WorldWideScience

Sample records for radwaste management plan

  1. A master plan for the radwaste management

    International Nuclear Information System (INIS)

    Kim, Y.E.; Lee, S.H.; Lee, C.K.; Moon, S.H.; Sung, R.J.; Sung, K.W.

    1983-01-01

    The accumulated total amount of low-level radioactive wastes to be produced from operating power reactors and nuclear installations up until the year 2007 is estimated to 900,000 drum(approximately 200,000M 3 ). An effective master plan for the safe disposal of the wastes is necessary. Among many different disposal methods available for low-and medium-level radwastes, the engineered trench approach was chosen by an extensive feasibility study as the optimum method for Korea. Site selection, construction and commissioning of such a disposal facility are presumed to take two and a half years, beginning in July 1983. The total cost in opening the site and the unit disposal cost per drum were estimated to be 11 billion won and 40,000 won, respectively. An agency(KORDA) managing the operation of the disposal site is recommended to be established by 1987, assuming that the agency's economic feasibility can be justified by that time. When the disposal site is commissioned, a regulatory guide for ground disposal will be available, and supporting R and D work on the disposal site will be complete. Studies on the technology of radwaste treatment will continue through this period. For the longer term, staff training and future planning have been undertaken to ensure that a master plan, which can be expected to be used as a guideline for disposal of all radioactive waste arising, is fully adequate. (Author)

  2. Radwaste management in Sweden

    International Nuclear Information System (INIS)

    Ahlstroem, P.E.; Ungermark, S.

    1987-01-01

    The waste management system planned for handling the radioactive residues from Sweden's 12 nuclear power units is based on the operation of all the units up to the year 2010 in accordance with Parliament's decision to abolish nuclear power by that time. The main strategy for handling spent nuclear fuel is direct disposal without reprocessing. In the design of the radwaste management system the following fundamental principles have been applied. Short-lived waste will be disposed of as soon as possible after it has been generated. Spent fuel will be intermediately stored for about 40 years before final disposal, thereby reducing heat generation in the repository. Other long-lived waste will be disposed of jointly with the final disposal of spent fuel. 3 figs., 1 tab

  3. Radwaste treatment complex. DRAWMACS planned maintenance system

    International Nuclear Information System (INIS)

    Keel, A.J.

    1992-07-01

    This document describes the operation of the Planned Maintenance System for the Radwaste Treatment Complex. The Planned Maintenance System forms part of the Decommissioning and Radwaste Management Computer System (DRAWMACS). Further detailed information about the data structure of the system is contained in Database Design for the DRAWMACS Planned Maintenance System (AEA-D and R-0285, 2nd issue, 25th February 1992). Information for other components of DRAWMACS is contained in Basic User Guide for the Radwaste Treatment Plant Computer System (AEA-D and R-0019, July 1990). (author)

  4. Radwaste management in the UK - present status and future plans

    International Nuclear Information System (INIS)

    Eyre, B.

    1991-01-01

    In 1976, the Royal Commission on Environmental Pollution, chaired by Lord Flowers, undertook a thorough review of the status of radioactive waste management in the United Kingdom (UK). Its report became the stimulus which launched a new programme of strategic and technical work to establish a total system plan for the processing, storage, transport and disposal of all radioactive wastes in the UK. This article, which describes the evolution of the programme, is the basis of the presentation to the Korean nuclear industry earlier this year by the Deputy Chairman and Chief Executive of AEA Technology. (author)

  5. System analysis for radwaste management

    International Nuclear Information System (INIS)

    Lennemann, W.L.

    1987-01-01

    The most logical approach to evaluating radioactive waste management processes and their options is to consider radioactive waste management, handling, and disposal as a complete and complex system from the waste arisings to their disposition. The principal elements that should be considered or taken into account when making a decision involving one or more components of a radwaste management system essentially concern radiation doses or detriments- both radiological and industrial safety and both capital investments and operating costs. This paper discusses the system analysis of the low- and medium-level radioactive waste management

  6. An analysis on radwaste management in China

    International Nuclear Information System (INIS)

    Chen Haicheng; Qu zhimin

    1999-05-01

    Considerable masses of radwastes have been produced in China during past period of four decades. The government has paid great attentions to the management of those radwastes and much progress has been made. The development of nuclear power has led the national radwaste management into a new era, meanwhile has brought about new challenges and issues for the existing management system. The analysis indicates that the existing management system is comprehensive but needs to be further improved: (1) regulations system of radwaste management needs to be perfected; (2) a special operational agency for managing radwastes has to be founded; (3) a financing system for long-term management is expected to be created; (4) information and interaction programs should be carried out and involved in the national management strategy

  7. Strategies for radwaste management

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The production of electricity by any technology produces waste: coal burning creates ash and air pollution, solar-cell wastes contain hazardous heavy metals such as arsenic and cadmium, and nuclear power generates radioactive waste. Protecting the environment requires careful control of all of these wastes. Radioactive wastes are also a by-product of defense activities, research, medical applications, and industrial production. ORNL has long engaged in development of new technology to ensure safe and environmentally benign disposal of these wastes. The basis of radioactive waste management is simple. Because radioactive materials become less radioactive over time, the way to safely dispose of radioactive materials is to store them until they become nonradioactive. Different radioactive materials have different half-lives, so their storage times are different. A rule of thumb is that, after 10 half-lives have passed, the material is essentially no longer radioactive. In contrast, chemical wastes, such as dioxin, can be destroyed by incineration, and toxic heavy-metal wastes, such as lead and arsenic, remain toxic forever and require other waste management technologies to isolate them from the environment

  8. Environmental policy on radwaste management and disposal in China

    International Nuclear Information System (INIS)

    Zhao Yamin

    1993-01-01

    This paper introduces the environmental policy on radwaste management and disposal. In order to prevent different kinds of radwaste from polluting environment, ensure public health, and simultaneously promote the development of nuclear energy and nuclear technology, a set of environmental policies on radwaste management and disposal has been established. The major policy are as follows: (1) Solidifying the temporarily-stored radioactive liquid waste as early as possible. (2) Limiting the temporarily-stored time for intermediate-and low-level solidified radwaste, and solid radwaste. (3) Constructing regional disposal repository for Low and Intermediate level radwaste (L/ILW) (4) The radwaste and spent radiation sources arising from nuclear technology application shall be sent to the provincial waste repositories that are named City Radwaste Repository. (5) The radwaste coming from the development and application of inter-grown radioactive mineral resources should be stored in the dams which have to be provided

  9. Learn interactively about radwaste management

    International Nuclear Information System (INIS)

    Stritar, Andrej; Gortnar, Oton; Mele, Irena; Zeleznik, Nadja

    2001-01-01

    The main purpose of this multimedia, developed by Nuclear Training Centre for the Agency for Radwaste Management is to present the topic to general public, especially schoolchildren. This is a short report about our first experience with the development of multimedia presentations. The whole process was relatively long, almost two years, but the main reason for that was availability of funds. The basic messages, the CD is supposed to deliver to the user, are: Radioactive waste is produced as a by-product of several beneficial human activities. Radioactive waste is dangerous, but we can safely handle and store it. Target audience is younger population that is very familiar with that type of multimedia technology. Therefore the design must be simple, attractive and easily understandable. The way how our messages are delivered must be close to the emotional level of the user, while at the same time factual data must be accurate and up to date. We have decided to use a combination of graphical animations, spoken messages, music, pictures and video clips. Main areas covered are the following: 1. Civilisation and waste 2. About radioactivity 3. What is radioactive waste and where is it produced? 4. What do we do with radioactive waste? 5. Radioactive waste in Slovenia 6. Transport of radioactive waste. Each area is at the top of a single branch of the scenario. In the second step for every display of each branch we have carefully prepared the written and spoken text, selected pictures, eventual video clips and designed animations. During the last development phase the feedback from the target audience was analysed. About 40 students and teacher of elementary school were involved. Their feedback was quite positive. Following figures try to give the impression about the final implementation of the CD ROM. Everything is in Slovenian language, however, translation to any other language is possible. CD-ROM is freely distributed to young visitors of the Nuclear Information

  10. On giving radwaste management some status

    International Nuclear Information System (INIS)

    Dickson, H.W.; Walker, E.E.; Thiesing, J.W.

    1987-01-01

    Radwaste management is receiving ever increasing attention in the nuclear industry. The reasons for this include limited allocations for burial, increasing costs of handling and disposal, increased regulatory attention, and ALARA requirements. These issues have lead to an increasing awareness of the disadvantages of running a ''dirty'' plant and a variety of sophisticated systems have been proposed to fix the problem. Instead of these technologically difficult, and sometimes very expensive fixes, this paper focuses on several relatively simple ''low tech,'' and inexpensive solutions. Much can be done with organizational alternatives and assigned responsibilities and authorities to improve the situation. Applying controls on the front end of a radiological task rather than attempting to reduce the magnitude at the back end is the only realistic method for proper radwaste management

  11. Review of decommissioning, spent fuel and radwaste management in Slovakia

    International Nuclear Information System (INIS)

    Jamrich, J.

    2000-01-01

    Two nuclear power plants with two WWER reactors are currently under operation in Jaslovske Bohunice and NPP A-1 is under decommissioning on the same site. At the second nuclear site in the Slovak Republic in Mochovce third nuclear power plant with two units is in operation. In accordance with the basic Slovak legislation (Act on Peaceful Utilisation of Nuclear Energy) defining the responsibilities, roles and authorities for all organisations involved in the decommissioning of nuclear installations Nuclear Regulatory Authority requires submission of conceptual decommissioning plans by the licensee. The term 'decommissioning' is used to describe the set of actions to be taken at the end of the useful life of a facility, in order to retire the facility from service while, simultaneously, ensuring proper protection of the workers, the general public and the environment. This set of activities is in principle comprised of planning and organisation of decommissioning inclusive strategy development, post-operational activities, implementation of decommissioning (physical and radiological characterisation, decontamination, dismantling and demolition, waste and spent fuel management), radiological, aspects, completion of decommissioning as well as ensuring of funding for these activities. Responsibility for nuclear installations decommissioning, radwaste and spent fuel, management in Slovakia is with a subsidiary of Slovak Electric called Nuclear Installations Decommissioning Radwaste and Spent Fuel Management (acronym SE VYZ), established on January 1, 1996. This paper provides description of an approach to planning of the NPP A-1 and NPPs with WWER reactors decommissioning, realisation of treatment, conditioning and disposal of radwaste, as well as spent fuel management in Slovakia. It takes into account that detail papers on all these issues will follow later during this meeting. (author)

  12. Multimedia presentation of radwaste management

    International Nuclear Information System (INIS)

    Stritar, A.; Gortnar, O.; Mele, I.; Zeleznik, N.

    2000-01-01

    Paper is a brief report about the recently published CD-ROM intended for (young) general public. It is describing (almost) all aspects of the radioactive waste management from description of radioactivity to final solutions in repositories. It was developed with plenty of animations, music, spoken and written text and video clips. (author)

  13. Training of radwaste management specialists

    International Nuclear Information System (INIS)

    Lifanova, S.D.

    2010-01-01

    Highly professional and knowledgeable employees for chemical, and especially radiochemical, technology companies are very much sought after these days. Taking into account the advancement of nuclear power and the associated expansion of radioactive waste management facilities, the demand for staff that possesses all the necessary knowledge is set to increase multi-tenfold. In such circumstances, training of personnel is becoming a key element of the human resource management process. The author says that training of personnel at SUE SIA Radon Moscow is conducted in accordance with the Program of Training, Advanced Training and Personnel Qualification, which prescribes areas of training, categories of trainees, approximate number of trainees for each area, schedule and budget of training sessions. The cooperation of SUE SIA Radon Moscow with higher-education institutions in the field of young specialists training and advanced training of managerial, technical and administrative staff is reported [ru

  14. The strategy of radwaste management in Slovenia

    International Nuclear Information System (INIS)

    Loose, A.; Babsek, B.; Jeran, M.

    1994-01-01

    This paper's intention is to show the present situation and future activities of the Agency for radwaste management. It was established by the slovene government to provide the strategy for a safe management of radioactive waste. The safety is the main concern of the Agency, since the situation in Slovenia is quite complex as it is a small country with a limited number of suitable locations and a strong public opposition towards anything connected with nuclear power generation or radioactivity in general. The emphasis of the Agency's activities at the moment is siting and technology selection for low level waste and intermediate level waste repository as well as solutions on interim storage of high level waste

  15. Radwastes management program of the IEN

    International Nuclear Information System (INIS)

    Peres, S.S.; Godoy, J.M.O

    2000-01-01

    Low level radioactive wastes are produced during the operation of the radioactive and nuclear installations of the Nuclear Engineering Institute (Instituto de Engenharia Nuclear, IEN) situated in Rio de Janeiro City, Brazil. These wastes can be generated during the operation and maintenance of the CV-28 Cyclotron, the radioisotopes production, the research activities using natural thorium and uranium in chemical laboratories and, eventually, during the operation Argonauta Reactor. In accordance to the methodology of the radwastes management adopted in the IEN, the wastes are segregated and treated depending on theirs physical, chemical, biological and radiological properties. The wastes with important levels of activity are separate and collected in special containers. Wastes containing short-lived radionuclides are also separated and left away for decaying. Solid wastes are constituted of materials used in laboratories, such as papers, rubber gloves, plastics, over shoes, broken glassware, metal pieces, etc. These wastes are classified as compressible, combustible, non-compressible and non- combustible. The solid wastes are collected in suitable containers placed throughout the working area. Basically, the treatment methods used for these wastes are activity decay, decontamination and compaction. Liquid wastes are generated in small volumes and, generally, containing little quantities of radionuclides. These wastes are classified as aqueous and non-aqueous, acid, alkaline. The diluted aqueous wastes produced in hot laboratories are collected in liquid effluent collection stations for analysis by gamma spectrometry. If the activity concentration is smaller than the established limits in waste management national standards, they are discharge inside of the local sanitary sewer system. Otherwise, these wastes are retained for treatment. The treatment methods used for liquid wastes are activity decay, chemical precipitation, ion exchange and immobilization in inert

  16. Radwaste management and spent fuel management in JAVYS

    International Nuclear Information System (INIS)

    Bozik, M.; Strazovec, R.

    2010-01-01

    In this work authors present radwaste management and spent fuel management in JAVYS, a.s. Processing of radioactive wastes (RAW) in the Bohunice Radioactive Waste Processing Center and surface storage of RAW in National RAW Repository as well as Interim Spent fuel storage in Jaslovske Bohunice are presented.

  17. Establishment and status of the radwaste management standards in China

    International Nuclear Information System (INIS)

    Zhuo Fengguan

    1993-01-01

    In the last 30 years and more, with the development of nuclear industry in China, the government, nuclear industry circles and scientists have paid great attention to the safety management of radwastes. Especially in past 10 years, with the implementation of the nuclear power programmes, the safety management of radwastes has been legalized steadily NEPA (National Environment Protection Agency, China), NNSA (National Nuclear Safety Administration) and the competent authorities concerned have engaged in establishing and promulgating policies, regulations, and a series of technical standards on the safety management of radwaste, and efforts are being made to complete and perfect related regulations and standards. The status and programs of radwaste safety management standards in China are briefly introduced, including principles, organizations and procedure for drafting the standards

  18. Non-power radwaste inventory, characteristics, storage and disposal plan in China

    International Nuclear Information System (INIS)

    Zhao Yamin; Guo Zede

    1997-01-01

    Based on the practical experience regarding L/ILW management, national management system and waste management principles have been established in China, and their key points are summarized as follows: The National Environmental Protection Agency (NEPA) is responsible for the centralized management of country's radwastes: unified planning; organizing coordinations; licensing; supervising and inspecting the activities of environment protection. The China national Nuclear Corporation (CNNC) takes the responsibility of research and development of radwaste management; siting, construction, and operating disposal facilities; technical support for making regulations, standards and guidelines. The units using radioactive isotopes and producing radwastes should take charge of temporal storage of their own wastes. L/ILW management principles: controlling waste generation amount as less as possible; collecting wastes according to their categories; reducing volume and immobilizing; reliably packaging; interim storage and disposal. This paper is limited to introduce the waste from nuclear technology application, its inventory, characteristics, interim storage and disposal plan. Information concerning L/ILW management, not limited nuclear technology application radwaste, can be found in references. 4 refs

  19. Summary of the ORNL-sponsored reactor radwaste management workshop

    International Nuclear Information System (INIS)

    Kibbey, A.H.

    1977-01-01

    On January 12 to 14, 1977, Oak Ridge National Laboratory (ORNL) sponsored a Radwaste Management Workshop in New Orleans, Louisiana, the object of which was to obtain operating data on the uses of evaporation, ion exchange, filtration, and on solid radwaste practices at nuclear power plants. The collected data are being used to update three earlier generic reports done by ORNL on the status of evaporation, ion exchange, and solid radwaste practices at nuclear power plants and to prepare a new one on filtration. All segments of the nuclear power industry were invited to participate, and a total of 188 representatives came. There were four major Workshop groups: volume reduction, solidification, physical and chemical separations, and corrosion. The major findings of each group are reported

  20. UK national consensus conference on radwaste management

    International Nuclear Information System (INIS)

    Craven-Howe, Andrew

    2000-01-01

    UK CEED organised a consensus conference to debate radwaste disposal. It lasted from 21-24 May 1999. Among the witnesses called to give evidence were UKAEA, BNFL, Nuclear Industries' Inspectorate, Department of the Environment, Transport and the Regions, Friends of the Earth and Greenpeace. The end result was a report produced by the panel of members of the public, recording their views and recommendations. Conclusions are presented. (author)

  1. The costs assessment of the RENEL's programme for radwaste management

    International Nuclear Information System (INIS)

    Barariu, Gh.; Andreescu, N.

    1995-01-01

    The paper presents first economical assessment of the Radwaste Management Programme of the Romanian Electricity Authority - Nuclear Power Group (RENEL-GEN) until closing all foreseeable activities in the field of nuclear waste processing and disposal. (Author) 1 Tab., 7 Refs

  2. Analysis on long-term strategy for radwaste management in China

    International Nuclear Information System (INIS)

    Chen Haicheng

    1998-08-01

    Radwaste presents a worldwide issue in the management of environmental protection. Most countries carrying out nuclear programs have developed strategies for their radwastes management. China has been executing its strategy, but the development of nuclear power is representing new challenges for the national radwastes management. This paper tries an analysis on the long-term management of radwastes in China. The exiting system of China's radwastes management is explained. Two important issues on radwastes management i.e. economics and social issues are analyzed. The future issues that will affect China's radwastes management are discussed. A short summary of the national radwastes management in NEA countries is involved in the paper. The analysis indicates that in China the exiting system of radwastes management is comprehensive but remains to be perfected. Improvements of long-term management need to be made in the aspects of economics and social issue. A financing system for long-term management, as a supplement for the exiting system of radwastes management, is expected to be created. (author)

  3. Analysis on long-term strategy for radwaste management in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haicheng [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    Radwaste presents a worldwide issue in the management of environmental protection. Most countries carrying out nuclear programs have developed strategies for their radwastes management. China has been executing its strategy, but the development of nuclear power is representing new challenges for the national radwastes management. This paper tries an analysis on the long-term management of radwastes in China. The exiting system of China`s radwastes management is explained. Two important issues on radwastes management i.e. economics and social issues are analyzed. The future issues that will affect China`s radwastes management are discussed. A short summary of the national radwastes management in NEA countries is involved in the paper. The analysis indicates that in China the exiting system of radwastes management is comprehensive but remains to be perfected. Improvements of long-term management need to be made in the aspects of economics and social issue. A financing system for long-term management, as a supplement for the exiting system of radwastes management, is expected to be created. (author)

  4. Radwastes management in Qinshan Nuclear power plants

    International Nuclear Information System (INIS)

    Zhou Huan; Ling Kechi; Wang Qingrong; Luo Jingfan

    1987-01-01

    The source terms input used as the basic data for designing the radwaste treatment systems of Qinshan Nuclear Power Plant [300 MW(e)] is presented. The classification of radioactive liquid wastes, off-gases and solid wastes, and their treatment techniques, as well as on-site storage facilities for solid wastes are described. For liquid waste, the method of filtration-evaporation-ion exchange will be used as the main treatment technique. For off-gas, Holdup-decay treatment will be used. For evaporator concentrates, indrumsolidification method with normal domestic portland cement will be used. The assessment of impact of effluents to environment at normal operation of the NPP is also made. The results show that it will be safe for inhabitants nearby during normal operation and it can meet the requirements of national standard ''Regulation of Radiation Protection''

  5. Volume reduction, a safer and cheaper way of radwaste management

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.P.; Storrer, J.A.

    1979-01-01

    Development of 'Volume Reduction' has demonstrated that it is a safer and cheaper radwaste management method. Safer, because of several advantages: decrease of solidified product volume, satisfactory product properties, absence of free water, better control of process parameters, increased encapsulation efficiency ... The corresponding impact on the waste management costs, results in important savings on different factors, as well as regards the operational costs as the investment expenses. Economy in the range of BF 35.000 per m 3 of incoming waste is achievable. The main volume reduction techniques readily available are briefly reviewed

  6. Radwaste knowledge management in cooperation with the IAEA

    International Nuclear Information System (INIS)

    Batyukhnova, O.G.; Dmitriev, S.A.; Ozhovan, M.I.; Drejs, Z.; )

    2010-01-01

    The authors report on the emerging of the term knowledge management, and the practice of accumulation and preservation of nuclear knowledge. They emphasize that in addition to collecting and keeping scientific knowledge and identification of practical skills, management of nuclear knowledge includes setting the priorities to take into account the expected departure of retiring experts, and creating the mechanisms for attracting and training future employees. Education and training in radwaste management, as in the entire nuclear sector, is of a multi-disciplinary nature. It requires understanding of subjects such as geology, civil construction, mining, hydrogeology, chemistry, geophysics, mechanics, computing, etc. Moreover, this field is plagued with difficulty of reaching scientific, technical and even social consensus. Creation of effective and efficiently-operating systems for maintaining and disseminating knowledge is a complex and labour-consuming task. The role of the IAEA in the field of radwaste knowledge management is underlined. The SUE SIA Radon Moscow' experience and practice in training specialists of various professions and levels (including regulatory personnel) are described [ru

  7. Decommissioning and radwaste management in Spain

    International Nuclear Information System (INIS)

    Colino, A.

    2004-01-01

    The management of radioactive wastes in Spain is undertaken by 'Empresa Nacional de Residuos Radioactivos, S.A.' (ENRESA), the Spanish national radioactive waste company, constituted in 1984. ENRESA operates as a management company, whose role is to develop radioactive waste management programs in accordance with the policy and strategy approved by the Spanish government. Its responsibilities include the decommissioning and dismantling of nuclear installations. ENRESA is a state company whose shareholders are CIEMAT (Centre for Energy-Related, Environmental and Technological Research), previously known as the 'Junta de Energia Nuclear' (Nuclear Energy Council) and SEPI (State Industrial Holding Company). Both of them are governmental institutions with an eighty and twenty percent of the company respectively. In 1980 the Spanish Nuclear Safety Council (CSN) was constituted as the sole competent organisation in the field of nuclear safety and radiological protection, and in general is responsible for regulating and supervising nuclear installations. This organisation, governed by a legal statute, is independent from the administration and reports directly to parliament. (author)

  8. Provision of radiation safety at the designing of the industrial complex of solid radwaste management (ICSRM)

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Sevastyuk, O.V.

    2003-01-01

    The article presents the basic principles and criteria of the radiation safety provision, organization of the radiation control system, and dose calculation for the staff irradiation at the construction and operation of the Industrial complex of solid radwaste management (ICSRM)

  9. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  10. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    International Nuclear Information System (INIS)

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  11. The concept of partitioning/transmutation in radwaste management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    1993-01-01

    It is trite to say that radwaste is more difficult to handle than conventional industrial waste because of its radioactivity. If many toxic chemical compounds can be destroyed by simple thermal incineration, non-radioactive substances whose radioactivity is linked to the presence of toxic elements give rise, because they undergo ''infinite decay'', to the same problems as long-lived radwaste. Radioactivity, because it involves the self-destruction of radionuclides, is more an advantage, as long as it does not result in stable toxic daughter elements, and as long as radioactive decay remains compatible with their reliable confinement. Disposal of A waste (low level waste), for which the radioactive decay period of the beta and/or gamma emitting radionuclides is of human-scale time periods, has become an industrial practice and there is no conceptual problem for this waste. However, management of B and C waste (alpha and high level waste) and, their storage, remain to day in the design stage. It is because they contain sizeable quantities of alpha, beta and gamma emitting radionuclides with radioactive decay periods much greater than human-scale time periods and because C waste generates heat, that the final stage of their management poses problems. These problems are of a complex nature for reasons of 1) science, 2) ethics 3) economics 4) sociology. The idea of modifying alpha and beta radioactivity in C waste to the point where it could disappear is not in itself a new idea. Over the past twenty years, in response to studies on the disposal of vitrified nuclear waste, this option has been raised on several occasions. It has suddenly resurfaced in the light as the topic of Partitioning Transmutation Concept (PTC). Japan and more recently France announced for the first time consistent research programmes. The idea of reduction of alpha radioactivity of the actual B waste is no more a new idea. It has recently come in light as a complementary idea, possibly

  12. Radwaste management aspects of the test blanket systems in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Canas, D. [CEA, DEN/DADN, centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Chaudhari, V. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Iseli, M. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Kawamura, Y. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Petit, P. [European Commission, DG ENER, Brussels (Belgium); Pitcher, C.S.; Torcy, D. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Ugolini, D. [Fusion for Energy, Barcelona (Spain); Zhang, H. [China Nuclear Energy Industry Corporation, Beijing 100032 (China)

    2016-11-01

    Highlights: • Test Blanket Systems are operated in ITER to test tritium breeding technologies. • The in-vessel parts of TBS become radio-active during the ITER nuclear phase. • For each TBM campaign the TBM, its shield and the Pipe Forests are removed. • High tritium contents and novel materials are specific TBS radwaste features. • A preliminary assessment confirmed RW routing, provided its proper conditioning. - Abstract: Test Blanket Systems (TBS) will be operated in ITER in order to prepare the next steps towards fusion power generation. After the initial operation in H/He plasmas, the introduction of D and T in ITER will mark the transition to nuclear operation. The significant fusion neutron production will give rise to nuclear heating and tritium breeding in the in-vessel part of the TBS. The management of the activated and tritiated structures of the TBS from operation in ITER is described. The TBS specific features like tritium breeding and power conversion at elevated temperatures, and the use of novel materials require a dedicated approach, which could be different to that needed for the other ITER equipment.

  13. Selection of detailed items for periodic safety review on PWR radwaste management system

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. B.; Ahn, Y. S.; Park, Y. S.; Kim, S. H.; Kim, J. T. [Korea Hydric and Nuclear Power Company, Taejon (Korea, Republic of)

    2003-10-01

    Selection of detailed-items for Periodic Safety Review on PWR radwaste management system, the main component could be faithfully clarified according to the purpose of establishment on each system and basic purpose. It is proper to select detailed-items those of radioactivities in the reactor coolant activity levels and the released volume of liquid and gaseous radioactive material on safety performance. It's also proper to select solid radwaste production quantities as detailed-item that it would be predict the next ten years trends after PSR.

  14. Development of regulatory and legal framework for spent fuel and radwaste management

    International Nuclear Information System (INIS)

    Bezzubtsev, V.S.

    2012-01-01

    The Basics of National Policy in Nuclear and Radiation Safety assurance in the Russian Federation define the principles and objectives of nuclear and radiation safety of nuclear facilities during all stages of their life cycle. Russia's National Report at the Fourth Review Meeting of Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management reflected the organizational as well as legal and regulatory changes that have taken place over past three years. Amendments recently made to the Russian Nuclear Energy Law as well as the Law on Radwaste Management adopted in 2011 are discussed. Federal norms and regulations in the field of spent fuel and radwaste management are also presented. Organizational and legal reforms related to state safety regulation are described [ru

  15. Planning of optimal work path for minimizing exposure dose during radiation work in radwaste storage

    International Nuclear Information System (INIS)

    Kim, Yoon Hyuk; Park, Won Man; Kim, Kyung Soo; Whang, Joo Ho

    2005-01-01

    Since the safety of nuclear power plant has been becoming a big social issue, the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate dose not depend on the location within a work space, thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation during radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, the developed numerical method and simulation program could be useful tools in the planning of radiation work

  16. National report of the Slovak Republic compiled in terms of the Join on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  17. National report of the Slovak Republic compiled in terms of the join convention on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  18. Liquid radwaste processing south Texas style

    International Nuclear Information System (INIS)

    Rejcek, M.F.

    1996-01-01

    To reduce the amount of liquid radwaste discharged to the on-site cooling reservoir and to control the rising cost of solid radwaste disposal, the South Texas Project Electric Generating Station (STPEGS) embarked on an effort in mid-1992 to improve the efficiency of liquid radwaste processing. STPEGS has achieved reductions in liquid volumes processed and reduced radwaste curie effluent while also reducing solid radwaste generation and cutting operating cost. Equipment and operating improvements were initially focused on improving the station's liquid radwaste filtration capability. These resulted in radwaste processing which required minimal use of demineralization. This paper will focus on procedural and monitoring improvements. Some of the elements of a liquid radwaste process improvement program are: (1) Dedicated Program Management, (2) Operational Management, (3) Outage Water Management,(4) Non-Radioactive Volume Reduction, and (5) Radwaste Volume ampersand Source Reduction

  19. Radwaste - Multimedia presentation

    International Nuclear Information System (INIS)

    2000-01-01

    Radioactivity is a part of the Nature since the creation of the Earth. We have learned how to use radioactivity in medicine, power industry, and in other areas of life. Similarly as in other activities, waste is generated. We offer you basic information about radioactivity and radioactive waste (radwaste) in four films: Radioactivity, Source of radwaste, Management of radwaste. In the glossary are video presentations: Container (Castor) for radioactive waste; Deep underground repository; Transport vehicle; WWER type reactor. Encyclopedic part of the program contains detailed theoretical and practical information about use of radioactivity and radioactive waste. You will find the explanation in the part Glossary. (authors)

  20. Improvement of Radwaste Management System at Bilibinskaya NPP in the Far North Conditions - 13456

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Denis; Adamovich, Dmitry; Savkin, Alexander [SUE SIA Radon, 2/14, 7th Rostovsky lane, Moscow, 119121 (Russian Federation)

    2013-07-01

    Since 2009 Bilibinskaya NPP is getting started to prepare to the decommissioning in the Far North conditions. Bilibinskaya NPP is located in the Far North of Russian Federation in Chukotka region. Since 1974 it operates 4 units EGP-6 with the capacity of 48 MW each. According to the contract, SIA Radon has performed the following works: - LLRW disposal safety analysis, - The technology of spent ion-exchanger and salt residue solidification is proposed, - Expected radwaste (till 2027) management economical analysis, - Technical proposals for LLRW and IRW management. (authors)

  1. Public and political issues in radwaste management: The Spanish approach

    International Nuclear Information System (INIS)

    Lang-Lenton, Jorge

    1999-01-01

    ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.), is a State-owned company, founded in 1984 and is responsible for radioactive waste management in Spain. ENRESA's activities are carried out in accordance with a General Radioactive Waste Plan approved by the Spanish Government. In Spain, as in most countries, the public is concerned about many of the activities involving radioactivity or rad waste management; this concern arises for different reasons, being one of them the lack of information on the matter. This situation often leads to an information misuse by certain politicians, green groups and media, which can increase the distrust of the public to responsible companies and institutions. At the root of both these problems there is also a lack of political consensus regarding projects and related activities. To gain public acceptance, it is necessary to develop a long-term information policy since, in the field of communication, results can only be achieved in the long term. ENRESA is carrying out an on-going Communication Plan (CP), implemented successfully in the areas surrounding a low and intermediate level waste disposal site and a 500 MW nuclear power station (Vandellos 1) which is currently being dismantled. Implementation of this plan at national level is being accomplished stepwise. This document deals with the most relevant issues relating to the radioactive waste situation in Spain and with the efforts made in communications. From the very beginning the situation regarding public opinion was one of clear opposition. At regional level, and particularly in the area surrounding the El Cabril site, both the general public and the opinion leaders were opposed to any action by ENRESA. This opposition included some anti-ENRESA demonstrations right in front of the main entrance to El Cabril. At national level politicians, journalists, etc., did not show much confidence in ENRESA's activities, and the information published in the newspapers was always

  2. Of creation of up-to-date system for liquid radwaste management at Ukraine's NPPs. Problem statement

    International Nuclear Information System (INIS)

    Andronov, O.B.

    2015-01-01

    The main aspects are addressed of problems in the field of liquid radwaste (LRW) management for Ukrainian NPPs; approaches for its decision, and offers of NNEGC Energoatom SE STC specialists concerning the above issue. Conceptual principle of creation of up-to-date hi-tech complex for LRW management is considered

  3. Radwaste Management in Small Nuclear Country - National Policy and Strategy

    International Nuclear Information System (INIS)

    Zagar, Tomaz

    2014-01-01

    The lecture will briefly present the Slovene nuclear program and its legal framework focused on the radioactive waste management policy and strategy aspect. Slovenia is an example of small EU member state with small shared nuclear power program demonstrating safe, secure and efficient management of radioactive waste. Different principles of radioactive waste management will be discoursed; among others including: minimization of waste generation, the polluter pays principle, safe storage followed by final disposal and also new findings on research and development of storage, disposal and recycling of radioactive waste. (author)

  4. Waste management tasks of the Radwaste Collecting Centers of the Laender

    International Nuclear Information System (INIS)

    Dreisvogt, H.

    1994-01-01

    The paper outlines the manifold activities of the Radwaste Collecting Centers of the Laender. According to section 9 a, sub-sec. 3 of the Atomic Energy Act, the various Laender in Germany are obliged to establish such centers whose purpose among other things is to serve as interim storage site for radwaste accrued at medical, industrial, or research facilities. (HP) [de

  5. Evaluation of disposal, recycling and clearance scenarios for managing ARIES radwaste after plant decommissioning

    International Nuclear Information System (INIS)

    El-Guebaly, L.

    2007-01-01

    The wealth of experience accumulated over the past 30-40 years of fusion power plant studies must be forged into a new strategy to reshape all aspects of handling the continual stream of radioactive materials during operation and after power plant decommissioning. With tighter environmental controls and the political difficulty of building new repositories worldwide, the disposal option could be replaced with more environmentally attractive scenarios, such as recycling and clearance. We applied the three scenarios to the most recent ARIES compact stellarator power plant. All ARIES-CS components qualify as Class A or C low-level waste, according to the US guidelines, and can potentially be recycled using conventional and advanced remote handling equipment. Approximately 80% of the total waste can be cleared for reuse within the nuclear industry or, preferably, released to the commercial market. This paper documents the recent developments in radwaste management of nuclear facilities and highlights the benefits and challenges of disposal, recycling and clearance

  6. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the status of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).

  7. North Sea focus on radwaste disposal

    International Nuclear Information System (INIS)

    Cope, D.

    1990-01-01

    At the recent North Sea Conference in the Netherlands possible future strategies for managing radioactive waste (radwaste) proved to be a contentious issue. Several of its North Sea littoral neighbours sought a categorical assurance that the UK would forego the option of constructing a subterranean radwaste repository which though accessed from land, extends under the coastline, or a sub-seabed facility reached from an offshore structure. It was pointed out that the UK has no present plans for such a radwaste repository. However, sub-seabed designs as a possibility for future repositories were not ruled out. NIREX has decided to concentrate its exploration work at two sites -Sellafield and Dounreay. Both sites are coastal locations and the government is aware that detailed geological exploration may favour extension of a radwaste repository beyond the shoreline, even if initially developed entirely on land. The design of such a radioactive waste repository is outlined. The position of NIREX and the Radioactive Waste Management Advisory Committee is discussed. (author)

  8. Radwaste inventories and projections: an overview

    International Nuclear Information System (INIS)

    Notz, K.J.

    1982-07-01

    The Integrated Data Base program was set up to provide fully integrated and reconciled inventories, characteristics, and projections for spent nuclear fuel and all categories of radioactive waste. Eight summary papers, six of which were presented at an ANS special session in Los Angeles in June 1982, are included in this report: data base needs and functions: national planning; integrated data base for spent fuel and radwaste: inventories; integrated data base projections; RAWSYM: radioactive waste management system; NWTS program waste projection data needs; low-level waste management data base system; waste sludge composition at the Savannah River Plant; and summary of characteristics of transuranic waste found at DOE sites

  9. Radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Radu, Maria; Dobos, Ion; Glodeanu, Florin; Popescu, V. Ion; Rotarescu, Gheorghe; Turcanu, Cornel

    1998-01-01

    The paper presents the main aspects of management of radwastes generated within the frame of Nuclear Fuel Cycle (NFC) and out of Nuclear Fuel Cycle in Romania. There are mentioned the Romanian legislative and regulatory framework concerning nuclear activities which include provisions for radwaste management generated in Romania. The paper lists the radwaste producers, mentions waste inventory and gives future estimates for radwaste generation, all determining development of the radwaste management strategy. Choosing selected strategy for radwaste management, the main responsible organizations have been established as well as the planned facilities for treatment conditioning, storage and disposal of radwastes generated within the frame of both NFC and out of NFC fields of peaceful nuclear activity. (authors)

  10. Radwaste reduction experience at Oyster Creek and Three Mile Island Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ross, M.

    1993-01-01

    True radwaste minimization at an operating nuclear power plant means straddling the line between ''what is'' and ''what-can-be'' and then regularly moving that line so that dreams become reality. This effort involves keeping track of and maintaining successful programs of the past while searching out and incorporating the best of the upcoming processes, equipment, and contractors. Some of the tactics used for waste minimization have appreciable results and some have small direct results. But even those with small results add to a final total of volume saved. In addition, the approaches with smaller results demonstrate an unmistakable attitude on the part of management that any unnecessary radwaste production is not acceptable. This attitude is understood and assimilated by engineering, operations, and maintenance in such a way that it becomes a matter of pride to reduce radwaste production to quantities below those officially projected. The GPUN plants at Oyster Creek and Three Mile Island Unit-1 limit the quantity of materials allowed onsite under the premise that an item that stays out of contaminated areas cannot become radwaste. For material exiting contaminated zones, the plants have used a combination of preventative avoidance of radwaste generation and careful processing. This includes sorting and screening of materials leaving contaminated areas to reduce the number of items to eventually be treated, preplanning of work efforts to minimize radwaste that must be generated, wood planning, onsite decontamination units, onsite contractor supplied equipment, and offsite radwaste processors in order to minimize the final amount of radwaste to be buried. Sometimes when employing one of these methods, it is necessary to consider not only the waste generated by the process directly but also secondary wastes caused by interactions with other areas of plant operation, such as equipment maintenance

  11. Radwaste Decision Support System

    International Nuclear Information System (INIS)

    Westrom, G.; Vance, J.N.; Gelhaus, F.E.

    1989-01-01

    The purpose of the Radwaste Decision Support System (RDSS) is to provide expert advice, analysis results and instructional material relative to the treatment, handling, transport and disposal of low-level radioactive waste produced in nuclear power plants. This functional specification addresses the following topics: Functions of the RDSS, Relationships and interfaces between the function, Development of the decisions and logic tree structures embodied in waste management, Elements of the database and the characteristics required to support the decision-making process, Specific User requirements for the RDSS, Development of the user interface, Basic software architecture, and Concepts for the RDSS usage including updating and maintenance

  12. Introduction to the outlines of radwaste administration policy of the Republic of China

    International Nuclear Information System (INIS)

    Huang, C.C.; Tsai, C.M.

    1992-01-01

    This paper discusses the Radwaste Administration Policy (ORAP) which first drafted by the Radwaste Administration (RWA), a subordinate organization of the Atomic Energy Council (AEC) of the Republic of China, and was approved by the Executive Yuan (Cabinet) on September 16, 1988. ORAP has laid down the guidelines for both radwaste administration by RWA and radwaste management by Taiwan Power Company (TPC or Taipower) and other radwaste producers. ORAP will govern radwaste-related activities in the Republic of China in the foreseeable future. The text of ORAP is shown in the Appendix of this paper

  13. Analysis of radwaste material management options for experimental DUPIC fuel fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Yang, M. S.; Kim, K. H.; Shin, J. M.; Lee, H. S.; Ko, W. I.; Lee, J. W.; Yim, S. P.; Hong, D. H.; Lee, J. Y.; Baik, S. Y.; Song, W. S.; Yoo, B. O.; Lee, E. P.; Kang, I. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This report is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This report was written for helping researchers working in related facilities to DUPIC project understanding management of DUPIC radioactive waste as well as fellows in DUPIC project. Also, it will be used as basic material to prove transparency and safeguardability of DUPIC fuel cycle. In order to meet these purposes, this report includes basic experiment plan for manufacturing DUPIC nuclear fuel, outlines for DUPIC manufacturing facility and equipment, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures. 15 refs., 31 figs., 11 tabs. (Author)

  14. A challenge for computing in the 21. century: Radwaste knowledge management

    International Nuclear Information System (INIS)

    Umeki, H.

    2007-01-01

    Integrated nuclear waste management, including waste disposal, is a technical area characterised by a breadth of required multidisciplinary knowledge that is wider than almost any other industry - covering geology to radiation physics, materials science to microbiology, archaeology to engineering, public communication to advanced IT. It also has an unparalleled depth in time, in terms of project implementation (around 100 years - matched maybe by some medieval cathedrals) and the associated safety case (millions of years - longer than the existence of modern man). If anything, this is even more critical in Japan; which depends on a major nuclear power industry, has complex (and dynamic) geology and a policy of repository siting based on solicitation of volunteer municipalities. The technical challenge of Knowledge Management in such an area, which is suffering more than most from the information explosion caused by the exponentially increasing capacities of modern technology, are truly daunting. In order to take control of the situation, the main R and D organisation in this area (Japan Atomic Energy Agency; JAEA) is planning to develop a Knowledge Management System (KMS) that will ride the wave of cutting edge technology in: Database development and management; Search engines; Expert systems; Management support systems; Security and archiving. This initiative will be complemented by a major reassessment of the modelling approach to performance assessment of repositories and the technology for communication of such complex issues with a wide range of different audiences. The requirements as specified go beyond anything doable with existing technology, so an initial goal will be to build up a team capable of anticipating the areas of active technology development that will provide the required tools - and then tailoring them to provide the infrastructure needed for these very ambitious projects. Although this particular application is of limited scope, the general

  15. Kola peninsula radwaste management in the framework of THE Italian-Russian cooperation agreement for global partnership - 59392

    International Nuclear Information System (INIS)

    Nobile, Massimiliano; Izmailov, Dmitry; Spadoni, Antonino; Uryvskiy, Oleg

    2012-01-01

    In 2003 a Cooperation Agreement, envisaging a grant of 360 Meuro in 10 years, was signed between Italy and Russia in the framework of the 'so-called' Global Partnership Program. So far, in five years of concrete work, a total of 146 Meuro have been engaged through 33 contracts and 121 Meuro have been already paid. Together with other significant lines of activities the management of waste, presently located at Andreeva Bay site, is surely the most important one, not only for the amount of allocated funds (about the half of available ones) but also for the urgency to solve serious environmental problems linked to the actual unsafe conditions of these waste, both as regards possible incidents or malicious attacks from outside. Volume of Low Level and Intermediate Level (LL/IL) waste at Andreeva Bay site are 17000 tons and 3000 tons, respectively for solid and liquid; moreover is expected, during the next 15 years, the production of additional 33000 tons of liquid and 8000 tons of solid, due to the need of demolishing existing facilities and final closing of the site. As regards radwaste management facilities, the solution defined in OBIN (justification of investment) has been analyzed and critically reviewed. After the completion of a conceptual study, the construction of three facilities (solid and liquid treatment ones and a protective structure for storing on site temporarily conditioned waste) was decided and a contract was assigned in 2010 to Ansaldo Nucleare/AtomStroyExport for the detailed design of the above mentioned facilities, which is expected to be completed in 2012. Some important modifications to the initial time schedule have been taken into account and now the operation of the facilities is expected by 2015, two years before the previous estimate. (authors)

  16. Radwaste assessment program for nuclear station modifications by design engineering

    International Nuclear Information System (INIS)

    Eble, R.G.

    1988-01-01

    Radwaste burial for Duke Power Company's (DPC's) seven nuclear units has become a complicated and costly process. Burial costs are based on overall volume, surcharges for radioactivity content and weight of containers, truck and cask rental, driver fees, and state fees and taxes. Frequently, radwaste costs can be as high as $500 per drum. Additionally, DPC is limited on the total burial space allocated for each plant each year. The thrust of this program is to reduce radwaste volumes needing burial at either Barnwell, South Carolina, or Richland, Washington. A limited number of options are available at our sites: (a) minimization of radwaste volume production, (b) segregation of contamination and noncontaminated trash, (c) decontamination of small hardware, (d) volume reduction of compatible trash, (e) incineration of combustible trash (available at Oconee in near future), and (f) burial of below-regulatory-concern very low level waste on site. Frequently, costs can be reduced by contracting services outside the company, i.e., supercompaction, decontamination, etc. Information about radwaste volumes, activities, and weight, however, must be provided to the nuclear production department (NPD) radwaste group early in the nuclear station modification (NSM) process to determine the most cost-effective method of processing radwaste. In addition, NSM radwaste costs are needed for the NPD NSM project budget. Due to the advanced planning scope of this budget, NSM construction costs must be estimated during the design-phase proposal

  17. Radwaste '86: proceedings volume

    International Nuclear Information System (INIS)

    Ainslie, L.C.

    1986-12-01

    The volume contains all the papers presented at the above Conference, which was held in Cape Town, South Africa from 7 to 12 September 1986. A total of 55 contributions cover the full spectrum of the theme of the Conference, which was subdivided into four sessions. Conditioning, treatment and management of radioactive waste: 12 papers reporting on experiences in various countries, as well as specialist topics such as the extraction of radioactive contaminants from reactor pool water. Containment, safe handling and long-term integrity of ILLW packages: 2 papers dealing with cask design. Transport and storage of radwaste and spent fuel: 7 papers ranging from broad overviews to specific operations in different parts of the world. Radioactive waste disposal and environmental impact: 32 papers covering topics from site selection, design and operation, to modelling and monitoring studies. South Africa's Vaalputs radioactive waste disposal facility is comprehensively described. The volume is a useful reference for anyone interested in the disposal of radioactive waste, especially in arid environments, as well as its treatment and management prior to disposal, and will appeal to a wide range of disciplines including engineers, geologists, geophysicists, life scientists and environmentalists. Of particular interest would be the intensive studies undertaken in South Africa prior to the establishment of a radioactive waste repository in that country

  18. Radwaste Treatment Centre Jaslovske Bohunice

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the Bohunice Radwaste Treatment Centre (BSC RAO) is presented. BSC RAO is designed to process and treat liquid and solid radwaste, arising from the NPP A-1 decommissioning, from NPPs V-1, V-2, and Mochovce operations, as well as institutional radwaste of diverse institutional (hospitals, research institutes) in the Slovak Republic. Transport, sorting, incineration, compacting, concentration and cementation of radwaste as well as monitoring of emission are described

  19. Novel conditioning methods for radwaste and residues

    International Nuclear Information System (INIS)

    Rittscher, D.

    1993-01-01

    Due to the fact that a federal radwaste repository is not yet available and on-site or afr interim storage capacities are limited, new conditioning techniques and strategies for avoiding accruement of radwaste from nuclear power plant operation have been developed, leading to a reduction of annual radwaste amounts from 1800 m 3 (BWR) and 650 m 3 (PWR) in the year 1980 to 160 m 3 (BWR) and 40 m 3 (PWR) in 1990. This very significant reduction of waste amounts was achieved by (1) improvements in on-site waste management, (2) application of volume-reducing, new condititioning techniques (as e.g. dehydration of liquid waste instead of embedding in cement, (3) consequent application of radiologically safe recycling techniques for steel scrap (production of cast steel containers, e.g.), and (4) the use of optimized packaging forms (e.g. containers instead of 200-l waste drums). (orig./DG) [de

  20. Latest development in project site radwaste treatment facility (SRTF) Sanmen

    International Nuclear Information System (INIS)

    Mennicken, K.; Lohmann, P.

    2015-01-01

    Westinghouse Electric Germany GmbH (WEG) was successful in being awarded a contract as to the planning, delivery, installation and commissioning of radwaste treatment systems for the AP1000 units at Sanmen site, PR China. Operational low and intermediate level radioactive waste will be processed in the Site Radwaste Treatment Facility (SRTF). This paper explains the latest developments of the project, especially the experience with customer-hired Chinese planning partners, installation companies and Customer operating personnel. (authors)

  1. Radwaste management and transport in the Republic of Croatia -present status and main issues

    International Nuclear Information System (INIS)

    Kucar Dragicevic, S.; Subasic, D.

    1996-01-01

    Radioactive waste in Croatia is generated from various nuclear applications as well as from Krsko NPP (a joint venture Slovenian and Croatian facility). The national programme on radioactive waste management is aimed at straightening existing infrastructure in the field, establishing a new and more transparent system of responsibilities as well as developing new legislation. The siting of the LLW/ILW repository in the Republic of Croatia is one of the most important steps in the whole radioactive waste management cycle. A review of the main activities, the role of institutions involved and some on-going projects which cover the present situation in the field of radioactive waste management in Croatia are presented. (Author)

  2. Strategic review on management and disposal of low- and intermediate-level solid radwastes

    International Nuclear Information System (INIS)

    Li Xuequn

    1993-01-01

    An overview on the actual status of solid low- and intermediate-level wastes (L/ILW) management in China is described. Some of the main problems at present are analysed. The strategies on management and disposal of the wastes are discussed in light of systematology. A large amount of solid L/ILW and distilled residual solution to be solidified have been accumulated during the past 30 years development of nuclear industry in China. These wastes, containing fission products, activated products, and uranium and transuranium elements respectively, mainly come from nuclear reactors, spent fuel reprocessing plants, and nuclear fuel fabrication plants. In the century, solid L/ILW and solidified wastes are produced mainly by nuclear industry; but in the next century, solid wastes will be steadily produced mainly from nuclear power plants

  3. The Importance of International Cooperation for German R and D on Radwaste Management

    International Nuclear Information System (INIS)

    Steininger, W.

    2006-01-01

    Participation in international R and D projects and programs is of great importance for German R and D institutions. This is underlined by a lot of past and present R and D activities. These activities are embedded in the non-site specific research work funded by the Ministry of Economics and Technology (BMWi) which is the responsible ministry. The paper will focus on this R and D work. The paper addresses briefly the present status of the nuclear waste management policy in Germany, the responsibilities, and objectives of R and D related to High-Level Waste (HLW) disposal. International collaboration in projects conducted in foreign underground research laboratories (URL) and disposal programs as well as activities within the 6. Framework Program of the European Commission (EC) are described. (authors)

  4. Treatment of LL and ML liquid radwaste. The SGN experience

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Roux, P.

    1993-01-01

    SGN (Societe Generale pour les Techniques Nouvells) with considerable know-how and thirty years of feed-back in industrial management of liquid effluents from the entire French nuclear industry, has accordingly completed many low- and medium-level liquid radwaste treatment, relying on two major industrially proven technologies: evaporation and chemical coprecipitation. The low level and medium level radwaste in France and evaluated

  5. Energy planning and management plan

    International Nuclear Information System (INIS)

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration's final draft and environmental impact statement, and Energy Planning and Management Program

  6. Proceedings: 2001 ASME/EPRI Radwaste Workshop

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear utilities continually evaluate methods to improve operations and reduce costs associated with radioactive waste management. The continuing deregulation process has increased the emphasis on this activity. The Annual ASME/EPRI Workshop facilitates this effort by communicating technology and management improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail

  7. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  8. Low-level radwaste solidification

    International Nuclear Information System (INIS)

    Naughton, M.D.; Miller, C.C.; Nelson, R.A.; Tucker, R.F.

    1983-01-01

    This paper reports on a study of ''Advanced Low-Level Radioactive Waste Treatment Systems'' conducted under an EPRI contract. The object of the study is to identify advanced lowlevel radwaste treatment systems that are commercially available or are expected to be in the near future. The current state-ofthe-art in radwaste solidification technology is presented. Related processing technologies, such as the compaction of dry active waste (DAW), containers available for radwaste disposal, and the regulatory aspects of radwaste transportation and solidification, are described. The chemical and physical properties of the currently acceptable solidification agents, as identified in the Barnwell radwaste burial site license, are examined. The solidification agents investigated are hydraulic cements, thermoplastic polymers, and thermosetting polymers. It is concluded that solidification processes are complex and depend not only on the chemical and physical properties of the binder material and the waste, but also on how these materials are mixed

  9. Proceedings: 2000 ASME/EPRI Radwaste Workshop

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear utilities are continually evaluating methods to improve operations and reduce costs associated with radioactive waste management. The continuing deregulation process has added increased emphasis to this activity. The Annual ASME/EPRI Workshop facilitates this effort by communicating technological and managerial improvements throughout the industry. This workshop, restricted to utility radwaste professionals, also serves to communicate practical in-plant improvements with the opportunity to discuss them in detail

  10. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  11. Discussion of the question whether a local authority can claim to be affected in its planning competence by a permit issued for construction of a radwaste processing plant. High Administrative Court Lueneburg, judgement of 21.1.1993 - 7 K 5/90

    International Nuclear Information System (INIS)

    Czajka, D.

    1993-01-01

    A local authority has taken legal action against the first partial permit for the construction of a radwaste conditioning pilot plant at Gorleben, claiming to be affected in its planning competence by the fact that transport of spent fuel elements between the spent fuel storage facility and the pilot plant 2 km away would have to proceed on the rural district road. The action has been discussed. Appealable head notes: A local authority is not affected in its planning competence by a permit issued for construction of a facility for radwaste processing, although the operation of said facility may result in radwaste being transported by a road crossing the local authority's territory. (orig.) [de

  12. Stability Analysis of Buffer Storage Large Basket and Temporary Storage Pre-packaging Basket Used in the Type B Radwaste Process Area

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    The ITER radioactive waste (radwaste) treatment and storage systems are currently being designed to manage Type B, Type A and dust radwastes generated during the ITER machine operation. The Type B management system is to be in the hot cell building basement with temporary storage and the modular type storages outside the hot cell building for the pre-packed Type B radwaste during the ITER operation of 20 years. In order to store Type B radwaste components in onsite storage, the waste treatment chain process for Type B radwastes was developed as follows. First, Type B full components filled in a large basket are imported from Tokamak to the hot cell basement and they are stored in the buffer storage before treatment. Second, they are cut properly with a laser cutting machine or band saw machine and sliced waste parts are filled in a pre-packaging basket. Third, the sampling of Type B components is performed and then the tritium removal treatment is done in an oven to remove tritium from the waste surface and then the sampling is performed again. Forth, the characterization is performed by using a gamma spectrometry. Fifth, the pre-packaging operation is done to ensure the final packaging of the radwaste. Sixth, the pre-packaging baskets are stored in the temporary storage for 6 months and then they are sent to the extension storage and stored until export to host country. One of issues in the waste treatment scheme is to analyze the stacking stability of a stack of large baskets and pre-packaging baskets in the storage system. The baseline plan is to stack the large baskets in two layers in the buffer storage and to stack the pre-packaging baskets in three layers in the temporary storage and extension storage. In this study, the stacking stability analysis for the buffer storage large basket and temporary storage pre-packaging basket was performed for various stack failure modes

  13. Business Continuity Management Plan

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT BUSINESS CONTINUITY MANAGEMENT PLAN December 2014......maximum 200 words) Navy Supply Systems Command (NAVSUP) lacks a business process framework for the development of Business Continuity Management

  14. Wildland Fire Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-30

    The Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) is written to comply with Department of Energy (DOE) Integrated Safety Management Policy; Federal Wildland Fire Management Policy and Program Review; and Wildland and Prescribed Fire Management Policy and Implementation Procedures Reference Guide. This current plan incorporates changes resulting from new policies on the national level as well as significant changes to available resources and other emerging issues, and replaces BNL's Wildland FMP dated 2014.

  15. The French centralized low level radwaste treatment centre named CENTRACO

    International Nuclear Information System (INIS)

    Barnes, C.; Sixou, Y.

    1996-01-01

    Socodei, a subsidiary company of EdF and Cogema is commissioned to design, finance, build and operate two low level radwaste treatment facilities: a contaminated scrap metal melting unit, and a solid and liquid waste incinerator. These units frame a low level radwaste treatment centre named Centraco, located near Marcoule in the south of France, and will receive in 1998 waste coming from dismantling, maintenance and operating works of French and foreign nuclear sites. The decision to create this centre is due to the low density and large variety of low level radwaste which take a volume out of proportion with their activity, specially in the surface storage centre. Up to now, all low level radwaste were sent and stored with no treatment optimization in surface storage centres. Socodei proposes in one single site, to optimize low level radwaste management and reduce the volume of ultimate waste to be stored: in a ratio of one to ten by casting ingots coming from melting contaminated scrap metals; in a ratio of one to twenty by encapsulating earth ashes and ashes resulting from incineration of solid and liquid waste. This is a centralized treatment centre and that's why Centraco is a new waste management system. Getting together all means in one place reduces costs, avoids mismanagement and risk increase, and allows consistency in safety, environmental impact, transport and personnel radioprotection. (author)

  16. Fund management plan

    International Nuclear Information System (INIS)

    1984-08-01

    This revision of the Fund Management Plan updates the original plan published in May 1983. It is derived from and supplements the Mission Plan of the Office of Civilian Radioactive Waste Management. A major purpose in preparing this Plan is to inform the public about management of the Nuclear Waste Fund and the Interim Storage Fund. The purpose of the Interim Storage Fund is to finance the provision of the Federal interim storage capacity of up to 1900 metric tons of spent nuclear fuel. The Nuclear Waste Fund is a separate account for all revenues and expenditures related to the geological disposal and monitored retrieval storage of civilian radioactive waste

  17. US ITER Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    This US ITER Management Plan is the plan for conducting the Engineering Design Activities within the US. The plan applies to all design, analyses, and associated physics and technology research and development (R ampersand D) required to support the program. The plan defines the management considerations associated with these activities. The plan also defines the management controls that the project participants will follow to establish, implement, monitor, and report these activities. The activities are to be conducted by the project in accordance with this plan. The plan will be updated to reflect the then-current management approach required to meet the project objectives. The plan will be reviewed at least annually for possible revision. Section 2 presents the ITER objectives, a brief description of the ITER concept as developed during the Conceptual Design Activities, and comments on the Engineering Design Activities. Section 3 discusses the planned international organization for the Engineering Design Activities, from which the tasks will flow to the US Home Team. Section 4 describes the US ITER management organization and responsibilities during the Engineering Design Activities. Section 5 describes the project management and control to be used to perform the assigned tasks during the Engineering Design Activities. Section 6 presents the references. Several appendices are provided that contain detailed information related to the front material

  18. Natural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Green, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Schwager, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-10-01

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265-acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 15 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan works toward sound ecological management that not only benefits BNL’s ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text.

  19. Configuration Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan

  20. Management Planning In Transport

    Directory of Open Access Journals (Sweden)

    Teodor Perić

    2004-07-01

    Full Text Available Management planning in traffic and other activities includesa choice of missions and goals, as well as actions undertakenfor their realisation. It requires decision-making, that is,a choice among alternative trends of future actions. Therefore,planning and control are closely related.There are several types of plans: purposes or missions,goals, strategies, policies, procedures, rules, programs and calculations.Once managers become aware of the opportunities, they rationallyplan the setting of the goals and assumptions about thecurrent and future environment, finding and evaluating alternativetrends, and selecting the one that is to be followed.Therefore, planning means looking ahead and controlmeans looking backwards. The concept of overall planning,thus including traffic planning, illustrates the approach to managementwhich is based on the achieved goals.

  1. Speed management program plan.

    Science.gov (United States)

    2014-05-01

    Changing public attitudes regarding speeding and speed management will require a comprehensive and concerted effort, involving a wide variety of strategies. This plan identifies six primary focus areas: : A. Data and Data-Driven Approaches, : B. Rese...

  2. Risk Management Plan Rule

    Science.gov (United States)

    RMP implements Section 112(r) of the 1990 Clean Air Act amendments, and requires facilities that use extremely hazardous substances to develop a Risk Management Plan and revise/resubmit every five years. Find guidance, factsheets, training, and assistance.

  3. TOPSEAL '96. Demonstrating the practical achievements of nuclear waste management and disposal - Transactions Vol.II: Poster Papers

    International Nuclear Information System (INIS)

    1996-01-01

    Posters have been presented in the 5 plenary sessions on: Existing facilities and operating experiences; Optimization strategies in radwaste management; Planning for future repositories; Underground laboratories; Legal and regulatory requirements - implementation and compliance

  4. Wilderness fire management planning guide

    Science.gov (United States)

    William C. Fischer

    1984-01-01

    Outlines a procedure for fire management planning for parks; wilderness areas; and other wild, natural, or essentially undeveloped areas. Discusses background and philosophy of wilderness fire management, planning concepts, planning elements, and planning methods.

  5. Data Management Plan

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Vogelsang, Stefan; Freudenberg, Peggy

    2015-01-01

    This document describes the Data Management Plan (DMP) (first version), relating to RIBuild WP8, deliverable D8.1. The DMP include description of data sets, standards and metadata, data sharing and archiving and preservation of data.......This document describes the Data Management Plan (DMP) (first version), relating to RIBuild WP8, deliverable D8.1. The DMP include description of data sets, standards and metadata, data sharing and archiving and preservation of data....

  6. Management of Logistics Planning

    OpenAIRE

    Bjørnar Aas; Stein W. Wallace

    2010-01-01

    Logistics problems are gradually becoming more complex and a better understanding of logistics management as a subject is a key to deal with the new challenges. A core element of logistics management is logistics planning, which substitutes for low customer service levels, high waste, and the use of buffers and slacks in the execution of logistic activities. Furthermore, the availability of information and problem-solving capabilities are established as the core parts of logistics planning. B...

  7. Midwest regional management plan

    International Nuclear Information System (INIS)

    Paton, R.F.

    1986-01-01

    In response to the Low-Level Radioactive Waste Policy Act of 1980, the States of Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. One of the top priorities of the Compact Commission is the development of a comprehensive regional waste management plan. The plan consists of five major elements: (1) waste inventory; (2) waste stream projections; (3) analysis of waste management and disposal options; (4) development of a regional waste management system; and (5) selection of a host state(s) for future low-level waste facilities. When completed, the Midwest Management Plan will serve as the framework for future low-level radioactive waste management and disposal decisions

  8. A DECISION-MAKING PROCESS IN RADWASTE MANAGEMENT FOR CONFIDENCE BUILDING: THE FRENCH APPROACH AND THE INTERNATIONAL CONTEXT

    International Nuclear Information System (INIS)

    Le Bars, Y.

    2002-01-01

    The search for concrete radioactive waste management generates bitter debates, and mobilizes not only in the restricted circles of convinced supporters and opponents, but also in relatively large circles of the civil society. How would it be possible to go forward in such a situation and ensure in both the short and long terms a valid and socially acceptable management of radioactive waste? In this presentation, a few elements of reflection are proposed: on French experience as I understand it after three years as Chairman of Andra; on the results of the Forum for Stakeholders Confidence created by the OECD/NEA; and on the comments of EDRAM, an association of managers from major waste-management organizations; to those, I should add the observation of a European Project called COWAM (Communities Waste Management), consisting of a group of local communities confronted with radioactive-waste management

  9. Sewer System Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Field Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan.

  10. Data Management Plan

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Sørensen, Nils Lykke

    2016-01-01

    This document describes the Data Management Plan (DMP) (second version), relating to RIBuild WP8, deliverable D8.1. It draws the first lines for how data can be made findable, accessible, interoperable and re-usable after the project period.......This document describes the Data Management Plan (DMP) (second version), relating to RIBuild WP8, deliverable D8.1. It draws the first lines for how data can be made findable, accessible, interoperable and re-usable after the project period....

  11. Process Management Plans

    Directory of Open Access Journals (Sweden)

    Tomasz Miksa

    2014-07-01

    Full Text Available In the era of research infrastructures and big data, sophisticated data management practices are becoming essential building blocks of successful science. Most practices follow a data-centric approach, which does not take into account the processes that created, analysed and presented the data. This fact limits the possibilities for reliable verification of results. Furthermore, it does not guarantee the reuse of research, which is one of the key aspects of credible data-driven science. For that reason, we propose the introduction of the new concept of Process Management Plans, which focus on the identification, description, sharing and preservation of the entire scientific processes. They enable verification and later reuse of result data and processes of scientific experiments. In this paper we describe the structure and explain the novelty of Process Management Plans by showing in what way they complement existing Data Management Plans. We also highlight key differences, major advantages, as well as references to tools and solutions that can facilitate the introduction of Process Management Plans.

  12. Management self assessment plan

    Energy Technology Data Exchange (ETDEWEB)

    Debban, B.L.

    1998-01-30

    Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled to begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.

  13. Management self assessment plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1998-01-01

    Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled to begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations

  14. Development of commercial robots for radwaste handling

    International Nuclear Information System (INIS)

    Colborn, K.A.

    1988-01-01

    The cost and dose burden associated with low level radwaste handling activities is a matter of increasing concern to the commercial nuclear power industry. This concern is evidenced by the fact that many utilities have begun to revaluate waste generation, handling, and disposal activities at their plants in an effort to improve their overall radwaste handling operations. This paper reports on the project Robots for Radwaste Handling, to identify the potential of robots to improve radwaste handling operations. The project has focussed on the potential of remote or automated technology to improve well defined, recognizable radwaste operations. The project focussed on repetitive, low skill level radwaste handling and decontamination tasks which involve significant radiation exposure

  15. Plutonium Vulnerability Management Plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy's response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department's Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B

  16. Comprehensive Environmental Management Plan

    International Nuclear Information System (INIS)

    Hjeresen, D.L.

    1994-01-01

    The Environmental Management Program at Los Alamos National Laboratory is in the process of initiating and then implementing a Comprehensive Environmental Management Plan (CEMP). There are several environmental impact and compliance drivers for this initiative. The Los Alamos CEMP is intended to be a flexible, long-range process that predicts, minimizes, treats, and disposes of any waste generated in execution of the Los Alamos mission - even if that mission changes. The CEMP is also intended to improve stakeholder and private sector involvement and access to environmental information. The total quality environmental management (TQEM) process will benchmark Los Alamos to private sector and DOE operations, identify opportunities for improvement, prioritize among opportunities, implement projects, measure progress, and spur continuous improvement in Environmental Management operations

  17. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  18. Region 7 Quality Management Plan

    Science.gov (United States)

    To document adherence to EPA Order 5360.1 A2, EPA requires each organizational unitto develop a quality management plan per the specifications in EPA Requirements for QualityManagement Plans, EPA QA R-2.

  19. Project management of radwaste retrofits

    International Nuclear Information System (INIS)

    Vaught, D.L.

    1988-01-01

    Many utilities are finding it necessary to provide additional radioactive waste processing facilities at operating or nearly completed nuclear stations in order to accommodate the ever-changing regulatory, political and socio-economic environment in which we operate. This paper describes the project approach taken at Duke Power Company to provide a comprehensive radioactive waste processing facility at Oconee Nuclear Station. Following a historical perspective, the philosophy and mechanics of the project team are discussed. The goal of the project team was to provide a facility which could meet the liquid and solid radioactive waste processing needs of Oconee within the restraints of a utility budget and schedule. The unique quality of the project team approach was the integral involvement of all of the necessary departments in every part of the design, construction and start-up phases. The project team thereby utilized feedback from over thirty reactor years of operational experience. The remainder of the paper provides examples of the problems encountered and their resolution (eg. equipment layout, materials handling, vendor improvements and regulatory changes all required design-in-progress changes). It has been the integration and concentration of the diverse resources of a large utility into a cross-departmental team which has allowed the timely resolution of the necessary changes. This same philosophy is being applied to the facility start-up program and to other major projects at Duke Power Company

  20. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  1. Strategic Planning and Financial Management

    Science.gov (United States)

    Conneely, James F.

    2010-01-01

    Strong financial management is a strategy for strategic planning success in student affairs. It is crucial that student affairs professionals understand the necessity of linking their strategic planning with their financial management processes. An effective strategic planner needs strong financial management skills to implement the plan over…

  2. Radwaste disposal by incorporation in matrix

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    A process of safe disposal, handling, or storae of radwaste associated with nuclear power productin is described. A feature of the invention is to incorporate the radwaste in a hardenable, matrix-forming mass employing a cement-type binding agent to which alkali or alkaline-earth silicate is added, among other things, to increase liquid absorption. 9 claims

  3. Low-level radwaste engineering economics

    International Nuclear Information System (INIS)

    Jacobs, M.H.; Miller, C.C.; Young, L.G.

    1984-07-01

    This topical report on engineering economics for low-level radwaste systems details the methodologies used for economic analyses of radwaste treatment systems and provides examples of radwaste economic evaluations. All of the parameters and cost items used in an evaluation are defined. Examples of the present-value-of-revenue-requirements method, levelized-revenue-requirements method, and the equivalent-capital-investment method are provided. Also, the calculation to determine the maximum justifiable capital expenditure for a radwaste system is illustrated. The report also provides examples of economic evaluations for many current radwaste treatment options. These options include evaporation versus demineralization, dewatering resins versus solidification of resins, and several volume reduction systems. 15 figures, 6 tables

  4. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  5. Project Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the ''Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs

  6. Safety assessment for radwaste disposal in Korea: Pt. 1

    International Nuclear Information System (INIS)

    Suh, I.S.; Park, H.H.; Han, K.W.; Hahn, P.S.

    1986-01-01

    A simplified safety analysis code has been established in order to provide a basic methodology for the preliminary selection of a disposal method. The disposal type selection is prerequisite to meet the requirements of low and intermediate level radwaste management program in Korea. The code covers resaturation and leaching, migration through fracture-porous media transport such that the rock cavern disposal option can be evaluated compared with that of shallow land burial

  7. Risks management in project planning

    OpenAIRE

    Stankevičiūtė, Roberta

    2017-01-01

    Project management consists of two very important aspects – managing the right project and managing the project right. To know that you are managing the right project you need to ensure that your project is based on an actual requirement and that your project goal is relevant and beneficial. And professional project planning assists in managing project the right way. The project planning process is very time consuming and is one of the most important parts of the project management process. T...

  8. Planning and Resource Allocation Management.

    Science.gov (United States)

    Coleman, Jack W.

    1986-01-01

    Modern scientific management techniques provide college administrators with valuable planning and resource allocation insights and enhances the decision process. The planning model should incorporate assessment, strategic planning, dynamic and long-term budgeting, operational planning, and feedback and control for actual operations. (MSE)

  9. Solving radwaste problems

    International Nuclear Information System (INIS)

    Oyen, L.C.

    1976-01-01

    The combination of regulatory changes and increased waste volume has resulted in design changes in waste processing systems. Problems resulting from waste segregation as a basis for design philosophy are considered, and solutions to the problems are suggested. The importance of operator training, maintenance procedures, good housekeeping, water management, and offsite shipment of solids is discussed. Flowsheets for radioactive waste processing systems for boiling water reactors and pressurized water reactors are included

  10. Human engineering in mobile radwaste systems

    International Nuclear Information System (INIS)

    Jones, D.; McMahon, J.; Motl, G.

    1988-01-01

    To a large degree, mobile radwaste systems are replacing installed plant systems at US nuclear plants due to regulatory obsolescence, high capital and maintenance costs, and increased radiation exposure. Well over half the power plants in the United States now use some sort of mobile system similar to those offered by LN Technologies Corporation. Human engineering is reflected in mobile radwaste system design due to concerns about safety, efficiency, and cost. The radwaste services business is so competitive that vendors must reflect human engineering in several areas of equipment design in order to compete. The paper discusses radiation exposure control, contamination control, compact components, maintainability, operation, and transportability

  11. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, C. H.; Lee, Y. M.; Lee, S. H.; Jeong, J. T.; Choi, J. W.; Park, S. W.; Lee, H. S.; Kim, J. H.; Jeong, M. S.

    2010-02-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  12. Project Management Plan Solution Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    SATO, P.K.

    1999-08-31

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  13. Project Management Plan Solution Stabilization

    International Nuclear Information System (INIS)

    SATO, P.K.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process

  14. Rad-waste treatment

    International Nuclear Information System (INIS)

    1996-01-01

    The spent fuel coming from Slovak NPPs have partially been transported to the former Soviet Union, and a part of it is stored in an interim spent fuel wet storage. In compliance with the worldwide practices, further medium-term possibilities of storing in dry storages are under preparation. Disposal of a spent fuel and other high-level active wastes in a deep geological formation repository is the final solution. At present, there are geological investigations of possible sites in progress in Slovakia. Mochovce repository is a factory for a final disposal of compacted low and intermediate level radioactive wastes coming from the Slovak NPPs. This is a near-surface facility of a construction similar to the one used for disposal of radioactive wastes in France, Spain, Japan, Czech Republic, U.S.A, etc. Quality of the design, construction and functioning of the Mochovce's repository was assessed by an international team of experts within a special IAEA programme (WATRP). Having familiarized with the final report of the IAEA mission, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) issued its position early in 1995, in which NRA SR required additional adjustment of the repository itself. Based on the NRA SR's position, Mochovce NPP invited experts from a number of institutions in September 1995 to discuss the NRA SR's requirements. Following was recommended by the experts: (1) to perform a complementary engineering-geological investigation on the site, (2) to use geophysical methods to verify existence of geological faults. In the next part a radioactive wastes that were treated at radioactive waste treatment lines in 1995 are listed. In 1995, the Chief Inspector of NRA SR issued an instruction that radioactive waste department should start inspections of radioactive waste treatment right in hospitals, research institutes and industries. Therefore, a total of 14 such workplaces were incorporated into a plan of inspections in 1995

  15. Fund management plan

    International Nuclear Information System (INIS)

    1983-05-01

    The Nuclear Waste Policy Act of 1982, P.L. 97-425 (the Act), provides for establishment of two separate special funds in the US Treasury, the Interim Storage Fund and the Nuclear Waste Fund (the Funds). The Interim Storage Fund (Sec. 136) is the financing mechanism for the provision of federal interim storage capacity, not to exceed 1900 metric tons, for spent nuclear fuel (SNF) from civilian reactors. Basically, interim storage of SNF is the responsibility of the owners and generators of nuclear wastes. Storage at government facilities will be provided only if the utilities do not have adequate storage capacity. The Nuclear Waste Fund (Sec. 302) is the statutory financing approach for the Department's radioactive waste disposal program. P.L. 97-425 directs utilities to pay a mandatory fee to cover DOE's expected costs for nuclear waste disposal. The Funds are administered by the Department of Energy. This Plan identifies how DOE will implement and manage the Nuclear Waste and Interim Storage Funds

  16. Radwaste volume reduction economics: an overview

    International Nuclear Information System (INIS)

    Naughton, M.D.

    1984-01-01

    Today, utilities are faced with mounting charges related to the disposal of radioactive waste from their nuclear power plants. Numerous factors complicate economic analysis of radwaste processing options. This paper details two recent key EPRI studies bearing upon radwaste operations and economics. The first study, RP1557-3, characterizes low level wastes from nuclear power plants during the period 1978 to 1982. This paper presents information on the quantity of waste by type, waste composition, specific activities and major isotopes and radiation fields of final disposal packages. The second study, RP1557-11,12,13, involved the development of a computer code for evaluating radwaste disposal economics. Capital and operating cost estimates were prepared for 11 diferent processing-disposal options. These costs are utilized along with a burial site pricing algorithm in VRTECH, a computer radwaste economic assessment program. This paper discusses the VRTECH code and the results of the generic analyses conducted in the study

  17. Breaking the paradigm: Revitalizing the liquid radwaste program at River Bend Station

    International Nuclear Information System (INIS)

    Mallory, C.C. II; Lewis, C.A.

    1996-01-01

    In December 1995, River Bend Station established the goal of becoming a liquid radwaste open-quotes zero dischargeclose quotes plant by 1998. A new paradigm was required to reduce River Bend Station's annual discharge volume from over 7.5 million gallons in 1995 to open-quotes zeroclose quotes gallons in two years. Changes instituted to date include. (1) Creation of a cross-discipline natural work team (NWT) responsible for radwaste improvements. (2) Enhanced walnut shell filter performance using a polymer filter aid. (3) Activated charcoal to reduce total organic carbon (TOC). (4) Improved operating practices based upon data review and trending. (5) Improved operability of radwaste equipment. Results are encouraging. The volume discharged January through May 1996, including a 39 day refueling outage, is 1.25 million gallons. Only one discharge has occurred since March 2. Historically, discharge volume during a similar five month period has exceeded 3 million gallons. No additional discharges are planned for 1996. Additional improvements are being actively evaluated. These include more effective radwaste train media, UV/O3 decomposition of TOC, adding non-precoated filters to the radwaste stream, reverse osmosis and real-time trending of inleakage volume and TOC and source term reduction

  18. Underground storage. Study of radwaste storage in deep geological formations: environmental protection

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.

    1993-01-01

    The purpose of the Agence nationale pour la gestion des dechets radioactifs (Andra) is to monitor the management methods and storage of radioactive waste produced in France. The agency has this undertaken a vast study program for the evaluation of the management conditions of long-life radwaste, which cannot be stored indefinitely in shallow-ground repositories. Underground laboratories are investigating the feasibility of a possible solution which is to store radwaste in a deep geological layer. However, there will be no decision on this type of storage before the year 2006. 7 figs

  19. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  20. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  1. Developing formal asset management plans

    Science.gov (United States)

    2014-06-01

    This report highlights key recommendations and best practices identified at the peer exchange on Transportation Asset Management Plans (TAMP), held on February 5 and 6, 2014, in Columbia, South Carolina. This event was sponsored by the Transportation...

  2. Principles and criteria for creation of a concept for national radwaste repository

    International Nuclear Information System (INIS)

    Milanov, M.; Strezov, A.; Kojuharov, D.

    1993-01-01

    General principles and criteria based on the international experience and requirements as well as on specific Bulgarian conditions are used in the creation of the Concept for Radwaste Repository Construction as a first stage of the Bulgarian nuclear programme. The Concept contains about 70 projects of common or more specific character. The Bulgarian territory is categorized and several prospective areas are selected as a final result of the analysis performed. A model for development of a National System for Radwaste Management is considered. The formation of a working group appointed by governmental authorities as a solution of the existing highly complex situation connected with the treatment and storage of radwaste in the country is proposed. 1 fig., 14 refs. (author)

  3. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    1993-01-01

    Lawrence Berkeley Laboratory's Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department's activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A

  4. Construction Management: Planning Ahead.

    Science.gov (United States)

    Arsht, Steven

    2003-01-01

    Explains that preconstruction planning is essential when undertaking the challenges of a school building renovation or expansion, focusing on developing a detailed estimate, creating an effective construction strategy, conducting reviews and value-engineering workshops, and realizing savings through effective risk analysis and contingency…

  5. BUDGET PLANNING IN FINANCIAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Nataliya Melnichuk

    2015-11-01

    Full Text Available The purpose of the paper is to determine the nature, targets, functions, principles and methods of budget planning and development of classifications due to its types. The essence of budget planning presented by various authors, is own interpretation (the process of developing a plan of formation, distribution and redistribution of financial funds according to budget system units during the reporting period based on budgetary purposes and targets defined by socio-economic development strategy is proposed. Methodology. The following methods such as cognition, induction, deduction, analysis and synthesis have been used in the process of survey. Results of the survey proves that budget planning plays an essential role in the financial management. On condition business environment changing even the best management system can become obsolete. The immediate reaction to the new trends in the financial system as a whole, in the industry is possible with budget planning as well. It also allows to make appropriate adjustments to the plans. Adjustment of long-term, medium-term and short-term plans makes it possible, without changing goals, to change ways of their achievement and thus to raise the level of efficiency of budget funds formation and use. It is necessary to revise the whole system plans, including their mission and goals in the case of global changes in the external and internal environment. Practical implications. The proposed approach to the classification of budget planning types allows to cope with the shortcomings of modern planning in the public sector (the development of the targets according to the state budget expenditures in Ukraine remains a formality and it rarely complies with realities. Value/originality is specified in the proposed interpretation which differs from existing ones that provides clarification of budget planning purpose in financial management; classification of budget planning principles, which differs from previous

  6. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  7. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  8. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  9. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  10. The experience of liquid radwaste evaporator performance improvement

    International Nuclear Information System (INIS)

    Kwon, S. H.

    1997-01-01

    Ulchin NPP has only one monobloc evaporation column which treated all radwaste liquid for two units. Since commercial operation in 1988 the evaporator performance is very poor. I think that the bad condition of evaporator is because of the bad quality of liquid radwaste, the large volume of liquid radwaste to treated, the poor skill of operation and some mistake in equipment design. Because of above conditions the average released activity by liquid radwaste is 35.153mCi/year in last eight years(1988∼1995). So it is necessary that we have to improve the evaporator performance and to reduce the liquid radwaste volume to evaporate

  11. International comparison of safety criteria applied to radwaste repositories. Safety aspects of the post-operational phase

    International Nuclear Information System (INIS)

    Baltes, B.

    1994-01-01

    There is a generally accepted system of framework safety conditions governing the construction, operation, and post-operational monitoring of radwaste repositories. Although the development of these framework conditions may vary from country to country, the resulting criteria are based on the commonly accepted system of priciples and purposes established for ultimate radioactive waste disposal. The experience accumulated by GRS in the course of the plan approval procedure for the Konrad mine site and the safety-relevant studies performed for the planned Morsleben repository clearly show demand for further development of the safety criteria. In Germany, it is especially the safety criteria and detailed requirements filling the framework safety conditions that need revision and in-depth definition, as well as comparison and harmonisation with internationally applied criteria. These activities will particularly consider the international convention on radioactive waste management currently in preparation under the auspieces of the IAEA. (orig.) [de

  12. A strategic approach to the conceptual design of complex radwaste facilities

    International Nuclear Information System (INIS)

    Mackay, Stewart; Scott Dam, A.; Holmes, Robert G.G.

    1992-01-01

    The design of radwaste treatment facilities is often complicated by the variety of waste types being treated. Further uncertainties over their composition and final waste form specifications can make the normal conceptual design phase difficult and unreliable. This paper describes the strategic planning necessary to define the facility functions and the process to prepare a Functional Design Criteria. The paper shows clearly, that for complex waste management problems, it is vital to consider and resolve uncertainties by means of a strategic plan before embarking on conceptual design. The paper shows an approach to preparation of design criteria using functional analysis. The paper provides examples where these methods were and are being used, both in the U.K. and the U.S. Strategic plans and functional criteria can be used as a basis for conceptual design which then provides a more meaningful basis for detailed technology selection during the detailed design process. The paper discusses experiences and lessons learned in the planning process. This process is widely applicable to a number of complex waste treatment facilities being planned and developed to process wastes generated at government facilities. (author)

  13. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  14. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  15. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  16. The Morsleben radwaste repository. Preparing for decommissioning

    International Nuclear Information System (INIS)

    Mehnert, M.; Schmitt, R.

    2001-06-01

    The publication is intended to illustrate with a brief chronology the history and the present situation of the Morsleben radwaste repository, including specific aspects such as the geology of the site and construction and engineering activities, the particulars of waste form emplacement and log-term storage conditions, topical issues relating to radiological safety during operation and after decommissioning. The brochure is designed for the general audience interested in background information on all aspects of the uses, operation and decommissioning of a radwaste repository in Germany. (orig./CB) [de

  17. NRC licensing criteria for portable radwaste systems

    International Nuclear Information System (INIS)

    Hayes, J.J. Jr.

    1983-01-01

    The shortcomings of various components of the liquid and solid radwaste systems at nuclear power reactors has resulted in the contracting of the functions performed by these systems to various contractors who utilize portable equipment. In addition, some streams, for which treatment was not originally anticipated, have been processed by portable equipment. The NRC criteria applicable to portable liquid and solid radwaste systems is presented along with discussion on what is required to provide an adequate 10 CFR Part 50.59 review for those situations where changes are made to an existing system. The criteria the NRC is considering for facilities which may intend to utilize portable incinerators is also presented

  18. System cuts radwaste-disposal cost

    International Nuclear Information System (INIS)

    May, J.R.

    1978-01-01

    Pilot-plant and full-scale prototype-system test data on a new volume-reduction system for low-level radioactive wastes, of the type generated by nuclear plants, indicate that total present costs for radwaste disposal can be reduced by more than 50%. In 1975, Newport News Industrial Corp. and Energy Inc. decided to develop cooperatively a fluidized-bed process that would combine the features of a calciner and an incinerator. The new radwaste-volume-reduction system, designated RWR-1, can reduce the volume of concentrated liquids, ion-exchange resin beads, filter sludges, and various combustible solids, such as protective clothing, rags, paper, wood, and plastics

  19. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  20. Liquidity management through financial planning

    OpenAIRE

    Kameníková Katarína

    2001-01-01

    One of the basic goals of financial management is to provide financial property and capital for running of the firm, as well as for its development, that means provide optimal firm´s liquidity.To improve liquidity is possible provide through various ways. In present time there is increasing importance of financial planning., where planning of liquidity presents one of its integral part. Therefore I deal in presented paper with possible liquidity improvement through calculation of financial pl...

  1. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    Brannegan, D.P.; Wolter, W.; Merenda, J.M.; Figdor, S.K.

    1993-01-01

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  2. Global Security Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bretzke, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-25

    The Global Security Directorate mission is to protect against proliferant and unconventional nuclear threats –regardless of origin - and emerging new threats. This mission is accomplished as the Los Alamos National Laboratory staff completes projects for our numerous sponsors. The purpose of this Program Management Plan is to establish and clearly describe the GS program management requirements including instructions that are essential for the successful management of projects in accordance with our sponsor requirements. The detailed information provided in this document applies to all LANL staff and their subcontractors that are performing GS portfolio work. GS management is committed to a culture that ensures effective planning, execution, and achievement of measurable results in accordance with the GS mission. Outcomes of such a culture result in better communication, delegated authority, accountability, and increased emphasis on safely and securely achieving GS objectives.

  3. Regional Management Plan: Summary report

    International Nuclear Information System (INIS)

    Drobny, N.L.

    1986-01-01

    This summary report describes the results of a 16-month project to develop a Regional Management Plan for low-level radioactive waste management in a seven-state area. The seven states are Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin. These states have formed the Midwest Interstate Low-Level Radioactive Waste Commission in accord with Congressional requirements established in 1980. 14 refs., 13 figs., 9 tabs

  4. Duke Power's liquid radwaste processing improvement efforts

    International Nuclear Information System (INIS)

    Baker, R.E. Jr.; Bramblett, J.W.

    1995-01-01

    The rising cost of processing liquid radwaste and industry efforts to reduce offsite isotopic contributions has drawn greater attention to the liquid radwaste area. Because of economic pressures to reduce cost and simultaneously improve performance, Duke Power has undertaken a wide ranging effort to cost effectively achieve improvements in the liquid radwaste processing area. Duke Power has achieved significant reductions over recent years in the release of curies to the environment from the Liquid Radwaste Treatmentt systems at its Catawba, McGuire, and Oconee stations. System wide site curie reductions of 78% have been achieved in a 3 year period. These curie reductions have been achieved while simultaneously reducing the amount of media used to accomplish treatment. The curie and media usage reductions have been achieved at low capital cost expenditures. A large number of approaches and projects have been used to achieve these curie and media usage reductions. This paper will describe the various projects and the associated results for Duke Power's processing improvement efforts. The subjects/projects which will be described include: (1) Cooperative philosophy between stations (2) Source Control (3) Processing Improvements (4) Technology Testing

  5. Design and operation of the Surry Radwaste Facility

    International Nuclear Information System (INIS)

    Morris, L.L.; Halverson, W.C.

    1993-01-01

    In September 1991, Virginia Power started processing radioactive waste with a new Radwaste Facility at the Surry Power Station near Norfolk, Virginia. The Surry Radwaste Facility (SRF) was designed to process and store liquid waste, laundry waste, dry active waste, radioactive filters and spent ion-exchange resin. It also provides on-site decontamination services and a fully equipped hot machine shop. The NRC has recognized that the amount of planning and design, and the attention to detail, that was expended on the SRF Project in order to minimize personnel exposure and ensure efficient operation, is a licensee strength. Through its first year of operation, the facility has proven very successful. Using evaporation and demineralization, over 30 million liters of liquid have been released with no chemical impurities or detectable radioactivity (excluding tritium). Over 623,000 liters of concentrated boric acid waste liquid have been processed with the Bitumen Solidification System yielding 139,880 liters (660 drums) of low level Class A-Stable waste. Additional economic benefits will be realized as the effectiveness of the processing systems continues to improve due to increased operational experience and ergonomics

  6. Cofrentes NPP Knowledge management plan

    International Nuclear Information System (INIS)

    Pardo Gonzalez, F.

    2016-01-01

    The main objective of the Knowledge Management Plan at Cofrentes Nuclear Power Plant is therefore to establish the steps to be followed for distributing and sharing the existing knowledge at the Plant through collaboration and continuous learning and exchanges with internal and external groups. It is also very important that staff and organisational learning is closely in line with Plant expectations. (Author)

  7. Capacity Planning and Leadtime management

    NARCIS (Netherlands)

    Zijm, Willem H.M.; Buitenhek, R.

    1996-01-01

    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities

  8. Planning and management of change

    International Nuclear Information System (INIS)

    Nelson, R.M. Jr.; Statton, C.T.; St. Clair, R.K.

    1994-01-01

    The 1990s promise to be a decade of change. In business, the focus will be on restructuring for purposes of improved productivity and efficiency. The Department of Energy (DOE) has recognized that change is on the horizon. The Yucca Mountain Project, carried out under the Office of Civilian Radioactive Waste Management (OCRWM) within the DOE is under new leadership. This new leadership is restructuring its operations to provide better focus, greater efficiency, meaningful products demonstrating progress and a more open operational environment. Criticisms of past operations have been reviewed and evaluated such that the new management organization derives benefit from the past. In recognition that management concerns may be manifested in other areas, Yucca Mountain Project management believes that reorganization is necessary to maximize efficiency. In designing the new organization, a high priority has been placed upon making changes which enable the federal leadership to exercise appropriate control and make participants more responsible and accountable for their work. Transition to the new organization will be implemented in four phases: (1) establishing the management construct, (2) defining roles and responsibilities of functional management, (3) development of the task performance teams, and (4) subsequent evolution of the open-quotes project teamclose quotes as a whole. A program-wide strategic plan is being prepared which includes a variety of revisions to the program of the past. This plan charts the path the Department will follow in fulfilling its mission. The vision of the new management developed by the DOE focuses on the creation of open-quotes teams,close quotes both a management team and task performance teams. The new management team will be tasked with implementing the plan

  9. The instrumentation for express characterization of historical radwaste storages and contaminated soil

    International Nuclear Information System (INIS)

    Volkovich, A.G.; Ignatov, S.M.; Danilovich, A.S.; Potapov, V.N.; Ivanov, O.P.; Stepanov, V.E.; Smirnov, S.V.

    2008-01-01

    A variety of special radiation measurement problems arise in planning and performance of rehabilitation activities at the radwaste disposal site (RWDS), including acquisition and refinement of data on composition, location and activity of radwaste (RW) in the old repositories, evaluation of activity of radwaste to be removed, measurement of radioactive contamination of repository structures and soil, monitoring of dose rates [1]. The old repositories are characterized by nonuniform RW distribution over the repository volume. The radwaste in the old repositories are mixed with soil, concrete and other materials. A number of new instruments and systems were developed to conduct the necessary measurements. New instruments with collimated scintillation detectors operating both in current and spectrometry modes were developed for measurements of the distribution of the RW specific activity over layers in the old repositories. The measurements are taken in exploratory wells that are drilled in the old repositories prior to their opening. The technique of specific activity measurements with collimated detectors was used when examining radioactive contamination of soil in a number of Russian contaminated territories and demonstrated a good agreement with results of sampling performed at the same time. (author)

  10. Performance Demonstration Program Management Plan

    International Nuclear Information System (INIS)

    2005-01-01

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization's quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  11. Planning and Managing Drupal Projects

    CERN Document Server

    Nordin, Dani

    2011-01-01

    If you're a solo website designer or part of a small team itching to build interesting projects with Drupal, this concise guide will get you started. Drupal's learning curve has thrown off many experienced designers, particularly the way it handles design challenges. This book shows you the lifecycle of a typical Drupal project, with emphasis on the early stages of site planning. Learn how to efficiently estimate and set up your own project, so you can focus on ways to make your vision a reality, rather than let project management details constantly distract you. Plan and estimate your projec

  12. Forest Resource Management Plans: A Sustainability Approach

    Science.gov (United States)

    Pile, Lauren S.; Watts, Christine M.; Straka, Thomas J.

    2012-01-01

    Forest Resource Management Plans is the capstone course in many forestry and natural resource management curricula. The management plans are developed by senior forestry students. Early management plans courses were commonly technical exercises, often performed on contrived forest "tracts" on university-owned or other public lands, with a goal of…

  13. Environmental Restoration Program Management Control Plan

    International Nuclear Information System (INIS)

    1991-09-01

    This Management Control Plan has been prepared to define the Energy Systems approach to managing its participation in the US DOE's Environmental Restoration (ER) Program in a manner consistent with DOE/ORO 931: Management Plan for the DOE Field Office, Oak Ridge, Decontamination and Decommissioning Program; and the Energy Systems Environmental Restoration Contract Management Plan (CMP). This plan discusses the systems, procedures, methodology, and controls to be used by the program management team to attain these objectives

  14. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    2006-01-01

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs

  15. Air quality management planning (AQMP

    Directory of Open Access Journals (Sweden)

    Sivertsen Bjarne

    2012-01-01

    Full Text Available In most urban areas of the world, particulate matter (PM levels pose severe problems, addressed in several policy areas (air quality, climate change, and human health. PM presents multiple challenges due to the multitude of its sources, spanning many sectors of economic activity as well as nature, and due to the complexity of atmospheric processes involved in its transport and secondary formation. For the authorities, the goal is to assure minimal impacts of atmospheric PM levels, in practice represented by compliance with existing regulations and standards. This may be achieved through an air quality management plan (AQMP. In Northern America and in parts of Europe, comprehensive research programs have guided development of AQMP over the last forty years. This cumulated experience can be utilized by others who face the same problems, but have yet to develop their own substantial research base. The main purpose of the AQMP development process is to establish an effective and sound basis for planning and management of air quality in a selected area. This type of planning will ensure that significant sources of impacts are identified and controlled in a most cost-effective manner. The choice of tools, methods and input information is often dictated by their availability, and should be evaluated against current best practices. Important elements of the AQMP are the identification of sources and development of a complete emission inventory, the development and operation of an air quality monitoring programme, and the development and application of atmospheric dispersion models. Major task is to collect the necessary input data. The development of the AQMP will take into account: - Air Quality Management System (AQMS requirements; - Operational and functional structure requirements; - Source identification through emission inventories; - Source reduction alternatives, which may be implemented; - Mechanisms for facilitating interdepartmental

  16. Management of planned unit outages

    International Nuclear Information System (INIS)

    Brune, W.

    1984-01-01

    Management of planned unit outages at the Bruno Leuschner Nuclear Power Plant is based on the experience gained with Soviet PWR units of the WWER type over a period of more than 50 reactor-years. For PWR units, planned outages concentrate almost exclusively on annual refuellings and major maintenance of the power plant facilities involved. Planning of such major maintenance work is based on a standardized basic network plan and a catalogue of standardized maintenance and inspection measures. From these, an overall maintenance schedule of the unit and partial process plans of the individual main components are derived (manually or by computer) and, in the temporal integration of major maintenance at every unit, fixed starting times and durations are determined. More than 75% of the maintenance work at the Bruno Leuschner Nuclear Power Plant is carried out by the plant's own maintenance personnel. Large-scale maintenance of every unit is controlled by a special project head. He is assisted by commissioners, each of whom is responsible for his own respective item. A daily control report is made. The organizational centre is a central office which works in shifts around the clock. All maintenance orders and reports of completion pass through this office; thus, the overall maintenance schedule can be corrected daily. To enforce the proposed operational strategy, suitable accompanying technical measures are required with respect to effective facility monitoring and technical diagnosis, purposeful improvement of particularly sensitive components and an increase in the effectiveness of maintenance work by special technologies and devices. (author)

  17. Marine Spatial Planning: Norway´s management plans

    OpenAIRE

    Hoel, Alf Håkon; Olsen, Erik

    2010-01-01

    Since the adoption of a government white paper on ocean governance in 2001, Norway has worked on the development and implementation of marine spatial planning in the format of regional management plans. Management plans for the Barents Sea and the oceans off northern Norway and the Norwegian Sea were adopted in 2006 and 2009, respect...

  18. SDDOT transportation systems management & operations program plan.

    Science.gov (United States)

    2016-06-01

    The objective of this project is the development of a comprehensive Transportation Systems Management and : Operations (TSM&O) Program Plan for the South Dakota Department of Transportation. This plan guides : business planning and strategic decision...

  19. The economics of radwaste volume reduction strategies

    International Nuclear Information System (INIS)

    Giuffre, M.; Ensminger, D.; Nalbandian, J.; Naughton, M.

    1984-01-01

    A recently concluded EPRI study has generated much of the information needed by utilities when they consider the purchase of volume reduction equipment. This paper presents some of the study's results on volume reduction economics. The paper contains two types of results. The first is a detailed look at the economics of fourteen equipment options at a hypothetical reactor station. Costs were calculated with VRTECH, a radwaste economics computer program developed by TASC. This analysis illustrates the major points of the project conclusions. Second, the effects of the major assumptions used in the hypothetical case are examined. This analysis shows that the radwaste generation rate and the burial cost escalation rate are primary considerations when evaluating the benefit of each option

  20. Retrofit of radwaste solidification systems in Spain

    International Nuclear Information System (INIS)

    Rorcillo, R.; Virzi, E.

    1983-01-01

    In order to meet current Spanish engineering criteria as well as to provide for likely future Spanish Regulatory requirements, utilities committed to a major policy change in the preferred radwaste solidification media. In the early 1970's Spanish utilities, following the United States experience, purchased inexpensive solidification systems which used urea formaldehyde (UF) as the binding matrix. By the late 1970's the Spanish utilities, seeing the deterioration of the UF position and slow progress toward its improvement, unilaterally changed their binding matrix to cement. This paper illustrates the implementation of this change at the ASCO Nuclear Plant. The problems of layout modifications, shortened delivery schedule and criteria unique for Spain are addressed. Also presented is the operating experience acquired during the pre-operational start-up of the ASCO I Radwaste System

  1. Management Cycle: from Planning to Evaluation

    OpenAIRE

    Kova?i?, Luka; Jakši?, Želimir

    2008-01-01

    The planning process in health care known as management cycle or cycle of organization and management is described. The cycle is divided in four main elements: planning, organization, implementation and evaluation. Each element is defined and described.

  2. The 2000 DOD Financial Management Improvement Plan

    National Research Council Canada - National Science Library

    2001-01-01

    .... As a result, DoD has prepared the Financial Management Improvement Plan (the Plan), which is a strategic framework that includes the Departments financial management concept of operations for the future...

  3. Radioactive waste management plan. Plan 82

    International Nuclear Information System (INIS)

    1982-06-01

    The report is the first account of the nuclear power utilities of Sweden about the plans for the final disposal of the radioactive waste products of the nuclear power. Part 1 describes the general background, the plans for research and development, including the necessary facilities. The time schedule and the calculated costs of the operations are presented. (G.B.)

  4. Cement radwaste solidification studies third annual report

    International Nuclear Information System (INIS)

    Brown, D.J.; James, J.M.; Lee, D.J.; Smith, D.L.; Walker, A.T.

    1982-03-01

    This report summarises cement radwaste studies carried out at AEE Winfrith during 1981 on the encapsulation of medium and low active waste in cement. During the year more emphasis has been placed on the work which is directly related to the solidification of SGHWR active sludge. Information has been obtained on the properties of 220 dm 3 drums of cemented waste. The use of cement grouts for the encapsulation of solid items has also been investigated during 1981. (U.K.)

  5. Low-level radwaste transportation in Taiwan

    International Nuclear Information System (INIS)

    Lo, L.F.; Huang, C.C.

    1993-01-01

    In the past ten years, 273 voyages have been made to ship radwaste produced by nuclear power plants and Institute of Nuclear Energy Research (INER). It more or less lowers the problem of insufficient storage space in Taiwan. Although all organizations followed various regulations to operate the transportation, ten events occurred in marine transport. However, they were ordinary incidents and neither released any radiation to contaminate the environment nor caused any casualty. (J.P.N.)

  6. Calibration method for a radwaste assay system

    International Nuclear Information System (INIS)

    Dulama, C.; Dobrin, R.; Toma, Al.; Paunoiu, C.

    2004-01-01

    A waste assay system entirely designed and manufactured in the Institute for Nuclear Research is used in radwaste treatment and conditioning stream to ensure compliance with national repository radiological requirements. Usually, waste assay systems are calibrated by using various experimental arrangements including calibration phantoms. The paper presents a comparative study concerning the efficiency calibration performed by shell source method and a semiempirical, computational method based on a Monte Carlo algorithm. (authors)

  7. Integrating fire management analysis into land management planning

    Science.gov (United States)

    Thomas J. Mills

    1983-01-01

    The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...

  8. Planning and Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Grance Torales, V.L.; Lira, L.

    2016-01-01

    Full text: The present case aims to share the experience of the Intellectual Capital Section (ICS), part of Planning, Coordination and Control Department of the Argentine Atomic Energy Commission (CNEA) in its search for a sustainable knowledge management. Among the strategic objectives included in CNEA’s Strategic Plan (SP), is the development, preservation and transference of knowledge and experience. Under this framework, the role initially assumed by the ICS, consisted on the observation and diagnosis of the situation of the Institutional Human Capital (HC), through the study of the main characteristics of the staff of CNEA. The second stage of SP (2015–2025), which consisted of updating the HC data, the incorporation of the concept of “knowledge management” was approved by the authorities of the Institution. Based on this background, in 2016 the objectives of the ICS are aimed at organizing and coordinating a network of knowledge management that involves the entire organization. This new phase implies, among other things, the proposal of a knowledge management policy, interaction with other sectors of CNEA for implementation, analysis of the tools to be used, in order to determine a way and work style that suits the culture and structure of the organization. (author

  9. Liquidity management through financial planning

    Directory of Open Access Journals (Sweden)

    Kameníková Katarína

    2001-12-01

    Full Text Available One of the basic goals of financial management is to provide financial property and capital for running of the firm, as well as for its development, that means provide optimal firm´s liquidity.To improve liquidity is possible provide through various ways. In present time there is increasing importance of financial planning., where planning of liquidity presents one of its integral part. Therefore I deal in presented paper with possible liquidity improvement through calculation of financial planning in chosen slovac magnesite firm, exploitating and elaborating magnesite raw material.For creating of financial plann of liquidity I chosed to use one of the practical methods - method of financial indexes. Such method presents process of planning optimal liquidity with providing of required rentability. Such plann must provide balance between income and outcome, as well as secure achievment of expected profit.I used tools of financial planning for calculation of possible liquidity improvement in mentioned firm, where present financial situation is characterised by law liquidity, but high rentability. Such position presents transitive crisis situation, therefore firm must create new financial property or decrease liabilities, in order to overcome negative state of liquidity.Performed calculation showed, that change in balance sheet due to the growth of financial property will improve liquidity, rentability will be maintained, therefore firm will be able to transit from crisis situation.Providing of liquidity will present one of possible way how to care for financial health of firm. But such process is not simple, it must be done with connection to the changes of internal and external conditions of the firm.

  10. Integrated data base for spent fuel and radwaste: inventories

    International Nuclear Information System (INIS)

    Notz, K.J.; Carter, W.L.; Kibbey, A.H.

    1982-01-01

    The Integrated Data Base (IDB) program provides and maintains current, integrated data on spent reactor fuel and radwaste, including historical data, current inventories, projected inventories, and material characteristics. The IDB program collects, organizes, integrates, and - where necessary - reconciles inventory and projection (I/P) and characteristics information to provide a coherent, self-consistent data base on spent fuel and radwaste

  11. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  12. Overview of the Hanford risk management plan

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1998-01-01

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context

  13. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  14. Management and Planning for Small Community Wastewater

    Science.gov (United States)

    Operators Small Systems Management and Planning for Small Community Wastewater The NESC has provided of Clean Water Agencies (NACWA) Achieving Environmental Excellence: An Environmental Management Agencies, The Office of Wastewater Management at EPA, in cooperation with the Global Environment and

  15. Radioactive waste management plan. Plan 82

    International Nuclear Information System (INIS)

    1982-06-01

    The report is the first account of the nuclear power utilities of Sweden concerning the plans for the final disposal of the radioactive waste products of the nuclear power. Part 2 describes the waste facilities in details. The layouts and estimated costs are presented. The decomissioning of nuclear power plants and the postponement of it is discussed. (G.B.)

  16. Tank waste remediation system risk management plan

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Risk Management Plan is to describe a consistent approach to risk management such that TWRS Project risks are identified and managed to achieve TWRS Project success. The Risk Management Plan implements the requirements of the Tank Waste Remediation System Systems Engineering Management Plan in the area of risk management. Figure ES-1 shows the relationship of the TWRS Risk Management Plan to other major TWRS Project documents. As the figure indicates, the Risk Management Plan is a tool used to develop and control TWRS Project work. It provides guidance on how TWRS Project risks will be assessed, analyzed, and handled, and it specifies format and content for the risk management lists, which are a primary product of the risk management process. In many instances, the Risk Management Plan references the TWRS Risk Management Procedure, which provides more detailed discussion of many risk management activities. The TWRS Risk Management Plan describes an ongoing program within the TWRS Project. The Risk Management Plan also provides guidance in support of the TWRS Readiness To-Proceed (RTP) assessment package

  17. Introduction to seminar on organics in radwaste held at Harwell on 22nd September 1987

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The introduction to the Seminar on Organics in Radwaste stresses the necessity for the efficiency of natural and engineered barriers designed for the management of radioactive wastes to satisfy public scrutiny. The preparation of wastes prior to encapsulation is discussed. The negative effects of introduced organic material in waste sites on safety and the mechanism of organic degradation prior to the removal of organics from wastes is discussed. (U.K.)

  18. Analytical methods of radwaste characterization

    International Nuclear Information System (INIS)

    Garcia, C.M.

    1994-10-01

    In view of the need to carry out more extensive studies on the design of newly proposed methods for the treatment of radioactive wastes collected at PNRI, this study is aimed to provide a guide in the characterization of wastes which is a preparatory step for a well-planned waste processing. (auth.). 8 refs

  19. 78 FR 23491 - National Forest System Land Management Planning; Correction

    Science.gov (United States)

    2013-04-19

    ... Management Planning; Correction AGENCY: Forest Service, USDA. ACTION: Correcting amendment. SUMMARY: This..., revising, and monitoring land management plans (the planning rule). The National Forest Management Act... Land Management Planning Rule Final Programmatic Environmental Impact Statement of January 2012. List...

  20. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  1. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  2. Oak Ridge Reservation Waste Management Plan

    International Nuclear Information System (INIS)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year

  3. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  4. Waste management plan for the APT

    International Nuclear Information System (INIS)

    England, J.L.

    1997-01-01

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required

  5. Onsite storage facility for low level radwaste

    International Nuclear Information System (INIS)

    Maxwell, M.G.

    1984-01-01

    The Tennessee Valley Authority (TVA) has designed and constructed an onsite storage facility for low level radwaste (LLRW) at its Browns Ferry Nuclear Plant in northern Alabama. The paper addresses the function of this facility and provides a complete description of the reinforced concrete storage modules which are the principal structural elements of the facility. The loads and loading combinations for the design of the storage modules are defined to include the foundation design parameters. Other aspects of the modules that are addressed are; the structural roof elements that provide access to the modules, shielding requirements for the LLRW, and tornado missile considerations

  6. Modular radwaste volume reduction and solidification systems

    International Nuclear Information System (INIS)

    Miller, E.L.

    1986-01-01

    This paper describes both the modular transportable and the modular mobile liquid radwaste volume reduction and solidification units based on a General Electric Company developed and patented process called AZTECH (a trademark of GE). An AZTECH system removes all water by azeotropic distillation and encapsulates the remaining solids in a polyester compound. The resulting monolith is suitable for either long term above ground storage or shallow land burial. Pilot and demonstration plant testing has confirmed the design parameters. The three processing modules are covered together with data which resulted in Nuclear Regulatory Commission approval on Dec. 30, 1985

  7. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  8. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  9. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  10. FY 2015 - Stockpile Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  11. FY 2016 - Stockpile Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  12. Medicare Managed Care plan Performance, A Comparison...

    Data.gov (United States)

    U.S. Department of Health & Human Services — The study evaluates the performance of Medicare managed care, Medicare Advantage, Plans in comparison to Medicare fee-for-service Plans in three states with...

  13. Nurse manager succession planning: a concept analysis.

    Science.gov (United States)

    Titzer, Jennifer L; Shirey, Maria R

    2013-01-01

    The current nursing leadership pipeline is inadequate and demands strategic succession planning methods. This article provides concept clarification regarding nurse manager succession planning. Attributes common to succession planning include organizational commitment and resource allocation, proactive and visionary leadership approach, and a mentoring and coaching environment. Strategic planning, current and future leadership analysis, high-potential identification, and leadership development are succession planning antecedents. Consequences of succession planning are improved leadership and organizational culture continuity, and increased leadership bench strength. Health care has failed to strategically plan for future leadership. Developing a strong nursing leadership pipeline requires deliberate and strategic succession planning. © 2013 Wiley Periodicals, Inc.

  14. Regional Management Plan: Summary report

    International Nuclear Information System (INIS)

    Drobny, N.L.

    1986-01-01

    This summary report describes the results of a 16-month project to develop a Regional Management Plan for low-level radioactive waste management in a seven-state area. The seven states are Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin. These states have formed the Midwest Interstate Low-Level Radioactive Waste Commission in accord with Congressional requirements established in 1980. What is low-level radioactive waste? Low-level radioactive waste results from the use of radioactive materials in the treatment of disease, the production of consumer goods and industrial products, and from the generation of electricity at nuclear power plants. Low-level wastes, which are a responsibility of the states, are grouped into three classes, A, B, and C; this classification scheme is prescribed by Federal Regulations and represents different degrees of hazard associated with different concentrations of radioactive materials. Class A wastes are the least hazardous. Classes B and C represent higher hazard classes. 14 refs., 13 figs., 9 tabs

  15. I-15 integrated corridor management system : project management plan.

    Science.gov (United States)

    2011-06-01

    The Project Management Plan (PMP) assists the San Diego ICM Team by defining a procedural framework for : management and control of the I-15 Integrated Corridor Management Demonstration Project, and development and : deployment of the ICM System. The...

  16. Total quality management program planning

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  17. Lucas Heights buffer zone: plan of management

    International Nuclear Information System (INIS)

    1986-01-01

    This plan is being used by the Commission as a guide for its management of the Lucas Heights buffer zone, which is essentially a circular area having a 1-6 km radius around the HIFAR reactor. Aspects covered by this plan include past uses, current use, objectives for buffer zone land management, emergency evacuation, resource conservation, archaeology, fire, access, rehabilitation of disturbed areas, resource management and plan implementation

  18. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  19. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  20. Radwaste management as a social issue

    International Nuclear Information System (INIS)

    Kantola, I.

    1999-03-01

    Citizens' fears, concerns and conflicts around high level nuclear waste disposal have been assessed as a part the EIA of the disposal plant project. The aim of this study was to estimate the scope and the limits of objective assessments of the subjectively experienced social impacts. Consequently, the study also reflects on the functions necessary for citizen participation in a restricted assessment environment. The materials used in this study consist of literature and interviews of ten prominent scholars of social science in Finland. Acquisition of both of the two distinct types of materials took place in August to November 1998 by the author. The main results are: (1) citizens' fears, concerns and conflicts articulate in different ways depending on the kind of conceptualisations, methods of analysis and data collection, and the interpretation of empirical results applied; (2) forecasting social impacts plausibly a longer time span seems to be impossible due to their socially constructed nature. Social constructionism, risk society, ecological modernisation, and postmodernity are exposed as conceptual choices for the analysis of social impacts. A concluding review is presented of the views of the interviewed scholars about the practised social impact assessment, its critique and ideas for development. (orig.)

  1. Modification of an existing radwaste facility to provide onsite low level waste storage

    International Nuclear Information System (INIS)

    Ault, G.M.; Reiss, J.F.; Commonwealth Edison Co., Chicago, IL)

    1985-01-01

    The decision of whether or not to install onsite storage capacity for low-level radioactive waste is dictated by individual utility circumstances. Commonwealth Edison has decided to construct facilities to store low-level radwaste onsite at each of their four operating nuclear stations, and they plan to have those facilities in operation by January, 1986. At Dresden, that onsite storage capacity is being provided by modifying an existing radwaste building which already has installed a remotely-operated precision-placement type crane. The purposes of this paper are to describe: (1) how Commonwealth Edison arrived at the decision to construct onsite storage facilities as a hedge against possible disruption of burial site availability in January, 1986; (2) why the desire to minimize the capital investment for this protection led to selection of an uncomplicated design for their ''standard'' facility and to the decision to modify an existing building at Dresden rather than construct a new one; and (3) what is being done to adapt the Dresden 1 Decontamination/Radwaste Building for extended onsite storage

  2. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  3. Volume reduction equipment for low-level radwastes

    International Nuclear Information System (INIS)

    Hofmann, J.; Schlich, E.

    1982-01-01

    Volume reduction of low-level radwaste has been used for years in Germany to reduce the on-site storage capacity which is required until an ultimate disposal site is available. The incineration of trash is a well established cost effective method for dry active waste volume reduction and now liquid radwaste treatment is gaining the operational experience which establishes it as a routine procedure. Resin pyrolysis is a promising new development which when successfully implemented will augment the other systems by safely volume reducing a radwaste which is of increasing concern

  4. Sport Facility Planning and Management. Sport Management Library.

    Science.gov (United States)

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  5. Solid Waste Management Planning--A Methodology

    Science.gov (United States)

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  6. The United Kingdom's School Asset Management Plans.

    Science.gov (United States)

    Jones, Alan

    1999-01-01

    Examines the U.K.'s Asset Management Plans (AMPs) designed to help Local Education Authorities (LEAs) identify and address the most important priorities in their school capital programs, and to help in their longer term planning and management of the school estate. Discusses AMP objectives, the stages of developing an AMP, and how the Department…

  7. 40 CFR 763.93 - Management plans.

    Science.gov (United States)

    2010-07-01

    ... implementation in a timely fashion. (d) Each local education agency shall maintain and update its management plan... surveillance and training. (12) With respect to each consultant who contributed to the management plan, the name of the consultant and one of the following statements: (i) If the State has adopted a contractor...

  8. Evaluating risk management strategies in resource planning

    International Nuclear Information System (INIS)

    Andrews, C.J.

    1995-01-01

    This paper discusses the evaluation of risk management strategies as a part of integrated resource planning. Value- and scope-related uncertainties can be addressed during the process of planning, but uncertainties in the operating environment require technical analysis within planning models. Flexibility and robustness are two key classes of strategies for managing the risk posed by these uncertainties. This paper reviews standard capacity expansion planning models and shows that they are poorly equipped to compare risk management strategies. Those that acknowledge uncertainty are better at evaluating robustness than flexibility, which implies a bias against flexible options. Techniques are available to overcome this bias

  9. Environmental Restoration Information Resource Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program`s essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan.

  10. Environmental Restoration Information Resource Management Program Plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program's essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan

  11. Preparation of Radwaste Disposal Site in Jawa Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan; Teddy Sumantry; Heru Sriwahyuni; Hendra A Pratama; Nurul Efri E; Achmad Sjarmufni; Pratomo Budiman; Dadang Suganda; Soegeng Waluyo; Ari Pudyo; Dewi Susilowati; Marwoto

    2008-01-01

    The task continuation and national needs indicate the important of starting for radioactive waste disposal preparation. As the IAEA procedures for the first step are to accomplished the conceptual and planning stage of radwaste disposal siting in Jawa island. Within the plan, the Milestone, the site important factors, the potential host rock, the possible areas, the aims and the investigation programs have been defined. From the procedures which are followed hopefully in the end of the activities, suitable site(s) to be able selected for radioactive waste disposal facility in near future. (author)

  12. MANAGING BUILDING CHECKIST PLANS USING BUSCLIS

    Directory of Open Access Journals (Sweden)

    M. Zulfahmi Toh

    2016-02-01

    Full Text Available This paper presents the software namely Building Submission Checklist System (BUSCLIS. It has been developed to manage the submission of building checklist plans process in the construction industry. BUSCLIS helps to simplify the management for acquiescence data of building plan approval for the Local Authority (LA and Country Planning in Malaysia through the web based system. BUSCLIS facilitates user through the computerization forms, which provides fast, efficient and effective service to the engineer, architect and contractor. Relevant and timely information manage by sophisticated BUSCLIS with the database management system MySQL

  13. Development of sampling techniques for ITER Type B radwaste

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Kim, Sung Geun; Jung, Sang Hee; Oh, Wan Ho; Park, Myung Chul; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    There are several difficulties and limitation in sampling activities. As the Type B radwaste components are mostly metallic(mostly stainless steel) and bulk(∼ 1 m in size and ∼ 100 mm in thickness), it is difficult in taking samples from the surface of Type B radwaste by remote operation. But also, sampling should be performed without use of any liquid coolant to avoid the spread of contamination. And all sampling procedures are carried in the hot cell red zone with remote operation. Three kinds of sampling techniques are being developed. They are core sampling, chip sampling, and wedge sampling, which are the candidates of sampling techniques to be applied to ITER hot cell. Object materials for sampling are stainless steel or Cu alloy block in order to simulate ITER Type B radwaste. The best sampling technique for ITER Type B radwaste among the three sampling techniques will be suggested in several months after finishing the related experiment

  14. Development of sampling techniques for ITER Type B radwaste

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kwon Pyo; Kim, Sung Geun; Jung, Sang Hee; Oh, Wan Ho; Park, Myung Chul; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There are several difficulties and limitation in sampling activities. As the Type B radwaste components are mostly metallic(mostly stainless steel) and bulk(∼ 1 m in size and ∼ 100 mm in thickness), it is difficult in taking samples from the surface of Type B radwaste by remote operation. But also, sampling should be performed without use of any liquid coolant to avoid the spread of contamination. And all sampling procedures are carried in the hot cell red zone with remote operation. Three kinds of sampling techniques are being developed. They are core sampling, chip sampling, and wedge sampling, which are the candidates of sampling techniques to be applied to ITER hot cell. Object materials for sampling are stainless steel or Cu alloy block in order to simulate ITER Type B radwaste. The best sampling technique for ITER Type B radwaste among the three sampling techniques will be suggested in several months after finishing the related experiment.

  15. BUDGET PLANNING IN FINANCIAL MANAGEMENT

    OpenAIRE

    Nataliya Melnichuk

    2015-01-01

    The purpose of the paper is to determine the nature, targets, functions, principles and methods of budget planning and development of classifications due to its types. The essence of budget planning presented by various authors, is own interpretation (the process of developing a plan of formation, distribution and redistribution of financial funds according to budget system units during the reporting period based on budgetary purposes and targets defined by socio-economic development strategy...

  16. The Modern Management of Urban Planning and the Controlling Planning

    Institute of Scientific and Technical Information of China (English)

    1991-01-01

    <正> Since 1980s,with the further reform of political and economic systems,the urban construc-tion in our country has undergone great changes,greater than ever.Such changes pose a series ofnew problems to urban planning:How should planning be suitable for the development of moderncities?How should planning management coordinate with urban planning?How to carry out ur-ban planning under new situations? etc.The answers to these problems lie in one point:urbanplanning and plann ing management must be restructured.Only when the former is well com-bined with the latter can the above problems be solved satisfactorily.This article provides someviews in this respect.

  17. Hot Isostatic Press (HIP) vitrification of radwaste concretes

    International Nuclear Information System (INIS)

    Siemer, D.D.; Scheetz, B.; Gougar, M.L.D.

    1995-01-01

    Properly formulated and properly ''canned'' radwaste concretes can be readily hot-isostatically-pressed (HIPed) into materials that exhibit performance equivalent to typical radwaste-type glasses. The HIPing conditions (temperature/pressure) required to turn a concrete waste form into a ''vitrified'' waste form are quite mild and therefore consistent with both safety and high productivity. This paper describes the process and its products with reference to its potential application to Idaho Chemical Processing Plant (ICPP) reprocessing wastes

  18. Project Management Plan (PMP) for Work Management Implementation

    International Nuclear Information System (INIS)

    SHIPLER, C.E.

    2000-01-01

    The purpose of this document is to provide a project plan for Work Management Implementation by the River Protection Project (RPP). Work Management is an information initiative to implement industry best practices by replacing some Tank Farm legacy system

  19. Impact of LWR decontamination on radwaste systems

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Divine, J.R.

    1979-01-01

    Increased radiation levels around certain reactors in the United States and accompanying increases in personnel exposures are causing a reexamination of options available to utilities to continue operation. One of the options is decontamination of the primary system to reduce radiation levels. The Battelle-Northwest study of decontamination and its impact on radwaste systems has been directed towards existing reactors and allied systems as they are employed during their operational lifetimes. Decommissioning and cleanup during such work are not within the scope of this project although certain processes and waste systems might be similar. Rupture debris cleanup represents a special situation that requires different design features and concepts and it is not a part of this study

  20. How utilities respond to radwaste needs

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1987-01-01

    Slow progress is being made toward regionalization of waste disposal, some states working toward regional compacts while others choose to go it alone. More promising is the reduction of radwaste volumes discharged from nuclear stations. More and more utilities are contracting with private companies for LLW processing. While such services are provided predominantly by mobile units at plant sites, one fixed installation already offers processing of dry waste and two others await final regulatory approval. Both developments are detailed. This article also includes an analysis of the design, performances comparison between slagging combustors (SC) and the FBC boiler. Comparisons are also made for SC technology to FBC for 250-MW unit and of utility-unit conversion costs

  1. Integrated radwaste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1997-10-01

    In May 1988, the West Valley Demonstration Project (WVDP) began pretreating liquid high-level radioactive waste (HLW). This HLW was produced during spent nuclear fuel reprocessing operations that took place at the Western New York Nuclear Service Center from 1966 to 1972. Original reprocessing operations used plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) processes to recover usable isotopes from spent nuclear fuel. The PUREX process produced a nitric acid-based waste stream, which was neutralized by adding sodium hydroxide to it. About two million liters of alkaline liquid HLW produced from PUREX neutralization were stored in an underground carbon steel tank identified as Tank 8D-2. The THOREX process, which was used to reprocess one core of mixed uranium-thorium fuel, resulted in about 31,000 liters of acidic waste. This acidic HLW was stored in an underground stainless steel tank identified as Tank 8D-4. Pretreatment of the HLW was carried out using the Integrated Radwaste Treatment System (IRTS), from May 1988 until May 1995. This system was designed to decontaminate the liquid HLW, remove salts from it, and encapsulate the resulting waste into a cement waste form that achieved US Nuclear Regulatory Commission (NRC) criteria for low-level waste (LLW) storage and disposal. A thorough discussion of IRTS operations, including all systems, subsystems, and components, is presented in US Department of Energy (DOE) Topical Report (DOE/NE/44139-68), Integrated Radwaste Treatment System Lessons Learned from 2 1/2 Years of Operation. This document also presents a detailed discussion of lessons learned during the first 2 1/2 years of IRTS operation. This report provides a general discussion of all phases of IRTS operation, and presents additional lessons learned during seven years of IRTS operation

  2. Configuration Management Plan for K Basins

    International Nuclear Information System (INIS)

    Weir, W.R.; Laney, T.

    1995-01-01

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Programclose quotes

  3. Automated transportation management system (ATMS) software project management plan (SPMP)

    Energy Technology Data Exchange (ETDEWEB)

    Weidert, R.S., Westinghouse Hanford

    1996-05-20

    The Automated Transportation Management System (ATMS) Software Project Management plan (SPMP) is the lead planning document governing the life cycle of the ATMS and its integration into the Transportation Information Network (TIN). This SPMP defines the project tasks, deliverables, and high level schedules involved in developing the client/server ATMS software.

  4. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  5. Waste Isolation Pilot Plant, Land Management Plan

    International Nuclear Information System (INIS)

    1993-01-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives

  6. Form planning Control to growth management

    DEFF Research Database (Denmark)

    Enemark, Stig

    2016-01-01

    its so-called “comprehensive-integrated” tradition and both the steering and strategic roles of national-level planning have been largely superseded by a more “flexible” planning style fit to promote specific sectoral agendas. While the legacy of land-use planning is still embedded at the local level...... caused that spatial planning be regarded more as a cost than an asset. Accordingly, it is evident that the Danish planning domain has progressively lost political clout and the focus is changed towards facilitation and management of economic growth....

  7. Contact expert group for international radwaste projects. Fourth meeting

    International Nuclear Information System (INIS)

    1997-06-01

    The Contact Expert Group for International Radwaste Projects is the result of an IAEA seminar on ''International Co-operation on Nuclear Waste Management in the Russian Federation'', 15-17 May 1995, that was requested and sponsored by the Nordic countries. In two working groups at the Seminar, participants from the Russian Federation and 17 countries and international organizations co-operating with the Russian Federation in waste management projects recognized the need for setting up a contact group of experts to assist in co-ordinating their efforts. Such co-ordination would help avoid redundancy and duplication of effort, assure that priority needs were made known to the international community, and provide points of contact to facilitate co-operation. This report is a compilation of the 4. CEG meeting materials, both prepared by the CEG Secretariat and presented by meeting's participants. The materials discussed by the CEG and subsequently modified are presented in the finally approved version. As in the case of previous similar reports, the documentation presented was just compiled without any editing and thus should be considered only as ''working proceedings'' of the meeting

  8. Introducing Urban Cultural Heritage Management into Urban Planning Management

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>1. Concept comparison of urban cultural heritage management and urban planning management 1.1 Urban cultural heritage managementUrban cultural heritage management is an important component of cultural heritage management which is a systematic conser-vation to maintain the cultural value of cul-tural heritages so as to meet the enjoyment demand of the current or future generations. At present, the cultural heritage conserva-tion principles have been defined by many worldwide laws or charters, such as the Venice Charter of ICOMOS, the UNESCO World Heritage Convention, etc., and have been brought into legislation or policies in many countries. The fi nal goal of urban cul-tural heritage management is to find a real sustainable approach to manage heritages, which could benefit the heritages them-selves, the heritage managers and the local communities as well. Cultural heritage man-agement includes the management of urban cultural heritages, that of natural heritages in non-urban areas and that of intangible cultural heritages.1.2 Urban planning managementUrban planning management is a type of urban management. From the practical viewpoint, urban management should be an overall management which includes urban planning management, urban infrastructure and public facility management, urban en-vironment and public order management, etc., takes urban infrastructures and public resources as management object, and ischaracterized by the goal of exerting the comprehensive effects of economy, society and environment. While from the techni-cal viewpoint, urban planning management refers to the planning management executed by urban governments based on the relevant laws and regulations, including the manage-ment of urban land-use and that of different types of constructions. It actually means the organizing, guiding, controlling and coordinating process focusing on different construction projects in cities. The urban cultural heritage mentioned here includes all the physical

  9. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed...... over a range of years, institutional set-up and procedures have been adapted to these. The Water Framework Directive imposes a specific ecosystem oriented management approach, which directs planning to the fulfilment of objectives linked to specific water bodies, and an emphasis on the involvement...... of stakeholders and citizens. Institutional scholars point out that such an eco-system based approach superimposed on an existing institutional set-up for spatial planning and environmental management may create implementation problems due to institutional misfit (Moss 2004). A need for adaptation of procedures...

  10. STRATEGIC PLANNING IN INFORMATION RESOURCES MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cezar VASILESCU

    2013-10-01

    Full Text Available The field of strategic management has offered a variety of frameworks and concepts for the past years, many with the declared aim of “taking business and its management seriously”. Strategic planning can help an organization to build its sustained competitive advantage in the face of an uncertain marketplace, but it requires new ways of thinking in order to create feasible alternatives. This article examines how the Chief Information Officer (CIO can use strategy and planning as an enabler to meet the mission of an organization. The analysis focuses on some common problems that occur in strategic planning. Managers need to identify these potential issues, so that they can recognize and deal with them if they arise in their own strategic planning. A systems approach is taken which presents planning as an open inclusive process that seeks to produce flexible systems capable of growth and adaptation to meet changing needs and missions.

  11. The development of radwaste in cineration technology (1)

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Seo, Yong Chil; Kim, In Tae; Ahn, Byung Gil; Yang, Hee Chul; Won, Dong Yeon; Lee, Jae Chun; Kim, Chan Joong

    1988-04-01

    In order to establish a schedule to develope the incineration technology with feasibility, we summarized the recently published reports of the state of the arts and feasibility studies on it. After comparison study between incineration and compaction, we suggested that the combustible wastes should be incinerated and the incombustible wastes should be compacted by a supercompactor. The status of utilization of incineration for industrial and municipal wastes in Korea was surveyed and the applicability of these techniques to incineration of radwastes were evaluated and resulted to be good. Finally, a long-term plan to utilize the incineration technology up to the commercialization was established on the basis of the above data and feasibility. An experimental incineration process with a capacity of 5 kg plastic wastes per hour was designed by the research team and constructed by several machinery industries of the country to study the incineration characteristics and test the performance of each filter unit in the off-gas system. This process consists of waste pretreatment system, incinerator, off-gas treatment system, and measurement and control system. This process was constructed and performed test-operation with feeding some shredded wastes. The actual experiments will be done in 1988. Under the final goal of developing a SiC filter tube which could be used in the incineration process, a SiC sample with a proper binder was fabricated. The attempts to fabricate a bigger tube and to find out the best fabricating condition will be continued. (Author)

  12. Kentucky's highway incident management strategic plan.

    Science.gov (United States)

    2005-06-01

    Kentucky s Highway Incident Management Strategic Plan consists of a mission statement, 4 goals, 16 objectives, and 49 action strategies. The action strategies are arranged by priority and recommended time frame for implementation. When implemented...

  13. MDOT Materials Laboratories : Environmental Management Plan

    Science.gov (United States)

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  14. Managing infrastructure and underpinning the planned environment

    CSIR Research Space (South Africa)

    Wall, K

    2008-04-01

    Full Text Available Planning the built environment is, or should be, also about providing and managing (i.e. operating and maintaining) this environment, viz. the engineering infrastructure (much of which is underground), structures and public amenities. However, never...

  15. Introduction to Soil Fumigant Management Plans

    Science.gov (United States)

    Soil fumigant pesticide labels require users to prepare a site-specific fumigation management plan (FMP) before the application begins. EPA has developed templates that outline the elements required by the labels.

  16. Checklist for Reviewing EPA Quality Management Plans

    Science.gov (United States)

    This checklist will be used to review the Quality Management Plans (QMPs) that are submitted to the Quality Staff of the Office of Environmental Information (OEI) for Agency review under EPA Order 5360.1 A2.

  17. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  18. Improving Flood Management Planning in Thailand | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    According to World Bank estimates, this disaster caused US$46.5 billion in ... This project seeks to improve the Flood Management Master Plan, proposing ... New Dutch-Canadian funding for the Climate and Development Knowledge Network.

  19. Special event planning for the emergency manager.

    Science.gov (United States)

    Gaynor, Peter T

    2009-11-01

    In the domain of emergency management and homeland security there is a lack of a formal planning process at the local level when it comes to special event planning. The unique nature of special event planning demands an understanding of the planning process for both traditional and non-traditional planning partners. This understanding will make certain that local governments apply due diligence when planning for the safety of the public. This paper offers a practical roadmap for planning at the local level. It will address those 'special events' that are beyond routine local events but not of a sufficient scale to be granted National Special Security Event status. Due to the infrequency of 'special events' in most communities, it is imperative that deliberate planning takes place. Upon conclusion, the reader will be able to construct a planning process tailored to the needs of their community, guide both traditional and non-traditional planning partners through the planning process, determine priorities, explore alternatives, plan for contingencies, conduct a confirmation brief, facilitate operations and assemble an after-action report and improvement plan.

  20. Information Management for Factory Planning and Design

    OpenAIRE

    Chen, Danfang

    2012-01-01

    This thesis is dedicated to the manufacturing industry for the improvement of information management within the factory planningand design domain, and for more efficient factory planning and design. Currently the manufacturing industry lacks sufficient methods for capturing, structuring, and representing information and knowledge for easy access, exchange, integration and reuse within the domain. Therefore the focus of this thesis is on information and knowledge management within factory plan...

  1. Sample Lesson Plans. Management for Effective Teaching.

    Science.gov (United States)

    Fairfax County Public Schools, VA. Dept. of Instructional Services.

    This guide is part of the Management for Effective Teaching (MET) support kit, a pilot project developed by the Fairfax County (Virginia) Public Schools to assist elementary school teachers in planning, managaing, and implementing the county's curriculum, Program of Studies (POS). In this guide, a sample lesson plan of a teaching-learning activity…

  2. Do You Have a Crisis Management Plan?

    Science.gov (United States)

    Pleviak, Walter; Milkevitch, Frank

    2001-01-01

    Although certain crises cannot be prevented, reactions to many can be planned. A crisis-management team should be organized for each building. Critical crisis-plan elements include telephone trees, forms, reference articles, sample letters, and processes for dealing with local media. Spokespersons should have facts straight before speaking. (MLH)

  3. Draft of the PHENIX Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The PHENIX Management Plan provides the baselines and controls that the PHENIX and RHIC Projects will follow to meet the technical, cost, and schedule goals for the PHENIX detector at RHIC. This plan will be reviewed and updated as required, with revisions made by agreement among the signed participants

  4. Project Management Plan for Material Stabilization

    International Nuclear Information System (INIS)

    SPEER, D.R.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617/Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides

  5. Information management in process planning

    NARCIS (Netherlands)

    Lutters, Diederick; Wijnker, T.C.; Kals, H.J.J.

    1999-01-01

    A recently proposed reference model indicates the use of structured information as the basis for the control of design and manufacturing processes. The model is used as a basis to describe the integration of design and process planning. A differentiation is made between macro- and micro process

  6. Louisiana Marsh Management Plan 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We sampled experimental research areas in the Barataria Basin of Louisiana during March and May, 1995, to examine the effects of structural marsh management on...

  7. Savannah River waste management program plan

    International Nuclear Information System (INIS)

    1980-04-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River contractors for the Fiscal Year 1980. In addition, the document projects activities for several years beyond 1980 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes

  8. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  9. A CLEAR Plan for School Crisis Management.

    Science.gov (United States)

    Moriarty, Anthony; And Others

    1993-01-01

    Although many school formulas for crisis management are well coordinated internally, many are also shortsighted in recognizing when a school crisis falls simultaneously into law enforcement's domain. An Illinois high school has devised CLEAR, a crisis management plan delineating cognizance of personnel, the linkages they establish, accountability…

  10. Graduate Student Project: Operations Management Product Plan

    Science.gov (United States)

    Fish, Lynn

    2007-01-01

    An operations management product project is an effective instructional technique that fills a void in current operations management literature in product planning. More than 94.1% of 286 graduates favored the project as a learning tool, and results demonstrate the significant impact the project had in predicting student performance. The author…

  11. Spent Nuclear Fuel Project Document Management Plan

    International Nuclear Information System (INIS)

    Connor, M.D.; Harizison, G.L.; Rice, W.C.

    1995-12-01

    The SNF Project Document Management Plan identifies and describes the currently available systems and processes for implementing and maintaining an effective document control and records management program. This program governs the methods by which documents are generated, released, distributed, maintained current, retired, and ultimately disposed

  12. Teacher Plan Book. Management for Effective Teaching.

    Science.gov (United States)

    Fairfax County Public Schools, VA. Dept. of Instructional Services.

    Project MET (Management for Effective Teaching) is a pilot project that provides effective, practical ways of managing the Fairfax County (Virginia) Public School system's instructional Program of Studies (POS) for elementary school students. This planning booklet is a part of the support kit that is used by teachers as an aid to implementing…

  13. Waste conditioning components for a new radwaste building

    International Nuclear Information System (INIS)

    Lewitz, J.C.; Stoelken, G.

    2001-01-01

    In the year 1999 Hansa Projekt Anlagentechnik GmbH made a basic study for the equipment of a new to be build radwaste building for TPC, Taiwan. Within an offer there was made an overall concept together with a proposal for system integration including supply, erection and put into operation for the following components supercompactor with in-/output device, overpack-filling station, resindrying- and filling unit, sorting tables for solid radwaste, cementation unit for liquid radwaste, cementation unit for grouting, drum inspection and decontamination station, storages for primary and conditioned radwaste, HVAC with filtration for several components and a roller conveyor system for transfer throughout the radwaste building. This overall concept was to be realized very similar by the client. The HPA scope of supply was focused onto the key components supercompactor with in-/output device, roller conveyor and turntable for cartridges and pellets, overpack-filling station, sorting tables, HVAC with filtration for supercompactor and sorting tables, and last but not least a drum inspection and decontamination system. In the following at first the functioning of HPA-components and the system as whole will be declared. At second components and system will be shown in detail together with figures and technical data. (orig.)

  14. Development of core sampling technique for ITER Type B radwaste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. G.; Hong, K. P.; Oh, W. H.; Park, M. C.; Jung, S. H.; Ahn, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Type B radwaste (intermediate level and long lived radioactive waste) imported from ITER vacuum vessel are to be treated and stored in basement of hot cell building. The Type B radwaste treatment process is composed of buffer storage, cutting, sampling/tritium measurement, tritium removal, characterization, pre-packaging, inspection/decontamination, and storage etc. The cut slices of Type B radwaste components generated from cutting process undergo sampling process before and after tritium removal process. The purpose of sampling is to obtain small pieces of samples in order to investigate the tritium content and concentration of Type B radwaste. Core sampling, which is the candidates of sampling technique to be applied to ITER hot cell, is available for not thick (less than 50 mm) metal without use of coolant. Experimented materials were SS316L and CuCrZr in order to simulate ITER Type B radwaste. In core sampling, substantial secondary wastes from cutting chips will be produced unavoidably. Thus, core sampling machine will have to be equipped with disposal system such as suction equipment. Core sampling is considered an unfavorable method for tool wear compared to conventional drilling.

  15. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  16. Land Management and Means of Planning Control

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    The paper presents an overall understanding of the Land Management Paradigm for Sustainable Development. It is argued that such an understanding is important for facilitating a holistic approach to the management of land, properties, and natural resources being the key assets of any nation...... the historical and cultural developments of the European countries. Finally, the paper presents a short overview of the Danish approach to planning and landuse management as an example of a planning led approach placing the decision-making power especially at the local level. This concept of decentralization...

  17. Total Quality Management Master Plan

    Science.gov (United States)

    1989-01-01

    Enhanced competitiveness in the private . public and international sectors - Increased cash flow, influenced by contractor’s contributions to quality I...the project applies novel public- sector compensation concepts gleaned from the best in the private sector . Major employee development opportunities...management must strive to upgrade the quality of worklife which will also contribute to an environment which fosters continuous improvement. Individuals

  18. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  19. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    Boughman, G.; Jones, S.L.

    1992-01-01

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  20. Low level radwaste packaging: why not cement

    International Nuclear Information System (INIS)

    Wilson, R.B.

    1978-01-01

    Over the past several years many words have been expended in a quest to define a variety of competing radioactive waste immobilization technologies. With the more recent recognition of the technical pitfalls of urea-formaldehyde (UF) a liquid chemical binder considered as optimum less than two years ago, utilities, architect-engineers and systems vendors find themselves in a technology void, awaiting the inevitable breakthrough which will identify the perfect immobilization agent. The culmination of these pressures has brought about the introduction of new immobilization technologies including: one which offers both volume reduction and immobilization in yet another new binder agent; the costly development of highly sophisticated volume reduction systems, the highly-concentrated products from which may pose as-yet unknown immobilization problems; and, the marketing of several new more expensive liquid chemical binders which are reputed to have eliminated the kinds of problems associated with urea-formaldehyde. This paper addresses these issues by coming full circle and arriving back at the initial approach employed for low level radwaste immobilization, the use of cement. Based on an evaluation of the three principal competing immobilization approaches, liquid chemical, bitumen and cement, the merits and drawbacks of each is examined. As will be described, an objective assessment of these competing technologies has resulted in a somewhat surprising conclusion that, while none of the approaches is without disadvantages, cement can be shown to offer the most reliable, versatile long-term solution to today's needs

  1. Fluidized bed volume reduction of diverse radwastes

    International Nuclear Information System (INIS)

    McFee, J.N.; McConnell, J.W.; Waddoups, D.A.; Gray, M.F.; Harwood, L.E.; Clayton, N.J.; Drown, D.C.

    1981-01-01

    Method and apparatus for a fluidized bed radwaste volume reduction system are claimed. Low level radioactive wastes, combustible solids, ion exchange resins and filter sludges, and liquids, emanating from a reactor facility are introduced separately through an integrated waste influent system into a common fluidized bed vessel where volume reduction either through incineration or calcination occurs. Addition of a substance to the ion exchange resin before incineration inhibits the formation of low-melting point materials which tend to form clinkers in the bed. Solid particles are scrubbed or otherwise removed from the gaseous effluent of the vessel in an off-gas system, before the cooled and cleaned off-gas is released to the atmosphere. Iodine is chemically or physically removed from the off-gas. Otherwise, the only egress materials from the volume reduction system are containerized dry solids and tramp material. The bed material used during each mode may be circulated, cleaned, stored and exchanged from within the bed vessel by use of a bed material handling system. An instrumentation and control system provides operator information, monitors performance characteristics, implements start up and shut down procedures, and initiates alarms and emergency procedures during abnormal conditions

  2. Hanford cultural resources management plan

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C. (ed.)

    1989-06-01

    As a federal agency, the US Department of Energy (DOE) has been directed by Congress and the President to provide leadership in the preservation of prehistoric, historical, and cultural resources on lands it administers, to manage these in a spirit of stewardship for future generations, and to protect and preserve the rights of Native Americans to religious freedom. The purpose of this document is to describe how the DOE-Richland Operations (DOE-RL) will meet those responsibilities on the Hanford Site, pursuant to guidelines for Agency Responsibilities under the Historic Preservation Act (FR 53:31, February 17, 1988). This document is intended for multiple uses. Among other things, the text is designed as a manual for cultural resource managers to follow and as an explanation of the process of cultural resource regulatory compliance for the DOE-RL and Site contractors. 10 refs., 17 figs., 11 tabs.

  3. Parking management : strategies, evaluation and planning

    International Nuclear Information System (INIS)

    Litman, T.A.

    2006-01-01

    Parking facilities are a major cost to society. Current planning practices are based on the assumption that parking should be abundant and provided free, with costs borne indirectly. This report examined parking management strategies related to integrated parking plans. Problems with current parking planning practices were reviewed. The costs of parking facilities were examined, as well as the savings that can accrue from improved management techniques. Strategies included shared parking; remote parking and shuttle services; walking and cycling improvements; improved enforcement and control; and increasing the capacity of existing parking facilities. Parking pricing methods, financial incentives and parking tax reforms were reviewed. Issues concerning user information and marketing were examined. Overflow parking plans were evaluated. Three illustrative examples of parking management programs were outlined, along with details of implementation, planning and evaluation procedures. It was concluded that cost-effective parking management programs can often reduce parking requirements by 20 to 40 per cent compared with conventional planning requirements, in addition to providing economic, social and environmental benefits. 32 refs., 7 tabs., 3 figs

  4. Technical assistance contractor Management Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins ampersand Beckwith Agra, Inc. (SHB Agra), and Geraghty ampersand Miller, Inc. (G ampersand M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC's groundwater technical breadth and depth, so G ampersand M was brought in to augment the team's capabilities. The TAC contract's scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC's management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls

  5. Information Value Distance and Crisis Management Planning

    Directory of Open Access Journals (Sweden)

    Brahim Herbane

    2014-04-01

    Full Text Available Organizational learning during and post-crisis is well established in the management literature but consideration of learning for crisis and the sources of information perceived to be useful for crisis management planning have not previously been examined. This study evaluates data from 215 U.K.-based small- and medium-sized enterprises (SMEs about the perceived value of 11 sources of information between planning (i.e., firms with a crisis management plan and non-planning respondents. For planning firms, the information sources considered to be useful are exclusively experience-based, and when information sources become less idiosyncratic and episodic, planning firms’ evaluations of their value begin to approximate the ratings given by non-planning firms. Furthermore, the concepts of relative value distance and value distance from threshold are original features of this study and offer new ways to evaluate the value of information sources for organizations wishing to provide information and support to improve business resilience and business continuity.

  6. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  7. SRP [Salt Repository Project] configuration management plan

    International Nuclear Information System (INIS)

    1987-01-01

    This configuration management plan describes the organization, policies, and procedures that will be used on the Salt Repository Project (SRP) to implement the configuration management disciplines and controls. Configuration management is a part of baseline management. Baseline management is defined in the SRP Baseline Procedures Notebook and also includes cost and schedule baselines. Configuration management is a discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics of an item, to control changes to those characteristics, to record and report change processing and implementation status, and to audit the results. Configuration management is designed as a project management tool to determine and control baselines, and ensure and document all components of a project interface both physically and functionally. The purpose is to ensure that the product acquired satisfies the project's technical and operational requirements, and that the technical requirements are clearly defined and controlled throughout the development and acquisition process. 5 figs

  8. Safety analysis report for radwaste foam transport cask

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Bang, K. S.; Seo, K. S.; Lee, D. W.; Kim, J. H.; Park, S. W.; Lee, J. W.; Kim, K. H.

    1999-08-01

    For the tests and examinations of radwaste foam which generated in domestic nuclear power plants a radioactive material transport cask is needed to transport the radwaste foam from the power plants to KAERI. This cask should be easy to handle in the facilities and safe to maintain the shielding safety of operators. According to the regulations, it should be verified that this cask maintains the thermal and structural integrities under prescribed load conditions by the regulations. The basic structural functions and the integrities of the cask under required load conditions were evaluated. Therefore, it was verified that the cask is suitable to transport radwaste foam from nuclear power plants to KAERI. (author). 11 refs., 10 tabs., 25 figs

  9. FY 2001 Hanford Waste Management Strategic Plan

    International Nuclear Information System (INIS)

    COLLINS, M.S.

    2001-01-01

    We are pleased to present the 2001 Hanford Waste Management Program Strategic Plan. This plan supports the newly developed U. S. Department of Energy Site outcomes strategy. The 2001 Plan reflects current and projected needs for Waste Management Program services in support of Hanford Site cleanup, and updates the objectives and actions using new waste stream oriented logic for the strategic goals: (1) waste treatment/processing, storage, and disposal; (2) interfaces; and (3) program excellence. Overall direction for the Program is provided by the Waste Management Division, Office of the Assistant Manager for Environmental Restoration and Waste Management, U. S. Department of Energy, Richland Operations Office. Fluor Hanford, Inc. is the operating contractor for the program. This Plan documents proactive strategies for planning and budgeting, with a major focus on helping meet regulatory commitments in a timely and efficient manner and concurrently assisting us in completing programs cheaper, better and quicker. Newly developed waste stream oriented logic was incorporated to clarify Site outcomes. External drivers, technology inputs, treatment/processing, storage and disposal strategies, and stream specific strategies are included for the six major waste types addressed in this Plan (low-level waste, mixed low-level waste, contact-handled transuranic waste, remote-handled transuranic waste, liquid waste, and cesium/strontium capsules). The key elements of the strategy are identification and quantification of the needs for waste management services, assessment of capabilities, and development of cost-effective actions to meet the needs and to continuously improve performance. Accomplishment of specific actions as set forth in the Plan depends on continued availability of the required resources and funding. The primary objectives of Plan are: (1) enhance the Waste Management Program to improve flexibility, become more holistic especially by implementing new

  10. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  11. PFP Interface identification and management planning guide

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    The purpose of-this planning guide is to present the process used to identify, document, and control PFP Stabilization and Deactivation Project interfaces. Revisions to this document will include, as attachments, the most recent version of the Project Interface Management List. A preliminary Interface Management List is included in Appendix A. This document is intended be a Project owned management tool. As such, this document will periodically require revisions resulting from improvements of the information, processes, and techniques as now described. For most revisions that suggest improved processes, PFP management approval is all that will be required

  12. Planning and management for reactor decommissioning

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2001-01-01

    This report describes decommissioning strategy, planning process, regulation, management and organization, radiological characterization and safety. Planning is used to identify, define and organize the requirements for decommissioning including decommissioning options, items to be accomplished (objective, scope), to solve problems of how it is to be accomplished (methods, means and procedures), questions of who will execute it (resources, organization and responsibilities, interfacing), and time when it will be executed (schedule for meeting the objectives). A plan is highly dependent on the quality of the management team assembled to carry it out. Radiological characterization involves a survey of existing data, calculation, in situ measurements and/or sampling and analyses. Using this databases decommissioning planner may assess options, considering: decontamination processes, dismantling procedures, tools required, radiological protection of workers and public/environment, waste classification, and resulting costs. Comparison and optimization of these factors will lead to selection of a decommissioning strategy, i.e. typically, immediate or deferred dismantling. The planning and implementation of decommissioning for nuclear reactors should be referred both recent dismantling techniques and many decommissioning experiences. The technical lessons learned from many projects will help in the planning for future decommissioning projects. And systematic planning and management are essential to successful completion of a decommissioning project. (author)

  13. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  14. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  15. Planning and Management - the Most Neglected Activities in ...

    African Journals Online (AJOL)

    Lexicography has a long history of ineffective planning and inefficient management. This article applies the methods of general planning and management to the planning and management of a lexicographic unit. Keywords: Planning, management, mission statement, strategic focus Areas, performance areas, situational ...

  16. 18 CFR 740.4 - State water management planning program.

    Science.gov (United States)

    2010-04-01

    ... STATE WATER MANAGEMENT PLANNING PROGRAM § 740.4 State water management planning program. (a) A State...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...

  17. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  18. Site management plan: Douglas Point Ecological Laboratory

    International Nuclear Information System (INIS)

    Jensen, B.L.; Miles, K.J.; Strass, P.K.; McDonald, B.

    1979-01-01

    A portion of the Douglas Point Site has been set aside for use as an ecological monitoring facility (DPEL). Plans call for it to provide for long-term scientific study and analysis of specific terrestrial and aquatic ecological systems representative of the coastal plain region of the mid-Atlantic United States. Discussion of the program is presented under the following section headings: goals and objectives; management and organization of DPEL; laboratory director; site manager; monitoring manager; research manager; and, organizational chart. The seven appendixes are entitled: detailed site description; supplemental land use plan; contract between Potomac Electric Power Company and Charles County Community Collge (CCCC); research and monitoring projects initiated at the Douglas Point Power Plant site; advisory committees; facilities and equipment; and CCCC personnel resumes

  19. Automated Transportation Management System (ATMS) Configuration Management Plan. Revision 1

    International Nuclear Information System (INIS)

    Weidert, R.S.

    1994-01-01

    This document describes the Software Configuration Management (SCM) approach and procedures to be utilized in developing and maintaining the Automated Transportation Management System (ATMS). The configuration management procedures are necessary to ensure that any changes made to software and related documentation are consistent with ATMS goals and contained securely in a central library. This plan applies to all software and associated documentation used in producing ATMS V1.0 and ATMS V2.0 system

  20. Evaluation of radwaste minimization program of dry and wet active waste in the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Luna-Garza, Hector

    2001-01-01

    A growing rate of radwaste volume production combined with an increase of both, costs and associated dose involved in its treatment and disposition processes have created a serious problem to the Laguna Verde Nuclear Power Plant (BWR, two Units, 682 Mwe each) in Mexico. Due the lack of a Final Repository in the country, the solution in the short or long terms relies on the success of a continuous and aggressive minimization program mainly based on modifications and upgrades applied to these processes. Technical and administrative strategies adopted by LVNPP for the reduction of Liquid Effluents and Dry and Wet Active Waste in the next three years are described. Based on the results of the LVNPP current radwaste process systems, an estimated accumulation of 11,502 m 3 by the year 2035 will exceed the actual on-site storage capacity. If the strategies succeed, this production would fall to an expected manageable volume of 4067 m 3 . (author)

  1. Water management planning guideline for waterpower

    International Nuclear Information System (INIS)

    2002-05-01

    Hydroelectric power has been used in Ontario for over 150 years, providing the impetus to economic development in the province. Currently, 83 hydroelectric utilities own the more than 200 hydro power facilities in Ontario, accounting for approximately 26 per cent of the total electrical generating capacity in the province. Flood control and the creation of recreational opportunities were added benefits derived from the construction of hydroelectric dams. The three ways of operating hydroelectric facilities are: run-of-the-river which involves minimal forebay storage, peaking which involves the operation of the dam for specific periods of high energy demand, and intermediate. The Ontario government plans to open the electricity market to competition, guided by four principles: (1) protecting consumers and offering more choice, (2) ensuring a strong business climate with a reliable supply of electricity, (3) protecting the environment, and (4) encouraging new ways of doing business and new sources of power. To address issues that arise from the operation of hydroelectric facilities, dam owners and hydroelectric facilities operators are required to develop Water Management Plans, outlining how the facility will be operated to balance environmental, social and economic objectives. The present document was developed to define goals and principles concerning planning, the scope of Water Management Plans, the criteria and the general planning process to be adopted for the preparation of the Plans. 1 tab., 4 figs

  2. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  3. The ANSTO waste management action plan

    International Nuclear Information System (INIS)

    Levins, D.

    1997-01-01

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  4. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  5. Analytical aids in land management planning

    Science.gov (United States)

    David R. Betters

    1978-01-01

    Quantitative techniques may be applied to aid in completing various phases of land management planning. Analytical procedures which have been used include a procedure for public involvement, PUBLIC; a matrix information generator, MAGE5; an allocation procedure, linear programming (LP); and an input-output economic analysis (EA). These techniques have proven useful in...

  6. Management Matters: Planning Goals and Time

    Science.gov (United States)

    Pappas, Marjorie L.

    2004-01-01

    This article discusses the importance of setting and implementing goals that can help change and improve a library media program over time--goals that go beyond merely keeping the library media center running. Suggestions for developing an action plan and strategies for effective time management are also presented.

  7. Energy conservation: its planning and management

    International Nuclear Information System (INIS)

    Nanda, K.S.; Patra, K.C.

    1995-01-01

    Energy conservation, its planning and management and the development of renewable energy systems of proven design are very worthy challenges for all. Energy education at various levels is most important particularly in the development of renewable energy technology. 2 refs., 3 tabs

  8. Strategic Planning for Management Information Systems.

    Science.gov (United States)

    Ein-Dor, Phillip; Segev, Eli

    1978-01-01

    Two factors predominate in determining the appropriateness of strategic plans for management information systems (MIS)--explicitness (the degree to which the process is conscious, formal, and documented) and situational fit (the degree to which the MIS is compatible with the specific organization and its members). (Author/IRT)

  9. Planning for and managing environmental restoration waste

    International Nuclear Information System (INIS)

    Miller, J.Q.

    1993-01-01

    This paper describes the approach used to support the management of environmental restoration (ER) waste. A general description is provided of the tools and techniques that have been developed and applied to produce waste generation forecast data and treatment, storage, and disposal capacity needs. The ER Program can now consistently manage ER waste streams from initial generation through ultimate disposal. Utilizing the valuable information that results from application of strategically planned systems and techniques demonstrates the ability to provide the necessary waste management support for the ER cleanup process

  10. Interim Hanford Waste Management Technology Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Interim Hanford Waste Management Technology Plan (HWMTP) is a companion document to the Interim Hanford Waste Management Plan (HWMP). A reference plan for management and disposal of all existing and certain projected future radioactive Hanford Site Defense Wastes (HSDW) is described and discussed in the HWMP. Implementation of the reference plan requires that various open technical issues be satisfactorily resolved. The principal purpose of the HWMTP is to present detailed descriptions of the technology which must be developed to close each of the technical issues associated with the reference plan identified in the HWMP. If alternative plans are followed, however, technology development efforts including costs and schedules must be changed accordingly. Technical issues addressed in the HWMTP and HWMP are those which relate to disposal of single-shell tank wastes, contaminated soil sites, solid waste burial sites, double-shell tank wastes, encapsulated 137 CsCl and 90 SrF 2 , stored and new solid transuranic (TRU) wastes, and miscellaneous wastes such as contaminated sodium metal. Among the high priority issues to be resolved are characterization of various wastes including early determination of the TRU content of future cladding removal wastes; completion of development of vitrification (Hanford Waste Vitrification Plant) and grout technology; control of subsidence in buried waste sites; and development of criteria and standards including performance assessments of systems proposed for disposal of HSDW. Estimates of the technology costs shown in this report are made on the basis that all identified tasks for all issues associated with the reference disposal plan must be performed. Elimination of, consolidation of, or reduction in the scope of individual tasks will, of course, be reflected in corresponding reduction of overall technology costs

  11. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  12. Management strategies in hospitals: scenario planning

    Directory of Open Access Journals (Sweden)

    Ghanem, Mohamed

    2015-06-01

    Full Text Available Background: Instead of waiting for challenges to confront hospital management, doctors and managers should act in advance to optimize and sustain value-based health. This work highlights the importance of scenario planning in hospitals, proposes an elaborated definition of the stakeholders of a hospital and defines the influence factors to which hospitals are exposed to. Methodology: Based on literature analysis as well as on personal interviews with stakeholders we propose an elaborated definition of stakeholders and designed a questionnaire that integrated the following influence factors, which have relevant impact on hospital management: political/legal, economic, social, technological and environmental forces. These influence factors are examined to develop the so-called critical uncertainties. Thorough identification of uncertainties was based on a “Stakeholder Feedback”. Results: Two key uncertainties were identified and considered in this study: According to the developed scenarios, complementary education of the medical staff as well as of non-medical top executives and managers of hospitals was the recommended core strategy. Complementary scenario-specific strategic options should be considered whenever needed to optimize dealing with a specific future development of the health care environment. Conclusion: Strategic planning in hospitals is essential to ensure sustainable success. It considers multiple situations and integrates internal and external insights and perspectives in addition to identifying weak signals and “blind spots”. This flows into a sound planning for multiple strategic options. It is a state of the art tool that allows dealing with the increasing challenges facing hospital management.

  13. Project Hanford management contract quality improvement project management plan; TOPICAL

    International Nuclear Information System (INIS)

    ADAMS, D.E.

    1999-01-01

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process

  14. Sample management implementation plan: Salt Repository Project

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Sample Management Implementation Plan is to define management controls and building requirements for handling materials collected during the site characterization of the Deaf Smith County, Texas, site. This work will be conducted for the US Department of Energy Salt Repository Project Office (SRPO). The plan provides for controls mandated by the US Nuclear Regulatory Commission and the US Environmental Protection Agency. Salt Repository Project (SRP) Sample Management will interface with program participants who request, collect, and test samples. SRP Sample Management will be responsible for the following: (1) preparing samples; (2) ensuring documentation control; (3) providing for uniform forms, labels, data formats, and transportation and storage requirements; and (4) identifying sample specifications to ensure sample quality. The SRP Sample Management Facility will be operated under a set of procedures that will impact numerous program participants. Requesters of samples will be responsible for definition of requirements in advance of collection. Sample requests for field activities will be approved by the SRPO, aided by an advisory group, the SRP Sample Allocation Committee. This document details the staffing, building, storage, and transportation requirements for establishing an SRP Sample Management Facility. Materials to be managed in the facility include rock core and rock discontinuities, soils, fluids, biota, air particulates, cultural artifacts, and crop and food stuffs. 39 refs., 3 figs., 11 tabs

  15. Basic user guide for the radwaste treatment plant computer system

    International Nuclear Information System (INIS)

    Keel, A.

    1990-07-01

    This guide has been produced as an aid to using the Radwaste Treatment Plant computer system. It is designed to help new users to use the database menu system. Some of the forms can be used in ways different from those explained and more complex queries can be performed. (UK)

  16. Safety Analysis of Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Ragaisis, V.

    2001-01-01

    The overview of the activities in the Laboratory of Heat Transfer in Nuclear Reactors related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Activities related with decommissioning of Ignalina NPP are also reviewed. (author)

  17. Use of robotics in a Radwaste treatment plant

    International Nuclear Information System (INIS)

    Leeks, C.W.E.

    1991-01-01

    A 762 Unimate Puma, clean room standard Robot has been installed and commissioned in the Radwaste Treatment Plant at the Winfrith Technology Centre. The robot interacts with a variety of purpose designed tools and proprietary welding equipment. It performs 13 dedicated tasks in the final closure and health physics operations, before the 500 litre waste drum is despatched from the plant. (author)

  18. Data acquisition and monitoring of radwaste cementation plants

    International Nuclear Information System (INIS)

    Cable, A.S.; Lee, D.J.; Samways, J.; Weller, F.C.; Williams, J.R.A.

    1988-03-01

    This paper summarises the progress made in the two years to June 1987 on the DOE funded programme for Data acquisition and monitoring of Radwaste Cementation Plants. The results of the computer based data logging and processing system fitted to an in-drum mixing station, cement powder plant and sludge handling plant are reported. (author)

  19. NIF Operations Management Plan, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, Bruno M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility (NIF)

    2014-01-30

    Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) is a key component of the National Nuclear Security Administration’s (NNSA) Stockpile Stewardship Program, whose purpose is to maintain the safety, reliability, and effectiveness of our nation’s nuclear stockpile without underground nuclear testing. The NIF is crucial to the Stockpile Stewardship Program because it is the only facility that can create the conditions of extreme temperature and pressure—conditions that exist only in stars or in exploding nuclear weapons—that are relevant to understanding how our modern nuclear weapons operate. As such, the NIF’s primary mission is to attain fusion ignition in the laboratory. Fusion ignition not only supports Stockpile Stewardship needs, but also provides the basis for future decisions about fusion’s potential as a long-term energy source. Additionally, NIF provides scientists with access to high-energy-density regimes that can yield new insight and understanding in the areas of astrophysics, hydrodynamics, material properties, plasma physics, and radiative properties. The use of the NIF to support the Stockpile Stewardship Program and the advancement of basic high-energy-density science understanding is planned and managed through program-level execution plans and NIF directorate-level management teams. An example of a plan is the National Ignition Campaign Execution Plan. The NIF Operations Management Plan provides an overview of the NIF Operations organization and describes how the NIF is supported by the LLNL infrastructure and how it is safely and responsibly managed and operated. Detailed information on NIF management of the organization is found in a series of supporting plans, policies, and procedures. A list of related acronyms can be found in Appendix A of this document. The purpose of this document is to provide a roadmap of how the NIF Operations organization functions. It provides a guide to understanding the

  20. Nevada Test Site Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  1. Integrated radwaste treatment system lessons learned from 2 1/2 years of operation

    International Nuclear Information System (INIS)

    Baker, M.N.; Fussner, R.J.

    1997-05-01

    The Integrated Radwaste Treatment System (IRTS) at the West Valley Demonstration Project (WVDP) is a pretreatment scheme to reduce the amount of salts in the high-level radioactive waste (vitrification) stream. Following removal of cesium-137 (Cs-137) by ion-exchange in the Supernatant Treatment System (STS), the radioactive waste liquid is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion-exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids by weight, is encapsulated in cement producing a stable, low-level waste form. The Integrated Radwaste Treatment System (IRTS) operated in this mode from May 1988 through November 1990, decontaminating 450,000 gallons of high-level waste liquid; evaporating and encapsulating the resulting concentrates into 10,393 71-gallon square drums. A number of process changes and variations from the original operating plan were required to increase the system flow rate and minimize waste volumes. This report provides a summary of work performed to operate the IRTS, including system descriptions, process highlights, and lessons learned

  2. 77 FR 21161 - National Forest System Land Management Planning

    Science.gov (United States)

    2012-04-09

    ... 219 National Forest System Land Management Planning; Final Rule #0;#0;Federal Register / Vol. 77 , No... Forest Service 36 CFR Part 219 RIN 0596-AD02 National Forest System Land Management Planning AGENCY... Agriculture is adopting a new National Forest System land management planning rule (planning rule). The new...

  3. AVLIS Production Plant Project Management Plan

    International Nuclear Information System (INIS)

    1984-01-01

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables

  4. National NIF Diagnostic Program Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    The National Ignition Facility (NIF) has the mission of supporting Stockpile Stewardship and Basic Science research in high-energy-density plasmas. To execute those missions, the facility must provide diagnostic instrumentation capable of observing and resolving in time events and radiation emissions characteristic of the plasmas of interest. The diagnostic instrumentation must conform to high standards of operability and reliability within the NIF environment. These exacting standards, together with the facility mission of supporting a diverse user base, has led to the need for a central organization charged with delivering diagnostic capability to the NIF. The National NIF Diagnostics Program (NNDP) has been set up under the aegis of the NIF Director to provide that organization authority and accountability to the wide user community for NIF. The funds necessary to perform the work of developing diagnostics for NIF will be allocated from the National NIF Diagnostics Program to the participating laboratories and organizations. The participating laboratories and organizations will design, build, and commission the diagnostics for NIF. Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize NIF Core Diagnostics Systems and Cryogenic Target Handing Systems, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NIF Core Diagnostics Systems. Preparation of a Program Execution Plan for NIF Core Diagnostics Systems has been initiated and a current draft is provided as Attachment 1 to this document. The National NIF Diagnostics Program Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope

  5. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, to develop the waste-management system, to relate system elements to each other, and to determine how the waste-management system can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  6. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  7. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  8. New Production Reactor project-management plan

    International Nuclear Information System (INIS)

    McCrosson, F.J.; Hibbard, L.; Buckner, M.R.

    1982-01-01

    This document provides a project management plan for the first phase of a project to design and build a new production reactor (NPR) at SRP. The design of the NPR is based upon proven SRP heavy water reactor design, with several enhancements such as full containment, moderator detritiation, improved cooling, and modernized control rooms and instrumentation. The first phase of the NPR project includes environmental and safety analyses, preparation of the technical data summary and basic data, site studies, engineering studies, and conceptual design. The project management plan was developed by a 14-member task force comprised of representatives from the Technical Division, the Manufacturing Division, the Departmental Engineer's Office, and the Engineering Department

  9. Ontario Hydro's integrated air management plan

    International Nuclear Information System (INIS)

    Kalvins, A.K.; Brown, D.; Camacho, F.; Howes, H.; Jantzi, B.; Lin, X.; Lui, P.; Melo, O.T.; Mortimer, W.P.; Reuber, B.

    1992-01-01

    Ontario Hydro is developing an integrated air management plan as a tool for comparing the environmental impacts of fossil-fuel power generation options. The goal is to relate equipment, location, emissions, and impacts and to identify the optimum way to manage the utility's fossil generation system in view of upcoming environmental regulations and public expectations. The eight steps of the plan are briefly described: definition of power generation scenarios (upgrading, conversion to natural gas, non-utility generation, alternative technologies); estimation of emissions for each generation and fuel option studied; identification of impact of air emissions on building materials, agriculture, forests, lakes, and fisheries; modelling of air emissions dispersion; quantification of damage to pollution receptors; quantification of full fuel cycle effects; and comparison of the scenarios. The scenario having the lowest overall environmental impact involved upgrading the existing fossil-fuel system with additional air emissions controls and two integrated gasification combined cycle plants. 9 refs., 3 figs., 3 tabs

  10. Strategic plan for Hanford site information management

    International Nuclear Information System (INIS)

    1994-09-01

    The Hanford Site missions are to clean up the Site, to provide scientific knowledge and technology to meet global needs, and to partner in the economic diversification of the region. To achieve these long-term missions and increase confidence in the quality of the Site's decision making process, a dramatically different information management culture is required, consistent with US Department of Energy (DOE) mandates on increased safety, productivity, and openness at its sites. This plan presents a vision and six strategies that will move the Site toward an information management culture that will support the Site missions and address the mandates of DOE

  11. Strategy for the disposal of low- and intermediate-level radwastes in Canada

    International Nuclear Information System (INIS)

    Dixon, D.F.

    The intent of the strategy described is to optimize both safety and cost of disposal by classifying waste segments according to hazardous lifetime and to match these to two or more selected disposl concepts graded according to containment and isolation capabilities. The bulk of low- and intermediate-level radwastes arising in Canada are a relatively short-lived hazard requiring isolation for no more than a few hundred years. Burial of this segment at tens-of-metres in quatenary deposits has been proposed as a concept worth evaluating. It is expected that part of the low- and intermediate-level radwastes will be potentially hazardous for geological time periods. Once methods of isolation for long-lived fuel wastes have been identified, these could be utilized for wastes requiring isolation for longer than a few hundred years. Disposal of a hard-rock vault is being evaluated as a reference concept and costs are presented. It is proposed that waste classification may consider more than two categories to further reduce costs and to better accommodate the radiological character of wastes. The overall disposal strategy should be flexible enough to account for present waste management practices and anticipated future needs

  12. Status of radioactive waste management in Taiwan

    International Nuclear Information System (INIS)

    Huang, C.C.

    1993-01-01

    Taiwan started to generate nuclear power in 1977. The peaceful uses of nuclear energy generated radwaste. The major radwaste generators are nuclear power plants of Taiwan Power Company (Taipower). The other generators are the Institute of Nuclear Energy Research (INER), industry, medicine, agriculture, and education. Radwaste Administration (RWA), a subsidiary of Atomic Energy Council (AEC), is the regulatory body of radwaste in Taiwan. Radwaste management projects in Taiwan include: (1) construction of a Volume Reduction Center (VRC); (2) construction of a low-level radwaste transport ship; (3) construction of low-level waste final disposal facility; (4) construction of a spent fuel interim storage facility; (5) construction of spent fuel disposal facility. In the near future, final disposal of low-level waste is the most important work of both Taipower and RWA. Both organizations will put much more effort into this work

  13. Environmental development plan. LWR commercial waste management

    International Nuclear Information System (INIS)

    1980-08-01

    This Environmental Development Plan (EDP) identifies the planning and managerial requirements and schedules needed to evaluate and assess the environmental, health and safety (EH and S) aspects of the Commercial Waste Management Program (CWM). Environment is defined in its broadest sense to include environmental, health (occupational and public), safety, socioeconomic, legal and institutional aspects. This plan addresses certain present and potential Federal responsibilities for the storage, treatment, transfer and disposal of radioactive waste materials produced by the nuclear power industry. The handling and disposal of LWR spent fuel and processed high-level waste (in the event reprocessing occurs) are included in this plan. Defense waste management activities, which are addressed in detail in a separate EDP, are considered only to the extent that such activities are common to the commercial waste management program. This EDP addresses three principal elements associated with the disposal of radioactive waste materials from the commercial nuclear power industry, namely Terminal Isolation Research and Development, Spent Fuel Storage and Waste Treatment Technology. The major specific concerns and requirements addressed are assurance that (1) radioactivity will be contained during waste transport, interim storage or while the waste is considered as retrievable from a repository facility, (2) the interim storage facilities will adequately isolate the radioactive material from the biosphere, (3) the terminal isolation facility will isolate the wastes from the biosphere over a time period allowing the radioactivity to decay to innocuous levels, (4) the terminal isolation mode for the waste will abbreviate the need for surveillance and institutional control by future generations, and (5) the public will accept the basic waste management strategy and geographical sites when needed

  14. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  15. Planning and management of logistic cycle

    OpenAIRE

    V. N. Kudashkin

    2017-01-01

    We are considering planning and managing of logistic cycle, its impact on the content of the main processes that comprise the cycle to implement the order for the supply of material resources for industrial consumption, as well as its practical use, effectiveness, and prospects.This research paper is made on the basis of the information, received from textbooks and scientific literature of domestic and foreign authors, as well as from other sources. The main methods, used in this work are as ...

  16. Resources planning for radiological incidents management

    Science.gov (United States)

    Hamid, Amy Hamijah binti Ab.; Rozan, Mohd Zaidi Abd; Ibrahim, Roliana; Deris, Safaai; Yunus, Muhd. Noor Muhd.

    2017-01-01

    Disastrous radiation and nuclear meltdown require an intricate scale of emergency health and social care capacity planning framework. In Malaysia, multiple agencies are responsible for implementing radiological and nuclear safety and security. This research project focused on the Radiological Trauma Triage (RTT) System. This system applies patient's classification based on their injury and level of radiation sickness. This classification prioritizes on the diagnostic and treatment of the casualties which include resources estimation of the medical delivery system supply and demand. Also, this system consists of the leading rescue agency organization and disaster coordinator, as well as the technical support and radiological medical response teams. This research implemented and developed the resources planning simulator for radiological incidents management. The objective of the simulator is to assist the authorities in planning their resources while managing the radiological incidents within the Internal Treatment Area (ITA), Reception Area Treatment (RAT) and Hospital Care Treatment (HCT) phases. The majority (75%) of the stakeholders and experts, who had been interviewed, witnessed and accepted that the simulator would be effective to resolve various types of disaster and resources management issues.

  17. Management strategies in hospitals: scenario planning.

    Science.gov (United States)

    Ghanem, Mohamed; Schnoor, Jörg; Heyde, Christoph-Eckhard; Kuwatsch, Sandra; Bohn, Marco; Josten, Christoph

    2015-01-01

    Instead of waiting for challenges to confront hospital management, doctors and managers should act in advance to optimize and sustain value-based health. This work highlights the importance of scenario planning in hospitals, proposes an elaborated definition of the stakeholders of a hospital and defines the influence factors to which hospitals are exposed to. Based on literature analysis as well as on personal interviews with stakeholders we propose an elaborated definition of stakeholders and designed a questionnaire that integrated the following influence factors, which have relevant impact on hospital management: political/legal, economic, social, technological and environmental forces. These influence factors are examined to develop the so-called critical uncertainties. Thorough identification of uncertainties was based on a "Stakeholder Feedback". Two key uncertainties were identified and considered in this study: the development of workload for the medical staff the profit oriented performance of the medical staff. According to the developed scenarios, complementary education of the medical staff as well as of non-medical top executives and managers of hospitals was the recommended core strategy. Complementary scenario-specific strategic options should be considered whenever needed to optimize dealing with a specific future development of the health care environment. Strategic planning in hospitals is essential to ensure sustainable success. It considers multiple situations and integrates internal and external insights and perspectives in addition to identifying weak signals and "blind spots". This flows into a sound planning for multiple strategic options. It is a state of the art tool that allows dealing with the increasing challenges facing hospital management.

  18. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1994-06-01

    The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies the close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M ampersand O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [''Program'' refers to the CRWMS-wide activity and ''project'' refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project

  19. Medical technology management: from planning to application.

    Science.gov (United States)

    David, Y; Jahnke, E

    2005-01-01

    Appropriate deployment of technological innovation contributes to improvement in the quality of healthcare delivered, the containment of cost, and access to the healthcare system. Hospitals have been allocating a significant portion of their resources to procuring and managing capital assets; they are continuously faced with demands for new medical equipment and are asked to manage existing inventory for which they are not well prepared. To objectively manage their investment, hospitals are developing medical technology management programs that need pertinent information and planning methodology for integrating new equipment into existing operations as well as for optimizing costs of ownership of all equipment. Clinical engineers can identify technological solutions based on the matching of new medical equipment with hospital's objectives. They can review their institution's overall technological position, determine strengths and weaknesses, develop equipment-selection criteria, supervise installations, train users and monitor post procurement performance to assure meeting of goals. This program, together with cost accounting analysis, will objectively guide the capital assets decision-making process. Cost accounting analysis is a multivariate function that includes determining the amount, based upon a strategic plan and financial resources, of funding to be allocated annually for medical equipment acquisition and replacement. Often this function works closely with clinical engineering to establish equipment useful life and prioritization of acquisition, upgrade, and replacement of inventory within budget confines and without conducting time consuming, individual financial capital project evaluations.

  20. Role of strategic planning in engineering management

    Science.gov (United States)

    Krishen, Kumar

    1993-01-01

    Today, more than ever before, engineers are faced with uncertain and sometimes chaotic environments in which to function. The traditional roles of an engineer to design, develop, and streamline a manufacturing process for a product are still valued and relevant. However, the need for an engineer to participate in the process of identifying the product to be developed, the schedule and resources required, and the goal of satisfying the customer, has become paramount to achieving the success of the enterprise. When we include these endeavors in the functions of an engineer, management of 'engineering' takes on a new dimension. In this paper, the ramifications of the changing and increased functions of an engineer and consequent impacts on engineering management are explored. The basic principles which should be invoked in order to embrace the new environment for engineering management are outlined. The ultimate finding of this study is that the enterprise strategic plan should be developed in such a way as to allow engineering management to encompass the full spectrum of the responsibilities of engineers. A consequence of this is that the fundamental elements of the strategic process can best be implemented through a project team or group approach. The paper thus concentrates on three areas: evolving environment, strategic plan, and ways to achieve enterprise success.

  1. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  2. Presentation of Coastal Environmental Management Plan by using ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: The provision of environment management plan and ... environmental management plan of the eastern coasts of Mazandaran Province. ..... REFERENCE ... Department of oceanography, texas A&M university. An online textbook.

  3. Guide to Developing an Environmental Management System - Plan

    Science.gov (United States)

    This page takes you though the basic steps (Plan, Do, Check, Act) of building an Environmental Management System (EMS) as they are outlined in the 2001 Second Edition of Environmental Management Systems: An Implementation Guide. Plan section.

  4. Quality Management Plan for the Environmental Assessment and Innovation Division

    Science.gov (United States)

    Quality management plan (QMP) which identifies the mission, roles, responsibilities of personnel with regard to quality assurance and quality management for the environmental assessment and innovation division.

  5. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  6. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  7. Enterprise Resource Planning, Operations and Management

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft; Mouritsen, Jan

    2013-01-01

    Purpose – This research aims to explore the enabling and constraining effects of enterprise resource planning (ERP) systems and speculate on how these can be linked to the four generic roles of operations management (OM) proposed by Slack et al. Design/methodology/approach – This research...... are linked conceptually. Based on the identified effects of ERP, the paper speculates on the managerial tasks of the production and operations manager (POM) in an ERP environment and lists a set of central concerns of potential relevance to POM and to future research. Research limitations...... for practicing POMs in managing the implementation and design of ERP to support the different domains of OM. Originality/value – Current studies of the effects of ERP and their link to the practice of OM tend to focus on one or a few roles of the emerging system. Such studies do not properly take into account...

  8. Perspectives of Forest Management Planning: Slovenian and Croatian Experience

    OpenAIRE

    Bončina, Andrej; Čavlović, Juro

    2009-01-01

    Drawing upon the historical framework of origin and development, and a long tradition in forest management planning in Slovenia and Croatia, and based on a survey of literature and research to date, this paper addresses problems and perspectives of forest management planning. Comparison is made of forest management planning concepts, which generally differ from country to country in terms of natural, social and economic circumstances. Impacts of forest management planning on the condition and...

  9. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  10. Standard Review Plan for Environmental Restoration Program Quality Management Plans

    International Nuclear Information System (INIS)

    1993-12-01

    The Department of Energy, Richland Operations Office (RL) Manual Environmental Restoration Program Quality System Requirements (QSR) for the Hanford Site, defines all quality requirements governing Hanford Environmental Restoration (ER) Program activities. The QSR requires that ER Program participants develop Quality Management Plans (QMPs) that describe how the QSR requirements will be implemented for their assigned scopes of work. This standard review plan (SRP) describes the ER program participant responsibilities for submittal of QMPs to the RL Environmental Restoration Division for review and the RL methodology for performing the reviews of participant QMPS. The SRP serves the following functions: acts as a guide in the development or revision of QMPs to assure that the content is complete and adequate; acts as a checklist to be used by the RL staff in their review of participant QMPs; acts as an index or matrix between the requirements of the QSR and implementing methodologies described in the QMPs; decreases the time and subjectivity of document reviews; and provides a formal, documented method for describing exceptions, modifications, or waivers to established ER Program quality requirements

  11. Environment, Safety, Health and Waste Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Feed Materials Production Center (FMPC) is the production of high qaulity uranium metal for use by the US Department of Energy (DOE) in Defense Programs. In order to accomplish this mission and to maintain the FMPC as a viable facility in the DOE production complex, the facility must be brought into full compliance with all federal and state regulations and industry standards for environmental protection and worker safety. Where past practices have resulted in environmental insult, a comprehensive program of remediation must be implemented. The purpose of this combined Environment, Safety, Health and Waste Management Plan is to provide a road map for achieving needed improvements. The plan is structured to provide a comprehensive projection from the current fiscal year (FY) through FY 1994 of the programs, projects and funding required to achieve compliance. To do this, the plan is subdivided into chapters which discuss the applicable regulations;project schedules and funding requirements;details of the various programs for environment, safety, health and waste management;details of the ongoing National Environmental Policy Act (NEPA);the quality assurance program and the environmental monitoring program. 14 refs., 30 figs., 29 tabs

  12. Terrestrial forest management plan for Palmyra Atoll

    Science.gov (United States)

    Hathaway, Stacie A.; McEachern, Kathryn; Fisher, Robert N.

    2011-01-01

    This 'Terrestrial Forest Management Plan for Palmyra Atoll' was developed by the U.S. Geological Survey (USGS) for The Nature Conservancy (TNC) Palmyra Program to refine and expand goals and objectives developed through the Conservation Action Plan process. It is one in a series of adaptive management plans designed to achieve TNC's mission toward the protection and enhancement of native wildlife and habitat. The 'Terrestrial Forest Management Plan for Palmyra Atoll' focuses on ecosystem integrity and specifically identifies and addresses issues related to assessing the status and distribution of resources, as well as the pressures acting upon them, most specifically nonnative and potentially invasive species. The plan, which presents strategies for increasing ecosystem integrity, provides a framework to implement and track the progress of conservation and restoration goals related to terrestrial resources on Palmyra Atoll. The report in its present form is intended to be an overview of what is known about historical and current forest resources; it is not an exhaustive review of all available literature relevant to forest management but an attempt to assemble as much information specific to Palmyra Atoll as possible. Palmyra Atoll is one of the Northern Line Islands in the Pacific Ocean southwest of the Hawai`ian Islands. It consists of many heavily vegetated islets arranged in a horseshoe pattern around four lagoons and surrounded by a coral reef. The terrestrial ecosystem consists of three primary native vegetation types: Pisonia grandis forest, coastal strand forest, and grassland. Among these vegetation types, the health and extent of Pisonia grandis forest is of particular concern. Overall, the three vegetation types support 25 native plant species (two of which may be extirpated), 14 species of sea birds, six shore birds, at least one native reptile, at least seven native insects, and six native land crabs. Green and hawksbill turtles forage at Palmyra Atoll

  13. 33 CFR 151.57 - Waste management plans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Waste management plans. 151.57... Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage § 151.57 Waste management... follows the plan. (c) Each waste management plan under paragraph (b) of this section must be in writing...

  14. 76 FR 53149 - North American Waterfowl Management Plan

    Science.gov (United States)

    2011-08-25

    ... fundamental objectives for waterfowl management from a list of 31 candidate objectives. During Round Two... American Waterfowl Management Plan AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of document... availability of the draft North American Waterfowl Management Plan Revision (draft Plan Revision) for public...

  15. 33 CFR 385.24 - Project Management Plans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...

  16. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  17. 49 CFR 236.18 - Software management control plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Software management control plan. 236.18 Section... Instructions: All Systems General § 236.18 Software management control plan. (a) Within 6 months of June 6, 2005, each railroad shall develop and adopt a software management control plan for its signal and train...

  18. Radwaste volume reduction and solidification by General Electric

    International Nuclear Information System (INIS)

    Green, T.A.; Weech, M.E.; Miller, G.P.; Eberle, J.W.

    1982-01-01

    Since 1978 General Electric has been actively engaged in developing a volume reduction and solidifcation system or treatment of radwaste generated in commercial nuclear power plants. The studies have been aimed at defining an integrated system that would be directly responsive to the rapid evolving needs of the industry for the volume reduction and solidification of low-level radwaste. The resulting General Electric Volume Reduction System (GEVRS) is an integrated system based on two processes: the first uses azeotropic distillation technology and is called AZTECH, and the second is controlled-air incineration...called INCA. The AZTECH process serves to remove water from concentrated salt solutions, ion exchange resins and filter sludge slurries and then encapsulates the dried solids into a dense plastic product. The INCA unit serves to reduce combustible wastes to ashes suitable for encapsulation into the same plastic product produced by AZTECH

  19. FY 2017 Stockpile Stewardship and Management Plan - Biennial Plan Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    This year’s summary report updates the Fiscal Year 2016 Stockpile Stewardship and Management Plan (FY 2016 SSMP), the 25-year strategic program of record that captures the plans developed across numerous NNSA programs and organizations to maintain and modernize the scientific tools, capabilities, and infrastructure necessary to ensure the success of NNSA’s nuclear weapons mission. The SSMP is a companion to the Prevent, Counter, and Respond: A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-2021) report, the planning document for NNSA’s nuclear threat reduction mission. New versions of both reports are published each year in response to new requirements and challenges. Much was accomplished in FY 2015 as part of the program of record described in this year’s SSMP. The science-based Stockpile Stewardship Program allowed the Secretaries of Energy and Defense to certify for the twentieth time that the stockpile remains safe, secure, and effective without the need for underground nuclear explosive testing. The talented scientists, engineers, and technicians at the three national security laboratories, the four nuclear weapons production plants, and the national security site are primarily responsible for this continued success. Research, development, test, and evaluation programs have advanced NNSA’s understanding of weapons physics, component aging, and material properties through first-of-a-kind shock physics experiments, along with numerous other critical experiments conducted throughout the nuclear security enterprise. The multiple life extension programs (LEPs) that are under way made progress toward their first production unit dates. The W76-1 LEP is past the halfway point in total production, and the B61-12 completed three development flight tests. Critical to this success is the budget. The Administration’s budget request for NNSA’s Weapons Activities has increased for all but one of the past seven years, resulting in a total increase of

  20. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  1. Strategic and tactiocal planning for managing national park resources

    Science.gov (United States)

    Daniel L. Schmoldt; David L. Peterson

    2001-01-01

    Each National Park Service unit in the United States produces a resource management plan (RMP) every four years or less. These plans constitute a strategic agenda for a park. Later, tactical plans commit budgets and personnel to specific projects over the planning horizon. Yet, neither planning stage incorporates much quantitative and analytical rigor and is devoid of...

  2. Mixed Waste Focus Area program management plan

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal

  3. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...... assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change...

  4. 300 Area Revitalization Project Management Plan

    International Nuclear Information System (INIS)

    Downey, H. D.

    1999-01-01

    The 300 Area Revitalization Team has been tasked with the responsibility to develop an integrated path forward for the 300 Area, as part of a commitment stemming from the 300 Area Disposition Workshop that was held on March 17, 1998. The integrated path forward that is needed must ensure that budget, schedule, and work scopes are complementary between the Programs that are involved in the 300Area. This Project Management Plan (PMP) defines the roles and responsibilities, and the overall approach, to development of a prioritized schedule for 300 Area activities that will achieve the end-state condition

  5. Development of a strategy for the management of PBMR spent fuel in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.W., E-mail: Schalk.Smith@necsa.co.z [South African Nuclear Energy Corporation Ltd (Necsa), Pretoria 0001 (South Africa); Bredell, P.J. [South African Nuclear Energy Corporation Ltd (Necsa), Pretoria 0001 (South Africa)

    2010-10-15

    South Africa is planning to expand its nuclear power generating capacity by deploying a number of pressurized-water reactors and pebble-bed modular reactors. It can be expected that this program will impact on the current and planned spent fuel and radioactive waste management systems in South Africa. This paper proposes an approach to develop a strategy for the management of PBMR spent fuel that would form an integral part of the overall national radwaste management system. The approach is expected to provide a conceptual spent fuel management strategy and will also highlight areas that need to be further developed, thus providing guidance for basic technology development.

  6. The department manager and effective human resource planning: an overview.

    Science.gov (United States)

    Arnold, Edwin; Pulich, Marcia

    2007-01-01

    Department managers in health care organizations play a pivotal role in ensuring the success of human resource (HR) planning. This article describes HR planning and its importance to the organization and department managers. Organizational support necessary for effective HR planning is also covered. The HR planning process is examined. Managerial responsibilities such as interviewing and performance appraisal and their relationship to HR planning are discussed.

  7. How to Manage and Plan Terminology: Creating Management TDBs

    Directory of Open Access Journals (Sweden)

    Gordana Jakić

    2016-09-01

    Full Text Available Scientific and technical terminology represents a very topical issue in economically and technologically dependent countries with small languages such as Serbian. The current terminological problems in the Serbian language, especially in specialized areas that are experiencing dynamic development, are: Anglicization of the language for special purposes, underdeveloped and unstable terminology, and lack of adequate and modern terminological and lexical resources. On the one hand, the terminological problems listed above are of concern to subject-field specialists, since inadequate and non-existent terminology significantly affects the representation, transfer and management of specialized knowledge and information. On the other hand, terminology and language planners point to the growing need for immediate and systematic intervention aimed at terminology harmonization, consolidation and standardization. In spite of the awareness, there is no systematic approach to the solving of terminological problems in Serbian. In addition, practical activities regarding the collection and organization of terminology are few and reduced to individual initiatives. Under the paradigm of language planning (LP-oriented terminology management (2, this paper is going to address a practical activity of terminology management: the creation of a Serbian management terminology database (TDB with equivalent terms in English. The paper will discuss the methodology of terminology work, potential obstacles in termbase creation, as well as potential benefits that such a resource would have on all its potential users: management specialists and practitioners, professional translators, and language and terminology planners. A particular focus will be placed on the potential significance that this kind of a database would have for terminology policy and planning in the Serbian language, on the one hand, and knowledge transfer and management, on the other hand.

  8. Tenneessee Valley Authority office of nuclear power management development plan

    International Nuclear Information System (INIS)

    Clements, L.L.

    1985-01-01

    The Tennessee Valley Authority's Management Development Plan is discussed and consists of an analysis of each managerial position, an analysis of each individual manager's and potential manager's qualifications and training and a comparison of the two. From this comparison two products are derived: a management replacement plan and an individual development plan for each nuclear employee. The process of the program is described in detail

  9. Evaluating the role of collaborative planning in BC's Parks and Protected Areas Management Planning process

    OpenAIRE

    Ronmark, Tracy

    2005-01-01

    BC's protected areas system has recently doubled in size as a result of land use planning across the province. Managing protected areas to meet many goals requires thoughtful planning that involves stakeholder participation and dispute resolution through the plan development and implementation stages. This research identifies the best practices for planning and evaluates protected areas management planning processes based on those criteria. Evaluative criteria were developed from a literature...

  10. MANAGEMENT PLANS AND THEIR IMPACT ON SCHOOL IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Ignacio Polo Martínez

    2016-06-01

    Full Text Available OECD (2015 states that management's leadership is a critical factor for implementing reforms and improving schools. Candidates are required to submit a management plan outlining the framework of a plan to be followed during their 4 year term. Despite the plan outlined in the proposal, the implicit "non aggression pact" between the participants (the teachers and the directors, who are teachers themselves, makes change difficult. As a result, management plans have little impact on improving methods of teaching and academic results achieved by the students. In this article we have tried to achieve three objectives: 1 analyze the relationship between the renewal, selection and appointment of a director with the management plan around our country, 2 analyze which aspects are those that, according to major international studies, should determine the content, development and evaluation of a management plan, and 3 to suggest how one could implement a management plan for an education center or school.

  11. Principles of effective USA federal fire management plans

    Science.gov (United States)

    Meyer, Marc D.; Roberts, Susan L.; Wills, Robin; Brooks, Matthew L.; Winford, Eric M.

    2015-01-01

    Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their consistency with guiding principles based on current science information and federal policy guidance, and provide recommendations for the development of future fire management plans. Based on our review, we recommend that future fire management plans be: (1) consistent and compatible, (2) collaborative, (3) clear and comprehensive, (4) spatially and temporally scalable, (5) informed by the best available science, and (6) flexible and adaptive. In addition, we identify and describe several strategic guides or “tools” that can enhance these core principles and benefit future fire management plans in the following areas: planning and prioritization, science integration, climate change adaptation, partnerships, monitoring, education and communication, and applied fire management. These principles and tools are essential to successfully realize fire management goals and objectives in a rapidly changing world.

  12. Measures for Management of Land Use Master Plan Released

    Institute of Scientific and Technical Information of China (English)

    Qian Fang; Li Caige

    2017-01-01

    On May 8,2017,the Measures for Management of Land Use Master Plan was released for enforcement by the Ministry of Land and Resources.The Measures clearly points out that a land use master plan is an essential part of the national spatial planning system and an important basis for implementing land use modes control and management,

  13. Development of a strategy for the management of PBMR spent fuel in South Africa - HTR2008-58047

    International Nuclear Information System (INIS)

    Smith, S. W.; Bredell, P. J.; Meyer, W. C. M. H.

    2008-01-01

    South Africa is planning to expand its nuclear power generating capacity by deploying a number of pressurized-water reactors and pebble-bed modular reactors. It can be expected that this program will impact on the current and planned spent fuel and radioactive waste management systems in South Africa. This paper proposes an approach to develop a strategy for the management of PBMR spent fuel that would contribute to the optimization of the overall national radwaste management system. The approach is expected to provide a conceptual spent fuel management strategy and will also highlight areas that need to be further developed, thus providing guidance for basic technology development. (authors)

  14. Cost-benefit analysis for environmental impacts and radwaste system for nuclear power plant

    International Nuclear Information System (INIS)

    Mun, K.N.; Yook, C.C.

    1982-01-01

    During operation of nuclear power plant, radioactive material is inevitably formed. This radioactive material must be safely processed by radwaste system so that essentially zero activity is released to the environment. However zero released activity is not really practicable and population doses resulted from released activity are proportional to total annual cost for the radwaste system. In this study, cost-benefit analysis for the radwaste system of the Korean Nuclear Units 5 and 6 is performed to evaluate the optimization between the total annual cost for the radwaste system and population doses within 80 km from the plants. From the analysis, the following results are obtained; 1. the total population dose is estimated 4.04 x 10 3 man-rem/year, 2. total annual cost for the radwaste system is required $ 1.74 x 10 6 , 3. cost-benefit ratio is estimated $ 429/man-rem. (Author)

  15. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  16. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  17. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  18. Neutralized current acid waste consolidation management plan

    International Nuclear Information System (INIS)

    Powell, W.J.; Brown, R.G.; Galbraith, J.; Jensen, C.; Place, D.E.; Reddick, G.W.; Zuroff, W.; Brothers, A.J.

    1996-01-01

    The scope of this evaluation is to recommend a management plan for the high-heat tank waste, including neutralized current acid waste (NCAW) in AY and AZ Tank Farms, and tank C-106 waste. The movement of solids, liquids and salt cake in the designated tank farms is included. Decision analysis techniques were used to determine a recommended alternative. The recommended course of action was replacement of a 75-hp mixer pump in tank AY-102 and in-tank concentration of tank AZ-102 supernate. The alternative includes transfer fo tank C-106 sludge to tank AY-102, then transfer to tank AY-102 and tank C-106 sludge to tank AZ-101 using the new 75-hp mixer pump installed in tank AY-102. Tank AZ-101 becomes a storage tank for high-level waste (HLW) sludge, with the capacity to mix and transfer sludge as desired

  19. LLNL Site 200 Risk Management Plan

    International Nuclear Information System (INIS)

    Pinkston, D.; Johnson, M.

    2008-01-01

    It is the Lawrence Livermore National Laboratory's (LLNL) policy to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage using the Integrated Safety Management System. The environment, safety, and health are to take priority in the planning and execution of work activities at the Laboratory. Furthermore, it is the policy of LLNL to comply with applicable ES and H laws, regulations, and requirements (LLNL Environment, Safety and Health Manual, Document 1.2, ES and H Policies of LLNL). The program and policies that improve LLNL's ability to prevent or mitigate accidental releases are described in the LLNL Environment, Health, and Safety Manual that is available to the public. The laboratory uses an emergency management system known as the Incident Command System, in accordance with the California Standardized Emergency Management System (SEMS) to respond to Operational Emergencies and to mitigate consequences resulting from them. Operational Emergencies are defined as unplanned, significant events or conditions that require time-urgent response from outside the immediate area of the incident that could seriously impact the safety or security of the public, LLNL's employees, its facilities, or the environment. The Emergency Plan contains LLNL's Operational Emergency response policies, commitments, and institutional responsibilities for managing and recovering from emergencies. It is not possible to list in the Emergency Plan all events that could occur during any given emergency situation. However, a combination of hazard assessments, an effective Emergency Plan, and Emergency Plan Implementing Procedures (EPIPs) can provide the framework for responses to postulated emergency situations. Revision 7, 2004 of the above mentioned LLNL Emergency Plan is available to the public. The most recent revision of the LLNL Emergency Plan LLNL-AM-402556, Revision 11, March

  20. Configuration management plan for the GENII software

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1994-01-01

    The GENII program calculates doses from radionuclides released into the environment for a variety of possible exposure scenarios. The user prepares an input data file with the necessary modelling assumptions and parameters. The program reads the user's input file, computes the necessary doses and stores these results in an output file. The output file also contains a listing of the user's input and gives the title lines from the data libraries which are accessed in the course of the calculations. The purpose of this document is to provide users of the GENII software with the configuration controls which are planned for use by WHC in accordance with WHC-CM-3-10. The controls are solely for WHC employees. Non-WHC individuals are not excluded, but no promise is made or implied that they will be informed of errors or revisions to the software. The configuration controls cover the GENII software, the GENII user's guide, the list of GENII users at WHC, and the backup copies. Revisions to the software must be approved prior to distribution in accordance with this configuration management plan

  1. The flood risk management plan: towards spatial water governance

    NARCIS (Netherlands)

    Hartmann, T.; Driessen, P.

    2017-01-01

    The flood risk management plan challenges both water engineers and spatial planners. It calls for a new mode of governance for flood risk management. This contribution analyses how this mode of governance distinguishes from prevalent approaches. Spatial planning and water management in Europe are

  2. Kirtland's Warbler Wildlife Management Area Comprehensive Conservation Plan

    Data.gov (United States)

    Department of the Interior — The Comprehensive Conservation Plan (CCP) for Kirtland’s Warbler Wildlife Management Area (WMA) was signed on September 10, 2009, completing a planning process that...

  3. Connected Vehicle Pilot Deployment Program Phase 2, Data Management Plan

    Science.gov (United States)

    2017-10-17

    This document represents a data management plan that delineates all of the data types and data treatment throughout the New York City Connected Vehicle Pilot Deployment (NYC CVPD). This plan includes an identification of the New York City connected v...

  4. FY 2014 - Stockpile and Stewardship and Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year Stockpile Stewardship and Management Plan (SSMP) is a key planning document for the nuclear security enterprise.

  5. Community participation in fire management planning: The Trinity county fire safe council's fire plan

    Science.gov (United States)

    Yvonne Everett

    2008-01-01

    In 1999, Trinity County CA, initiated a participatory fire management planning effort. Since that time, the Trinity County Fire Safe Council has completed critical portions of a fire safe plan and has begun to implement projects defined in the plan. Completion of a GIS based, landscape scale fuels reduction element in the plan defined by volunteer fire fighters, agency...

  6. Developing and assessing accident management plans for nuclear power plants

    International Nuclear Information System (INIS)

    Hanson, D.J.; Johnson, S.P.; Blackman, H.S.; Stewart, M.A.

    1992-07-01

    This document is the second of a two-volume NUREG/CR that discusses development of accident management plans for nuclear power plants. The first volume (a) describes a four-phase approach for developing criteria that could be used for assessing the adequacy of accident management plans, (b) identifies the general attributes of accident management plans (Phase 1), (c) presents a prototype process for developing and implementing severe accident management plans (Phase 2), and (d) presents criteria that can be used to assess the adequacy of accident management plans. This volume (a) describes results from an evaluation of the capabilities of the prototype process to produce an accident management plan (Phase 3) and (b), based on these results and preliminary criteria included in NUREG/CR-5543, presents modifications to the criteria where appropriate

  7. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  8. Hanford Sampling Quality Management Plan (HSQMP)

    International Nuclear Information System (INIS)

    Hyatt, J.E.

    1995-01-01

    This document provides a management tool for evaluating and designing the appropriate elements of a field sampling program. This document provides discussion of the elements of a program and is to be used as a guidance document during the preparation of project and/or function specific documentation. This document does not specify how a sampling program shall be organized. The HSQMP is to be used as a companion document to the Hanford Analytical Services Quality Assurance Plan (HASQAP) DOE/RL-94-55. The generation of this document was enhanced by conducting baseline evaluations of current sampling organizations. Valuable input was received from members of field and Quality Assurance organizations. The HSQMP is expected to be a living document. Revisions will be made as regulations and or Hanford Site conditions warrant changes in the best management practices. Appendices included are: summary of the sampling and analysis work flow process, a user's guide to the Data Quality Objective process, and a self-assessment checklist

  9. Technical Assistance Contractor management plan. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) as the prime contractor and three teaming partner subcontractors: Roy F. Weston, Inc. (RFW), AGRA Earth and Environmental, Inc. (AGRA), and Geraghty and Miller, Inc. (G and M). The TAC contract's scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both Surface and Ground Water Projects. The TAC team supports the DOE in completing surface remedial action and initiating ground water remediation work for start-up, characterization, compliance planning, design, construction oversight, and remedial operations. The TAC provides the DOE UMTRA Project Team with a dedicated management, scientific, and technical resource base in Albuquerque, New Mexico, which is supplemented by corporate resources. A carefully developed and maintained staff of technical experts is available to assess, analyze, develop, and execute cost-effective solutions to the demanding technical and institutional problems presented by the UMTRA Project

  10. Technical Assistance Contractor management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) as the prime contractor and three teaming partner subcontractors: Roy F. Weston, Inc. (RFW), AGRA Earth and Environmental, Inc. (AGRA), and Geraghty and Miller, Inc. (G and M). The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both Surface and Ground Water Projects. The TAC team supports the DOE in completing surface remedial action and initiating ground water remediation work for start-up, characterization, compliance planning, design, construction oversight, and remedial operations. The TAC provides the DOE UMTRA Project Team with a dedicated management, scientific, and technical resource base in Albuquerque, New Mexico, which is supplemented by corporate resources. A carefully developed and maintained staff of technical experts is available to assess, analyze, develop, and execute cost-effective solutions to the demanding technical and institutional problems presented by the UMTRA Project.

  11. Planning and management of logistic cycle

    Directory of Open Access Journals (Sweden)

    V. N. Kudashkin

    2017-01-01

    Full Text Available We are considering planning and managing of logistic cycle, its impact on the content of the main processes that comprise the cycle to implement the order for the supply of material resources for industrial consumption, as well as its practical use, effectiveness, and prospects.This research paper is made on the basis of the information, received from textbooks and scientific literature of domestic and foreign authors, as well as from other sources. The main methods, used in this work are as follows: method of system analysis, method of the theory of operations’ research, prognostics. Application of these methods allows forecasting material flows, creating the integrated management systems and controlling their movements, developing systems of logistic service, to optimize supply stock and solve a number of other tasks.A logistic approach to form a modern system of logistics will save time, reduce costs for the purchase of material resources, their delivery and storage.In modern conditions of the market economy, the considered time parameters of the logistic chain are essential for manufacturing enterprises because their records significantly increase the efficiency of the logistical system.Logistics is equipped with a special complex of economic and mathematical models, the main feature of which is the adaptability, i.e. ability to solve complex optimization problems in the operational mode and in the process of the management of material flows. The primary role of these models in a market economy is to identify quickly points of compromise.Dynamics to functional cycles gives the necessity to align resource needs «input» and «output». «Input» functional cycle is an order that specifies requirements for a product or service. Logistical system, which is able to complete fully the order of any size, as a rule, needs in the «combined» functional cycles, including different transactions and operations at different stages. The «output» of

  12. Urban Land Use Classifcation Linked to Planning Management

    Institute of Scientific and Technical Information of China (English)

    QI Dongjin; ZHOU Jianyun; SHI Ke

    2012-01-01

    By analyzing the applicability of the new Code for Classification of Urban Land Use and Planning Standards of Development Land from the angle of planning management,this paper points out the conflicts between the planning and land use management institutions.Referring to the experience of land use control in the US and the UK through zoning and case law respectively,this paper puts forward that the urban land use classification should take into consideration the characteristics of the actual urban planning system and the possibility of mixed land use due to the uncertainty of urban development,and be linked to the institutions of planning and land supply management.

  13. Resource management plan for the Oak Ridge Reservation. Volume 27, Wildlife Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Parr, P.D. [Oak Ridge National Lab., TN (United States); Evans, J.W. [Tennessee Wildlife Resources Agency, Knoxville, TN (United States)

    1992-06-01

    A plan for management of the wildlife resources on the US Department of Energy`s Oak Ridge Reservation is outlined in this document. Management includes wildlife population control (hunts, trapping, and removal), handling specific problems with wildlife, restoration of species, coordination with researchers on wildlife studies, preservation and management of habitats, and law enforcement. Wildlife resources are divided into five categories, each with a specific set of objectives and procedures for obtaining these objectives. These categories are (1) species-richness management to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species management to produce selected species in desired numbers on designated land units; (3) management of game species for research, education, recreation, and public safety, (4) endangered species management designed to preserve and protect both the species and habitats critical to the survival of those species; and (5) pest management. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency and the Oak Ridge National Laboratory`s Environmental Sciences Division.

  14. Classroom Management and Lesson Planning(4)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Lesson PlanningTask 1As teachers,we all need to plan our lessons before we teach.Make a list of things that you think need tobe included in a lesson plan.Then compare and discuss your list with another teacher.Also think about reasonswhy we need to plan our lessons.

  15. Classroom Management and Lesson Planning(4)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Lesson Planning Task 1 As teachers,we all need to plan our lessons before we teach.Make a list of things that you think need to be included in a lesson plan.Then compare and discuss your list with another teacher.Also think about reasons why we need to plan our lessons.

  16. Tank waste remediation system programmatic risk management plan

    International Nuclear Information System (INIS)

    Seaver, D.A.

    1995-01-01

    This risk management plan defines the approach to be taken to managing risks in the Tank Waste Remediation System (TWRS) program. It defines the actions to be taken at the overall program level, and the risk management requirements for lower-level projects and other activities. The primary focus of this plan is on ''programmatic'' risks, i.e., risks with respect to the cost, schedule, and technical performance of the program. The plan defines an approach providing managers with the flexibility to manage risks according to their specific needs, yet creates. The consistency needed for effectiveness across the program. The basic risk management approach uses a risk management list for the program, each project, and additional lower-level activities. The risk management list will be regularly reviewed and updated by appropriate level of management. Each list defines key risks, their likelihood and consequences, risk management actions to be taken, responsible individuals, and other management information

  17. 75 FR 71730 - General Management Plan/Wilderness Study/Off-Road Vehicle Management Plan, Final Environmental...

    Science.gov (United States)

    2010-11-24

    ... management under alternative B would be to enable visitor participation in a wide variety of outdoor... DEPARTMENT OF THE INTERIOR National Park Service [2031-A046-409] General Management Plan/Wilderness Study/Off-Road Vehicle Management Plan, Final Environmental Impact Statement, Big Cypress National...

  18. Project planning and project management of Baseball II-T

    International Nuclear Information System (INIS)

    Kozman, T.A.; Chargin, A.K.

    1975-01-01

    The details of the project planning and project management work done on the Baseball II-T experiment are reviewed. The LLL Baseball program is a plasma confinement experiment accomplished with a superconducting magnet in the shape of a baseball seam. Both project planning and project management made use of the Critical Path Management (CPM) computer code. The computer code, input, and results from the project planning and project management runs, and the cost and effectiveness of this method of systems planning are discussed

  19. Advanced liquid radwaste decontamination by using a centrifuge system

    International Nuclear Information System (INIS)

    Tscheschlok, K.; Szukala, M.

    1999-01-01

    Waste water streams basically include undissolved suspended solids which contain almost the main part of the activated products. The centrifuge system, called LRS (Liquid Radwaste Treatment System), is able to remove these solids from the liquid content and fills the dewatered product into disposal containers. For this purpose a chemical pre-treatment step is often used for selective precipitation of special radionuclides and flocculents to agglomerate smaller sized particles (colloids) to make them separatable with the LRS. The plant arrangement, the process optimization and the collected operational experiences are described. 2 refs., 1 tab., 8 figs

  20. The remote methods for radwaste and SNF control

    International Nuclear Information System (INIS)

    Ivanov, O; Stepanov, V; Danilovich, A; Potapov, V

    2017-01-01

    With the examples of developments carried out in the Kurchatov Institute and by the world leaders in the field the presentation considers the devices and methods to obtain remotely information on the distribution of radioactivity in radwaste and SNF. It describes the different types of light portable gamma cameras. The application of scanning spectrometric systems is considers also. The methods of recording UV radiation for detection of alpha contamination with the luminescence of air are presented. We discuss the scope and tasks that can be solved using remote and non-destructive methods. (paper)

  1. Revisiting a programmatic planning approach: managing linkages between transport and land use planning

    NARCIS (Netherlands)

    Busscher, Tim; Tillema, Taede; Arts, Eric

    2013-01-01

    The body of knowledge on transport and land use planning shows considerable overlap with management theories and practices. Notable examples can be found in project management and strategic management. Recently, in the field of management theory, the idea of programme management has gained

  2. The strategic planning of health management information systems.

    Science.gov (United States)

    Smith, J

    1995-01-01

    This paper discusses the roles and functions of strategic planning of information systems in health services. It selects four specialised methodologies of strategic planning for analysis with respect to their applicability in the health field. It then examines the utilisation of information planning in case studies of three health organisations (two State departments of health and community services and one acute care institution). Issues arising from the analysis concern the planning process, the use to which plans are put, and implications for management.

  3. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    Science.gov (United States)

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  4. Development of Kentucky's highway incident management strategic plan.

    Science.gov (United States)

    2005-05-01

    ven though Kentucky has undertaken many initiatives to improve specific aspects of incident management, there has never been a plan that establishes an overall framework for a systematic, statewide, multi-agency effort to improve the management of hi...

  5. Guidelines for developing transportation management plans in Virginia.

    Science.gov (United States)

    2005-01-01

    A transportation management plan (TMP) is a comprehensive program of traffic control, communication, operation, and demand management strategies designed to maintain acceptable levels of traffic flow in work zones. A systematic procedure and/or check...

  6. AMADEUS Project Deliverable 1.2: Data Management Plan

    OpenAIRE

    Ana Belén Cristobal

    2018-01-01

    This document describes the initial Data Management Plan (DMP) for AMADEUS project. It addresses Project administration data collected as part of the execution and management of a disruptive research that could be in the market in the incoming years.

  7. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  8. Wilderness management through voluntary behavior change: an evaluation of the Pemigewasset Wilderness Management Plan

    Science.gov (United States)

    John M. Halstead; Cindy M. Brown; Albert E. Luloff; Bruce E. Lindsay

    1992-01-01

    The management plan for the Pemigewasset Wilderness Area of New Hampshire represents a departure from traditional plans. Results of this study indicate limited evidence of the Pemigewasset Wilderness Management Plan (PWMP), as currently implemented, having a large direct impact on diverting hikers from their planned destinations and promoting dispersed usage and low...

  9. IX Disposition Project - project management plan

    International Nuclear Information System (INIS)

    Choi, I.G.

    1994-01-01

    This report presents plans for resolving saving and disposal concerns for ion exchange modules, cartridge filters and columns. This plan also documents the project baselines for schedules, cost, and technical information

  10. Radwastes and public ethics: issues and imperatives

    International Nuclear Information System (INIS)

    Maxey, M.M.

    1978-01-01

    This paper, which was presented at the Health Physics Society annual meeting at Atlanta, conclude that the problem of radioactive waste management is neither unique and unprecedented, nor has it been properly formulated from an ethical perspective, and that to recover and maintain a balanced perspective on this particular biohazard and to introduce some corrective perception in the public mind becomes an ethical imperative. (author)

  11. Kaloko-Honokohau National Historical Park Air Tour Management Plan planning and NEPA scoping document

    Science.gov (United States)

    2004-03-03

    The Federal Aviation Administration (FAA), in cooperation with the National Park Service (NPS), has initiated the development of an Air Tour Management Plan (ATMP) for Kaloko-Honokohau Historic Park pursuant to the National Parks Air Tour Management ...

  12. Kalaupapa National Historic Park Air Tour Management Plan planning and NEPA scoping study

    Science.gov (United States)

    2005-03-03

    The Federal Aviation Administration (FAA), in cooperation with the National Park Service (NPS), has initiated the development of an Air Tour Management Plan (ATMP) for Kalaupapa Historic Park pursuant to the National Parks Air Tour Management Act of ...

  13. Planning construction of integrative schedule management for nuclear power project

    International Nuclear Information System (INIS)

    Zeng Zhenglin; Wang Wenying; Peng Fei

    2012-01-01

    This paper introduces the planning construction of integrative schedule management for Nuclear Power Project. It details schedule management system and the requirement of schedulers and the mode of three schedule management flats. And analysis it combing with the implementation of construction water and all special schedules before FCD to further propose the improving and researching direction for the integrative schedule management. (authors)

  14. Succession planning for RNs: implementing a nurse management internship.

    Science.gov (United States)

    Wendler, M Cecilia; Olson-Sitki, Kristi; Prater, Marsha

    2009-01-01

    The nursing shortage affects all levels, including the pivotal role of nurse managers, who may find themselves functioning in a complex, stressful work environment. In this increasingly difficult milieu, succession planning for nurse manager turnover is imperative. The authors describe an evidence-based, theoretically driven nurse management internship that allows staff nurses to explore the nurse manager role.

  15. Solid radwaste characterization at surry and North Anna Power Stations

    International Nuclear Information System (INIS)

    Lippard, D.W.

    1987-01-01

    This paper describes a characterization of the solid radwaste generated at Virginia Power's North Anna and Surry power stations. The primary focus of this characterization was dry active waste (DAW). The characterization, covering the 21-month period from January 1985 through September 1986, was based on information in the station's health physics procurement records, radwaste shipping records, and from interviews with station personnel. The procurement records were the principal source of information for DAW. They were reviewed to determine the quantities of various materials, purchased during the study period, that were expected to become DAW. This provides an upper limit on the quantity in the waste for several major DAW components and a basis for the total amount of other components in the waste. The approach to characterizing DAW discussed in this paper could be implemented and regularly updated by utilizing a computerized procurement records system. If a use code (i.e., contaminated or noncontaminated) is associated with each stock requisition, a characterization could be performed by a computer run. This approach would help track minimization effort effectiveness and would refine the characterization of DAW considerably

  16. Clay minerals in sandstone uranium deposits: radwaste applications

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1990-01-01

    Clay minerals play an important role in the genesis of uranium deposits in sandstones. They incorporate the rate earths (REE), U, Sb, Th, Cs, Rb, Sr, Y, Ba, and even small amounts of chalcophiles. These minerals possess analog elements for many of the radwaste fission products as well as actinides and some actinide daughters. In sandstone uranium deposits, clay minerals are also associated with sulfide minerals, usually pyrite, and organic carbonaceous matter. The primary clay minerals are usually smectites, illites, chlorites and mixed layer varieties. The integrity of these clay minerals is demonstrated by their retention of formational-mineralization ages determined by Rb-Sr geochronologic investigation of the Grants Mineral Belt of the United States. The importance of the clay minerals as analog for parts of the multi-barrier concept in radwaste disposal is their ability to impede water penetration into - and movement of key elements out of uranium rich zones. The clay minerals further sorb and in other ways incorporate into their structures many fission products and actinide analogs from man-made nuclear wastes. 22 refs., 1 fig., 3 tabs

  17. Nurse manager succession planning: synthesis of the evidence.

    Science.gov (United States)

    Titzer, Jennifer; Phillips, Tracy; Tooley, Stephanie; Hall, Norma; Shirey, Maria

    2013-10-01

    The literature supporting nurse manager succession planning is reviewed and synthesised to discover best practice for identifying and developing future nurse managers. Healthcare succession planning practices are lacking. Nurse managers are historically selected based on clinical skills and lack formal leadership preparation. A systematic literature search appraises and summarises the current literature supporting nurse manager succession planning. Multiple reviewers were used to increase the reliability and validity of article selection and analysis. New nurse managers require months to adapt to their positions. Deliberate nurse manager succession planning should be integrated in the organisation's strategic plan and provide a proactive method for identifying and developing potential leaders. Organisations that identify and develop internal human capital can improve role transition, reduce nurse manager turnover rates and decrease replacement costs. Despite the clear benefits of succession planning, studies show that resource allocation for proactive, deliberate development of current and future nurse leaders is lacking. Additionally, systematic evaluation of succession planning is limited. Deliberate succession planning efforts and appropriate resource allocation require strategic planning and evaluation methods. Detailed evaluation methods demonstrating a positive return on investment utilising a cost-benefit analysis and empirical outcomes are necessary. © 2013 John Wiley & Sons Ltd.

  18. The Marketing Plan: An Integrative Device for Teaching Marketing Management.

    Science.gov (United States)

    Berdine, W. R.; Petersen, James C.

    1980-01-01

    The importance of the marketing plan is stressed as an integrative device for teaching marketing management, and a structure is presented to assist students in designing a marketing plan. Components of this plan include marketing objectives, targeting market and buying motives, external environment and competition, product, price, and promotion.…

  19. Strategic planning applied to quality in asthma management for children.

    Science.gov (United States)

    Goonan, K J; Healy, J M; Jordan, H S; Zazzali, J L; Horowitz, M

    1993-01-01

    This strategic plan translates the HCHP vision statement into a working plan for one major clinical condition--asthma in children. It is a working plan for clinicians and managers across specialties and levels. The results of the projects will improve in a measurable way significant clinical practice and outcomes, in keeping with the FY 1993 strategic goals.

  20. Risk management plans as a tool for proactive pharmacovigilance

    DEFF Research Database (Denmark)

    Vermeer, N S; Duijnhoven, R G; Straus, S M J M

    2014-01-01

    Risk Management Plans (RMPs) have become a cornerstone in the pharmacovigilance of new drugs in Europe. The RMP was introduced in 2005 to support a proactive approach in gaining knowledge on safety concerns through early planning of pharmacovigilance activities. However, the rate at which...... of uncertainties, suggests that opportunities for optimization exist while ensuring feasible and risk-proportionate pharmacovigilance planning....

  1. Strategic planning for health care management information systems.

    Science.gov (United States)

    Rosenberger, H R; Kaiser, K M

    1985-01-01

    Using a planning methodology and a structured design technique for analyzing data and data flow, information requirements can be derived to produce a strategic plan for a management information system. Such a long-range plan classifies information groups and assigns them priorities according to the goals of the organization. The approach emphasizes user involvement.

  2. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares the in...

  3. 40 CFR 60.55c - Waste management plan.

    Science.gov (United States)

    2010-07-01

    ... management plan shall identify both the feasibility and the approach to separate certain components of solid... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management plan. 60.55c Section 60.55c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...

  4. 40 CFR 35.2023 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  5. Issues of governance in water resource management and spatial planning

    NARCIS (Netherlands)

    Rocco de Campos Pereira, R.C.; Schweitzer, R.

    2013-01-01

    This paper describes governance arrangements in regional spatial planning and water resources management at the regional level from a normative point of view. It discusses the need to integrate spatial planning and resources management in order to deliver socially sustainable integral territorial

  6. Uranium Mill Tailings Remedial Action Project surface project management plan

    International Nuclear Information System (INIS)

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  7. 14 CFR 136.39 - Air tour management plans (ATMP).

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Air tour management plans (ATMP). 136.39... management plans (ATMP). (a) Establishment. The Administrator, in cooperation with the Director, shall... of decision. (d) Procedure. In establishing an ATMP for a national park or tribal lands, the...

  8. The history of radwaste at Zion Station - its problems and solutions

    International Nuclear Information System (INIS)

    Bennett, K.J.

    1982-01-01

    Zion Station is located adjacent to Lake Michigan about 40 miles north of Chicago. The twin Zion units are four loop PWR's each rated at 1080 MWE with units 1 and 2 beginning commercial operation in 1973 and 1974 respectively. The radwaste system at Zion Station was designed in 1967 when radwaste operations of a nuclear power plant received little consideration. At Zion, the system was to be automated with occasional operator interface to pump down a tank when full or to solidify waste. The solidification equipment purchased was designed for the 40 year life of the station; due to the under estimation of the input to radwaste, this was not the case

  9. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  10. The 2000 DOD Financial Management Improvement Plan

    National Research Council Canada - National Science Library

    2001-01-01

    The Federal Financial Management Improvement Act of 1996 requires DoD financial management systems to comply substantially with Federal financial management system requirements, Federal accounting standards, and the U.S...

  11. Environmental Restoration Remedial Action Program records management plan

    International Nuclear Information System (INIS)

    Michael, L.E.

    1991-07-01

    The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan [(FOMP) DOE-RL 1989] describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document [(QARD) DOE-RL 1991], provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig

  12. A ten-step process to develop case management plans.

    Science.gov (United States)

    Tahan, Hussein A

    2002-01-01

    The use of case management plans has contained cost and improved quality of care successfully. However, the process of developing these plans remains a great challenge for healthcare executives, in this article, the author presents the answer to this challenge by discussing a 10-step formal process that administrators of patient care services and case managers can adapt to their institutions. It also can be used by interdisciplinary team members as a practical guide to develop a specific case management plan. This process is applicable to any care setting (acute, ambulatory, long term, and home care), diagnosis, or procedure. It is particularly important for those organizations that currently do not have a deliberate and systematic process to develop case management plans and are struggling with how to improve the efficiency and productivity of interdisciplinary teams charged with developing case management plans.

  13. How to dispose of the other radwaste

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    While the US Department of Energy searches for a repository for the highly radioactive spent fuel from nuclear power plants, federal law requires the states by January to have plans for establishing regional landfill sites for the disposal of so-called low-level radioactive waste. But a recent report from the Radioactive Waste Campaign in New York calls for ending the landfill approach to disposal of low-level waste in order to avoid the leakage and contamination of water supplies that have wracked existing landfills. According to physicist Marvin Resnikoff, author of the report, low-level waste is a misnomer for what often includes extremely long-lived radioactive waste requiring more careful disposal. Because 99% of the radioactivity and 70% of the volume of low-level waste comes from power reactors, Resnikoff advocates disposal on the plant site. He also advocates separation of wastes by their half-life and reclassification as high level of the long-lived radioactive waste from decommissioned plants. The much smaller volume of industrial and institutional waste should be supercompacted and also transferred to the plants for storage. The report further recommends a Manhattan Project-style effort to deal with the problem of radioactive waste as a whole

  14. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  15. Configuration Management Plan for the Tank Farm Contractor

    Energy Technology Data Exchange (ETDEWEB)

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  16. Configuration Management Plan for the Tank Farm Contractor

    International Nuclear Information System (INIS)

    WEIR, W.R.

    2000-01-01

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments

  17. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Science.gov (United States)

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  18. Transportation Demand Management Planning At Multi-Tenant Buildings, An Example Of Tdm Planning During Project

    Science.gov (United States)

    1988-09-01

    THIS GUIDE FOR DEVELOPERS, BUILDING OWNERS AND BUILDING MANAGERS IS ONE IN A SERIES OF SAMPLES OF TDM PLANS THAT ILLUSTRATE THE DESIGN AND PROPOSED APPLICATION OF TDM STRATEGIES. THIS SAMPLE PLAN WAS PREPARED FOR A FICTITIOUS BUILDING MANAGER NEAR DO...

  19. Planning and management of cloud computing networks

    Science.gov (United States)

    Larumbe, Federico

    The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a

  20. Data management and processing plan, Department of Applied Geodesy

    International Nuclear Information System (INIS)

    1992-08-01

    This plan outlines Data Management and Data Processing requirements of the Department of Applied Geodesy (DAG) and presents the plan to meet these requirements (These requirements are derived from the functional needs of the Department to meet the SSCL alignment tolerances and schedules). In addition, this document presents a schedule for the implementation of this plan. This document is an integral part of the Alignment Plan of the SSCL

  1. Manager's assistant systems for space system planning

    Science.gov (United States)

    Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James

    1992-01-01

    This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.

  2. In situ evaluation of radwaste gamma activities

    International Nuclear Information System (INIS)

    Dulama, Cristian; Toma, Al.; Dobrin, R.; Pavelescu, Margarit

    2003-01-01

    There are certain limitations concerning the usage of standard source method for efficiency calibration of gamma-ray spectrometers measuring in extended geometry conditions. These limitations arise from the great diversity of forms and sizes of the objects which are to be measured during decommissioning and radioactive waste management activities. The INR - Pitesti operates a radioactive waste management facilities for both its own necessities and for providing external services. This facility is able to perform conditioning of liquid and solid wastes for interim storage disposal. During the conditioning operations there are certain stages when the radioactive measurement of the storage drums is demanded. We developed a gamma ray spectrometry equipment using a portable MCA Canberra INSPECTOR, a HPGe detector and an INR manufactured collimator. We are using a semiempirical method to calibrate the gamma ray spectrometer for such measurements. A program was written in Visual Basic language and includes a graphical interface for parameters input and data output. The input parameters are stored in text files, which can be loaded, modified or saved on disk as desired. The program was tested to establish the stability of MC simulation and the sensitivity to the input parameters. During the programming process it was possible to verify some code sequences and the results obtained showed that the model used was appropriate. To find out the optimal number of MC histories, which have to be modelled to obtain results of sufficient accuracy, the program was repeatedly run by changing only the number of histories. The relative deviation to the mean of the effective solid angle was calculated. The density of the source material as well as its composition can be changed by input. For comparison the efficiency calibration curves for sources materials having the same elemental composition but different densities ranging from 10 to 1000 kg/m 3 are drawn. The activities of the

  3. Issues of governance in water resource management and spatial planning

    OpenAIRE

    Rocco de Campos Pereira, R.C.; Schweitzer, R.

    2013-01-01

    This paper describes governance arrangements in regional spatial planning and water resources management at the regional level from a normative point of view. It discusses the need to integrate spatial planning and resources management in order to deliver socially sustainable integral territorial management. To accomplish this, the Metropolitan Area of São Paulo (MASP) was analysed as a case study, in order to demonstrate the challenges met by public administrators and planners regarding the ...

  4. Radwaste minimization successes at Duke Power Company

    International Nuclear Information System (INIS)

    Lan, C.D.; Johnson, G.T.; Groves, D.C.; Smith, T.A.

    1996-01-01

    At Duke Power Company, open-quotes Culture Changeclose quotes is a common term that we have used to describe the incredible transformation. We are becoming a cost conscious, customer driven, highly competitive business. Nowhere has this change been more evident then in the way we process and dispose of our solid radioactive waste. With top-down management support, we have used team-based, formalized problem solving methods and have implemented many successful waste minimization programs. Through these programs, we have dramatically increased employees' awareness of the importance of waste minimization. As a result, we have been able to reduce both our burial volumes and our waste processing and disposal costs. In June, 1994, we invited EPRI to conduct assessments of our waste minimization programs at Oconee and Catawba nuclear stations. Included in the assessments were in-depth looks at contamination control, an inventory of items in the plant, the volume of waste generated in the plant and how it was processed, laundry reject data, site waste-handling operations, and plant open-quotes housekeepingclose quotes routines and process. One of the most important aspects of the assessment is the open-quotes dumpster dive,close quotes which is an evaluation of site dry active waste composition by sorting through approximately fifteen bags of radioactive waste. Finally, there was an evaluation of consumable used at each site in order to gain knowledge of items that could be standardized at all stations. With EPRI recommendations, we made several changes and standardized the items used. We have made significant progress in waste reduction. We realize, however, that we are aiming at a moving target and we still have room for improvement. As the price of processing and disposal (or storage) increases, we will continue to evaluate our waste minimization programs

  5. Evaluation of the processes used for the treatment of the hospitable radwastes containing Cs-137

    International Nuclear Information System (INIS)

    Peres, S.S.; Silva, J.J.G.

    1988-01-01

    This work presents a resume of results obtained in the treatment of radwastes containing Cs-137 from HNMD (Hospital Naval Marcilio Dias) and IRD (Instituto de Radioprotecao e Dosimetria), due to the radiological accident of Goiania. (author) [pt

  6. Nurse manager succession planning: A cost-benefit analysis.

    Science.gov (United States)

    Phillips, Tracy; Evans, Jennifer L; Tooley, Stephanie; Shirey, Maria R

    2018-03-01

    This commentary presents a cost-benefit analysis to advocate for the use of succession planning to mitigate the problems ensuing from nurse manager turnover. An estimated 75% of nurse managers will leave the workforce by 2020. Many benefits are associated with proactively identifying and developing internal candidates. Fewer than 7% of health care organisations have implemented formal leadership succession planning programmes. A cost-benefit analysis of a formal succession-planning programme from one hospital illustrates the benefits of the programme in their organisation and can be replicated easily. Assumptions of nursing manager succession planning cost-benefit analysis are identified and discussed. The succession planning exemplar demonstrates the integration of cost-benefit analysis principles. Comparing the costs of a formal nurse manager succession planning strategy with the status quo results in a positive cost-benefit ratio. The implementation of a formal nurse manager succession planning programme effectively reduces replacement costs and time to transition into the new role. This programme provides an internal pipeline of future leaders who will be more successful than external candidates. Using an actual cost-benefit analysis equips nurse managers with valuable evidence depicting succession planning as a viable business strategy. © 2017 John Wiley & Sons Ltd.

  7. Tank waste remediation system configuration management implementation plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program

  8. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  9. 31 CFR 206.6 - Cash management planning and review.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Cash management planning and review. 206.6 Section 206.6 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE MANAGEMENT OF FEDERAL AGENCY...

  10. Tank waste remediation system tank waste retrieval risk management plan

    International Nuclear Information System (INIS)

    Klimper, S.C.

    1997-01-01

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure

  11. Information System for Land-Use Planning and Management

    Institute of Scientific and Technical Information of China (English)

    YU Xiao; MIAO Fang

    2008-01-01

    In order to maintain the overall social interest in land use and improve the level of land administration, an information system for land-use planning and management (ISLUPM) was established, which is composed of presentation layer, business logic layer and data layer in the general structure. The application support platform of the ISLUPM, built based on COM, COM+ and .NET standard components, includes data engine, data management, assemblies, components management, operation management, and interface. Then, an elaboration was made on major functions of the ISLUPM, such as planning revision scheme, planning operation flow, digital processing, thematic analysis and inquiry, and preparation of the chart of reserved land resources. The developed system has been successfully applied to the land-use planning and management work of Longquanyi District, Chengdu, China. It may provide a reference for development of geographic information system (GIS) for land and resources.

  12. [Local planning: the speech of basic health care center manager].

    Science.gov (United States)

    Cubas, Márcia Regina

    2005-01-01

    As planning is understood as a management tool, this article offers an argument through the speech framework of Basic Health Care Center Managers in the city of Curitiba-PR, by means of the Collective Subject Speech Methodology on local planning aspects. Its purpose is to bring local managers to a reflection concerning their styles, practices and experiences, as well as to collaborate with central level leading teams towards building their planning processes in an upward, participatory, communicative and strategic way. Considerations of the speeches built from central ideas are presented: planning methodology; inter-sectoriality; territorial basis; team and community participation; training, autonomy and particular profile of local managers; the manager's agenda; and institutional culture.

  13. Finance and supply management project execution plan

    Energy Technology Data Exchange (ETDEWEB)

    BENNION, S.I.

    1999-02-10

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  14. Bitumen and cement solidifications of LL and ML liquid radwaste. The SGN experience

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Roux, P.

    1993-01-01

    The presentation is focused on the thin-film evaporator technology and the experience gained in the field of the NPPs and research centers on radwaste conditioning. As early as 1970, SGN was licensed by the CEA for the bituminization of LL and ML radwaste. With the support of EDF and COGEMA, SGN has been performing in depth research on cement solidification of borated concentrates and ion exchange resins generated by reactors or reprocessing plant since 1983

  15. Safety aspects of the design of a PWR gaseous radwaste treatment system using hydrogen recombiners

    International Nuclear Information System (INIS)

    Glibert, R.; Nuyt, G.; Herin, S.; Fossion, P.

    1978-01-01

    PWR Gaseous radwaste treatment system is essential for the reduction of impact on environment of the nuclear power plants. Decay tank system has been used for the retention of the radioactive gaseous fission products generated in the primary coolant. The use of a system combining decay tanks and hydrogen recombiner units is described in this paper. Accent is put on the safety aspects of this gaseous radwaste treatment facilitystudied by BN for a Belgian Power Plant. (author)

  16. Adoption of Building Information Modelling in project planning risk management

    Science.gov (United States)

    Mering, M. M.; Aminudin, E.; Chai, C. S.; Zakaria, R.; Tan, C. S.; Lee, Y. Y.; Redzuan, A. A.

    2017-11-01

    An efficient and effective risk management required a systematic and proper methodology besides knowledge and experience. However, if the risk management is not discussed from the starting of the project, this duty is notably complicated and no longer efficient. This paper presents the adoption of Building Information Modelling (BIM) in project planning risk management. The objectives is to identify the traditional risk management practices and its function, besides, determine the best function of BIM in risk management and investigating the efficiency of adopting BIM-based risk management during the project planning phase. In order to obtain data, a quantitative approach is adopted in this research. Based on data analysis, the lack of compliance with project requirements and failure to recognise risk and develop responses to opportunity are the risks occurred when traditional risk management is implemented. When using BIM in project planning, it works as the tracking of cost control and cash flow give impact on the project cycle to be completed on time. 5D cost estimation or cash flow modeling benefit risk management in planning, controlling and managing budget and cost reasonably. There were two factors that mostly benefit a BIM-based technology which were formwork plan with integrated fall plan and design for safety model check. By adopting risk management, potential risks linked with a project and acknowledging to those risks can be identified to reduce them to an acceptable extent. This means recognizing potential risks and avoiding threat by reducing their negative effects. The BIM-based risk management can enhance the planning process of construction projects. It benefits the construction players in various aspects. It is important to know the application of BIM-based risk management as it can be a lesson learnt to others to implement BIM and increase the quality of the project.

  17. Los Alamos National Laboratory emergency management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G.F.

    1998-07-15

    The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

  18. Natural Resource Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in

  19. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Directory of Open Access Journals (Sweden)

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  20. ACTDs: Management Plans as Predictors of Transition

    National Research Council Canada - National Science Library

    Phelps, Matthew; Wideman, Jeffrey S

    2007-01-01

    .... The methodology included case analysis of thirty-eight ACTD program business plans. Nineteen of the programs transitioned while the other nineteen were terminated either prior to the Military Unit Assessment (MUA...

  1. Research needs in transportation planning and management.

    Science.gov (United States)

    1977-01-01

    In 1974, legislation enacted by the General Assembly to expand the responsibilities and duties of the former Virginia Department of Highways, with the main new assignment being in the area of planning. The agency was now designated the Virginia Depar...

  2. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  3. Minimum radwaste system to support commercial operation-what equipment can be deferred

    International Nuclear Information System (INIS)

    Marshall, R.W.; Tafazzoli, M.M.

    1984-01-01

    Because of cash flow problems being experienced by utilities as nuclear power stations approach completion, areas of the plant for which the completion of the construction effort could be deferred past commercial operation should be reviewed. The radwaste treatment systems are prime candidates for such a deferral because of the availability, either temporary or permanent, of alternative treatment methods for the waste streams expected to be produced. In order to identify the radwaste equipment, components and associated hardware in the radwaste building which could be deferred past commercial operation, a study was performed by Impell Corporation to evaluate the existing radwaste treatment system and determine the minimum system necessary to support commercial operation of a typical BWR. The study identified the minimum-installed radwaste treatment system which, in combination with portable temporary equipment, would accommodate the waste types and quantities likely to be produced in the first few years of operation. In addition, the minimum-installed system had to be licensable and excessive radiation exposures should not be incurred during the construction of the deferred portions of the system after commercial operation. From this study, it was concluded that a significant quantity of radwaste processing equipment and the associated piping, valves and instrumentation could be deferred. The estimated savings, in construction manhours (excluding field distributables) alone, was over 102,000 M-H

  4. Approach for Assessing Human Intrusion into a Radwaste Repository

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess human intrusion into radwaste repository resulting from future human actions was proposed based on the common principals, requirements, and recommendations from IAEA, ICRP, and OECD/NEA, with the assumption that the intrusion occurs after loss of knowledge of the hazardous nature of the disposal facility. At first, the essential boundary conditions were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The essential premises were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The procedure to derive protective measures was also explained with four steps regarding how to derive safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be effectively used to reduce the potential for and/or consequence of human intrusion during entire processes of realization of disposal facility.

  5. 10CFR61 waste form conformance program for asphalted radwaste

    International Nuclear Information System (INIS)

    Kobran, M.J.; Guarini, W.J.

    1987-01-01

    With the enactment of Title 10, Code of Federal Regulation, Part 61, ''Licensing Requirements for Land Disposal of Radioactive Waste'' came the imposition of new requirements on licensees who dispose of radioactive waste via shallow land burial. Specifically, 10CFR61 both imposed a waste classification system requiring segregation of waste according to hazard and established waste performance characteristics required to enhance stability of the burial site. In order to provide licensees with guidance regarding implementation of applicable requirements of 10CFR61, the NRC low level Waste Licensing Branch issued two Technical Positions. To demonstrate compliance of asphalted radwaste produced with oxidized asphalt with 10CFR61 criteria and the NRC's Technical Position, five utilities combined resources. The five utilities sponsoring the program were Public Service Electric and Gas Company, Niagara Mohawk Power Company, Detroit Edison Company, New Hampshire Yankee, and Consumers Power Comany

  6. Sorption data base for performance assessment of radwaste repository

    International Nuclear Information System (INIS)

    Cho, Y.H.; Jung, J.; Lee, J.K.; Hahn, P.S.

    2001-01-01

    Sorption data base (SDB) provides readily available data for the performance assessment of radwaste repository when site-specific data are not available and/or more reference data are needed. The software developed in the Korea Atomic Energy Research Institute (KAERI), SDB-21C, is a graphic user interface (GUI) program that provides efficient and user friendly tools for evaluating the large amount of sorption data. The data base of distribution coefficients compiled in the program contains about 11,000 Nuclear Energy Agency (NEA) data and 2,000 KAERI data up to now while the addition of new data is under progress. Furthermore, the parametric model and its compiled data sets are also included in SDB-21C. (author)

  7. The development of radwaste policy and the Nirex programme

    International Nuclear Information System (INIS)

    Folger, M.

    1993-01-01

    Radwaste policy has had a chequered past in this country and although some of the blame has occasionally been laid at our door, three things sound be borne in mind, the context within which Nirex has worked and must continue to work, many of the ''myths'' about Nirex, and assurance that there is a well structured programme for stepwise investigation, and potential development, at Sellafield. Through that solution the waste producers will be paying real money to meet the requirement in the present generation. I aim to demonstrate that the United Kingdom (UK) programme for deep disposal is on track and compares well with the programmes which other nuclear nations have in place. Whatever the future investment decisions on nuclear power, government strategy does properly require safe disposal of the wastes we already have and the wastes which will come forward from the present nuclear programme. (Author)

  8. Evaluation of brazilian bentonites as additive in the radwaste cementation

    International Nuclear Information System (INIS)

    Tello, C.C.O. de.

    1988-01-01

    The behavior of some Brazilian bentonites has been evaluated, concerning to their use as additive in the radwaste cementation. The purpose of the bentonite is to retain the radioelements in the final product in leaching process. Experiments to determine properties such as compressive strenght, viscosity, set time leaching and cesium sorption have been carried out to this evaluation. After one-year test, the results show that the bentonites greatly reduce the cesium release. A literature survey about cementation process and plants and about the cement product characteristics has been made in order to obtain a reliable final product, able to be transported and storaged. Some leaching test methods and mathematical models, that could be applied in the evaluation of cement products with bentonite have been evaluated. (author) [pt

  9. Solid radioactive waste management in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Huang Laixi; He Wenxin; Chen Degan

    2004-01-01

    This paper introduces the solid radwaste management system, treatment methods and its continuous improvement during the past 9 years in Guangdong Daya Bay Nuclear Power Station (GNPS). GNPS has paid great attention and made a lot of efforts to implement the principle of waste minimization with source control, improvement of treatment process and strict management, so the output of solid radwastes has annually decreased since 1994. In 2002, the output of solid radwastes in GNPS was 63.5 m 3 , only 50% of 1995 (127 m 3 ), reached the advanced level as the same type NPPs in France. During the period 1994-2002, the accumulated production of solid radwaste Packages in GNPS is 1563.51 m 3 only 18% of the design value; all the packages meet the standard and requirement for safe disposal. Besides, this paper analyzes some new technical processes and presents some proposals for further decreasing the solid radwaste production

  10. Preparing strategic information management plans for hospitals: a practical guideline SIM plans for hospitals: a guideline.

    Science.gov (United States)

    Brigl, B; Ammenwerth, E; Dujat, C; Gräber, S; Grosse, A; Häber, A; Jostes, C; Winter, A

    2005-01-01

    Systematic information management in hospitals demands for a strategic information management plan (SIM plan). As preparing a SIM plan is a considerable challenge we provide a practical guideline that is directly applicable when a SIM plan is going to be prepared. The guideline recommends a detailed structure of a SIM plan and gives advice about its content and the preparation process. It may be used as template, which can be adapted to the individual demands of any hospital. The guideline was used in several hospitals preparing a SIM plan. Experiences showed that the SIM plans could be prepared very efficiently and timely using the guideline, that the proposed SIM plan structure suited well, that the guideline offers enough flexibility to meet the requirements of the individual hospitals and that the specific recommendations of the guideline were very helpful. Nevertheless, we must strive for a more comprehensive theory of strategic information management planning which -- in the sense of enterprise architecture planning -- represents the intrinsic correlations of the different parts of a SIM plan to a greater extent.

  11. Soedra's ecological forest management plans. Effects on production and economy

    International Nuclear Information System (INIS)

    Viklund, E.

    1998-01-01

    In 1995 SOEDRA Skog, Sweden's largest forest owners association, started making ecological forest management plans, Groena skogsbruksplaner. The ecological forest management plans are divided into different compartments in which the management is adapted to the present ecological conditions. The stands are divided into four different categories depending on the different values of nature conservation. The object of this study was to find an easy method to quantify and describe the effects of nature conservation on economy and forest production in SOEDRA:s ecological forest management plans. The developed and purposed method, called PLAN-metoden, does not consider the interests, measures beyond the period of the plan, or losses due to snow or wind. It calculates the difference between the purposed measures in the ecological management plan and an alternative with management according to the requirements of the present Forestry Act. The economic effects of nature conservation varies between a net profit of 0,3% and a cost of 9,1% when calculated with the cash-flow method. The average decrease of possible cutting of merchantable timber was 11,3% and varies between 3,1 and 32,9%. The average decrease of cutting possibilities was 12,9% and varies between a decrease of 0,7% and a decrease of 28,3% when calculated with a present value method. Mainly mature, well-stocked compartments, which are considered not to be managed in the future, give rise to high costs. Properties with unprofitable thinnings and costly scarification, regeneration and cleaning seem to be favoured by the nature conservation in the plans. The Ecological management plans are expected to be of great importance to the members of SOEDRA. The interest in nature conservation is larger than that of economical issues. In order to avoid unsatisfactory results the planning should be accomplished in close personal contact with the forest owner Examination paper 1998-1. 21 refs, 2 figs, 39 tabs

  12. Configuration system development of site and environmental information for radwaste disposal facility

    International Nuclear Information System (INIS)

    Park, Se-Moon; Yoon, Bong-Yo; Kim, Chang-Lak

    2005-01-01

    License for the nuclear facilities such as radioactive waste repository demands documents of site characterization, environmental assessment and safety assessment. This performance will produce bulk of the relevant data. For the safe management of radioactive waste repository, data of the site and environment have to be collected and managed systematically. Particularly for the radwaste repository, which has to be institutionally controlled for a long period after closure, the data will be collected and maintained through the monitoring programme. To meet this requirement, a new programme called 'Site Information and Total Environmental data management System (SITES)' has been developed. The scope and function of the SITES is issued in data DB, safety assessment and monitoring system. In this respect, SITES is designed with two modules of the SITES Database Module (SDM) and the Monitoring and Assesment (M and A). The SDM module is composed of three sub-modules. One is the Site Information Management System (SIMS), which manages data of site characterization such as topography, geology, hydrogeology, engineering geology, etc. The other is the ENVironmental Information management System (ENVIS) and Radioactive ENVironmental Information management System (RENVIS), which manage environmental data required for environmental assessment performance. ENVIS and RENVIS covered almost whole items of environmental assessment report required by Korean government. The SDM was constructed based on Entity Relationship Diagram produced from each item. Also using ArcGIS with the spatial characteristics of the data, it enables groundwater and water property monitoring networks, etc. To be analyzed in respect of every theme. The sub-modules of M and A called the Site and Environment Monitoring System (SEMS) and the Safety Assessment System (SAS) were developed. SEMS was designed to manage the inspection records of the individual measuring instruments and facilities, and the on

  13. EPA Region 3 Quality Management Plans

    Science.gov (United States)

    Has links to resources that describe the Region's Quality Assurance Program, which is a collection of the Region's ongoing quality assurance (QA) policies, procedures, responsibilities and management systems.

  14. Planning for impact management: a systems perspective

    International Nuclear Information System (INIS)

    Leistritz, F.L.; Halstead, J.M.; Chase, R.A.; Murdock, S.H.

    1983-01-01

    The authors develop a conceptual basis for viewing impact events and their subsequent management, and thus for designing impact management programs. Following an examination of the pragmatic rationales for an impact management program for large-scale projects, such as a nuclear waste repository, they discuss the interrelated nature of impact events that clarify the need for an integrated systems-orientated socioeconomic impact management framework. They then present the key components of such a system and discusss its implementation. Although a concerted systems approach is difficult to implement and is complex in design, it will be more difficult to complete the repository siting process without one. 4 tables

  15. Social Impact Management Plans: Innovation in corporate and public policy

    International Nuclear Information System (INIS)

    Franks, Daniel M.; Vanclay, Frank

    2013-01-01

    Social Impact Assessment (SIA) has traditionally been practiced as a predictive study for the regulatory approval of major projects, however, in recent years the drivers and domain of focus for SIA have shifted. This paper details the emergence of Social Impact Management Plans (SIMPs) and undertakes an analysis of innovations in corporate and public policy that have put in place ongoing processes – assessment, management and monitoring – to better identify the nature and scope of the social impacts that might occur during implementation and to proactively respond to change across the lifecycle of developments. Four leading practice examples are analyzed. The International Finance Corporation (IFC) Performance Standards require the preparation of Environmental and Social Management Plans for all projects financed by the IFC identified as having significant environmental and social risks. Anglo American, a major resources company, has introduced a Socio-Economic Assessment Toolbox, which requires mine sites to undertake regular assessments and link these assessments with their internal management systems, monitoring activities and a Social Management Plan. In South Africa, Social and Labour Plans are submitted with an application for a mining or production right. In Queensland, Australia, Social Impact Management Plans were developed as part of an Environmental Impact Statement, which included assessment of social impacts. Collectively these initiatives, and others, are a practical realization of theoretical conceptions of SIA that include management and monitoring as core components of SIA. The paper concludes with an analysis of the implications for the practice of impact assessment including a summary of key criteria for the design and implementation of effective SIMPs. -- Highlights: • Social impact management plans are effective strategies to manage social issues. • They are developed in partnership with regulatory agencies, investors and community.

  16. Social Impact Management Plans: Innovation in corporate and public policy

    Energy Technology Data Exchange (ETDEWEB)

    Franks, Daniel M., E-mail: d.franks@uq.edu.au [Centre for Social Responsibility in Mining, The University of Queensland, Sustainable Minerals Institute, St Lucia, Brisbane, Queensland 4072 (Australia); Vanclay, Frank, E-mail: frank.vanclay@rug.nl [Department of Cultural Geography, Faculty of Spatial Sciences, The University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands)

    2013-11-15

    Social Impact Assessment (SIA) has traditionally been practiced as a predictive study for the regulatory approval of major projects, however, in recent years the drivers and domain of focus for SIA have shifted. This paper details the emergence of Social Impact Management Plans (SIMPs) and undertakes an analysis of innovations in corporate and public policy that have put in place ongoing processes – assessment, management and monitoring – to better identify the nature and scope of the social impacts that might occur during implementation and to proactively respond to change across the lifecycle of developments. Four leading practice examples are analyzed. The International Finance Corporation (IFC) Performance Standards require the preparation of Environmental and Social Management Plans for all projects financed by the IFC identified as having significant environmental and social risks. Anglo American, a major resources company, has introduced a Socio-Economic Assessment Toolbox, which requires mine sites to undertake regular assessments and link these assessments with their internal management systems, monitoring activities and a Social Management Plan. In South Africa, Social and Labour Plans are submitted with an application for a mining or production right. In Queensland, Australia, Social Impact Management Plans were developed as part of an Environmental Impact Statement, which included assessment of social impacts. Collectively these initiatives, and others, are a practical realization of theoretical conceptions of SIA that include management and monitoring as core components of SIA. The paper concludes with an analysis of the implications for the practice of impact assessment including a summary of key criteria for the design and implementation of effective SIMPs. -- Highlights: • Social impact management plans are effective strategies to manage social issues. • They are developed in partnership with regulatory agencies, investors and community.

  17. 24 CFR 1003.205 - Eligible planning, urban environmental design and policy-planning-management-capacity building...

    Science.gov (United States)

    2010-04-01

    ... environmental design and policy-planning-management-capacity building activities. 1003.205 Section 1003.205... planning, urban environmental design and policy-planning-management-capacity building activities. (a... plans, general environmental studies, and strategies and action programs to implement plans, including...

  18. Project management plan for exploratory shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    1983-08-01

    This Project Management Plan (PMP) provides the basic guidance and describes the organizational structure and procedures for the design, construction, and testing of a large-diameter Exploratory Shaft (ES) in tuffaceous media as a major element within the Nevada Nuclear Waste Storage Investigations (NNWSI) project, which is a part of the National Waste Terminal Storage (NWTS) Program, US Department of Energy (DOE). The PMP encompasses activities identified as construction phase and in situ phase testing to be conducted from the ES through September 30, 1986. Specific topics addressed are the ES project objectives, the management organization and responsibilities, functional support requirements, work plan (including quality assurance aspects), work breakdown structure, milestone schedule, logic diagram, performance criteria, cost estimates, management control systems, procurement plan, test plan, and environmental, health and safety plans

  19. Nurse manager residency program: an innovative leadership succession plan.

    Science.gov (United States)

    Watkins, Amy; Wagner, Jennifer; Martin, Christina; Grant, Brandy; Maule, Katrina; Resh, Kimberly; King, Lisa; Eaton, Holly; Fetter, Katrina; King, Stacey L; Thompson, Elizabeth J

    2014-01-01

    To ensure succession planning within the ranks of nurse managers meet current and projected nursing management needs and organizational goals, we developed and implemented a nurse manager residency program at our hospital. By identifying, supporting, and mentoring clinical experts who express a desire and display an aptitude for nursing leadership, we are graduating individuals who can transition to a nurse manager position with greater ease and competence.

  20. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  1. effect of strikes on management and planning of educational ...

    African Journals Online (AJOL)

    Global Journal

    Strike is an event that consumes and waste a lot of time which implies that ... from this paper. KEYWORDS: Strikes, Management, Planning, Educational, Activities, Universities ..... employers; and Introduction of new technology which affect the ...

  2. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  3. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  4. Comparison of the NCRA and NAACCR Strategic Management Plans.

    Science.gov (United States)

    Menck, Herman R

    2012-01-01

    The Strategic Management Plans of the National Cancer Registrars Association (NCRA) and the North American Association of Central Cancer Registries (NAACCR) were compared, and differences noted. No uncovered subject areas were found.

  5. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  6. Managing Plan Implementation in the Asante Akyem South District ...

    African Journals Online (AJOL)

    Managing Plan Implementation in the Asante Akyem South District Assembly: Capacity Issues and Challenges. ... This paper uses a case study approach to appraise the capacity of the Asante Akyem South District Assembly (AASDA) in ...

  7. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  8. Towards Data Management Planning Support for Research Data

    NARCIS (Netherlands)

    Görzig, Heike; Engel, Felix; Brocks, Holger; Vogel, Tobias; Hemmje, Matthias

    2015-01-01

    Görzig, H., Engel, F., Brocks, H., Vogel, T. & Hemmje, M. (2015, August). Towards Data Management Planning Support for Research Data. Paper presented at the ASE International Conference on Data Science, Stanford, United States of America.

  9. Software Configuration Management Plan for the Sodium Removal System

    International Nuclear Information System (INIS)

    HILL, L.F.

    2000-01-01

    This document establishers the Software Configuration Management Plan (SCMP) for the software associated with the control system of the Sodium Removal System (SRS) located in the Interim Examination and Maintenance (IEM Cell) Facility of the FFTF Flux Test

  10. Fact Sheet: Risk Management Plan (RMP) Audit Program

    Science.gov (United States)

    Risk management programs, which consist of a hazard assessment, a prevention program, and an emergency response program; must be periodically audited to assess whether the plans are adequate or need to be revised to comply with the regulation.

  11. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  12. Spent Nuclear Fuel Project Configuration Management Plan

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1995-01-01

    This document is a rewrite of the draft ''C'' that was agreed to ''in principle'' by SNF Project level 2 managers on EDT 609835, dated March 1995 (not released). The implementation process philosphy was changed in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve configuration management within the SNF Project

  13. Incident Management Organization succession planning stakeholder feedback

    Science.gov (United States)

    Anne E. Black

    2013-01-01

    This report presents complete results of a 2011 stakeholder feedback effort conducted for the National Wildfire Coordination Group (NWCG) Executive Board concerning how best to organize and manage national wildland fire Incident Management Teams in the future to meet the needs of the public, agencies, fire service and Team members. Feedback was collected from 858...

  14. Language Planning, Channel Management, and ESP.

    Science.gov (United States)

    Kennedy, Chris

    Channel management, a concept developed in marketing to refer to the process by which a product is moved from production to consumption, uses a channel of distribution operating at several levels, each responsible for one or more of the activities of moving the product forward to the consumer. The function of channel management is to select the…

  15. Radwaste management as a social issue; Ydinjaetteiden loppusijoitus yhteiskunnallisena kiistakysymyksenae

    Energy Technology Data Exchange (ETDEWEB)

    Kantola, I. [Turku Univ. (Finland). Dept. of Sociology

    1999-03-01

    Citizens` fears, concerns and conflicts around high level nuclear waste disposal have been assessed as a part the EIA of the disposal plant project. The aim of this study was to estimate the scope and the limits of objective assessments of the subjectively experienced social impacts. Consequently, the study also reflects on the functions necessary for citizen participation in a restricted assessment environment. The materials used in this study consist of literature and interviews of ten prominent scholars of social science in Finland. Acquisition of both of the two distinct types of materials took place in August to November 1998 by the author. The main results are: (1) citizens` fears, concerns and conflicts articulate in different ways depending on the kind of conceptualisations, methods of analysis and data collection, and the interpretation of empirical results applied; (2) forecasting social impacts plausibly a longer time span seems to be impossible due to their socially constructed nature. Social constructionism, risk society, ecological modernisation, and postmodernity are exposed as conceptual choices for the analysis of social impacts. A concluding review is presented of the views of the interviewed scholars about the practised social impact assessment, its critique and ideas for development. (orig.) 136 refs.

  16. Safe handling, economics: Driving forces in radwaste management

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1994-01-01

    This article describes how, faced with tortuous federal and state progress toward provision of disposal facilities, utilities are taking interim steps to deal with mounting spent-fuel and low-level radioactive-waste burdens. Whether for highly radioactive fuel assemblies that have served their designated life in nuclear reactors, or for the low-level radioactive waste materials (LLW) created by maintenance, volume-reduction, or other activities at generating sites, ultimate disposition has become a matter requiring immediate steps to avoid complete exhaustion of storage space at utility sites. A virtual impasse exists in both areas: Regional compacts have moved very slowly toward licensing and construction of new LLW disposal sites, and federal action to meet the 1998 deadline for acceptance of spent fuel, as prescribed by the Nuclear Waste Policy Act in 1982 -- for either temporary storage (with monitored retrieval, MRS) or permanent burial -- has proceeded at a snail's pace

  17. Disaster Recovery Planning as part of Business Continuity Management

    OpenAIRE

    Pinta, Jan

    2011-01-01

    Nowadays, a well functioning ICT infrastructure belongs to the most critical factors of companies across all branches of business. An importance of ensuring the continued operation of information systems, or the rapid recovery of the systems in the case of emergency, has increased. These needs require creating business continuity management plan and disaster recovery planning. This paper describes the creation of emergency and recovery plans and setting recovery objectives significantly affec...

  18. Using management action plans to integrate program improvement efforts

    Energy Technology Data Exchange (ETDEWEB)

    Meador, S.W.; Kidwell, R.J.; Shangraw, W.R.; Cardamone, E.N. [Project Performance Corporation, Sterling, VA (United States)

    1994-12-31

    The Department of Energy`s (DOE`s) Environmental Management Program is the country`s largest and most sophisticated environmental program to date. The rapid expansion of the DOE`s environmental restoration efforts has led to increased scrutiny of its management processes and systems. As the program continues to grow and mature, maintaining adequate accountability for resources and clearly communicating progress will be essential to sustaining public confidence. The Office of Environmental Management must ensure that adequate processes and systems are in place at Headquarters, Operation Offices, and contractor organizations. These systems must provide the basis for sound management, cost control, and reporting. To meet this challenge, the Office of Environmental Restoration introduced the Management Action Plan process. This process was designed to serve three primary functions: (1) define the program`s management capabilities at Headquarters and Operations Offices; (2) describe how management initiatives address identified program deficiencies; and (3) identify any duplication of efforts or program deficiencies. The Environmental Restoration Management Action Plan is a tracking, reporting, and statusing tool, used primarily at the Headquarters level, for assessing performance in key areas of project management and control. BY DOE to communicate to oversight agencies and stakeholders a clearer picture of the current status of the environmental restoration project management system. This paper will discuss how Management Action Plans are used to provide a program-wide assessment of management capabilities.

  19. Using management action plans to integrate program improvement efforts

    International Nuclear Information System (INIS)

    Meador, S.W.; Kidwell, R.J.; Shangraw, W.R.; Cardamone, E.N.

    1994-01-01

    The Department of Energy's (DOE's) Environmental Management Program is the country's largest and most sophisticated environmental program to date. The rapid expansion of the DOE's environmental restoration efforts has led to increased scrutiny of its management processes and systems. As the program continues to grow and mature, maintaining adequate accountability for resources and clearly communicating progress will be essential to sustaining public confidence. The Office of Environmental Management must ensure that adequate processes and systems are in place at Headquarters, Operation Offices, and contractor organizations. These systems must provide the basis for sound management, cost control, and reporting. To meet this challenge, the Office of Environmental Restoration introduced the Management Action Plan process. This process was designed to serve three primary functions: (1) define the program's management capabilities at Headquarters and Operations Offices; (2) describe how management initiatives address identified program deficiencies; and (3) identify any duplication of efforts or program deficiencies. The Environmental Restoration Management Action Plan is a tracking, reporting, and statusing tool, used primarily at the Headquarters level, for assessing performance in key areas of project management and control. BY DOE to communicate to oversight agencies and stakeholders a clearer picture of the current status of the environmental restoration project management system. This paper will discuss how Management Action Plans are used to provide a program-wide assessment of management capabilities

  20. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  1. Information security management system planning for CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  2. Land management planning: a method of evaluating alternatives

    Science.gov (United States)

    Andres Weintraub; Richard Adams; Linda Yellin

    1982-01-01

    A method is described for developing and evaluating alternatives in land management planning. A structured set of 15 steps provides a framework for such an evaluation. when multiple objectives and uncertainty must be considered in the planning process. The method is consistent with other processes used in organizational evaluation, and allows for the interaction of...

  3. Risk management and disaster recovery planning for online libraries.

    Science.gov (United States)

    Uzwyshyn, Ray

    2015-01-01

    This article presents an overview of risk management and disaster recovery planning for online libraries. It is suitable for a broad audience interested in online libraries and research centers in universities and colleges. It outlines risk mitigation strategies, and disaster recover planning for online resource-centered information systems.

  4. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  5. Strategic planning features of subsurface management in Kemerovo Oblast

    Science.gov (United States)

    Romanyuk, V.; Grinkevich, A.; Akhmadeev, K.; Pozdeeva, G.

    2016-09-01

    The article discusses the strategic planning features of regional development based on the production and subsurface management in Kemerovo Oblast. The modern approach - SWOT analysis was applied to assess the regional development strategy. The estimation of regional development plan implementation was given for the foreseeable future.

  6. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Science.gov (United States)

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  7. An intuitive interface for building management and planning

    NARCIS (Netherlands)

    Vries, de B.; Buma, S.A.; Jessurun, A.J.

    2006-01-01

    Building management and planning professionals utilize database systems for administrative support, but these systems are inadequate for conveying architectural plans. In this article we describe the so-called Virtual Maquette that was developed at the Eindhoven University of Technology for the

  8. Forest management planning for timber production: a sequential approach

    Science.gov (United States)

    Krishna P. Rustagi

    1978-01-01

    Explicit forest management planning for timber production beyond the first few years at any time necessitates use of information which can best be described as suspect. The two-step approach outlined here concentrates on the planning strategy over the next few years without losing sight of the long-run productivity. Frequent updating of the long-range and short-range...

  9. Scientifically defensible fish conservation and recovery plans: Addressing diffuse threats and developing rigorous adaptive management plans

    Science.gov (United States)

    Maas-Hebner, Kathleen G.; Schreck, Carl B.; Hughes, Robert M.; Yeakley, Alan; Molina, Nancy

    2016-01-01

    We discuss the importance of addressing diffuse threats to long-term species and habitat viability in fish conservation and recovery planning. In the Pacific Northwest, USA, salmonid management plans have typically focused on degraded freshwater habitat, dams, fish passage, harvest rates, and hatchery releases. However, such plans inadequately address threats related to human population and economic growth, intra- and interspecific competition, and changes in climate, ocean, and estuarine conditions. Based on reviews conducted on eight conservation and/or recovery plans, we found that though threats resulting from such changes are difficult to model and/or predict, they are especially important for wide-ranging diadromous species. Adaptive management is also a critical but often inadequately constructed component of those plans. Adaptive management should be designed to respond to evolving knowledge about the fish and their supporting ecosystems; if done properly, it should help improve conservation efforts by decreasing uncertainty regarding known and diffuse threats. We conclude with a general call for environmental managers and planners to reinvigorate the adaptive management process in future management plans, including more explicitly identifying critical uncertainties, implementing monitoring programs to reduce those uncertainties, and explicitly stating what management actions will occur when pre-identified trigger points are reached.

  10. Planning, Management, and Economics of Airport Operation

    Science.gov (United States)

    Wiley, J.

    1972-01-01

    An overview of the role of the airport in the transportation complex and in the community is presented. The establishment of the airport including its requirements in regional planning and the operation of the airport as a social and economic force are discussed.

  11. Entrepreneurship through Strategic Planning, Management, and Evaluation.

    Science.gov (United States)

    Groff, Warren H.

    A process to assess a college's external environment and audit its internal environment in order to pursue options available to postsecondary education is described. Essentially the concept is one of matching opportunities in the external environment with institutional strengths as determined by an internal audit. Strategic planning must consider…

  12. Integrating Risk Management and Strategic Planning

    Science.gov (United States)

    Achampong, Francis K.

    2010-01-01

    Strategic planning is critical to ensuring that institutions of higher education thoughtfully and systematically position themselves to accomplish their mission, vision, and strategic goals, particularly when these institutions face a myriad of risks that can negatively impact their continued financial viability and compromise their ability to…

  13. 78 FR 7391 - Motorized Travel Management Plan, Tonto National Forest; Gila, Maricopa, Pinal, and Counties, AZ

    Science.gov (United States)

    2013-02-01

    ... point that environmental analysis for travel management under an Environmental Impact Statement (EIS... DEPARTMENT OF AGRICULTURE Forest Service Motorized Travel Management Plan, Tonto National Forest... for motorized vehicle use, thereby developing a motorized travel management plan. Such a plan is...

  14. Hawaii Volcanoes National Park Air Tour Management Plan: Planning and NEPA Scoping Document

    Science.gov (United States)

    2004-03-03

    The Federal Aviation Administration (FAA), in cooperation with the National Park Service (NPS), has initiated the development of Air Tour Management Plans (ATMPs) for Haleakala National Park, Hawaii Volcanoes National Park, Puukohola Heiau National H...

  15. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  16. Quality Management Plan for EPA Region 1

    Science.gov (United States)

    The QMP describes policies, procedures & management systems within EPA NE that govern quality assurance & quality control activities supporting the transparency & scientific defensibility of environmental data collected, used & disseminated by the Region.

  17. Smallholder integrated crop management (ICM) research planning ...

    African Journals Online (AJOL)

    Mo

    More women farmers were invited because they do most of the farming. Other participants came from ... smallholders to innovate their land and crop management strategies. This would be ..... Asian Farming Systems Association, 2 (2): 67.

  18. Information needs for natural fire management planning

    Science.gov (United States)

    Parsons, David; Bancroft, Larry; Nichols, Thomas; Stohlgren, Thomas

    1985-01-01

    The development and implementation of an effective natural fire management program require a clear definition of goals and objectives, an ever-expanding information base, and effective program evaluation. Examples are given from Sequoia and Kings Canyon National Parks.

  19. REGINALT - a tool for management planning

    International Nuclear Information System (INIS)

    Loughead, J.S.C.

    1987-01-01

    REGINALT is a computer-based decision support system that can be used by non-programmers to evaluate a comprehensive approach to commercial low-level radioactive waste (LLRW) management. REGINALT allows a waste management person to consider technical, financial, and scheduling differences between possible scenarios. This paper explains the type of data which are needed, how these data are processed, and the type of reports available from the REGINALT system. 2 figures, 3 tables

  20. Oak Ridge National Laboratory Environmenal, Safety, and Health Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The 1990 Tiger Team Appraisal of Oak Ridge National Laboratory (ORNL) revealed that neither Martin Marietta Energy Systems, Inc. (Energy Systems) nor ORNL had a strategic plan for Environmental, Safety, and Health (ES ampersand H) activities. There were no detailed plans describing ORNL's mission, objectives, and strategies for ES ampersand H activities. A number of plans do exist that cover various aspects of ES ampersand H. Their scope ranges from multiyear program plans to annual audit schedules to compliance plans to action plans from specific audits. However, there is not a single document that identifies the plans and the objectives they are to address. This document describes the strategic plan for ORNL and provides the linkage among existing plans. It gives a brief description of the organization and management of ES ampersand H activities at ORNL. The plan identifies the general strategies to be taken by ORNL, using the overall guidance from Energy Systems in its corporate ES ampersand H Strategic Plan. It also identifies more detailed plans for implementation of these strategies, where appropriate