rainfall intensity effects in Southeast Asia

    Science.gov (United States)

    van Noordwijk, Meine; Tanika, Lisa; Lusiana, Betha

    2017-05-01

    Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of rainfall. This ecosystem service is inherent to geology and climate, but buffering also responds to human use and misuse of the landscape. Buffering can be part of management feedback loops if salient, credible and legitimate indicators are used. The flow persistence parameter Fp in a parsimonious recursive model of river flow (Part 1, van Noordwijk et al., 2017) couples the transmission of extreme rainfall events (1 - Fp), to the annual base-flow fraction of a watershed (Fp). Here we compare Fp estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai and Bialo) and Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal timescale. The likely response in each of these four to variation in rainfall properties (including the maximum hourly rainfall intensity) and land cover (comparing scenarios with either more or less forest and tree cover than the current situation) was explored through a basic daily water-balance model, GenRiver. This model was calibrated for each site on existing data, before being used for alternative land cover and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season values for all four sites. Across the four catchments Fp values decreased with increasing annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the values considered typical for each landscape was predicted to cause a decrease in Fp values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change plus changes in rainfall intensity depends on other characteristics of the watersheds, and generalisations made on the basis of one or two

  12. Floods characterization: from impact data to quantitative assessment

    Science.gov (United States)

    Llasat, Maria-Carmen; Gilabert, Joan; Llasat-Botija, Montserrat; Marcos, Raül; Quintana-Seguí, Pere; Turco, Marco

    2015-04-01

    This study is based on the following flood databases from Catalonia: INUNGAMA (1900-2010) which considers 372 floods (Llasat et al, 2014), PRESSGAMA (1981-2010) and HISTOGAMA (from XIV Century on) - built as part of SPHERE project and recently updated. These databases store information about flood impacts (among others) and classify them by their severity (catastrophic, extraordinary and ordinary) by means of an indicators matrix based on other studies (i.e. Petrucci et al, 2013; Llasat et al, 2013). On this research we present a comparison between flood impacts, flow data and rainfall data on a Catalan scale and particularly for the basins of Segre, Muga, Ter and Llobregat (Western Mediterranean). From a bottom-up approach, a statistical methodology has been built (trend analysis, measures of position, cumulative distribution functions and geostatistics) in order to identify quantitative thresholds that will make possible to classify the floods. The purpose of this study is to establish generic thresholds for the whole Catalan region, for this we have selected rainfall maximums of flooding episodes stored at INUNGAMA and they have been related to flood categories by boxplot diagrams. Regarding the stream flow, we have established a relation between impacts and return periods at the day when the flow is maximum. The aim is to homogenize and compare the different drainage basins and to obtain general thresholds. It is also presented detailed analyses of relations between flooding episodes, flood classification and weather typing schemes - based in Jenkinson and Collison classification (applied to the Iberian Peninsula by Spellmann, 2000). In this way it could be analyzed whether patterns for the different types of floods exist or not. Finally, this work has pointed out the need of defining a new category for the most severe episodes.

  13. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-01-01

    uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver......There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation...... to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from...

  14. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation

    OpenAIRE

    Kaspersen, Per Skougaard; Høegh Ravn, Nanna; Arnbjerg-Nielsen, Karsten; Madsen, H.; Drews, Martin

    2015-01-01

    The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and...

  15. Commonalities and Differences in Flood-Generating Processes across the US

    Science.gov (United States)

    Li, X.; Troy, T. J.

    2017-12-01

    There is significant damage caused by flood, and the flood risk is increasing in the future, but there is large uncertainty in future decadal projections of flooding. In order to improve these projections, we must first turn to the past to understand the physical mechanisms that lead to flooding in basins across spatial scales and elevation ranges. To do this, we calculated the seasonality of annual maximum flows and other climatic factors to identify the flood-generating process in 2566 basins across the continental US. For most regions, the seasonality of heavy precipitation is not in phase with the seasonality of flooding, pointing to the importance of antecedent soil moisture and snow in determining flooding over much of the US. To determine the characteristic conditions leading to a flood, we classified all floods into those with different rainfall durations and with/without snow presence. Analyzing the influence of elevation, slope and drainage area, we identified patterns: the probability of flooding due to long duration precipitation increases as drainage area increases and snow present during a flood becomes increasingly likely as average basin elevation increases. To better understand the relationship between heavy rainfall and high streamflow, we calculated conditioned probability of occurrence. The southeastern US has a higher probability of occurrence for extreme Q with the same level of extreme precipitation in winter and spring than the northern US. This work is the first to look at how flood mechanisms vary across the continental US with drainage area, climate, and elevation.

  16. Why continuous simulation? The role of antecedent moisture in design flood estimation

    Science.gov (United States)

    Pathiraja, S.; Westra, S.; Sharma, A.

    2012-06-01

    Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.

  17. Assessing flood forecast uncertainty with fuzzy arithmetic

    Directory of Open Access Journals (Sweden)

    de Bruyn Bertrand

    2016-01-01

    Full Text Available Providing forecasts for flow rates and water levels during floods have to be associated with uncertainty estimates. The forecast sources of uncertainty are plural. For hydrological forecasts (rainfall-runoff performed using a deterministic hydrological model with basic physics, two main sources can be identified. The first obvious source is the forcing data: rainfall forecast data are supplied in real time by meteorological forecasting services to the Flood Forecasting Service within a range between a lowest and a highest predicted discharge. These two values define an uncertainty interval for the rainfall variable provided on a given watershed. The second source of uncertainty is related to the complexity of the modeled system (the catchment impacted by the hydro-meteorological phenomenon, the number of variables that may describe the problem and their spatial and time variability. The model simplifies the system by reducing the number of variables to a few parameters. Thus it contains an intrinsic uncertainty. This model uncertainty is assessed by comparing simulated and observed rates for a large number of hydro-meteorological events. We propose a method based on fuzzy arithmetic to estimate the possible range of flow rates (and levels of water making a forecast based on possible rainfalls provided by forcing and uncertainty model. The model uncertainty is here expressed as a range of possible values. Both rainfall and model uncertainties are combined with fuzzy arithmetic. This method allows to evaluate the prediction uncertainty range. The Flood Forecasting Service of Oise and Aisne rivers, in particular, monitors the upstream watershed of the Oise at Hirson. This watershed’s area is 310 km2. Its response time is about 10 hours. Several hydrological models are calibrated for flood forecasting in this watershed and use the rainfall forecast. This method presents the advantage to be easily implemented. Moreover, it permits to be carried out

  18. Damage-reducing measures to manage flood risks in a changing climate

    Science.gov (United States)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans

    2014-05-01

    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P

  19. An Assessment of Capacity, Gaps and Opportunities toward Building a Global Early Warning System for Flood Disasters

    Science.gov (United States)

    Hong, Y.; Adler, R.; Huffman, G.

    2007-12-01

    Many governmental emergency management agencies or non-governmental organizations need real-time information on emerging disasters for preparedness and response. However, progress in warnings for hydrologic disasters has been constrained by the difficulty of measuring spatiotemporal variability of rainfall fluxes continuously over space and time, due largely to insufficient ground monitoring networks, long delay in data transmission and absence of data sharing protocols among many geopolitically trans-boundary basins. In addition, in-situ gauging stations are often washed away by the very floods they are designed to monitor, making reconstruction of gauges a common post-flood activity around the world. In reality, remote sensing precipitation estimates may be the only source of rainfall information available over much of the globe, particularly for vulnerable countries in the tropics where abundant extreme rain storms and severe flooding events repeat every year. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and weather radar sensors. Today, remote sensing imagery acquired and processed in real time can provide near-real-time rainfall fluxes at relatively fine spatiotemporal scales (kilometers to tens of kilometers and 30-minute to 3-hour). These new suites of rainfall products have the potential to support daily decision-making in analysis of hydrologic hazards. This talk will address several key issues, including remote sensing rainfall retrieval and data assimilation, for hydrologists to develop alternative satellite-based flood warning systems that may supplement in-situ infrastructure when conventional data sources are denied due to natural or administrative causes. This talk will also assess a module-structure global flood prediction system that has been running at real-time by integrating remote sensing forcing

  20. Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring

    Science.gov (United States)

    Restrepo-Estrada, Camilo; de Andrade, Sidgley Camargo; Abe, Narumi; Fava, Maria Clara; Mendiondo, Eduardo Mario; de Albuquerque, João Porto

    2018-02-01

    Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison made with real streamflow measurements. This is a significant improvement on the respective values of 39% and 58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-warning systems.

  1. Financing increasing flood risk: evidence from millions of buildings

    Science.gov (United States)

    Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.

    2014-01-01

    The effectiveness of disaster risk management and financing mechanisms depends on the accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on the ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information can contribute to discussions on possible risk financing practices. The case-study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood prone areas has been higher than in not flood prone areas. We also find that property values in flood prone areas are lower than those in not flood prone areas. We argue that the increase in the share of economic value located in potential flood prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.

  2. Hydrological model calibration for flood prediction in current and future climates using probability distributions of observed peak flows and model based rainfall

    Science.gov (United States)

    Haberlandt, Uwe; Wallner, Markus; Radtke, Imke

    2013-04-01

    Derived flood frequency analysis based on continuous hydrological modelling is very demanding regarding the required length and temporal resolution of precipitation input data. Often such flood predictions are obtained using long precipitation time series from stochastic approaches or from regional climate models as input. However, the calibration of the hydrological model is usually done using short time series of observed data. This inconsistent employment of different data types for calibration and application of a hydrological model increases its uncertainty. Here, it is proposed to calibrate a hydrological model directly on probability distributions of observed peak flows using model based rainfall in line with its later application. Two examples are given to illustrate the idea. The first one deals with classical derived flood frequency analysis using input data from an hourly stochastic rainfall model. The second one concerns a climate impact analysis using hourly precipitation from a regional climate model. The results show that: (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated on extreme conditions works quite well for average conditions but not vice versa, (III) the calibration of the hydrological model using regional climate model data works as an implicit bias correction method and (IV) the best performance for flood estimation is usually obtained when model based precipitation and observed probability distribution of peak flows are used for model calibration.

  3. Flood risk assessment and mapping for the Lebanese watersheds

    Science.gov (United States)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs

  4. A Fresh Start for Flood Estimation in Ungauged Basins

    Science.gov (United States)

    Woods, R. A.

    2017-12-01

    The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for

  5. The effects of wind and rainfall on suspended sediment concentration related to the 2004 Indian Ocean tsunami

    International Nuclear Information System (INIS)

    Zhang Xinfeng; Tang Danling; Li Zizhen; Zhang Fengpan

    2009-01-01

    The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean-atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air-sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.

  6. Incentivising flood risk adaptation through risk based insurance premiums : Trade-offs between affordability and risk reduction

    NARCIS (Netherlands)

    Hudson, Paul F.; Botzen, W.J.W.; Feyen, L.; Aerts, Jeroen C.J.H.

    2016-01-01

    The financial incentives offered by the risk-based pricing of insurance can stimulate policyholder adaptation to flood risk while potentially conflicting with affordability. We examine the trade-off between risk reduction and affordability in a model of public-private flood insurance in France and

  7. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    Science.gov (United States)

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  8. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  9. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  10. Current and future pluvial flood hazard analysis for the city of Antwerp

    Science.gov (United States)

    Willems, Patrick; Tabari, Hossein; De Niel, Jan; Van Uytven, Els; Lambrechts, Griet; Wellens, Geert

    2016-04-01

    For the city of Antwerp in Belgium, higher rainfall extremes were observed in comparison with surrounding areas. The differences were found statistically significant for some areas and may be the result of the heat island effect in combination with the higher concentrations of aerosols. A network of 19 rain gauges but with varying records length (the longest since the 1960s) and continuous radar data for 10 years were combined to map the spatial variability of rainfall extremes over the city at various durations from 15 minutes to 1 day together with the uncertainty. The improved spatial rainfall information was used as input in the sewer system model of the city to analyze the frequency of urban pluvial floods. Comparison with historical flood observations from various sources (fire brigade and media) confirmed that the improved spatial rainfall information also improved sewer impact results on both the magnitude and frequency of the sewer floods. Next to these improved urban flood impact results for recent and current climatological conditions, the new insights on the local rainfall microclimate were also helpful to enhance future projections on rainfall extremes and pluvial floods in the city. This was done by improved statistical downscaling of all available CMIP5 global climate model runs (160 runs) for the 4 RCP scenarios, as well as the available EURO-CORDEX regional climate model runs. Two types of statistical downscaling methods were applied for that purpose (a weather typing based method, and a quantile perturbation approach), making use of the microclimate results and its dependency on specific weather types. Changes in extreme rainfall intensities were analyzed and mapped as a function of the RCP scenario, together with the uncertainty, decomposed in the uncertainties related to the climate models, the climate model initialization or limited length of the 30-year time series (natural climate variability) and the statistical downscaling (albeit limited

  11. Flood risk and climate change in the Rotterdam area, The Netherlands: Enhancing citizen's climate risk perceptions and prevention responses despite skepticism

    OpenAIRE

    de Boer, J.; Botzen, W.J.W.; Terpstra, T.

    2016-01-01

    Effective communication about climate change and related risks is complicated by the polarization between “climate alarmists” and “skeptics.” This paper provides insights for the design of climate risk communication strategies by examining how the interplay between climate change and flood risk communication affects citizens’ risk perceptions and responses. The study is situated in a delta area with substantial geographic variations in the occurrence and potential impact of flood risk, which ...

  12. Flood loss assessment in the Kota Tinggi

    International Nuclear Information System (INIS)

    Tam, T H; Ibrahim, A L; Rahman, M Z A; Mazura, Z

    2014-01-01

    Malaysia is free from several destructive and widespread natural disasters but frequently affected by floods, which caused massive flood damage. In 2006 and 2007, an extreme rainfall occured in many parts of Peninsular Malaysia, which caused severe flooding in several major cities. Kota Tinggi was chosen as study area as it is one the seriously affected area in Johor state. The aim of this study is to estimate potential flood damage to physical elements in Kota Tinggi. The flood damage map contains both qualitative and quantitative information which corresponds to the consequences of flooding. This study only focuses on physical elements. Three different damage functions were adopted to calculate the potential flood damage and flood depth is considered as the main parameter. The adopted functions are United States, the Netherlands and Malaysia. The estimated flood damage for housing using United States, the Netherlands and Malaysia was RM 350/m 2 RM 200/m 2 and RM 100/m 2 respectively. These results successfully showed the average flood damage of physical element. Such important information needed by local authority and government for urban spatial planning and aiming to reduce flood risk

  13. Uncertainties of flood frequency estimation approaches based on continuous simulation using data resampling

    Science.gov (United States)

    Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2017-11-01

    Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with

  14. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    Science.gov (United States)

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.

  15. Ostrich recruitment dynamics in relation to rainfall in the Mara ...

    African Journals Online (AJOL)

    Ostrich recruitment dynamics in relation to rainfall in the Mara–Serengeti ... To understand how rainfall influences ostriches, we related changes in ostrich recruitment in the Mara–Serengeti ecosystem to rainfall. ... AJOL African Journals Online.

  16. Mitigating flood exposure: Reducing disaster risk and trauma signature.

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.

  17. Assessing public flood risk perception for understanding the level of risk preparedness - Evidence from a community-based survey (the Bend Subcarpathians, Romania)

    Science.gov (United States)

    Balteanu, Dan; Micu, Dana; Dumitrascu, Monica; Chendes, Viorel; Dragota, Carmen; Kucsicsa, Gheorghita; Grigorescu, Ines; Persu, Mihaela; Costache, Andra

    2016-04-01

    Floods (slow-onset and rapid) are among the costliest hydro-meteorological hazards in Romania, with strong societal and economic impacts, especially in small rural settlements, with a limited adaptive capacity to their adverse effects induced by the regional socio-economic context (e.g. aging population, low economic power). The study-area is located in the Bend Subcarpathians (Romania), a region with high tectonic mobility (the Seismic Vrancea Region), active slope processes (e.g. shallow and deep-seated landslides, mud flow, gully erosion) and increasing frequency of flash floods associated to heavy rainfalls. The study was conducted in the framework of the project "Vulnerability of the environment and human settlements to floods in the context of Global Environmental Change - VULMIN" (PN-II-PT-PCCA-2011-3.1-1587), funded by the Ministry of National Education over the 2012-2016 period (http://www.igar-vulmin.ro). Prior research derived valuable insights into the local population vulnerability to extreme hydro-meteorological events, revealing an increased individual experience to past hydrological events, a high level of worry associated to flood recurrence, a low rate of the perceived trustworthiness in national institutions and authorities, as well as evident differences between the perception of community members and local authorities in terms of risk preparedness. In the present study, an attempt has been made for developing an advanced understanding of the current level of flood risk preparedness within some communities strongly affected by the floods of 1970-1975, 2005 and 2010. The recent events had a significant impact on local communities and infrastructure in terms of the financial losses, causing a visible stress and even psychological trauma on some residents of the most affected households. The selected communities are located in areas affected by recurrent hydro-meteorological hazards (floods and flash floods), with return periods below 10 years. A

  18. Math Fights Flooding

    NARCIS (Netherlands)

    Besseling, Niels; Bokhove, Onno; Kolechkina, Alla; Molenaar, Jaap; van Nooyen, Ronald; Rottschäfer, Vivi; Stein, Alfred; Stoorvogel, Anton

    2008-01-01

    Due to climate changes that are expected in the coming years, the characteristics of the rainfall will change. This can potentially cause flooding or have negative influences on agriculture and nature. In this research, we study the effects of this change in rainfall and investigate what can be done

  19. Evaluation of the best fit distribution for partial duration series of daily rainfall in Madinah, western Saudi Arabia

    Science.gov (United States)

    Alahmadi, F.; Rahman, N. A.; Abdulrazzak, M.

    2014-09-01

    Rainfall frequency analysis is an essential tool for the design of water related infrastructure. It can be used to predict future flood magnitudes for a given magnitude and frequency of extreme rainfall events. This study analyses the application of rainfall partial duration series (PDS) in the vast growing urban Madinah city located in the western part of Saudi Arabia. Different statistical distributions were applied (i.e. Normal, Log Normal, Extreme Value type I, Generalized Extreme Value, Pearson Type III, Log Pearson Type III) and their distribution parameters were estimated using L-moments methods. Also, different selection criteria models are applied, e.g. Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC) and Anderson-Darling Criterion (ADC). The analysis indicated the advantage of Generalized Extreme Value as the best fit statistical distribution for Madinah partial duration daily rainfall series. The outcome of such an evaluation can contribute toward better design criteria for flood management, especially flood protection measures.

  20. Evaluation of the best fit distribution for partial duration series of daily rainfall in Madinah, western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    F. Alahmadi

    2014-09-01

    Full Text Available Rainfall frequency analysis is an essential tool for the design of water related infrastructure. It can be used to predict future flood magnitudes for a given magnitude and frequency of extreme rainfall events. This study analyses the application of rainfall partial duration series (PDS in the vast growing urban Madinah city located in the western part of Saudi Arabia. Different statistical distributions were applied (i.e. Normal, Log Normal, Extreme Value type I, Generalized Extreme Value, Pearson Type III, Log Pearson Type III and their distribution parameters were estimated using L-moments methods. Also, different selection criteria models are applied, e.g. Akaike Information Criterion (AIC, Corrected Akaike Information Criterion (AICc, Bayesian Information Criterion (BIC and Anderson-Darling Criterion (ADC. The analysis indicated the advantage of Generalized Extreme Value as the best fit statistical distribution for Madinah partial duration daily rainfall series. The outcome of such an evaluation can contribute toward better design criteria for flood management, especially flood protection measures.

  1. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event.

    Science.gov (United States)

    Knebl, M R; Yang, Z-L; Hutchison, K; Maidment, D R

    2005-06-01

    This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.

  2. Development of a flood-induced health risk prediction model for Africa

    Science.gov (United States)

    Lee, D.; Block, P. J.

    2017-12-01

    Globally, many floods occur in developing or tropical regions where the impact on public health is substantial, including death and injury, drinking water, endemic disease, and so on. Although these flood impacts on public health have been investigated, integrated management of floods and flood-induced health risks is technically and institutionally limited. Specifically, while the use of climatic and hydrologic forecasts for disaster management has been highlighted, analogous predictions for forecasting the magnitude and impact of health risks are lacking, as is the infrastructure for health early warning systems, particularly in developing countries. In this study, we develop flood-induced health risk prediction model for African regions using season-ahead flood predictions with climate drivers and a variety of physical and socio-economic information, such as local hazard, exposure, resilience, and health vulnerability indicators. Skillful prediction of flood and flood-induced health risks can contribute to practical pre- and post-disaster responses in both local- and global-scales, and may eventually be integrated into multi-hazard early warning systems for informed advanced planning and management. This is especially attractive for areas with limited observations and/or little capacity to develop flood-induced health risk warning systems.

  3. A review of risk perceptions and other factors that influence flood mitigation behavior.

    Science.gov (United States)

    Bubeck, P; Botzen, W J W; Aerts, J C J H

    2012-09-01

    In flood risk management, a shift can be observed toward more integrated approaches that increasingly address the role of private households in implementing flood damage mitigation measures. This has resulted in a growing number of studies into the supposed positive relationship between individual flood risk perceptions and mitigation behavior. Our literature review shows, however, that, actually, this relationship is hardly observed in empirical studies. Two arguments are provided as an explanation. First, on the basis of protection motivation theory, a theoretical framework is discussed suggesting that individuals' high-risk perceptions need to be accompanied by coping appraisal to result in a protective response. Second, it is pointed out that possible feedback from already-adopted mitigation measures on risk perceptions has hardly been considered by current studies. In addition, we also provide a review of factors that drive precautionary behavior other than risk perceptions. It is found that factors such as coping appraisal are consistently related to mitigation behavior. We conclude, therefore, that the current focus on risk perceptions as a means to explain and promote private flood mitigation behavior is not supported on either theoretical or empirical grounds. © 2012 Society for Risk Analysis.

  4. Flood Risk Assessment in Urban Areas Based on Spatial Analytics and Social Factors

    Directory of Open Access Journals (Sweden)

    Costas Armenakis

    2017-11-01

    Full Text Available Flood maps alone are not sufficient to determine and assess the risks to people, property, infrastructure, and services due to a flood event. Simply put, the risk is almost zero to minimum if the flooded region is “empty” (i.e., unpopulated, has not properties, no industry, no infrastructure, and no socio-economic activity. High spatial resolution Earth Observation (EO data can contribute to the generation and updating of flood risk maps based on several aspects including population, economic development, and critical infrastructure, which can enhance a city’s flood mitigation and preparedness planning. In this case study for the Don River watershed, Toronto, the flood risk is determined and flood risk index maps are generated by implementing a methodology for estimating risk based on the geographic coverage of the flood hazard, vulnerability of people, and the exposure of large building structures to flood water. Specifically, the spatial flood risk index maps have been generated through analytical spatial modeling which takes into account the areas in which a flood hazard is expected to occur, the terrain’s morphological characteristics, socio-economic parameters based on demographic data, and the density of large building complexes. Generated flood risk maps are verified through visual inspection with 3D city flood maps. Findings illustrate that areas of higher flood risk coincide with areas of high flood hazard and social and building exposure vulnerability.

  5. Linking Science of Flood Forecasts to Humanitarian Actions for Improved Preparedness and Effective Response

    Science.gov (United States)

    Uprety, M.; Dugar, S.; Gautam, D.; Kanel, D.; Kshetri, M.; Kharbuja, R. G.; Acharya, S. H.

    2017-12-01

    Advances in flood forecasting have provided opportunities for humanitarian responders to employ a range of preparedness activities at different forecast time horizons. Yet, the science of prediction is less understood and realized across the humanitarian landscape, and often preparedness plans are based upon average level of flood risk. Working under the remit of Forecast Based Financing (FbF), we present a pilot from Nepal on how available flood and weather forecast products are informing specific pre-emptive actions in the local preparedness and response plans, thereby supporting government stakeholders and humanitarian agencies to take early actions before an impending flood event. In Nepal, forecasting capabilities are limited but in a state of positive flux. Whilst local flood forecasts based upon rainfall-runoff models are yet to be operationalized, streamflow predictions from Global Flood Awareness System (GLoFAS) can be utilized to plan and implement preparedness activities several days in advance. Likewise, 3-day rainfall forecasts from Nepal Department of Hydrology and Meteorology (DHM) can further inform specific set of early actions for potential flash floods due to heavy precipitation. Existing community based early warning systems in the major river basins of Nepal are utilizing real time monitoring of water levels and rainfall together with localised probabilistic flood forecasts which has increased warning lead time from 2-3 hours to 7-8 hours. Based on these available forecast products, thresholds and trigger levels have been determined for different flood scenarios. Matching these trigger levels and assigning responsibilities to relevant actors for early actions, a set of standard operating procedures (SOPs) are being developed, broadly covering general preparedness activities and science informed anticipatory actions for different forecast lead times followed by the immediate response activities. These SOPs are currently being rolled out and

  6. Dam pre-release as an important operation strategy in reducing flood impact in Malaysia

    Science.gov (United States)

    Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad

    2018-03-01

    The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.

  7. Flash floods along the Italian coastal areas: examples from Pozzuoli city, Campania, Italy

    Science.gov (United States)

    Esposito, Giuseppe; Grimaldi, Giuseppe; Matano, Fabio; Mazzola, Salvatore; Sacchi, Marco

    2014-05-01

    The Italian western coastal areas are the most exposed in the country to low-pressure systems coming from the central-western Mediterranean Sea and Atlantic Ocean. In the last years, many Italian coastal villages were struck by floods and flow processes triggered by high-intensity and short-duration rainfall, typical of flash flood events. In the Campania region (SW Italy) a series of events has caused several fatalities and heavy damages in the last decades, i.e. the flash floods of Casamicciola - Ischia Island (10/11/2009 - 1 fatality) and Atrani (9/9/2010 - 1 fatality). In this work we describe the rainfall properties and the ground effects of the 2009, 2010 and 2011 flash floods which involved the city of Pozzuoli, along the Campi Flegrei coast, where a catastrophic flood event (13 fatalities) is reported in 1918 in the AVI Project database. Rainfall data were measured at a sampling rate of 10 minutes by a regional Civil Protection rain gauge located in the city of Pozzuoli near the areas struck by the flash flood effects. In order to analyze the extreme features of the rainstorms and compare them, we have considered the 1-hour maximum rainfall amount and the 10-min peak storm intensity value for each event. The first rainstorm occurred on 14 September 2009; it was characterized by a 1-hour maximum rainfall amount of 34.4 mm and a 10-min peak storm intensity of 57.6 mm/h. The second rainstorm occurred on 30 July 2010; it was characterized by a 1-hour maximum rainfall amount of 40.6 mm and a 10-min peak storm intensity of 126 mm/h. The third rainstorm occurred on 06 November 2011; it was characterized by a 1-hour maximum rainfall amount of 44.2 mm and a 10-min peak storm intensity of 67.2 mm/h. The three described rainstorms all triggered erosional processes and shallow landslides in the upper part of the Pozzuoli drainage basin that supplied sheet flows and hyperconcentrated flows downstream, with severe damage to the human structures built near or inside the

  8. The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands

    Directory of Open Access Journals (Sweden)

    Leon J. van Ruiten

    2016-10-01

    Full Text Available The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from flood protection to flood risk management in Europe. It implies two major governance challenges: the spatial turn and the scenario approach. This contribution studies the implementation of these two governance challenges in the Netherlands, where the paradigm shift is considered to be advanced. Therefore, the spatial turn and the scenario approach are operationalized. The spatial turn consists of three aspects: space for the river, an integrated approach, and beyond structural measures. The scenario approach introduces the vulnerability of society in flood risk management. It is discussed how the challenges of spatial turn and the scenario approach—and thus the shift towards flood risk management—have an effect on the prevailing modes of governance in water management in the Netherlands. This helps understand the tensions and frictions with implementing the plans, but also illustrates how the European Floods Directive institutionalizes the shift towards flood risk management. The analytical scheme, consists mainly of operationalization, can foster future comparative studies with other countries and over time, to trace the changes in approaches to flood risks in Europe.

  9. The added value of system robustness analysis for flood risk management

    NARCIS (Netherlands)

    Mens, M.J.P.; Klijn, F.

    2014-01-01

    Decision makers in fluvial flood risk management increasingly acknowledge that they have to prepare for extreme events. Flood risk is the most common basis on which to compare flood risk-reducing strategies. To take uncertainties into account the criteria of robustness and flexibility are advocated

  10. An operational procedure for rapid flood risk assessment in Europe

    Science.gov (United States)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  11. Contribution of Earth Observation data to flood risk mapping in the framework of the NATO SFP 'TIGRU' Project

    International Nuclear Information System (INIS)

    Stancalie, Gheorghe; Alecu, Corina; Craciunescul, Vasile; Diamandi, Andrei; Oancea, Simona; Brakenridge, Robert G.

    2004-01-01

    -AM 'TERRA'/MODIS and ASTER) different products (updated digital maps of the hydro graphical network and land cover/land use, mask of flooded areas, multi-temporal maps of the flood dynamics, hazard maps with the extent of the flooded areas and the affected zones, etc.) have been obtained. These results, at different spatial scales, include synthesis maps easy to access and interpret, adequate to be combined with other information layouts resulted from the GIS database and to ingest rainfall-runoff models outputs. The presented applications will contribute to preventive consideration of the extreme flood events by planning more judiciously land-use development, by elaborating plans for food mitigation, including infrastructure construction in the flood-prone areas and by optimization of the flood-related spatial information distribution facilities to end-users.(Author)

  12. an examination of estate surveyors and valuers' perception of flood

    African Journals Online (AJOL)

    Osondu

    2013-11-27

    Nov 27, 2013 ... Key words: Estate Surveyors, Perception, Flood risk, Residential .... islands separated by creeks on a vast lagoon on ... the coastal low land of south western Nigeria – ... tropical continental with rainfall almost ... vegetation is salt water mangrove swamp forest .... have afforded them the opportunity of being.

  13. THE INFLUENCE OF THE PRESENCE OF VEGETATIONS IN FLOODPLAINS ON FLOOD RISKS

    Directory of Open Access Journals (Sweden)

    Natalia Walczak

    2015-11-01

    Full Text Available The movement of water on flood areas depends mainly on the geometric parameters of vegetation, which as a dynamic factor causes a high changeability of flow conditions during the year. The actual ecological trend, whereby there is a tendency to leave the plants in the floodplain, imposes the necessity on engineers to develop accurate methods of determining the effect of vegetation on what used to be once a commonly occurring flood risk. According to the report on national security risk, elaborated by the Government Security Centre, flooding is the most common such risk. This is most likely to occur among all the risks included in the National Crisis Management Plan and brings the greatest number of negative effects. In order to mitigate the negative phenomena related to floodplains, the methodology and calculation of the average flows, using the Maninng and Darcy-Weisbach models is presented.

  14. Flood risk management and ‘fairness’: aspirations and reality

    Directory of Open Access Journals (Sweden)

    Penning-Rowsell Edmund C.

    2016-01-01

    Full Text Available Flood risk management in United Kingdom has been going through a process of rapid change in the last decade or so, no doubt spurred on by a series of very serious floods since the year 2000. These changes affect flood defence and non-structural flood risk management measures alike, and involve a degree of devolution from central government to local communities and regional organisations, as central government seeks to shed responsibilities for policy implementation. This paper discusses three case studies concerning flood defence, property level protection, and flood insurance, set against the framework of “fairness” encapsulated in egalitarian, utilitarian and Rawlsian approaches to social justice. The results show a different pattern in each area, with flood defence moving somewhat towards a Rawlsian approach, but flood insurance and property level protection showing signs of both inefficiency and poor penetration, respectively, particularly with regard to low income residents, especially those in social housing.

  15. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  16. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  17. Analysis of coastal protection under rising flood risk

    Directory of Open Access Journals (Sweden)

    Megan J. Lickley

    2014-01-01

    Full Text Available Infrastructure located along the U.S. Atlantic and Gulf coasts is exposed to rising risk of flooding from sea level rise, increasing storm surge, and subsidence. In these circumstances coastal management commonly based on 100-year flood maps assuming current climatology is no longer adequate. A dynamic programming cost–benefit analysis is applied to the adaptation decision, illustrated by application to an energy facility in Galveston Bay. Projections of several global climate models provide inputs to estimates of the change in hurricane and storm surge activity as well as the increase in sea level. The projected rise in physical flood risk is combined with estimates of flood damage and protection costs in an analysis of the multi-period nature of adaptation choice. The result is a planning method, using dynamic programming, which is appropriate for investment and abandonment decisions under rising coastal risk.

  18. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  19. Flood Risk Index Assessment in Johor River Basin

    International Nuclear Information System (INIS)

    Ahmad Shakir Mohd Saudi; Hafizan Juahir; Azman Azid; Fazureen Azaman; Ahmad Shakir Mohd Saudi

    2015-01-01

    This study is focusing on constructing the flood risk index in the Johor river basin. The application of statistical methods such as factor analysis (FA), statistical process control (SPC) and artificial neural network (ANN) had revealed the most efficient flood risk index. The result in FA was water level has correlation coefficient of 0.738 and the most practicable variable to be used for the warning alert system. The upper control limits (UCL) for the water level in the river basin Johor is 4.423 m and the risk index for the water level has been set by this method consisting of 0-100.The accuracy of prediction has been evaluated by using ANN and the accuracy of the test result was R"2 = 0.96408 with RMSE= 2.5736. The future prediction for UCL in Johor river basin has been predicted and the value was 3.75 m. This model can shows the current and future prediction for flood risk index in the Johor river basin and can help local authorities for flood control and prevention of the state of Johor. (author)

  20. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    Science.gov (United States)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and

  1. Predicting geomorphically-induced flood risk for the Nepalese Terai communities

    Science.gov (United States)

    Dingle, Elizabeth; Creed, Maggie; Attal, Mikael; Sinclair, Hugh; Mudd, Simon; Borthwick, Alistair; Dugar, Sumit; Brown, Sarah

    2017-04-01

    Rivers sourced from the Himalaya irrigate the Indo-Gangetic Plain via major river networks that support 10% of the global population. However, many of these rivers are also the source of devastating floods. During the 2014 Karnali River floods in west Nepal, the Karnali rose to around 16 m at Chisapani (where it enters the Indo-Gangetic Plain), 1 m higher than the previous record in 1983; the return interval for this event was estimated to be 1000 years. Flood risk may currently be underestimated in this region, primarily because changes to the channel bed are not included when identifying areas at risk of flooding from events of varying recurrence intervals. Our observations in the field, corroborated by satellite imagery, show that river beds are highly mobile and constantly evolve through each monsoon. Increased bed levels due to sediment aggradation decreases the capacity of the river, increasing significantly the risk of devastating flood events; we refer to these as 'geomorphically-induced floods'. Major, short-lived episodes of sediment accumulation in channels are caused by stochastic variability in sediment flux generated by storms, earthquakes and glacial outburst floods from upstream parts of the catchment. Here, we generate a field-calibrated, geomorphic flood risk model for varying upstream scenarios, and predict changing flood risk for the Karnali River. A numerical model is used to carry out a sensitivity analysis of changes in channel geometry (particularly aggradation or degradation) based on realistic flood scenarios. In these scenarios, water and sediment discharge are varied within a range of plausible values, up to extreme sediment and water fluxes caused by widespread landsliding and/or intense monsoon precipitation based on existing records. The results of this sensitivity analysis will be used to inform flood hazard maps of the Karnali River floodplain and assess the vulnerability of the populations in the region.

  2. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation

    Directory of Open Access Journals (Sweden)

    P. Skougaard Kaspersen

    2015-06-01

    Full Text Available The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984–2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6% for 10-year rainfall up to 26% for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios (2071–2100 are in the order of 40 and 100%, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.

  3. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation

    Science.gov (United States)

    Skougaard Kaspersen, P.; Høegh Ravn, N.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M.

    2015-06-01

    The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984-2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6% for 10-year rainfall up to 26% for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios (2071-2100) are in the order of 40 and 100%, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.

  4. Inter-Seasonal and Annual Co-Variation of Smallholder Production Portfolios, Volumes and Incomes with Rainfall and Flood Levels in the Amazon Estuary: Implications for Building Livelihood Resilience to Increasing Variability of Hydro-Climatic Regimes

    Science.gov (United States)

    Vogt, N. D.; Fernandes, K.; Pinedo-Vasquez, M.; Brondizio, E. S.; Almeida, O.; Rivero, S.; Rabelo, F. R.; Dou, Y.; Deadman, P.

    2014-12-01

    In this paper we investigate inter-seasonal and annual co-variations of rainfall and flood levels with Caboclo production portfolios, and proportions of it they sell and consume, in the Amazon Estuary from August 2012 to August 2014. Caboclos of the estuary maintain a diverse and flexible land-use portfolio, with a shift in dominant use from agriculture to agroforestry and forestry since WWII (Vogt et al., 2014). The current landscape is configured for acai, shrimp and fish production. In the last decade the frequency of wet seasons with anomalous flood levels and duration has increased primarily from changes in rainfall and discharge from upstream basins. Local rainfall, though with less influence on extreme estuarine flood levels, is reported to be more sporadic and intense in wet season and variable in both wet and dry seasons, for yet unknown reasons. The current production portfolio and its flexibility are felt to build resilience to these increases in hydro-climatic variability and extreme events. What is less understood, for time and costliness of daily measures at household levels, is how variations in flood and rainfall levels affect shifts in the current production portfolio of estuarine Caboclos, and the proportions of it they sell and consume. This is needed to identify what local hydro-climatic thresholds are extreme for current livelihoods, that is, that most adversely affect food security and income levels. It is also needed identify the large-scale forcings driving those extreme conditions to build forecasts for when they will occur. Here we present results of production, rainfall and flood data collected daily in households from both the North and South Channel of the Amazon estuary over last two years to identify how they co-vary, and robustness of current production portfolio under different hydro-climatic conditions.

  5. Microbial Risk Assessment of Tidal-Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam).

    Science.gov (United States)

    Nguyen, Hong Quan; Huynh, Thi Thao Nguyen; Pathirana, Assela; Van der Steen, Peter

    2017-11-30

    Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., "living with floods", in the Mekong Delta should also consider health risk issues.

  6. An analysis of the public perception of flood risk on the Belgian coast.

    Science.gov (United States)

    Kellens, Wim; Zaalberg, Ruud; Neutens, Tijs; Vanneuville, Wouter; De Maeyer, Philippe

    2011-07-01

    In recent years, perception of flood risks has become an important topic to policy makers concerned with risk management and safety issues. Knowledge of the public risk perception is considered a crucial aspect in modern flood risk management as it steers the development of effective and efficient flood mitigation strategies. This study aimed at gaining insight into the perception of flood risks along the Belgian coast. Given the importance of the tourism industry on the Belgian coast, the survey considered both inhabitants and residential tourists. Based on actual expert's risk assessments, a high and a low risk area were selected for the study. Risk perception was assessed on the basis of scaled items regarding storm surges and coastal flood risks. In addition, various personal and residence characteristics were measured. Using multiple regression analysis, risk perception was found to be primarily influenced by actual flood risk estimates, age, gender, and experience with previous flood hazards. © 2011 Society for Risk Analysis.

  7. Danish risk management plans of the EU Floods Directive

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    2016-01-01

    We evaluate the impact and effect of the EU Flood’s Directive (2007/60/EC) in Denmark and the flood risk management plans that are the result of the national implementation. In a qualitative research approach, the flood risk management plans published by 22 Danish municipalities are reviewed...... and analyzed regarding main objectives and structural and non-structural mitigation measures. From the analyses conclusions are drawn on the non-structural risk management measures still to be improved to obtain the full benefits from the Directive. Conclusions point to the need of introducing better decision...... and cross-sectorial working platform for dealing with risks from floods....

  8. Flood risk control of dams and dykes in middle reach of Huaihe River

    Directory of Open Access Journals (Sweden)

    Zhen-kun MA

    2014-01-01

    Full Text Available Three stochastic mathematical models for calculation of the reservoir flood regulation process, river course flood release, and flood risk rate under flood control were established based on the theory of stochastic differential equations and features of flood control systems in the middle reach of the Huaihe River from Xixian to the Bengbu floodgate, comprehensively considering uncertain factors of hydrology, hydraulics, and engineering control. They were used to calculate the flood risk rate with flood regulation of five key reservoirs, including the Meishan, Xianghongdian, Nianyushan, Mozitan, and Foziling reservoirs in the middle reach of the Huaihe River under different flood frequencies, the flood risk rate with river course flood release under design and check floods for the trunk of the Huaihe River in conjunction with relevant flood storage areas, and the flood risk rate with operation of the Linhuaigang Project under design and check floods. The calculated results show that (1 the five reservoirs can withstand design floods, but the Xianghongdian and Foziling reservoirs will suffer overtopping accidents under check floods; (2 considering the service of flood storage areas under the design flood conditions of the Huaihe River, the mean flood risk rate with flood regulation of dykes and dams from Xixian to the Bengbu floodgate is about 0.2, and the trunk of the Huaihe River can generally withstand design floods; and (3 under a check flood with the flood return period of 1 000 years, the risk rate of overtopping accidents of the Linhuaigang Project is not larger than 0.15, indicating that it has a high flood regulation capacity. Through regulation and application of the flood control system of the Linhuigang Project, the Huaihe River Basin can withstand large floods, and the safety of the protected area can be ensured.

  9. Improving Flood Risk Maps as a Capacity Building Activity: Fostering Public Participation and Raising Flood Risk Awareness in the German Mulde Region (project RISK MAP)

    Science.gov (United States)

    Luther, J.; Meyer, V.; Kuhlicke, C.; Scheuer, S.; Unnerstall, H.

    2012-04-01

    The EU Floods Directive requires the establishment of flood risk maps for high risk areas in all EU Member States by 2013. However, if existing at all, the current practice of risk mapping still shows some deficits: Risk maps are often seen as an information tool rather than a communication tool. This means that e.g. important local knowledge is not incorporated and forms a contrast to the understanding of capacity building which calls for engaging individuals in the process of learning and adapting to change and for the establishment of a more interactive public administration that learns equally from its actions and from the feedback it receives. Furthermore, the contents of risk maps often do not match the requirements of the end users, so that risk maps are often designed and visualised in a way which cannot be easily understood by laypersons and/or which is not suitable for the respective needs of public authorities in risk and flood event management. The project RISK MAP aimed at improving flood risk maps as a means to foster public participation and raising flood risk awareness. For achieving this aim, RISK MAP (1) developed rules for appropriate stakeholder participation enabling the incorporation of local knowledge and preferences; (2) improved the content of risk maps by considering different risk criteria through the use of a deliberative multicriteria risk mapping tool; and (3) improved the visualisation of risk maps in order to produce user-friendly risk maps by applying the experimental graphic semiology (EGS) method that uses the eye tracking approach. The research was carried out in five European case studies where the status quo of risk mapping and the legal framework was analysed, several stakeholder interviews and workshops were conducted, the visual perception of risk maps was tested and - based on this empirical work - exemplary improved risk maps were produced. The presentation and paper will outline the main findings of the project which

  10. Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS

    Science.gov (United States)

    Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun

    2015-12-01

    Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.

  11. Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico

    Science.gov (United States)

    Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.

    2018-06-01

    Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  12. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software

    Science.gov (United States)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.

    2017-12-01

    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push

  13. Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Hai-Min Lyu

    2016-10-01

    Full Text Available On 10 May 2016, Guangdong Province, China, suffered a heavy rainstorm. This rainstorm flooded the whole city of Guangzhou. More than 100,000 people were affected by the flooding, in which eight people lost their lives. Subway stations, cars, and buses were submerged. In order to analyse the influential factors of this flooding, topographical characteristics were mapped using Digital Elevation Model (DEM by the Geographical Information System (GIS and meteorological conditions were statistically summarised at both the whole city level and the district level. To analyse the relationship between flood risk and urbanization, GIS was also adopted to map the effect of the subway system using the Multiple Buffer operator over the flooding distribution area. Based on the analyses, one of the significant influential factors of flooding was identified as the urbanization degree, e.g., construction of a subway system, which forms along flood-prone areas. The total economic loss due to flooding in city centers with high urbanization has become very serious. Based on the analyses, the traditional standard of severity of flooding hazards (rainfall intensity grade was modified. Rainfall intensity for severity flooding was decreased from 50 mm to 30 mm in urbanized city centers. In order to protect cities from flooding, a “Sponge City” planning approach is recommended to increase the temporary water storage capacity during heavy rainstorms. In addition, for future city management, the combined use of GIS and Building Information Modelling (BIM is recommended to evaluate flooding hazards.

  14. Assessment and Adaptation to Climate Change-Related Floods Risks

    NARCIS (Netherlands)

    Jongman, B.; Winsemius, H.C.; Fraser, S.; Muis, S.; Ward, P.J.

    2018-01-01

    The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand

  15. Increasing stress on disaster-risk finance due to large floods

    Science.gov (United States)

    Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen C. J. H.; Mechler, Reinhard; Botzen, W. J. Wouter; Bouwer, Laurens M.; Pflug, Georg; Rojas, Rodrigo; Ward, Philip J.

    2014-04-01

    Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. So far, little is known about such flood hazard interdependencies across regions and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins. We present probabilistic trends in continental flood risk, and demonstrate that observed extreme flood losses could more than double in frequency by 2050 under future climate change and socio-economic development. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

  16. An experimental system for flood risk forecasting at global scale

    Science.gov (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  17. Monitoring the variability of precipitable water vapor over the Klang Valley, Malaysia during flash flood

    International Nuclear Information System (INIS)

    Suparta, W; Rahman, R; Singh, M S J

    2014-01-01

    Klang Valley is a focal area of Malaysian economic and business activities where the local weather condition is very important to maintain its reputation. Heavy rainfalls for more than an hour were reported up to 40 mm in September 2013 and 35 mm in October 2013. Both events are monitored as the first and second cases of flash flood, respectively. Based on these cases, we investigate the water vapor, rainfall, surface meteorological data (surface pressure, relative humidity, and temperature) and river water level. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) is used to indicate the impact of flash flood on the rainfall. We found that PWV was dropped 4 mm in 2 hours before rainfall reached to 40 mm and dropped 3 mm in 3 hours before 35 mm of rainfall in respective cases. Variation of PWV was higher in September case compared to October case of about 2 mm. We suggest the rainfall phenomena can disturb the GPS propagation and therefore, the impact of PWV before, during and after the flash flood event at three selected GPS stations in Klang Valley is investigated for possible mitigation in the future

  18. The major floods in the Amazonas river and tributaries (Western Amazon Basin) during the 1970-2012 period : a focus on the 2012 flood

    OpenAIRE

    Espinoza, J. C.; Ronchail, J.; Frappart, F.; Lavado, W.; Santini, William; Guyot, Jean-Loup

    2013-01-01

    In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970-2012 period, focusing on the recent April 2012 flooding (55 400 m(3) s(-1)). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Maranon River, the northern contributor of the Amazonas, occurred...

  19. Characterising Record Flooding in the United Kingdom

    Science.gov (United States)

    Cox, A.; Bates, P. D.; Smith, J. A.

    2017-12-01

    Though the most notable floods in history have been carefully explained, there remains a lack of literature that explores the nature of record floods as a whole in the United Kingdom. We characterise the seasonality, statistical and spatial distribution, and meteorological causes of peak river flows for 521 gauging stations spread across the British Isles. We use annual maximum data from the National River Flow Archive, catchment descriptors from the Flood Estimation Handbook, and historical records of large floods. What we aim to find is in what ways, if any, the record flood for a station is different from more 'typical' floods. For each station, we calculate two indices: the seasonal anomaly and the flood index. Broadly, the seasonal anomaly is the degree to which a station's record flood happens at a different time of year compared to typical floods at that site, whilst the flood index is a station's record flood discharge divided by the discharge of the 1-in-10-year return period event. We find that while annual maximum peaks are dominated by winter frontal rainfall, record floods are disproportionately caused by summer convective rainfall. This analysis also shows that the larger the seasonal anomaly, the higher the flood index. Additionally, stations across the country have record floods that occur in the summer with no notable spatial pattern, yet the most seasonally anomalous record events are concentrated around the south and west of the British Isles. Catchment descriptors tell us little about the flood index at a particular station, but generally areas with lower mean annual precipitation have a higher flood index. The inclusion of case studies from recent and historical examples of notable floods across the UK supplements our analysis and gives insight into how typical these events are, both statistically and meteorologically. Ultimately, record floods in general happen at relatively unexpected times and with unpredictable magnitudes, which is a

  20. A Flood Risk Assessment Model for Companies and Criteria for Governmental Decision-Making to Minimize Hazards

    Directory of Open Access Journals (Sweden)

    Jieun Ryu

    2017-11-01

    Full Text Available Flood risks in the industrial sector and economic damages are increasing because of climate change. In addition to changes in precipitation patterns due to climate change; factors that increase flood damage include infrastructure deterioration and lack of storage facilities. Therefore; it is necessary for companies and the government to actively establish flood management policies. However; no evaluation method is currently available to determine which items should be invested in first by small and medium-sized enterprises that have limited finances. Because the government should make comprehensive and fair decisions; the purpose of this study is to propose priority investment risk items and an assessment method to decide which companies should be invested in first in flood risk management due to climate change. The multispatial scale of the method takes both the location and characteristics of the company into account. Future climate change scenarios were used to evaluate the changing patterns of flood risks. We developed the relative Flood Risk Assessment for Company (FRAC model methodology to support the government’s policymaking. This method was applied to four companies belonging to four different industries and three risk items were derived that are likely to harm the company owing to flooding.